xref: /titanic_52/usr/src/uts/sun4/vm/sfmmu.c (revision 1c7ddb37901fc37ef4e9ee39da9ce4ecbbab096d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <vm/hat.h>
30 #include <vm/hat_sfmmu.h>
31 #include <vm/page.h>
32 #include <sys/pte.h>
33 #include <sys/systm.h>
34 #include <sys/mman.h>
35 #include <sys/sysmacros.h>
36 #include <sys/machparam.h>
37 #include <sys/vtrace.h>
38 #include <sys/kmem.h>
39 #include <sys/mmu.h>
40 #include <sys/cmn_err.h>
41 #include <sys/cpu.h>
42 #include <sys/cpuvar.h>
43 #include <sys/debug.h>
44 #include <sys/lgrp.h>
45 #include <sys/archsystm.h>
46 #include <sys/machsystm.h>
47 #include <sys/vmsystm.h>
48 #include <sys/bitmap.h>
49 #include <vm/as.h>
50 #include <vm/seg.h>
51 #include <vm/seg_kmem.h>
52 #include <vm/seg_kp.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/rm.h>
55 #include <vm/vm_dep.h>
56 #include <sys/t_lock.h>
57 #include <sys/vm_machparam.h>
58 #include <sys/promif.h>
59 #include <sys/prom_isa.h>
60 #include <sys/prom_plat.h>
61 #include <sys/prom_debug.h>
62 #include <sys/privregs.h>
63 #include <sys/bootconf.h>
64 #include <sys/memlist.h>
65 #include <sys/memlist_plat.h>
66 #include <sys/cpu_module.h>
67 #include <sys/reboot.h>
68 #include <sys/kdi.h>
69 
70 /*
71  * Static routines
72  */
73 static void	sfmmu_map_prom_mappings(struct translation *, size_t);
74 static struct translation *read_prom_mappings(size_t *);
75 static void	sfmmu_reloc_trap_handler(void *, void *, size_t);
76 
77 /*
78  * External routines
79  */
80 extern void sfmmu_remap_kernel(void);
81 extern void sfmmu_patch_utsb(void);
82 
83 /*
84  * Global Data:
85  */
86 extern caddr_t	textva, datava;
87 extern tte_t	ktext_tte, kdata_tte;	/* ttes for kernel text and data */
88 extern int	enable_bigktsb;
89 extern int	kmem64_smchunks;
90 
91 uint64_t memsegspa = (uintptr_t)MSEG_NULLPTR_PA; /* memsegs physical linkage */
92 uint64_t memseg_phash[N_MEM_SLOTS];	/* use physical memseg addresses */
93 
94 int	sfmmu_kern_mapped = 0;
95 
96 /*
97  * DMMU primary context register for the kernel context. Machine specific code
98  * inserts correct page size codes when necessary
99  */
100 uint64_t kcontextreg = KCONTEXT;
101 
102 #ifdef DEBUG
103 static int ndata_middle_hole_detected = 0;
104 #endif
105 
106 /* Extern Global Data */
107 
108 extern int page_relocate_ready;
109 
110 /*
111  * Controls the logic which enables the use of the
112  * QUAD_LDD_PHYS ASI for TSB accesses.
113  */
114 extern int	ktsb_phys;
115 
116 /*
117  * Global Routines called from within:
118  *	usr/src/uts/sun4u
119  *	usr/src/uts/sfmmu
120  *	usr/src/uts/sun
121  */
122 
123 pfn_t
124 va_to_pfn(void *vaddr)
125 {
126 	u_longlong_t physaddr;
127 	int mode, valid;
128 
129 	if (tba_taken_over)
130 		return (hat_getpfnum(kas.a_hat, (caddr_t)vaddr));
131 
132 #if !defined(C_OBP)
133 	if (!kmem64_smchunks &&
134 	    (caddr_t)vaddr >= kmem64_base && (caddr_t)vaddr < kmem64_end) {
135 		if (kmem64_pabase == (uint64_t)-1)
136 			prom_panic("va_to_pfn: kmem64_pabase not init");
137 		physaddr = kmem64_pabase + ((caddr_t)vaddr - kmem64_base);
138 		return ((pfn_t)physaddr >> MMU_PAGESHIFT);
139 	}
140 #endif	/* !C_OBP */
141 
142 	if ((prom_translate_virt(vaddr, &valid, &physaddr, &mode) != -1) &&
143 	    (valid == -1)) {
144 		return ((pfn_t)(physaddr >> MMU_PAGESHIFT));
145 	}
146 	return (PFN_INVALID);
147 }
148 
149 uint64_t
150 va_to_pa(void *vaddr)
151 {
152 	pfn_t pfn;
153 
154 	if ((pfn = va_to_pfn(vaddr)) == PFN_INVALID)
155 		return ((uint64_t)-1);
156 	return (((uint64_t)pfn << MMU_PAGESHIFT) |
157 	    ((uint64_t)vaddr & MMU_PAGEOFFSET));
158 }
159 
160 void
161 hat_kern_setup(void)
162 {
163 	struct translation *trans_root;
164 	size_t ntrans_root;
165 	extern void startup_fixup_physavail(void);
166 
167 	/*
168 	 * These are the steps we take to take over the mmu from the prom.
169 	 *
170 	 * (1)	Read the prom's mappings through the translation property.
171 	 * (2)	Remap the kernel text and kernel data with 2 locked 4MB ttes.
172 	 *	Create the the hmeblks for these 2 ttes at this time.
173 	 * (3)	Create hat structures for all other prom mappings.  Since the
174 	 *	kernel text and data hme_blks have already been created we
175 	 *	skip the equivalent prom's mappings.
176 	 * (4)	Initialize the tsb and its corresponding hardware regs.
177 	 * (5)	Take over the trap table (currently in startup).
178 	 * (6)	Up to this point it is possible the prom required some of its
179 	 *	locked tte's.  Now that we own the trap table we remove them.
180 	 */
181 
182 	ktsb_pbase = va_to_pa(ktsb_base);
183 	ktsb4m_pbase = va_to_pa(ktsb4m_base);
184 	PRM_DEBUG(ktsb_pbase);
185 	PRM_DEBUG(ktsb4m_pbase);
186 
187 	sfmmu_patch_ktsb();
188 	sfmmu_patch_utsb();
189 	sfmmu_patch_mmu_asi(ktsb_phys);
190 
191 	sfmmu_init_tsbs();
192 
193 	if (kpm_enable) {
194 		sfmmu_kpm_patch_tlbm();
195 		if (kpm_smallpages == 0) {
196 			sfmmu_kpm_patch_tsbm();
197 		}
198 	}
199 
200 	if (!shctx_on) {
201 		sfmmu_patch_shctx();
202 	}
203 
204 	/*
205 	 * The 8K-indexed kernel TSB space is used to hold
206 	 * translations below...
207 	 */
208 	trans_root = read_prom_mappings(&ntrans_root);
209 	sfmmu_remap_kernel();
210 	startup_fixup_physavail();
211 	mmu_init_kernel_pgsz(kas.a_hat);
212 	sfmmu_map_prom_mappings(trans_root, ntrans_root);
213 
214 	/*
215 	 * We invalidate 8K kernel TSB because we used it in
216 	 * sfmmu_map_prom_mappings()
217 	 */
218 	sfmmu_inv_tsb(ktsb_base, ktsb_sz);
219 	sfmmu_inv_tsb(ktsb4m_base, ktsb4m_sz);
220 
221 	sfmmu_init_ktsbinfo();
222 
223 
224 	sfmmu_kern_mapped = 1;
225 
226 	/*
227 	 * hments have been created for mapped pages, and thus we're ready
228 	 * for kmdb to start using its own trap table.  It walks the hments
229 	 * to resolve TLB misses, and can't be used until they're ready.
230 	 */
231 	if (boothowto & RB_DEBUG)
232 		kdi_dvec_vmready();
233 }
234 
235 /*
236  * Macro used below to convert the prom's 32-bit high and low fields into
237  * a value appropriate for the 64-bit kernel.
238  */
239 
240 #define	COMBINE(hi, lo) (((uint64_t)(uint32_t)(hi) << 32) | (uint32_t)(lo))
241 
242 /*
243  * Track larges pages used.
244  * Provides observability for this feature on non-debug kernels.
245  */
246 ulong_t map_prom_lpcount[MMU_PAGE_SIZES];
247 
248 /*
249  * This function traverses the prom mapping list and creates equivalent
250  * mappings in the sfmmu mapping hash.
251  */
252 static void
253 sfmmu_map_prom_mappings(struct translation *trans_root, size_t ntrans_root)
254 {
255 	struct translation *promt;
256 	tte_t	tte, oldtte, *ttep;
257 	pfn_t	pfn, oldpfn, basepfn;
258 	caddr_t vaddr;
259 	size_t	size, offset;
260 	unsigned long i;
261 	uint_t	attr;
262 	page_t *pp;
263 	extern struct memlist *virt_avail;
264 	char buf[256];
265 
266 	ttep = &tte;
267 	for (i = 0, promt = trans_root; i < ntrans_root; i++, promt++) {
268 		ASSERT(promt->tte_hi != 0);
269 		ASSERT32(promt->virt_hi == 0 && promt->size_hi == 0);
270 
271 		vaddr = (caddr_t)COMBINE(promt->virt_hi, promt->virt_lo);
272 
273 		/*
274 		 * hack until we get rid of map-for-unix
275 		 */
276 		if (vaddr < (caddr_t)KERNELBASE)
277 			continue;
278 
279 		ttep->tte_inthi = promt->tte_hi;
280 		ttep->tte_intlo = promt->tte_lo;
281 		attr = PROC_DATA | HAT_NOSYNC;
282 #if defined(TTE_IS_GLOBAL)
283 		if (TTE_IS_GLOBAL(ttep)) {
284 			/*
285 			 * The prom better not use global translations
286 			 * because a user process might use the same
287 			 * virtual addresses
288 			 */
289 			prom_panic("sfmmu_map_prom_mappings: global"
290 			    " translation");
291 			TTE_SET_LOFLAGS(ttep, TTE_GLB_INT, 0);
292 		}
293 #endif
294 		if (TTE_IS_LOCKED(ttep)) {
295 			/* clear the lock bits */
296 			TTE_CLR_LOCKED(ttep);
297 		}
298 		attr |= (TTE_IS_VCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEVTTE;
299 		attr |= (TTE_IS_PCACHEABLE(ttep)) ? 0 : SFMMU_UNCACHEPTTE;
300 		attr |= (TTE_IS_SIDEFFECT(ttep)) ? SFMMU_SIDEFFECT : 0;
301 		attr |= (TTE_IS_IE(ttep)) ? HAT_STRUCTURE_LE : 0;
302 
303 		size = COMBINE(promt->size_hi, promt->size_lo);
304 		offset = 0;
305 		basepfn = TTE_TO_PFN((caddr_t)COMBINE(promt->virt_hi,
306 		    promt->virt_lo), ttep);
307 		while (size) {
308 			vaddr = (caddr_t)(COMBINE(promt->virt_hi,
309 			    promt->virt_lo) + offset);
310 
311 			/*
312 			 * make sure address is not in virt-avail list
313 			 */
314 			if (address_in_memlist(virt_avail, (uint64_t)vaddr,
315 			    size)) {
316 				prom_panic("sfmmu_map_prom_mappings:"
317 				    " inconsistent translation/avail lists");
318 			}
319 
320 			pfn = basepfn + mmu_btop(offset);
321 			if (pf_is_memory(pfn)) {
322 				if (attr & SFMMU_UNCACHEPTTE) {
323 					prom_panic("sfmmu_map_prom_mappings:"
324 					    " uncached prom memory page");
325 				}
326 			} else {
327 				if (!(attr & SFMMU_SIDEFFECT)) {
328 					prom_panic("sfmmu_map_prom_mappings:"
329 					    " prom i/o page without"
330 					    " side-effect");
331 				}
332 			}
333 
334 			/*
335 			 * skip kmem64 area
336 			 */
337 			if (!kmem64_smchunks &&
338 			    vaddr >= kmem64_base &&
339 			    vaddr < kmem64_aligned_end) {
340 #if !defined(C_OBP)
341 				prom_panic("sfmmu_map_prom_mappings:"
342 				    " unexpected kmem64 prom mapping");
343 #else	/* !C_OBP */
344 				size_t mapsz;
345 
346 				if (ptob(pfn) !=
347 				    kmem64_pabase + (vaddr - kmem64_base)) {
348 					prom_panic("sfmmu_map_prom_mappings:"
349 					    " unexpected kmem64 prom mapping");
350 				}
351 
352 				mapsz = kmem64_aligned_end - vaddr;
353 				if (mapsz >= size) {
354 					break;
355 				}
356 				size -= mapsz;
357 				offset += mapsz;
358 				continue;
359 #endif	/* !C_OBP */
360 			}
361 
362 			oldpfn = sfmmu_vatopfn(vaddr, KHATID, &oldtte);
363 			ASSERT(oldpfn != PFN_SUSPENDED);
364 			ASSERT(page_relocate_ready == 0);
365 
366 			if (oldpfn != PFN_INVALID) {
367 				/*
368 				 * mapping already exists.
369 				 * Verify they are equal
370 				 */
371 				if (pfn != oldpfn) {
372 					(void) snprintf(buf, sizeof (buf),
373 					"sfmmu_map_prom_mappings: mapping"
374 					" conflict (va = 0x%p, pfn = 0x%p,"
375 					" oldpfn = 0x%p)", (void *)vaddr,
376 					    (void *)pfn, (void *)oldpfn);
377 					prom_panic(buf);
378 				}
379 				size -= MMU_PAGESIZE;
380 				offset += MMU_PAGESIZE;
381 				continue;
382 			}
383 
384 			pp = page_numtopp_nolock(pfn);
385 			if ((pp != NULL) && PP_ISFREE((page_t *)pp)) {
386 				(void) snprintf(buf, sizeof (buf),
387 				"sfmmu_map_prom_mappings: prom-mapped"
388 				" page (va = 0x%p, pfn = 0x%p) on free list",
389 				    (void *)vaddr, (void *)pfn);
390 				prom_panic(buf);
391 			}
392 
393 			sfmmu_memtte(ttep, pfn, attr, TTE8K);
394 			sfmmu_tteload(kas.a_hat, ttep, vaddr, pp,
395 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
396 			size -= MMU_PAGESIZE;
397 			offset += MMU_PAGESIZE;
398 		}
399 	}
400 
401 	/*
402 	 * We claimed kmem64 from prom, so now we need to load tte.
403 	 */
404 	if (!kmem64_smchunks && kmem64_base != NULL) {
405 		pgcnt_t pages;
406 		size_t psize;
407 		int pszc;
408 
409 		pszc = kmem64_szc;
410 #ifdef sun4u
411 		if (pszc > TTE8K) {
412 			pszc = segkmem_lpszc;
413 		}
414 #endif	/* sun4u */
415 		psize = TTEBYTES(pszc);
416 		pages = btop(psize);
417 		basepfn = kmem64_pabase >> MMU_PAGESHIFT;
418 		vaddr = kmem64_base;
419 		while (vaddr < kmem64_end) {
420 			sfmmu_memtte(ttep, basepfn,
421 			    PROC_DATA | HAT_NOSYNC, pszc);
422 			sfmmu_tteload(kas.a_hat, ttep, vaddr, NULL,
423 			    HAT_LOAD_LOCK | SFMMU_NO_TSBLOAD);
424 			vaddr += psize;
425 			basepfn += pages;
426 		}
427 		map_prom_lpcount[pszc] =
428 		    ((caddr_t)P2ROUNDUP((uintptr_t)kmem64_end, psize) -
429 		    kmem64_base) >> TTE_PAGE_SHIFT(pszc);
430 	}
431 }
432 
433 #undef COMBINE	/* local to previous routine */
434 
435 /*
436  * This routine reads in the "translations" property in to a buffer and
437  * returns a pointer to this buffer and the number of translations.
438  */
439 static struct translation *
440 read_prom_mappings(size_t *ntransrootp)
441 {
442 	char *prop = "translations";
443 	size_t translen;
444 	pnode_t node;
445 	struct translation *transroot;
446 
447 	/*
448 	 * the "translations" property is associated with the mmu node
449 	 */
450 	node = (pnode_t)prom_getphandle(prom_mmu_ihandle());
451 
452 	/*
453 	 * We use the TSB space to read in the prom mappings.  This space
454 	 * is currently not being used because we haven't taken over the
455 	 * trap table yet.  It should be big enough to hold the mappings.
456 	 */
457 	if ((translen = prom_getproplen(node, prop)) == -1)
458 		cmn_err(CE_PANIC, "no translations property");
459 	*ntransrootp = translen / sizeof (*transroot);
460 	translen = roundup(translen, MMU_PAGESIZE);
461 	PRM_DEBUG(translen);
462 	if (translen > TSB_BYTES(ktsb_szcode))
463 		cmn_err(CE_PANIC, "not enough space for translations");
464 
465 	transroot = (struct translation *)ktsb_base;
466 	ASSERT(transroot);
467 	if (prom_getprop(node, prop, (caddr_t)transroot) == -1) {
468 		cmn_err(CE_PANIC, "translations getprop failed");
469 	}
470 	return (transroot);
471 }
472 
473 /*
474  * Init routine of the nucleus data memory allocator.
475  *
476  * The nucleus data memory allocator is organized in ecache_alignsize'd
477  * memory chunks. Memory allocated by ndata_alloc() will never be freed.
478  *
479  * The ndata argument is used as header of the ndata freelist.
480  * Other freelist nodes are placed in the nucleus memory itself
481  * at the beginning of a free memory chunk. Therefore a freelist
482  * node (struct memlist) must fit into the smallest allocatable
483  * memory chunk (ecache_alignsize bytes).
484  *
485  * The memory interval [base, end] passed to ndata_alloc_init() must be
486  * bzero'd to allow the allocator to return bzero'd memory easily.
487  */
488 void
489 ndata_alloc_init(struct memlist *ndata, uintptr_t base, uintptr_t end)
490 {
491 	ASSERT(sizeof (struct memlist) <= ecache_alignsize);
492 
493 	base = roundup(base, ecache_alignsize);
494 	end = end - end % ecache_alignsize;
495 
496 	ASSERT(base < end);
497 
498 	ndata->address = base;
499 	ndata->size = end - base;
500 	ndata->next = NULL;
501 	ndata->prev = NULL;
502 }
503 
504 /*
505  * Deliver the size of the largest free memory chunk.
506  */
507 size_t
508 ndata_maxsize(struct memlist *ndata)
509 {
510 	size_t chunksize = ndata->size;
511 
512 	while ((ndata = ndata->next) != NULL) {
513 		if (chunksize < ndata->size)
514 			chunksize = ndata->size;
515 	}
516 
517 	return (chunksize);
518 }
519 
520 
521 /*
522  * Allocate the last properly aligned memory chunk.
523  * This function is called when no more large nucleus memory chunks
524  * will be allocated.  The remaining free nucleus memory at the end
525  * of the nucleus can be added to the phys_avail list.
526  */
527 void *
528 ndata_extra_base(struct memlist *ndata, size_t alignment, caddr_t endaddr)
529 {
530 	uintptr_t base;
531 	size_t wasteage = 0;
532 #ifdef	DEBUG
533 	static int called = 0;
534 
535 	if (called++ > 0)
536 		cmn_err(CE_PANIC, "ndata_extra_base() called more than once");
537 #endif /* DEBUG */
538 
539 	/*
540 	 * The alignment needs to be a multiple of ecache_alignsize.
541 	 */
542 	ASSERT((alignment % ecache_alignsize) ==  0);
543 
544 	while (ndata->next != NULL) {
545 		wasteage += ndata->size;
546 		ndata = ndata->next;
547 	}
548 
549 	base = roundup(ndata->address, alignment);
550 
551 	if (base >= ndata->address + ndata->size)
552 		return (NULL);
553 
554 	if ((caddr_t)(ndata->address + ndata->size) != endaddr) {
555 #ifdef DEBUG
556 		ndata_middle_hole_detected = 1;	/* see if we hit this again */
557 #endif
558 		return (NULL);
559 	}
560 
561 	if (base == ndata->address) {
562 		if (ndata->prev != NULL)
563 			ndata->prev->next = NULL;
564 		else
565 			ndata->size = 0;
566 
567 		bzero((void *)base, sizeof (struct memlist));
568 
569 	} else {
570 		ndata->size = base - ndata->address;
571 		wasteage += ndata->size;
572 	}
573 	PRM_DEBUG(wasteage);
574 
575 	return ((void *)base);
576 }
577 
578 /*
579  * Select the best matching buffer, avoid memory fragmentation.
580  */
581 static struct memlist *
582 ndata_select_chunk(struct memlist *ndata, size_t wanted, size_t alignment)
583 {
584 	struct memlist *fnd_below = NULL;
585 	struct memlist *fnd_above = NULL;
586 	struct memlist *fnd_unused = NULL;
587 	struct memlist *frlist;
588 	uintptr_t base;
589 	uintptr_t end;
590 	size_t below;
591 	size_t above;
592 	size_t unused;
593 	size_t best_below = ULONG_MAX;
594 	size_t best_above = ULONG_MAX;
595 	size_t best_unused = ULONG_MAX;
596 
597 	ASSERT(ndata != NULL);
598 
599 	/*
600 	 * Look for the best matching buffer, avoid memory fragmentation.
601 	 * The following strategy is used, try to find
602 	 *   1. an exact fitting buffer
603 	 *   2. avoid wasting any space below the buffer, take first
604 	 *	fitting buffer
605 	 *   3. avoid wasting any space above the buffer, take first
606 	 *	fitting buffer
607 	 *   4. avoid wasting space, take first fitting buffer
608 	 *   5. take the last buffer in chain
609 	 */
610 	for (frlist = ndata; frlist != NULL; frlist = frlist->next) {
611 		base = roundup(frlist->address, alignment);
612 		end = roundup(base + wanted, ecache_alignsize);
613 
614 		if (end > frlist->address + frlist->size)
615 			continue;
616 
617 		below = (base - frlist->address) / ecache_alignsize;
618 		above = (frlist->address + frlist->size - end) /
619 		    ecache_alignsize;
620 		unused = below + above;
621 
622 		if (unused == 0)
623 			return (frlist);
624 
625 		if (frlist->next == NULL)
626 			break;
627 
628 		if (below < best_below) {
629 			best_below = below;
630 			fnd_below = frlist;
631 		}
632 
633 		if (above < best_above) {
634 			best_above = above;
635 			fnd_above = frlist;
636 		}
637 
638 		if (unused < best_unused) {
639 			best_unused = unused;
640 			fnd_unused = frlist;
641 		}
642 	}
643 
644 	if (best_below == 0)
645 		return (fnd_below);
646 	if (best_above == 0)
647 		return (fnd_above);
648 	if (best_unused < ULONG_MAX)
649 		return (fnd_unused);
650 
651 	return (frlist);
652 }
653 
654 /*
655  * Nucleus data memory allocator.
656  * The granularity of the allocator is ecache_alignsize.
657  * See also comment for ndata_alloc_init().
658  */
659 void *
660 ndata_alloc(struct memlist *ndata, size_t wanted, size_t alignment)
661 {
662 	struct memlist *found;
663 	struct memlist *fnd_above;
664 	uintptr_t base;
665 	uintptr_t end;
666 	size_t below;
667 	size_t above;
668 
669 	/*
670 	 * Look for the best matching buffer, avoid memory fragmentation.
671 	 */
672 	if ((found = ndata_select_chunk(ndata, wanted, alignment)) == NULL)
673 		return (NULL);
674 
675 	/*
676 	 * Allocate the nucleus data buffer.
677 	 */
678 	base = roundup(found->address, alignment);
679 	end = roundup(base + wanted, ecache_alignsize);
680 	ASSERT(end <= found->address + found->size);
681 
682 	below = base - found->address;
683 	above = found->address + found->size - end;
684 	ASSERT(above == 0 || (above % ecache_alignsize) == 0);
685 
686 	if (below >= ecache_alignsize) {
687 		/*
688 		 * There is free memory below the allocated memory chunk.
689 		 */
690 		found->size = below - below % ecache_alignsize;
691 
692 		if (above) {
693 			fnd_above = (struct memlist *)end;
694 			fnd_above->address = end;
695 			fnd_above->size = above;
696 
697 			if ((fnd_above->next = found->next) != NULL)
698 				found->next->prev = fnd_above;
699 			fnd_above->prev = found;
700 			found->next = fnd_above;
701 		}
702 
703 		return ((void *)base);
704 	}
705 
706 	if (found->prev == NULL) {
707 		/*
708 		 * The first chunk (ndata) is selected.
709 		 */
710 		ASSERT(found == ndata);
711 		if (above) {
712 			found->address = end;
713 			found->size = above;
714 		} else if (found->next != NULL) {
715 			found->address = found->next->address;
716 			found->size = found->next->size;
717 			if ((found->next = found->next->next) != NULL)
718 				found->next->prev = found;
719 
720 			bzero((void *)found->address, sizeof (struct memlist));
721 		} else {
722 			found->address = end;
723 			found->size = 0;
724 		}
725 
726 		return ((void *)base);
727 	}
728 
729 	/*
730 	 * Not the first chunk.
731 	 */
732 	if (above) {
733 		fnd_above = (struct memlist *)end;
734 		fnd_above->address = end;
735 		fnd_above->size = above;
736 
737 		if ((fnd_above->next = found->next) != NULL)
738 			fnd_above->next->prev = fnd_above;
739 		fnd_above->prev = found->prev;
740 		found->prev->next = fnd_above;
741 
742 	} else {
743 		if ((found->prev->next = found->next) != NULL)
744 			found->next->prev = found->prev;
745 	}
746 
747 	bzero((void *)found->address, sizeof (struct memlist));
748 
749 	return ((void *)base);
750 }
751 
752 /*
753  * Size the kernel TSBs based upon the amount of physical
754  * memory in the system.
755  */
756 static void
757 calc_tsb_sizes(pgcnt_t npages)
758 {
759 	PRM_DEBUG(npages);
760 
761 	if (npages <= TSB_FREEMEM_MIN) {
762 		ktsb_szcode = TSB_128K_SZCODE;
763 		enable_bigktsb = 0;
764 	} else if (npages <= TSB_FREEMEM_LARGE / 2) {
765 		ktsb_szcode = TSB_256K_SZCODE;
766 		enable_bigktsb = 0;
767 	} else if (npages <= TSB_FREEMEM_LARGE) {
768 		ktsb_szcode = TSB_512K_SZCODE;
769 		enable_bigktsb = 0;
770 	} else if (npages <= TSB_FREEMEM_LARGE * 2 ||
771 	    enable_bigktsb == 0) {
772 		ktsb_szcode = TSB_1M_SZCODE;
773 		enable_bigktsb = 0;
774 	} else {
775 		ktsb_szcode = highbit(npages - 1);
776 		ktsb_szcode -= TSB_START_SIZE;
777 		ktsb_szcode = MAX(ktsb_szcode, MIN_BIGKTSB_SZCODE);
778 		ktsb_szcode = MIN(ktsb_szcode, MAX_BIGKTSB_SZCODE);
779 	}
780 
781 	/*
782 	 * We choose the TSB to hold kernel 4M mappings to have twice
783 	 * the reach as the primary kernel TSB since this TSB will
784 	 * potentially (currently) be shared by both mappings to all of
785 	 * physical memory plus user TSBs. If this TSB has to be in nucleus
786 	 * (only for Spitfire and Cheetah) limit its size to 64K.
787 	 */
788 	ktsb4m_szcode = highbit((2 * npages) / TTEPAGES(TTE4M) - 1);
789 	ktsb4m_szcode -= TSB_START_SIZE;
790 	ktsb4m_szcode = MAX(ktsb4m_szcode, TSB_MIN_SZCODE);
791 	ktsb4m_szcode = MIN(ktsb4m_szcode, TSB_SOFTSZ_MASK);
792 	if ((enable_bigktsb == 0 || ktsb_phys == 0) && ktsb4m_szcode >
793 	    TSB_64K_SZCODE) {
794 		ktsb4m_szcode = TSB_64K_SZCODE;
795 		max_bootlp_tteszc = TTE8K;
796 	}
797 
798 	ktsb_sz = TSB_BYTES(ktsb_szcode);	/* kernel 8K tsb size */
799 	ktsb4m_sz = TSB_BYTES(ktsb4m_szcode);	/* kernel 4M tsb size */
800 }
801 
802 /*
803  * Allocate kernel TSBs from nucleus data memory.
804  * The function return 0 on success and -1 on failure.
805  */
806 int
807 ndata_alloc_tsbs(struct memlist *ndata, pgcnt_t npages)
808 {
809 	/*
810 	 * Set ktsb_phys to 1 if the processor supports ASI_QUAD_LDD_PHYS.
811 	 */
812 	sfmmu_setup_4lp();
813 
814 	/*
815 	 * Size the kernel TSBs based upon the amount of physical
816 	 * memory in the system.
817 	 */
818 	calc_tsb_sizes(npages);
819 
820 	/*
821 	 * Allocate the 8K kernel TSB if it belongs inside the nucleus.
822 	 */
823 	if (enable_bigktsb == 0) {
824 		if ((ktsb_base = ndata_alloc(ndata, ktsb_sz, ktsb_sz)) == NULL)
825 			return (-1);
826 		ASSERT(!((uintptr_t)ktsb_base & (ktsb_sz - 1)));
827 
828 		PRM_DEBUG(ktsb_base);
829 		PRM_DEBUG(ktsb_sz);
830 		PRM_DEBUG(ktsb_szcode);
831 	}
832 
833 	/*
834 	 * Next, allocate 4M kernel TSB from the nucleus since it's small.
835 	 */
836 	if (ktsb4m_szcode <= TSB_64K_SZCODE) {
837 
838 		ktsb4m_base = ndata_alloc(ndata, ktsb4m_sz, ktsb4m_sz);
839 		if (ktsb4m_base == NULL)
840 			return (-1);
841 		ASSERT(!((uintptr_t)ktsb4m_base & (ktsb4m_sz - 1)));
842 
843 		PRM_DEBUG(ktsb4m_base);
844 		PRM_DEBUG(ktsb4m_sz);
845 		PRM_DEBUG(ktsb4m_szcode);
846 	}
847 
848 	return (0);
849 }
850 
851 size_t
852 calc_hmehash_sz(pgcnt_t npages)
853 {
854 	ulong_t hme_buckets;
855 
856 	/*
857 	 * The number of buckets in the hme hash tables
858 	 * is a power of 2 such that the average hash chain length is
859 	 * HMENT_HASHAVELEN.  The number of buckets for the user hash is
860 	 * a function of physical memory and a predefined overmapping factor.
861 	 * The number of buckets for the kernel hash is a function of
862 	 * physical memory only.
863 	 */
864 	hme_buckets = (npages * HMEHASH_FACTOR) /
865 	    (HMENT_HASHAVELEN * (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT));
866 
867 	uhmehash_num = (int)MIN(hme_buckets, MAX_UHME_BUCKETS);
868 
869 	if (uhmehash_num > USER_BUCKETS_THRESHOLD) {
870 		/*
871 		 * if uhmehash_num is not power of 2 round it down to the
872 		 *  next power of 2.
873 		 */
874 		uint_t align = 1 << (highbit(uhmehash_num - 1) - 1);
875 		uhmehash_num = P2ALIGN(uhmehash_num, align);
876 	} else
877 		uhmehash_num = 1 << highbit(uhmehash_num - 1);
878 
879 	hme_buckets = npages / (HMEBLK_SPAN(TTE8K) >> MMU_PAGESHIFT);
880 	khmehash_num = (int)MIN(hme_buckets, MAX_KHME_BUCKETS);
881 	khmehash_num = 1 << highbit(khmehash_num - 1);
882 	khmehash_num = MAX(khmehash_num, MIN_KHME_BUCKETS);
883 
884 	return ((uhmehash_num + khmehash_num) * sizeof (struct hmehash_bucket));
885 }
886 
887 caddr_t
888 alloc_hmehash(caddr_t alloc_base)
889 {
890 	size_t khmehash_sz, uhmehash_sz;
891 
892 	khme_hash = (struct hmehash_bucket *)alloc_base;
893 	khmehash_sz = khmehash_num * sizeof (struct hmehash_bucket);
894 	alloc_base += khmehash_sz;
895 
896 	uhme_hash = (struct hmehash_bucket *)alloc_base;
897 	uhmehash_sz = uhmehash_num * sizeof (struct hmehash_bucket);
898 	alloc_base += uhmehash_sz;
899 
900 	PRM_DEBUG(khme_hash);
901 	PRM_DEBUG(uhme_hash);
902 
903 	return (alloc_base);
904 }
905 
906 /*
907  * Allocate hat structs from the nucleus data memory.
908  */
909 int
910 ndata_alloc_hat(struct memlist *ndata, pgcnt_t npages)
911 {
912 	size_t	mml_alloc_sz;
913 	size_t	cb_alloc_sz;
914 
915 	/*
916 	 * For the page mapping list mutex array we allocate one mutex
917 	 * for every 128 pages (1 MB) with a minimum of 64 entries and
918 	 * a maximum of 8K entries. For the initial computation npages
919 	 * is rounded up (ie. 1 << highbit(npages * 1.5 / 128))
920 	 *
921 	 * mml_shift is roughly log2(mml_table_sz) + 3 for MLIST_HASH
922 	 */
923 	mml_table_sz = 1 << highbit((npages * 3) / 256);
924 	if (mml_table_sz < 64)
925 		mml_table_sz = 64;
926 	else if (mml_table_sz > 8192)
927 		mml_table_sz = 8192;
928 	mml_shift = highbit(mml_table_sz) + 3;
929 
930 	PRM_DEBUG(mml_table_sz);
931 	PRM_DEBUG(mml_shift);
932 
933 	mml_alloc_sz = mml_table_sz * sizeof (kmutex_t);
934 
935 	mml_table = ndata_alloc(ndata, mml_alloc_sz, ecache_alignsize);
936 	if (mml_table == NULL)
937 		return (-1);
938 	PRM_DEBUG(mml_table);
939 
940 	cb_alloc_sz = sfmmu_max_cb_id * sizeof (struct sfmmu_callback);
941 	PRM_DEBUG(cb_alloc_sz);
942 	sfmmu_cb_table = ndata_alloc(ndata, cb_alloc_sz, ecache_alignsize);
943 	if (sfmmu_cb_table == NULL)
944 		return (-1);
945 	PRM_DEBUG(sfmmu_cb_table);
946 
947 	return (0);
948 }
949 
950 int
951 ndata_alloc_kpm(struct memlist *ndata, pgcnt_t kpm_npages)
952 {
953 	size_t	kpmp_alloc_sz;
954 
955 	/*
956 	 * For the kpm_page mutex array we allocate one mutex every 16
957 	 * kpm pages (64MB). In smallpage mode we allocate one mutex
958 	 * every 8K pages. The minimum is set to 64 entries and the
959 	 * maximum to 8K entries.
960 	 */
961 	if (kpm_smallpages == 0) {
962 		kpmp_shift = highbit(sizeof (kpm_page_t)) - 1;
963 		kpmp_table_sz = 1 << highbit(kpm_npages / 16);
964 		kpmp_table_sz = (kpmp_table_sz < 64) ? 64 :
965 		    ((kpmp_table_sz > 8192) ? 8192 : kpmp_table_sz);
966 		kpmp_alloc_sz = kpmp_table_sz * sizeof (kpm_hlk_t);
967 
968 		kpmp_table = ndata_alloc(ndata, kpmp_alloc_sz,
969 		    ecache_alignsize);
970 		if (kpmp_table == NULL)
971 			return (-1);
972 
973 		PRM_DEBUG(kpmp_table);
974 		PRM_DEBUG(kpmp_table_sz);
975 
976 		kpmp_stable_sz = 0;
977 		kpmp_stable = NULL;
978 	} else {
979 		ASSERT(kpm_pgsz == PAGESIZE);
980 		kpmp_shift = highbit(sizeof (kpm_shlk_t)) + 1;
981 		kpmp_stable_sz = 1 << highbit(kpm_npages / 8192);
982 		kpmp_stable_sz = (kpmp_stable_sz < 64) ? 64 :
983 		    ((kpmp_stable_sz > 8192) ? 8192 : kpmp_stable_sz);
984 		kpmp_alloc_sz = kpmp_stable_sz * sizeof (kpm_shlk_t);
985 
986 		kpmp_stable = ndata_alloc(ndata, kpmp_alloc_sz,
987 		    ecache_alignsize);
988 		if (kpmp_stable == NULL)
989 			return (-1);
990 
991 		PRM_DEBUG(kpmp_stable);
992 		PRM_DEBUG(kpmp_stable_sz);
993 
994 		kpmp_table_sz = 0;
995 		kpmp_table = NULL;
996 	}
997 	PRM_DEBUG(kpmp_shift);
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * This function bop allocs kernel TSBs.
1004  */
1005 caddr_t
1006 sfmmu_ktsb_alloc(caddr_t tsbbase)
1007 {
1008 	caddr_t vaddr;
1009 
1010 	if (enable_bigktsb) {
1011 		ktsb_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb_sz);
1012 		vaddr = prom_alloc(ktsb_base, ktsb_sz, ktsb_sz);
1013 		if (vaddr != ktsb_base)
1014 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1015 			    " 8K bigktsb");
1016 		ktsb_base = vaddr;
1017 		tsbbase = ktsb_base + ktsb_sz;
1018 		PRM_DEBUG(ktsb_base);
1019 		PRM_DEBUG(tsbbase);
1020 	}
1021 
1022 	if (ktsb4m_szcode > TSB_64K_SZCODE) {
1023 		ASSERT(ktsb_phys && enable_bigktsb);
1024 		ktsb4m_base = (caddr_t)roundup((uintptr_t)tsbbase, ktsb4m_sz);
1025 		vaddr = (caddr_t)BOP_ALLOC(bootops, ktsb4m_base, ktsb4m_sz,
1026 		    ktsb4m_sz);
1027 		if (vaddr != ktsb4m_base)
1028 			cmn_err(CE_PANIC, "sfmmu_ktsb_alloc: can't alloc"
1029 			    " 4M bigktsb");
1030 		ktsb4m_base = vaddr;
1031 		tsbbase = ktsb4m_base + ktsb4m_sz;
1032 		PRM_DEBUG(ktsb4m_base);
1033 		PRM_DEBUG(tsbbase);
1034 	}
1035 	return (tsbbase);
1036 }
1037 
1038 /*
1039  * Moves code assembled outside of the trap table into the trap
1040  * table taking care to relocate relative branches to code outside
1041  * of the trap handler.
1042  */
1043 static void
1044 sfmmu_reloc_trap_handler(void *tablep, void *start, size_t count)
1045 {
1046 	size_t i;
1047 	uint32_t *src;
1048 	uint32_t *dst;
1049 	uint32_t inst;
1050 	int op, op2;
1051 	int32_t offset;
1052 	int disp;
1053 
1054 	src = start;
1055 	dst = tablep;
1056 	offset = src - dst;
1057 	for (src = start, i = 0; i < count; i++, src++, dst++) {
1058 		inst = *dst = *src;
1059 		op = (inst >> 30) & 0x2;
1060 		if (op == 1) {
1061 			/* call */
1062 			disp = ((int32_t)inst << 2) >> 2; /* sign-extend */
1063 			if (disp + i >= 0 && disp + i < count)
1064 				continue;
1065 			disp += offset;
1066 			inst = 0x40000000u | (disp & 0x3fffffffu);
1067 			*dst = inst;
1068 		} else if (op == 0) {
1069 			/* branch or sethi */
1070 			op2 = (inst >> 22) & 0x7;
1071 
1072 			switch (op2) {
1073 			case 0x3: /* BPr */
1074 				disp = (((inst >> 20) & 0x3) << 14) |
1075 				    (inst & 0x3fff);
1076 				disp = (disp << 16) >> 16; /* sign-extend */
1077 				if (disp + i >= 0 && disp + i < count)
1078 					continue;
1079 				disp += offset;
1080 				if (((disp << 16) >> 16) != disp)
1081 					cmn_err(CE_PANIC, "bad reloc");
1082 				inst &= ~0x303fff;
1083 				inst |= (disp & 0x3fff);
1084 				inst |= (disp & 0xc000) << 6;
1085 				break;
1086 
1087 			case 0x2: /* Bicc */
1088 				disp = ((int32_t)inst << 10) >> 10;
1089 				if (disp + i >= 0 && disp + i < count)
1090 					continue;
1091 				disp += offset;
1092 				if (((disp << 10) >> 10) != disp)
1093 					cmn_err(CE_PANIC, "bad reloc");
1094 				inst &= ~0x3fffff;
1095 				inst |= (disp & 0x3fffff);
1096 				break;
1097 
1098 			case 0x1: /* Bpcc */
1099 				disp = ((int32_t)inst << 13) >> 13;
1100 				if (disp + i >= 0 && disp + i < count)
1101 					continue;
1102 				disp += offset;
1103 				if (((disp << 13) >> 13) != disp)
1104 					cmn_err(CE_PANIC, "bad reloc");
1105 				inst &= ~0x7ffff;
1106 				inst |= (disp & 0x7ffffu);
1107 				break;
1108 			}
1109 			*dst = inst;
1110 		}
1111 	}
1112 	flush_instr_mem(tablep, count * sizeof (uint32_t));
1113 }
1114 
1115 /*
1116  * Routine to allocate a large page to use in the TSB caches.
1117  */
1118 /*ARGSUSED*/
1119 static page_t *
1120 sfmmu_tsb_page_create(void *addr, size_t size, int vmflag, void *arg)
1121 {
1122 	int pgflags;
1123 
1124 	pgflags = PG_EXCL;
1125 	if ((vmflag & VM_NOSLEEP) == 0)
1126 		pgflags |= PG_WAIT;
1127 	if (vmflag & VM_PANIC)
1128 		pgflags |= PG_PANIC;
1129 	if (vmflag & VM_PUSHPAGE)
1130 		pgflags |= PG_PUSHPAGE;
1131 
1132 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1133 	    pgflags, &kvseg, addr, arg));
1134 }
1135 
1136 /*
1137  * Allocate a large page to back the virtual address range
1138  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1139  * space as well.
1140  */
1141 static void *
1142 sfmmu_tsb_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1143     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1144     void *pcarg)
1145 {
1146 	page_t *ppl;
1147 	page_t *rootpp;
1148 	caddr_t addr = inaddr;
1149 	pgcnt_t npages = btopr(size);
1150 	page_t **ppa;
1151 	int i = 0;
1152 
1153 	/*
1154 	 * Assuming that only TSBs will call this with size > PAGESIZE
1155 	 * There is no reason why this couldn't be expanded to 8k pages as
1156 	 * well, or other page sizes in the future .... but for now, we
1157 	 * only support fixed sized page requests.
1158 	 */
1159 	if ((inaddr == NULL) && ((addr = vmem_xalloc(vmp, size, size, 0, 0,
1160 	    NULL, NULL, vmflag)) == NULL))
1161 		return (NULL);
1162 
1163 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1164 		if (inaddr == NULL)
1165 			vmem_xfree(vmp, addr, size);
1166 		return (NULL);
1167 	}
1168 
1169 	ppl = page_create_func(addr, size, vmflag, pcarg);
1170 	if (ppl == NULL) {
1171 		if (inaddr == NULL)
1172 			vmem_xfree(vmp, addr, size);
1173 		page_unresv(npages);
1174 		return (NULL);
1175 	}
1176 
1177 	rootpp = ppl;
1178 	ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
1179 	while (ppl != NULL) {
1180 		page_t *pp = ppl;
1181 		ppa[i++] = pp;
1182 		page_sub(&ppl, pp);
1183 		ASSERT(page_iolock_assert(pp));
1184 		page_io_unlock(pp);
1185 	}
1186 
1187 	/*
1188 	 * Load the locked entry.  It's OK to preload the entry into
1189 	 * the TSB since we now support large mappings in the kernel TSB.
1190 	 */
1191 	hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
1192 	    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, HAT_LOAD_LOCK);
1193 
1194 	for (--i; i >= 0; --i) {
1195 		(void) page_pp_lock(ppa[i], 0, 1);
1196 		page_unlock(ppa[i]);
1197 	}
1198 
1199 	kmem_free(ppa, npages * sizeof (page_t *));
1200 	return (addr);
1201 }
1202 
1203 /* Called to import new spans into the TSB vmem arenas */
1204 void *
1205 sfmmu_tsb_segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1206 {
1207 	lgrp_id_t lgrpid = LGRP_NONE;
1208 
1209 	if (tsb_lgrp_affinity) {
1210 		/*
1211 		 * Search for the vmp->lgrpid mapping by brute force;
1212 		 * some day vmp will have an lgrp, until then we have
1213 		 * to do this the hard way.
1214 		 */
1215 		for (lgrpid = 0; lgrpid < NLGRPS_MAX &&
1216 		    vmp != kmem_tsb_default_arena[lgrpid]; lgrpid++)
1217 			;
1218 		if (lgrpid == NLGRPS_MAX)
1219 			lgrpid = LGRP_NONE;
1220 	}
1221 
1222 	return (sfmmu_tsb_xalloc(vmp, NULL, size, vmflag, 0,
1223 	    sfmmu_tsb_page_create, lgrpid != LGRP_NONE? &lgrpid : NULL));
1224 }
1225 
1226 /* Called to free spans from the TSB vmem arenas */
1227 void
1228 sfmmu_tsb_segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
1229 {
1230 	page_t *pp;
1231 	caddr_t addr = inaddr;
1232 	caddr_t eaddr;
1233 	pgcnt_t npages = btopr(size);
1234 	pgcnt_t pgs_left = npages;
1235 	page_t *rootpp = NULL;
1236 
1237 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1238 
1239 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
1240 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1241 		if (pp == NULL)
1242 			panic("sfmmu_tsb_segkmem_free: page not found");
1243 
1244 		ASSERT(PAGE_EXCL(pp));
1245 		page_pp_unlock(pp, 0, 1);
1246 
1247 		if (rootpp == NULL)
1248 			rootpp = pp;
1249 		if (--pgs_left == 0) {
1250 			/*
1251 			 * similar logic to segspt_free_pages, but we know we
1252 			 * have one large page.
1253 			 */
1254 			page_destroy_pages(rootpp);
1255 		}
1256 	}
1257 	page_unresv(npages);
1258 
1259 	if (vmp != NULL)
1260 		vmem_xfree(vmp, inaddr, size);
1261 }
1262