1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/machsystm.h> 30 #include <sys/archsystm.h> 31 #include <sys/vm.h> 32 #include <sys/cpu.h> 33 #include <sys/atomic.h> 34 #include <sys/reboot.h> 35 #include <sys/kdi.h> 36 #include <sys/bootconf.h> 37 #include <sys/memlist_plat.h> 38 #include <sys/memlist_impl.h> 39 #include <sys/prom_plat.h> 40 #include <sys/prom_isa.h> 41 #include <sys/autoconf.h> 42 #include <sys/intreg.h> 43 #include <sys/ivintr.h> 44 #include <sys/fpu/fpusystm.h> 45 #include <sys/iommutsb.h> 46 #include <vm/vm_dep.h> 47 #include <vm/seg_dev.h> 48 #include <vm/seg_kmem.h> 49 #include <vm/seg_kpm.h> 50 #include <vm/seg_map.h> 51 #include <vm/seg_kp.h> 52 #include <sys/sysconf.h> 53 #include <vm/hat_sfmmu.h> 54 #include <sys/kobj.h> 55 #include <sys/sun4asi.h> 56 #include <sys/clconf.h> 57 #include <sys/platform_module.h> 58 #include <sys/panic.h> 59 #include <sys/cpu_sgnblk_defs.h> 60 #include <sys/clock.h> 61 #include <sys/cmn_err.h> 62 #include <sys/promif.h> 63 #include <sys/prom_debug.h> 64 #include <sys/traptrace.h> 65 #include <sys/memnode.h> 66 #include <sys/mem_cage.h> 67 68 extern void setup_trap_table(void); 69 extern void cpu_intrq_setup(struct cpu *); 70 extern void cpu_intrq_register(struct cpu *); 71 extern void contig_mem_init(void); 72 extern void mach_dump_buffer_init(void); 73 extern void mach_descrip_init(void); 74 extern void mach_memscrub(void); 75 extern void mach_fpras(void); 76 extern void mach_cpu_halt_idle(void); 77 extern void mach_hw_copy_limit(void); 78 extern void load_tod_module(void); 79 #pragma weak load_tod_module 80 81 extern int ndata_alloc_mmfsa(struct memlist *ndata); 82 #pragma weak ndata_alloc_mmfsa 83 84 extern void parse_idprom(void); 85 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 86 extern void mem_config_init(void); 87 extern void memseg_remap_init(void); 88 89 /* 90 * External Data: 91 */ 92 extern int vac_size; /* cache size in bytes */ 93 extern uint_t vac_mask; /* VAC alignment consistency mask */ 94 extern uint_t vac_colors; 95 96 /* 97 * Global Data Definitions: 98 */ 99 100 /* 101 * XXX - Don't port this to new architectures 102 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 103 * 'romp' has no use with a prom with an IEEE 1275 client interface. 104 * The driver doesn't use the value, but it depends on the symbol. 105 */ 106 void *romp; /* veritas driver won't load without romp 4154976 */ 107 /* 108 * Declare these as initialized data so we can patch them. 109 */ 110 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 111 pgcnt_t segkpsize = 112 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 113 uint_t segmap_percent = 12; /* Size of segmap segment */ 114 115 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 116 int vac_copyback = 1; 117 char *cache_mode = NULL; 118 int use_mix = 1; 119 int prom_debug = 0; 120 121 struct bootops *bootops = 0; /* passed in from boot in %o2 */ 122 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 123 uint_t tba_taken_over = 0; 124 125 caddr_t s_text; /* start of kernel text segment */ 126 caddr_t e_text; /* end of kernel text segment */ 127 caddr_t s_data; /* start of kernel data segment */ 128 caddr_t e_data; /* end of kernel data segment */ 129 130 caddr_t modtext; /* beginning of module text */ 131 size_t modtext_sz; /* size of module text */ 132 caddr_t moddata; /* beginning of module data reserve */ 133 caddr_t e_moddata; /* end of module data reserve */ 134 135 /* 136 * End of first block of contiguous kernel in 32-bit virtual address space 137 */ 138 caddr_t econtig32; /* end of first blk of contiguous kernel */ 139 140 caddr_t ncbase; /* beginning of non-cached segment */ 141 caddr_t ncend; /* end of non-cached segment */ 142 caddr_t sdata; /* beginning of data segment */ 143 144 caddr_t extra_etva; /* beginning of unused nucleus text */ 145 pgcnt_t extra_etpg; /* number of pages of unused nucleus text */ 146 147 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 148 caddr_t nalloc_base; /* beginning of nucleus allocation */ 149 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 150 caddr_t valloc_base; /* beginning of kvalloc segment */ 151 152 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 153 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 154 155 uintptr_t shm_alignment = 0; /* VAC address consistency modulus */ 156 struct memlist *phys_install; /* Total installed physical memory */ 157 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 158 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 159 struct memlist ndata; /* memlist of nucleus allocatable memory */ 160 int memexp_flag; /* memory expansion card flag */ 161 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 162 pgcnt_t obp_pages; /* Physical pages used by OBP */ 163 164 /* 165 * VM data structures 166 */ 167 long page_hashsz; /* Size of page hash table (power of two) */ 168 struct page *pp_base; /* Base of system page struct array */ 169 size_t pp_sz; /* Size in bytes of page struct array */ 170 struct page **page_hash; /* Page hash table */ 171 struct seg ktextseg; /* Segment used for kernel executable image */ 172 struct seg kvalloc; /* Segment used for "valloc" mapping */ 173 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 174 struct seg ktexthole; /* Segment used for nucleus text hole */ 175 struct seg kmapseg; /* Segment used for generic kernel mappings */ 176 struct seg kpmseg; /* Segment used for physical mapping */ 177 struct seg kdebugseg; /* Segment used for the kernel debugger */ 178 179 uintptr_t kpm_pp_base; /* Base of system kpm_page array */ 180 size_t kpm_pp_sz; /* Size of system kpm_page array */ 181 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 182 183 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 184 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 185 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 186 187 /* 188 * debugger pages (if allocated) 189 */ 190 struct vnode kdebugvp; 191 192 /* 193 * Segment for relocated kernel structures in 64-bit large RAM kernels 194 */ 195 struct seg kmem64; 196 197 struct memseg *memseg_base; 198 size_t memseg_sz; /* Used to translate a va to page */ 199 struct vnode unused_pages_vp; 200 201 /* 202 * VM data structures allocated early during boot. 203 */ 204 size_t pagehash_sz; 205 uint64_t memlist_sz; 206 207 char tbr_wr_addr_inited = 0; 208 209 210 /* 211 * Static Routines: 212 */ 213 static void memlist_add(uint64_t, uint64_t, struct memlist **, 214 struct memlist **); 215 static void kphysm_init(page_t *, struct memseg *, pgcnt_t, uintptr_t, 216 pgcnt_t); 217 static void kvm_init(void); 218 219 static void startup_init(void); 220 static void startup_memlist(void); 221 static void startup_modules(void); 222 static void startup_bop_gone(void); 223 static void startup_vm(void); 224 static void startup_end(void); 225 static void setup_cage_params(void); 226 static void startup_create_io_node(void); 227 228 static pgcnt_t npages; 229 static struct memlist *memlist; 230 void *memlist_end; 231 232 static pgcnt_t bop_alloc_pages; 233 static caddr_t hblk_base; 234 uint_t hblk_alloc_dynamic = 0; 235 uint_t hblk1_min = H1MIN; 236 uint_t hblk8_min; 237 238 239 /* 240 * Hooks for unsupported platforms and down-rev firmware 241 */ 242 int iam_positron(void); 243 #pragma weak iam_positron 244 static void do_prom_version_check(void); 245 static void kpm_init(void); 246 static void kpm_npages_setup(int); 247 static void kpm_memseg_init(void); 248 249 /* 250 * After receiving a thermal interrupt, this is the number of seconds 251 * to delay before shutting off the system, assuming 252 * shutdown fails. Use /etc/system to change the delay if this isn't 253 * large enough. 254 */ 255 int thermal_powerdown_delay = 1200; 256 257 /* 258 * Used to hold off page relocations into the cage until OBP has completed 259 * its boot-time handoff of its resources to the kernel. 260 */ 261 int page_relocate_ready = 0; 262 263 /* 264 * Enable some debugging messages concerning memory usage... 265 */ 266 #ifdef DEBUGGING_MEM 267 static int debugging_mem; 268 static void 269 printmemlist(char *title, struct memlist *list) 270 { 271 if (!debugging_mem) 272 return; 273 274 printf("%s\n", title); 275 276 while (list) { 277 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 278 (uint32_t)(list->address >> 32), (uint32_t)list->address, 279 (uint32_t)(list->size >> 32), (uint32_t)(list->size)); 280 list = list->next; 281 } 282 } 283 284 void 285 printmemseg(struct memseg *memseg) 286 { 287 if (!debugging_mem) 288 return; 289 290 printf("memseg\n"); 291 292 while (memseg) { 293 prom_printf("\tpage = 0x%p, epage = 0x%p, " 294 "pfn = 0x%x, epfn = 0x%x\n", 295 memseg->pages, memseg->epages, 296 memseg->pages_base, memseg->pages_end); 297 memseg = memseg->next; 298 } 299 } 300 301 #define debug_pause(str) halt((str)) 302 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 303 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 304 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 305 #define MPRINTF3(str, a, b, c) \ 306 if (debugging_mem) prom_printf((str), (a), (b), (c)) 307 #else /* DEBUGGING_MEM */ 308 #define MPRINTF(str) 309 #define MPRINTF1(str, a) 310 #define MPRINTF2(str, a, b) 311 #define MPRINTF3(str, a, b, c) 312 #endif /* DEBUGGING_MEM */ 313 314 /* Simple message to indicate that the bootops pointer has been zeroed */ 315 #ifdef DEBUG 316 static int bootops_gone_on = 0; 317 #define BOOTOPS_GONE() \ 318 if (bootops_gone_on) \ 319 prom_printf("The bootops vec is zeroed now!\n"); 320 #else 321 #define BOOTOPS_GONE() 322 #endif /* DEBUG */ 323 324 /* 325 * Monitor pages may not be where this says they are. 326 * and the debugger may not be there either. 327 * 328 * Note that 'pages' here are *physical* pages, which are 8k on sun4u. 329 * 330 * Physical memory layout 331 * (not necessarily contiguous) 332 * (THIS IS SOMEWHAT WRONG) 333 * /-----------------------\ 334 * | monitor pages | 335 * availmem -|-----------------------| 336 * | | 337 * | page pool | 338 * | | 339 * |-----------------------| 340 * | configured tables | 341 * | buffers | 342 * firstaddr -|-----------------------| 343 * | hat data structures | 344 * |-----------------------| 345 * | kernel data, bss | 346 * |-----------------------| 347 * | interrupt stack | 348 * |-----------------------| 349 * | kernel text (RO) | 350 * |-----------------------| 351 * | trap table (4k) | 352 * |-----------------------| 353 * page 1 | panicbuf | 354 * |-----------------------| 355 * page 0 | reclaimed | 356 * |_______________________| 357 * 358 * 359 * 360 * Kernel's Virtual Memory Layout. 361 * /-----------------------\ 362 * 0xFFFFFFFF.FFFFFFFF -| |- 363 * | OBP's virtual page | 364 * | tables | 365 * 0xFFFFFFFC.00000000 -|-----------------------|- 366 * : : 367 * : : 368 * 0xFFFFFE00.00000000 -|-----------------------|- 369 * | | Ultrasparc I/II support 370 * | segkpm segment | up to 2TB of physical 371 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 372 * | | 373 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 374 * : : 375 * : : 376 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 377 * | | ^ 378 * | UltraSPARC I/II call | | 379 * | bug requires an extra | | 380 * | 4 GB of space between | | 381 * | hole and used RAM | | 382 * | | | 383 * 0xFFFFF800.00000000 -|-----------------------|- | 384 * | | | 385 * | Virtual Address Hole | UltraSPARC 386 * | on UltraSPARC I/II | I/II * ONLY * 387 * | | | 388 * 0x00000800.00000000 -|-----------------------|- | 389 * | | | 390 * | UltraSPARC I/II call | | 391 * | bug requires an extra | | 392 * | 4 GB of space between | | 393 * | hole and used RAM | | 394 * | | v 395 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 396 * : : ^ 397 * : : | 398 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 399 * | | | 400 * | 64-bit kernel ONLY | | 401 * | | | 402 * | kmem64 segment | | 403 * | | | 404 * | (Relocated extra HME | Approximately 405 * | block allocations, | 1 TB of virtual 406 * | memnode freelists, | address space 407 * | HME hash buckets, | | 408 * | mml_table, kpmp_table,| | 409 * | page_t array and | | 410 * | hashblock pool to | | 411 * | avoid hard-coded | | 412 * | 32-bit vaddr | | 413 * | limitations) | | 414 * | | v 415 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 416 * | | 417 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 418 * | | 419 * 0x00000300.00000000 -|-----------------------|- SYSBASE 420 * : : 421 * : : 422 * -|-----------------------|- 423 * | | 424 * | segmap segment | SEGMAPSIZE (1/8th physmem, 425 * | | 256G MAX) 426 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 427 * : : 428 * : : 429 * -|-----------------------|- 430 * | | 431 * | segkp | SEGKPSIZE (2GB) 432 * | | 433 * | | 434 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 435 * | | 436 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 437 * | | (SEGKPBASE - 0x400000) 438 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 439 * | | (MEMSCRUBBASE - NCARGS) 440 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 441 * | | (ARGSBASE - PPMAPSIZE) 442 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 443 * | | 444 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 445 * | | 446 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 447 * : : 448 * : : 449 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 450 * | | 451 * | OBP | 452 * | | 453 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 454 * | kmdb | 455 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 456 * : : 457 * : : 458 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 459 * | | 460 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 461 * | | ~64MB) 462 * 0x00000000.78002000 -|-----------------------| 463 * | panicbuf | 464 * 0x00000000.78000000 -|-----------------------|- SYSBASE32 465 * : : 466 * : : 467 * | | 468 * |-----------------------|- econtig32 469 * | vm structures | 470 * 0x00000000.01C00000 |-----------------------|- nalloc_end 471 * | TSBs | 472 * |-----------------------|- end/nalloc_base 473 * | kernel data & bss | 474 * 0x00000000.01800000 -|-----------------------| 475 * : nucleus text hole : 476 * 0x00000000.01400000 -|-----------------------| 477 * : : 478 * |-----------------------| 479 * | module text | 480 * |-----------------------|- e_text/modtext 481 * | kernel text | 482 * |-----------------------| 483 * | trap table (48k) | 484 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 485 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 486 * |-----------------------| 487 * | | 488 * | invalid | 489 * | | 490 * 0x00000000.00000000 _|_______________________| 491 * 492 * 493 * 494 * 32-bit User Virtual Memory Layout. 495 * /-----------------------\ 496 * | | 497 * | invalid | 498 * | | 499 * 0xFFC00000 -|-----------------------|- USERLIMIT 500 * | user stack | 501 * : : 502 * : : 503 * : : 504 * | user data | 505 * -|-----------------------|- 506 * | user text | 507 * 0x00002000 -|-----------------------|- 508 * | invalid | 509 * 0x00000000 _|_______________________| 510 * 511 * 512 * 513 * 64-bit User Virtual Memory Layout. 514 * /-----------------------\ 515 * | | 516 * | invalid | 517 * | | 518 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 519 * | user stack | 520 * : : 521 * : : 522 * : : 523 * | user data | 524 * -|-----------------------|- 525 * | user text | 526 * 0x00000000.00100000 -|-----------------------|- 527 * | invalid | 528 * 0x00000000.00000000 _|_______________________| 529 */ 530 531 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 532 extern uint64_t ecache_flush_address(void); 533 534 #pragma weak load_platform_modules 535 #pragma weak plat_startup_memlist 536 #pragma weak ecache_init_scrub_flush_area 537 #pragma weak ecache_flush_address 538 539 540 /* 541 * By default the DR Cage is enabled for maximum OS 542 * MPSS performance. Users needing to disable the cage mechanism 543 * can set this variable to zero via /etc/system. 544 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 545 * will result in loss of DR functionality. 546 * Platforms wishing to disable kernel Cage by default 547 * should do so in their set_platform_defaults() routine. 548 */ 549 int kernel_cage_enable = 1; 550 551 static void 552 setup_cage_params(void) 553 { 554 void (*func)(void); 555 556 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 557 if (func != NULL) { 558 (*func)(); 559 return; 560 } 561 562 if (kernel_cage_enable == 0) { 563 return; 564 } 565 kcage_range_lock(); 566 if (kcage_range_init(phys_avail, 1) == 0) { 567 kcage_init(total_pages / 256); 568 } 569 kcage_range_unlock(); 570 571 if (kcage_on) { 572 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 573 } else { 574 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 575 } 576 577 } 578 579 /* 580 * Machine-dependent startup code 581 */ 582 void 583 startup(void) 584 { 585 startup_init(); 586 if (&startup_platform) 587 startup_platform(); 588 startup_memlist(); 589 startup_modules(); 590 setup_cage_params(); 591 startup_bop_gone(); 592 startup_vm(); 593 startup_end(); 594 } 595 596 struct regs sync_reg_buf; 597 uint64_t sync_tt; 598 599 void 600 sync_handler(void) 601 { 602 struct trap_info ti; 603 int i; 604 605 /* 606 * Prevent trying to talk to the other CPUs since they are 607 * sitting in the prom and won't reply. 608 */ 609 for (i = 0; i < NCPU; i++) { 610 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 611 cpu[i]->cpu_flags &= ~CPU_READY; 612 cpu[i]->cpu_flags |= CPU_QUIESCED; 613 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 614 } 615 } 616 617 /* 618 * We've managed to get here without going through the 619 * normal panic code path. Try and save some useful 620 * information. 621 */ 622 if (!panicstr && (curthread->t_panic_trap == NULL)) { 623 ti.trap_type = sync_tt; 624 ti.trap_regs = &sync_reg_buf; 625 ti.trap_addr = NULL; 626 ti.trap_mmu_fsr = 0x0; 627 628 curthread->t_panic_trap = &ti; 629 } 630 631 /* 632 * If we're re-entering the panic path, update the signature 633 * block so that the SC knows we're in the second part of panic. 634 */ 635 if (panicstr) 636 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 637 638 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 639 panic("sync initiated"); 640 } 641 642 643 static void 644 startup_init(void) 645 { 646 /* 647 * We want to save the registers while we're still in OBP 648 * so that we know they haven't been fiddled with since. 649 * (In principle, OBP can't change them just because it 650 * makes a callback, but we'd rather not depend on that 651 * behavior.) 652 */ 653 char sync_str[] = 654 "warning @ warning off : sync " 655 "%%tl-c %%tstate h# %p x! " 656 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 657 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 658 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 659 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 660 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 661 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 662 "%%y h# %p l! %%tl-c %%tt h# %p x! " 663 "sync ; warning !"; 664 665 /* 666 * 20 == num of %p substrings 667 * 16 == max num of chars %p will expand to. 668 */ 669 char bp[sizeof (sync_str) + 16 * 20]; 670 671 (void) check_boot_version(BOP_GETVERSION(bootops)); 672 673 /* 674 * Initialize ptl1 stack for the 1st CPU. 675 */ 676 ptl1_init_cpu(&cpu0); 677 678 /* 679 * Initialize the address map for cache consistent mappings 680 * to random pages; must be done after vac_size is set. 681 */ 682 ppmapinit(); 683 684 /* 685 * Initialize the PROM callback handler. 686 */ 687 init_vx_handler(); 688 689 /* 690 * have prom call sync_callback() to handle the sync and 691 * save some useful information which will be stored in the 692 * core file later. 693 */ 694 (void) sprintf((char *)bp, sync_str, 695 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 696 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 697 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 698 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 699 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 700 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 701 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 702 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 703 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 704 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 705 prom_interpret(bp, 0, 0, 0, 0, 0); 706 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 707 } 708 709 static u_longlong_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 710 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 711 712 #define IVSIZE ((MAXIVNUM + 1) * sizeof (struct intr_vector)) 713 714 /* 715 * As OBP takes up some RAM when the system boots, pages will already be "lost" 716 * to the system and reflected in npages by the time we see it. 717 * 718 * We only want to allocate kernel structures in the 64-bit virtual address 719 * space on systems with enough RAM to make the overhead of keeping track of 720 * an extra kernel memory segment worthwhile. 721 * 722 * Since OBP has already performed its memory allocations by this point, if we 723 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 724 * memory in the 64-bit virtual address space; otherwise keep allocations 725 * contiguous with we've mapped so far in the 32-bit virtual address space. 726 */ 727 #define MINMOVE_RAM_MB ((size_t)1900) 728 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 729 730 pgcnt_t tune_npages = (pgcnt_t) 731 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 732 733 static void 734 startup_memlist(void) 735 { 736 size_t alloc_sz; 737 size_t ctrs_sz; 738 caddr_t alloc_base; 739 caddr_t ctrs_base, ctrs_end; 740 caddr_t memspace; 741 caddr_t va; 742 int memblocks = 0; 743 struct memlist *cur; 744 size_t syslimit = (size_t)SYSLIMIT; 745 size_t sysbase = (size_t)SYSBASE; 746 int alloc_alignsize = MMU_PAGESIZE; 747 extern void page_coloring_init(void); 748 749 /* 750 * Initialize enough of the system to allow kmem_alloc to work by 751 * calling boot to allocate its memory until the time that 752 * kvm_init is completed. The page structs are allocated after 753 * rounding up end to the nearest page boundary; the memsegs are 754 * initialized and the space they use comes from the kernel heap. 755 * With appropriate initialization, they can be reallocated later 756 * to a size appropriate for the machine's configuration. 757 * 758 * At this point, memory is allocated for things that will never 759 * need to be freed, this used to be "valloced". This allows a 760 * savings as the pages don't need page structures to describe 761 * them because them will not be managed by the vm system. 762 */ 763 764 /* 765 * We're loaded by boot with the following configuration (as 766 * specified in the sun4u/conf/Mapfile): 767 * 768 * text: 4 MB chunk aligned on a 4MB boundary 769 * data & bss: 4 MB chunk aligned on a 4MB boundary 770 * 771 * These two chunks will eventually be mapped by 2 locked 4MB 772 * ttes and will represent the nucleus of the kernel. This gives 773 * us some free space that is already allocated, some or all of 774 * which is made available to kernel module text. 775 * 776 * The free space in the data-bss chunk is used for nucleus 777 * allocatable data structures and we reserve it using the 778 * nalloc_base and nalloc_end variables. This space is currently 779 * being used for hat data structures required for tlb miss 780 * handling operations. We align nalloc_base to a l2 cache 781 * linesize because this is the line size the hardware uses to 782 * maintain cache coherency. 783 * 256K is carved out for module data. 784 */ 785 786 nalloc_base = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 787 moddata = nalloc_base; 788 e_moddata = nalloc_base + MODDATA; 789 nalloc_base = e_moddata; 790 791 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 792 valloc_base = nalloc_base; 793 794 /* 795 * Calculate the start of the data segment. 796 */ 797 sdata = (caddr_t)((uintptr_t)e_data & MMU_PAGEMASK4M); 798 799 PRM_DEBUG(moddata); 800 PRM_DEBUG(nalloc_base); 801 PRM_DEBUG(nalloc_end); 802 PRM_DEBUG(sdata); 803 804 /* 805 * Remember any slop after e_text so we can give it to the modules. 806 */ 807 PRM_DEBUG(e_text); 808 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 809 if (((uintptr_t)modtext & MMU_PAGEMASK4M) != (uintptr_t)s_text) 810 panic("nucleus text overflow"); 811 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 812 modtext; 813 PRM_DEBUG(modtext); 814 PRM_DEBUG(modtext_sz); 815 816 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 817 &boot_physavail, &boot_physavail_len, 818 &boot_virtavail, &boot_virtavail_len); 819 /* 820 * Remember what the physically available highest page is 821 * so that dumpsys works properly, and find out how much 822 * memory is installed. 823 */ 824 installed_top_size_memlist_array(boot_physinstalled, 825 boot_physinstalled_len, &physmax, &physinstalled); 826 PRM_DEBUG(physinstalled); 827 PRM_DEBUG(physmax); 828 829 /* Fill out memory nodes config structure */ 830 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 831 832 /* 833 * Get the list of physically available memory to size 834 * the number of page structures needed. 835 */ 836 size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); 837 /* 838 * This first snap shot of npages can represent the pages used 839 * by OBP's text and data approximately. This is used in the 840 * the calculation of the kernel size 841 */ 842 obp_pages = physinstalled - npages; 843 844 845 /* 846 * On small-memory systems (<MODTEXT_SM_SIZE MB, currently 256MB), the 847 * in-nucleus module text is capped to MODTEXT_SM_CAP bytes (currently 848 * 2MB) and any excess pages are put on physavail. The assumption is 849 * that small-memory systems will need more pages more than they'll 850 * need efficiently-mapped module texts. 851 */ 852 if ((physinstalled < mmu_btop(MODTEXT_SM_SIZE << 20)) && 853 modtext_sz > MODTEXT_SM_CAP) { 854 extra_etpg = mmu_btop(modtext_sz - MODTEXT_SM_CAP); 855 modtext_sz = MODTEXT_SM_CAP; 856 } else 857 extra_etpg = 0; 858 PRM_DEBUG(extra_etpg); 859 PRM_DEBUG(modtext_sz); 860 extra_etva = modtext + modtext_sz; 861 PRM_DEBUG(extra_etva); 862 863 /* 864 * Account for any pages after e_text and e_data. 865 */ 866 npages += extra_etpg; 867 npages += mmu_btopr(nalloc_end - nalloc_base); 868 PRM_DEBUG(npages); 869 870 /* 871 * npages is the maximum of available physical memory possible. 872 * (ie. it will never be more than this) 873 */ 874 875 /* 876 * initialize the nucleus memory allocator. 877 */ 878 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 879 880 /* 881 * Allocate mmu fault status area from the nucleus data area. 882 */ 883 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 884 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 885 886 /* 887 * Allocate kernel TSBs from the nucleus data area. 888 */ 889 if (ndata_alloc_tsbs(&ndata, npages) != 0) 890 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 891 892 /* 893 * Allocate cpus structs from the nucleus data area. 894 */ 895 if (ndata_alloc_cpus(&ndata) != 0) 896 cmn_err(CE_PANIC, "no more nucleus memory after cpu alloc"); 897 898 /* 899 * Allocate dmv dispatch table from the nucleus data area. 900 */ 901 if (ndata_alloc_dmv(&ndata) != 0) 902 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 903 904 905 page_coloring_init(); 906 907 /* 908 * Allocate page_freelists bin headers for memnode 0 from the 909 * nucleus data area. 910 */ 911 if (ndata_alloc_page_freelists(&ndata, 0) != 0) 912 cmn_err(CE_PANIC, 913 "no more nucleus memory after page free lists alloc"); 914 915 if (kpm_enable) { 916 kpm_init(); 917 /* 918 * kpm page space -- Update kpm_npages and make the 919 * same assumption about fragmenting as it is done 920 * for memseg_sz. 921 */ 922 kpm_npages_setup(memblocks + 4); 923 } 924 925 /* 926 * Allocate hat related structs from the nucleus data area. 927 */ 928 if (ndata_alloc_hat(&ndata, npages, kpm_npages) != 0) 929 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 930 931 /* 932 * We want to do the BOP_ALLOCs before the real allocation of page 933 * structs in order to not have to allocate page structs for this 934 * memory. We need to calculate a virtual address because we want 935 * the page structs to come before other allocations in virtual address 936 * space. This is so some (if not all) of page structs can actually 937 * live in the nucleus. 938 */ 939 940 /* 941 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 942 * 943 * There are comments all over the SFMMU code warning of dire 944 * consequences if the TSBs are moved out of 32-bit space. This 945 * is largely because the asm code uses "sethi %hi(addr)"-type 946 * instructions which will not provide the expected result if the 947 * address is a 64-bit one. 948 * 949 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 950 */ 951 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 952 alloc_base = sfmmu_ktsb_alloc(alloc_base); 953 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 954 PRM_DEBUG(alloc_base); 955 956 /* 957 * Allocate IOMMU TSB array. We do this here so that the physical 958 * memory gets deducted from the PROM's physical memory list. 959 */ 960 alloc_base = iommu_tsb_init(alloc_base); 961 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 962 ecache_alignsize); 963 PRM_DEBUG(alloc_base); 964 965 /* 966 * Platforms like Starcat and OPL need special structures assigned in 967 * 32-bit virtual address space because their probing routines execute 968 * FCode, and FCode can't handle 64-bit virtual addresses... 969 */ 970 if (&plat_startup_memlist) { 971 alloc_base = plat_startup_memlist(alloc_base); 972 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 973 ecache_alignsize); 974 PRM_DEBUG(alloc_base); 975 } 976 977 /* 978 * If we have enough memory, use 4M pages for alignment because it 979 * greatly reduces the number of TLB misses we take albeit at the cost 980 * of possible RAM wastage (degenerate case of 4 MB - MMU_PAGESIZE per 981 * allocation.) Still, the speedup on large memory systems (e.g. > 64 982 * GB) is quite noticeable, so it is worth the effort to do if we can. 983 * 984 * Note, however, that this speedup will only occur if the boot PROM 985 * uses the largest possible MMU page size possible to map memory 986 * requests that are properly aligned and sized (for example, a request 987 * for a multiple of 4MB of memory aligned to a 4MB boundary will 988 * result in a mapping using a 4MB MMU page.) 989 * 990 * Even then, the large page mappings will only speed things up until 991 * the startup process proceeds a bit further, as when 992 * sfmmu_map_prom_mappings() copies page mappings from the PROM to the 993 * kernel it remaps everything but the TSBs using 8K pages anyway... 994 * 995 * At some point in the future, sfmmu_map_prom_mappings() will be 996 * rewritten to copy memory mappings to the kernel using the same MMU 997 * page sizes the PROM used. When that occurs, if the PROM did use 998 * large MMU pages to map memory, the alignment/sizing work we're 999 * doing now should give us a nice extra performance boost, albeit at 1000 * the cost of greater RAM usage... 1001 */ 1002 alloc_alignsize = ((npages >= tune_npages) ? MMU_PAGESIZE4M : 1003 MMU_PAGESIZE); 1004 1005 PRM_DEBUG(tune_npages); 1006 PRM_DEBUG(alloc_alignsize); 1007 1008 /* 1009 * Save off where the contiguous allocations to date have ended 1010 * in econtig32. 1011 */ 1012 econtig32 = alloc_base; 1013 PRM_DEBUG(econtig32); 1014 1015 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1016 cmn_err(CE_PANIC, "econtig32 too big"); 1017 1018 /* 1019 * To avoid memory allocation collisions in the 32-bit virtual address 1020 * space, make allocations from this point forward in 64-bit virtual 1021 * address space starting at syslimit and working up. Also use the 1022 * alignment specified by alloc_alignsize, as we may be able to save 1023 * ourselves TLB misses by using larger page sizes if they're 1024 * available. 1025 * 1026 * All this is needed because on large memory systems, the default 1027 * Solaris allocations will collide with SYSBASE32, which is hard 1028 * coded to be at the virtual address 0x78000000. Therefore, on 64-bit 1029 * kernels, move the allocations to a location in the 64-bit virtual 1030 * address space space, allowing those structures to grow without 1031 * worry. 1032 * 1033 * On current CPUs we'll run out of physical memory address bits before 1034 * we need to worry about the allocations running into anything else in 1035 * VM or the virtual address holes on US-I and II, as there's currently 1036 * about 1 TB of addressable space before the US-I/II VA hole. 1037 */ 1038 kmem64_base = (caddr_t)syslimit; 1039 PRM_DEBUG(kmem64_base); 1040 1041 alloc_base = (caddr_t)roundup((uintptr_t)kmem64_base, alloc_alignsize); 1042 1043 /* 1044 * If KHME and/or UHME hash buckets won't fit in the nucleus, allocate 1045 * them here. 1046 */ 1047 if (khme_hash == NULL || uhme_hash == NULL) { 1048 /* 1049 * alloc_hme_buckets() will align alloc_base properly before 1050 * assigning the hash buckets, so we don't need to do it 1051 * before the call... 1052 */ 1053 alloc_base = alloc_hme_buckets(alloc_base, alloc_alignsize); 1054 1055 PRM_DEBUG(alloc_base); 1056 PRM_DEBUG(khme_hash); 1057 PRM_DEBUG(uhme_hash); 1058 } 1059 1060 /* 1061 * Allocate the remaining page freelists. NUMA systems can 1062 * have lots of page freelists, one per node, which quickly 1063 * outgrow the amount of nucleus memory available. 1064 */ 1065 if (max_mem_nodes > 1) { 1066 int mnode; 1067 caddr_t alloc_start = alloc_base; 1068 1069 for (mnode = 1; mnode < max_mem_nodes; mnode++) { 1070 alloc_base = alloc_page_freelists(mnode, alloc_base, 1071 ecache_alignsize); 1072 } 1073 1074 if (alloc_base > alloc_start) { 1075 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1076 alloc_alignsize); 1077 if ((caddr_t)BOP_ALLOC(bootops, alloc_start, 1078 alloc_base - alloc_start, 1079 alloc_alignsize) != alloc_start) 1080 cmn_err(CE_PANIC, 1081 "Unable to alloc page freelists\n"); 1082 } 1083 1084 PRM_DEBUG(alloc_base); 1085 } 1086 1087 if (!mml_table) { 1088 size_t mmltable_sz; 1089 1090 /* 1091 * We need to allocate the mml_table here because there 1092 * was not enough space within the nucleus. 1093 */ 1094 mmltable_sz = sizeof (kmutex_t) * mml_table_sz; 1095 alloc_sz = roundup(mmltable_sz, alloc_alignsize); 1096 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1097 alloc_alignsize); 1098 1099 if ((mml_table = (kmutex_t *)BOP_ALLOC(bootops, alloc_base, 1100 alloc_sz, alloc_alignsize)) != (kmutex_t *)alloc_base) 1101 panic("mml_table alloc failure"); 1102 1103 alloc_base += alloc_sz; 1104 PRM_DEBUG(mml_table); 1105 PRM_DEBUG(alloc_base); 1106 } 1107 1108 if (kpm_enable && !(kpmp_table || kpmp_stable)) { 1109 size_t kpmptable_sz; 1110 caddr_t table; 1111 1112 /* 1113 * We need to allocate either kpmp_table or kpmp_stable here 1114 * because there was not enough space within the nucleus. 1115 */ 1116 kpmptable_sz = (kpm_smallpages == 0) ? 1117 sizeof (kpm_hlk_t) * kpmp_table_sz : 1118 sizeof (kpm_shlk_t) * kpmp_stable_sz; 1119 1120 alloc_sz = roundup(kpmptable_sz, alloc_alignsize); 1121 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1122 alloc_alignsize); 1123 1124 table = BOP_ALLOC(bootops, alloc_base, alloc_sz, 1125 alloc_alignsize); 1126 1127 if (table != alloc_base) 1128 panic("kpmp_table or kpmp_stable alloc failure"); 1129 1130 if (kpm_smallpages == 0) { 1131 kpmp_table = (kpm_hlk_t *)table; 1132 PRM_DEBUG(kpmp_table); 1133 } else { 1134 kpmp_stable = (kpm_shlk_t *)table; 1135 PRM_DEBUG(kpmp_stable); 1136 } 1137 1138 alloc_base += alloc_sz; 1139 PRM_DEBUG(alloc_base); 1140 } 1141 1142 if (&ecache_init_scrub_flush_area) { 1143 /* 1144 * Pass alloc_base directly, as the routine itself is 1145 * responsible for any special alignment requirements... 1146 */ 1147 alloc_base = ecache_init_scrub_flush_area(alloc_base); 1148 PRM_DEBUG(alloc_base); 1149 } 1150 1151 /* 1152 * Take the most current snapshot we can by calling mem-update. 1153 */ 1154 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1155 &boot_physavail, &boot_physavail_len, 1156 &boot_virtavail, &boot_virtavail_len); 1157 1158 /* 1159 * Reset npages and memblocks based on boot_physavail list. 1160 */ 1161 size_physavail(boot_physavail, boot_physavail_len, &npages, &memblocks); 1162 PRM_DEBUG(npages); 1163 1164 /* 1165 * Account for extra memory after e_text. 1166 */ 1167 npages += extra_etpg; 1168 1169 /* 1170 * Calculate the largest free memory chunk in the nucleus data area. 1171 * We need to figure out if page structs can fit in there or not. 1172 * We also make sure enough page structs get created for any physical 1173 * memory we might be returning to the system. 1174 */ 1175 ndata_remain_sz = ndata_maxsize(&ndata); 1176 PRM_DEBUG(ndata_remain_sz); 1177 1178 pp_sz = sizeof (struct page) * npages; 1179 1180 /* 1181 * Here's a nice bit of code based on somewhat recursive logic: 1182 * 1183 * If the page array would fit within the nucleus, we want to 1184 * add npages to cover any extra memory we may be returning back 1185 * to the system. 1186 * 1187 * HOWEVER, the page array is sized by calculating the size of 1188 * (struct page * npages), as are the pagehash table, ctrs and 1189 * memseg_list, so the very act of performing the calculation below may 1190 * in fact make the array large enough that it no longer fits in the 1191 * nucleus, meaning there would now be a much larger area of the 1192 * nucleus free that should really be added to npages, which would 1193 * make the page array that much larger, and so on. 1194 * 1195 * This also ignores the memory possibly used in the nucleus for the 1196 * the page hash, ctrs and memseg list and the fact that whether they 1197 * fit there or not varies with the npages calculation below, but we 1198 * don't even factor them into the equation at this point; perhaps we 1199 * should or perhaps we should just take the approach that the few 1200 * extra pages we could add via this calculation REALLY aren't worth 1201 * the hassle... 1202 */ 1203 if (ndata_remain_sz > pp_sz) { 1204 size_t spare = ndata_spare(&ndata, pp_sz, ecache_alignsize); 1205 1206 npages += mmu_btop(spare); 1207 1208 pp_sz = npages * sizeof (struct page); 1209 1210 pp_base = ndata_alloc(&ndata, pp_sz, ecache_alignsize); 1211 } 1212 1213 /* 1214 * If physmem is patched to be non-zero, use it instead of 1215 * the monitor value unless physmem is larger than the total 1216 * amount of memory on hand. 1217 */ 1218 if (physmem == 0 || physmem > npages) 1219 physmem = npages; 1220 1221 /* 1222 * If pp_base is NULL that means the routines above have determined 1223 * the page array will not fit in the nucleus; we'll have to 1224 * BOP_ALLOC() ourselves some space for them. 1225 */ 1226 if (pp_base == NULL) { 1227 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1228 alloc_alignsize); 1229 1230 alloc_sz = roundup(pp_sz, alloc_alignsize); 1231 1232 if ((pp_base = (struct page *)BOP_ALLOC(bootops, 1233 alloc_base, alloc_sz, alloc_alignsize)) != 1234 (struct page *)alloc_base) 1235 panic("page alloc failure"); 1236 1237 alloc_base += alloc_sz; 1238 } 1239 1240 /* 1241 * The page structure hash table size is a power of 2 1242 * such that the average hash chain length is PAGE_HASHAVELEN. 1243 */ 1244 page_hashsz = npages / PAGE_HASHAVELEN; 1245 page_hashsz = 1 << highbit((ulong_t)page_hashsz); 1246 pagehash_sz = sizeof (struct page *) * page_hashsz; 1247 1248 /* 1249 * We want to TRY to fit the page structure hash table, 1250 * the page size free list counters, the memseg list and 1251 * and the kpm page space in the nucleus if possible. 1252 * 1253 * alloc_sz counts how much memory needs to be allocated by 1254 * BOP_ALLOC(). 1255 */ 1256 page_hash = ndata_alloc(&ndata, pagehash_sz, ecache_alignsize); 1257 1258 alloc_sz = (page_hash == NULL ? pagehash_sz : 0); 1259 1260 /* 1261 * Size up per page size free list counters. 1262 */ 1263 ctrs_sz = page_ctrs_sz(); 1264 ctrs_base = ndata_alloc(&ndata, ctrs_sz, ecache_alignsize); 1265 1266 if (ctrs_base == NULL) 1267 alloc_sz = roundup(alloc_sz, ecache_alignsize) + ctrs_sz; 1268 1269 /* 1270 * The memseg list is for the chunks of physical memory that 1271 * will be managed by the vm system. The number calculated is 1272 * a guess as boot may fragment it more when memory allocations 1273 * are made before kphysm_init(). Currently, there are two 1274 * allocations before then, so we assume each causes fragmen- 1275 * tation, and add a couple more for good measure. 1276 */ 1277 memseg_sz = sizeof (struct memseg) * (memblocks + 4); 1278 memseg_base = ndata_alloc(&ndata, memseg_sz, ecache_alignsize); 1279 1280 if (memseg_base == NULL) 1281 alloc_sz = roundup(alloc_sz, ecache_alignsize) + memseg_sz; 1282 1283 1284 if (kpm_enable) { 1285 /* 1286 * kpm page space -- Update kpm_npages and make the 1287 * same assumption about fragmenting as it is done 1288 * for memseg_sz above. 1289 */ 1290 kpm_npages_setup(memblocks + 4); 1291 kpm_pp_sz = (kpm_smallpages == 0) ? 1292 kpm_npages * sizeof (kpm_page_t): 1293 kpm_npages * sizeof (kpm_spage_t); 1294 1295 kpm_pp_base = (uintptr_t)ndata_alloc(&ndata, kpm_pp_sz, 1296 ecache_alignsize); 1297 1298 if (kpm_pp_base == NULL) 1299 alloc_sz = roundup(alloc_sz, ecache_alignsize) + 1300 kpm_pp_sz; 1301 } 1302 1303 if (alloc_sz > 0) { 1304 uintptr_t bop_base; 1305 1306 /* 1307 * We need extra memory allocated through BOP_ALLOC. 1308 */ 1309 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1310 alloc_alignsize); 1311 1312 alloc_sz = roundup(alloc_sz, alloc_alignsize); 1313 1314 if ((bop_base = (uintptr_t)BOP_ALLOC(bootops, alloc_base, 1315 alloc_sz, alloc_alignsize)) != (uintptr_t)alloc_base) 1316 panic("system page struct alloc failure"); 1317 1318 alloc_base += alloc_sz; 1319 1320 if (page_hash == NULL) { 1321 page_hash = (struct page **)bop_base; 1322 bop_base = roundup(bop_base + pagehash_sz, 1323 ecache_alignsize); 1324 } 1325 1326 if (ctrs_base == NULL) { 1327 ctrs_base = (caddr_t)bop_base; 1328 bop_base = roundup(bop_base + ctrs_sz, 1329 ecache_alignsize); 1330 } 1331 1332 if (memseg_base == NULL) { 1333 memseg_base = (struct memseg *)bop_base; 1334 bop_base = roundup(bop_base + memseg_sz, 1335 ecache_alignsize); 1336 } 1337 1338 if (kpm_enable && kpm_pp_base == NULL) { 1339 kpm_pp_base = (uintptr_t)bop_base; 1340 bop_base = roundup(bop_base + kpm_pp_sz, 1341 ecache_alignsize); 1342 } 1343 1344 ASSERT(bop_base <= (uintptr_t)alloc_base); 1345 } 1346 1347 /* 1348 * Initialize per page size free list counters. 1349 */ 1350 ctrs_end = page_ctrs_alloc(ctrs_base); 1351 ASSERT(ctrs_base + ctrs_sz >= ctrs_end); 1352 1353 PRM_DEBUG(page_hash); 1354 PRM_DEBUG(memseg_base); 1355 PRM_DEBUG(kpm_pp_base); 1356 PRM_DEBUG(kpm_pp_sz); 1357 PRM_DEBUG(pp_base); 1358 PRM_DEBUG(pp_sz); 1359 PRM_DEBUG(alloc_base); 1360 1361 #ifdef TRAPTRACE 1362 /* 1363 * Allocate trap trace buffer last so as not to affect 1364 * the 4M alignments of the allocations above on V9 SPARCs... 1365 */ 1366 alloc_base = trap_trace_alloc(alloc_base); 1367 PRM_DEBUG(alloc_base); 1368 #endif /* TRAPTRACE */ 1369 1370 if (kmem64_base) { 1371 /* 1372 * Set the end of the kmem64 segment for V9 SPARCs, if 1373 * appropriate... 1374 */ 1375 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, 1376 alloc_alignsize); 1377 1378 PRM_DEBUG(kmem64_base); 1379 PRM_DEBUG(kmem64_end); 1380 } 1381 1382 /* 1383 * Allocate space for the interrupt vector table. 1384 */ 1385 memspace = (caddr_t)BOP_ALLOC(bootops, (caddr_t)intr_vector, 1386 IVSIZE, MMU_PAGESIZE); 1387 if (memspace != (caddr_t)intr_vector) 1388 panic("interrupt table allocation failure"); 1389 1390 /* 1391 * The memory lists from boot are allocated from the heap arena 1392 * so that later they can be freed and/or reallocated. 1393 */ 1394 if (BOP_GETPROP(bootops, "extent", &memlist_sz) == -1) 1395 panic("could not retrieve property \"extent\""); 1396 1397 /* 1398 * Between now and when we finish copying in the memory lists, 1399 * allocations happen so the space gets fragmented and the 1400 * lists longer. Leave enough space for lists twice as long 1401 * as what boot says it has now; roundup to a pagesize. 1402 * Also add space for the final phys-avail copy in the fixup 1403 * routine. 1404 */ 1405 va = (caddr_t)(sysbase + PAGESIZE + PANICBUFSIZE + 1406 roundup(IVSIZE, MMU_PAGESIZE)); 1407 memlist_sz *= 4; 1408 memlist_sz = roundup(memlist_sz, MMU_PAGESIZE); 1409 memspace = (caddr_t)BOP_ALLOC(bootops, va, memlist_sz, BO_NO_ALIGN); 1410 if (memspace == NULL) 1411 halt("Boot allocation failed."); 1412 1413 memlist = (struct memlist *)memspace; 1414 memlist_end = (char *)memspace + memlist_sz; 1415 1416 PRM_DEBUG(memlist); 1417 PRM_DEBUG(memlist_end); 1418 PRM_DEBUG(sysbase); 1419 PRM_DEBUG(syslimit); 1420 1421 kernelheap_init((void *)sysbase, (void *)syslimit, 1422 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1423 1424 /* 1425 * Take the most current snapshot we can by calling mem-update. 1426 */ 1427 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1428 &boot_physavail, &boot_physavail_len, 1429 &boot_virtavail, &boot_virtavail_len); 1430 1431 /* 1432 * Remove the space used by BOP_ALLOC from the kernel heap 1433 * plus the area actually used by the OBP (if any) 1434 * ignoring virtual addresses in virt_avail, above syslimit. 1435 */ 1436 virt_avail = memlist; 1437 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1438 1439 for (cur = virt_avail; cur->next; cur = cur->next) { 1440 uint64_t range_base, range_size; 1441 1442 if ((range_base = cur->address + cur->size) < (uint64_t)sysbase) 1443 continue; 1444 if (range_base >= (uint64_t)syslimit) 1445 break; 1446 /* 1447 * Limit the range to end at syslimit. 1448 */ 1449 range_size = MIN(cur->next->address, 1450 (uint64_t)syslimit) - range_base; 1451 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1452 0, 0, (void *)range_base, (void *)(range_base + range_size), 1453 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1454 } 1455 1456 phys_avail = memlist; 1457 (void) copy_physavail(boot_physavail, boot_physavail_len, 1458 &memlist, 0, 0); 1459 1460 /* 1461 * Add any extra memory after e_text to the phys_avail list, as long 1462 * as there's at least a page to add. 1463 */ 1464 if (extra_etpg) 1465 memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), 1466 &memlist, &phys_avail); 1467 1468 /* 1469 * Add any extra memory after e_data to the phys_avail list as long 1470 * as there's at least a page to add. Usually, there isn't any, 1471 * since extra HME blocks typically get allocated there first before 1472 * using RAM elsewhere. 1473 */ 1474 if ((nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE)) == NULL) 1475 nalloc_base = nalloc_end; 1476 ndata_remain_sz = nalloc_end - nalloc_base; 1477 1478 if (ndata_remain_sz >= MMU_PAGESIZE) 1479 memlist_add(va_to_pa(nalloc_base), 1480 (uint64_t)ndata_remain_sz, &memlist, &phys_avail); 1481 1482 PRM_DEBUG(memlist); 1483 PRM_DEBUG(memlist_sz); 1484 PRM_DEBUG(memspace); 1485 1486 if ((caddr_t)memlist > (memspace + memlist_sz)) 1487 panic("memlist overflow"); 1488 1489 PRM_DEBUG(pp_base); 1490 PRM_DEBUG(memseg_base); 1491 PRM_DEBUG(npages); 1492 1493 /* 1494 * Initialize the page structures from the memory lists. 1495 */ 1496 kphysm_init(pp_base, memseg_base, npages, kpm_pp_base, kpm_npages); 1497 1498 availrmem_initial = availrmem = freemem; 1499 PRM_DEBUG(availrmem); 1500 1501 /* 1502 * Some of the locks depend on page_hashsz being set! 1503 * kmem_init() depends on this; so, keep it here. 1504 */ 1505 page_lock_init(); 1506 1507 /* 1508 * Initialize kernel memory allocator. 1509 */ 1510 kmem_init(); 1511 1512 /* 1513 * Initialize bp_mapin(). 1514 */ 1515 bp_init(shm_alignment, HAT_STRICTORDER); 1516 1517 /* 1518 * Reserve space for panicbuf and intr_vector from the 32-bit heap 1519 */ 1520 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 1521 panicbuf, panicbuf + PANICBUFSIZE, 1522 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1523 1524 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 1525 intr_vector, (caddr_t)intr_vector + IVSIZE, 1526 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1527 1528 mem_config_init(); 1529 } 1530 1531 static void 1532 startup_modules(void) 1533 { 1534 int proplen, nhblk1, nhblk8; 1535 size_t nhblksz; 1536 pgcnt_t hblk_pages, pages_per_hblk; 1537 size_t hme8blk_sz, hme1blk_sz; 1538 1539 /* 1540 * Log any optional messages from the boot program 1541 */ 1542 proplen = (size_t)BOP_GETPROPLEN(bootops, "boot-message"); 1543 if (proplen > 0) { 1544 char *msg; 1545 size_t len = (size_t)proplen; 1546 1547 msg = kmem_zalloc(len, KM_SLEEP); 1548 (void) BOP_GETPROP(bootops, "boot-message", msg); 1549 cmn_err(CE_CONT, "?%s\n", msg); 1550 kmem_free(msg, len); 1551 } 1552 1553 /* 1554 * Let the platforms have a chance to change default 1555 * values before reading system file. 1556 */ 1557 if (&set_platform_defaults) 1558 set_platform_defaults(); 1559 1560 /* 1561 * Calculate default settings of system parameters based upon 1562 * maxusers, yet allow to be overridden via the /etc/system file. 1563 */ 1564 param_calc(0); 1565 1566 mod_setup(); 1567 1568 /* 1569 * If this is a positron, complain and halt. 1570 */ 1571 if (&iam_positron && iam_positron()) { 1572 cmn_err(CE_WARN, "This hardware platform is not supported" 1573 " by this release of Solaris.\n"); 1574 #ifdef DEBUG 1575 prom_enter_mon(); /* Type 'go' to resume */ 1576 cmn_err(CE_WARN, "Booting an unsupported platform.\n"); 1577 cmn_err(CE_WARN, "Booting with down-rev firmware.\n"); 1578 1579 #else /* DEBUG */ 1580 halt(0); 1581 #endif /* DEBUG */ 1582 } 1583 1584 /* 1585 * If we are running firmware that isn't 64-bit ready 1586 * then complain and halt. 1587 */ 1588 do_prom_version_check(); 1589 1590 /* 1591 * Initialize system parameters 1592 */ 1593 param_init(); 1594 1595 /* 1596 * maxmem is the amount of physical memory we're playing with. 1597 */ 1598 maxmem = physmem; 1599 1600 /* Set segkp limits. */ 1601 ncbase = (caddr_t)SEGDEBUGBASE; 1602 ncend = (caddr_t)SEGDEBUGBASE; 1603 1604 /* 1605 * Initialize the hat layer. 1606 */ 1607 hat_init(); 1608 1609 /* 1610 * Initialize segment management stuff. 1611 */ 1612 seg_init(); 1613 1614 /* 1615 * Create the va>tte handler, so the prom can understand 1616 * kernel translations. The handler is installed later, just 1617 * as we are about to take over the trap table from the prom. 1618 */ 1619 create_va_to_tte(); 1620 1621 /* 1622 * Load the forthdebugger (optional) 1623 */ 1624 forthdebug_init(); 1625 1626 /* 1627 * Create OBP node for console input callbacks 1628 * if it is needed. 1629 */ 1630 startup_create_io_node(); 1631 1632 if (modloadonly("fs", "specfs") == -1) 1633 halt("Can't load specfs"); 1634 1635 if (modloadonly("fs", "devfs") == -1) 1636 halt("Can't load devfs"); 1637 1638 if (modloadonly("misc", "swapgeneric") == -1) 1639 halt("Can't load swapgeneric"); 1640 1641 (void) modloadonly("sys", "lbl_edition"); 1642 1643 dispinit(); 1644 1645 /* 1646 * Infer meanings to the members of the idprom buffer. 1647 */ 1648 parse_idprom(); 1649 1650 /* Read cluster configuration data. */ 1651 clconf_init(); 1652 1653 setup_ddi(); 1654 1655 /* 1656 * Lets take this opportunity to load the root device. 1657 */ 1658 if (loadrootmodules() != 0) 1659 debug_enter("Can't load the root filesystem"); 1660 1661 /* 1662 * Load tod driver module for the tod part found on this system. 1663 * Recompute the cpu frequency/delays based on tod as tod part 1664 * tends to keep time more accurately. 1665 */ 1666 if (&load_tod_module) 1667 load_tod_module(); 1668 1669 /* 1670 * Allow platforms to load modules which might 1671 * be needed after bootops are gone. 1672 */ 1673 if (&load_platform_modules) 1674 load_platform_modules(); 1675 1676 setcpudelay(); 1677 1678 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1679 &boot_physavail, &boot_physavail_len, 1680 &boot_virtavail, &boot_virtavail_len); 1681 1682 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1683 1684 /* 1685 * Calculation and allocation of hmeblks needed to remap 1686 * the memory allocated by PROM till now: 1687 * 1688 * (1) calculate how much virtual memory has been bop_alloc'ed. 1689 * (2) roundup this memory to span of hme8blk, i.e. 64KB 1690 * (3) calculate number of hme8blk's needed to remap this memory 1691 * (4) calculate amount of memory that's consumed by these hme8blk's 1692 * (5) add memory calculated in steps (2) and (4) above. 1693 * (6) roundup this memory to span of hme8blk, i.e. 64KB 1694 * (7) calculate number of hme8blk's needed to remap this memory 1695 * (8) calculate amount of memory that's consumed by these hme8blk's 1696 * (9) allocate additional hme1blk's to hold large mappings. 1697 * H8TOH1 determines this. The current SWAG gives enough hblk1's 1698 * to remap everything with 4M mappings. 1699 * (10) account for partially used hblk8's due to non-64K aligned 1700 * PROM mapping entries. 1701 * (11) add memory calculated in steps (8), (9), and (10) above. 1702 * (12) kmem_zalloc the memory calculated in (11); since segkmem 1703 * is not ready yet, this gets bop_alloc'ed. 1704 * (13) there will be very few bop_alloc's after this point before 1705 * trap table takes over 1706 */ 1707 1708 /* sfmmu_init_nucleus_hblks expects properly aligned data structures. */ 1709 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1710 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1711 1712 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1713 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1714 nhblk8 = bop_alloc_pages / pages_per_hblk; 1715 nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1; 1716 hblk_pages = btopr(nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz); 1717 bop_alloc_pages += hblk_pages; 1718 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1719 nhblk8 = bop_alloc_pages / pages_per_hblk; 1720 nhblk1 = roundup(nhblk8, H8TOH1) / H8TOH1; 1721 if (nhblk1 < hblk1_min) 1722 nhblk1 = hblk1_min; 1723 if (nhblk8 < hblk8_min) 1724 nhblk8 = hblk8_min; 1725 1726 /* 1727 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1728 * boundary, the number of hblk8's needed to map the entries in the 1729 * boot_virtavail list needs to be adjusted to take this into 1730 * consideration. Thus, we need to add additional hblk8's since it 1731 * is possible that an hblk8 will not have all 8 slots used due to 1732 * alignment constraints. Since there were boot_virtavail_len entries 1733 * in that list, we need to add that many hblk8's to the number 1734 * already calculated to make sure we don't underestimate. 1735 */ 1736 nhblk8 += boot_virtavail_len; 1737 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1738 1739 /* Allocate in pagesize chunks */ 1740 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1741 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1742 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1743 } 1744 1745 static void 1746 startup_bop_gone(void) 1747 { 1748 extern int bop_io_quiesced; 1749 1750 /* 1751 * Call back into boot and release boots resources. 1752 */ 1753 BOP_QUIESCE_IO(bootops); 1754 bop_io_quiesced = 1; 1755 1756 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1757 &boot_physavail, &boot_physavail_len, 1758 &boot_virtavail, &boot_virtavail_len); 1759 /* 1760 * Copy physinstalled list into kernel space. 1761 */ 1762 phys_install = memlist; 1763 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1764 1765 /* 1766 * setup physically contiguous area twice as large as the ecache. 1767 * this is used while doing displacement flush of ecaches 1768 */ 1769 if (&ecache_flush_address) { 1770 ecache_flushaddr = ecache_flush_address(); 1771 if (ecache_flushaddr == (uint64_t)-1) { 1772 cmn_err(CE_PANIC, 1773 "startup: no memory to set ecache_flushaddr"); 1774 } 1775 } 1776 1777 /* 1778 * Virtual available next. 1779 */ 1780 ASSERT(virt_avail != NULL); 1781 memlist_free_list(virt_avail); 1782 virt_avail = memlist; 1783 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1784 1785 /* 1786 * Last chance to ask our booter questions .. 1787 */ 1788 } 1789 1790 1791 /* 1792 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1793 * allocations have been performed. We can't call it in startup_bop_gone 1794 * since later operations can cause obp to allocate more memory. 1795 */ 1796 void 1797 startup_fixup_physavail(void) 1798 { 1799 struct memlist *cur; 1800 1801 /* 1802 * take the most current snapshot we can by calling mem-update 1803 */ 1804 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1805 &boot_physavail, &boot_physavail_len, 1806 &boot_virtavail, &boot_virtavail_len); 1807 1808 /* 1809 * Copy phys_avail list, again. 1810 * Both the kernel/boot and the prom have been allocating 1811 * from the original list we copied earlier. 1812 */ 1813 cur = memlist; 1814 (void) copy_physavail(boot_physavail, boot_physavail_len, 1815 &memlist, 0, 0); 1816 1817 /* 1818 * Add any extra memory after e_text we added to the phys_avail list 1819 * back to the old list. 1820 */ 1821 if (extra_etpg) 1822 memlist_add(va_to_pa(extra_etva), mmu_ptob(extra_etpg), 1823 &memlist, &cur); 1824 if (ndata_remain_sz >= MMU_PAGESIZE) 1825 memlist_add(va_to_pa(nalloc_base), 1826 (uint64_t)ndata_remain_sz, &memlist, &cur); 1827 1828 /* 1829 * There isn't any bounds checking on the memlist area 1830 * so ensure it hasn't overgrown. 1831 */ 1832 if ((caddr_t)memlist > (caddr_t)memlist_end) 1833 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1834 1835 /* 1836 * The kernel removes the pages that were allocated for it from 1837 * the freelist, but we now have to find any -extra- pages that 1838 * the prom has allocated for it's own book-keeping, and remove 1839 * them from the freelist too. sigh. 1840 */ 1841 fix_prom_pages(phys_avail, cur); 1842 1843 ASSERT(phys_avail != NULL); 1844 memlist_free_list(phys_avail); 1845 phys_avail = cur; 1846 1847 /* 1848 * We're done with boot. Just after this point in time, boot 1849 * gets unmapped, so we can no longer rely on its services. 1850 * Zero the bootops to indicate this fact. 1851 */ 1852 bootops = (struct bootops *)NULL; 1853 BOOTOPS_GONE(); 1854 } 1855 1856 static void 1857 startup_vm(void) 1858 { 1859 size_t i; 1860 struct segmap_crargs a; 1861 struct segkpm_crargs b; 1862 1863 uint64_t avmem; 1864 caddr_t va; 1865 pgcnt_t max_phys_segkp; 1866 int mnode; 1867 1868 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1869 1870 /* 1871 * get prom's mappings, create hments for them and switch 1872 * to the kernel context. 1873 */ 1874 hat_kern_setup(); 1875 1876 /* 1877 * Take over trap table 1878 */ 1879 setup_trap_table(); 1880 1881 /* 1882 * Install the va>tte handler, so that the prom can handle 1883 * misses and understand the kernel table layout in case 1884 * we need call into the prom. 1885 */ 1886 install_va_to_tte(); 1887 1888 /* 1889 * Set a flag to indicate that the tba has been taken over. 1890 */ 1891 tba_taken_over = 1; 1892 1893 /* initialize MMU primary context register */ 1894 mmu_init_kcontext(); 1895 1896 /* 1897 * The boot cpu can now take interrupts, x-calls, x-traps 1898 */ 1899 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1900 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1901 1902 /* 1903 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1904 */ 1905 tbr_wr_addr_inited = 1; 1906 1907 /* 1908 * Initialize VM system, and map kernel address space. 1909 */ 1910 kvm_init(); 1911 1912 /* 1913 * XXX4U: previously, we initialized and turned on 1914 * the caches at this point. But of course we have 1915 * nothing to do, as the prom has already done this 1916 * for us -- main memory must be E$able at all times. 1917 */ 1918 1919 /* 1920 * If the following is true, someone has patched 1921 * phsymem to be less than the number of pages that 1922 * the system actually has. Remove pages until system 1923 * memory is limited to the requested amount. Since we 1924 * have allocated page structures for all pages, we 1925 * correct the amount of memory we want to remove 1926 * by the size of the memory used to hold page structures 1927 * for the non-used pages. 1928 */ 1929 if (physmem < npages) { 1930 pgcnt_t diff, off; 1931 struct page *pp; 1932 struct seg kseg; 1933 1934 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1935 1936 off = 0; 1937 diff = npages - physmem; 1938 diff -= mmu_btopr(diff * sizeof (struct page)); 1939 kseg.s_as = &kas; 1940 while (diff--) { 1941 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1942 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1943 &kseg, (caddr_t)off); 1944 if (pp == NULL) 1945 cmn_err(CE_PANIC, "limited physmem too much!"); 1946 page_io_unlock(pp); 1947 page_downgrade(pp); 1948 availrmem--; 1949 off += MMU_PAGESIZE; 1950 } 1951 } 1952 1953 /* 1954 * When printing memory, show the total as physmem less 1955 * that stolen by a debugger. 1956 */ 1957 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1958 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1959 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1960 1961 avmem = (uint64_t)freemem << PAGESHIFT; 1962 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1963 1964 /* For small memory systems disable automatic large pages. */ 1965 if (physmem < auto_lpg_min_physmem) { 1966 exec_lpg_disable = 1; 1967 use_brk_lpg = 0; 1968 use_stk_lpg = 0; 1969 use_zmap_lpg = 0; 1970 } 1971 1972 /* 1973 * Perform platform specific freelist processing 1974 */ 1975 if (&plat_freelist_process) { 1976 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1977 if (mem_node_config[mnode].exists) 1978 plat_freelist_process(mnode); 1979 } 1980 1981 /* 1982 * Initialize the segkp segment type. We position it 1983 * after the configured tables and buffers (whose end 1984 * is given by econtig) and before V_WKBASE_ADDR. 1985 * Also in this area is segkmap (size SEGMAPSIZE). 1986 */ 1987 1988 /* XXX - cache alignment? */ 1989 va = (caddr_t)SEGKPBASE; 1990 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1991 1992 max_phys_segkp = (physmem * 2); 1993 1994 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1995 segkpsize = btop(SEGKPDEFSIZE); 1996 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1997 "segkpsize has been reset to %ld pages", segkpsize); 1998 } 1999 2000 i = ptob(MIN(segkpsize, max_phys_segkp)); 2001 2002 rw_enter(&kas.a_lock, RW_WRITER); 2003 if (seg_attach(&kas, va, i, segkp) < 0) 2004 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 2005 if (segkp_create(segkp) != 0) 2006 cmn_err(CE_PANIC, "startup: segkp_create failed"); 2007 rw_exit(&kas.a_lock); 2008 2009 /* 2010 * kpm segment 2011 */ 2012 segmap_kpm = kpm_enable && 2013 segmap_kpm && PAGESIZE == MAXBSIZE; 2014 2015 if (kpm_enable) { 2016 rw_enter(&kas.a_lock, RW_WRITER); 2017 2018 /* 2019 * The segkpm virtual range range is larger than the 2020 * actual physical memory size and also covers gaps in 2021 * the physical address range for the following reasons: 2022 * . keep conversion between segkpm and physical addresses 2023 * simple, cheap and unambiguous. 2024 * . avoid extension/shrink of the the segkpm in case of DR. 2025 * . avoid complexity for handling of virtual addressed 2026 * caches, segkpm and the regular mapping scheme must be 2027 * kept in sync wrt. the virtual color of mapped pages. 2028 * Any accesses to virtual segkpm ranges not backed by 2029 * physical memory will fall through the memseg pfn hash 2030 * and will be handled in segkpm_fault. 2031 * Additional kpm_size spaces needed for vac alias prevention. 2032 */ 2033 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 2034 segkpm) < 0) 2035 cmn_err(CE_PANIC, "cannot attach segkpm"); 2036 2037 b.prot = PROT_READ | PROT_WRITE; 2038 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 2039 2040 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 2041 panic("segkpm_create segkpm"); 2042 2043 rw_exit(&kas.a_lock); 2044 } 2045 2046 /* 2047 * Now create generic mapping segment. This mapping 2048 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2049 * virtual address is greater than the amount of free 2050 * memory that is available, then we trim back the 2051 * segment size to that amount 2052 */ 2053 va = (caddr_t)SEGMAPBASE; 2054 2055 /* 2056 * 1201049: segkmap base address must be MAXBSIZE aligned 2057 */ 2058 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2059 2060 /* 2061 * Set size of segmap to percentage of freemem at boot, 2062 * but stay within the allowable range 2063 * Note we take percentage before converting from pages 2064 * to bytes to avoid an overflow on 32-bit kernels. 2065 */ 2066 i = mmu_ptob((freemem * segmap_percent) / 100); 2067 2068 if (i < MINMAPSIZE) 2069 i = MINMAPSIZE; 2070 2071 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2072 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2073 2074 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2075 2076 rw_enter(&kas.a_lock, RW_WRITER); 2077 if (seg_attach(&kas, va, i, segkmap) < 0) 2078 cmn_err(CE_PANIC, "cannot attach segkmap"); 2079 2080 a.prot = PROT_READ | PROT_WRITE; 2081 a.shmsize = shm_alignment; 2082 a.nfreelist = 0; /* use segmap driver defaults */ 2083 2084 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2085 panic("segmap_create segkmap"); 2086 rw_exit(&kas.a_lock); 2087 2088 segdev_init(); 2089 } 2090 2091 static void 2092 startup_end(void) 2093 { 2094 if ((caddr_t)memlist > (caddr_t)memlist_end) 2095 panic("memlist overflow 2"); 2096 memlist_free_block((caddr_t)memlist, 2097 ((caddr_t)memlist_end - (caddr_t)memlist)); 2098 memlist = NULL; 2099 2100 /* enable page_relocation since OBP is now done */ 2101 page_relocate_ready = 1; 2102 2103 /* 2104 * Perform tasks that get done after most of the VM 2105 * initialization has been done but before the clock 2106 * and other devices get started. 2107 */ 2108 kern_setup1(); 2109 2110 /* 2111 * Intialize the VM arenas for allocating physically 2112 * contiguus memory chunk for interrupt queues snd 2113 * allocate/register boot cpu's queues, if any and 2114 * allocate dump buffer for sun4v systems to store 2115 * extra crash information during crash dump 2116 */ 2117 contig_mem_init(); 2118 mach_descrip_init(); 2119 cpu_intrq_setup(CPU); 2120 cpu_intrq_register(CPU); 2121 mach_htraptrace_setup(CPU->cpu_id); 2122 mach_htraptrace_configure(CPU->cpu_id); 2123 mach_dump_buffer_init(); 2124 2125 /* 2126 * Initialize interrupt related stuff 2127 */ 2128 cpu_intr_alloc(CPU, NINTR_THREADS); 2129 2130 (void) splzs(); /* allow hi clock ints but not zs */ 2131 2132 /* 2133 * Initialize errors. 2134 */ 2135 error_init(); 2136 2137 /* 2138 * Note that we may have already used kernel bcopy before this 2139 * point - but if you really care about this, adb the use_hw_* 2140 * variables to 0 before rebooting. 2141 */ 2142 mach_hw_copy_limit(); 2143 2144 /* 2145 * Install the "real" preemption guards before DDI services 2146 * are available. 2147 */ 2148 (void) prom_set_preprom(kern_preprom); 2149 (void) prom_set_postprom(kern_postprom); 2150 CPU->cpu_m.mutex_ready = 1; 2151 2152 /* 2153 * Initialize segnf (kernel support for non-faulting loads). 2154 */ 2155 segnf_init(); 2156 2157 /* 2158 * Configure the root devinfo node. 2159 */ 2160 configure(); /* set up devices */ 2161 mach_cpu_halt_idle(); 2162 } 2163 2164 2165 void 2166 post_startup(void) 2167 { 2168 #ifdef PTL1_PANIC_DEBUG 2169 extern void init_ptl1_thread(void); 2170 #endif /* PTL1_PANIC_DEBUG */ 2171 extern void abort_sequence_init(void); 2172 2173 /* 2174 * Set the system wide, processor-specific flags to be passed 2175 * to userland via the aux vector for performance hints and 2176 * instruction set extensions. 2177 */ 2178 bind_hwcap(); 2179 2180 /* 2181 * Startup memory scrubber (if any) 2182 */ 2183 mach_memscrub(); 2184 2185 /* 2186 * Allocate soft interrupt to handle abort sequence. 2187 */ 2188 abort_sequence_init(); 2189 2190 /* 2191 * Configure the rest of the system. 2192 * Perform forceloading tasks for /etc/system. 2193 */ 2194 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2195 /* 2196 * ON4.0: Force /proc module in until clock interrupt handle fixed 2197 * ON4.0: This must be fixed or restated in /etc/systems. 2198 */ 2199 (void) modload("fs", "procfs"); 2200 2201 if (&load_platform_drivers) 2202 load_platform_drivers(); 2203 2204 /* load vis simulation module, if we are running w/fpu off */ 2205 if (!fpu_exists) { 2206 if (modload("misc", "vis") == -1) 2207 halt("Can't load vis"); 2208 } 2209 2210 mach_fpras(); 2211 2212 maxmem = freemem; 2213 2214 #ifdef PTL1_PANIC_DEBUG 2215 init_ptl1_thread(); 2216 #endif /* PTL1_PANIC_DEBUG */ 2217 } 2218 2219 #ifdef PTL1_PANIC_DEBUG 2220 int ptl1_panic_test = 0; 2221 int ptl1_panic_xc_one_test = 0; 2222 int ptl1_panic_xc_all_test = 0; 2223 int ptl1_panic_xt_one_test = 0; 2224 int ptl1_panic_xt_all_test = 0; 2225 kthread_id_t ptl1_thread_p = NULL; 2226 kcondvar_t ptl1_cv; 2227 kmutex_t ptl1_mutex; 2228 int ptl1_recurse_count_threshold = 0x40; 2229 int ptl1_recurse_trap_threshold = 0x3d; 2230 extern void ptl1_recurse(int, int); 2231 extern void ptl1_panic_xt(int, int); 2232 2233 /* 2234 * Called once per second by timeout() to wake up 2235 * the ptl1_panic thread to see if it should cause 2236 * a trap to the ptl1_panic() code. 2237 */ 2238 /* ARGSUSED */ 2239 static void 2240 ptl1_wakeup(void *arg) 2241 { 2242 mutex_enter(&ptl1_mutex); 2243 cv_signal(&ptl1_cv); 2244 mutex_exit(&ptl1_mutex); 2245 } 2246 2247 /* 2248 * ptl1_panic cross call function: 2249 * Needed because xc_one() and xc_some() can pass 2250 * 64 bit args but ptl1_recurse() expects ints. 2251 */ 2252 static void 2253 ptl1_panic_xc(void) 2254 { 2255 ptl1_recurse(ptl1_recurse_count_threshold, 2256 ptl1_recurse_trap_threshold); 2257 } 2258 2259 /* 2260 * The ptl1 thread waits for a global flag to be set 2261 * and uses the recurse thresholds to set the stack depth 2262 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2263 * or indirectly via the cross call and cross trap functions. 2264 * 2265 * This is useful testing stack overflows and normal 2266 * ptl1_panic() states with a know stack frame. 2267 * 2268 * ptl1_recurse() is an asm function in ptl1_panic.s that 2269 * sets the {In, Local, Out, and Global} registers to a 2270 * know state on the stack and just prior to causing a 2271 * test ptl1_panic trap. 2272 */ 2273 static void 2274 ptl1_thread(void) 2275 { 2276 mutex_enter(&ptl1_mutex); 2277 while (ptl1_thread_p) { 2278 cpuset_t other_cpus; 2279 int cpu_id; 2280 int my_cpu_id; 2281 int target_cpu_id; 2282 int target_found; 2283 2284 if (ptl1_panic_test) { 2285 ptl1_recurse(ptl1_recurse_count_threshold, 2286 ptl1_recurse_trap_threshold); 2287 } 2288 2289 /* 2290 * Find potential targets for x-call and x-trap, 2291 * if any exist while preempt is disabled we 2292 * start a ptl1_panic if requested via a 2293 * globals. 2294 */ 2295 kpreempt_disable(); 2296 my_cpu_id = CPU->cpu_id; 2297 other_cpus = cpu_ready_set; 2298 CPUSET_DEL(other_cpus, CPU->cpu_id); 2299 target_found = 0; 2300 if (!CPUSET_ISNULL(other_cpus)) { 2301 /* 2302 * Pick the first one 2303 */ 2304 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2305 if (cpu_id == my_cpu_id) 2306 continue; 2307 2308 if (CPU_XCALL_READY(cpu_id)) { 2309 target_cpu_id = cpu_id; 2310 target_found = 1; 2311 break; 2312 } 2313 } 2314 ASSERT(target_found); 2315 2316 if (ptl1_panic_xc_one_test) { 2317 xc_one(target_cpu_id, 2318 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2319 } 2320 if (ptl1_panic_xc_all_test) { 2321 xc_some(other_cpus, 2322 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2323 } 2324 if (ptl1_panic_xt_one_test) { 2325 xt_one(target_cpu_id, 2326 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2327 } 2328 if (ptl1_panic_xt_all_test) { 2329 xt_some(other_cpus, 2330 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2331 } 2332 } 2333 kpreempt_enable(); 2334 (void) timeout(ptl1_wakeup, NULL, hz); 2335 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2336 } 2337 mutex_exit(&ptl1_mutex); 2338 } 2339 2340 /* 2341 * Called during early startup to create the ptl1_thread 2342 */ 2343 void 2344 init_ptl1_thread(void) 2345 { 2346 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2347 &p0, TS_RUN, 0); 2348 } 2349 #endif /* PTL1_PANIC_DEBUG */ 2350 2351 2352 /* 2353 * Add to a memory list. 2354 * start = start of new memory segment 2355 * len = length of new memory segment in bytes 2356 * memlistp = pointer to array of available memory segment structures 2357 * curmemlistp = memory list to which to add segment. 2358 */ 2359 static void 2360 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2361 struct memlist **curmemlistp) 2362 { 2363 struct memlist *new; 2364 2365 new = *memlistp; 2366 new->address = start; 2367 new->size = len; 2368 *memlistp = new + 1; 2369 2370 memlist_insert(new, curmemlistp); 2371 } 2372 2373 /* 2374 * In the case of architectures that support dynamic addition of 2375 * memory at run-time there are two cases where memsegs need to 2376 * be initialized and added to the memseg list. 2377 * 1) memsegs that are constructed at startup. 2378 * 2) memsegs that are constructed at run-time on 2379 * hot-plug capable architectures. 2380 * This code was originally part of the function kphysm_init(). 2381 */ 2382 2383 static void 2384 memseg_list_add(struct memseg *memsegp) 2385 { 2386 struct memseg **prev_memsegp; 2387 pgcnt_t num; 2388 2389 /* insert in memseg list, decreasing number of pages order */ 2390 2391 num = MSEG_NPAGES(memsegp); 2392 2393 for (prev_memsegp = &memsegs; *prev_memsegp; 2394 prev_memsegp = &((*prev_memsegp)->next)) { 2395 if (num > MSEG_NPAGES(*prev_memsegp)) 2396 break; 2397 } 2398 2399 memsegp->next = *prev_memsegp; 2400 *prev_memsegp = memsegp; 2401 2402 if (kpm_enable) { 2403 memsegp->nextpa = (memsegp->next) ? 2404 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2405 2406 if (prev_memsegp != &memsegs) { 2407 struct memseg *msp; 2408 msp = (struct memseg *)((caddr_t)prev_memsegp - 2409 offsetof(struct memseg, next)); 2410 msp->nextpa = va_to_pa(memsegp); 2411 } else { 2412 memsegspa = va_to_pa(memsegs); 2413 } 2414 } 2415 } 2416 2417 /* 2418 * PSM add_physmem_cb(). US-II and newer processors have some 2419 * flavor of the prefetch capability implemented. We exploit 2420 * this capability for optimum performance. 2421 */ 2422 #define PREFETCH_BYTES 64 2423 2424 void 2425 add_physmem_cb(page_t *pp, pfn_t pnum) 2426 { 2427 extern void prefetch_page_w(void *); 2428 2429 pp->p_pagenum = pnum; 2430 2431 /* 2432 * Prefetch one more page_t into E$. To prevent future 2433 * mishaps with the sizeof(page_t) changing on us, we 2434 * catch this on debug kernels if we can't bring in the 2435 * entire hpage with 2 PREFETCH_BYTES reads. See 2436 * also, sun4u/cpu/cpu_module.c 2437 */ 2438 /*LINTED*/ 2439 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2440 prefetch_page_w((char *)pp); 2441 } 2442 2443 /* 2444 * kphysm_init() tackles the problem of initializing physical memory. 2445 * The old startup made some assumptions about the kernel living in 2446 * physically contiguous space which is no longer valid. 2447 */ 2448 static void 2449 kphysm_init(page_t *pp, struct memseg *memsegp, pgcnt_t npages, 2450 uintptr_t kpm_pp, pgcnt_t kpm_npages) 2451 { 2452 struct memlist *pmem; 2453 struct memseg *msp; 2454 pfn_t base; 2455 pgcnt_t num; 2456 pfn_t lastseg_pages_end = 0; 2457 pgcnt_t nelem_used = 0; 2458 2459 ASSERT(page_hash != NULL && page_hashsz != 0); 2460 2461 msp = memsegp; 2462 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2463 2464 /* 2465 * Build the memsegs entry 2466 */ 2467 num = btop(pmem->size); 2468 if (num > npages) 2469 num = npages; 2470 npages -= num; 2471 base = btop(pmem->address); 2472 2473 msp->pages = pp; 2474 msp->epages = pp + num; 2475 msp->pages_base = base; 2476 msp->pages_end = base + num; 2477 2478 if (kpm_enable) { 2479 pfn_t pbase_a; 2480 pfn_t pend_a; 2481 pfn_t prev_pend_a; 2482 pgcnt_t nelem; 2483 2484 msp->pagespa = va_to_pa(pp); 2485 msp->epagespa = va_to_pa(pp + num); 2486 pbase_a = kpmptop(ptokpmp(base)); 2487 pend_a = kpmptop(ptokpmp(base + num - 1)) + kpmpnpgs; 2488 nelem = ptokpmp(pend_a - pbase_a); 2489 msp->kpm_nkpmpgs = nelem; 2490 msp->kpm_pbase = pbase_a; 2491 if (lastseg_pages_end) { 2492 /* 2493 * Assume phys_avail is in ascending order 2494 * of physical addresses. 2495 */ 2496 ASSERT(base + num > lastseg_pages_end); 2497 prev_pend_a = kpmptop( 2498 ptokpmp(lastseg_pages_end - 1)) + kpmpnpgs; 2499 2500 if (prev_pend_a > pbase_a) { 2501 /* 2502 * Overlap, more than one memseg may 2503 * point to the same kpm_page range. 2504 */ 2505 if (kpm_smallpages == 0) { 2506 msp->kpm_pages = 2507 (kpm_page_t *)kpm_pp - 1; 2508 kpm_pp = (uintptr_t) 2509 ((kpm_page_t *)kpm_pp 2510 + nelem - 1); 2511 } else { 2512 msp->kpm_spages = 2513 (kpm_spage_t *)kpm_pp - 1; 2514 kpm_pp = (uintptr_t) 2515 ((kpm_spage_t *)kpm_pp 2516 + nelem - 1); 2517 } 2518 nelem_used += nelem - 1; 2519 2520 } else { 2521 if (kpm_smallpages == 0) { 2522 msp->kpm_pages = 2523 (kpm_page_t *)kpm_pp; 2524 kpm_pp = (uintptr_t) 2525 ((kpm_page_t *)kpm_pp 2526 + nelem); 2527 } else { 2528 msp->kpm_spages = 2529 (kpm_spage_t *)kpm_pp; 2530 kpm_pp = (uintptr_t) 2531 ((kpm_spage_t *) 2532 kpm_pp + nelem); 2533 } 2534 nelem_used += nelem; 2535 } 2536 2537 } else { 2538 if (kpm_smallpages == 0) { 2539 msp->kpm_pages = (kpm_page_t *)kpm_pp; 2540 kpm_pp = (uintptr_t) 2541 ((kpm_page_t *)kpm_pp + nelem); 2542 } else { 2543 msp->kpm_spages = (kpm_spage_t *)kpm_pp; 2544 kpm_pp = (uintptr_t) 2545 ((kpm_spage_t *)kpm_pp + nelem); 2546 } 2547 nelem_used = nelem; 2548 } 2549 2550 if (nelem_used > kpm_npages) 2551 panic("kphysm_init: kpm_pp overflow\n"); 2552 2553 msp->kpm_pagespa = va_to_pa(msp->kpm_pages); 2554 lastseg_pages_end = msp->pages_end; 2555 } 2556 2557 memseg_list_add(msp); 2558 2559 /* 2560 * add_physmem() initializes the PSM part of the page 2561 * struct by calling the PSM back with add_physmem_cb(). 2562 * In addition it coalesces pages into larger pages as 2563 * it initializes them. 2564 */ 2565 add_physmem(pp, num, base); 2566 pp += num; 2567 msp++; 2568 } 2569 2570 build_pfn_hash(); 2571 } 2572 2573 /* 2574 * Kernel VM initialization. 2575 * Assumptions about kernel address space ordering: 2576 * (1) gap (user space) 2577 * (2) kernel text 2578 * (3) kernel data/bss 2579 * (4) gap 2580 * (5) kernel data structures 2581 * (6) gap 2582 * (7) debugger (optional) 2583 * (8) monitor 2584 * (9) gap (possibly null) 2585 * (10) dvma 2586 * (11) devices 2587 */ 2588 static void 2589 kvm_init(void) 2590 { 2591 /* 2592 * Put the kernel segments in kernel address space. 2593 */ 2594 rw_enter(&kas.a_lock, RW_WRITER); 2595 as_avlinit(&kas); 2596 2597 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2598 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2599 (void) segkmem_create(&ktextseg); 2600 2601 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2602 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2603 (void) segkmem_create(&ktexthole); 2604 2605 (void) seg_attach(&kas, (caddr_t)valloc_base, 2606 (size_t)(econtig32 - valloc_base), &kvalloc); 2607 (void) segkmem_create(&kvalloc); 2608 2609 if (kmem64_base) { 2610 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2611 (size_t)(kmem64_end - kmem64_base), &kmem64); 2612 (void) segkmem_create(&kmem64); 2613 } 2614 2615 /* 2616 * We're about to map out /boot. This is the beginning of the 2617 * system resource management transition. We can no longer 2618 * call into /boot for I/O or memory allocations. 2619 */ 2620 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2621 (void) segkmem_create(&kvseg); 2622 hblk_alloc_dynamic = 1; 2623 2624 /* 2625 * we need to preallocate pages for DR operations before enabling large 2626 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2627 */ 2628 memseg_remap_init(); 2629 2630 /* at this point we are ready to use large page heap */ 2631 segkmem_heap_lp_init(); 2632 2633 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2634 &kvseg32); 2635 (void) segkmem_create(&kvseg32); 2636 2637 /* 2638 * Create a segment for the debugger. 2639 */ 2640 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2641 &kdebugseg); 2642 (void) segkmem_create(&kdebugseg); 2643 2644 rw_exit(&kas.a_lock); 2645 } 2646 2647 char obp_tte_str[] = 2648 "h# %x constant MMU_PAGESHIFT " 2649 "h# %x constant TTE8K " 2650 "h# %x constant SFHME_SIZE " 2651 "h# %x constant SFHME_TTE " 2652 "h# %x constant HMEBLK_TAG " 2653 "h# %x constant HMEBLK_NEXT " 2654 "h# %x constant HMEBLK_MISC " 2655 "h# %x constant HMEBLK_HME1 " 2656 "h# %x constant NHMENTS " 2657 "h# %x constant HBLK_SZMASK " 2658 "h# %x constant HBLK_RANGE_SHIFT " 2659 "h# %x constant HMEBP_HBLK " 2660 "h# %x constant HMEBUCKET_SIZE " 2661 "h# %x constant HTAG_SFMMUPSZ " 2662 "h# %x constant HTAG_REHASHSZ " 2663 "h# %x constant mmu_hashcnt " 2664 "h# %p constant uhme_hash " 2665 "h# %p constant khme_hash " 2666 "h# %x constant UHMEHASH_SZ " 2667 "h# %x constant KHMEHASH_SZ " 2668 "h# %p constant KHATID " 2669 "h# %x constant CTX_SIZE " 2670 "h# %x constant CTX_SFMMU " 2671 "h# %p constant ctxs " 2672 "h# %x constant ASI_MEM " 2673 2674 ": PHYS-X@ ( phys -- data ) " 2675 " ASI_MEM spacex@ " 2676 "; " 2677 2678 ": PHYS-W@ ( phys -- data ) " 2679 " ASI_MEM spacew@ " 2680 "; " 2681 2682 ": PHYS-L@ ( phys -- data ) " 2683 " ASI_MEM spaceL@ " 2684 "; " 2685 2686 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2687 " 3 * MMU_PAGESHIFT + " 2688 "; " 2689 2690 ": TTE_IS_VALID ( ttep -- flag ) " 2691 " PHYS-X@ 0< " 2692 "; " 2693 2694 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2695 " dup TTE8K = if " 2696 " drop HBLK_RANGE_SHIFT " 2697 " else " 2698 " TTE_PAGE_SHIFT " 2699 " then " 2700 "; " 2701 2702 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2703 " tuck >> swap MMU_PAGESHIFT - << " 2704 "; " 2705 2706 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2707 " >> over xor swap ( hash sfmmup ) " 2708 " KHATID <> if ( hash ) " 2709 " UHMEHASH_SZ and ( bucket ) " 2710 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2711 " else ( hash ) " 2712 " KHMEHASH_SZ and ( bucket ) " 2713 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2714 " then ( hmebp ) " 2715 "; " 2716 2717 ": HME_HASH_TABLE_SEARCH " 2718 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2719 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2720 " dup if ( sfmmup hmeblkp ) ( r: hblktag ) " 2721 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2722 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2723 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2724 " else " 2725 " hmeblk_next + phys-x@ false " 2726 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2727 " then " 2728 " else " 2729 " hmeblk_next + phys-x@ false " 2730 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2731 " then " 2732 " else " 2733 " true " 2734 " then " 2735 " until r> drop " 2736 "; " 2737 2738 ": CNUM_TO_SFMMUP ( cnum -- sfmmup ) " 2739 " CTX_SIZE * ctxs + CTX_SFMMU + " 2740 "x@ " 2741 "; " 2742 2743 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2744 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2745 " HTAG_REHASHSZ << or nip ( hblktag ) " 2746 "; " 2747 2748 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2749 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2750 " TTE8K = if ( hmeblkp addr ) " 2751 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2752 " else ( hmeblkp addr ) " 2753 " drop 0 ( hmeblkp 0 ) " 2754 " then ( hmeblkp hme-index ) " 2755 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2756 " SFHME_TTE + ( ttep ) " 2757 "; " 2758 2759 ": unix-tte ( addr cnum -- false | tte-data true ) " 2760 " CNUM_TO_SFMMUP ( addr sfmmup ) " 2761 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2762 " 2dup swap i HME_HASH_SHIFT " 2763 "( addr sfmmup sfmmup addr hmeshift ) " 2764 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2765 " over i 4 pick " 2766 "( addr sfmmup hmebp sfmmup rehash addr ) " 2767 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2768 " HME_HASH_TABLE_SEARCH " 2769 "( addr sfmmup { null | hmeblkp } ) " 2770 " ?dup if ( addr sfmmup hmeblkp ) " 2771 " nip swap HBLK_TO_TTEP ( ttep ) " 2772 " dup TTE_IS_VALID if ( valid-ttep ) " 2773 " PHYS-X@ true ( tte-data true ) " 2774 " else ( invalid-tte ) " 2775 " drop false ( false ) " 2776 " then ( false | tte-data true ) " 2777 " unloop exit ( false | tte-data true ) " 2778 " then ( addr sfmmup ) " 2779 " loop ( addr sfmmup ) " 2780 " 2drop false ( false ) " 2781 "; " 2782 ; 2783 2784 void 2785 create_va_to_tte(void) 2786 { 2787 char *bp; 2788 extern int khmehash_num, uhmehash_num; 2789 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2790 2791 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2792 2793 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2794 2795 /* 2796 * Teach obp how to parse our sw ttes. 2797 */ 2798 (void) sprintf(bp, obp_tte_str, 2799 MMU_PAGESHIFT, 2800 TTE8K, 2801 sizeof (struct sf_hment), 2802 OFFSET(struct sf_hment, hme_tte), 2803 OFFSET(struct hme_blk, hblk_tag), 2804 OFFSET(struct hme_blk, hblk_nextpa), 2805 OFFSET(struct hme_blk, hblk_misc), 2806 OFFSET(struct hme_blk, hblk_hme), 2807 NHMENTS, 2808 HBLK_SZMASK, 2809 HBLK_RANGE_SHIFT, 2810 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2811 sizeof (struct hmehash_bucket), 2812 HTAG_SFMMUPSZ, 2813 HTAG_REHASHSZ, 2814 mmu_hashcnt, 2815 (caddr_t)va_to_pa((caddr_t)uhme_hash), 2816 (caddr_t)va_to_pa((caddr_t)khme_hash), 2817 UHMEHASH_SZ, 2818 KHMEHASH_SZ, 2819 KHATID, 2820 sizeof (struct ctx), 2821 OFFSET(struct ctx, ctx_sfmmu), 2822 ctxs, 2823 ASI_MEM); 2824 prom_interpret(bp, 0, 0, 0, 0, 0); 2825 2826 kobj_free(bp, MMU_PAGESIZE); 2827 } 2828 2829 void 2830 install_va_to_tte(void) 2831 { 2832 /* 2833 * advise prom that he can use unix-tte 2834 */ 2835 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 2836 } 2837 2838 2839 /* 2840 * Because kmdb links prom_stdout_is_framebuffer into its own 2841 * module, we add "device-type=display" here for /os-io node, so that 2842 * prom_stdout_is_framebuffer still works corrrectly after /os-io node 2843 * is registered into OBP. 2844 */ 2845 static char *create_node = 2846 "\" /\" find-device " 2847 "new-device " 2848 "\" os-io\" device-name " 2849 "\" display\" device-type " 2850 ": cb-r/w ( adr,len method$ -- #read/#written ) " 2851 " 2>r swap 2 2r> ['] $callback catch if " 2852 " 2drop 3drop 0 " 2853 " then " 2854 "; " 2855 ": read ( adr,len -- #read ) " 2856 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 2857 " ( retN ... ret1 N ) " 2858 " ?dup if " 2859 " swap >r 1- 0 ?do drop loop r> " 2860 " else " 2861 " -2 " 2862 " then " 2863 "; " 2864 ": write ( adr,len -- #written ) " 2865 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 2866 " ( retN ... ret1 N ) " 2867 " ?dup if " 2868 " swap >r 1- 0 ?do drop loop r> " 2869 " else " 2870 " 0 " 2871 " then " 2872 "; " 2873 ": poll-tty ( -- ) ; " 2874 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 2875 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 2876 ": cb-give/take ( $method -- ) " 2877 " 0 -rot ['] $callback catch ?dup if " 2878 " >r 2drop 2drop r> throw " 2879 " else " 2880 " 0 ?do drop loop " 2881 " then " 2882 "; " 2883 ": give ( -- ) \" exit-input\" cb-give/take ; " 2884 ": take ( -- ) \" enter-input\" cb-give/take ; " 2885 ": open ( -- ok? ) true ; " 2886 ": close ( -- ) ; " 2887 "finish-device " 2888 "device-end "; 2889 2890 /* 2891 * Create the OBP input/output node (FCode serial driver). 2892 * It is needed for both USB console keyboard and for 2893 * the kernel terminal emulator. It is too early to check for a 2894 * kernel console compatible framebuffer now, so we create this 2895 * so that we're ready if we need to enable kernel terminal emulation. 2896 * 2897 * When the USB software takes over the input device at the time 2898 * consconfig runs, OBP's stdin is redirected to this node. 2899 * Whenever the FORTH user interface is used after this switch, 2900 * the node will call back into the kernel for console input. 2901 * If a serial device such as ttya or a UART with a Type 5 keyboard 2902 * attached is used, OBP takes over the serial device when the system 2903 * goes to the debugger after the system is booted. This sharing 2904 * of the relatively simple serial device is difficult but possible. 2905 * Sharing the USB host controller is impossible due its complexity. 2906 * 2907 * Similarly to USB keyboard input redirection, after consconfig_dacf 2908 * configures a kernel console framebuffer as the standard output 2909 * device, OBP's stdout is switched to to vector through the 2910 * /os-io node into the kernel terminal emulator. 2911 */ 2912 static void 2913 startup_create_io_node(void) 2914 { 2915 prom_interpret(create_node, 0, 0, 0, 0, 0); 2916 } 2917 2918 2919 static void 2920 do_prom_version_check(void) 2921 { 2922 int i; 2923 pnode_t node; 2924 char buf[64]; 2925 static char drev[] = "Down-rev firmware detected%s\n" 2926 "\tPlease upgrade to the following minimum version:\n" 2927 "\t\t%s\n"; 2928 2929 i = prom_version_check(buf, sizeof (buf), &node); 2930 2931 if (i == PROM_VER64_OK) 2932 return; 2933 2934 if (i == PROM_VER64_UPGRADE) { 2935 cmn_err(CE_WARN, drev, "", buf); 2936 2937 #ifdef DEBUG 2938 prom_enter_mon(); /* Type 'go' to continue */ 2939 cmn_err(CE_WARN, "Booting with down-rev firmware\n"); 2940 return; 2941 #else 2942 halt(0); 2943 #endif 2944 } 2945 2946 /* 2947 * The other possibility is that this is a server running 2948 * good firmware, but down-rev firmware was detected on at 2949 * least one other cpu board. We just complain if we see 2950 * that. 2951 */ 2952 cmn_err(CE_WARN, drev, " on one or more CPU boards", buf); 2953 } 2954 2955 static void 2956 kpm_init() 2957 { 2958 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 2959 kpm_pgsz = 1ull << kpm_pgshft; 2960 kpm_pgoff = kpm_pgsz - 1; 2961 kpmp2pshft = kpm_pgshft - PAGESHIFT; 2962 kpmpnpgs = 1 << kpmp2pshft; 2963 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 2964 } 2965 2966 void 2967 kpm_npages_setup(int memblocks) 2968 { 2969 /* 2970 * npages can be scattered in a maximum of 'memblocks' 2971 */ 2972 kpm_npages = ptokpmpr(npages) + memblocks; 2973 } 2974 2975 /* 2976 * Must be defined in platform dependent code. 2977 */ 2978 extern caddr_t modtext; 2979 extern size_t modtext_sz; 2980 extern caddr_t moddata; 2981 2982 #define HEAPTEXT_ARENA(addr) \ 2983 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 2984 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 2985 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 2986 2987 #define HEAPTEXT_OVERSIZED(addr) \ 2988 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 2989 2990 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 2991 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 2992 kmutex_t texthole_lock; 2993 2994 char kern_bootargs[OBP_MAXPATHLEN]; 2995 2996 void 2997 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2998 { 2999 uintptr_t addr, limit; 3000 3001 addr = HEAPTEXT_BASE; 3002 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3003 3004 /* 3005 * Before we initialize the text_arena, we want to punch holes in the 3006 * underlying heaptext_arena. This guarantees that for any text 3007 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3008 */ 3009 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3010 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3011 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3012 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3013 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3014 } 3015 3016 /* 3017 * Allocate one page at the oversize to break up the text region 3018 * from the oversized region. 3019 */ 3020 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3021 (void *)limit, (void *)(limit + PAGESIZE), 3022 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3023 3024 *text_arena = vmem_create("module_text", modtext, modtext_sz, 3025 sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3026 heaptext_arena, 0, VM_SLEEP); 3027 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3028 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3029 } 3030 3031 caddr_t 3032 kobj_text_alloc(vmem_t *arena, size_t size) 3033 { 3034 caddr_t rval, better; 3035 3036 /* 3037 * First, try a sleeping allocation. 3038 */ 3039 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3040 3041 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3042 return (rval); 3043 3044 /* 3045 * We didn't get the area that we wanted. We're going to try to do an 3046 * allocation with explicit constraints. 3047 */ 3048 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3049 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3050 VM_NOSLEEP | VM_BESTFIT); 3051 3052 if (better != NULL) { 3053 /* 3054 * That worked. Free our first attempt and return. 3055 */ 3056 vmem_free(arena, rval, size); 3057 return (better); 3058 } 3059 3060 /* 3061 * That didn't work; we'll have to return our first attempt. 3062 */ 3063 return (rval); 3064 } 3065 3066 caddr_t 3067 kobj_texthole_alloc(caddr_t addr, size_t size) 3068 { 3069 int arena = HEAPTEXT_ARENA(addr); 3070 char c[30]; 3071 uintptr_t base; 3072 3073 if (HEAPTEXT_OVERSIZED(addr)) { 3074 /* 3075 * If this is an oversized allocation, there is no text hole 3076 * available for it; return NULL. 3077 */ 3078 return (NULL); 3079 } 3080 3081 mutex_enter(&texthole_lock); 3082 3083 if (texthole_arena[arena] == NULL) { 3084 ASSERT(texthole_source[arena] == NULL); 3085 3086 if (arena == 0) { 3087 texthole_source[0] = vmem_create("module_text_holesrc", 3088 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3089 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3090 0, VM_SLEEP); 3091 } else { 3092 base = HEAPTEXT_BASE + 3093 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3094 3095 (void) snprintf(c, sizeof (c), 3096 "heaptext_holesrc_%d", arena); 3097 3098 texthole_source[arena] = vmem_create(c, (void *)base, 3099 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3100 0, VM_SLEEP); 3101 } 3102 3103 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3104 3105 texthole_arena[arena] = vmem_create(c, NULL, 0, 3106 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3107 texthole_source[arena], 0, VM_SLEEP); 3108 } 3109 3110 mutex_exit(&texthole_lock); 3111 3112 ASSERT(texthole_arena[arena] != NULL); 3113 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3114 return (vmem_alloc(texthole_arena[arena], size, 3115 VM_BESTFIT | VM_NOSLEEP)); 3116 } 3117 3118 void 3119 kobj_texthole_free(caddr_t addr, size_t size) 3120 { 3121 int arena = HEAPTEXT_ARENA(addr); 3122 3123 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3124 ASSERT(texthole_arena[arena] != NULL); 3125 vmem_free(texthole_arena[arena], addr, size); 3126 } 3127