xref: /titanic_52/usr/src/uts/sun4/os/memnode.c (revision 6a1af1a67532df169a657cce07140be64bdea084)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/platform_module.h>
28 #include <sys/sysmacros.h>
29 #include <sys/atomic.h>
30 #include <sys/memlist.h>
31 #include <sys/memnode.h>
32 #include <vm/vm_dep.h>
33 
34 int max_mem_nodes = 1;		/* max memory nodes on this system */
35 
36 struct mem_node_conf mem_node_config[MAX_MEM_NODES];
37 int mem_node_pfn_shift;
38 /*
39  * num_memnodes should be updated atomically and always >=
40  * the number of bits in memnodes_mask or the algorithm may fail.
41  */
42 uint16_t num_memnodes;
43 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */
44 
45 /*
46  * If set, mem_node_physalign should be a power of two, and
47  * should reflect the minimum address alignment of each node.
48  */
49 uint64_t mem_node_physalign;
50 
51 /*
52  * Platform hooks we will need.
53  */
54 
55 #pragma weak plat_build_mem_nodes
56 #pragma weak plat_slice_add
57 #pragma weak plat_slice_del
58 
59 /*
60  * Adjust the memnode config after a DR operation.
61  *
62  * It is rather tricky to do these updates since we can't
63  * protect the memnode structures with locks, so we must
64  * be mindful of the order in which updates and reads to
65  * these values can occur.
66  */
67 void
68 mem_node_add_slice(pfn_t start, pfn_t end)
69 {
70 	int mnode;
71 	mnodeset_t newmask, oldmask;
72 
73 	/*
74 	 * DR will pass us the first pfn that is allocatable.
75 	 * We need to round down to get the real start of
76 	 * the slice.
77 	 */
78 	if (mem_node_physalign) {
79 		start &= ~(btop(mem_node_physalign) - 1);
80 		end = roundup(end, btop(mem_node_physalign)) - 1;
81 	}
82 
83 	mnode = PFN_2_MEM_NODE(start);
84 	ASSERT(mnode < max_mem_nodes);
85 
86 	if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) {
87 		/*
88 		 * Add slice to existing node.
89 		 */
90 		if (start < mem_node_config[mnode].physbase)
91 			mem_node_config[mnode].physbase = start;
92 		if (end > mem_node_config[mnode].physmax)
93 			mem_node_config[mnode].physmax = end;
94 	} else {
95 		mem_node_config[mnode].physbase = start;
96 		mem_node_config[mnode].physmax = end;
97 		atomic_add_16(&num_memnodes, 1);
98 		do {
99 			oldmask = memnodes_mask;
100 			newmask = memnodes_mask | (1ull << mnode);
101 		} while (cas64(&memnodes_mask, oldmask, newmask) != oldmask);
102 	}
103 	/*
104 	 * Let the common lgrp framework know about the new memory
105 	 */
106 	lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode));
107 }
108 
109 /*
110  * Remove a PFN range from a memnode.  On some platforms,
111  * the memnode will be created with physbase at the first
112  * allocatable PFN, but later deleted with the MC slice
113  * base address converted to a PFN, in which case we need
114  * to assume physbase and up.
115  */
116 void
117 mem_node_del_slice(pfn_t start, pfn_t end)
118 {
119 	int mnode;
120 	pgcnt_t delta_pgcnt, node_size;
121 	mnodeset_t omask, nmask;
122 
123 	if (mem_node_physalign) {
124 		start &= ~(btop(mem_node_physalign) - 1);
125 		end = roundup(end, btop(mem_node_physalign)) - 1;
126 	}
127 	mnode = PFN_2_MEM_NODE(start);
128 
129 	ASSERT(mnode < max_mem_nodes);
130 	ASSERT(mem_node_config[mnode].exists == 1);
131 
132 	delta_pgcnt = end - start;
133 	node_size = mem_node_config[mnode].physmax -
134 	    mem_node_config[mnode].physbase;
135 
136 	if (node_size > delta_pgcnt) {
137 		/*
138 		 * Subtract the slice from the memnode.
139 		 */
140 		if (start <= mem_node_config[mnode].physbase)
141 			mem_node_config[mnode].physbase = end + 1;
142 		ASSERT(end <= mem_node_config[mnode].physmax);
143 		if (end == mem_node_config[mnode].physmax)
144 			mem_node_config[mnode].physmax = start - 1;
145 	} else {
146 
147 		/*
148 		 * Let the common lgrp framework know the mnode is
149 		 * leaving
150 		 */
151 		lgrp_config(LGRP_CONFIG_MEM_DEL, mnode,
152 		    MEM_NODE_2_LGRPHAND(mnode));
153 
154 		/*
155 		 * Delete the whole node.
156 		 */
157 		ASSERT(MNODE_PGCNT(mnode) == 0);
158 		do {
159 			omask = memnodes_mask;
160 			nmask = omask & ~(1ull << mnode);
161 		} while (cas64(&memnodes_mask, omask, nmask) != omask);
162 		atomic_add_16(&num_memnodes, -1);
163 		mem_node_config[mnode].exists = 0;
164 	}
165 }
166 
167 void
168 mem_node_add_range(pfn_t start, pfn_t end)
169 {
170 	if (&plat_slice_add != NULL)
171 		plat_slice_add(start, end);
172 	else
173 		mem_node_add_slice(start, end);
174 }
175 
176 void
177 mem_node_del_range(pfn_t start, pfn_t end)
178 {
179 	if (&plat_slice_del != NULL)
180 		plat_slice_del(start, end);
181 	else
182 		mem_node_del_slice(start, end);
183 }
184 
185 void
186 startup_build_mem_nodes(prom_memlist_t *list, size_t nelems)
187 {
188 	size_t	elem;
189 	pfn_t	basepfn;
190 	pgcnt_t	npgs;
191 
192 	/* LINTED: ASSERT will always true or false */
193 	ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes);
194 
195 	if (&plat_build_mem_nodes != NULL) {
196 		plat_build_mem_nodes(list, nelems);
197 	} else {
198 		/*
199 		 * Boot install lists are arranged <addr, len>, ...
200 		 */
201 		for (elem = 0; elem < nelems; list++, elem++) {
202 			basepfn = btop(list->addr);
203 			npgs = btop(list->size);
204 			mem_node_add_range(basepfn, basepfn + npgs - 1);
205 		}
206 	}
207 }
208 
209 /*
210  * Allocate an unassigned memnode.
211  */
212 int
213 mem_node_alloc()
214 {
215 	int mnode;
216 	mnodeset_t newmask, oldmask;
217 
218 	/*
219 	 * Find an unused memnode.  Update it atomically to prevent
220 	 * a first time memnode creation race.
221 	 */
222 	for (mnode = 0; mnode < max_mem_nodes; mnode++)
223 		if (cas32((uint32_t *)&mem_node_config[mnode].exists,
224 		    0, 1) == 0)
225 			break;
226 
227 	if (mnode >= max_mem_nodes)
228 			panic("Out of free memnodes\n");
229 
230 	mem_node_config[mnode].physbase = (uint64_t)-1;
231 	mem_node_config[mnode].physmax = 0;
232 	atomic_add_16(&num_memnodes, 1);
233 	do {
234 		oldmask = memnodes_mask;
235 		newmask = memnodes_mask | (1ull << mnode);
236 	} while (cas64(&memnodes_mask, oldmask, newmask) != oldmask);
237 
238 	return (mnode);
239 }
240 
241 /*
242  * Find the intersection between a memnode and a memlist
243  * and returns the number of pages that overlap.
244  *
245  * Grab the memlist lock to protect the list from DR operations.
246  */
247 pgcnt_t
248 mem_node_memlist_pages(int mnode, struct memlist *mlist)
249 {
250 	pfn_t		base, end;
251 	pfn_t		cur_base, cur_end;
252 	pgcnt_t		npgs = 0;
253 	pgcnt_t		pages;
254 	struct memlist	*pmem;
255 
256 	if (&plat_mem_node_intersect_range != NULL) {
257 		memlist_read_lock();
258 
259 		for (pmem = mlist; pmem; pmem = pmem->ml_next) {
260 			plat_mem_node_intersect_range(btop(pmem->ml_address),
261 			    btop(pmem->ml_size), mnode, &pages);
262 			npgs += pages;
263 		}
264 
265 		memlist_read_unlock();
266 		return (npgs);
267 	}
268 
269 	base = mem_node_config[mnode].physbase;
270 	end = mem_node_config[mnode].physmax;
271 
272 	memlist_read_lock();
273 
274 	for (pmem = mlist; pmem; pmem = pmem->ml_next) {
275 		cur_base = btop(pmem->ml_address);
276 		cur_end = cur_base + btop(pmem->ml_size) - 1;
277 		if (end < cur_base || base > cur_end)
278 			continue;
279 		npgs = npgs + (MIN(cur_end, end) -
280 		    MAX(cur_base, base)) + 1;
281 	}
282 
283 	memlist_read_unlock();
284 
285 	return (npgs);
286 }
287 
288 /*
289  * Find MIN(physbase) and MAX(physmax) over all mnodes
290  *
291  * Called during startup and DR to find hpm_counters limits when
292  * interleaved_mnodes is set.
293  * NOTE: there is a race condition with DR if it tries to change more than
294  * one mnode in parallel. Sizing shared hpm_counters depends on finding the
295  * min(physbase) and max(physmax) across all mnodes. Therefore, the caller of
296  * page_ctrs_adjust must ensure that mem_node_config does not change while it
297  * is running.
298  */
299 void
300 mem_node_max_range(pfn_t *basep, pfn_t *maxp)
301 {
302 	int mnode;
303 	pfn_t max = 0;
304 	pfn_t base = (pfn_t)-1;
305 
306 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
307 		if (mem_node_config[mnode].exists == 0)
308 			continue;
309 		if (max < mem_node_config[mnode].physmax)
310 			max = mem_node_config[mnode].physmax;
311 		if (base > mem_node_config[mnode].physbase)
312 			base = mem_node_config[mnode].physbase;
313 	}
314 	ASSERT(base != (pfn_t)-1 && max != 0);
315 	*basep = base;
316 	*maxp = max;
317 }
318