1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * PX nexus interrupt handling: 31 * PX device interrupt handler wrapper 32 * PIL lookup routine 33 * PX device interrupt related initchild code 34 */ 35 36 #include <sys/types.h> 37 #include <sys/kmem.h> 38 #include <sys/async.h> 39 #include <sys/spl.h> 40 #include <sys/sunddi.h> 41 #include <sys/fm/protocol.h> 42 #include <sys/fm/util.h> 43 #include <sys/machsystm.h> /* e_ddi_nodeid_to_dip() */ 44 #include <sys/ddi_impldefs.h> 45 #include <sys/sdt.h> 46 #include <sys/atomic.h> 47 #include "px_obj.h" 48 #include <sys/ontrap.h> 49 #include <sys/membar.h> 50 #include <sys/clock.h> 51 52 /* 53 * interrupt jabber: 54 * 55 * When an interrupt line is jabbering, every time the state machine for the 56 * associated ino is idled, a new mondo will be sent and the ino will go into 57 * the pending state again. The mondo will cause a new call to 58 * px_intr_wrapper() which normally idles the ino's state machine which would 59 * precipitate another trip round the loop. 60 * 61 * The loop can be broken by preventing the ino's state machine from being 62 * idled when an interrupt line is jabbering. See the comment at the 63 * beginning of px_intr_wrapper() explaining how the 'interrupt jabber 64 * protection' code does this. 65 */ 66 67 /*LINTLIBRARY*/ 68 69 /* 70 * If the unclaimed interrupt count has reached the limit set by 71 * pci_unclaimed_intr_max within the time limit, then all interrupts 72 * on this ino is blocked by not idling the interrupt state machine. 73 */ 74 static int 75 px_spurintr(px_ib_ino_info_t *ino_p) 76 { 77 px_ih_t *ih_p = ino_p->ino_ih_start; 78 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 79 char *err_fmt_str; 80 int i; 81 82 if (ino_p->ino_unclaimed > px_unclaimed_intr_max) 83 return (DDI_INTR_CLAIMED); 84 85 if (!ino_p->ino_unclaimed) 86 ino_p->ino_spurintr_begin = ddi_get_lbolt(); 87 88 ino_p->ino_unclaimed++; 89 90 if (ino_p->ino_unclaimed <= px_unclaimed_intr_max) 91 goto clear; 92 93 if (drv_hztousec(ddi_get_lbolt() - ino_p->ino_spurintr_begin) 94 > px_spurintr_duration) { 95 ino_p->ino_unclaimed = 0; 96 goto clear; 97 } 98 err_fmt_str = "%s%d: ino 0x%x blocked"; 99 goto warn; 100 clear: 101 /* Clear the pending state */ 102 if (px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 103 INTR_IDLE_STATE) != DDI_SUCCESS) 104 return (DDI_INTR_UNCLAIMED); 105 106 err_fmt_str = "!%s%d: spurious interrupt from ino 0x%x"; 107 warn: 108 cmn_err(CE_WARN, err_fmt_str, NAMEINST(px_p->px_dip), ino_p->ino_ino); 109 for (i = 0; i < ino_p->ino_ih_size; i++, ih_p = ih_p->ih_next) 110 cmn_err(CE_CONT, "!%s-%d#%x ", NAMEINST(ih_p->ih_dip), 111 ih_p->ih_inum); 112 cmn_err(CE_CONT, "!\n"); 113 return (DDI_INTR_CLAIMED); 114 } 115 116 extern uint64_t intr_get_time(void); 117 118 /* 119 * px_intx_intr (INTx or legacy interrupt handler) 120 * 121 * This routine is used as wrapper around interrupt handlers installed by child 122 * device drivers. This routine invokes the driver interrupt handlers and 123 * examines the return codes. 124 * 125 * There is a count of unclaimed interrupts kept on a per-ino basis. If at 126 * least one handler claims the interrupt then the counter is halved and the 127 * interrupt state machine is idled. If no handler claims the interrupt then 128 * the counter is incremented by one and the state machine is idled. 129 * If the count ever reaches the limit value set by pci_unclaimed_intr_max 130 * then the interrupt state machine is not idled thus preventing any further 131 * interrupts on that ino. The state machine will only be idled again if a 132 * handler is subsequently added or removed. 133 * 134 * return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt, 135 * DDI_INTR_UNCLAIMED otherwise. 136 */ 137 uint_t 138 px_intx_intr(caddr_t arg) 139 { 140 px_ib_ino_info_t *ino_p = (px_ib_ino_info_t *)arg; 141 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 142 px_ih_t *ih_p = ino_p->ino_ih_start; 143 uint_t result = 0, r; 144 int i; 145 146 DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:" 147 "ino=%x sysino=%llx pil=%x ih_size=%x ih_lst=%x\n", 148 ino_p->ino_ino, ino_p->ino_sysino, ino_p->ino_pil, 149 ino_p->ino_ih_size, ino_p->ino_ih_head); 150 151 for (i = 0; i < ino_p->ino_ih_size; i++, ih_p = ih_p->ih_next) { 152 dev_info_t *dip = ih_p->ih_dip; 153 uint_t (*handler)() = ih_p->ih_handler; 154 caddr_t arg1 = ih_p->ih_handler_arg1; 155 caddr_t arg2 = ih_p->ih_handler_arg2; 156 157 if (ih_p->ih_intr_state == PX_INTR_STATE_DISABLE) { 158 DBG(DBG_INTX_INTR, px_p->px_dip, 159 "px_intx_intr: %s%d interrupt %d is disabled\n", 160 ddi_driver_name(dip), ddi_get_instance(dip), 161 ino_p->ino_ino); 162 163 continue; 164 } 165 166 DBG(DBG_INTX_INTR, px_p->px_dip, "px_intx_intr:" 167 "ino=%x handler=%p arg1 =%p arg2 = %p\n", 168 ino_p->ino_ino, handler, arg1, arg2); 169 170 DTRACE_PROBE4(interrupt__start, dev_info_t, dip, 171 void *, handler, caddr_t, arg1, caddr_t, arg2); 172 173 r = (*handler)(arg1, arg2); 174 175 /* 176 * Account for time used by this interrupt. Protect against 177 * conflicting writes to ih_ticks from ib_intr_dist_all() by 178 * using atomic ops. 179 */ 180 181 if (ino_p->ino_pil <= LOCK_LEVEL) 182 atomic_add_64(&ih_p->ih_ticks, intr_get_time()); 183 184 DTRACE_PROBE4(interrupt__complete, dev_info_t, dip, 185 void *, handler, caddr_t, arg1, int, r); 186 187 result += r; 188 189 if (px_check_all_handlers) 190 continue; 191 if (result) 192 break; 193 } 194 195 if (!result && px_unclaimed_intr_block) 196 return (px_spurintr(ino_p)); 197 198 ino_p->ino_unclaimed = 0; 199 200 /* Clear the pending state */ 201 if (px_lib_intr_setstate(ino_p->ino_ib_p->ib_px_p->px_dip, 202 ino_p->ino_sysino, INTR_IDLE_STATE) != DDI_SUCCESS) 203 return (DDI_INTR_UNCLAIMED); 204 205 return (DDI_INTR_CLAIMED); 206 } 207 208 /* 209 * px_msiq_intr (MSI/X or PCIe MSG interrupt handler) 210 * 211 * This routine is used as wrapper around interrupt handlers installed by child 212 * device drivers. This routine invokes the driver interrupt handlers and 213 * examines the return codes. 214 * 215 * There is a count of unclaimed interrupts kept on a per-ino basis. If at 216 * least one handler claims the interrupt then the counter is halved and the 217 * interrupt state machine is idled. If no handler claims the interrupt then 218 * the counter is incremented by one and the state machine is idled. 219 * If the count ever reaches the limit value set by pci_unclaimed_intr_max 220 * then the interrupt state machine is not idled thus preventing any further 221 * interrupts on that ino. The state machine will only be idled again if a 222 * handler is subsequently added or removed. 223 * 224 * return value: DDI_INTR_CLAIMED if any handlers claimed the interrupt, 225 * DDI_INTR_UNCLAIMED otherwise. 226 */ 227 uint_t 228 px_msiq_intr(caddr_t arg) 229 { 230 px_ib_ino_info_t *ino_p = (px_ib_ino_info_t *)arg; 231 px_t *px_p = ino_p->ino_ib_p->ib_px_p; 232 px_msiq_state_t *msiq_state_p = &px_p->px_ib_p->ib_msiq_state; 233 px_msiq_t *msiq_p = ino_p->ino_msiq_p; 234 dev_info_t *dip = px_p->px_dip; 235 msiq_rec_t msiq_rec, *msiq_rec_p = &msiq_rec; 236 msiqhead_t curr_msiq_rec_cnt, new_msiq_rec_cnt; 237 msgcode_t msg_code; 238 px_ih_t *ih_p; 239 int ret; 240 241 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: msiq_id =%x ino=%x pil=%x " 242 "ih_size=%x ih_lst=%x\n", msiq_p->msiq_id, ino_p->ino_ino, 243 ino_p->ino_pil, ino_p->ino_ih_size, ino_p->ino_ih_head); 244 245 /* Read current MSIQ head index */ 246 px_lib_msiq_gethead(dip, msiq_p->msiq_id, &curr_msiq_rec_cnt); 247 msiq_p->msiq_curr = (uint64_t)((caddr_t)msiq_p->msiq_base + 248 curr_msiq_rec_cnt * sizeof (msiq_rec_t)); 249 new_msiq_rec_cnt = curr_msiq_rec_cnt; 250 251 /* Read next MSIQ record */ 252 px_lib_get_msiq_rec(dip, msiq_p, msiq_rec_p); 253 254 /* 255 * Process current MSIQ record as long as record type 256 * field is non-zero. 257 */ 258 while (msiq_rec_p->msiq_rec_type) { 259 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSIQ RECORD, " 260 "msiq_rec_type 0x%llx msiq_rec_rid 0x%llx\n", 261 msiq_rec_p->msiq_rec_type, msiq_rec_p->msiq_rec_rid); 262 263 /* Get the pointer next EQ record */ 264 msiq_p->msiq_curr = (uint64_t) 265 ((caddr_t)msiq_p->msiq_curr + sizeof (msiq_rec_t)); 266 267 /* Check for overflow condition */ 268 if (msiq_p->msiq_curr >= (uint64_t)((caddr_t)msiq_p->msiq_base + 269 msiq_state_p->msiq_rec_cnt * sizeof (msiq_rec_t))) 270 msiq_p->msiq_curr = msiq_p->msiq_base; 271 272 /* Check MSIQ record type */ 273 switch (msiq_rec_p->msiq_rec_type) { 274 case MSG_REC: 275 msg_code = msiq_rec_p->msiq_rec_data.msg.msg_code; 276 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: PCIE MSG " 277 "record, msg type 0x%x\n", msg_code); 278 break; 279 case MSI32_REC: 280 case MSI64_REC: 281 msg_code = msiq_rec_p->msiq_rec_data.msi.msi_data; 282 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: MSI record, " 283 "msi 0x%x\n", msg_code); 284 285 /* Clear MSI state */ 286 px_lib_msi_setstate(dip, (msinum_t)msg_code, 287 PCI_MSI_STATE_IDLE); 288 break; 289 default: 290 msg_code = 0; 291 cmn_err(CE_WARN, "%s%d: px_msiq_intr: 0x%x MSIQ " 292 "record type is not supported", 293 ddi_driver_name(dip), ddi_get_instance(dip), 294 msiq_rec_p->msiq_rec_type); 295 goto next_rec; 296 } 297 298 ih_p = ino_p->ino_ih_start; 299 300 /* 301 * Scan through px_ih_t linked list, searching for the 302 * right px_ih_t, matching MSIQ record data. 303 */ 304 while ((ih_p) && (ih_p->ih_msg_code != msg_code) && 305 (ih_p->ih_rec_type != msiq_rec_p->msiq_rec_type)) 306 ih_p = ih_p->ih_next; 307 308 if ((ih_p->ih_msg_code == msg_code) && 309 (ih_p->ih_rec_type == msiq_rec_p->msiq_rec_type)) { 310 dev_info_t *dip = ih_p->ih_dip; 311 uint_t (*handler)() = ih_p->ih_handler; 312 caddr_t arg1 = ih_p->ih_handler_arg1; 313 caddr_t arg2 = ih_p->ih_handler_arg2; 314 315 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: ino=%x data=%x " 316 "handler=%p arg1 =%p arg2=%p\n", ino_p->ino_ino, 317 msg_code, handler, arg1, arg2); 318 319 DTRACE_PROBE4(interrupt__start, dev_info_t, dip, 320 void *, handler, caddr_t, arg1, caddr_t, arg2); 321 322 /* 323 * Special case for PCIE Error Messages. 324 * The current frame work doesn't fit PCIE Err Msgs 325 * This should be fixed when PCIE MESSAGES as a whole 326 * is architected correctly. 327 */ 328 if ((msg_code == PCIE_MSG_CODE_ERR_COR) || 329 (msg_code == PCIE_MSG_CODE_ERR_NONFATAL) || 330 (msg_code == PCIE_MSG_CODE_ERR_FATAL)) { 331 ret = px_err_fabric_intr(px_p, msg_code, 332 msiq_rec_p->msiq_rec_rid); 333 } else 334 ret = (*handler)(arg1, arg2); 335 336 /* 337 * Account for time used by this interrupt. Protect 338 * against conflicting writes to ih_ticks from 339 * ib_intr_dist_all() by using atomic ops. 340 */ 341 342 if (ino_p->ino_pil <= LOCK_LEVEL) 343 atomic_add_64(&ih_p->ih_ticks, intr_get_time()); 344 345 DTRACE_PROBE4(interrupt__complete, dev_info_t, dip, 346 void *, handler, caddr_t, arg1, int, ret); 347 } else { 348 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr:" 349 "Not found matching MSIQ record\n"); 350 351 /* px_spurintr(ino_p); */ 352 ino_p->ino_unclaimed++; 353 } 354 355 next_rec: 356 new_msiq_rec_cnt++; 357 358 /* Zero out msiq_rec_type field */ 359 msiq_rec_p->msiq_rec_type = 0; 360 361 /* Read next MSIQ record */ 362 px_lib_get_msiq_rec(dip, msiq_p, msiq_rec_p); 363 } 364 365 DBG(DBG_MSIQ_INTR, dip, "px_msiq_intr: No of MSIQ recs processed %x\n", 366 (new_msiq_rec_cnt - curr_msiq_rec_cnt)); 367 368 /* Update MSIQ head index with no of MSIQ records processed */ 369 if (new_msiq_rec_cnt > curr_msiq_rec_cnt) { 370 if (new_msiq_rec_cnt >= msiq_state_p->msiq_rec_cnt) 371 new_msiq_rec_cnt -= msiq_state_p->msiq_rec_cnt; 372 373 px_lib_msiq_sethead(dip, msiq_p->msiq_id, new_msiq_rec_cnt); 374 } 375 376 /* Clear the pending state */ 377 if (px_lib_intr_setstate(dip, ino_p->ino_sysino, 378 INTR_IDLE_STATE) != DDI_SUCCESS) 379 return (DDI_INTR_UNCLAIMED); 380 381 return (DDI_INTR_CLAIMED); 382 } 383 384 dev_info_t * 385 px_get_my_childs_dip(dev_info_t *dip, dev_info_t *rdip) 386 { 387 dev_info_t *cdip = rdip; 388 389 for (; ddi_get_parent(cdip) != dip; cdip = ddi_get_parent(cdip)) 390 ; 391 392 return (cdip); 393 } 394 395 /* Default class to pil value mapping */ 396 px_class_val_t px_default_pil [] = { 397 {0x000000, 0xff0000, 0x1}, /* Class code for pre-2.0 devices */ 398 {0x010000, 0xff0000, 0x4}, /* Mass Storage Controller */ 399 {0x020000, 0xff0000, 0x6}, /* Network Controller */ 400 {0x030000, 0xff0000, 0x9}, /* Display Controller */ 401 {0x040000, 0xff0000, 0x9}, /* Multimedia Controller */ 402 {0x050000, 0xff0000, 0xb}, /* Memory Controller */ 403 {0x060000, 0xff0000, 0xb}, /* Bridge Controller */ 404 {0x0c0000, 0xffff00, 0x9}, /* Serial Bus, FireWire (IEEE 1394) */ 405 {0x0c0100, 0xffff00, 0x4}, /* Serial Bus, ACCESS.bus */ 406 {0x0c0200, 0xffff00, 0x4}, /* Serial Bus, SSA */ 407 {0x0c0300, 0xffff00, 0x9}, /* Serial Bus Universal Serial Bus */ 408 {0x0c0400, 0xffff00, 0x6}, /* Serial Bus, Fibre Channel */ 409 {0x0c0600, 0xffff00, 0x6} /* Serial Bus, Infiniband */ 410 }; 411 412 /* 413 * Default class to intr_weight value mapping (% of CPU). A driver.conf 414 * entry on or above the pci node like 415 * 416 * pci-class-intr-weights= 0x020000, 0xff0000, 30; 417 * 418 * can be used to augment or override entries in the default table below. 419 * 420 * NB: The values below give NICs preference on redistribution, and provide 421 * NICs some isolation from other interrupt sources. We need better interfaces 422 * that allow the NIC driver to identify a specific NIC instance as high 423 * bandwidth, and thus deserving of separation from other low bandwidth 424 * NICs additional isolation from other interrupt sources. 425 * 426 * NB: We treat Infiniband like a NIC. 427 */ 428 px_class_val_t px_default_intr_weight [] = { 429 {0x020000, 0xff0000, 35}, /* Network Controller */ 430 {0x010000, 0xff0000, 10}, /* Mass Storage Controller */ 431 {0x0c0400, 0xffff00, 10}, /* Serial Bus, Fibre Channel */ 432 {0x0c0600, 0xffff00, 50} /* Serial Bus, Infiniband */ 433 }; 434 435 static uint32_t 436 px_match_class_val(uint32_t key, px_class_val_t *rec_p, int nrec, 437 uint32_t default_val) 438 { 439 int i; 440 441 for (i = 0; i < nrec; rec_p++, i++) { 442 if ((rec_p->class_code & rec_p->class_mask) == 443 (key & rec_p->class_mask)) 444 return (rec_p->class_val); 445 } 446 447 return (default_val); 448 } 449 450 /* 451 * px_class_to_val 452 * 453 * Return the configuration value, based on class code and sub class code, 454 * from the specified property based or default px_class_val_t table. 455 */ 456 uint32_t 457 px_class_to_val(dev_info_t *rdip, char *property_name, px_class_val_t *rec_p, 458 int nrec, uint32_t default_val) 459 { 460 int property_len; 461 uint32_t class_code; 462 px_class_val_t *conf; 463 uint32_t val = default_val; 464 465 /* 466 * Use the "class-code" property to get the base and sub class 467 * codes for the requesting device. 468 */ 469 class_code = (uint32_t)ddi_prop_get_int(DDI_DEV_T_ANY, rdip, 470 DDI_PROP_DONTPASS, "class-code", -1); 471 472 if (class_code == -1) 473 return (val); 474 475 /* look up the val from the default table */ 476 val = px_match_class_val(class_code, rec_p, nrec, val); 477 478 /* see if there is a more specific property specified value */ 479 if (ddi_getlongprop(DDI_DEV_T_ANY, rdip, DDI_PROP_NOTPROM, 480 property_name, (caddr_t)&conf, &property_len)) 481 return (val); 482 483 if ((property_len % sizeof (px_class_val_t)) == 0) 484 val = px_match_class_val(class_code, conf, 485 property_len / sizeof (px_class_val_t), val); 486 kmem_free(conf, property_len); 487 return (val); 488 } 489 490 /* px_class_to_pil: return the pil for a given device. */ 491 uint32_t 492 px_class_to_pil(dev_info_t *rdip) 493 { 494 uint32_t pil; 495 496 /* default pil is 0 (uninitialized) */ 497 pil = px_class_to_val(rdip, 498 "pci-class-priorities", px_default_pil, 499 sizeof (px_default_pil) / sizeof (px_class_val_t), 0); 500 501 /* range check the result */ 502 if (pil >= 0xf) 503 pil = 0; 504 505 return (pil); 506 } 507 508 /* px_class_to_intr_weight: return the intr_weight for a given device. */ 509 static int32_t 510 px_class_to_intr_weight(dev_info_t *rdip) 511 { 512 int32_t intr_weight; 513 514 /* default weight is 0% */ 515 intr_weight = px_class_to_val(rdip, 516 "pci-class-intr-weights", px_default_intr_weight, 517 sizeof (px_default_intr_weight) / sizeof (px_class_val_t), 0); 518 519 /* range check the result */ 520 if (intr_weight < 0) 521 intr_weight = 0; 522 if (intr_weight > 1000) 523 intr_weight = 1000; 524 525 return (intr_weight); 526 } 527 528 /* ARGSUSED */ 529 int 530 px_intx_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 531 ddi_intr_handle_impl_t *hdlp, void *result) 532 { 533 px_t *px_p = DIP_TO_STATE(dip); 534 int ret = DDI_SUCCESS; 535 536 DBG(DBG_INTROPS, dip, "px_intx_ops: dip=%x rdip=%x intr_op=%x " 537 "handle=%p\n", dip, rdip, intr_op, hdlp); 538 539 switch (intr_op) { 540 case DDI_INTROP_GETCAP: 541 ret = pci_intx_get_cap(rdip, (int *)result); 542 break; 543 case DDI_INTROP_SETCAP: 544 DBG(DBG_INTROPS, dip, "px_intx_ops: SetCap is not supported\n"); 545 ret = DDI_ENOTSUP; 546 break; 547 case DDI_INTROP_ALLOC: 548 *(int *)result = hdlp->ih_scratch1; 549 break; 550 case DDI_INTROP_FREE: 551 break; 552 case DDI_INTROP_GETPRI: 553 *(int *)result = hdlp->ih_pri ? 554 hdlp->ih_pri : px_class_to_pil(rdip); 555 break; 556 case DDI_INTROP_SETPRI: 557 break; 558 case DDI_INTROP_ADDISR: 559 ret = px_add_intx_intr(dip, rdip, hdlp); 560 break; 561 case DDI_INTROP_REMISR: 562 ret = px_rem_intx_intr(dip, rdip, hdlp); 563 break; 564 case DDI_INTROP_ENABLE: 565 ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum, 566 hdlp->ih_vector, PX_INTR_STATE_ENABLE); 567 break; 568 case DDI_INTROP_DISABLE: 569 ret = px_ib_update_intr_state(px_p, rdip, hdlp->ih_inum, 570 hdlp->ih_vector, PX_INTR_STATE_DISABLE); 571 break; 572 case DDI_INTROP_SETMASK: 573 ret = pci_intx_set_mask(rdip); 574 break; 575 case DDI_INTROP_CLRMASK: 576 ret = pci_intx_clr_mask(rdip); 577 break; 578 case DDI_INTROP_GETPENDING: 579 ret = pci_intx_get_pending(rdip, (int *)result); 580 break; 581 case DDI_INTROP_NINTRS: 582 case DDI_INTROP_NAVAIL: 583 *(int *)result = i_ddi_get_nintrs(rdip); 584 break; 585 case DDI_INTROP_SUPPORTED_TYPES: 586 *(int *)result = DDI_INTR_TYPE_FIXED; 587 break; 588 default: 589 ret = DDI_ENOTSUP; 590 break; 591 } 592 593 return (ret); 594 } 595 596 /* ARGSUSED */ 597 int 598 px_msix_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t intr_op, 599 ddi_intr_handle_impl_t *hdlp, void *result) 600 { 601 px_t *px_p = DIP_TO_STATE(dip); 602 px_msi_state_t *msi_state_p = &px_p->px_ib_p->ib_msi_state; 603 msinum_t msi_num; 604 msiqid_t msiq_id; 605 uint_t nintrs; 606 int i, ret = DDI_SUCCESS; 607 608 DBG(DBG_INTROPS, dip, "px_msix_ops: dip=%x rdip=%x intr_op=%x " 609 "handle=%p\n", dip, rdip, intr_op, hdlp); 610 611 switch (intr_op) { 612 case DDI_INTROP_GETCAP: 613 ret = pci_msi_get_cap(rdip, hdlp->ih_type, (int *)result); 614 break; 615 case DDI_INTROP_SETCAP: 616 DBG(DBG_INTROPS, dip, "px_msix_ops: SetCap is not supported\n"); 617 ret = DDI_ENOTSUP; 618 break; 619 case DDI_INTROP_ALLOC: 620 /* 621 * We need to restrict this allocation in future 622 * based on Resource Management policies. 623 */ 624 if ((ret = px_msi_alloc(px_p, rdip, hdlp->ih_inum, 625 hdlp->ih_scratch1, hdlp->ih_scratch2, &msi_num, 626 (int *)result)) != DDI_SUCCESS) { 627 DBG(DBG_INTROPS, dip, "px_msix_ops: MSI allocation " 628 "failed, rdip 0x%p inum 0x%x count 0x%x\n", 629 rdip, hdlp->ih_inum, hdlp->ih_scratch1); 630 631 return (ret); 632 } 633 634 break; 635 case DDI_INTROP_FREE: 636 (void) pci_msi_disable_mode(rdip, hdlp->ih_type, hdlp->ih_inum); 637 (void) pci_msi_unconfigure(rdip, hdlp->ih_type, hdlp->ih_inum); 638 (void) px_msi_free(px_p, rdip, hdlp->ih_inum, 639 hdlp->ih_scratch1); 640 break; 641 case DDI_INTROP_GETPRI: 642 *(int *)result = hdlp->ih_pri ? 643 hdlp->ih_pri : px_class_to_pil(rdip); 644 break; 645 case DDI_INTROP_SETPRI: 646 break; 647 case DDI_INTROP_ADDISR: 648 if ((ret = px_msi_get_msinum(px_p, hdlp->ih_dip, 649 hdlp->ih_inum, &msi_num)) != DDI_SUCCESS) 650 return (ret); 651 652 if ((ret = px_add_msiq_intr(dip, rdip, hdlp, 653 MSI32_REC, msi_num, &msiq_id)) != DDI_SUCCESS) { 654 DBG(DBG_INTROPS, dip, "px_msix_ops: Add MSI handler " 655 "failed, rdip 0x%p msi 0x%x\n", rdip, msi_num); 656 return (ret); 657 } 658 659 DBG(DBG_INTROPS, dip, "px_msix_ops: msiq used 0x%x\n", msiq_id); 660 661 if ((ret = px_lib_msi_setmsiq(dip, msi_num, 662 msiq_id, MSI32_TYPE)) != DDI_SUCCESS) { 663 (void) px_rem_msiq_intr(dip, rdip, 664 hdlp, MSI32_REC, msi_num, msiq_id); 665 return (ret); 666 } 667 668 if ((ret = px_lib_msi_setstate(dip, msi_num, 669 PCI_MSI_STATE_IDLE)) != DDI_SUCCESS) { 670 (void) px_rem_msiq_intr(dip, rdip, 671 hdlp, MSI32_REC, msi_num, msiq_id); 672 return (ret); 673 } 674 675 hdlp->ih_vector = msi_num; 676 break; 677 case DDI_INTROP_DUPVEC: 678 DBG(DBG_INTROPS, dip, "px_msix_ops: DupIsr is not supported\n"); 679 ret = DDI_ENOTSUP; 680 break; 681 case DDI_INTROP_REMISR: 682 msi_num = hdlp->ih_vector; 683 684 if ((ret = px_lib_msi_getmsiq(dip, msi_num, 685 &msiq_id)) != DDI_SUCCESS) 686 return (ret); 687 688 if ((ret = px_lib_msi_setstate(dip, msi_num, 689 PCI_MSI_STATE_DELIVERED)) != DDI_SUCCESS) 690 return (ret); 691 692 ret = px_rem_msiq_intr(dip, rdip, 693 hdlp, MSI32_REC, msi_num, msiq_id); 694 695 hdlp->ih_vector = 0; 696 break; 697 case DDI_INTROP_ENABLE: 698 msi_num = hdlp->ih_vector; 699 700 if ((ret = px_lib_msi_setvalid(dip, msi_num, 701 PCI_MSI_VALID)) != DDI_SUCCESS) 702 return (ret); 703 704 if (pci_is_msi_enabled(rdip, hdlp->ih_type) != DDI_SUCCESS) { 705 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 706 707 if ((ret = pci_msi_configure(rdip, hdlp->ih_type, 708 nintrs, hdlp->ih_inum, msi_state_p->msi_addr32, 709 msi_num & ~(nintrs - 1))) != DDI_SUCCESS) 710 return (ret); 711 712 if ((ret = pci_msi_enable_mode(rdip, hdlp->ih_type, 713 hdlp->ih_inum)) != DDI_SUCCESS) 714 return (ret); 715 } 716 717 ret = pci_msi_clr_mask(rdip, hdlp->ih_type, hdlp->ih_inum); 718 719 break; 720 case DDI_INTROP_DISABLE: 721 msi_num = hdlp->ih_vector; 722 723 if ((ret = pci_msi_set_mask(rdip, hdlp->ih_type, 724 hdlp->ih_inum)) != DDI_SUCCESS) 725 return (ret); 726 727 ret = px_lib_msi_setvalid(dip, msi_num, PCI_MSI_INVALID); 728 break; 729 case DDI_INTROP_BLOCKENABLE: 730 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 731 msi_num = hdlp->ih_vector; 732 733 if ((ret = pci_msi_configure(rdip, hdlp->ih_type, 734 nintrs, hdlp->ih_inum, msi_state_p->msi_addr32, 735 msi_num & ~(nintrs - 1))) != DDI_SUCCESS) 736 return (ret); 737 738 for (i = 0; i < nintrs; i++, msi_num++) { 739 if ((ret = px_lib_msi_setvalid(dip, msi_num, 740 PCI_MSI_VALID)) != DDI_SUCCESS) 741 return (ret); 742 } 743 744 ret = pci_msi_enable_mode(rdip, hdlp->ih_type, hdlp->ih_inum); 745 break; 746 case DDI_INTROP_BLOCKDISABLE: 747 nintrs = i_ddi_intr_get_current_nintrs(hdlp->ih_dip); 748 msi_num = hdlp->ih_vector; 749 750 if ((ret = pci_msi_disable_mode(rdip, hdlp->ih_type, 751 hdlp->ih_inum)) != DDI_SUCCESS) 752 return (ret); 753 754 for (i = 0; i < nintrs; i++, msi_num++) { 755 if ((ret = px_lib_msi_setvalid(dip, msi_num, 756 PCI_MSI_INVALID)) != DDI_SUCCESS) 757 return (ret); 758 } 759 760 break; 761 case DDI_INTROP_SETMASK: 762 ret = pci_msi_set_mask(rdip, hdlp->ih_type, hdlp->ih_inum); 763 break; 764 case DDI_INTROP_CLRMASK: 765 ret = pci_msi_clr_mask(rdip, hdlp->ih_type, hdlp->ih_inum); 766 break; 767 case DDI_INTROP_GETPENDING: 768 ret = pci_msi_get_pending(rdip, hdlp->ih_type, 769 hdlp->ih_inum, (int *)result); 770 break; 771 case DDI_INTROP_NINTRS: 772 ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result); 773 break; 774 case DDI_INTROP_NAVAIL: 775 /* XXX - a new interface may be needed */ 776 ret = pci_msi_get_nintrs(rdip, hdlp->ih_type, (int *)result); 777 break; 778 case DDI_INTROP_SUPPORTED_TYPES: 779 ret = pci_msi_get_supported_type(rdip, (int *)result); 780 break; 781 default: 782 ret = DDI_ENOTSUP; 783 break; 784 } 785 786 return (ret); 787 } 788 789 static struct { 790 kstat_named_t pxintr_ks_name; 791 kstat_named_t pxintr_ks_type; 792 kstat_named_t pxintr_ks_cpu; 793 kstat_named_t pxintr_ks_pil; 794 kstat_named_t pxintr_ks_time; 795 kstat_named_t pxintr_ks_ino; 796 kstat_named_t pxintr_ks_cookie; 797 kstat_named_t pxintr_ks_devpath; 798 kstat_named_t pxintr_ks_buspath; 799 } pxintr_ks_template = { 800 { "name", KSTAT_DATA_CHAR }, 801 { "type", KSTAT_DATA_CHAR }, 802 { "cpu", KSTAT_DATA_UINT64 }, 803 { "pil", KSTAT_DATA_UINT64 }, 804 { "time", KSTAT_DATA_UINT64 }, 805 { "ino", KSTAT_DATA_UINT64 }, 806 { "cookie", KSTAT_DATA_UINT64 }, 807 { "devpath", KSTAT_DATA_STRING }, 808 { "buspath", KSTAT_DATA_STRING }, 809 }; 810 811 static uint32_t pxintr_ks_instance; 812 kmutex_t pxintr_ks_template_lock; 813 814 int 815 px_ks_update(kstat_t *ksp, int rw) 816 { 817 px_ih_t *ih_p = ksp->ks_private; 818 int maxlen = sizeof (pxintr_ks_template.pxintr_ks_name.value.c); 819 px_ib_t *ib_p = ih_p->ih_ino_p->ino_ib_p; 820 px_t *px_p = ib_p->ib_px_p; 821 devino_t ino; 822 sysino_t sysino; 823 char ih_devpath[MAXPATHLEN]; 824 char ih_buspath[MAXPATHLEN]; 825 826 ino = ih_p->ih_ino_p->ino_ino; 827 (void) px_lib_intr_devino_to_sysino(px_p->px_dip, ino, &sysino); 828 829 (void) snprintf(pxintr_ks_template.pxintr_ks_name.value.c, maxlen, 830 "%s%d", ddi_driver_name(ih_p->ih_dip), 831 ddi_get_instance(ih_p->ih_dip)); 832 833 (void) strcpy(pxintr_ks_template.pxintr_ks_type.value.c, 834 (ih_p->ih_rec_type == 0) ? "fixed" : "msi"); 835 pxintr_ks_template.pxintr_ks_cpu.value.ui64 = ih_p->ih_ino_p->ino_cpuid; 836 pxintr_ks_template.pxintr_ks_pil.value.ui64 = ih_p->ih_ino_p->ino_pil; 837 pxintr_ks_template.pxintr_ks_time.value.ui64 = 838 ih_p->ih_nsec + (uint64_t) 839 tick2ns((hrtime_t)ih_p->ih_ticks, ih_p->ih_ino_p->ino_cpuid); 840 pxintr_ks_template.pxintr_ks_ino.value.ui64 = ino; 841 pxintr_ks_template.pxintr_ks_cookie.value.ui64 = sysino; 842 843 (void) ddi_pathname(ih_p->ih_dip, ih_devpath); 844 (void) ddi_pathname(px_p->px_dip, ih_buspath); 845 kstat_named_setstr(&pxintr_ks_template.pxintr_ks_devpath, ih_devpath); 846 kstat_named_setstr(&pxintr_ks_template.pxintr_ks_buspath, ih_buspath); 847 848 return (0); 849 } 850 851 void 852 px_create_intr_kstats(px_ih_t *ih_p) 853 { 854 msiq_rec_type_t rec_type = ih_p->ih_rec_type; 855 856 ASSERT(ih_p->ih_ksp == NULL); 857 858 /* 859 * Create pci_intrs::: kstats for all ih types except messages, 860 * which represent unusual conditions and don't need to be tracked. 861 */ 862 if (rec_type == 0 || rec_type == MSI32_REC || rec_type == MSI64_REC) { 863 ih_p->ih_ksp = kstat_create("pci_intrs", 864 atomic_inc_32_nv(&pxintr_ks_instance), "config", 865 "interrupts", KSTAT_TYPE_NAMED, 866 sizeof (pxintr_ks_template) / sizeof (kstat_named_t), 867 KSTAT_FLAG_VIRTUAL); 868 } 869 if (ih_p->ih_ksp != NULL) { 870 ih_p->ih_ksp->ks_data_size += MAXPATHLEN * 2; 871 ih_p->ih_ksp->ks_lock = &pxintr_ks_template_lock; 872 ih_p->ih_ksp->ks_data = &pxintr_ks_template; 873 ih_p->ih_ksp->ks_private = ih_p; 874 ih_p->ih_ksp->ks_update = px_ks_update; 875 } 876 } 877 878 /* 879 * px_add_intx_intr: 880 * 881 * This function is called to register INTx and legacy hardware 882 * interrupt pins interrupts. 883 */ 884 int 885 px_add_intx_intr(dev_info_t *dip, dev_info_t *rdip, 886 ddi_intr_handle_impl_t *hdlp) 887 { 888 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 889 px_ib_t *ib_p = px_p->px_ib_p; 890 devino_t ino; 891 px_ih_t *ih_p; 892 px_ib_ino_info_t *ino_p; 893 int32_t weight; 894 int ret = DDI_SUCCESS; 895 896 ino = hdlp->ih_vector; 897 898 DBG(DBG_A_INTX, dip, "px_add_intx_intr: rdip=%s%d ino=%x " 899 "handler=%x arg1=%x arg2=%x\n", ddi_driver_name(rdip), 900 ddi_get_instance(rdip), ino, hdlp->ih_cb_func, 901 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 902 903 ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum, 904 hdlp->ih_cb_func, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, 0, 0); 905 906 mutex_enter(&ib_p->ib_ino_lst_mutex); 907 908 if (ino_p = px_ib_locate_ino(ib_p, ino)) { /* sharing ino */ 909 uint32_t intr_index = hdlp->ih_inum; 910 if (px_ib_ino_locate_intr(ino_p, rdip, intr_index, 0, 0)) { 911 DBG(DBG_A_INTX, dip, "px_add_intx_intr: " 912 "dup intr #%d\n", intr_index); 913 914 ret = DDI_FAILURE; 915 goto fail1; 916 } 917 918 /* Save mondo value in hdlp */ 919 hdlp->ih_vector = ino_p->ino_sysino; 920 921 if ((ret = px_ib_ino_add_intr(px_p, ino_p, ih_p)) 922 != DDI_SUCCESS) 923 goto fail1; 924 } else { 925 ino_p = px_ib_new_ino(ib_p, ino, ih_p); 926 927 if (hdlp->ih_pri == 0) 928 hdlp->ih_pri = px_class_to_pil(rdip); 929 930 /* Save mondo value in hdlp */ 931 hdlp->ih_vector = ino_p->ino_sysino; 932 933 DBG(DBG_A_INTX, dip, "px_add_intx_intr: pil=0x%x mondo=0x%x\n", 934 hdlp->ih_pri, hdlp->ih_vector); 935 936 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, 937 (ddi_intr_handler_t *)px_intx_intr, (caddr_t)ino_p, NULL); 938 939 ret = i_ddi_add_ivintr(hdlp); 940 941 /* 942 * Restore original interrupt handler 943 * and arguments in interrupt handle. 944 */ 945 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler, 946 ih_p->ih_handler_arg1, ih_p->ih_handler_arg2); 947 948 if (ret != DDI_SUCCESS) 949 goto fail2; 950 951 /* Save the pil for this ino */ 952 ino_p->ino_pil = hdlp->ih_pri; 953 954 /* select cpu, saving it for sharing and removal */ 955 ino_p->ino_cpuid = intr_dist_cpuid(); 956 957 /* Enable interrupt */ 958 px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino); 959 } 960 961 /* add weight to the cpu that we are already targeting */ 962 weight = px_class_to_intr_weight(rdip); 963 intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight); 964 965 ih_p->ih_ino_p = ino_p; 966 px_create_intr_kstats(ih_p); 967 if (ih_p->ih_ksp) 968 kstat_install(ih_p->ih_ksp); 969 mutex_exit(&ib_p->ib_ino_lst_mutex); 970 971 DBG(DBG_A_INTX, dip, "px_add_intx_intr: done! Interrupt 0x%x pil=%x\n", 972 ino_p->ino_sysino, hdlp->ih_pri); 973 974 return (ret); 975 fail2: 976 px_ib_delete_ino(ib_p, ino_p); 977 fail1: 978 if (ih_p->ih_config_handle) 979 pci_config_teardown(&ih_p->ih_config_handle); 980 981 mutex_exit(&ib_p->ib_ino_lst_mutex); 982 kmem_free(ih_p, sizeof (px_ih_t)); 983 984 DBG(DBG_A_INTX, dip, "px_add_intx_intr: Failed! Interrupt 0x%x " 985 "pil=%x\n", ino_p->ino_sysino, hdlp->ih_pri); 986 987 return (ret); 988 } 989 990 /* 991 * px_rem_intx_intr: 992 * 993 * This function is called to unregister INTx and legacy hardware 994 * interrupt pins interrupts. 995 */ 996 int 997 px_rem_intx_intr(dev_info_t *dip, dev_info_t *rdip, 998 ddi_intr_handle_impl_t *hdlp) 999 { 1000 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1001 px_ib_t *ib_p = px_p->px_ib_p; 1002 devino_t ino; 1003 cpuid_t curr_cpu; 1004 px_ib_ino_info_t *ino_p; 1005 px_ih_t *ih_p; 1006 int ret = DDI_SUCCESS; 1007 1008 ino = hdlp->ih_vector; 1009 1010 DBG(DBG_R_INTX, dip, "px_rem_intx_intr: rdip=%s%d ino=%x\n", 1011 ddi_driver_name(rdip), ddi_get_instance(rdip), ino); 1012 1013 mutex_enter(&ib_p->ib_ino_lst_mutex); 1014 1015 ino_p = px_ib_locate_ino(ib_p, ino); 1016 ih_p = px_ib_ino_locate_intr(ino_p, rdip, hdlp->ih_inum, 0, 0); 1017 1018 /* Get the current cpu */ 1019 if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino, 1020 &curr_cpu)) != DDI_SUCCESS) 1021 goto fail; 1022 1023 if ((ret = px_ib_ino_rem_intr(px_p, ino_p, ih_p)) != DDI_SUCCESS) 1024 goto fail; 1025 1026 intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip); 1027 1028 if (ino_p->ino_ih_size == 0) { 1029 if ((ret = px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 1030 INTR_DELIVERED_STATE)) != DDI_SUCCESS) 1031 goto fail; 1032 1033 hdlp->ih_vector = ino_p->ino_sysino; 1034 i_ddi_rem_ivintr(hdlp); 1035 1036 px_ib_delete_ino(ib_p, ino_p); 1037 kmem_free(ino_p, sizeof (px_ib_ino_info_t)); 1038 } else { 1039 /* Re-enable interrupt only if mapping regsiter still shared */ 1040 PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu); 1041 } 1042 1043 fail: 1044 mutex_exit(&ib_p->ib_ino_lst_mutex); 1045 return (ret); 1046 } 1047 1048 /* 1049 * px_add_msiq_intr: 1050 * 1051 * This function is called to register MSI/Xs and PCIe message interrupts. 1052 */ 1053 int 1054 px_add_msiq_intr(dev_info_t *dip, dev_info_t *rdip, 1055 ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type, 1056 msgcode_t msg_code, msiqid_t *msiq_id_p) 1057 { 1058 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1059 px_ib_t *ib_p = px_p->px_ib_p; 1060 px_msiq_state_t *msiq_state_p = &ib_p->ib_msiq_state; 1061 devino_t ino; 1062 px_ih_t *ih_p; 1063 px_ib_ino_info_t *ino_p; 1064 int32_t weight; 1065 int ret = DDI_SUCCESS; 1066 1067 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: rdip=%s%d handler=%x " 1068 "arg1=%x arg2=%x\n", ddi_driver_name(rdip), ddi_get_instance(rdip), 1069 hdlp->ih_cb_func, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 1070 1071 if ((ret = px_msiq_alloc(px_p, rec_type, msiq_id_p)) != DDI_SUCCESS) { 1072 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: " 1073 "msiq allocation failed\n"); 1074 return (ret); 1075 } 1076 1077 ino = px_msiqid_to_devino(px_p, *msiq_id_p); 1078 1079 ih_p = px_ib_alloc_ih(rdip, hdlp->ih_inum, hdlp->ih_cb_func, 1080 hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, rec_type, msg_code); 1081 1082 mutex_enter(&ib_p->ib_ino_lst_mutex); 1083 1084 if (ino_p = px_ib_locate_ino(ib_p, ino)) { /* sharing ino */ 1085 uint32_t intr_index = hdlp->ih_inum; 1086 if (px_ib_ino_locate_intr(ino_p, rdip, 1087 intr_index, rec_type, msg_code)) { 1088 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: " 1089 "dup intr #%d\n", intr_index); 1090 1091 ret = DDI_FAILURE; 1092 goto fail1; 1093 } 1094 1095 if ((ret = px_ib_ino_add_intr(px_p, ino_p, ih_p)) 1096 != DDI_SUCCESS) 1097 goto fail1; 1098 } else { 1099 ino_p = px_ib_new_ino(ib_p, ino, ih_p); 1100 1101 ino_p->ino_msiq_p = msiq_state_p->msiq_p + 1102 (*msiq_id_p - msiq_state_p->msiq_1st_msiq_id); 1103 1104 if (hdlp->ih_pri == 0) 1105 hdlp->ih_pri = px_class_to_pil(rdip); 1106 1107 /* Save mondo value in hdlp */ 1108 hdlp->ih_vector = ino_p->ino_sysino; 1109 1110 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: pil=0x%x mondo=0x%x\n", 1111 hdlp->ih_pri, hdlp->ih_vector); 1112 1113 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, 1114 (ddi_intr_handler_t *)px_msiq_intr, (caddr_t)ino_p, NULL); 1115 1116 ret = i_ddi_add_ivintr(hdlp); 1117 1118 /* 1119 * Restore original interrupt handler 1120 * and arguments in interrupt handle. 1121 */ 1122 DDI_INTR_ASSIGN_HDLR_N_ARGS(hdlp, ih_p->ih_handler, 1123 ih_p->ih_handler_arg1, ih_p->ih_handler_arg2); 1124 1125 if (ret != DDI_SUCCESS) 1126 goto fail2; 1127 1128 /* Save the pil for this ino */ 1129 ino_p->ino_pil = hdlp->ih_pri; 1130 1131 /* Enable MSIQ */ 1132 px_lib_msiq_setstate(dip, *msiq_id_p, PCI_MSIQ_STATE_IDLE); 1133 px_lib_msiq_setvalid(dip, *msiq_id_p, PCI_MSIQ_VALID); 1134 1135 /* select cpu, saving it for sharing and removal */ 1136 ino_p->ino_cpuid = intr_dist_cpuid(); 1137 1138 /* Enable interrupt */ 1139 px_ib_intr_enable(px_p, ino_p->ino_cpuid, ino_p->ino_ino); 1140 } 1141 1142 /* add weight to the cpu that we are already targeting */ 1143 weight = px_class_to_intr_weight(rdip); 1144 intr_dist_cpuid_add_device_weight(ino_p->ino_cpuid, rdip, weight); 1145 1146 ih_p->ih_ino_p = ino_p; 1147 px_create_intr_kstats(ih_p); 1148 if (ih_p->ih_ksp) 1149 kstat_install(ih_p->ih_ksp); 1150 mutex_exit(&ib_p->ib_ino_lst_mutex); 1151 1152 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: done! Interrupt 0x%x pil=%x\n", 1153 ino_p->ino_sysino, hdlp->ih_pri); 1154 1155 return (ret); 1156 fail2: 1157 px_ib_delete_ino(ib_p, ino_p); 1158 fail1: 1159 if (ih_p->ih_config_handle) 1160 pci_config_teardown(&ih_p->ih_config_handle); 1161 1162 mutex_exit(&ib_p->ib_ino_lst_mutex); 1163 kmem_free(ih_p, sizeof (px_ih_t)); 1164 1165 DBG(DBG_MSIQ, dip, "px_add_msiq_intr: Failed! Interrupt 0x%x pil=%x\n", 1166 ino_p->ino_sysino, hdlp->ih_pri); 1167 1168 return (ret); 1169 } 1170 1171 /* 1172 * px_rem_msiq_intr: 1173 * 1174 * This function is called to unregister MSI/Xs and PCIe message interrupts. 1175 */ 1176 int 1177 px_rem_msiq_intr(dev_info_t *dip, dev_info_t *rdip, 1178 ddi_intr_handle_impl_t *hdlp, msiq_rec_type_t rec_type, 1179 msgcode_t msg_code, msiqid_t msiq_id) 1180 { 1181 px_t *px_p = INST_TO_STATE(ddi_get_instance(dip)); 1182 px_ib_t *ib_p = px_p->px_ib_p; 1183 devino_t ino = px_msiqid_to_devino(px_p, msiq_id); 1184 cpuid_t curr_cpu; 1185 px_ib_ino_info_t *ino_p; 1186 px_ih_t *ih_p; 1187 int ret = DDI_SUCCESS; 1188 1189 DBG(DBG_MSIQ, dip, "px_rem_msiq_intr: rdip=%s%d msiq_id=%x ino=%x\n", 1190 ddi_driver_name(rdip), ddi_get_instance(rdip), msiq_id, ino); 1191 1192 mutex_enter(&ib_p->ib_ino_lst_mutex); 1193 1194 ino_p = px_ib_locate_ino(ib_p, ino); 1195 ih_p = px_ib_ino_locate_intr(ino_p, rdip, hdlp->ih_inum, 1196 rec_type, msg_code); 1197 1198 /* Get the current cpu */ 1199 if ((ret = px_lib_intr_gettarget(px_p->px_dip, ino_p->ino_sysino, 1200 &curr_cpu)) != DDI_SUCCESS) 1201 goto fail; 1202 1203 if ((ret = px_ib_ino_rem_intr(px_p, ino_p, ih_p)) != DDI_SUCCESS) 1204 goto fail; 1205 1206 intr_dist_cpuid_rem_device_weight(ino_p->ino_cpuid, rdip); 1207 1208 if (ino_p->ino_ih_size == 0) { 1209 if ((ret = px_lib_intr_setstate(px_p->px_dip, ino_p->ino_sysino, 1210 INTR_DELIVERED_STATE)) != DDI_SUCCESS) 1211 goto fail; 1212 1213 px_lib_msiq_setvalid(dip, px_devino_to_msiqid(px_p, ino), 1214 PCI_MSIQ_INVALID); 1215 1216 hdlp->ih_vector = ino_p->ino_sysino; 1217 i_ddi_rem_ivintr(hdlp); 1218 1219 px_ib_delete_ino(ib_p, ino_p); 1220 1221 (void) px_msiq_free(px_p, msiq_id); 1222 kmem_free(ino_p, sizeof (px_ib_ino_info_t)); 1223 } else { 1224 /* Re-enable interrupt only if mapping regsiter still shared */ 1225 PX_INTR_ENABLE(px_p->px_dip, ino_p->ino_sysino, curr_cpu); 1226 } 1227 1228 fail: 1229 mutex_exit(&ib_p->ib_ino_lst_mutex); 1230 return (ret); 1231 } 1232