xref: /titanic_52/usr/src/uts/sun/io/fd.c (revision 84ab085a13f931bc78e7415e7ce921dbaa14fcb3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Intel 82077 Floppy Disk Driver
31  */
32 
33 /*
34  * Notes
35  *
36  *	0. The driver supports two flavors of hardware design:
37  *		"SUNW,fdtwo"	- sun4m	- 82077 with sun4m style Auxio
38  *		"fdthree"  - sun4u - 82077 with DMA
39  *	   In addition it supports an apparent bug in some versions of
40  *	   the 82077 controller.
41  *
42  *	1. The driver is mostly set up for multiple controllers, multiple
43  *	drives. However- we *do* assume the use of the AUXIO register, and
44  *	if we ever have > 1 fdc, we'll have to see what that means. This
45  *	is all intrinsically machine specific, but there isn't much we
46  *	can do about it.
47  *
48  *	2. The driver also is structured to deal with one drive active at
49  *	a time. This is because the 82072 chip (no longer supported) was
50  *	known to be buggy with respect to overlapped seeks.
51  *
52  *	3. The high level interrupt code is in assembler, and runs in a
53  *	sparc trap window. It acts as a pseudo-dma engine as well as
54  *	handles a couple of other interrupts. When it gets its job done,
55  *	it schedules a second stage interrupt (soft interrupt) which
56  *	is then fielded here in fd_lointr.  When DMA is used, the fdintr_dma
57  *	interrupt handler is used.
58  *
59  *	4. Nearly all locking is done on a lower level MUTEX_DRIVER
60  *	mutex. The locking is quite conservative, and is generally
61  *	established very close to any of the entries into the driver.
62  *	There is nearly no locking done of the high level MUTEX_DRIVER
63  *	mutex (which generally is a SPIN mutex because the floppy usually
64  *	interrupts above LOCK_LEVEL). The assembler high level interrupt
65  *	handler grabs the high level mutex, but the code in the driver
66  *	here is especially structured to not need to do this.
67  *
68  *	5. Fdrawioctl commands that pass data are not optimized for
69  *	speed. If they need to be faster, the driver structure will
70  *	have to be redone such that fdrawioctl calls physio after
71  *	cons'ing up a uio structure and that fdstart will be able
72  *	to detect that a particular buffer is a 'special' buffer.
73  *
74  *	6. Removable media support is not complete.
75  *
76  */
77 
78 #include <sys/param.h>
79 #include <sys/buf.h>
80 #include <sys/ioctl.h>
81 #include <sys/uio.h>
82 #include <sys/open.h>
83 #include <sys/conf.h>
84 #include <sys/file.h>
85 #include <sys/cmn_err.h>
86 #include <sys/debug.h>
87 #include <sys/kmem.h>
88 #include <sys/stat.h>
89 #include <sys/autoconf.h>
90 
91 #include <sys/dklabel.h>
92 
93 #include <sys/vtoc.h>
94 #include <sys/dkio.h>
95 #include <sys/fdio.h>
96 
97 #include <sys/ddi.h>
98 #include <sys/sunddi.h>
99 #include <sys/kstat.h>
100 
101 /*
102  * included to check for ELC or SLC which report floppy controller that
103  */
104 #include <sys/cpu.h>
105 
106 #include "sys/fdvar.h"
107 #include "sys/fdreg.h"
108 #include "sys/dma_i8237A.h"
109 
110 /*
111  * Defines
112  */
113 #define	KIOSP	KSTAT_IO_PTR(un->un_iostat)
114 #define	KIOIP	KSTAT_INTR_PTR(fdc->c_intrstat)
115 #define	MEDIUM_DENSITY	0x40
116 #define	SEC_SIZE_CODE	(fdctlr.c_csb->csb_unit]->un_chars->medium ? 3 : 2)
117 #define	CMD_READ	(MT + SK + FDRAW_RDCMD + MFM)
118 #define	CMD_WRITE	(MT + FDRAW_WRCMD + MFM)
119 #define	C		CE_CONT
120 #define	FD_POLLABLE_PROP	"pollable"	/* prom property */
121 #define	FD_MANUAL_EJECT		"manual"	/* prom property */
122 #define	FD_UNIT			"unit"		/* prom property */
123 
124 /*
125  * Sony MP-F17W-50D Drive Parameters
126  *				High Capacity
127  *	Capacity unformatted	2Mb
128  *	Capacity formatted	1.47Mb
129  *	Encoding method	 MFM
130  *	Recording density	17434 bpi
131  *	Track density		135 tpi
132  *	Cylinders		80
133  *	Heads			2
134  *	Tracks			160
135  *	Rotational speed	300 rpm
136  *	Transfer rate		250/500 kbps
137  *	Latency (average)	100 ms
138  *	Access time
139  *		Average		95 ms
140  *		Track to track	3 ms
141  *	Head settling time	15 ms
142  *	Motor start time	500 ms
143  *	Head load time		? ms
144  */
145 
146 /*
147  * The max_fd_dma_len is used only when southbridge is present.
148  * It has been observed that when IFB tests are run the floppy dma could get
149  * starved and result in underrun errors. After experimenting it was found that
150  * doing dma in chunks of 2048 works OK.
151  * The reason for making this a global variable is that there could be
152  * situations under which the customer would like to get full performance
153  * from floppy. He may not be having IFB boards that cause underrun errors.
154  * Under those conditions we could set this value to a much higher value
155  * by editing /etc/system file.
156  */
157 int	max_fd_dma_len = 2048;
158 
159 static void quiesce_fd_interrupt(struct fdctlr *);
160 
161 /*
162  * Character/block entry points function prototypes
163  */
164 static int fd_open(dev_t *, int, int, cred_t *);
165 static int fd_close(dev_t, int, int, cred_t *);
166 static int fd_strategy(struct buf *);
167 static int fd_read(dev_t, struct uio *, cred_t *);
168 static int fd_write(dev_t, struct uio *, cred_t *);
169 static int fd_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
170 static int
171 fd_prop_op(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *);
172 
173 /*
174  * Device operations (dev_ops) entries function prototypes
175  */
176 static int fd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
177 		void **result);
178 static int fd_attach(dev_info_t *, ddi_attach_cmd_t);
179 static int fd_detach(dev_info_t *, ddi_detach_cmd_t);
180 static int fd_power(dev_info_t *dip, int component, int level);
181 
182 /*
183  * Internal functions
184  */
185 static int fd_attach_check_drive(struct fdctlr *fdc);
186 static int fd_attach_det_ctlr(dev_info_t *dip, struct fdctlr *fdc);
187 static int fd_attach_map_regs(dev_info_t *dip, struct fdctlr *fdc);
188 static int fd_attach_register_interrupts(dev_info_t *dip, struct fdctlr *fdc,
189     int *hard);
190 static int fd_build_label_vtoc(struct fdunit *, struct vtoc *);
191 static void fd_build_user_vtoc(struct fdunit *, struct vtoc *);
192 static int fdcheckdisk(struct fdctlr *fdc, int unit);
193 static int fd_check_media(dev_t dev, enum dkio_state state);
194 static void fd_cleanup(dev_info_t *dip, struct fdctlr *fdc, int hard,
195     int locks);
196 static void fdeject(struct fdctlr *, int unit);
197 static int fdexec(struct fdctlr *fdc, int flags);
198 static void fdexec_turn_on_motor(struct fdctlr *fdc, int flags, uint_t unit);
199 static int fdformat(struct fdctlr *fdc, int unit, int cyl, int hd);
200 static caddr_t fd_getauxiova();
201 static struct fdctlr *fd_getctlr(dev_t);
202 static void fdgetcsb(struct fdctlr *);
203 static int fdgetlabel(struct fdctlr *fdc, int unit);
204 enum dkio_state fd_get_media_state(struct fdctlr *, int);
205 static uint_t fdintr_dma();
206 static int fd_isauxiodip(dev_info_t *);
207 static uint_t  fd_lointr(caddr_t arg);
208 static void fd_media_watch(void *);
209 static void fdmotoff(void *);
210 static int fd_part_is_open(struct fdunit *un, int part);
211 static int fdrawioctl(struct fdctlr *, int, intptr_t, int);
212 static int fdrecalseek(struct fdctlr *fdc, int unit, int arg, int execflg);
213 static int fdrecover(struct fdctlr *);
214 static void fdretcsb(struct fdctlr *);
215 static int fdreset(struct fdctlr *);
216 static int fdrw(struct fdctlr *fdc, int, int, int, int, int, caddr_t, uint_t);
217 static void fdselect(struct fdctlr *fdc, int unit, int onoff);
218 static int fdsensedrv(struct fdctlr *fdc, int unit);
219 static int fdsense_chng(struct fdctlr *, int unit);
220 static void fdstart(struct fdctlr *);
221 static int fdstart_dma(register struct fdctlr *fdc, caddr_t addr, uint_t len);
222 static int fd_unit_is_open(struct fdunit *);
223 static void fdunpacklabel(struct packed_label *, struct dk_label *);
224 static int fd_unbind_handle(struct fdctlr *);
225 static void fdwatch(void *);
226 static void set_rotational_speed(struct fdctlr *, int);
227 static int fd_get_media_info(struct fdunit *un, caddr_t buf, int flag);
228 static int fd_pm_lower_power(struct fdctlr *fdc);
229 static int fd_pm_raise_power(struct fdctlr *fdc);
230 static void create_pm_components(dev_info_t *dip);
231 static void set_data_count_register(struct fdctlr *fdc, uint32_t count);
232 static uint32_t get_data_count_register(struct fdctlr *fdc);
233 static void reset_dma_controller(struct fdctlr *fdc);
234 static void set_data_address_register(struct fdctlr *fdc, uint32_t address);
235 static uint32_t get_dma_control_register(struct fdctlr *fdc);
236 static void set_dma_mode(struct fdctlr *fdc, int val);
237 static void set_dma_control_register(struct fdctlr *fdc, uint32_t val);
238 static void release_sb_dma(struct fdctlr *fdc);
239 
240 /*
241  * External functions
242  */
243 extern uint_t fd_intr(caddr_t);	/* defined in fd_asm.s */
244 extern uint_t fd_fastintr(void); /* defined in fd_asm.s */
245 extern void set_auxioreg();
246 extern void call_debug();
247 
248 
249 
250 /*
251  * The following macro checks whether the device in a SUSPENDED state.
252  * As per WDD guide lines the I/O requests to a suspended device should
253  * be blocked until the device is resumed.
254  * Here we cv_wait on c_suspend_cv, and there is a cv_broadcast() in
255  * DDI_RESUME to wake up this thread.
256  *
257  * NOTE: This code is not tested because the kernel threads are suspended
258  * before the device is suspended. So there can not be any I/O requests on
259  * a suspended device until the cpr implementation changes..
260  */
261 
262 #define	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc) 	\
263 		{\
264 			while (fdc->c_un->un_state == FD_STATE_SUSPENDED) {\
265 				cv_wait(&fdc->c_suspend_cv, \
266 							&fdc->c_lolock);\
267 			}\
268 		}
269 
270 /*
271  * bss (uninitialized data)
272  */
273 struct	fdctlr	*fdctlrs;	/* linked list of controllers */
274 
275 /*
276  * initialized data
277  */
278 
279 static int fd_check_media_time = 5000000;	/* 5 second state check */
280 static int fd_pollable = 0;
281 static uchar_t rwretry = 10;
282 static uchar_t skretry = 5;
283 /* This variable allows the dynamic change of the burst size */
284 static int fd_burstsize = DCSR_BURST_0 | DCSR_BURST_1;
285 
286 static struct driver_minor_data {
287 	char	*name;
288 	int	minor;
289 	int	type;
290 } fd_minor [] = {
291 	{ "a", 0, S_IFBLK},
292 	{ "b", 1, S_IFBLK},
293 	{ "c", 2, S_IFBLK},
294 	{ "a,raw", 0, S_IFCHR},
295 	{ "b,raw", 1, S_IFCHR},
296 	{ "c,raw", 2, S_IFCHR},
297 	{0}
298 };
299 
300 /*
301  * If the interrupt handler is invoked and no controllers expect an
302  * interrupt, the kernel panics.  The following message is printed out.
303  */
304 char *panic_msg = "fd_intr: unexpected interrupt\n";
305 
306 /*
307  * Specify/Configure cmd parameters
308  */
309 static uchar_t fdspec[2] = { 0xc2, 0x33 };	/*  "specify" parameters */
310 static uchar_t fdconf[3] = { 0x64, 0x58, 0x00 }; /*  "configure" parameters */
311 
312 /* When DMA is used, set the ND bit to 0 */
313 #define	SPEC_DMA_MODE	0x32
314 
315 /*
316  * default characteristics
317  */
318 static struct fd_char fdtypes[] = {
319 	{	/* struct fd_char fdchar_1.7MB density */
320 		0,		/* medium */
321 		500,		/* transfer rate */
322 		80,		/* number of cylinders */
323 		2,		/* number of heads */
324 		512,		/* sector size */
325 		21,		/* sectors per track */
326 		-1,		/* (NA) # steps per data track */
327 	},
328 	{	/* struct fd_char fdchar_highdens */
329 		0, 		/* medium */
330 		500, 		/* transfer rate */
331 		80, 		/* number of cylinders */
332 		2, 		/* number of heads */
333 		512, 		/* sector size */
334 		18, 		/* sectors per track */
335 		-1, 		/* (NA) # steps per data track */
336 	},
337 	{	/* struct fd_char fdchar_meddens */
338 		1, 		/* medium */
339 		500, 		/* transfer rate */
340 		77, 		/* number of cylinders */
341 		2, 		/* number of heads */
342 		1024, 		/* sector size */
343 		8, 		/* sectors per track */
344 		-1, 		/* (NA) # steps per data track */
345 	},
346 	{	/* struct fd_char fdchar_lowdens  */
347 		0, 		/* medium */
348 		250, 		/* transfer rate */
349 		80, 		/* number of cylinders */
350 		2, 		/* number of heads */
351 		512, 		/* sector size */
352 		9, 		/* sectors per track */
353 		-1, 		/* (NA) # steps per data track */
354 	}
355 };
356 
357 
358 static int nfdtypes = sizeof (fdtypes) / sizeof (fdtypes[0]);
359 
360 
361 /*
362  * Default Label & partition maps
363  */
364 
365 static struct packed_label fdlbl_high_21 = {
366 	{ "3.5\" floppy cyl 80 alt 0 hd 2 sec 21" },
367 	300,				/* rotations per minute */
368 	80,				/* # physical cylinders */
369 	0,				/* alternates per cylinder */
370 	1,				/* interleave factor */
371 	80,				/* # of data cylinders */
372 	0,				/* # of alternate cylinders */
373 	2,				/* # of heads in this partition */
374 	21,				/* # of 512 byte sectors per track */
375 	{
376 		{ 0, 79 * 2 * 21 },	/* part 0 - all but last cyl */
377 		{ 79, 1 * 2 * 21 },	/* part 1 - just the last cyl */
378 		{ 0, 80 * 2 * 21 },	/* part 2 - "the whole thing" */
379 	},
380 	{	0,			/* version */
381 		"",			/* volume label */
382 		3,			/* no. of partitions */
383 		{ 0 },			/* partition hdrs, sec 2 */
384 		{ 0 },			/* mboot info.  unsupported */
385 		VTOC_SANE,		/* verify vtoc sanity */
386 		{ 0 },			/* reserved space */
387 		0,			/* timestamp */
388 	},
389 };
390 
391 static struct packed_label fdlbl_high_80 = {
392 	{ "3.5\" floppy cyl 80 alt 0 hd 2 sec 18" },
393 	300, 				/* rotations per minute */
394 	80, 				/* # physical cylinders */
395 	0, 				/* alternates per cylinder */
396 	1, 				/* interleave factor */
397 	80, 				/* # of data cylinders */
398 	0, 				/* # of alternate cylinders */
399 	2, 				/* # of heads in this partition */
400 	18, 				/* # of 512 byte sectors per track */
401 	{
402 		{ 0, 79 * 2 * 18 }, 	/* part 0 - all but last cyl */
403 		{ 79, 1 * 2 * 18 }, 	/* part 1 - just the last cyl */
404 		{ 0, 80 * 2 * 18 }, 	/* part 2 - "the whole thing" */
405 	},
406 	{	0,			/* version */
407 		"",			/* volume label */
408 		3,			/* no. of partitions */
409 		{ 0 },			/* partition hdrs, sec 2 */
410 		{ 0 },			/* mboot info.  unsupported */
411 		VTOC_SANE,		/* verify vtoc sanity */
412 		{ 0 },			/* reserved space */
413 		0,			/* timestamp */
414 	},
415 };
416 
417 /*
418  * A medium density diskette has 1024 byte sectors.  The dk_label structure
419  * assumes a sector is DEVBSIZE (512) bytes.
420  */
421 static struct packed_label fdlbl_medium_80 = {
422 	{ "3.5\" floppy cyl 77 alt 0 hd 2 sec 8" },
423 	360, 				/* rotations per minute */
424 	77, 				/* # physical cylinders */
425 	0, 				/* alternates per cylinder */
426 	1, 				/* interleave factor */
427 	77, 				/* # of data cylinders */
428 	0, 				/* # of alternate cylinders */
429 	2, 				/* # of heads in this partition */
430 	16, 				/* # of 512 byte sectors per track */
431 	{
432 		{ 0, 76 * 2 * 8 * 2 },  /* part 0 - all but last cyl */
433 		{ 76, 1 * 2 * 8 * 2 },  /* part 1 - just the last cyl */
434 		{ 0, 77 * 2 * 8 * 2 },  /* part 2 - "the whole thing" */
435 	},
436 	{	0,			/* version */
437 		"",			/* volume label */
438 		3,			/* no. of partitions */
439 		{ 0 },			/* partition hdrs, sec 2 */
440 		{ 0 },			/* mboot info.  unsupported */
441 		VTOC_SANE,		/* verify vtoc sanity */
442 		{ 0 },			/* reserved space */
443 		0,			/* timestamp */
444 	},
445 };
446 
447 static struct packed_label fdlbl_low_80 = {
448 	{ "3.5\" floppy cyl 80 alt 0 hd 2 sec 9" },
449 	300, 				/* rotations per minute */
450 	80, 				/* # physical cylinders */
451 	0, 				/* alternates per cylinder */
452 	1, 				/* interleave factor */
453 	80, 				/* # of data cylinders */
454 	0, 				/* # of alternate cylinders */
455 	2, 				/* # of heads in this partition */
456 	9, 				/* # of 512 byte sectors per track */
457 	{
458 		{ 0, 79 * 2 * 9 }, 	/* part 0 - all but last cyl */
459 		{ 79, 1 * 2 * 9 }, 	/* part 1 - just the last cyl */
460 		{ 0, 80 * 2 * 9 }, 	/* part 2 - "the whole thing" */
461 	},
462 	{	0,			/* version */
463 		"",			/* volume label */
464 		3,			/* no. of partitions */
465 		{ 0 },			/* partition hdrs, sec 2 */
466 		{ 0 },			/* mboot info.  unsupported */
467 		VTOC_SANE,		/* verify vtoc sanity */
468 		{ 0 },			/* reserved space */
469 		0,			/* timestamp */
470 	},
471 };
472 
473 static struct fdcmdinfo {
474 	char *cmdname;		/* command name */
475 	uchar_t ncmdbytes;	/* number of bytes of command */
476 	uchar_t nrsltbytes;	/* number of bytes in result */
477 	uchar_t cmdtype;		/* characteristics */
478 } fdcmds[] = {
479 	"", 0, 0, 0, 			/* - */
480 	"", 0, 0, 0, 			/* - */
481 	"read_track", 9, 7, 1, 		/* 2 */
482 	"specify", 3, 0, 3, 		/* 3 */
483 	"sense_drv_status", 2, 1, 3, 	/* 4 */
484 	"write", 9, 7, 1, 		/* 5 */
485 	"read", 9, 7, 1, 		/* 6 */
486 	"recalibrate", 2, 0, 2, 		/* 7 */
487 	"sense_int_status", 1, 2, 3, 	/* 8 */
488 	"write_del", 9, 7, 1, 		/* 9 */
489 	"read_id", 2, 7, 2, 		/* A */
490 	"motor_on/off", 1, 0, 4, 	/* B */
491 	"read_del", 9, 7, 1, 		/* C */
492 	"format_track", 10, 7, 1, 	/* D */
493 	"dump_reg", 1, 10, 4, 		/* E */
494 	"seek", 3, 0, 2, 		/* F */
495 	"", 0, 0, 0, 			/* - */
496 	"", 0, 0, 0, 			/* - */
497 	"", 0, 0, 0, 			/* - */
498 	"configure", 4, 0, 4, 		/* 13 */
499 	/* relative seek */
500 };
501 
502 static struct cb_ops fd_cb_ops = {
503 	fd_open, 		/* open */
504 	fd_close, 		/* close */
505 	fd_strategy, 		/* strategy */
506 	nodev, 			/* print */
507 	nodev, 			/* dump */
508 	fd_read, 		/* read */
509 	fd_write, 		/* write */
510 	fd_ioctl, 		/* ioctl */
511 	nodev, 			/* devmap */
512 	nodev, 			/* mmap */
513 	nodev, 			/* segmap */
514 	nochpoll, 		/* poll */
515 	fd_prop_op, 		/* cb_prop_op */
516 	0, 			/* streamtab  */
517 	D_NEW | D_MP		/* Driver compatibility flag */
518 };
519 
520 static struct dev_ops	fd_ops = {
521 	DEVO_REV, 		/* devo_rev, */
522 	0, 			/* refcnt  */
523 	fd_info, 		/* info */
524 	nulldev, 		/* identify */
525 	nulldev, 		/* probe */
526 	fd_attach, 		/* attach */
527 	fd_detach, 		/* detach */
528 	nodev, 			/* reset */
529 	&fd_cb_ops, 		/* driver operations */
530 	(struct bus_ops *)0,	/* bus operations */
531 	fd_power		/* power */
532 };
533 
534 
535 /*
536  * error handling
537  *
538  * for debugging, set rwretry and skretry = 1
539  *		set fderrlevel to 1
540  *		set fderrmask  to 224  or 100644
541  *
542  * after debug set rwretry to 10, skretry to 5, and fderrlevel to 3
543  * set fderrmask to FDEM_ALL
544  * remove the define FD_DEBUG
545  *
546  */
547 
548 static unsigned int fderrmask = (unsigned int)FDEM_ALL;
549 static int fderrlevel = 3;
550 
551 static int tosec = 16;  /* long timeouts for sundiag for now */
552 
553 /*
554  * loadable module support
555  */
556 
557 #include <sys/modctl.h>
558 
559 extern struct mod_ops mod_driverops;
560 static struct modldrv modldrv = {
561 	&mod_driverops, 		/* Type of module. driver here */
562 	"Floppy Driver v%I%", 	/* Name of the module. */
563 	&fd_ops, 		/* Driver ops vector */
564 };
565 
566 static struct modlinkage modlinkage = {
567 	MODREV_1,
568 	&modldrv,
569 	NULL
570 };
571 
572 int
573 _init(void)
574 {
575 	return (mod_install(&modlinkage));
576 }
577 
578 int
579 _info(struct modinfo *modinfop)
580 {
581 	return (mod_info(&modlinkage, modinfop));
582 }
583 
584 int
585 _fini(void)
586 {
587 	int e;
588 
589 	if ((e = mod_remove(&modlinkage)) != 0)
590 		return (e);
591 
592 	/* ddi_soft_state_fini() */
593 	return (0);
594 }
595 
596 /* ARGSUSED */
597 static int
598 fd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
599 {
600 	struct 			fdctlr *fdc;
601 	struct 			driver_minor_data *dmdp;
602 	int			instance = ddi_get_instance(dip);
603 	int			hard_intr_set = 0;
604 
605 	FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: start\n"));
606 
607 	switch (cmd) {
608 		case DDI_ATTACH:
609 			break;
610 		case DDI_RESUME:
611 
612 			if (!(fdc = fd_getctlr(instance << FDINSTSHIFT))) {
613 				return (DDI_FAILURE);
614 			}
615 			quiesce_fd_interrupt(fdc);
616 			if (fdc->c_fdtype & FDCTYPE_SB)
617 			    if (ddi_add_intr(dip, 0, &fdc->c_block, 0,
618 				fdintr_dma, (caddr_t)0) != DDI_SUCCESS) {
619 				return (DDI_FAILURE);
620 			}
621 
622 			(void) pm_raise_power(dip, 0, PM_LEVEL_ON);
623 			mutex_enter(&fdc->c_lolock);
624 			/*
625 			 * Wake up any thread blocked due to I/O requests
626 			 * while the device was suspended.
627 			 */
628 			cv_broadcast(&fdc->c_suspend_cv);
629 			mutex_exit(&fdc->c_lolock);
630 			return (DDI_SUCCESS);
631 
632 		default:
633 			return (DDI_FAILURE);
634 	}
635 
636 
637 	/*
638 	 * Check for the pollable property
639 	 * A pollable floppy drive currently only exists on the
640 	 * Sparcstation Voyager.  This drive does not need to
641 	 * be turned on in order to sense whether or not a diskette
642 	 * is present.
643 	 */
644 	if (ddi_getprop(DDI_DEV_T_ANY, dip,
645 	    DDI_PROP_DONTPASS, FD_POLLABLE_PROP, 0))
646 		fd_pollable = 1;
647 
648 	fdc = kmem_zalloc(sizeof (*fdc), KM_SLEEP);
649 	fdc->c_dip = dip;
650 
651 
652 	fdc->c_next = fdctlrs;
653 	fdctlrs = fdc;
654 
655 	/* Determine which type of controller is present and initialize it */
656 	if (fd_attach_det_ctlr(dip, fdc) == DDI_FAILURE) {
657 		fd_cleanup(dip, fdc, hard_intr_set, 0);
658 		return (DDI_FAILURE);
659 	}
660 	/* Finish mapping the device registers & setting up structures */
661 	if (fd_attach_map_regs(dip, fdc) == DDI_FAILURE) {
662 		fd_cleanup(dip, fdc, hard_intr_set, 0);
663 		return (DDI_FAILURE);
664 	}
665 
666 	/*
667 	 * Initialize the DMA limit structures if it's being used.
668 	 */
669 	if (fdc->c_fdtype & FDCTYPE_DMA) {
670 		fdc->c_fd_dma_lim.dma_attr_version = DMA_ATTR_V0;
671 		fdc->c_fd_dma_lim.dma_attr_addr_lo = 0x00000000ull;
672 		fdc->c_fd_dma_lim.dma_attr_addr_hi = 0xfffffffeull;
673 		fdc->c_fd_dma_lim.dma_attr_count_max = 0xffffff;
674 		if (fdc->c_fdtype & FDCTYPE_SB) {
675 			fdc->c_fd_dma_lim.dma_attr_align = FD_SB_DMA_ALIGN;
676 		} else {
677 			fdc->c_fd_dma_lim.dma_attr_align = 1;
678 		}
679 		fdc->c_fd_dma_lim.dma_attr_burstsizes = 0x0;
680 		fdc->c_fd_dma_lim.dma_attr_minxfer = 1;
681 		fdc->c_fd_dma_lim.dma_attr_maxxfer = 0xffff;
682 		fdc->c_fd_dma_lim.dma_attr_seg = 0xffff;
683 		fdc->c_fd_dma_lim.dma_attr_sgllen = 1;
684 		fdc->c_fd_dma_lim.dma_attr_granular = 512;
685 
686 		if (ddi_dma_alloc_handle(dip, &fdc->c_fd_dma_lim,
687 		    DDI_DMA_DONTWAIT, 0, &fdc->c_dmahandle) != DDI_SUCCESS) {
688 			fd_cleanup(dip, fdc, hard_intr_set, 0);
689 			return (DDI_FAILURE);
690 		}
691 
692 		if (fdc->c_fdtype & FDCTYPE_SB) {
693 			ddi_device_acc_attr_t dev_attr;
694 			size_t	rlen;
695 
696 			dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
697 			dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
698 			dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
699 
700 			if (ddi_dma_mem_alloc(fdc->c_dmahandle,
701 			    (size_t)(32*1024), &dev_attr, DDI_DMA_CONSISTENT,
702 			    DDI_DMA_SLEEP, NULL, (caddr_t *)&fdc->dma_buf,
703 			    &rlen, &fdc->c_dma_buf_handle) != DDI_SUCCESS) {
704 			    fd_cleanup(dip, fdc, hard_intr_set, 0);
705 				return (DDI_FAILURE);
706 			}
707 
708 		}
709 	}
710 
711 
712 	/* Register the interrupts */
713 	if (fd_attach_register_interrupts(dip, fdc,
714 	    &hard_intr_set) == DDI_FAILURE) {
715 		fd_cleanup(dip, fdc, hard_intr_set, 0);
716 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
717 		    (C, "fd_attach: registering interrupts failed\n"));
718 		return (DDI_FAILURE);
719 	}
720 
721 
722 	/*
723 	 * set initial controller/drive/disk "characteristics/geometry"
724 	 *
725 	 * NOTE:  The driver only supports one floppy drive.  The hardware
726 	 * only supports one drive because there is only one auxio register
727 	 * for one drive.
728 	 */
729 	fdc->c_un = kmem_zalloc(sizeof (struct fdunit), KM_SLEEP);
730 	fdc->c_un->un_chars = kmem_alloc(sizeof (struct fd_char), KM_SLEEP);
731 	fdc->c_un->un_iostat = kstat_create("fd", 0, "fd0", "disk",
732 	    KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
733 	if (fdc->c_un->un_iostat) {
734 		fdc->c_un->un_iostat->ks_lock = &fdc->c_lolock;
735 		kstat_install(fdc->c_un->un_iostat);
736 	}
737 
738 	fdc->c_un->un_drive = kmem_zalloc(sizeof (struct fd_drive), KM_SLEEP);
739 
740 	/* check for the manual eject property */
741 	if (ddi_getprop(DDI_DEV_T_ANY, dip,
742 	    DDI_PROP_DONTPASS, FD_MANUAL_EJECT, 0)) {
743 		fdc->c_un->un_drive->fdd_ejectable = 0;
744 	} else {
745 		/* an absence of the property indicates auto eject */
746 		fdc->c_un->un_drive->fdd_ejectable = -1;
747 	}
748 
749 	FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: ejectable? %d\n",
750 	    fdc->c_un->un_drive->fdd_ejectable));
751 
752 	/*
753 	 * Check for the drive id.  If the drive id property doesn't exist
754 	 * then the drive id is set to 0
755 	 */
756 	fdc->c_un->un_unit_no = ddi_getprop(DDI_DEV_T_ANY, dip,
757 	    DDI_PROP_DONTPASS, FD_UNIT, 0);
758 
759 
760 	if (fdc->c_fdtype & FDCTYPE_SB) {
761 		fdc->sb_dma_channel = ddi_getprop(DDI_DEV_T_ANY, dip,
762 			DDI_PROP_DONTPASS, "dma-channel", 0);
763 	}
764 
765 
766 	FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: unit %d\n",
767 	    fdc->c_un->un_unit_no));
768 
769 	/* Initially set the characteristics to high density */
770 	fdc->c_un->un_curfdtype = 1;
771 	*fdc->c_un->un_chars = fdtypes[fdc->c_un->un_curfdtype];
772 	fdunpacklabel(&fdlbl_high_80, &fdc->c_un->un_label);
773 
774 	/* Make sure drive is present */
775 	if (fd_attach_check_drive(fdc) == DDI_FAILURE) {
776 		fd_cleanup(dip, fdc, hard_intr_set, 1);
777 		return (DDI_FAILURE);
778 	}
779 
780 	for (dmdp = fd_minor; dmdp->name != NULL; dmdp++) {
781 		if (ddi_create_minor_node(dip, dmdp->name, dmdp->type,
782 		(instance << FDINSTSHIFT) | dmdp->minor,
783 		DDI_NT_FD, 0) == DDI_FAILURE) {
784 			fd_cleanup(dip, fdc, hard_intr_set, 1);
785 			return (DDI_FAILURE);
786 		}
787 	}
788 
789 	create_pm_components(dip);
790 
791 	/*
792 	 * Add a zero-length attribute to tell the world we support
793 	 * kernel ioctls (for layered drivers)
794 	 */
795 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
796 	    DDI_KERNEL_IOCTL, NULL, 0);
797 
798 	ddi_report_dev(dip);
799 
800 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
801 	    (C, "attached 0x%x\n", ddi_get_instance(dip)));
802 
803 	return (DDI_SUCCESS);
804 }
805 
806 /*
807  * Finish mapping the registers and initializing structures
808  */
809 static int
810 fd_attach_map_regs(dev_info_t *dip, struct fdctlr *fdc)
811 {
812 	ddi_device_acc_attr_t attr;
813 
814 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
815 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
816 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
817 
818 	/* Map the DMA registers of the platform supports DMA */
819 	if (fdc->c_fdtype & FDCTYPE_SB) {
820 		if (ddi_regs_map_setup(dip, 1, (caddr_t *)&fdc->c_dma_regs,
821 			0, sizeof (struct sb_dma_reg), &attr,
822 			&fdc->c_handlep_dma)) {
823 			return (DDI_FAILURE);
824 		}
825 
826 
827 	} else if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
828 		if (ddi_regs_map_setup(dip, 1, (caddr_t *)&fdc->c_dma_regs,
829 			0, sizeof (struct cheerio_dma_reg), &attr,
830 			&fdc->c_handlep_dma)) {
831 			return (DDI_FAILURE);
832 		}
833 	}
834 
835 	/* Reset the DMA engine and enable floppy interrupts */
836 	reset_dma_controller(fdc);
837 	set_dma_control_register(fdc, DCSR_INIT_BITS);
838 
839 	/* Finish initializing structures associated with the device regs */
840 	switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) {
841 	case FDCTYPE_82077:
842 		FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "type is 82077\n"));
843 		/*
844 		 * Initialize addrs of key registers
845 		 */
846 		fdc->c_control =
847 		    (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_control;
848 		fdc->c_fifo = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_fifo;
849 		fdc->c_dor = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_dor;
850 		fdc->c_dir = (uchar_t *)&fdc->c_reg->fdc_82077_reg.fdc_dir;
851 
852 
853 		FDERRPRINT(FDEP_L1, FDEM_ATTA, ((int)C,
854 			(char *)"fdattach: msr/dsr at %p\n",
855 			(void *)fdc->c_control));
856 
857 		/*
858 		 * The 82077 doesn't use the first configuration parameter
859 		 * so let's adjust that while we know we're an 82077.
860 		 */
861 		fdconf[0] = 0;
862 
863 		quiesce_fd_interrupt(fdc);
864 		break;
865 	default:
866 		break;
867 	}
868 
869 	return (0);
870 }
871 
872 /*
873  * Determine which type of floppy controller is present and
874  * initialize the registers accordingly
875  */
876 static int
877 fd_attach_det_ctlr(dev_info_t *dip, struct fdctlr *fdc)
878 {
879 	ddi_device_acc_attr_t attr;
880 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
881 	/* DDI_NEVERSWAP_ACC since the controller has a byte interface. */
882 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_LE_ACC;
883 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
884 
885 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
886 			    (C, "fdattach_det_cltr: start \n"));
887 
888 	/*
889 	 * First, map in the controller's registers
890 	 * The controller has an 8-bit interface, so byte
891 	 * swapping isn't needed
892 	 */
893 
894 	if (ddi_regs_map_setup(dip, 0, (caddr_t *)&fdc->c_reg,
895 				0, sizeof (union fdcreg),
896 				&attr,
897 				&fdc->c_handlep_cont)) {
898 			return (DDI_FAILURE);
899 	}
900 
901 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
902 			    (C, "fdattach_det_cltr: mapped floppy regs\n"));
903 
904 
905 	/*
906 	 * Set platform specific characteristics based on the device-tree
907 	 * node name.
908 	 */
909 
910 
911 	if (strcmp(ddi_get_name(dip), "SUNW,fdtwo") == 0) {
912 		fdc->c_fdtype |= FDCTYPE_SLAVIO;
913 		fdc->c_fdtype |= FDCTYPE_82077;
914 		fdc->c_auxiova = fd_getauxiova(dip);
915 		fdc->c_auxiodata = (uchar_t)(AUX_MBO4M|AUX_TC4M);
916 		fdc->c_auxiodata2 = (uchar_t)AUX_TC4M;
917 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
918 			    (C, "fdattach: slavio will be used!\n"));
919 
920 
921 /*
922  * Check the binding name to identify whether it is a South bridge based
923  * system or not.
924  */
925 	} else if (strcmp(ddi_get_name(dip), "pnpALI,1533,0") == 0) {
926 
927 		fdc->c_fdtype |= FDCTYPE_SB;
928 		fdc->c_fdtype |= FDCTYPE_82077;
929 		fdc->c_fdtype |= FDCTYPE_DMA;
930 
931 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
932 			(C, "fdattach: southbridge will be used!\n"));
933 
934 		/*
935 		 * The driver assumes high density characteristics until
936 		 * the diskette is looked at.
937 		 */
938 
939 		fdc->c_fdtype |= FDCTYPE_DMA8237;
940 		FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: DMA used\n"));
941 
942 
943 	} else if (strcmp(ddi_get_name(dip), "fdthree") == 0) {
944 
945 		fdc->c_fdtype |= FDCTYPE_CHEERIO;
946 		fdc->c_fdtype |= FDCTYPE_82077;
947 
948 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
949 			    (C, "fdattach: cheerio will be used!\n"));
950 		/*
951 		 * The cheerio auxio register should be memory mapped.  The
952 		 * auxio register on other platforms is shared and mapped
953 		 * elsewhere in the kernel
954 		 */
955 		if (ddi_regs_map_setup(dip, 2, (caddr_t *)&fdc->c_auxio_reg,
956 		    0, sizeof (uint_t), &attr, &fdc->c_handlep_aux)) {
957 			return (DDI_FAILURE);
958 		}
959 
960 		/*
961 		 * The driver assumes high density characteristics until
962 		 * the diskette is looked at.
963 		 */
964 		Set_auxio(fdc, AUX_HIGH_DENSITY);
965 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
966 			    (C, "fdattach: auxio register 0x%x\n",
967 				 *fdc->c_auxio_reg));
968 
969 		fdc->c_fdtype |= FDCTYPE_DMA;
970 		FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_attach: DMA used\n"));
971 
972 	}
973 
974 	if (fdc->c_fdtype == 0) {
975 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
976 			    (C, "fdattach: no controller!\n"));
977 		return (DDI_FAILURE);
978 	} else {
979 		return (0);
980 	}
981 }
982 
983 
984 /*
985  * Register the floppy interrupts
986  */
987 static int
988 fd_attach_register_interrupts(dev_info_t *dip, struct fdctlr *fdc, int *hard)
989 {
990 	ddi_iblock_cookie_t  iblock_cookie_soft;
991 	int status;
992 
993 	/*
994 	 * First call ddi_get_iblock_cookie() to retrieve the
995 	 * the interrupt block cookie so that the mutexes may
996 	 * be initialized before adding the interrupt.  If the
997 	 * mutexes are initialized after adding the interrupt, there
998 	 * could be a race condition.
999 	 */
1000 	if (ddi_get_iblock_cookie(dip, 0, &fdc->c_block) != DDI_SUCCESS) {
1001 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
1002 		(C, "fdattach: ddi_get_iblock_cookie failed\n"));
1003 		return (DDI_FAILURE);
1004 
1005 	}
1006 
1007 	/* Initialize high level mutex */
1008 	mutex_init(&fdc->c_hilock, NULL, MUTEX_DRIVER, fdc->c_block);
1009 
1010 	/*
1011 	 * Try to register fast trap handler, if unable try standard
1012 	 * interrupt handler, else bad
1013 	 */
1014 
1015 	if (fdc->c_fdtype & FDCTYPE_DMA) {
1016 		if (ddi_add_intr(dip, 0, &fdc->c_block, 0,
1017 			    fdintr_dma, (caddr_t)0) == DDI_SUCCESS) {
1018 				FDERRPRINT(FDEP_L1, FDEM_ATTA,
1019 				(C, "fdattach: standard intr\n"));
1020 
1021 				/*
1022 				 * When DMA is used, the low level lock
1023 				 * is used in the hard interrupt handler.
1024 				 */
1025 				mutex_init(&fdc->c_lolock, NULL,
1026 					MUTEX_DRIVER, fdc->c_block);
1027 
1028 				*hard = 1;
1029 		} else {
1030 			FDERRPRINT(FDEP_L1, FDEM_ATTA,
1031 			(C, "fdattach: can't add dma intr\n"));
1032 
1033 			mutex_destroy(&fdc->c_hilock);
1034 
1035 			return (DDI_FAILURE);
1036 		}
1037 	} else {
1038 		/*
1039 		 * Platforms that don't support DMA have both hard
1040 		 * and soft interrupts.
1041 		 */
1042 		if (ddi_add_intr(dip, 0, &fdc->c_block, 0,
1043 			fd_intr, (caddr_t)0) == DDI_SUCCESS) {
1044 				FDERRPRINT(FDEP_L1, FDEM_ATTA,
1045 				(C, "fdattach: standard intr\n"));
1046 				*hard = 1;
1047 
1048 			/* fast traps are not enabled */
1049 			fdc->c_fasttrap = 0;
1050 
1051 		} else {
1052 			FDERRPRINT(FDEP_L1, FDEM_ATTA,
1053 			(C, "fdattach: can't add intr\n"));
1054 
1055 			mutex_destroy(&fdc->c_hilock);
1056 
1057 			return (DDI_FAILURE);
1058 		}
1059 
1060 
1061 		/*
1062 		 * Initialize the soft interrupt handler.  First call
1063 		 * ddi_get_soft_iblock_cookie() so that the mutex may
1064 		 * be initialized before the handler is added.
1065 		 */
1066 		status = ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_LOW,
1067 				&iblock_cookie_soft);
1068 
1069 
1070 		if (status != DDI_SUCCESS) {
1071 			mutex_destroy(&fdc->c_hilock);
1072 			return (DDI_FAILURE);
1073 		}
1074 
1075 		/*
1076 		 * Initialize low level mutex which is used in the soft
1077 		 * interrupt handler
1078 		 */
1079 		mutex_init(&fdc->c_lolock, NULL, MUTEX_DRIVER,
1080 			iblock_cookie_soft);
1081 
1082 		if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &fdc->c_softid,
1083 					NULL, NULL,
1084 					fd_lointr,
1085 					(caddr_t)fdc) != DDI_SUCCESS) {
1086 
1087 			mutex_destroy(&fdc->c_hilock);
1088 			mutex_destroy(&fdc->c_lolock);
1089 
1090 			return (DDI_FAILURE);
1091 		}
1092 	}
1093 
1094 	fdc->c_intrstat = kstat_create("fd", 0, "fdc0", "controller",
1095 		KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT);
1096 	if (fdc->c_intrstat) {
1097 		fdc->c_hiintct = &KIOIP->intrs[KSTAT_INTR_HARD];
1098 		kstat_install(fdc->c_intrstat);
1099 	}
1100 
1101 	/* condition variable to wait on while an io transaction occurs */
1102 	cv_init(&fdc->c_iocv, NULL, CV_DRIVER, NULL);
1103 
1104 	/* condition variable for the csb */
1105 	cv_init(&fdc->c_csbcv, NULL, CV_DRIVER, NULL);
1106 
1107 	/* condition variable for motor on waiting period */
1108 	cv_init(&fdc->c_motoncv, NULL, CV_DRIVER, NULL);
1109 
1110 	/* semaphore to serialize opens and closes */
1111 	sema_init(&fdc->c_ocsem, 1, NULL, SEMA_DRIVER, NULL);
1112 
1113 	/* condition variable to wait on suspended floppy controller. */
1114 	cv_init(&fdc->c_suspend_cv, NULL, CV_DRIVER, NULL);
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Make sure the drive is present
1121  * 	- acquires the low level lock
1122  */
1123 static int
1124 fd_attach_check_drive(struct fdctlr *fdc)
1125 {
1126 	int tmp_fderrlevel;
1127 	int unit = fdc->c_un->un_unit_no;
1128 
1129 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
1130 			(C, "fd_attach_check_drive\n"));
1131 
1132 
1133 	mutex_enter(&fdc->c_lolock);
1134 	switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) {
1135 
1136 	/* insure that the eject line is reset */
1137 	case FDCTYPE_82077:
1138 
1139 		/*
1140 		 * Everything but the motor enable, drive select,
1141 		 * and reset bits are turned off.  These three
1142 		 * bits remain as they are.
1143 		 */
1144 		/* LINTED */
1145 		Set_dor(fdc, ~((MOTEN(unit))|DRVSEL|RESET), 0);
1146 
1147 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
1148 			(C, "fdattach: Dor 0x%x\n", Dor(fdc)));
1149 
1150 		drv_usecwait(5);
1151 		if (unit == 0) {
1152 			/* LINTED */
1153 			Set_dor(fdc, RESET|DRVSEL, 1);
1154 		} else {
1155 
1156 			/* LINTED */
1157 			Set_dor(fdc, DRVSEL, 0);
1158 			/* LINTED */
1159 			Set_dor(fdc, RESET, 1);
1160 		}
1161 
1162 		drv_usecwait(5);
1163 
1164 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
1165 			(C, "fdattach: Dor 0x%x\n", Dor(fdc)));
1166 
1167 		if (!((fdc->c_fdtype & FDCTYPE_CHEERIO) ||
1168 				(fdc->c_fdtype & FDCTYPE_SB))) {
1169 			set_auxioreg(AUX_TC4M, 0);
1170 		}
1171 		break;
1172 	default:
1173 		break;
1174 	}
1175 
1176 
1177 	fdgetcsb(fdc);
1178 	if (fdreset(fdc) != 0) {
1179 		mutex_exit(&fdc->c_lolock);
1180 		return (DDI_FAILURE);
1181 	}
1182 
1183 
1184 	/* check for drive present */
1185 
1186 	tmp_fderrlevel = fderrlevel;
1187 
1188 
1189 	fderrlevel = FDEP_LMAX;
1190 
1191 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
1192 			(C, "fdattach: call fdrecalseek\n"));
1193 
1194 	/* Make sure the drive is present */
1195 	if (fdrecalseek(fdc, unit, -1, 0) != 0) {
1196 		timeout_id_t timeid = fdc->c_mtimeid;
1197 		fderrlevel = tmp_fderrlevel;
1198 		fdc->c_mtimeid = 0;
1199 		mutex_exit(&fdc->c_lolock);
1200 
1201 
1202 		/* Do not hold the mutex over the call to untimeout */
1203 		if (timeid) {
1204 			(void) untimeout(timeid);
1205 		}
1206 
1207 		FDERRPRINT(FDEP_L2, FDEM_ATTA,
1208 		    (C, "fd_attach: no drive?\n"));
1209 
1210 		return (DDI_FAILURE);
1211 	}
1212 
1213 	fderrlevel = tmp_fderrlevel;
1214 
1215 	fdselect(fdc, unit, 0);    /* deselect drive zero (used in fdreset) */
1216 	fdretcsb(fdc);
1217 	mutex_exit(&fdc->c_lolock);
1218 
1219 	return (0);
1220 }
1221 
1222 /*
1223  * Clean up routine used by fd_detach and fd_attach
1224  *
1225  * Note: if the soft id is non-zero, then ddi_add_softintr() completed
1226  * successfully.  I can not make the same assumption about the iblock_cookie
1227  * for the high level interrupt handler.  So, the hard parameter indicates
1228  * whether or not a high level interrupt handler has been added.
1229  *
1230  * If the locks parameter is nonzero, then all mutexes, semaphores and
1231  * condition variables will be destroyed.
1232  *
1233  * Does not assume the low level mutex is held.
1234  *
1235  */
1236 static void
1237 fd_cleanup(dev_info_t *dip, struct fdctlr *fdc, int hard, int locks)
1238 {
1239 
1240 
1241 	FDERRPRINT(FDEP_L1, FDEM_ATTA,
1242 		(C, "fd_cleanup instance: %d ctlr: 0x%x\n",
1243 		ddi_get_instance(dip), (int)fdc));
1244 
1245 
1246 	if (fdc == NULL) {
1247 		return;
1248 	}
1249 
1250 	/*
1251 	 * Remove interrupt handlers first before anything else
1252 	 * is deallocated.
1253 	 */
1254 
1255 	/* Remove hard interrupt if one is registered */
1256 	if (hard) {
1257 		ddi_remove_intr(dip, (uint_t)0, fdc->c_block);
1258 	}
1259 
1260 	/* Remove soft interrupt if one is registered */
1261 	if (fdc->c_softid != NULL)
1262 		ddi_remove_softintr(fdc->c_softid);
1263 
1264 
1265 	/* Remove timers */
1266 	if (fdc->c_fdtype & FDCTYPE_82077) {
1267 		if (fdc->c_mtimeid)
1268 			(void) untimeout(fdc->c_mtimeid);
1269 		/*
1270 		 * Need to turn off motor (includes select/LED for South Bridge
1271 		 * chipset) just in case it was on when timer was removed
1272 		 */
1273 		fdmotoff(fdc);
1274 	}
1275 	if (fdc->c_timeid)
1276 		(void) untimeout(fdc->c_timeid);
1277 
1278 
1279 	/* Remove memory handles */
1280 	if (fdc->c_handlep_cont)
1281 		ddi_regs_map_free(&fdc->c_handlep_cont);
1282 
1283 	if (fdc->c_handlep_aux)
1284 		ddi_regs_map_free(&fdc->c_handlep_aux);
1285 
1286 	if (fdc->c_handlep_dma)
1287 		ddi_regs_map_free(&fdc->c_handlep_dma);
1288 
1289 	if (fdc->c_dma_buf_handle != NULL)
1290 		ddi_dma_mem_free(&fdc->c_dma_buf_handle);
1291 
1292 	if (fdc->c_dmahandle != NULL)
1293 		ddi_dma_free_handle(&fdc->c_dmahandle);
1294 
1295 
1296 	/* Remove all minor nodes */
1297 	ddi_remove_minor_node(dip, NULL);
1298 
1299 
1300 
1301 	/* Remove unit structure if one exists */
1302 	if (fdc->c_un != (struct fdunit *)NULL) {
1303 
1304 		ASSERT(!mutex_owned(&fdc->c_lolock));
1305 
1306 		if (fdc->c_un->un_iostat)
1307 			kstat_delete(fdc->c_un->un_iostat);
1308 		fdc->c_un->un_iostat = NULL;
1309 
1310 		if (fdc->c_un->un_chars)
1311 			kmem_free(fdc->c_un->un_chars, sizeof (struct fd_char));
1312 
1313 		if (fdc->c_un->un_drive)
1314 			kmem_free(fdc->c_un->un_drive,
1315 			    sizeof (struct fd_drive));
1316 
1317 		kmem_free((caddr_t)fdc->c_un, sizeof (struct fdunit));
1318 	}
1319 
1320 	if (fdc->c_intrstat) {
1321 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
1322 				(C, "fd_cleanup: delete intrstat\n"));
1323 
1324 		kstat_delete(fdc->c_intrstat);
1325 	}
1326 
1327 	fdc->c_intrstat = NULL;
1328 
1329 	if (locks) {
1330 		cv_destroy(&fdc->c_iocv);
1331 		cv_destroy(&fdc->c_csbcv);
1332 		cv_destroy(&fdc->c_motoncv);
1333 		cv_destroy(&fdc->c_suspend_cv);
1334 		sema_destroy(&fdc->c_ocsem);
1335 		mutex_destroy(&fdc->c_hilock);
1336 		mutex_destroy(&fdc->c_lolock);
1337 	}
1338 
1339 
1340 	fdctlrs = fdc->c_next;
1341 	kmem_free(fdc, sizeof (*fdc));
1342 
1343 
1344 }
1345 
1346 
1347 static int
1348 fd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1349 {
1350 	int instance = ddi_get_instance(dip);
1351 	struct fdctlr *fdc = fd_getctlr(instance << FDINSTSHIFT);
1352 	timeout_id_t c_mtimeid;
1353 
1354 	FDERRPRINT(FDEP_L1, FDEM_ATTA, (C, "fd_detach\n"));
1355 
1356 	switch (cmd) {
1357 
1358 	case DDI_DETACH:
1359 		/*
1360 		 * The hard parameter is set to 1.  If detach is called, then
1361 		 * attach must have passed meaning that the high level
1362 		 * interrupt handler was successfully added.
1363 		 * Similarly, the locks parameter is also set to 1.
1364 		 */
1365 		fd_cleanup(dip, fdc, 1, 1);
1366 
1367 		ddi_prop_remove_all(dip);
1368 
1369 		return (DDI_SUCCESS);
1370 
1371 	case DDI_SUSPEND:
1372 		if (!fdc)
1373 			return (DDI_FAILURE);
1374 
1375 
1376 		mutex_enter(&fdc->c_lolock);
1377 		fdgetcsb(fdc);	/* Wait for I/O to finish */
1378 		c_mtimeid = fdc->c_mtimeid;
1379 		fdretcsb(fdc);
1380 		mutex_exit(&fdc->c_lolock);
1381 
1382 		(void) untimeout(c_mtimeid);
1383 		/*
1384 		 * After suspend, the system could be powered off.
1385 		 * When it is later powered on the southbridge floppy
1386 		 * controller will tristate the interrupt line causing
1387 		 * continuous dma interrupts.
1388 		 * To avoid getting continuous fd interrupts we will remove the
1389 		 * dma interrupt handler installed. We will re-install the
1390 		 * handler when we RESUME.
1391 		 */
1392 		if (fdc->c_fdtype & FDCTYPE_SB)
1393 			ddi_remove_intr(dip, 0, fdc->c_block);
1394 
1395 		fdc->c_un->un_state = FD_STATE_SUSPENDED;
1396 
1397 		return (DDI_SUCCESS);
1398 
1399 	default:
1400 		return (DDI_FAILURE);
1401 	}
1402 }
1403 
1404 /* ARGSUSED */
1405 static int
1406 fd_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1407 {
1408 	register struct fdctlr *fdc;
1409 	register int error;
1410 
1411 	switch (infocmd) {
1412 
1413 	case DDI_INFO_DEVT2DEVINFO:
1414 		if ((fdc = fd_getctlr((dev_t)arg)) == NULL) {
1415 			error = DDI_FAILURE;
1416 		} else {
1417 			*result = fdc->c_dip;
1418 			error = DDI_SUCCESS;
1419 		}
1420 		break;
1421 
1422 	case DDI_INFO_DEVT2INSTANCE:
1423 		*result = 0;
1424 		error = DDI_SUCCESS;
1425 		break;
1426 
1427 	default:
1428 		error = DDI_FAILURE;
1429 	}
1430 	return (error);
1431 }
1432 
1433 /*
1434  * property operation routine.  return the number of blocks for the partition
1435  * in question or forward the request to the property facilities.
1436  */
1437 static int
1438 fd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
1439     char *name, caddr_t valuep, int *lengthp)
1440 {
1441 	struct fdunit	*un;
1442 	struct fdctlr	*fdc;
1443 	uint64_t	nblocks64;
1444 
1445 	/*
1446 	 * Our dynamic properties are all device specific and size oriented.
1447 	 * Requests issued under conditions where size is valid are passed
1448 	 * to ddi_prop_op_nblocks with the size information, otherwise the
1449 	 * request is passed to ddi_prop_op.
1450 	 */
1451 	if (dev == DDI_DEV_T_ANY) {
1452 pass:  		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
1453 		    name, valuep, lengthp));
1454 	} else {
1455 		fdc = fd_getctlr(dev);
1456 		if (fdc == NULL)
1457 			goto pass;
1458 
1459 		/* we have size if diskette opened and label read */
1460 		un = fdc->c_un;
1461 		if ((un == NULL) || !fd_unit_is_open(fdc->c_un))
1462 			goto pass;
1463 
1464 		/* get nblocks value */
1465 		nblocks64 = (ulong_t)
1466 		    un->un_label.dkl_map[FDPARTITION(dev)].dkl_nblk;
1467 
1468 		return (ddi_prop_op_nblocks(dev, dip, prop_op, mod_flags,
1469 		    name, valuep, lengthp, nblocks64));
1470 	}
1471 }
1472 
1473 /* ARGSUSED3 */
1474 static int
1475 fd_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
1476 {
1477 	dev_t dev;
1478 	int  part;
1479 	struct fdctlr *fdc;
1480 	struct fdunit *un;
1481 	struct dk_map32 *dkm;
1482 	uchar_t	pbit;
1483 	int	err, part_is_open;
1484 	int 	unit;
1485 
1486 	dev = *devp;
1487 	fdc = fd_getctlr(dev);
1488 	if ((fdc == NULL) || ((un = fdc->c_un) == NULL)) {
1489 		return (ENXIO);
1490 	}
1491 
1492 	unit = fdc->c_un->un_unit_no;
1493 
1494 	/*
1495 	 * Serialize opens/closes
1496 	 */
1497 
1498 	sema_p(&fdc->c_ocsem);
1499 
1500 	/* check partition */
1501 	part = FDPARTITION(dev);
1502 	pbit = 1 << part;
1503 	dkm = &un->un_label.dkl_map[part];
1504 	if (dkm->dkl_nblk == 0) {
1505 		sema_v(&fdc->c_ocsem);
1506 		return (ENXIO);
1507 	}
1508 
1509 	FDERRPRINT(FDEP_L1, FDEM_OPEN,
1510 	    (C, "fdopen: ctlr %d unit %d part %d\n",
1511 	    ddi_get_instance(fdc->c_dip), unit, part));
1512 
1513 	FDERRPRINT(FDEP_L1, FDEM_OPEN,
1514 	    (C, "fdopen: flag 0x%x", flag));
1515 
1516 
1517 	/*
1518 	 * Insure that drive is present with a recalibrate on first open.
1519 	 */
1520 	(void) pm_busy_component(fdc->c_dip, 0);
1521 
1522 	mutex_enter(&fdc->c_lolock);
1523 
1524 	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
1525 
1526 	if (fdc->c_un->un_state == FD_STATE_STOPPED) {
1527 		mutex_exit(&fdc->c_lolock);
1528 		if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
1529 						!= DDI_SUCCESS) {
1530 			FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \
1531 failed. \n"));
1532 
1533 				sema_v(&fdc->c_ocsem);
1534 				(void) pm_idle_component(fdc->c_dip, 0);
1535 				return (EIO);
1536 		}
1537 		mutex_enter(&fdc->c_lolock);
1538 	}
1539 	if (fd_unit_is_open(un) == 0) {
1540 		fdgetcsb(fdc);
1541 		/*
1542 		 * no check changed!
1543 		 */
1544 		err = fdrecalseek(fdc, unit, -1, 0);
1545 		fdretcsb(fdc);
1546 		if (err) {
1547 			FDERRPRINT(FDEP_L3, FDEM_OPEN,
1548 			    (C, "fd%d: drive not ready\n", 0));
1549 			/* deselect drv on last close */
1550 			fdselect(fdc, unit, 0);
1551 			mutex_exit(&fdc->c_lolock);
1552 			sema_v(&fdc->c_ocsem);
1553 			(void) pm_idle_component(fdc->c_dip, 0);
1554 			return (EIO);
1555 		}
1556 	}
1557 
1558 	/*
1559 	 * Check for previous exclusive open, or trying to exclusive open
1560 	 */
1561 	if (otyp == OTYP_LYR) {
1562 		part_is_open = (un->un_lyropen[part] != 0);
1563 	} else {
1564 		part_is_open = fd_part_is_open(un, part);
1565 	}
1566 	if ((un->un_exclmask & pbit) || ((flag & FEXCL) && part_is_open)) {
1567 		mutex_exit(&fdc->c_lolock);
1568 		sema_v(&fdc->c_ocsem);
1569 		FDERRPRINT(FDEP_L2, FDEM_OPEN, (C, "fd:just return\n"));
1570 		(void) pm_idle_component(fdc->c_dip, 0);
1571 		return (EBUSY);
1572 	}
1573 
1574 	/* don't attempt access, just return successfully */
1575 	if (flag & (FNDELAY | FNONBLOCK)) {
1576 		FDERRPRINT(FDEP_L2, FDEM_OPEN,
1577 		    (C, "fd: return busy..\n"));
1578 		goto out;
1579 	}
1580 
1581 	fdc->c_csb.csb_unit = (uchar_t)unit;
1582 	if (fdgetlabel(fdc, unit)) {
1583 		/* didn't find label (couldn't read anything) */
1584 		FDERRPRINT(FDEP_L3, FDEM_OPEN,
1585 		    (C,
1586 		    "fd%d: unformatted diskette or no diskette in the drive\n",
1587 		    0));
1588 		if (fd_unit_is_open(un) == 0) {
1589 			/* deselect drv on last close */
1590 			fdselect(fdc, unit, 0);
1591 		}
1592 
1593 		mutex_exit(&fdc->c_lolock);
1594 		sema_v(&fdc->c_ocsem);
1595 		(void) pm_idle_component(fdc->c_dip, 0);
1596 		return (EIO);
1597 	}
1598 
1599 	/*
1600 	 * if opening for writing, check write protect on diskette
1601 	 */
1602 	if (flag & FWRITE) {
1603 		fdgetcsb(fdc);
1604 		err = fdsensedrv(fdc, unit) & WP_SR3;
1605 		fdretcsb(fdc);
1606 		if (err) {
1607 			if (fd_unit_is_open(un) == 0)
1608 				fdselect(fdc, unit, 0);
1609 			mutex_exit(&fdc->c_lolock);
1610 			sema_v(&fdc->c_ocsem);
1611 			(void) pm_idle_component(fdc->c_dip, 0);
1612 			return (EROFS);
1613 		}
1614 	}
1615 
1616 out:
1617 	/*
1618 	 * mark open as having succeeded
1619 	 */
1620 	if (flag & FEXCL) {
1621 		un->un_exclmask |= pbit;
1622 	}
1623 	if (otyp == OTYP_LYR) {
1624 		un->un_lyropen[part]++;
1625 	} else {
1626 		un->un_regopen[otyp] |= pbit;
1627 	}
1628 	mutex_exit(&fdc->c_lolock);
1629 	sema_v(&fdc->c_ocsem);
1630 	(void) pm_idle_component(fdc->c_dip, 0);
1631 	return (0);
1632 }
1633 /*
1634  * fd_part_is_open
1635  *	return 1 if the partition is open
1636  *	return 0 otherwise
1637  */
1638 static int
1639 fd_part_is_open(struct fdunit *un, int part)
1640 {
1641 	int i;
1642 	for (i = 0; i < OTYPCNT - 1; i++)
1643 		if (un->un_regopen[i] & (1 << part))
1644 			return (1);
1645 	return (0);
1646 }
1647 
1648 
1649 /* ARGSUSED */
1650 static int
1651 fd_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
1652 {
1653 	int unit, part_is_closed, part;
1654 	register struct fdctlr *fdc;
1655 	register struct fdunit *un;
1656 
1657 	fdc = fd_getctlr(dev);
1658 	if (!fdc || !(un = fdc->c_un))
1659 		return (ENXIO);
1660 
1661 
1662 	unit = fdc->c_un->un_unit_no;
1663 	FDERRPRINT(FDEP_L1, FDEM_CLOS, (C, "fd_close\n"));
1664 	part = FDPARTITION(dev);
1665 
1666 	sema_p(&fdc->c_ocsem);
1667 	mutex_enter(&fdc->c_lolock);
1668 
1669 	if (otyp == OTYP_LYR) {
1670 		un->un_lyropen[part]--;
1671 		part_is_closed = (un->un_lyropen[part] == 0);
1672 	} else {
1673 		un->un_regopen[otyp] &= ~(1<<part);
1674 		part_is_closed = 1;
1675 	}
1676 	if (part_is_closed)
1677 		un->un_exclmask &= ~(1<<part);
1678 
1679 	if (fd_unit_is_open(un) == 0) {
1680 		/* deselect drive on last close */
1681 		fdselect(fdc, unit, 0);
1682 		un->un_flags &= ~FDUNIT_CHANGED;
1683 	}
1684 	mutex_exit(&fdc->c_lolock);
1685 	sema_v(&fdc->c_ocsem);
1686 
1687 	return (0);
1688 }
1689 
1690 /*
1691  * fd_strategy
1692  *	checks operation, hangs buf struct off fdctlr, calls fdstart
1693  *	if not already busy.  Note that if we call start, then the operation
1694  *	will already be done on return (start sleeps).
1695  */
1696 static int
1697 fd_strategy(register struct buf *bp)
1698 {
1699 	struct fdctlr *fdc;
1700 	struct fdunit *un;
1701 	uint_t	phys_blkno;
1702 	struct dk_map32 *dkm;
1703 
1704 	FDERRPRINT(FDEP_L1, FDEM_STRA,
1705 	    (C, "fd_strategy: bp = 0x%p, dev = 0x%lx\n",
1706 	    (void *)bp, bp->b_edev));
1707 	FDERRPRINT(FDEP_L1, FDEM_STRA,
1708 	    (C, "b_blkno=%x b_flags=%x b_count=%x\n",
1709 	    (int)bp->b_blkno, bp->b_flags, (int)bp->b_bcount));
1710 	fdc = fd_getctlr(bp->b_edev);
1711 	un = fdc->c_un;
1712 	dkm = &un->un_label.dkl_map[FDPARTITION(bp->b_edev)];
1713 
1714 	/*
1715 	 * If it's medium density and the block no. isn't a multiple
1716 	 * of 1K, then return an error.
1717 	 */
1718 	if (un->un_chars->fdc_medium) {
1719 		phys_blkno = (uint_t)bp->b_blkno >> 1;
1720 		if (bp->b_blkno & 1) {
1721 			FDERRPRINT(FDEP_L3, FDEM_STRA,
1722 			    (C, "b_blkno=0x%lx is not 1k aligned\n",
1723 			    (long)bp->b_blkno));
1724 			bp->b_error = EINVAL;
1725 			bp->b_resid = bp->b_bcount;
1726 			bp->b_flags |= B_ERROR;
1727 			biodone(bp);
1728 			return (0);
1729 		}
1730 	} else {
1731 		phys_blkno = (uint_t)bp->b_blkno;
1732 	}
1733 
1734 
1735 	/* If the block number is past the end, return an error */
1736 	if ((phys_blkno > dkm->dkl_nblk)) {
1737 		FDERRPRINT(FDEP_L3, FDEM_STRA,
1738 		    (C, "fd%d: block %ld is past the end! (nblk=%d)\n",
1739 		    0, (long)bp->b_blkno, dkm->dkl_nblk));
1740 		bp->b_error = ENOSPC;
1741 		bp->b_resid = bp->b_bcount;
1742 		bp->b_flags |= B_ERROR;
1743 		biodone(bp);
1744 		return (0);
1745 	}
1746 
1747 	/* if at end of file, skip out now */
1748 	if (phys_blkno == dkm->dkl_nblk) {
1749 		FDERRPRINT(FDEP_L1, FDEM_STRA,
1750 		    (C, "b_blkno is at the end!\n"));
1751 
1752 		if ((bp->b_flags & B_READ) == 0) {
1753 			/* a write needs to get an error! */
1754 			bp->b_error = ENOSPC;
1755 			bp->b_flags |= B_ERROR;
1756 
1757 			FDERRPRINT(FDEP_L1, FDEM_STRA,
1758 			    (C, "block is at end and this is a write\n"));
1759 
1760 		}
1761 
1762 		bp->b_resid = bp->b_bcount;
1763 		biodone(bp);
1764 		return (0);
1765 	}
1766 
1767 	/* if operation not a multiple of sector size, is error! */
1768 	if (bp->b_bcount % un->un_chars->fdc_sec_size)	{
1769 		FDERRPRINT(FDEP_L3, FDEM_STRA,
1770 		    (C, "fd%d: requested transfer size(0x%lx) is not"
1771 			" multiple of sector size(0x%x)\n", 0,
1772 			bp->b_bcount, un->un_chars->fdc_sec_size));
1773 		FDERRPRINT(FDEP_L3, FDEM_STRA,
1774 		    (C, "	b_blkno=0x%lx b_flags=0x%x\n",
1775 		    (long)bp->b_blkno, bp->b_flags));
1776 		bp->b_error = EINVAL;
1777 		bp->b_resid = bp->b_bcount;
1778 		bp->b_flags |= B_ERROR;
1779 		biodone(bp);
1780 		return (0);
1781 
1782 	}
1783 
1784 	/*
1785 	 * Put the buf request in the controller's queue, FIFO.
1786 	 */
1787 	bp->av_forw = 0;
1788 	sema_p(&fdc->c_ocsem);
1789 
1790 	(void) pm_busy_component(fdc->c_dip, 0);
1791 
1792 	mutex_enter(&fdc->c_lolock);
1793 
1794 	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
1795 
1796 	if (fdc->c_un->un_state == FD_STATE_STOPPED) {
1797 		mutex_exit(&fdc->c_lolock);
1798 		if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
1799 						!= DDI_SUCCESS) {
1800 				sema_v(&fdc->c_ocsem);
1801 				(void) pm_idle_component(fdc->c_dip, 0);
1802 				bp->b_error = EIO;
1803 				bp->b_resid = bp->b_bcount;
1804 				bp->b_flags |= B_ERROR;
1805 				biodone(bp);
1806 				return (0);
1807 		} else {
1808 			mutex_enter(&fdc->c_lolock);
1809 		}
1810 	}
1811 	if (un->un_iostat) {
1812 		kstat_waitq_enter(KIOSP);
1813 	}
1814 	if (fdc->c_actf)
1815 		fdc->c_actl->av_forw = bp;
1816 	else
1817 		fdc->c_actf = bp;
1818 	fdc->c_actl = bp;
1819 
1820 
1821 	/* call fdstart to start the transfer */
1822 	fdstart(fdc);
1823 
1824 	mutex_exit(&fdc->c_lolock);
1825 	sema_v(&fdc->c_ocsem);
1826 	(void) pm_idle_component(fdc->c_dip, 0);
1827 	return (0);
1828 }
1829 
1830 /* ARGSUSED2 */
1831 static int
1832 fd_read(dev_t dev, struct uio *uio, cred_t *cred_p)
1833 {
1834 	FDERRPRINT(FDEP_L1, FDEM_RDWR, (C, "fd_read\n"));
1835 	return (physio(fd_strategy, NULL, dev, B_READ, minphys, uio));
1836 }
1837 
1838 /* ARGSUSED2 */
1839 static int
1840 fd_write(dev_t dev, struct uio *uio, cred_t *cred_p)
1841 {
1842 	FDERRPRINT(FDEP_L1, FDEM_RDWR, (C, "fd_write\n"));
1843 	return (physio(fd_strategy, NULL, dev, B_WRITE, minphys, uio));
1844 }
1845 
1846 static void
1847 fdmotoff(void *arg)
1848 {
1849 	struct fdctlr *fdc = arg;
1850 	int unit = fdc->c_un->un_unit_no;
1851 
1852 	mutex_enter(&fdc->c_lolock);
1853 
1854 	/* Just return if we're about to call untimeout */
1855 	if (fdc->c_mtimeid == 0) {
1856 		mutex_exit(&fdc->c_lolock);
1857 		return;
1858 	}
1859 
1860 	FDERRPRINT(FDEP_L1, FDEM_MOFF, (C, "fdmotoff\n"));
1861 
1862 	fdc->c_mtimeid = 0;
1863 
1864 	if (!(Msr(fdc) & CB) && (Dor(fdc) & (MOTEN(unit)))) {
1865 		/* LINTED */
1866 		Set_dor(fdc, MOTEN(unit), 0);
1867 	}
1868 
1869 	mutex_exit(&fdc->c_lolock);
1870 }
1871 
1872 /* ARGSUSED */
1873 static int
1874 fd_ioctl(dev_t dev, int cmd, intptr_t arg, int flag,
1875 	cred_t *cred_p, int *rval_p)
1876 {
1877 	union {
1878 		struct dk_cinfo dki;
1879 		struct dk_geom dkg;
1880 		struct dk_allmap32 dka;
1881 		struct fd_char fdchar;
1882 		struct fd_drive drvchar;
1883 		int	temp;
1884 	} cpy;
1885 
1886 	struct vtoc	vtoc;
1887 	struct fdunit *un;
1888 	struct fdctlr *fdc;
1889 	int unit, dkunit;
1890 	int err = 0;
1891 	uint_t	sec_size;
1892 	enum dkio_state state;
1893 	int	transfer_rate;
1894 
1895 	FDERRPRINT(FDEP_L1, FDEM_IOCT,
1896 	    (C, "fd_ioctl: cmd 0x%x, arg 0x%lx\n", cmd, (long)arg));
1897 
1898 	/* The minor number should always be 0 */
1899 	if (FDUNIT(dev) != 0)
1900 		return (ENXIO);
1901 
1902 	fdc = fd_getctlr(dev);
1903 	unit = fdc->c_un->un_unit_no;
1904 	un = fdc->c_un;
1905 	sec_size = un->un_chars->fdc_sec_size;
1906 	bzero(&cpy, sizeof (cpy));
1907 
1908 	switch (cmd) {
1909 	case DKIOCINFO:
1910 		cpy.dki.dki_addr = 0;
1911 
1912 		/*
1913 		 * The meaning of the dki_slave and dki_unit fields
1914 		 * is unclear.  The sparc floppy driver follows the same
1915 		 * convention as sd.c in that the instance number is
1916 		 * returned in the dki_cnum field.  The dki_slave field is
1917 		 * ignored.
1918 		 *
1919 		 * The dki_cnum contains the controller instance
1920 		 * and its value can be any positive number. Even
1921 		 * though currently Sparc platforms only support
1922 		 * one controller, the controller instance number
1923 		 * can be any number since it is assigned by the
1924 		 * system depending on the device properties.
1925 		 */
1926 
1927 		cpy.dki.dki_cnum = FDCTLR(dev);
1928 
1929 		/*
1930 		 * Sparc platforms support only one floppy drive.
1931 		 * The device node for the controller is the same as
1932 		 * the device node for the drive.  The x86 driver is
1933 		 * different in that it has a node for the controller
1934 		 * and a child node for each drive. Since Sparc supports
1935 		 * only one drive, the unit number will always be zero.
1936 		 */
1937 
1938 		cpy.dki.dki_unit = FDUNIT(dev);
1939 
1940 		/*
1941 		 * The meaning of the dki_slave field is unclear.
1942 		 * So, I will leave it set to 0.
1943 		 */
1944 
1945 		cpy.dki.dki_slave = 0;
1946 
1947 		cpy.dki.dki_ctype = (ushort_t)-1;
1948 		if (fdc->c_fdtype & FDCTYPE_82077)
1949 			cpy.dki.dki_ctype = DKC_INTEL82077;
1950 		cpy.dki.dki_flags = DKI_FMTTRK;
1951 		cpy.dki.dki_partition = FDPARTITION(dev);
1952 		cpy.dki.dki_maxtransfer = maxphys / DEV_BSIZE;
1953 		if (ddi_copyout((caddr_t)&cpy.dki, (caddr_t)arg,
1954 						sizeof (cpy.dki), flag))
1955 			err = EFAULT;
1956 		break;
1957 	case DKIOCGGEOM:
1958 		cpy.dkg.dkg_ncyl = un->un_chars->fdc_ncyl;
1959 		cpy.dkg.dkg_nhead = un->un_chars->fdc_nhead;
1960 		cpy.dkg.dkg_nsect = un->un_chars->fdc_secptrack;
1961 		cpy.dkg.dkg_intrlv = un->un_label.dkl_intrlv;
1962 		cpy.dkg.dkg_rpm = un->un_label.dkl_rpm;
1963 		cpy.dkg.dkg_pcyl = un->un_chars->fdc_ncyl;
1964 		cpy.dkg.dkg_read_reinstruct =
1965 		    (int)(cpy.dkg.dkg_nsect * cpy.dkg.dkg_rpm * 4) / 60000;
1966 		cpy.dkg.dkg_write_reinstruct = cpy.dkg.dkg_read_reinstruct;
1967 		if (ddi_copyout((caddr_t)&cpy.dkg, (caddr_t)arg,
1968 						sizeof (cpy.dkg), flag))
1969 			err = EFAULT;
1970 		break;
1971 	case DKIOCSGEOM:
1972 		FDERRPRINT(FDEP_L3, FDEM_IOCT,
1973 		    (C, "fd_ioctl: DKIOCSGEOM not supported\n"));
1974 		err = ENOTTY;
1975 		break;
1976 
1977 	/*
1978 	 * return the map of all logical partitions
1979 	 */
1980 	case DKIOCGAPART:
1981 		/*
1982 		 * We don't have anything to do if the application is ILP32
1983 		 * because the label map has a 32-bit format. Otherwise
1984 		 * convert.
1985 		 */
1986 		if ((flag & DATAMODEL_MASK) == DATAMODEL_ILP32) {
1987 			if (ddi_copyout(&un->un_label.dkl_map,
1988 				(void *)arg, sizeof (struct dk_allmap32), flag))
1989 				err = EFAULT;
1990 		}
1991 #ifdef _MULTI_DATAMODEL
1992 		else {
1993 			struct dk_allmap dk_allmap;
1994 
1995 			ASSERT((flag & DATAMODEL_MASK) == DATAMODEL_LP64);
1996 			for (dkunit = 0; dkunit < NDKMAP; dkunit++) {
1997 				dk_allmap.dka_map[dkunit].dkl_cylno =
1998 				    un->un_label.dkl_map[dkunit].dkl_cylno;
1999 				dk_allmap.dka_map[dkunit].dkl_nblk =
2000 				    un->un_label.dkl_map[dkunit].dkl_nblk;
2001 			}
2002 			if (ddi_copyout(&dk_allmap, (void *)arg,
2003 					sizeof (struct dk_allmap), flag))
2004 				err = EFAULT;
2005 		}
2006 #endif /* _MULTI_DATAMODEL */
2007 		break;
2008 
2009 	/*
2010 	 * Set the map of all logical partitions
2011 	 */
2012 	case DKIOCSAPART:
2013 		if ((flag & DATAMODEL_MASK) == DATAMODEL_ILP32) {
2014 			if (ddi_copyin((const void *)arg, &cpy.dka,
2015 			    sizeof (cpy.dka), flag))
2016 				return (EFAULT);
2017 			else {
2018 				mutex_enter(&fdc->c_lolock);
2019 				for (dkunit = 0; dkunit < NDKMAP; dkunit++) {
2020 					un->un_label.dkl_map[dkunit] =
2021 						cpy.dka.dka_map[dkunit];
2022 				}
2023 				mutex_exit(&fdc->c_lolock);
2024 			}
2025 		}
2026 #ifdef _MULTI_DATAMODEL
2027 		else {
2028 			struct dk_allmap dk_allmap;
2029 
2030 			ASSERT((flag & DATAMODEL_MASK) == DATAMODEL_LP64);
2031 			if (ddi_copyin((const void *)arg, &dk_allmap,
2032 			    sizeof (dk_allmap), flag))
2033 				return (EFAULT);
2034 			else {
2035 				mutex_enter(&fdc->c_lolock);
2036 				for (dkunit = 0; dkunit < NDKMAP; dkunit++) {
2037 					un->un_label.dkl_map[dkunit].dkl_cylno =
2038 					    dk_allmap.dka_map[dkunit].dkl_cylno;
2039 					un->un_label.dkl_map[dkunit].dkl_nblk =
2040 					    dk_allmap.dka_map[dkunit].dkl_nblk;
2041 				}
2042 				mutex_exit(&fdc->c_lolock);
2043 			}
2044 		}
2045 #endif /* _MULTI_DATAMODEL */
2046 		break;
2047 
2048 	case DKIOCGVTOC:
2049 		mutex_enter(&fdc->c_lolock);
2050 
2051 		/*
2052 		 * Exit if the diskette has no label.
2053 		 * Also, get the label to make sure the
2054 		 * correct one is being used since the diskette
2055 		 * may have changed
2056 		 */
2057 		if (fdgetlabel(fdc, unit)) {
2058 			mutex_exit(&fdc->c_lolock);
2059 			err = EINVAL;
2060 			break;
2061 		}
2062 
2063 		/* Build a vtoc from the diskette's label */
2064 		fd_build_user_vtoc(un, &vtoc);
2065 		mutex_exit(&fdc->c_lolock);
2066 
2067 #ifdef _MULTI_DATAMODEL
2068 		switch (ddi_model_convert_from(flag & FMODELS)) {
2069 		case DDI_MODEL_ILP32: {
2070 			struct vtoc32 vtoc32;
2071 
2072 			vtoctovtoc32(vtoc, vtoc32);
2073 			if (ddi_copyout(&vtoc32, (void *)arg,
2074 			    sizeof (struct vtoc32), flag))
2075 				return (EFAULT);
2076 			break;
2077 		}
2078 
2079 		case DDI_MODEL_NONE:
2080 			if (ddi_copyout(&vtoc, (void *)arg,
2081 			    sizeof (vtoc), flag))
2082 				return (EFAULT);
2083 			break;
2084 		}
2085 #else /* ! _MULTI_DATAMODEL */
2086 		if (ddi_copyout(&vtoc, (void *)arg, sizeof (vtoc), flag))
2087 			return (EFAULT);
2088 #endif /* _MULTI_DATAMODEL */
2089 		break;
2090 
2091 	case DKIOCSVTOC:
2092 
2093 #ifdef _MULTI_DATAMODEL
2094 		switch (ddi_model_convert_from(flag & FMODELS)) {
2095 		case DDI_MODEL_ILP32: {
2096 			struct vtoc32 vtoc32;
2097 
2098 			if (ddi_copyin((const void *)arg, &vtoc32,
2099 			    sizeof (struct vtoc32), flag)) {
2100 				return (EFAULT);
2101 			}
2102 			vtoc32tovtoc(vtoc32, vtoc);
2103 			break;
2104 		}
2105 
2106 		case DDI_MODEL_NONE:
2107 			if (ddi_copyin((const void *)arg, &vtoc,
2108 			    sizeof (vtoc), flag)) {
2109 				return (EFAULT);
2110 			}
2111 			break;
2112 		}
2113 #else /* ! _MULTI_DATAMODEL */
2114 		if (ddi_copyin((const void *)arg, &vtoc, sizeof (vtoc), flag))
2115 			return (EFAULT);
2116 #endif /* _MULTI_DATAMODEL */
2117 
2118 		mutex_enter(&fdc->c_lolock);
2119 
2120 		/*
2121 		 * The characteristics structure must be filled in because
2122 		 * it helps build the vtoc.
2123 		 */
2124 		if ((un->un_chars->fdc_ncyl == 0) ||
2125 				(un->un_chars->fdc_nhead == 0) ||
2126 				(un->un_chars->fdc_secptrack == 0)) {
2127 			mutex_exit(&fdc->c_lolock);
2128 			err = EINVAL;
2129 			break;
2130 		}
2131 
2132 		if ((err = fd_build_label_vtoc(un, &vtoc)) != 0) {
2133 			mutex_exit(&fdc->c_lolock);
2134 			break;
2135 		}
2136 
2137 		(void) pm_busy_component(fdc->c_dip, 0);
2138 
2139 		err = fdrw(fdc, unit, FDWRITE, 0, 0, 1,
2140 		    (caddr_t)&un->un_label, sizeof (struct dk_label));
2141 		mutex_exit(&fdc->c_lolock);
2142 		(void) pm_idle_component(fdc->c_dip, 0);
2143 		break;
2144 
2145 	case DKIOCSTATE:
2146 		if (ddi_copyin((caddr_t)arg, (caddr_t)&state,
2147 					sizeof (int), flag)) {
2148 			err = EFAULT;
2149 			break;
2150 		}
2151 		(void) pm_busy_component(fdc->c_dip, 0);
2152 
2153 		err = fd_check_media(dev, state);
2154 		(void) pm_idle_component(fdc->c_dip, 0);
2155 
2156 		if (ddi_copyout((caddr_t)&un->un_media_state,
2157 					(caddr_t)arg, sizeof (int), flag))
2158 			err = EFAULT;
2159 		break;
2160 
2161 	case FDIOGCHAR:
2162 		if (ddi_copyout((caddr_t)un->un_chars, (caddr_t)arg,
2163 					sizeof (struct fd_char), flag))
2164 			err = EFAULT;
2165 		break;
2166 
2167 	case FDIOSCHAR:
2168 		if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.fdchar,
2169 				sizeof (struct fd_char), flag)) {
2170 			err = EFAULT;
2171 			break;
2172 		}
2173 
2174 		/*
2175 		 * Check the fields in the fdchar structure that are either
2176 		 * driver or controller dependent.
2177 		 */
2178 
2179 		transfer_rate = cpy.fdchar.fdc_transfer_rate;
2180 		if ((transfer_rate != 500) && (transfer_rate != 300) &&
2181 		    (transfer_rate != 250) && (transfer_rate != 1000)) {
2182 			FDERRPRINT(FDEP_L3, FDEM_IOCT,
2183 			(C, "fd_ioctl: FDIOSCHAR odd transfer rate %d\n",
2184 			    cpy.fdchar.fdc_transfer_rate));
2185 			err = EINVAL;
2186 			break;
2187 		}
2188 
2189 		if ((cpy.fdchar.fdc_nhead < 1) ||
2190 				(cpy.fdchar.fdc_nhead > 2)) {
2191 			FDERRPRINT(FDEP_L3, FDEM_IOCT,
2192 			(C, "fd_ioctl: FDIOSCHAR bad no. of heads %d\n",
2193 			    cpy.fdchar.fdc_nhead));
2194 			err = EINVAL;
2195 			break;
2196 		}
2197 
2198 		/*
2199 		 * The number of cylinders must be between 0 and 255
2200 		 */
2201 		if ((cpy.fdchar.fdc_ncyl < 0) || (cpy.fdchar.fdc_ncyl > 255)) {
2202 			FDERRPRINT(FDEP_L3, FDEM_IOCT,
2203 			(C, "fd_ioctl: FDIOSCHAR bad cyl no %d\n",
2204 			    cpy.fdchar.fdc_ncyl));
2205 			err = EINVAL;
2206 			break;
2207 		}
2208 
2209 		/* Copy the fdchar structure */
2210 
2211 		mutex_enter(&fdc->c_lolock);
2212 		*(un->un_chars) = cpy.fdchar;
2213 
2214 		un->un_curfdtype = -1;
2215 
2216 		mutex_exit(&fdc->c_lolock);
2217 
2218 		break;
2219 	case FDEJECT:  /* eject disk */
2220 	case DKIOCEJECT:
2221 
2222 		/*
2223 		 * Fail the ioctl if auto-eject isn't supported
2224 		 */
2225 		if (fdc->c_un->un_drive->fdd_ejectable == 0) {
2226 
2227 			err = ENOSYS;
2228 
2229 		} else {
2230 			(void) pm_busy_component(fdc->c_dip, 0);
2231 
2232 			mutex_enter(&fdc->c_lolock);
2233 
2234 			CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
2235 
2236 			if (fdc->c_un->un_state == FD_STATE_STOPPED) {
2237 				mutex_exit(&fdc->c_lolock);
2238 				if ((pm_raise_power(fdc->c_dip, 0,
2239 					PM_LEVEL_ON)) != DDI_SUCCESS) {
2240 					(void) pm_idle_component(fdc->c_dip, 0);
2241 					err = EIO;
2242 				}
2243 				mutex_enter(&fdc->c_lolock);
2244 			}
2245 		}
2246 		if (err == 0) {
2247 			fdselect(fdc, unit, 1);
2248 			fdeject(fdc, unit);
2249 			mutex_exit(&fdc->c_lolock);
2250 		}
2251 
2252 		(void) pm_idle_component(fdc->c_dip, 0);
2253 
2254 		/*
2255 		 * Make sure the drive is turned off
2256 		 */
2257 		if (fdc->c_fdtype & FDCTYPE_82077) {
2258 			if (fdc->c_mtimeid == 0) {
2259 				fdc->c_mtimeid = timeout(fdmotoff, fdc,
2260 					Motoff_delay);
2261 			}
2262 		}
2263 
2264 		break;
2265 	case FDGETCHANGE: /* disk changed */
2266 
2267 		if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.temp,
2268 						sizeof (int), flag)) {
2269 			err = EFAULT;
2270 			break;
2271 		}
2272 
2273 		/* zero out the user's parameter */
2274 		cpy.temp = 0;
2275 
2276 		(void) pm_busy_component(fdc->c_dip, 0);
2277 
2278 		mutex_enter(&fdc->c_lolock);
2279 
2280 		CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
2281 
2282 		if (fdc->c_un->un_state == FD_STATE_STOPPED) {
2283 			mutex_exit(&fdc->c_lolock);
2284 			if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
2285 						!= DDI_SUCCESS) {
2286 				FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power \
2287 change failed. \n"));
2288 				(void) pm_idle_component(fdc->c_dip, 0);
2289 				return (EIO);
2290 			}
2291 
2292 			mutex_enter(&fdc->c_lolock);
2293 		}
2294 		if (un->un_flags & FDUNIT_CHANGED)
2295 			cpy.temp |= FDGC_HISTORY;
2296 		else
2297 			cpy.temp &= ~FDGC_HISTORY;
2298 		un->un_flags &= ~FDUNIT_CHANGED;
2299 
2300 		if (fd_pollable) {
2301 			/*
2302 			 * If it's a "pollable" floppy, then we don't
2303 			 * have to do all the fdcheckdisk nastyness to
2304 			 * figure out if the thing is still there.
2305 			 */
2306 			if (fdsense_chng(fdc, unit)) {
2307 				cpy.temp |= FDGC_CURRENT;
2308 			} else {
2309 				cpy.temp &= ~FDGC_CURRENT;
2310 			}
2311 		} else {
2312 
2313 			if (fdsense_chng(fdc, unit)) {
2314 				/*
2315 				 * check disk change signal is asserted.
2316 				 * Now find out if the floppy is
2317 				 * inserted
2318 				 */
2319 				if (fdcheckdisk(fdc, unit)) {
2320 					cpy.temp |= FDGC_CURRENT;
2321 				} else {
2322 					/*
2323 					 * Yes, the floppy was
2324 					 * reinserted. Implies
2325 					 * floppy change.
2326 					 */
2327 					cpy.temp &= ~FDGC_CURRENT;
2328 					cpy.temp |= FDGC_HISTORY;
2329 				}
2330 			} else {
2331 				cpy.temp &= ~FDGC_CURRENT;
2332 			}
2333 		}
2334 
2335 		/*
2336 		 * For a pollable floppy, the floppy_change signal
2337 		 * reflects whether the floppy is in there or not.
2338 		 * We can not detect a floppy change if we don't poll
2339 		 * this signal when the floppy is being changed.
2340 		 * Because as soon as the floppy is put back, the
2341 		 * signal is reset.
2342 		 * BUT the pollable floppies are available only on
2343 		 * Sparcstation Voyager Voyagers (Gypsy) only and
2344 		 * those are motorized floppies. For motorized floppies,
2345 		 * the floppy can only (assuming the user doesn't use a
2346 		 * pin to take out the floppy) be taken out by
2347 		 * issuing 'eject' command which sets the
2348 		 * un->un_ejected flag. So, if the following
2349 		 * condition is true, we can assume there
2350 		 * was a floppy change.
2351 		 */
2352 		if (un->un_ejected && !(cpy.temp & FDGC_CURRENT)) {
2353 			cpy.temp |= FDGC_HISTORY;
2354 		}
2355 		un->un_ejected = 0;
2356 
2357 
2358 		/* return the write-protection status */
2359 		fdgetcsb(fdc);
2360 		if (fdsensedrv(fdc, unit) & WP_SR3) {
2361 			cpy.temp |= FDGC_CURWPROT;
2362 		}
2363 		fdretcsb(fdc);
2364 		mutex_exit(&fdc->c_lolock);
2365 
2366 		if (ddi_copyout((caddr_t)&cpy.temp, (caddr_t)arg,
2367 						sizeof (int), flag))
2368 			err = EFAULT;
2369 		(void) pm_idle_component(fdc->c_dip, 0);
2370 		break;
2371 
2372 	case FDGETDRIVECHAR:
2373 
2374 		if (ddi_copyin((caddr_t)arg, (caddr_t)&cpy.drvchar,
2375 				sizeof (struct fd_drive), flag)) {
2376 			err = EFAULT;
2377 			break;
2378 		}
2379 
2380 		/*
2381 		 * Return the ejectable value based on the FD_MANUAL_EJECT
2382 		 * property
2383 		 */
2384 		cpy.drvchar.fdd_ejectable = fdc->c_un->un_drive->fdd_ejectable;
2385 		cpy.drvchar.fdd_maxsearch = nfdtypes; /* 3 - hi m lo density */
2386 		if (fd_pollable)	/* pollable device */
2387 			cpy.drvchar.fdd_flags |= FDD_POLLABLE;
2388 
2389 		/* the rest of the fd_drive struct is meaningless to us */
2390 
2391 		if (ddi_copyout((caddr_t)&cpy.drvchar, (caddr_t)arg,
2392 					sizeof (struct fd_drive), flag))
2393 			err = EFAULT;
2394 		break;
2395 
2396 	case FDSETDRIVECHAR:
2397 		FDERRPRINT(FDEP_L3, FDEM_IOCT,
2398 		    (C, "fd_ioctl: FDSETDRIVECHAR not supportedn\n"));
2399 		err = ENOTTY;
2400 		break;
2401 
2402 	case DKIOCREMOVABLE: {
2403 		int	i = 1;
2404 
2405 		/* no brainer: floppies are always removable */
2406 		if (ddi_copyout((caddr_t)&i, (caddr_t)arg, sizeof (int),
2407 		    flag)) {
2408 			err = EFAULT;
2409 		}
2410 		break;
2411 	}
2412 	case DKIOCGMEDIAINFO:
2413 		err = fd_get_media_info(un, (caddr_t)arg, flag);
2414 		break;
2415 
2416 
2417 	case FDIOCMD:
2418 	{
2419 		struct fd_cmd fc;
2420 		int cyl, hd, spc, spt;
2421 		int nblks; /* total no. of blocks */
2422 
2423 #ifdef _MULTI_DATAMODEL
2424 		switch (ddi_model_convert_from(flag & FMODELS)) {
2425 		case DDI_MODEL_ILP32: {
2426 			struct fd_cmd32 fc32;
2427 
2428 			if (ddi_copyin((const void *)arg, &fc32,
2429 			    sizeof (fc32), flag)) {
2430 				return (EFAULT);
2431 			}
2432 			fc.fdc_cmd	= fc32.fdc_cmd;
2433 			fc.fdc_flags	= fc32.fdc_flags;
2434 			fc.fdc_blkno	= (daddr_t)fc32.fdc_blkno;
2435 			fc.fdc_secnt	= fc32.fdc_secnt;
2436 			fc.fdc_bufaddr	= (caddr_t)fc32.fdc_bufaddr;
2437 			fc.fdc_buflen	= fc32.fdc_buflen;
2438 			fc.fdc_cmd	= fc32.fdc_cmd;
2439 
2440 			break;
2441 		}
2442 
2443 		case DDI_MODEL_NONE:
2444 			if (ddi_copyin((const void *)arg, &fc,
2445 			    sizeof (fc), flag)) {
2446 				return (EFAULT);
2447 			}
2448 			break;
2449 		}
2450 #else /* ! _MULTI_DATAMODEL */
2451 		if (ddi_copyin((const void *)arg, &fc, sizeof (fc), flag)) {
2452 			return (EFAULT);
2453 		}
2454 #endif /* _MULTI_DATAMODEL */
2455 
2456 		if (fc.fdc_cmd == FDCMD_READ || fc.fdc_cmd == FDCMD_WRITE) {
2457 			auto struct iovec aiov;
2458 			auto struct uio auio;
2459 			struct uio *uio = &auio;
2460 
2461 			spc = (fc.fdc_cmd == FDCMD_READ)? B_READ: B_WRITE;
2462 
2463 			bzero(&auio, sizeof (struct uio));
2464 			bzero(&aiov, sizeof (struct iovec));
2465 			aiov.iov_base = fc.fdc_bufaddr;
2466 			aiov.iov_len = (uint_t)fc.fdc_secnt * sec_size;
2467 			uio->uio_iov = &aiov;
2468 
2469 			uio->uio_iovcnt = 1;
2470 			uio->uio_resid = aiov.iov_len;
2471 			uio->uio_segflg = UIO_USERSPACE;
2472 			FDERRPRINT(FDEP_L2, FDEM_IOCT,
2473 			    (C, "fd_ioctl: call physio\n"));
2474 			err = physio(fd_strategy, NULL, dev,
2475 			    spc, minphys, uio);
2476 			break;
2477 		} else if (fc.fdc_cmd != FDCMD_FORMAT_TRACK) {
2478 
2479 			/*
2480 			 * The manpage states that only the FDCMD_WRITE,
2481 			 * FDCMD_READ, and the FDCMD_FORMAT_TR are available.
2482 			 */
2483 			FDERRPRINT(FDEP_L1, FDEM_IOCT,
2484 			    (C, "fd_ioctl: FDIOCMD invalid command\n"));
2485 			err = EINVAL;
2486 			break;
2487 		}
2488 
2489 		/* The command is FDCMD_FORMAT_TRACK */
2490 
2491 		spt = un->un_chars->fdc_secptrack;	/* sec/trk */
2492 		spc = un->un_chars->fdc_nhead * spt;	/* sec/cyl */
2493 		cyl = fc.fdc_blkno / spc;
2494 		hd = (fc.fdc_blkno % spc) / spt;
2495 
2496 		/*
2497 		 * Make sure the specified block number is in the correct
2498 		 * range. (block numbers start at 0)
2499 		 */
2500 		nblks = spc * un->un_chars->fdc_ncyl;
2501 
2502 		if (fc.fdc_blkno < 0 || fc.fdc_blkno > (nblks - 1)) {
2503 			err = EINVAL;
2504 			break;
2505 		}
2506 
2507 		(void) pm_busy_component(fdc->c_dip, 0);
2508 
2509 		mutex_enter(&fdc->c_lolock);
2510 		CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
2511 		if (fdc->c_un->un_state == FD_STATE_STOPPED) {
2512 			mutex_exit(&fdc->c_lolock);
2513 			if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
2514 						!= DDI_SUCCESS) {
2515 				FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power \
2516 change failed. \n"));
2517 				(void) pm_idle_component(fdc->c_dip, 0);
2518 				return (EIO);
2519 			}
2520 
2521 			mutex_enter(&fdc->c_lolock);
2522 		}
2523 
2524 		if (fdformat(fdc, unit, cyl, hd))
2525 			err = EIO;
2526 
2527 		mutex_exit(&fdc->c_lolock);
2528 		(void) pm_idle_component(fdc->c_dip, 0);
2529 
2530 		break;
2531 	}
2532 
2533 	case FDRAW:
2534 
2535 		(void) pm_busy_component(fdc->c_dip, 0);
2536 		err = fdrawioctl(fdc, unit, arg, flag);
2537 
2538 		(void) pm_idle_component(fdc->c_dip, 0);
2539 
2540 		break;
2541 #ifdef FD_DEBUG
2542 	case IOCTL_DEBUG:
2543 		fderrlevel--;
2544 		if (fderrlevel < 0)
2545 			fderrlevel = 3;
2546 		cmn_err(C, "fdioctl: CHANGING debug to %d", fderrlevel);
2547 		return (0);
2548 #endif /* FD_DEBUG */
2549 	default:
2550 		FDERRPRINT(FDEP_L2, FDEM_IOCT,
2551 		    (C, "fd_ioctl: invalid ioctl 0x%x\n", cmd));
2552 		err = ENOTTY;
2553 		break;
2554 	}
2555 
2556 	return (err);
2557 }
2558 
2559 /*
2560  * fdrawioctl
2561  *
2562  * 	- acquires the low level lock
2563  */
2564 
2565 static int
2566 fdrawioctl(struct fdctlr *fdc, int unit, intptr_t arg, int mode)
2567 {
2568 	struct fd_raw fdr;
2569 #ifdef _MULTI_DATAMODEL
2570 	struct fd_raw32 fdr32;
2571 #endif
2572 	struct fdcsb *csb;
2573 	int i, err, flag;
2574 	caddr_t fa;
2575 	uint_t	fc;
2576 	size_t	real_length;
2577 	int	res;
2578 	ddi_device_acc_attr_t attr;
2579 	ddi_acc_handle_t	mem_handle;
2580 
2581 	attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
2582 	attr.devacc_attr_endian_flags  = DDI_STRUCTURE_BE_ACC;
2583 	attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
2584 
2585 	ASSERT(fdc->c_un->un_unit_no == unit);
2586 
2587 	FDERRPRINT(FDEP_L1, FDEM_RAWI,
2588 	    (C, "fdrawioctl: cmd[0]=0x%x\n", fdr.fdr_cmd[0]));
2589 
2590 	flag = B_READ;
2591 	err = 0;
2592 	fa = NULL;
2593 	fc = (uint_t)0;
2594 
2595 	/* Copy in the arguments */
2596 	switch (ddi_model_convert_from(mode)) {
2597 #ifdef _MULTI_DATAMODEL
2598 	case DDI_MODEL_ILP32:
2599 		if (ddi_copyin((caddr_t)arg, (caddr_t)&fdr32,
2600 		    sizeof (fdr32), mode)) {
2601 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2602 			(C, "fdrawioctl: copyin error, args32\n"));
2603 			return (EFAULT);
2604 		}
2605 		bcopy(fdr32.fdr_cmd, fdr.fdr_cmd, sizeof (fdr.fdr_cmd));
2606 		fdr.fdr_cnum = fdr32.fdr_cnum;
2607 		bcopy(fdr32.fdr_result, fdr.fdr_result,
2608 		    sizeof (fdr.fdr_result));
2609 		fdr.fdr_nbytes = fdr32.fdr_nbytes;
2610 		fdr.fdr_addr = (caddr_t)fdr32.fdr_addr;
2611 		break;
2612 #endif
2613 	default:
2614 	case DDI_MODEL_NONE:
2615 		if (ddi_copyin((caddr_t)arg, (caddr_t)&fdr,
2616 		    sizeof (fdr), mode)) {
2617 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2618 			(C, "fdrawioctl: copyin error, args\n"));
2619 			return (EFAULT);
2620 		}
2621 		break;
2622 	}
2623 
2624 	mutex_enter(&fdc->c_lolock);
2625 
2626 	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
2627 
2628 	if (fdc->c_un->un_state == FD_STATE_STOPPED) {
2629 		mutex_exit(&fdc->c_lolock);
2630 		if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
2631 					!= DDI_SUCCESS) {
2632 			FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \
2633 failed. \n"));
2634 
2635 			(void) pm_idle_component(fdc->c_dip, 0);
2636 			return (EIO);
2637 		}
2638 		mutex_enter(&fdc->c_lolock);
2639 	}
2640 
2641 	fdgetcsb(fdc);
2642 	csb = &fdc->c_csb;
2643 	csb->csb_unit = (uchar_t)unit;
2644 
2645 	/* copy cmd bytes into csb */
2646 	for (i = 0; i <= fdr.fdr_cnum; i++)
2647 		csb->csb_cmds[i] = fdr.fdr_cmd[i];
2648 	csb->csb_ncmds = (uchar_t)fdr.fdr_cnum;
2649 
2650 	csb->csb_maxretry = 0;	/* let the application deal with errors */
2651 	csb->csb_retrys = 0;
2652 
2653 	switch (fdr.fdr_cmd[0] & 0x0f) {
2654 
2655 	case FDRAW_SPECIFY:
2656 		/*
2657 		 * Ensure that the right DMA mode is selected.  There is
2658 		 * currently no way for the user to tell if DMA is
2659 		 * happening so set the value for the user.
2660 		 */
2661 
2662 		if (fdc->c_fdtype & FDCTYPE_DMA)
2663 			csb->csb_cmds[2] = csb->csb_cmds[2] & 0xFE;
2664 		else
2665 			csb->csb_cmds[2] = csb->csb_cmds[2] | 0x1;
2666 
2667 		csb->csb_opflags = CSB_OFNORESULTS;
2668 		csb->csb_nrslts = 0;
2669 		break;
2670 
2671 	case FDRAW_SENSE_DRV:
2672 		/* Insert the appropriate drive number */
2673 		csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK);
2674 		csb->csb_opflags = CSB_OFIMMEDIATE;
2675 		csb->csb_nrslts = 1;
2676 		break;
2677 
2678 	case FDRAW_REZERO:
2679 	case FDRAW_SEEK:
2680 		/* Insert the appropriate drive number */
2681 		csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK);
2682 		csb->csb_opflags = CSB_OFSEEKOPS + CSB_OFTIMEIT;
2683 		csb->csb_nrslts = 2;
2684 		break;
2685 
2686 	case FDRAW_FORMAT:
2687 		FDERRPRINT(FDEP_L1, FDEM_RAWI,
2688 			(C, "fdrawioctl: cmd is fdfraw format\n"));
2689 
2690 		/* Insert the appropriate drive number */
2691 		csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK);
2692 		csb->csb_opflags = CSB_OFXFEROPS + CSB_OFTIMEIT;
2693 		csb->csb_nrslts = NRBRW;
2694 		flag = B_WRITE;
2695 
2696 		/*
2697 		 * Allocate memory for the command.
2698 		 * If PIO is being used, then add an extra 16 bytes
2699 		 */
2700 		if (fdc->c_fdtype & FDCTYPE_DMA) {
2701 
2702 			fc = (uint_t)(fdr.fdr_nbytes);
2703 			mutex_enter(&fdc->c_hilock);
2704 
2705 			res = ddi_dma_mem_alloc(fdc->c_dmahandle, fc,
2706 				&attr, DDI_DMA_STREAMING,
2707 				DDI_DMA_DONTWAIT, 0, &fa, &real_length,
2708 				&mem_handle);
2709 
2710 			if (res != DDI_SUCCESS) {
2711 				fdretcsb(fdc);
2712 				mutex_exit(&fdc->c_lolock);
2713 				mutex_exit(&fdc->c_hilock);
2714 				return (EIO);
2715 			}
2716 
2717 			fdc->c_csb.csb_read = CSB_WRITE;
2718 			if (fdstart_dma(fdc, fa, fc) != 0) {
2719 				ddi_dma_mem_free(&mem_handle);
2720 				fdretcsb(fdc);
2721 				mutex_exit(&fdc->c_lolock);
2722 				mutex_exit(&fdc->c_hilock);
2723 				return (EIO);
2724 			}
2725 			mutex_exit(&fdc->c_hilock);
2726 
2727 		} else {
2728 			fc = (uint_t)(fdr.fdr_nbytes + 16);
2729 			fa = kmem_zalloc(fc, KM_SLEEP);
2730 		}
2731 
2732 		/* copy in the user's command bytes */
2733 		if (ddi_copyin(fdr.fdr_addr, fa,
2734 				(uint_t)fdr.fdr_nbytes, mode)) {
2735 			fdretcsb(fdc);
2736 			mutex_exit(&fdc->c_lolock);
2737 
2738 			if (fdc->c_fdtype & FDCTYPE_DMA) {
2739 				ddi_dma_mem_free(&mem_handle);
2740 				FDERRPRINT(FDEP_L1, FDEM_RAWI,
2741 				(C, "fdrawioctl: (err)free dma memory\n"));
2742 			} else {
2743 				kmem_free(fa, fc);
2744 			}
2745 
2746 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2747 			(C, "fdrawioctl: ddi_copyin error\n"));
2748 			return (EFAULT);
2749 		}
2750 
2751 		break;
2752 	case FDRAW_WRCMD:
2753 	case FDRAW_WRITEDEL:
2754 		flag = B_WRITE;
2755 		/* FALLTHROUGH */
2756 	case FDRAW_RDCMD:
2757 	case FDRAW_READDEL:
2758 	case FDRAW_READTRACK:
2759 		/* Insert the appropriate drive number */
2760 		csb->csb_cmds[1] = csb->csb_cmds[1] | (unit & DRV_MASK);
2761 		if (fdc->c_fdtype & FDCTYPE_SB)
2762 			csb->csb_cmds[1] |= IPS;
2763 		csb->csb_opflags = CSB_OFXFEROPS + CSB_OFTIMEIT;
2764 		csb->csb_nrslts = NRBRW;
2765 		break;
2766 
2767 	default:
2768 		fdretcsb(fdc);
2769 		mutex_exit(&fdc->c_lolock);
2770 		return (EINVAL);
2771 	}
2772 
2773 	if ((csb->csb_opflags & CSB_OFXFEROPS) && (fdr.fdr_nbytes == 0)) {
2774 		fdretcsb(fdc);
2775 		mutex_exit(&fdc->c_lolock);
2776 		return (EINVAL);
2777 	}
2778 	csb->csb_opflags |= CSB_OFRAWIOCTL;
2779 
2780 	FDERRPRINT(FDEP_L1, FDEM_RAWI,
2781 		(C, "fdrawioctl: nbytes = %u\n", fdr.fdr_nbytes));
2782 
2783 	if ((fdr.fdr_cmd[0] & 0x0f) != FDRAW_FORMAT) {
2784 		if ((fc = (uint_t)fdr.fdr_nbytes) > 0) {
2785 			/*
2786 			 * In SunOS 4.X, we used to as_fault things in.
2787 			 * We really cannot do this in 5.0/SVr4. Unless
2788 			 * someone really believes that speed is of the
2789 			 * essence here, it is just much simpler to do
2790 			 * this in kernel space and use copyin/copyout.
2791 			 */
2792 			if (fdc->c_fdtype & FDCTYPE_DMA) {
2793 				mutex_enter(&fdc->c_hilock);
2794 				res = ddi_dma_mem_alloc(fdc->c_dmahandle, fc,
2795 					&attr, DDI_DMA_STREAMING,
2796 					DDI_DMA_DONTWAIT, 0, &fa, &real_length,
2797 					&mem_handle);
2798 
2799 				if (res != DDI_SUCCESS) {
2800 					fdretcsb(fdc);
2801 					mutex_exit(&fdc->c_lolock);
2802 					mutex_exit(&fdc->c_hilock);
2803 					return (EIO);
2804 				}
2805 
2806 				if (flag == B_WRITE)
2807 					fdc->c_csb.csb_read = CSB_WRITE;
2808 				else
2809 					fdc->c_csb.csb_read = CSB_READ;
2810 
2811 				if (fdstart_dma(fdc, fa, fc) != 0) {
2812 					ddi_dma_mem_free(&mem_handle);
2813 					fdretcsb(fdc);
2814 					mutex_exit(&fdc->c_lolock);
2815 					mutex_exit(&fdc->c_hilock);
2816 					return (EIO);
2817 				}
2818 				mutex_exit(&fdc->c_hilock);
2819 
2820 			} else {
2821 				fa = kmem_zalloc(fc, KM_SLEEP);
2822 			}
2823 
2824 			if (flag == B_WRITE) {
2825 				if (ddi_copyin(fdr.fdr_addr, fa, fc, mode)) {
2826 					if (fdc->c_fdtype & FDCTYPE_DMA)
2827 						ddi_dma_mem_free(&mem_handle);
2828 					else
2829 						kmem_free(fa, fc);
2830 					fdretcsb(fdc);
2831 					mutex_exit(&fdc->c_lolock);
2832 					FDERRPRINT(FDEP_L1, FDEM_RAWI,
2833 					(C, "fdrawioctl: can't copy data\n"));
2834 
2835 					return (EFAULT);
2836 				}
2837 			}
2838 			csb->csb_addr = fa;
2839 			csb->csb_len = fc;
2840 		} else {
2841 			csb->csb_addr = 0;
2842 			csb->csb_len = 0;
2843 		}
2844 	} else {
2845 		csb->csb_addr = fa;
2846 		csb->csb_len = fc;
2847 	}
2848 
2849 	FDERRPRINT(FDEP_L1, FDEM_RAWI,
2850 	    (C, "cmd: %x %x %x %x %x %x %x %x %x %x\n", csb->csb_cmds[0],
2851 	    csb->csb_cmds[1], csb->csb_cmds[2], csb->csb_cmds[3],
2852 	    csb->csb_cmds[4], csb->csb_cmds[5], csb->csb_cmds[6],
2853 	    csb->csb_cmds[7], csb->csb_cmds[8], csb->csb_cmds[9]));
2854 	FDERRPRINT(FDEP_L1, FDEM_RAWI,
2855 	    (C, "nbytes: %x, opflags: %x, addr: %p, len: %x\n",
2856 	    csb->csb_ncmds, csb->csb_opflags, (void *)csb->csb_addr,
2857 	    csb->csb_len));
2858 
2859 
2860 	/*
2861 	 * Note that we ignore any error return s from fdexec.
2862 	 * This is the way the driver has been, and it may be
2863 	 * that the raw ioctl senders simply don't want to
2864 	 * see any errors returned in this fashion.
2865 	 */
2866 
2867 	if ((csb->csb_opflags & CSB_OFNORESULTS) ||
2868 	    (csb->csb_opflags & CSB_OFIMMEDIATE)) {
2869 		(void) fdexec(fdc, 0); /* don't sleep, don't check change */
2870 	} else {
2871 		(void) fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG);
2872 	}
2873 
2874 
2875 	FDERRPRINT(FDEP_L1, FDEM_RAWI,
2876 	    (C, "rslt: %x %x %x %x %x %x %x %x %x %x\n", csb->csb_rslt[0],
2877 	    csb->csb_rslt[1], csb->csb_rslt[2], csb->csb_rslt[3],
2878 	    csb->csb_rslt[4], csb->csb_rslt[5], csb->csb_rslt[6],
2879 	    csb->csb_rslt[7], csb->csb_rslt[8], csb->csb_rslt[9]));
2880 
2881 	if ((fdr.fdr_cmd[0] & 0x0f) != FDRAW_FORMAT && fc &&
2882 	    flag == B_READ && err == 0) {
2883 		if (ddi_copyout(fa, fdr.fdr_addr, fc, mode)) {
2884 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2885 			(C, "fdrawioctl: can't copy read data\n"));
2886 
2887 			err = EFAULT;
2888 		}
2889 	}
2890 
2891 
2892 	if (fc) {
2893 		if (fdc->c_fdtype & FDCTYPE_DMA) {
2894 			ddi_dma_mem_free(&mem_handle);
2895 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2896 				(C, "fdrawioctl: free dma memory\n"));
2897 		} else {
2898 			kmem_free(fa, fc);
2899 		}
2900 	}
2901 
2902 
2903 	/* copy cmd results into fdr */
2904 	for (i = 0; (int)i <= (int)csb->csb_nrslts; i++)
2905 		fdr.fdr_result[i] = csb->csb_rslt[i];
2906 	fdr.fdr_nbytes = fdc->c_csb.csb_rlen; /* return resid */
2907 
2908 	switch (ddi_model_convert_from(mode)) {
2909 #ifdef _MULTI_DATAMODEL
2910 	case DDI_MODEL_ILP32:
2911 		bcopy(fdr.fdr_cmd, fdr32.fdr_cmd, sizeof (fdr32.fdr_cmd));
2912 		fdr32.fdr_cnum = fdr.fdr_cnum;
2913 		bcopy(fdr.fdr_result, fdr32.fdr_result,
2914 		    sizeof (fdr32.fdr_result));
2915 		fdr32.fdr_nbytes = fdr.fdr_nbytes;
2916 		fdr32.fdr_addr = (caddr32_t)fdr.fdr_addr;
2917 		if (ddi_copyout(&fdr32, (caddr_t)arg, sizeof (fdr32), mode)) {
2918 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2919 			(C, "fdrawioctl: can't copy results32\n"));
2920 			err = EFAULT;
2921 		}
2922 		break;
2923 #endif
2924 	case DDI_MODEL_NONE:
2925 	default:
2926 		if (ddi_copyout(&fdr, (caddr_t)arg, sizeof (fdr), mode)) {
2927 			FDERRPRINT(FDEP_L1, FDEM_RAWI,
2928 			(C, "fdrawioctl: can't copy results\n"));
2929 			err = EFAULT;
2930 		}
2931 		break;
2932 	}
2933 
2934 	fdretcsb(fdc);
2935 	mutex_exit(&fdc->c_lolock);
2936 	return (0);
2937 }
2938 
2939 /*
2940  * fdformat
2941  *	format a track
2942  * For PIO, builds a table of sector data values with 16 bytes
2943  * (sizeof fdc's fifo) of dummy on end.	 This is so than when fdc->c_len
2944  * goes to 0 and fd_intr sends a TC that all the real formatting will
2945  * have already been done.
2946  *
2947  *	- called with the low level lock held
2948  */
2949 static int
2950 fdformat(struct fdctlr *fdc, int unit, int cyl, int hd)
2951 {
2952 	struct fdcsb *csb;
2953 	struct fdunit *un;
2954 	struct fd_char *ch;
2955 	int	cmdresult;
2956 	uchar_t	*fmthdrs;
2957 	caddr_t fd;
2958 	int	i;
2959 	size_t	real_length;
2960 	ddi_device_acc_attr_t attr;
2961 	ddi_acc_handle_t mem_handle;
2962 
2963 	FDERRPRINT(FDEP_L1, FDEM_FORM,
2964 	    (C, "fdformat cyl %d, hd %d\n", cyl, hd));
2965 	fdgetcsb(fdc);
2966 
2967 	ASSERT(fdc->c_un->un_unit_no == unit);
2968 
2969 	csb = &fdc->c_csb;
2970 	un = fdc->c_un;
2971 	ch = un->un_chars;
2972 
2973 	/* setup common things in csb */
2974 	csb->csb_unit = (uchar_t)unit;
2975 
2976 	/*
2977 	 * The controller needs to do a seek before
2978 	 * each format to get to right cylinder.
2979 	 */
2980 	if (fdrecalseek(fdc, unit, cyl, FDXC_CHECKCHG)) {
2981 		fdretcsb(fdc);
2982 		return (EIO);
2983 	}
2984 
2985 	/*
2986 	 * now do the format itself
2987 	 */
2988 	csb->csb_nrslts = NRBRW;
2989 	csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT;
2990 
2991 	csb->csb_cmds[0] = FDRAW_FORMAT;
2992 	/* always or in MFM bit */
2993 	csb->csb_cmds[0] |= MFM;
2994 	csb->csb_cmds[1] = (hd << 2) | (unit & 0x03);
2995 	csb->csb_cmds[2] = ch->fdc_medium ? 3 : 2;
2996 	csb->csb_cmds[3] = ch->fdc_secptrack;
2997 	csb->csb_cmds[4] = GPLF;
2998 	csb->csb_cmds[5] = FDATA;
2999 	csb->csb_ncmds = 6;
3000 	csb->csb_maxretry = rwretry;
3001 	csb->csb_retrys = 0;
3002 
3003 	/*
3004 	 * NOTE: have to add size of fifo also - for dummy format action
3005 	 * if PIO is being used.
3006 	 */
3007 
3008 
3009 	if (fdc->c_fdtype & FDCTYPE_DMA) {
3010 
3011 		csb->csb_len = (uint_t)4 * ch->fdc_secptrack;
3012 
3013 		attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
3014 		attr.devacc_attr_endian_flags  = DDI_STRUCTURE_BE_ACC;
3015 		attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
3016 
3017 		mutex_enter(&fdc->c_hilock);
3018 
3019 		cmdresult = ddi_dma_mem_alloc(fdc->c_dmahandle, csb->csb_len,
3020 			&attr, DDI_DMA_STREAMING,
3021 			DDI_DMA_DONTWAIT, 0, &fd, &real_length,
3022 			&mem_handle);
3023 
3024 		if (cmdresult != DDI_SUCCESS) {
3025 			mutex_exit(&fdc->c_hilock);
3026 			return (cmdresult);
3027 		}
3028 
3029 		fdc->c_csb.csb_read = CSB_WRITE;
3030 		if (fdstart_dma(fdc, fd,  csb->csb_len) != 0) {
3031 			ddi_dma_mem_free(&mem_handle);
3032 			mutex_exit(&fdc->c_hilock);
3033 			return (-1);
3034 		}
3035 		mutex_exit(&fdc->c_hilock);
3036 
3037 
3038 	} else {
3039 		csb->csb_len = (uint_t)4 * ch->fdc_secptrack + 16;
3040 		fd = kmem_zalloc(csb->csb_len, KM_SLEEP);
3041 		fmthdrs = (uchar_t *)fd;
3042 	}
3043 
3044 	csb->csb_addr = (caddr_t)fd;
3045 
3046 	for (i = 1; i <= ch->fdc_secptrack; i++) {
3047 		*fd++ = (uchar_t)cyl;		/* cylinder */
3048 		*fd++ = (uchar_t)hd;		/* head */
3049 		*fd++ = (uchar_t)i;	/* sector number */
3050 		*fd++ = ch->fdc_medium ? 3 : 2; /* sec_size code */
3051 	}
3052 
3053 	if ((cmdresult = fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG)) == 0) {
3054 		if (csb->csb_cmdstat)
3055 			cmdresult = EIO;	/* XXX TBD NYD for now */
3056 	}
3057 
3058 	if (fdc->c_fdtype & FDCTYPE_DMA) {
3059 		ddi_dma_mem_free(&mem_handle);
3060 	} else {
3061 		kmem_free((caddr_t)fmthdrs, csb->csb_len);
3062 	}
3063 
3064 	fdretcsb(fdc);
3065 
3066 	return (cmdresult);
3067 }
3068 
3069 /*
3070  * fdstart
3071  *	called from fd_strategy() or from fdXXXX() to setup and
3072  *	start operations of read or write only (using buf structs).
3073  *	Because the chip doesn't handle crossing cylinder boundaries on
3074  *	the fly, this takes care of those boundary conditions.	Note that
3075  *	it sleeps until the operation is done *within fdstart* - so that
3076  *	when fdstart returns, the operation is already done.
3077  *
3078  *	- called with the low level lock held
3079  *
3080  */
3081 
3082 static int slavio_index_pulse_work_around = 0;
3083 
3084 static void
3085 fdstart(struct fdctlr *fdc)
3086 {
3087 	struct buf *bp;
3088 	struct fdcsb *csb;
3089 	struct fdunit *un;
3090 	struct fd_char *ch;
3091 	struct dk_map32 *dkm;
3092 	uint_t	part;		/* partition number for the transfer */
3093 	uint_t	start_part;	/* starting block of the partition */
3094 	uint_t	last_part;	/* last block of the partition */
3095 	uint_t	blk;		/* starting block of transfer on diskette */
3096 	uint_t	sect;		/* starting block's offset into track */
3097 	uint_t	cyl;		/* starting cylinder of the transfer */
3098 	uint_t	bincyl;		/* starting blocks's offset into cylinder */
3099 	uint_t	secpcyl;	/* number of sectors per cylinder */
3100 	uint_t	phys_blkno;	/* no. of blocks on the diskette */
3101 	uint_t	head;		/* one of two diskette heads */
3102 	uint_t	unit;
3103 	uint_t	len, tlen;
3104 	caddr_t addr;
3105 	caddr_t temp_addr;
3106 	uint_t	partial_read = 0;
3107 	int sb_temp_buf_used = 0;
3108 
3109 	bp = fdc->c_actf;
3110 
3111 	while (bp != NULL) {
3112 
3113 		fdc->c_actf = bp->av_forw;
3114 		fdc->c_current = bp;
3115 
3116 		/*
3117 		 * Initialize the buf structure.  The residual count is
3118 		 * initially the number of bytes to be read or written
3119 		 */
3120 		bp->b_flags &= ~B_ERROR;
3121 		bp->b_error = 0;
3122 		bp->b_resid = bp->b_bcount;
3123 		bp_mapin(bp);			/* map in buffers */
3124 
3125 		addr = bp->b_un.b_addr;		/* assign buffer address */
3126 
3127 		/*
3128 		 * Find the unit and partition numbers.
3129 		 */
3130 		unit = fdc->c_un->un_unit_no;
3131 		un = fdc->c_un;
3132 		ch = un->un_chars;
3133 		part = FDPARTITION(bp->b_edev);
3134 		dkm = &un->un_label.dkl_map[part];
3135 
3136 		if (un->un_chars->fdc_medium) {
3137 			phys_blkno = bp->b_blkno >> 1;
3138 		} else {
3139 			phys_blkno = bp->b_blkno;
3140 		}
3141 
3142 		if (un->un_iostat) {
3143 			kstat_waitq_to_runq(KIOSP);
3144 		}
3145 
3146 		FDERRPRINT(FDEP_L1, FDEM_STRT,
3147 		    (C, "fdstart: bp=0x%p blkno=0x%x bcount=0x%x\n",
3148 		    (void *)bp, (int)bp->b_blkno, (int)bp->b_bcount));
3149 
3150 		/*
3151 		 * Get the csb and initialize the values that are the same
3152 		 * for DMA and PIO.
3153 		 */
3154 		fdgetcsb(fdc);		/* get csb (maybe wait for it) */
3155 		csb = &fdc->c_csb;
3156 		csb->csb_unit = unit;		/* floppy unit number */
3157 
3158 
3159 		/*
3160 		 * bugID:4133425 : If the controller is SLAVIO, and
3161 		 * the read does not reach end of track, then modify
3162 		 * the tlen to read until the end of track to a temp
3163 		 * buffer and disable MT. After the read is over,
3164 		 * copy the useful portion of the data to 'addr'.
3165 		 * Enable this feature only when
3166 		 * slavio_index_pulse_work_aound variable is
3167 		 * set in /etc/system.
3168 		 */
3169 
3170 
3171 		if (bp->b_flags & B_READ) {
3172 			if (((fdc->c_fdtype & FDCTYPE_SLAVIO) &&
3173 				slavio_index_pulse_work_around) ||
3174 					(fdc->c_fdtype & FDCTYPE_TCBUG))
3175 				csb->csb_cmds[0] = SK | FDRAW_RDCMD | MFM;
3176 			else
3177 				csb->csb_cmds[0] = MT | SK | FDRAW_RDCMD | MFM;
3178 		} else {
3179 			if (fdc->c_fdtype & FDCTYPE_TCBUG)
3180 				csb->csb_cmds[0] = FDRAW_WRCMD | MFM;
3181 			else
3182 				csb->csb_cmds[0] = MT | FDRAW_WRCMD | MFM;
3183 		}
3184 
3185 
3186 		if (bp->b_flags & B_READ)
3187 			fdc->c_csb.csb_read = CSB_READ;
3188 		else
3189 			fdc->c_csb.csb_read = CSB_WRITE;
3190 
3191 
3192 		csb->csb_cmds[5] = ch->fdc_medium ? 3 : 2; /* sector size  */
3193 		csb->csb_cmds[6] = ch->fdc_secptrack; /* EOT-# of sectors/trk */
3194 		csb->csb_cmds[7] = GPLN;	/* GPL - gap 3 size code */
3195 		csb->csb_cmds[8] = SSSDTL;	/* DTL - be 0xFF if N != 0 */
3196 
3197 		csb->csb_ncmds = NCBRW;		/* number of command bytes */
3198 		csb->csb_nrslts = NRBRW;	/* number of result bytes */
3199 
3200 
3201 		/*
3202 		 * opflags for interrupt handler, et.al.
3203 		 */
3204 		csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT;
3205 
3206 
3207 		/*
3208 		 * Make sure the transfer does not go off the end
3209 		 * of the partition.  Limit the actual amount transferred
3210 		 * to fit the partition.
3211 		 */
3212 
3213 		blk = phys_blkno;
3214 		start_part = (dkm->dkl_cylno * ch->fdc_secptrack
3215 				* ch->fdc_nhead);
3216 		blk = blk + start_part;
3217 		last_part = start_part + dkm->dkl_nblk;
3218 
3219 		if ((blk + (bp->b_bcount / ch->fdc_sec_size)) > last_part)
3220 			len = (last_part - blk) * ch->fdc_sec_size;
3221 		else
3222 			len = (uint_t)bp->b_bcount;
3223 
3224 		/*
3225 		 * now we have the real start blk,
3226 		 * addr and len for xfer op
3227 		 * sectors per cylinder
3228 		 */
3229 		secpcyl = ch->fdc_nhead * ch->fdc_secptrack;
3230 
3231 		/*
3232 		 * The controller can transfer up to a cylinder at a time.
3233 		 * Early revs of the 82077 have a bug that causes the chip to
3234 		 * fail to respond to the Terminal Count signal.  Due to this
3235 		 * bug, controllers with type FDCTYPE_TCBUG, only transfer up
3236 		 * to a track at a time.
3237 		 * See earlier comment for bugID:4133425 for index pulse
3238 		 * work around.
3239 		 */
3240 
3241 		while (len != 0) {
3242 
3243 			cyl = blk / secpcyl;	/* cylinder of transfer */
3244 			bincyl = blk % secpcyl;	/* blk within cylinder */
3245 			head = bincyl / ch->fdc_secptrack;
3246 			sect = (bincyl % ch->fdc_secptrack) + 1;
3247 						/* sect w/in track */
3248 
3249 			/*
3250 			 * If the desired block and length will go beyond the
3251 			 * cylinder end, limit it to the cylinder end.
3252 			 */
3253 
3254 			if ((fdc->c_fdtype & FDCTYPE_SLAVIO) &&
3255 				slavio_index_pulse_work_around &&
3256 				(fdc->c_csb.csb_read == CSB_READ)) {
3257 
3258 				tlen = (ch->fdc_secptrack - sect + 1) *
3259 							ch->fdc_sec_size;
3260 				if (len < tlen) {
3261 					partial_read = 1;
3262 					temp_addr = (caddr_t)kmem_alloc(tlen,
3263 								KM_SLEEP);
3264 				}
3265 
3266 			} else if (fdc->c_fdtype & FDCTYPE_TCBUG) {
3267 				tlen = len;
3268 				if (len > ((ch->fdc_secptrack - sect + 1) *
3269 							ch->fdc_sec_size))
3270 					tlen = (ch->fdc_secptrack - sect + 1)
3271 							* ch->fdc_sec_size;
3272 			} else {
3273 				if (len > ((secpcyl - bincyl)
3274 							* ch->fdc_sec_size))
3275 					tlen = (secpcyl - bincyl)
3276 							* ch->fdc_sec_size;
3277 
3278 				else
3279 					tlen = len;
3280 			}
3281 			if (fdc->c_fdtype & FDCTYPE_SB) {
3282 				/*
3283 				 * To avoid underrun errors during IFB activity.
3284 				 */
3285 				if (tlen > max_fd_dma_len)
3286 					tlen = max_fd_dma_len;
3287 			}
3288 
3289 			FDERRPRINT(FDEP_L1, FDEM_STRT,
3290 			    (C, "	blk 0x%x, addr 0x%p, len 0x%x\n",
3291 			    blk, (void *)addr, len));
3292 			FDERRPRINT(FDEP_L1, FDEM_STRT,
3293 			    (C, "cyl:%x, head:%x, sec:%x\n",
3294 			    cyl, head, sect));
3295 
3296 			FDERRPRINT(FDEP_L1, FDEM_STRT,
3297 			    (C, "	resid 0x%lx, tlen %d\n",
3298 			    bp->b_resid, tlen));
3299 
3300 			/*
3301 			 * Finish programming the command
3302 			 */
3303 			csb->csb_cmds[1] = (head << 2) | unit;
3304 			if (fdc->c_fdtype & FDCTYPE_SB)
3305 				csb->csb_cmds[1] |= IPS;
3306 
3307 			csb->csb_cmds[2] = cyl;	/* C - cylinder address */
3308 			csb->csb_cmds[3] = head;	/* H - head number */
3309 			csb->csb_cmds[4] = sect;	/* R - sector number */
3310 			if (fdc->c_fdtype & FDCTYPE_TCBUG)
3311 				csb->csb_cmds[6] = sect +
3312 						(tlen / ch->fdc_sec_size) - 1;
3313 
3314 			csb->csb_len = tlen;
3315 			if (partial_read)
3316 				csb->csb_addr = temp_addr;
3317 			else
3318 				csb->csb_addr = addr;
3319 
3320 			/* retry this many times max */
3321 			csb->csb_maxretry = rwretry;
3322 			csb->csb_retrys = 0;
3323 
3324 			/* If platform supports DMA, set up DMA resources */
3325 			if (fdc->c_fdtype & FDCTYPE_DMA) {
3326 				if ((fdc->c_fdtype & FDCTYPE_SB) &&
3327 				    (((uint32_t)addr & 0xFFFF0000) !=
3328 				    (((uint32_t)addr + tlen) & 0xFFFF0000))) {
3329 					csb->csb_addr = fdc->dma_buf;
3330 					sb_temp_buf_used = 1;
3331 					if (csb->csb_read != CSB_READ) {
3332 						bcopy(addr, fdc->dma_buf, tlen);
3333 				}
3334 			}
3335 				mutex_enter(&fdc->c_hilock);
3336 
3337 				if (fdstart_dma(fdc, csb->csb_addr,
3338 								tlen) != 0) {
3339 
3340 					bp->b_flags |= B_ERROR;
3341 					bp->b_error = EAGAIN;
3342 
3343 					mutex_exit(&fdc->c_hilock);
3344 					FDERRPRINT(FDEP_L1, FDEM_STRT,
3345 					(C, "fdstart: no dma resources\n"));
3346 
3347 					break;
3348 				}
3349 				mutex_exit(&fdc->c_hilock);
3350 
3351 			}
3352 
3353 			bp->b_error = fdexec(fdc, FDXC_SLEEP|FDXC_CHECKCHG);
3354 			if (bp->b_error != 0) {
3355 				/*
3356 				 * error in fdexec
3357 				 */
3358 				FDERRPRINT(FDEP_L1, FDEM_STRT, (C,
3359 				    "fdstart: bad exec of bp: 0x%p, err %d\n",
3360 				    (void *)bp, bp->b_error));
3361 
3362 				bp->b_flags |= B_ERROR;
3363 				if (partial_read) {
3364 					partial_read = 0;
3365 					kmem_free(temp_addr, tlen);
3366 				}
3367 				break;
3368 			}
3369 
3370 			/*
3371 			 * If it was a partial read, copy the useful
3372 			 * portion of data to 'addr'.
3373 			 */
3374 			if (partial_read) {
3375 				partial_read = 0;
3376 				bcopy(temp_addr, addr, len);
3377 				kmem_free(temp_addr, tlen);
3378 				tlen = len;
3379 			}
3380 			if ((fdc->c_fdtype & FDCTYPE_SB) &&
3381 					(csb->csb_read == CSB_READ)) {
3382 				if (sb_temp_buf_used) {
3383 					bcopy(fdc->dma_buf, addr, tlen);
3384 					sb_temp_buf_used = 0;
3385 				}
3386 			}
3387 
3388 			blk += tlen / ch->fdc_sec_size;
3389 			len -= tlen;
3390 			addr += tlen;
3391 			bp->b_resid -= tlen;
3392 
3393 		}
3394 
3395 		FDERRPRINT(FDEP_L1, FDEM_STRT,
3396 		    (C, "fdstart done: b_resid %lu, b_count %lu, csb_rlen %d\n",
3397 		    bp->b_resid, bp->b_bcount, fdc->c_csb.csb_rlen));
3398 
3399 		fdc->c_current = 0;
3400 		fdretcsb(fdc);
3401 		if (un->un_iostat) {
3402 			if (bp->b_flags & B_READ) {
3403 				KIOSP->reads++;
3404 				KIOSP->nread +=
3405 					(bp->b_bcount - bp->b_resid);
3406 			} else {
3407 				KIOSP->writes++;
3408 				KIOSP->nwritten += (bp->b_bcount - bp->b_resid);
3409 			}
3410 			kstat_runq_exit(KIOSP);
3411 		}
3412 		biodone(bp);
3413 
3414 		/*
3415 		 * Look at the next buffer
3416 		 */
3417 		bp = fdc->c_actf;
3418 
3419 	}
3420 }
3421 
3422 /*
3423  * Set up DMA resources
3424  * The DMA handle was initialized in fd_attach()
3425  * Assumes the handle has already been allocated by fd_attach()
3426  */
3427 static int
3428 fdstart_dma(struct fdctlr *fdc, caddr_t addr, uint_t len)
3429 {
3430 	int		flags;		/* flags for setting up resources */
3431 	int		res;
3432 
3433 	FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: start\n"));
3434 
3435 	if (fdc->c_csb.csb_read == CSB_READ) {
3436 		flags = DDI_DMA_READ;
3437 	} else {
3438 		flags = DDI_DMA_WRITE;
3439 	}
3440 
3441 
3442 	/* allow partial mapping to maximize the portability of the driver */
3443 	flags = flags | DDI_DMA_PARTIAL;
3444 
3445 	FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: amt. asked for %d\n",
3446 					len));
3447 
3448 	/*
3449 	 * Zero out the current cookie.  This is done to ensure that
3450 	 * the previous transfers cookie information can in no way be
3451 	 * used.
3452 	 */
3453 	bzero((char *)&fdc->c_csb.csb_dmacookie,
3454 			sizeof (fdc->c_csb.csb_dmacookie));
3455 	fdc->c_csb.csb_nwin = 0;
3456 	fdc->c_csb.csb_windex = 0;
3457 	fdc->c_csb.csb_ccount = 0;
3458 
3459 	res = ddi_dma_addr_bind_handle(fdc->c_dmahandle, NULL, addr, len,
3460 	flags, DDI_DMA_DONTWAIT, 0,  &fdc->c_csb.csb_dmacookie,
3461 	&fdc->c_csb.csb_ccount);
3462 
3463 	switch (res) {
3464 		case DDI_DMA_MAPPED:
3465 			/*
3466 			 * There is one window. csb_windex is the index
3467 			 * into the array of windows. If there are n
3468 			 * windows then, (0 <= windex <= n-1).  csb_windex
3469 			 * represents the index of the next window
3470 			 * to be processed.
3471 			 */
3472 			fdc->c_csb.csb_nwin = 1;
3473 			fdc->c_csb.csb_windex = 1;
3474 
3475 
3476 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3477 				(C, "fdstart_dma: DDI_DMA_MAPPED\n"));
3478 
3479 			break;
3480 		case DDI_DMA_PARTIAL_MAP:
3481 
3482 			/*
3483 			 * obtain the number of DMA windows
3484 			 */
3485 			if (ddi_dma_numwin(fdc->c_dmahandle,
3486 				&fdc->c_csb.csb_nwin) != DDI_SUCCESS) {
3487 				return (-1);
3488 			}
3489 
3490 
3491 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3492 			(C, "fdstart_dma: partially mapped %d windows\n",
3493 			fdc->c_csb.csb_nwin));
3494 
3495 			/*
3496 			 * The DMA window currently in use is window number
3497 			 * one.
3498 			 */
3499 			fdc->c_csb.csb_windex = 1;
3500 
3501 			break;
3502 		case DDI_DMA_NORESOURCES:
3503 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3504 				(C, "fdstart_dma: no resources\n"));
3505 			return (-1);
3506 		case DDI_DMA_NOMAPPING:
3507 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3508 				(C, "fdstart_dma: no mapping\n"));
3509 			return (-1);
3510 		case DDI_DMA_TOOBIG:
3511 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3512 				(C, "fdstart_dma: too big\n"));
3513 			return (-1);
3514 
3515 		case DDI_DMA_INUSE:
3516 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3517 				(C, "fdstart_dma: dma inuse\n"));
3518 			return (-1);
3519 		default:
3520 			FDERRPRINT(FDEP_L1, FDEM_SDMA,
3521 				(C, "fdstart_dma: result is 0x%x\n", res));
3522 			return (-1);
3523 
3524 	};
3525 
3526 	FDERRPRINT(FDEP_L1, FDEM_SDMA,
3527 		(C, "fdstart_dma: bound the handle\n"));
3528 
3529 	ASSERT(fdc->c_csb.csb_dmacookie.dmac_size);
3530 
3531 	FDERRPRINT(FDEP_L1, FDEM_SDMA, (C, "fdstart_dma: done\n"));
3532 	return (0);
3533 }
3534 
3535 
3536 /*
3537  * fd_unbind_handle: unbind a dma handle if one exists
3538  *		return EIO if unbind failes
3539  */
3540 static int
3541 fd_unbind_handle(struct fdctlr *fdc)
3542 {
3543 	if ((fdc->c_fdtype & FDCTYPE_DMA) &&
3544 		((fdc->c_csb.csb_read == CSB_READ) ||
3545 		    (fdc->c_csb.csb_read == CSB_WRITE))) {
3546 		mutex_enter(&fdc->c_hilock);
3547 
3548 		if (fdc->c_fdtype & FDCTYPE_SB) {
3549 			if (fdc->sb_dma_lock) {
3550 				release_sb_dma(fdc);
3551 			}
3552 		}
3553 
3554 		/*
3555 		 * If the byte count isn't zero, then the DMA engine is
3556 		 * still doing a transfer.  If the byte count is nonzero,
3557 		 * reset the DMA engine to cause it to drain.
3558 		 */
3559 
3560 		if (get_data_count_register(fdc) != 0) {
3561 			    FDERRPRINT(FDEP_L1, FDEM_EXEC,
3562 				(C, "unbind & byte count isn't zero\n"));
3563 
3564 				reset_dma_controller(fdc);
3565 				set_dma_control_register(fdc, DCSR_INIT_BITS);
3566 		}
3567 
3568 		if (ddi_dma_unbind_handle(fdc->c_dmahandle) != DDI_SUCCESS) {
3569 			FDERRPRINT(FDEP_L1, FDEM_EXEC,
3570 				(C, "problem unbinding the handle\n"));
3571 			mutex_exit(&fdc->c_hilock);
3572 			return (EIO);
3573 		}
3574 		mutex_exit(&fdc->c_hilock);
3575 	}
3576 	return (0);
3577 }
3578 
3579 /*
3580  * fdexec
3581  *	all commands go through here.  Assumes the command block
3582  *	fdctlr.c_csb is filled in.  The bytes are sent to the
3583  *	controller and then we do whatever else the csb says -
3584  *	like wait for immediate results, etc.
3585  *
3586  *	All waiting for operations done is in here - to allow retrys
3587  *	and checking for disk changed - so we don't have to worry
3588  *	about sleeping at interrupt level.
3589  *
3590  * RETURNS: 0 if all ok,
3591  *	ENXIO - diskette not in drive
3592  *	EBUSY - if chip is locked or busy
3593  *	EIO - for timeout during sending cmds to chip
3594  *
3595  * to sleep: set FDXC_SLEEP, to check for disk
3596  * changed: set FDXC_CHECKCHG
3597  *
3598  *	- called with the lock held
3599  */
3600 static int
3601 fdexec(struct fdctlr *fdc, int flags)
3602 {
3603 	struct fdcsb *csb;
3604 	int	i;
3605 	int	to, unit;
3606 	uchar_t	tmp;
3607 	caddr_t a = (caddr_t)fdc;
3608 
3609 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: flags:%x\n", flags));
3610 
3611 	ASSERT(mutex_owned(&fdc->c_lolock));
3612 
3613 	csb = &fdc->c_csb;
3614 	unit = csb->csb_unit;
3615 
3616 
3617 	ASSERT(unit == fdc->c_un->un_unit_no);
3618 
3619 retry:
3620 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: cmd is %s\n",
3621 				fdcmds[csb->csb_cmds[0] & 0x1f].cmdname));
3622 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: transfer rate = %d\n",
3623 	    fdc->c_un->un_chars->fdc_transfer_rate));
3624 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: sec size = %d\n",
3625 	    fdc->c_un->un_chars->fdc_sec_size));
3626 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: nblocks (512) = %d\n",
3627 	    fdc->c_un->un_label.dkl_map[2].dkl_nblk));
3628 
3629 	if ((fdc->c_fdtype & FDCTYPE_CTRLMASK) == FDCTYPE_82077) {
3630 		fdexec_turn_on_motor(fdc, flags, unit);
3631 	}
3632 
3633 
3634 	fdselect(fdc, unit, 1);	/* select drive */
3635 
3636 	/*
3637 	 * select data rate for this unit/command
3638 	 */
3639 	switch (fdc->c_un->un_chars->fdc_transfer_rate) {
3640 	case 500:
3641 		Dsr(fdc, 0);
3642 		break;
3643 	case 300:
3644 		Dsr(fdc, 1);
3645 		break;
3646 	case 250:
3647 		Dsr(fdc, 2);
3648 		break;
3649 	}
3650 	drv_usecwait(2);
3651 
3652 
3653 	/*
3654 	 * If checking for changed is enabled (i.e., not seeking in checkdisk),
3655 	 * we sample the DSKCHG line to see if the diskette has wandered away.
3656 	 */
3657 	if ((flags & FDXC_CHECKCHG) && fdsense_chng(fdc, unit)) {
3658 		FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "diskette changed\n"));
3659 		fdc->c_un->un_flags |= FDUNIT_CHANGED;
3660 
3661 		if (fdcheckdisk(fdc, unit)) {
3662 
3663 			(void) fd_unbind_handle(fdc);
3664 			return (ENXIO);
3665 
3666 		}
3667 	}
3668 
3669 	/*
3670 	 * gather some statistics
3671 	 */
3672 	switch (csb->csb_cmds[0] & 0x1f) {
3673 	case FDRAW_RDCMD:
3674 		fdc->fdstats.rd++;
3675 		break;
3676 	case FDRAW_WRCMD:
3677 		fdc->fdstats.wr++;
3678 		break;
3679 	case FDRAW_REZERO:
3680 		fdc->fdstats.recal++;
3681 		break;
3682 	case FDRAW_FORMAT:
3683 		fdc->fdstats.form++;
3684 		break;
3685 	default:
3686 		fdc->fdstats.other++;
3687 		break;
3688 	}
3689 
3690 	/*
3691 	 * Always set the opmode *prior* to poking the chip.
3692 	 * This way we don't have to do any locking at high level.
3693 	 */
3694 	csb->csb_raddr = 0;
3695 	csb->csb_rlen = 0;
3696 	if (csb->csb_opflags & CSB_OFSEEKOPS) {
3697 		csb->csb_opmode = 2;
3698 	} else if (csb->csb_opflags & CSB_OFIMMEDIATE) {
3699 		csb->csb_opmode = 0;
3700 	} else {
3701 		csb->csb_opmode = 1;	/* normal data xfer commands */
3702 		csb->csb_raddr = csb->csb_addr;
3703 		csb->csb_rlen = csb->csb_len;
3704 	}
3705 
3706 	bzero((caddr_t)csb->csb_rslt, 10);
3707 	csb->csb_status = 0;
3708 	csb->csb_cmdstat = 0;
3709 
3710 
3711 	/*
3712 	 * Program the DMA engine with the length and address of the transfer
3713 	 * (DMA is only used on a read or a write)
3714 	 */
3715 	if ((fdc->c_fdtype & FDCTYPE_DMA) &&
3716 			((fdc->c_csb.csb_read == CSB_READ) ||
3717 			    (fdc->c_csb.csb_read == CSB_WRITE)))  {
3718 		mutex_enter(&fdc->c_hilock);
3719 
3720 		/* Reset the dcsr to clear it of all errors */
3721 
3722 		reset_dma_controller(fdc);
3723 
3724 		FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "cookie addr 0x%p\n",
3725 		    (void *)fdc->c_csb.csb_dmacookie.dmac_laddress));
3726 
3727 		FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "cookie length %ld\n",
3728 				fdc->c_csb.csb_dmacookie.dmac_size));
3729 		ASSERT(fdc->c_csb.csb_dmacookie.dmac_size);
3730 
3731 		set_data_count_register(fdc,
3732 			fdc->c_csb.csb_dmacookie.dmac_size);
3733 		set_data_address_register(fdc,
3734 			fdc->c_csb.csb_dmacookie.dmac_laddress);
3735 
3736 		/* Program the DCSR */
3737 
3738 		if (fdc->c_csb.csb_read == CSB_READ)
3739 			set_dma_mode(fdc, CSB_READ);
3740 		else
3741 			set_dma_mode(fdc, CSB_WRITE);
3742 		mutex_exit(&fdc->c_hilock);
3743 	}
3744 
3745 	/*
3746 	 * I saw this (chip unexpectedly busy) happen when i shoved the
3747 	 * floppy into the drive while
3748 	 * running a dd if= /dev/rfd0c.	so it *is* possible for this to happen.
3749 	 * we need to do a ctlr reset ...
3750 	 */
3751 
3752 	if (Msr(fdc) & CB) {
3753 		/* tried to give command to chip when it is busy! */
3754 		FDERRPRINT(FDEP_L3, FDEM_EXEC,
3755 		    (C, "fdc: unexpectedly busy-stat 0x%x\n", Msr(fdc)));
3756 		csb->csb_cmdstat = 1;	/* XXX TBD ERRS NYD for now */
3757 
3758 		(void) fd_unbind_handle(fdc);
3759 		return (EBUSY);
3760 	}
3761 
3762 	/* Give command to the controller */
3763 	for (i = 0; i < (int)csb->csb_ncmds; i++) {
3764 
3765 		/* Test the readiness of the controller to receive the cmd */
3766 		for (to = FD_CRETRY; to; to--) {
3767 			if ((Msr(fdc) & (DIO|RQM)) == RQM)
3768 				break;
3769 		}
3770 		if (to == 0) {
3771 			FDERRPRINT(FDEP_L2, FDEM_EXEC,
3772 			    (C, "fdc: no RQM - stat 0x%x\n", Msr(fdc)));
3773 			csb->csb_cmdstat = 1;
3774 
3775 			(void) fd_unbind_handle(fdc);
3776 			return (EIO);
3777 		}
3778 
3779 		Set_Fifo(fdc, csb->csb_cmds[i]);
3780 
3781 		FDERRPRINT(FDEP_L1, FDEM_EXEC,
3782 		    (C, "fdexec: sent 0x%x, Msr 0x%x\n", csb->csb_cmds[i],
3783 		    Msr(fdc)));
3784 
3785 	}
3786 
3787 
3788 	/*
3789 	 * Start watchdog timer on data transfer type commands - required
3790 	 * in case a diskette is not present or is unformatted
3791 	 */
3792 	if (csb->csb_opflags & CSB_OFTIMEIT) {
3793 		fdc->c_timeid = timeout(fdwatch, a,
3794 		    tosec * drv_usectohz(1000000));
3795 	}
3796 
3797 	FDERRPRINT(FDEP_L1, FDEM_EXEC,
3798 	    (C, "fdexec: cmd sent, Msr 0x%x\n", Msr(fdc)));
3799 
3800 	/* If the operation has no results - then just return */
3801 	if (csb->csb_opflags & CSB_OFNORESULTS) {
3802 		if (fdc->c_fdtype & FDCTYPE_82077) {
3803 			if (fdc->c_mtimeid == 0) {
3804 				fdc->c_mtimeid = timeout(fdmotoff, a,
3805 					Motoff_delay);
3806 			}
3807 		}
3808 		FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: O K ..\n"));
3809 
3810 		/*
3811 		 * Make sure the last byte is received well by the
3812 		 * controller. On faster CPU, it may still be busy
3813 		 * by the time another command comes here.
3814 		 */
3815 		for (to = FD_CRETRY; to; to--) {
3816 			if ((Msr(fdc) & (DIO|RQM)) == RQM)
3817 				break;
3818 			}
3819 		if (to == 0) {
3820 			csb->csb_cmdstat = 1;
3821 			return (EIO);
3822 		}
3823 
3824 		/*
3825 		 * An operation that has no results isn't doing DMA so,
3826 		 * there is no reason to try to unbind a handle
3827 		 */
3828 		return (0);
3829 	}
3830 
3831 	/*
3832 	 * If this operation has no interrupt AND an immediate result
3833 	 * then we just busy wait for the results and stuff them into
3834 	 * the csb
3835 	 */
3836 	if (csb->csb_opflags & CSB_OFIMMEDIATE) {
3837 		to = FD_RRETRY;
3838 		csb->csb_nrslts = 0;
3839 		/*
3840 		 * Wait while this command is still going on.
3841 		 */
3842 		while ((tmp = Msr(fdc)) & CB) {
3843 			/*
3844 			 * If RQM + DIO, then a result byte is at hand.
3845 			 */
3846 			if ((tmp & (RQM|DIO|CB)) == (RQM|DIO|CB)) {
3847 				csb->csb_rslt[csb->csb_nrslts++] =
3848 								Fifo(fdc);
3849 				/*
3850 				 * FDERRPRINT(FDEP_L4, FDEM_EXEC,
3851 				 *    (C, "fdexec: got result 0x%x\n",
3852 				 *    csb->csb_nrslts));
3853 				 */
3854 			} else if (--to == 0) {
3855 				FDERRPRINT(FDEP_L4, FDEM_EXEC,
3856 				    (C, "fdexec: timeout, Msr%x, nr%x\n",
3857 				    Msr(fdc), csb->csb_nrslts));
3858 
3859 				csb->csb_status = 2;
3860 				if (fdc->c_fdtype & FDCTYPE_82077) {
3861 					if (fdc->c_mtimeid == 0) {
3862 						fdc->c_mtimeid = timeout(
3863 						fdmotoff, a, Motoff_delay);
3864 					}
3865 				}
3866 				/*
3867 				 * There is no DMA happening.  No need to
3868 				 * try freeing a handle.
3869 				 */
3870 
3871 				return (EIO);
3872 			}
3873 		}
3874 	}
3875 
3876 	/*
3877 	 * If told to sleep here, well then sleep!
3878 	 */
3879 
3880 	if (flags & FDXC_SLEEP) {
3881 		fdc->c_flags |= FDCFLG_WAITING;
3882 		while (fdc->c_flags & FDCFLG_WAITING) {
3883 			cv_wait(&fdc->c_iocv, &fdc->c_lolock);
3884 		}
3885 	}
3886 
3887 	/*
3888 	 * kludge for end-of-cylinder error which must be ignored!!!
3889 	 */
3890 
3891 	if ((fdc->c_fdtype & FDCTYPE_TCBUG) &&
3892 	    ((csb->csb_rslt[0] & IC_SR0) == 0x40) &&
3893 	    (csb->csb_rslt[1] & EN_SR1))
3894 		csb->csb_rslt[0] &= ~IC_SR0;
3895 
3896 	/*
3897 	 * See if there was an error detected, if so, fdrecover()
3898 	 * will check it out and say what to do.
3899 	 *
3900 	 * Don't do this, though, if this was the Sense Drive Status
3901 	 * or the Dump Registers command.
3902 	 */
3903 	if (((csb->csb_rslt[0] & IC_SR0) || (fdc->c_csb.csb_dcsr_rslt) ||
3904 		(csb->csb_status)) &&
3905 		((csb->csb_cmds[0] != FDRAW_SENSE_DRV) &&
3906 		(csb->csb_cmds[0] != DUMPREG))) {
3907 		/* if it can restarted OK, then do so, else return error */
3908 		if (fdrecover(fdc) != 0) {
3909 			if (fdc->c_fdtype & FDCTYPE_82077) {
3910 				if (fdc->c_mtimeid == 0) {
3911 					fdc->c_mtimeid = timeout(fdmotoff,
3912 						a, Motoff_delay);
3913 				}
3914 			}
3915 
3916 			/*
3917 			 * If this was a dma transfer, unbind the handle so
3918 			 * that other transfers may use it.
3919 			 */
3920 
3921 			(void) fd_unbind_handle(fdc);
3922 			return (EIO);
3923 		} else {
3924 			/* ASSUMES that cmd is still intact in csb */
3925 			goto retry;
3926 		}
3927 	}
3928 
3929 	/* things went ok */
3930 	if (fdc->c_fdtype & FDCTYPE_82077) {
3931 		if (fdc->c_mtimeid == 0) {
3932 			fdc->c_mtimeid = timeout(fdmotoff, a, Motoff_delay);
3933 		}
3934 	}
3935 	FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "fdexec: O K ..........\n"));
3936 
3937 	if (fd_unbind_handle(fdc))
3938 		return (EIO);
3939 
3940 	return (0);
3941 }
3942 
3943 /*
3944  * Turn on the drive's motor
3945  *
3946  *	- called with the low level lock held
3947  */
3948 static void
3949 fdexec_turn_on_motor(struct fdctlr *fdc, int flags,  uint_t unit)
3950 {
3951 	clock_t local_lbolt;
3952 	timeout_id_t timeid;
3953 
3954 	/*
3955 	 * The low level mutex may not be held over the call to
3956 	 * untimeout().  See the manpage for details.
3957 	 */
3958 	timeid = fdc->c_mtimeid;
3959 	fdc->c_mtimeid = 0;
3960 	if (timeid) {
3961 		mutex_exit(&fdc->c_lolock);
3962 		(void) untimeout(timeid);
3963 		mutex_enter(&fdc->c_lolock);
3964 	}
3965 
3966 	ASSERT(fdc->c_un->un_unit_no == unit);
3967 
3968 
3969 	set_rotational_speed(fdc, unit);
3970 
3971 	if (!(Dor(fdc) & (MOTEN(unit)))) {
3972 		/*
3973 		 * Turn on the motor
3974 		 */
3975 		FDERRPRINT(FDEP_L1, FDEM_EXEC,
3976 			(C, "fdexec: turning on motor\n"));
3977 
3978 		/* LINTED */
3979 		Set_dor(fdc, (MOTEN(unit)), 1);
3980 
3981 		if (flags & FDXC_SLEEP) {
3982 			local_lbolt = ddi_get_lbolt();
3983 			(void) cv_timedwait(&fdc->c_motoncv,
3984 			    &fdc->c_lolock, local_lbolt + Moton_delay);
3985 		} else {
3986 			drv_usecwait(1000000);
3987 		}
3988 	}
3989 
3990 }
3991 
3992 /*
3993  * fdrecover
3994  *	see if possible to retry an operation.
3995  *	All we can do is restart the operation.	 If we are out of allowed
3996  *	retries - return non-zero so that the higher levels will be notified.
3997  *
3998  * RETURNS: 0 if ok to restart, !0 if can't or out of retries
3999  *	- called with the low level lock held
4000  */
4001 static int
4002 fdrecover(struct fdctlr *fdc)
4003 {
4004 	struct fdcsb *csb;
4005 
4006 	FDERRPRINT(FDEP_L1, FDEM_RECO, (C, "fdrecover\n"));
4007 	csb = &fdc->c_csb;
4008 
4009 	if (fdc->c_flags & FDCFLG_TIMEDOUT) {
4010 		struct fdcsb savecsb;
4011 
4012 		fdc->c_flags ^= FDCFLG_TIMEDOUT;
4013 		csb->csb_rslt[1] |= TO_SR1;
4014 		FDERRPRINT(FDEP_L1, FDEM_RECO,
4015 		    (C, "fd%d: %s timed out\n", csb->csb_unit,
4016 		    fdcmds[csb->csb_cmds[0] & 0x1f].cmdname));
4017 
4018 		/* use private csb */
4019 		savecsb = fdc->c_csb;
4020 		bzero(&fdc->c_csb, sizeof (struct fdcsb));
4021 		FDERRPRINT(FDEP_L1, FDEM_RECO, (C, "fdc: resetting\n"));
4022 
4023 		(void) fdreset(fdc);
4024 
4025 		if (fdc->c_fdtype & FDCTYPE_DMA) {
4026 			mutex_enter(&fdc->c_hilock);
4027 			/* Reset the DMA engine as well */
4028 			reset_dma_controller(fdc);
4029 			set_dma_control_register(fdc, DCSR_INIT_BITS);
4030 			mutex_exit(&fdc->c_hilock);
4031 		}
4032 
4033 
4034 		/* check change first?? */
4035 		/* don't ckchg in fdexec, too convoluted */
4036 		(void) fdrecalseek(fdc, savecsb.csb_unit, -1, 0);
4037 		fdc->c_csb = savecsb; /* restore original csb */
4038 	}
4039 
4040 	/*
4041 	 * gather statistics on errors
4042 	 */
4043 	if (csb->csb_rslt[1] & DE_SR1) {
4044 		fdc->fdstats.de++;
4045 	}
4046 	if (csb->csb_rslt[1] & OR_SR1) {
4047 		fdc->fdstats.run++;
4048 	}
4049 	if (csb->csb_rslt[1] & (ND_SR1+MA_SR1)) {
4050 		fdc->fdstats.bfmt++;
4051 	}
4052 	if (csb->csb_rslt[1] & TO_SR1) {
4053 		fdc->fdstats.to++;
4054 	}
4055 
4056 	/*
4057 	 * If raw ioctl don't examine results just pass status
4058 	 * back via fdraw. Raw commands are timed too, so put this
4059 	 * after the above check.
4060 	 */
4061 	if (csb->csb_opflags & CSB_OFRAWIOCTL) {
4062 		return (1);
4063 	}
4064 
4065 
4066 	/*
4067 	 * if there was a pci bus error, do not retry
4068 	 */
4069 
4070 	    if (csb->csb_dcsr_rslt == 1) {
4071 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4072 			    (C, "fd%d: host bus error\n", 0));
4073 		return (1);
4074 	    }
4075 
4076 	/*
4077 	 * If there was an error with the DMA functions, do not retry
4078 	 */
4079 	if (csb->csb_dma_rslt == 1) {
4080 			FDERRPRINT(FDEP_L1, FDEM_RECO,
4081 			    (C, "fd%d: DMA interface error\n", csb->csb_unit));
4082 		return (1);
4083 	}
4084 
4085 
4086 	/*
4087 	 * if we have run out of retries, return an error
4088 	 * XXX need better status interp
4089 	 */
4090 
4091 	csb->csb_retrys++;
4092 	if (csb->csb_retrys > csb->csb_maxretry) {
4093 		FDERRPRINT(FDEP_L3, FDEM_RECO,
4094 		    (C, "fd%d: %s failed (%x %x %x)\n",
4095 		    0, fdcmds[csb->csb_cmds[0] & 0x1f].cmdname,
4096 		    csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2]));
4097 		if (csb->csb_rslt[1] & NW_SR1) {
4098 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4099 			    (C, "fd%d: not writable\n", 0));
4100 		}
4101 		if (csb->csb_rslt[1] & DE_SR1) {
4102 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4103 			    (C, "fd%d: crc error blk %d\n", 0,
4104 			    (int)fdc->c_current->b_blkno));
4105 		}
4106 		if (csb->csb_rslt[1] & OR_SR1) {
4107 			if (fdc->c_fdtype & FDCTYPE_SB) {
4108 				/*
4109 				 * When using southbridge chip we need to
4110 				 * retry atleast 10 times to shake off the
4111 				 * underrun err.
4112 				 */
4113 				if (csb->csb_retrys <= rwretry)
4114 					return (0);
4115 			}
4116 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4117 			    (C, "fd%d: over/underrun\n", 0));
4118 		}
4119 
4120 		if (csb->csb_rslt[1] & (ND_SR1+MA_SR1)) {
4121 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4122 			    (C, "fd%d: bad format\n", 0));
4123 		}
4124 
4125 		if (csb->csb_rslt[1] & TO_SR1) {
4126 			FDERRPRINT(FDEP_L3, FDEM_RECO,
4127 			    (C, "fd%d: timeout\n", 0));
4128 		}
4129 
4130 		csb->csb_cmdstat = 1; /* failed - give up */
4131 		return (1);
4132 	}
4133 
4134 	if (csb->csb_opflags & CSB_OFSEEKOPS) {
4135 		/* seek, recal type commands - just look at st0 */
4136 		FDERRPRINT(FDEP_L2, FDEM_RECO,
4137 		    (C, "fd%d: %s error : st0 0x%x\n", csb->csb_unit,
4138 		    fdcmds[csb->csb_cmds[0] & 0x1f].cmdname,
4139 		    csb->csb_rslt[0]));
4140 	}
4141 	if (csb->csb_opflags & CSB_OFXFEROPS) {
4142 		/* rd, wr, fmt type commands - look at st0, st1, st2 */
4143 		FDERRPRINT(FDEP_L2, FDEM_RECO,
4144 		    (C, "fd%d: %s error : st0=0x%x st1=0x%x st2=0x%x\n",
4145 		    csb->csb_unit, fdcmds[csb->csb_cmds[0] & 0x1f].cmdname,
4146 		    csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2]));
4147 	}
4148 
4149 	return (0);	/* tell fdexec to retry */
4150 }
4151 
4152 /*
4153  * Interrupt handle for DMA
4154  */
4155 
4156 static uint_t
4157 fdintr_dma()
4158 {
4159 	struct fdctlr   *fdc;
4160 	off_t		off;
4161 	size_t		len;
4162 	uint_t		ccount;
4163 	uint_t		windex;
4164 	uint_t		done = 0;
4165 	int		tmp_dcsr;
4166 	int		to;
4167 	uchar_t		tmp;
4168 	int		i = 0;
4169 	int		res = DDI_INTR_UNCLAIMED;
4170 	int		not_cheerio = 1;
4171 
4172 	/* search for a controller that's expecting an interrupt */
4173 	fdc = fdctlrs;
4174 
4175 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
4176 		tmp_dcsr = get_dma_control_register(fdc);
4177 		if (!(tmp_dcsr & DCSR_INT_PEND) && !(DCSR_ERR_PEND & tmp_dcsr))
4178 			return (res);
4179 		not_cheerio = 0;
4180 	}
4181 
4182 	mutex_enter(&fdc->c_hilock);
4183 
4184 	if (fdc->c_csb.csb_opmode == 0x0) {
4185 		fdc->c_csb.csb_opmode = 2;
4186 	}
4187 	if (fdc->sb_dma_lock) {
4188 		release_sb_dma(fdc);
4189 	}
4190 
4191 	/*
4192 	 * An interrupt can come from either the floppy controller or
4193 	 * or the DMA engine.  The DMA engine will only issue an
4194 	 * interrupt if there was an error.
4195 	 */
4196 
4197 	switch (fdc->c_csb.csb_opmode) {
4198 		case 0x1:
4199 			/* read/write/format data-xfer case */
4200 
4201 			FDERRPRINT(FDEP_L1, FDEM_INTR,
4202 				(C, "fdintr_dma: opmode 1\n"));
4203 
4204 			/*
4205 			 * See if the interrupt is from the floppy
4206 			 * controller.  If there is, take out the status bytes.
4207 			 */
4208 
4209 			if (not_cheerio || (tmp_dcsr & DCSR_INT_PEND)) {
4210 
4211 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4212 					(C, "fdintr_dma: INT_PEND \n"));
4213 
4214 				res = DDI_INTR_CLAIMED;
4215 
4216 				to = FD_RRETRY;
4217 				fdc->c_csb.csb_nrslts = 0;
4218 
4219 				/* check status */
4220 				i = 0;
4221 
4222 				/*
4223 				 * CB turns off once all the result bytes are
4224 				 *  read.
4225 				 *
4226 				 * NOTE: the counters are there so that the
4227 				 * handler will never get stuck in a loop.
4228 				 * If the counters do reach their maximum
4229 				 * values, then a catastrophic error has
4230 				 * occurred.  This should never be the case.
4231 				 * The counters only came into play during
4232 				 * development.
4233 				 */
4234 				while (((tmp = Msr(fdc)) & CB) &&
4235 					(i < 1000001)) {
4236 
4237 					/*
4238 					 * If RQM + DIO, then a result byte
4239 					 * is at hand.
4240 					 */
4241 					if ((tmp & (RQM|DIO|CB)) ==
4242 								(RQM|DIO|CB)) {
4243 						fdc->c_csb.csb_rslt
4244 						[fdc->c_csb.csb_nrslts++]
4245 							    = Fifo(fdc);
4246 
4247 						FDERRPRINT(FDEP_L1, FDEM_INTR,
4248 						(C, "fdintr_dma: res 0x%x\n",
4249 							fdc->c_csb.csb_rslt
4250 							[fdc->c_csb.csb_nrslts
4251 							- 1]));
4252 
4253 					} else if (--to == 0) {
4254 						/*
4255 						 * controller was never
4256 						 * ready to give results
4257 						 */
4258 						fdc->c_csb.csb_status = 2;
4259 						break;
4260 					}
4261 				i++;
4262 				}
4263 				if (i == 10000) {
4264 					FDERRPRINT(FDEP_L1, FDEM_INTR,
4265 						(C, "First loop overran\n"));
4266 				}
4267 			}
4268 
4269 			/*
4270 			 * See if the interrupt is from the DMA engine,
4271 			 * which will only interrupt on an error
4272 			 */
4273 			if ((!not_cheerio) && (tmp_dcsr & DCSR_ERR_PEND)) {
4274 
4275 				res = DDI_INTR_CLAIMED;
4276 
4277 				done = 1;
4278 				fdc->c_csb.csb_dcsr_rslt = 1;
4279 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4280 					(C, "fdintr_dma: Error pending\n"));
4281 				reset_dma_controller(fdc);
4282 				set_dma_control_register(fdc, DCSR_INIT_BITS);
4283 				break;
4284 			}
4285 
4286 			/* TCBUG kludge */
4287 			if ((fdc->c_fdtype & FDCTYPE_TCBUG) &&
4288 				((fdc->c_csb.csb_rslt[0] & IC_SR0) == 0x40) &&
4289 				(fdc->c_csb.csb_rslt[1] & EN_SR1)) {
4290 
4291 				fdc->c_csb.csb_rslt[0] &= ~IC_SR0;
4292 
4293 				fdc->c_csb.csb_rslt[1] &= ~EN_SR1;
4294 
4295 
4296 			}
4297 
4298 
4299 			/* Exit if there were errors in the DMA */
4300 			if (((fdc->c_csb.csb_rslt[0] & IC_SR0) != 0) ||
4301 			    (fdc->c_csb.csb_rslt[1] != 0) ||
4302 			    (fdc->c_csb.csb_rslt[2] != 0)) {
4303 				done = 1;
4304 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4305 					(C, "fdintr_dma: errors in command\n"));
4306 
4307 
4308 				break;
4309 			}
4310 
4311 
4312 			FDERRPRINT(FDEP_L1, FDEM_INTR,
4313 				(C, "fdintr_dma: dbcr 0x%x\n",
4314 				get_data_count_register(fdc)));
4315 			/*
4316 			 * The csb_ccount is the number of cookies that still
4317 			 * need to be processed.  A cookie was just processed
4318 			 * so decrement the cookie counter.
4319 			 */
4320 			if (fdc->c_csb.csb_ccount == 0) {
4321 				done = 1;
4322 				break;
4323 			}
4324 			fdc->c_csb.csb_ccount--;
4325 			ccount = fdc->c_csb.csb_ccount;
4326 
4327 			windex = fdc->c_csb.csb_windex;
4328 
4329 			/*
4330 			 * If there are no more cookies and all the windows
4331 			 * have been DMA'd, then DMA is done.
4332 			 *
4333 			 */
4334 			if ((ccount == 0) && (windex == fdc->c_csb.csb_nwin)) {
4335 
4336 				done = 1;
4337 
4338 				/*
4339 				 * The handle is unbound in fdexec
4340 				 */
4341 
4342 				break;
4343 			}
4344 
4345 			if (ccount != 0) {
4346 				/* process the next cookie */
4347 				ddi_dma_nextcookie(fdc->c_dmahandle,
4348 				    &fdc->c_csb.csb_dmacookie);
4349 
4350 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4351 				    (C, "cookie addr 0x%" PRIx64 "\n",
4352 				    fdc->c_csb.csb_dmacookie.dmac_laddress));
4353 
4354 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4355 				    (C, "cookie length %lu\n",
4356 				    fdc->c_csb.csb_dmacookie.dmac_size));
4357 
4358 			} else {
4359 
4360 				(void) ddi_dma_getwin(fdc->c_dmahandle,
4361 				    fdc->c_csb.csb_windex,
4362 				    &off, &len,
4363 				    &fdc->c_csb.csb_dmacookie,
4364 				    &fdc->c_csb.csb_ccount);
4365 				fdc->c_csb.csb_windex++;
4366 
4367 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4368 				    (C, "fdintr_dma: process %d window\n",
4369 				    fdc->c_csb.csb_windex));
4370 
4371 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4372 				    (C, "fdintr_dma: process no. cookies %d\n",
4373 				    fdc->c_csb.csb_ccount));
4374 
4375 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4376 				    (C, "cookie addr 0x%" PRIx64 "\n",
4377 				    fdc->c_csb.csb_dmacookie.dmac_laddress));
4378 
4379 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4380 				    (C, "cookie length %lu\n",
4381 				    fdc->c_csb.csb_dmacookie.dmac_size));
4382 			}
4383 
4384 			/*
4385 			 * Program the DMA engine with the length and
4386 			 * the address of the transfer
4387 			 */
4388 
4389 			ASSERT(fdc->c_csb.csb_dmacookie.dmac_size);
4390 
4391 			set_data_count_register(fdc,
4392 				fdc->c_csb.csb_dmacookie.dmac_size);
4393 			set_data_address_register(fdc,
4394 				fdc->c_csb.csb_dmacookie.dmac_laddress);
4395 
4396 			FDERRPRINT(FDEP_L1, FDEM_INTR, (C,
4397 			    "fdintr_dma: size 0x%lx\n",
4398 			    fdc->c_csb.csb_dmacookie.dmac_size));
4399 
4400 
4401 			/* reprogram the controller */
4402 			fdc->c_csb.csb_cmds[2] = fdc->c_csb.csb_rslt[3];
4403 			fdc->c_csb.csb_cmds[3] = fdc->c_csb.csb_rslt[4];
4404 			fdc->c_csb.csb_cmds[4] = fdc->c_csb.csb_rslt[5];
4405 			fdc->c_csb.csb_cmds[1] = (fdc->c_csb.csb_cmds[1]
4406 				& ~0x04) | (fdc->c_csb.csb_rslt[4] << 2);
4407 
4408 			for (i = 0; i < (int)fdc->c_csb.csb_ncmds; i++) {
4409 
4410 				/*
4411 				 * Test the readiness of the controller
4412 				 * to receive the cmd
4413 				 */
4414 				for (to = FD_CRETRY; to; to--) {
4415 					if ((Msr(fdc) & (DIO|RQM)) == RQM)
4416 						break;
4417 				}
4418 				if (to == 0) {
4419 					FDERRPRINT(FDEP_L2, FDEM_EXEC,
4420 					(C,
4421 					"fdc: no RQM - stat 0x%x\n", Msr(fdc)));
4422 					/* stop the DMA from happening */
4423 					fdc->c_csb.csb_status = 2;
4424 					done = 1;
4425 					break;
4426 				}
4427 
4428 				Set_Fifo(fdc, fdc->c_csb.csb_cmds[i]);
4429 
4430 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4431 					(C,
4432 					"fdintr_dma: sent 0x%x, Msr 0x%x\n",
4433 					fdc->c_csb.csb_cmds[i], Msr(fdc)));
4434 			}
4435 
4436 			/* reenable DMA */
4437 			if ((!not_cheerio) && (!done))
4438 				set_dma_control_register(fdc, tmp_dcsr |
4439 					DCSR_EN_DMA);
4440 			break;
4441 
4442 		case 0x2:
4443 		/* seek/recal type cmd */
4444 			FDERRPRINT(FDEP_L1, FDEM_INTR,
4445 				(C, "fintr_dma: opmode 2\n"));
4446 
4447 			/*
4448 			 *  See if the interrupt is from the DMA engine,
4449 			 *  which will only interrupt if there was an error.
4450 			 */
4451 			if ((!not_cheerio) && (tmp_dcsr & DCSR_ERR_PEND)) {
4452 				res = DDI_INTR_CLAIMED;
4453 				done = 1;
4454 				fdc->c_csb.csb_dcsr_rslt = 1;
4455 				reset_dma_controller(fdc);
4456 				set_dma_control_register(fdc, DCSR_INIT_BITS);
4457 
4458 				break;
4459 			}
4460 
4461 
4462 			/* See if the interrupt is from the floppy controller */
4463 			if (not_cheerio || (tmp_dcsr & DCSR_INT_PEND)) {
4464 
4465 				res = DDI_INTR_CLAIMED;
4466 
4467 
4468 				/*
4469 				 * Wait until there's no longer a command
4470 				 * in progress
4471 				 */
4472 
4473 				FDERRPRINT(FDEP_L1, FDEM_INTR,
4474 					(C, "fdintr_dma: interrupt pending\n"));
4475 				i = 0;
4476 				while (((Msr(fdc) & CB)) && (i < 10000)) {
4477 					i++;
4478 				}
4479 
4480 				if (i == 10000)
4481 					FDERRPRINT(FDEP_L1, FDEM_INTR,
4482 						(C, "2nd loop overran !!!\n"));
4483 
4484 				/*
4485 				 * Check the RQM bit to see if the controller is
4486 				 * ready to transfer status of the command.
4487 				 */
4488 				i = 0;
4489 				while ((!(Msr(fdc) & RQM)) && (i < 10000)) {
4490 					i++;
4491 				}
4492 
4493 				if (i == 10000)
4494 					FDERRPRINT(FDEP_L1, FDEM_INTR,
4495 					    (C, "3rd loop overran !!!\n"));
4496 
4497 				/*
4498 				 * Issue the Sense Interrupt Status Command
4499 				 */
4500 				Set_Fifo(fdc, SNSISTAT);
4501 
4502 				i = 0;
4503 				while ((!(Msr(fdc) & RQM)) && (i < 10000)) {
4504 					i++;
4505 				}
4506 				if (i == 10000)
4507 					FDERRPRINT(FDEP_L1, FDEM_INTR,
4508 					(C, "4th loop overran !!!\n"));
4509 
4510 				/* Store the first result byte */
4511 				fdc->c_csb.csb_rslt[0] = Fifo(fdc);
4512 
4513 				i = 0;
4514 				while ((!(Msr(fdc) & RQM)) && (i < 10000)) {
4515 					i++;
4516 				}
4517 				if (i == 10000)
4518 					FDERRPRINT(FDEP_L1, FDEM_INTR,
4519 					(C, "5th loop overran !!!\n"));
4520 
4521 				/* Store the second  result byte */
4522 				fdc->c_csb.csb_rslt[1] = Fifo(fdc);
4523 
4524 				done = 1;
4525 			}
4526 
4527 		}
4528 
4529 	/*
4530 	 * We are done with the actual interrupt handling here.
4531 	 * The portion below should be actually be done by fd_lointr().
4532 	 * We should be triggering the fd_lointr here and exiting.
4533 	 * However for want of time this will be done in the next FIX.
4534 	 *
4535 	 * Hence for now we will release hilock only and keep the remaining
4536 	 * code as it is.
4537 	 * Releasing of hilock ensures that we don't hold on to the
4538 	 * lolock and hilock at the same time.
4539 	 * hilock is acquired each time dma related  registers are accessed.
4540 	 */
4541 	mutex_exit(&fdc->c_hilock);
4542 	/* Make signal and get out of interrupt handler */
4543 	if (done) {
4544 		mutex_enter(&fdc->c_lolock);
4545 
4546 		fdc->c_csb.csb_opmode = 0;
4547 
4548 		/*  reset watchdog timer if armed and not already triggered */
4549 
4550 
4551 		if (fdc->c_timeid) {
4552 			timeout_id_t timeid = fdc->c_timeid;
4553 			fdc->c_timeid = 0;
4554 			mutex_exit(&fdc->c_lolock);
4555 			(void) untimeout(timeid);
4556 			mutex_enter(&fdc->c_lolock);
4557 		}
4558 
4559 
4560 		if (fdc->c_flags & FDCFLG_WAITING) {
4561 			/*
4562 			 * somebody's waiting on finish of fdctlr/csb,
4563 			 * wake them
4564 			 */
4565 
4566 			FDERRPRINT(FDEP_L1, FDEM_INTR,
4567 				(C, "fdintr_dma: signal the waiter\n"));
4568 
4569 			fdc->c_flags ^= FDCFLG_WAITING;
4570 			cv_signal(&fdc->c_iocv);
4571 
4572 			/*
4573 			 * FDCFLG_BUSY is NOT cleared, NOR is the csb given
4574 			 * back; the operation just finished can look at the csb
4575 			 */
4576 		} else {
4577 			FDERRPRINT(FDEP_L1, FDEM_INTR,
4578 				(C, "fdintr_dma: nobody sleeping (%x %x %x)\n",
4579 			fdc->c_csb.csb_rslt[0], fdc->c_csb.csb_rslt[1],
4580 			fdc->c_csb.csb_rslt[2]));
4581 		}
4582 		mutex_exit(&fdc->c_lolock);
4583 	}
4584 	/* update high level interrupt counter */
4585 	if (fdc->c_intrstat)
4586 			KIOIP->intrs[KSTAT_INTR_HARD]++;
4587 
4588 
4589 	FDERRPRINT(FDEP_L1, FDEM_INTR, (C, "fdintr_dma: done\n"));
4590 	return (res);
4591 }
4592 
4593 /*
4594  * fd_lointr
4595  *	This is the low level SW interrupt handler triggered by the high
4596  *	level interrupt handler (or by fdwatch).
4597  */
4598 static uint_t
4599 fd_lointr(caddr_t arg)
4600 {
4601 	struct fdctlr *fdc = (struct fdctlr *)arg;
4602 	struct fdcsb *csb;
4603 
4604 	csb = &fdc->c_csb;
4605 	FDERRPRINT(FDEP_L1, FDEM_INTR, (C, "fdintr: opmode %d\n",
4606 	    csb->csb_opmode));
4607 	/*
4608 	 * Check that lowlevel interrupt really meant to trigger us.
4609 	 */
4610 	if (csb->csb_opmode != 4) {
4611 		/*
4612 		 * This should probably be protected, but, what the
4613 		 * heck...the cost isn't worth the accuracy for this
4614 		 * statistic.
4615 		 */
4616 		if (fdc->c_intrstat)
4617 			KIOIP->intrs[KSTAT_INTR_SPURIOUS]++;
4618 		return (DDI_INTR_UNCLAIMED);
4619 	}
4620 
4621 	mutex_enter(&fdc->c_lolock);
4622 	csb->csb_opmode = 0;
4623 
4624 	/*  reset watchdog timer if armed and not already triggered */
4625 	if (fdc->c_timeid) {
4626 		timeout_id_t timeid = fdc->c_timeid;
4627 		fdc->c_timeid = 0;
4628 		mutex_exit(&fdc->c_lolock);
4629 		(void) untimeout(timeid);
4630 		mutex_enter(&fdc->c_lolock);
4631 
4632 	}
4633 
4634 	if (fdc->c_flags & FDCFLG_WAITING) {
4635 		/*
4636 		 * somebody's waiting on finish of fdctlr/csb, wake them
4637 		 */
4638 		fdc->c_flags ^= FDCFLG_WAITING;
4639 		cv_signal(&fdc->c_iocv);
4640 
4641 		/*
4642 		 * FDCFLG_BUSY is NOT cleared, NOR is the csb given back; so
4643 		 * the operation just finished can look at the csb
4644 		 */
4645 	} else {
4646 		FDERRPRINT(FDEP_L3, FDEM_INTR,
4647 		    (C, "fdintr: nobody sleeping (%x %x %x)\n",
4648 		    csb->csb_rslt[0], csb->csb_rslt[1], csb->csb_rslt[2]));
4649 	}
4650 	if (fdc->c_intrstat)
4651 		KIOIP->intrs[KSTAT_INTR_SOFT]++;
4652 	mutex_exit(&fdc->c_lolock);
4653 	return (DDI_INTR_CLAIMED);
4654 }
4655 
4656 /*
4657  * fdwatch
4658  *	is called from timein() when a floppy operation has expired.
4659  */
4660 static void
4661 fdwatch(void *arg)
4662 {
4663 	struct fdctlr *fdc = arg;
4664 	int old_opmode;
4665 	struct fdcsb *csb;
4666 
4667 	FDERRPRINT(FDEP_L1, FDEM_WATC, (C, "fdwatch\n"));
4668 
4669 	mutex_enter(&fdc->c_lolock);
4670 	if (fdc->c_timeid == 0) {
4671 		/*
4672 		 * fdintr got here first, ergo, no timeout condition..
4673 		 */
4674 
4675 		FDERRPRINT(FDEP_L1, FDEM_WATC,
4676 				(C, "fdwatch: no timeout\n"));
4677 
4678 		mutex_exit(&fdc->c_lolock);
4679 		return;
4680 	}
4681 	fdc->c_timeid = 0;
4682 	csb = &fdc->c_csb;
4683 
4684 	mutex_enter(&fdc->c_hilock);
4685 	/*
4686 	 * XXXX: We should probably reset the bloody chip
4687 	 */
4688 	old_opmode = csb->csb_opmode;
4689 
4690 	FDERRPRINT(FDEP_L1, FDEM_WATC,
4691 	    (C, "fd%d: timeout, opmode:%d\n", csb->csb_unit, old_opmode));
4692 
4693 	csb->csb_opmode = 4;
4694 	mutex_exit(&fdc->c_hilock);
4695 
4696 	FDERRPRINT(FDEP_L1, FDEM_WATC, (C, "fdwatch: cmd %s timed out\n",
4697 				fdcmds[csb->csb_cmds[0] & 0x1f].cmdname));
4698 	fdc->c_flags |= FDCFLG_TIMEDOUT;
4699 	csb->csb_status = CSB_CMDTO;
4700 
4701 	if ((fdc->c_fdtype & FDCTYPE_DMA) == 0) {
4702 		ddi_trigger_softintr(fdc->c_softid);
4703 		KIOIP->intrs[KSTAT_INTR_WATCHDOG]++;
4704 		mutex_exit(&fdc->c_lolock);
4705 	} else {
4706 		mutex_exit(&fdc->c_lolock);
4707 		(void) fd_lointr((caddr_t)fdctlrs);
4708 	}
4709 }
4710 
4711 /*
4712  * fdgetcsb
4713  *	wait until the csb is free
4714  */
4715 static void
4716 fdgetcsb(struct fdctlr *fdc)
4717 {
4718 	FDERRPRINT(FDEP_L1, FDEM_GETC, (C, "fdgetcsb\n"));
4719 	ASSERT(mutex_owned(&fdc->c_lolock));
4720 	while (fdc->c_flags & FDCFLG_BUSY) {
4721 		fdc->c_flags |= FDCFLG_WANT;
4722 		cv_wait(&fdc->c_csbcv, &fdc->c_lolock);
4723 	}
4724 	fdc->c_flags |= FDCFLG_BUSY; /* got it! */
4725 }
4726 
4727 /*
4728  * fdretcsb
4729  *	return csb
4730  */
4731 static void
4732 fdretcsb(struct fdctlr *fdc)
4733 {
4734 
4735 	ASSERT(mutex_owned(&fdc->c_lolock));
4736 	FDERRPRINT(FDEP_L1, FDEM_RETC, (C, "fdretcsb\n"));
4737 	fdc->c_flags &= ~FDCFLG_BUSY; /* let go */
4738 
4739 	fdc->c_csb.csb_read = 0;
4740 
4741 	if (fdc->c_flags & FDCFLG_WANT) {
4742 		fdc->c_flags ^= FDCFLG_WANT;
4743 		/*
4744 		 * broadcast the signal.  One thread will wake up and
4745 		 * set the flags to FDCFLG_BUSY.  If more than one thread is
4746 		 * waiting then each thread will wake up in turn.  The first
4747 		 * thread to wake-up will set the FDCFLG_BUSY flag and the
4748 		 * subsequent threads will will wake-up, but reset the
4749 		 * flag to FDCFLG_WANT because the FDCFLG_BUSY bit is set.
4750 		 */
4751 		cv_broadcast(&fdc->c_csbcv);
4752 	}
4753 }
4754 
4755 
4756 /*
4757  * fdreset
4758  *	reset THE controller, and configure it to be
4759  *	the way it ought to be
4760  * ASSUMES: that it already owns the csb/fdctlr!
4761  *
4762  *	- called with the low level lock held
4763  */
4764 static int
4765 fdreset(struct fdctlr *fdc)
4766 {
4767 	struct fdcsb *csb;
4768 	clock_t local_lbolt = 0;
4769 	timeout_id_t timeid;
4770 
4771 	FDERRPRINT(FDEP_L1, FDEM_RESE, (C, "fdreset\n"));
4772 
4773 	ASSERT(mutex_owned(&fdc->c_lolock));
4774 
4775 	/* count resets */
4776 	fdc->fdstats.reset++;
4777 
4778 	/*
4779 	 * On the 82077, the DSR will clear itself after a reset.  Upon exiting
4780 	 * the reset, a polling interrupt will be generated.  If the floppy
4781 	 * interrupt is enabled, it's possible for cv_signal() to be called
4782 	 * before cv_wait().  This will cause the system to hang.  Turn off
4783 	 * the floppy interrupt to avoid this race condition
4784 	 */
4785 	if ((fdc->c_fdtype & FDCTYPE_CTRLMASK) == FDCTYPE_82077) {
4786 		/*
4787 		 * We need to perform any timeouts before we Reset the
4788 		 * controller. We cannot afford to drop the c_lolock mutex after
4789 		 * Resetting the controller. The reason is that we get a spate
4790 		 * of interrupts until we take the controller out of reset.
4791 		 * The way we avoid this spate of continuous interrupts is by
4792 		 * holding on to the c_lolock and forcing the fdintr_dma routine
4793 		 * to go to sleep waiting for this mutex.
4794 		 */
4795 		/* Do not hold the mutex across the untimeout call */
4796 		timeid = fdc->c_mtimeid;
4797 		fdc->c_mtimeid = 0;
4798 		if (timeid) {
4799 			mutex_exit(&fdc->c_lolock);
4800 			(void) untimeout(timeid);
4801 			mutex_enter(&fdc->c_lolock);
4802 		}
4803 		/* LINTED */
4804 		Set_dor(fdc, DMAGATE, 0);
4805 		FDERRPRINT(FDEP_L1, FDEM_RESE, (C, "fdreset: set dor\n"));
4806 	}
4807 
4808 	/* toggle software reset */
4809 	Dsr(fdc, SWR);
4810 
4811 	drv_usecwait(5);
4812 
4813 	FDERRPRINT(FDEP_L1, FDEM_RESE,
4814 			(C, "fdreset: toggled software reset\n"));
4815 
4816 	/*
4817 	 * This sets the data rate to 500Kbps (for high density)
4818 	 * XXX should use current characteristics instead XXX
4819 	 */
4820 	Dsr(fdc, 0);
4821 	drv_usecwait(5);
4822 	switch (fdc->c_fdtype & FDCTYPE_CTRLMASK) {
4823 	case FDCTYPE_82077:
4824 		/*
4825 		 * when we bring the controller out of reset it will generate
4826 		 * a polling interrupt. fdintr() will field it and schedule
4827 		 * fd_lointr(). There will be no one sleeping but we are
4828 		 * expecting an interrupt so....
4829 		 */
4830 		fdc->c_flags |= FDCFLG_WAITING;
4831 
4832 		/*
4833 		 * The reset bit must be cleared to take the 077 out of
4834 		 * reset state and the DMAGATE bit must be high to enable
4835 		 * interrupts.
4836 		 */
4837 		/* LINTED */
4838 		Set_dor(fdc, DMAGATE|RESET, 1);
4839 
4840 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
4841 			(C, "fdattach: Dor 0x%x\n", Dor(fdc)));
4842 
4843 		local_lbolt = ddi_get_lbolt();
4844 		if (cv_timedwait(&fdc->c_iocv, &fdc->c_lolock,
4845 			local_lbolt + drv_usectohz(1000000)) == -1) {
4846 			return (-1);
4847 		}
4848 		break;
4849 
4850 	default:
4851 		fdc->c_flags |= FDCFLG_WAITING;
4852 
4853 		/*
4854 		 * A timed wait is not used because it's possible for the timer
4855 		 * to go off before the controller has a chance to interrupt.
4856 		 */
4857 		cv_wait(&fdc->c_iocv, &fdc->c_lolock);
4858 		break;
4859 	}
4860 	csb = &fdc->c_csb;
4861 
4862 	/* setup common things in csb */
4863 	csb->csb_unit = fdc->c_un->un_unit_no;
4864 	csb->csb_nrslts = 0;
4865 	csb->csb_opflags = CSB_OFNORESULTS;
4866 	csb->csb_maxretry = 0;
4867 	csb->csb_retrys = 0;
4868 
4869 	csb->csb_read = CSB_NULL;
4870 
4871 	/* send SPECIFY command to fdc */
4872 	/* csb->unit is don't care */
4873 	csb->csb_cmds[0] = FDRAW_SPECIFY;
4874 	csb->csb_cmds[1] = fdspec[0]; /* step rate, head unload time */
4875 	if (fdc->c_fdtype & FDCTYPE_DMA)
4876 		csb->csb_cmds[2] =  SPEC_DMA_MODE;
4877 	else
4878 		csb->csb_cmds[2] = fdspec[1];  /* head load time, DMA mode */
4879 
4880 	csb->csb_ncmds = 3;
4881 
4882 	/* XXX for now ignore errors, they "CAN'T HAPPEN" */
4883 	(void) fdexec(fdc, 0);	/* no FDXC_CHECKCHG, ... */
4884 	/* no results */
4885 
4886 	/* send CONFIGURE command to fdc */
4887 	/* csb->unit is don't care */
4888 	csb->csb_cmds[0] = CONFIGURE;
4889 	csb->csb_cmds[1] = fdconf[0]; /* motor info, motor delays */
4890 	csb->csb_cmds[2] = fdconf[1]; /* enaimplsk, disapoll, fifothru */
4891 	csb->csb_cmds[3] = fdconf[2]; /* track precomp */
4892 	csb->csb_ncmds = 4;
4893 
4894 	csb->csb_read = CSB_NULL;
4895 
4896 	csb->csb_retrys = 0;
4897 
4898 	/* XXX for now ignore errors, they "CAN'T HAPPEN" */
4899 	(void) fdexec(fdc, 0); /* no FDXC_CHECKCHG, ... */
4900 	return (0);
4901 }
4902 
4903 /*
4904  * fdrecalseek
4905  *	performs recalibrates or seeks if the "arg" is -1 does a
4906  *	recalibrate on a drive, else it seeks to the cylinder of
4907  *	the drive.  The recalibrate is also used to find a drive,
4908  *	ie if the drive is not there, the controller says "error"
4909  *	on the operation
4910  * NOTE: that there is special handling of this operation in the hardware
4911  * interrupt routine - it causes the operation to appear to have results;
4912  * ie the results of the SENSE INTERRUPT STATUS that the hardware interrupt
4913  * function did for us.
4914  * NOTE: because it uses sleep/wakeup it must be protected in a critical
4915  * section so create one before calling it!
4916  *
4917  * RETURNS: 0 for ok,
4918  *	else	errno from fdexec,
4919  *	or	ENODEV if error (infers hardware type error)
4920  *
4921  *	- called with the low level lock held
4922  */
4923 static int
4924 fdrecalseek(struct fdctlr *fdc, int unit, int arg, int execflg)
4925 {
4926 	struct fdcsb *csb;
4927 	int result;
4928 
4929 	ASSERT(fdc->c_un->un_unit_no == unit);
4930 
4931 	FDERRPRINT(FDEP_L1, FDEM_RECA, (C, "fdrecalseek to %d\n", arg));
4932 
4933 	/* XXX TODO: check see argument for <= num cyls OR < 256 */
4934 
4935 	csb = &fdc->c_csb;
4936 	csb->csb_unit = (uchar_t)unit;
4937 	csb->csb_cmds[1] = unit & 0x03;
4938 
4939 	if (arg == -1) {			/* is recal... */
4940 		csb->csb_cmds[0] = FDRAW_REZERO;
4941 		csb->csb_ncmds = 2;
4942 	} else {
4943 		csb->csb_cmds[0] = FDRAW_SEEK;
4944 		csb->csb_cmds[2] = (uchar_t)arg;
4945 		csb->csb_ncmds = 3;
4946 	}
4947 	csb->csb_nrslts = 2;	/* 2 for SENSE INTERRUPTS */
4948 	csb->csb_opflags = CSB_OFSEEKOPS | CSB_OFTIMEIT;
4949 	/*
4950 	 * MAYBE NYD need to set retries to different values? - depending on
4951 	 * drive characteristics - if we get to high capacity drives
4952 	 */
4953 	csb->csb_maxretry = skretry;
4954 	csb->csb_retrys = 0;
4955 
4956 	/* send cmd off to fdexec */
4957 	if (result = fdexec(fdc, FDXC_SLEEP | execflg)) {
4958 		goto out;
4959 	}
4960 
4961 	/*
4962 	 * if recal, test for equipment check error
4963 	 * ASSUMES result = 0 from above call
4964 	 */
4965 	if (arg == -1) {
4966 		result = 0;
4967 	} else {
4968 		/* for seeks, any old error will do */
4969 		if ((csb->csb_rslt[0] & IC_SR0) || csb->csb_cmdstat)
4970 			result = ENODEV;
4971 	}
4972 
4973 out:
4974 	return (result);
4975 }
4976 
4977 /*
4978  * fdsensedrv
4979  *	do a sense_drive command.  used by fdopen and fdcheckdisk.
4980  *
4981  *	- called with the lock held
4982  */
4983 static int
4984 fdsensedrv(struct fdctlr *fdc, int unit)
4985 {
4986 	struct fdcsb *csb;
4987 
4988 	ASSERT(fdc->c_un->un_unit_no == unit);
4989 
4990 	csb = &fdc->c_csb;
4991 
4992 	/* setup common things in csb */
4993 	csb->csb_unit = (uchar_t)unit;
4994 	csb->csb_opflags = CSB_OFIMMEDIATE;
4995 	csb->csb_cmds[0] = FDRAW_SENSE_DRV;
4996 	/* MOT bit set means don't delay */
4997 	csb->csb_cmds[1] = MOT | (unit & 0x03);
4998 	csb->csb_ncmds = 2;
4999 	csb->csb_nrslts = 1;
5000 	csb->csb_maxretry = skretry;
5001 	csb->csb_retrys = 0;
5002 
5003 	/* XXX for now ignore errors, they "CAN'T HAPPEN" */
5004 	(void) fdexec(fdc, 0);	/* DON't check changed!, no sleep */
5005 
5006 	FDERRPRINT(FDEP_L1, FDEM_CHEK,
5007 		(C, "fdsensedrv: result 0x%x", csb->csb_rslt[0]));
5008 
5009 	return (csb->csb_rslt[0]); /* return status byte 3 */
5010 }
5011 
5012 /*
5013  * fdcheckdisk
5014  *	check to see if the disk is still there - do a recalibrate,
5015  *	then see if DSKCHG line went away, if so, diskette is in; else
5016  *	it's (still) out.
5017  */
5018 
5019 static int
5020 fdcheckdisk(struct fdctlr *fdc, int unit)
5021 {
5022 	auto struct fdcsb savecsb;
5023 	struct fdcsb *csb;
5024 	int	err, st3;
5025 	int	seekto;			/* where to seek for reset of DSKCHG */
5026 
5027 	FDERRPRINT(FDEP_L1, FDEM_CHEK,
5028 	    (C, "fdcheckdisk, unit %d\n", unit));
5029 
5030 	ASSERT(fdc->c_un->un_unit_no == unit);
5031 
5032 	/*
5033 	 * save old csb
5034 	 */
5035 
5036 	csb = &fdc->c_csb;
5037 	savecsb = fdc->c_csb;
5038 	bzero((caddr_t)csb, sizeof (*csb));
5039 
5040 	/*
5041 	 * Read drive status to see if at TRK0, if so, seek to cyl 1,
5042 	 * else seek to cyl 0.	We do this because the controller is
5043 	 * "smart" enough to not send any step pulses (which are how
5044 	 * the DSKCHG line gets reset) if it sees TRK0 'cause it
5045 	 * knows the drive is already recalibrated.
5046 	 */
5047 	st3 = fdsensedrv(fdc, unit);
5048 
5049 	/* check TRK0 bit in status */
5050 	if (st3 & T0_SR3)
5051 		seekto = 1;	/* at TRK0, seek out */
5052 	else
5053 		seekto = 0;
5054 
5055 	/*
5056 	 * DON'T recurse check changed
5057 	 */
5058 	err = fdrecalseek(fdc, unit, seekto, 0);
5059 
5060 	/* "restore" old csb, check change state */
5061 	fdc->c_csb = savecsb;
5062 
5063 	/* any recal/seek errors are too serious to attend to */
5064 	if (err) {
5065 		FDERRPRINT(FDEP_L2, FDEM_CHEK,
5066 		    (C, "fdcheckdisk err %d\n", err));
5067 		return (err);
5068 	}
5069 
5070 	/*
5071 	 * if disk change still asserted, no diskette in drive!
5072 	 */
5073 	if (fdsense_chng(fdc, csb->csb_unit)) {
5074 		FDERRPRINT(FDEP_L2, FDEM_CHEK,
5075 		    (C, "fdcheckdisk no disk\n"));
5076 		return (1);
5077 	}
5078 	return (0);
5079 }
5080 
5081 /*
5082  *	fdselect() - select drive, needed for external to chip select logic
5083  *	fdeject() - ejects drive, must be previously selected
5084  *	fdsense_chng() - sense disk changed line from previously selected drive
5085  *		return s 1 is signal asserted, else 0
5086  */
5087 /* ARGSUSED */
5088 static void
5089 fdselect(struct fdctlr *fdc, int unit, int on)
5090 {
5091 
5092 	ASSERT(fdc->c_un->un_unit_no == unit);
5093 
5094 	FDERRPRINT(FDEP_L1, FDEM_DSEL,
5095 	    (C, "fdselect, unit %d, on = %d\n", unit, on));
5096 
5097 	switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) {
5098 	case FDCTYPE_MACHIO:
5099 		set_auxioreg(AUX_DRVSELECT, on);
5100 		break;
5101 
5102 	case FDCTYPE_SLAVIO:
5103 	case FDCTYPE_CHEERIO:
5104 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
5105 			(C, "fdselect: (before) Dor 0x%x\n", Dor(fdc)));
5106 
5107 		if (unit == 0) {
5108 			Set_dor(fdc, DRVSEL, !on);
5109 		} else {
5110 			Set_dor(fdc, DRVSEL, on);
5111 		}
5112 
5113 		FDERRPRINT(FDEP_L1, FDEM_ATTA,
5114 			(C, "fdselect: Dor 0x%x\n", Dor(fdc)));
5115 
5116 		break;
5117 
5118 	default:
5119 		break;
5120 	}
5121 }
5122 
5123 /* ARGSUSED */
5124 static void
5125 fdeject(struct fdctlr *fdc, int unit)
5126 {
5127 	struct fdunit *un;
5128 
5129 	ASSERT(fdc->c_un->un_unit_no == unit);
5130 
5131 	un = fdc->c_un;
5132 
5133 	FDERRPRINT(FDEP_L1, FDEM_EJEC, (C, "fdeject\n"));
5134 	/*
5135 	 * assume delay of function calling sufficient settling time
5136 	 * eject line is NOT driven by inverter so it is true low
5137 	 */
5138 	switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) {
5139 	case FDCTYPE_MACHIO:
5140 		set_auxioreg(AUX_EJECT, 0);
5141 		drv_usecwait(2);
5142 		set_auxioreg(AUX_EJECT, 1);
5143 		break;
5144 
5145 	case FDCTYPE_SLAVIO:
5146 		if (!(Dor(fdc) & MOTEN(unit))) {
5147 			/* LINTED */
5148 			Set_dor(fdc, MOTEN(unit), 1);
5149 		}
5150 		drv_usecwait(2);	/* just to settle */
5151 		/* LINTED */
5152 		Set_dor(fdc, EJECT, 1);
5153 		drv_usecwait(2);
5154 		/* LINTED */
5155 		Set_dor(fdc, EJECT, 0);
5156 		break;
5157 	case FDCTYPE_CHEERIO:
5158 		if (!(Dor(fdc) & MOTEN(unit))) {
5159 			/* LINTED */
5160 			Set_dor(fdc, MOTEN(unit), 1);
5161 		}
5162 		drv_usecwait(2);	/* just to settle */
5163 		/* LINTED */
5164 		Set_dor(fdc, EJECT_DMA, 1);
5165 		drv_usecwait(2);
5166 		/* LINTED */
5167 		Set_dor(fdc, EJECT_DMA, 0);
5168 		break;
5169 	}
5170 	/*
5171 	 * XXX set ejected state?
5172 	 */
5173 	un->un_ejected = 1;
5174 }
5175 
5176 /* ARGSUSED */
5177 static int
5178 fdsense_chng(struct fdctlr *fdc, int unit)
5179 {
5180 	int changed = 0;
5181 
5182 	FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "fdsense_chng:start\n"));
5183 
5184 	ASSERT(fdc->c_un->un_unit_no == unit);
5185 
5186 	/*
5187 	 * Do not turn on the motor of a pollable drive
5188 	 */
5189 	if (fd_pollable) {
5190 	FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "pollable: don't turn on motor\n"));
5191 		/*
5192 		 * Invert the sense of the DSKCHG for pollable drives
5193 		 */
5194 		if (Dir(fdc) & DSKCHG)
5195 			changed = 0;
5196 		else
5197 			changed = 1;
5198 
5199 		return (changed);
5200 	}
5201 
5202 	switch (fdc->c_fdtype & FDCTYPE_AUXIOMASK) {
5203 	case FDCTYPE_MACHIO:
5204 		if (*fdc->c_auxiova & AUX_DISKCHG)
5205 			changed = 1;
5206 		break;
5207 
5208 	case FDCTYPE_SB:
5209 	case FDCTYPE_SLAVIO:
5210 	case FDCTYPE_CHEERIO:
5211 		if (!(Dor(fdc) & MOTEN(unit))) {
5212 			/* LINTED */
5213 			Set_dor(fdc, MOTEN(unit), 1);
5214 		}
5215 		drv_usecwait(2);	/* just to settle */
5216 		if (Dir(fdc) & DSKCHG)
5217 			changed = 1;
5218 		break;
5219 	}
5220 
5221 	FDERRPRINT(FDEP_L1, FDEM_SCHG, (C, "fdsense_chng:end\n"));
5222 
5223 	return (changed);
5224 }
5225 
5226 /*
5227  *	if it can read a valid label it does so, else it will use a
5228  *	default.  If it can`t read the diskette - that is an error.
5229  *
5230  * RETURNS: 0 for ok - meaning that it could at least read the device,
5231  *	!0 for error XXX TBD NYD error codes
5232  *
5233  *	- called with the low level lock held
5234  */
5235 static int
5236 fdgetlabel(struct fdctlr *fdc, int unit)
5237 {
5238 	struct dk_label *label = NULL;
5239 	struct fdunit *un;
5240 	short *sp;
5241 	short count;
5242 	short xsum;			/* checksum */
5243 	int	i, tries;
5244 	int	err = 0;
5245 	short	oldlvl;
5246 
5247 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5248 	    (C, "fdgetlabel: unit %d\n", unit));
5249 
5250 	un = fdc->c_un;
5251 	un->un_flags &= ~(FDUNIT_UNLABELED);
5252 
5253 	ASSERT(fdc->c_un->un_unit_no == unit);
5254 
5255 	/* Do not print errors since this is a private cmd */
5256 
5257 	oldlvl = fderrlevel;
5258 
5259 
5260 	fderrlevel = FDEP_L4;
5261 
5262 	label = (struct dk_label *)
5263 				kmem_zalloc(sizeof (struct dk_label), KM_SLEEP);
5264 
5265 	/*
5266 	 * try different characteristics (ie densities) by attempting to read
5267 	 * from the diskette.  The diskette may not be present or
5268 	 * is unformatted.
5269 	 *
5270 	 * First, the last sector of the first track is read.  If this
5271 	 * passes, attempt to read the last sector + 1 of the first track.
5272 	 * For example, for a high density diskette, sector 18 is read.  If
5273 	 * the diskette is high density, this will pass.  Next, try to
5274 	 * read sector 19 of the first track.  This should fail.  If it
5275 	 * passes, this is not a high density diskette.  Finally, read
5276 	 * the first sector which should contain a label.
5277 	 *
5278 	 * if un->un_curfdtype is -1 then the current characteristics
5279 	 * were set by FDIOSCHAR and need to try it as well as everything
5280 	 * in the table
5281 	 */
5282 	if (un->un_curfdtype == -1) {
5283 		tries = nfdtypes+1;
5284 		FDERRPRINT(FDEP_L1, FDEM_GETL,
5285 		    (C, "fdgetl: un_curfdtype is -1\n"));
5286 
5287 	    } else {
5288 		tries = nfdtypes;
5289 
5290 		/* Always start with the highest density (1.7MB) */
5291 		un->un_curfdtype = 0;
5292 		*(un->un_chars) = fdtypes[un->un_curfdtype];
5293 	}
5294 
5295 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5296 		    (C, "fdgetl: no. of tries %d\n", tries));
5297 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5298 		    (C, "fdgetl: no. of curfdtype %d\n", un->un_curfdtype));
5299 
5300 	for (i = 0; i < tries; i++) {
5301 		FDERRPRINT(FDEP_L1, FDEM_GETL,
5302 		    (C, "fdgetl: trying %d\n", i));
5303 
5304 		if (!(err = fdrw(fdc, unit, FDREAD, 0, 0,
5305 			un->un_chars->fdc_secptrack, (caddr_t)label,
5306 			sizeof (struct dk_label))) &&
5307 
5308 		    fdrw(fdc, unit, FDREAD, 0, 0,
5309 			un->un_chars->fdc_secptrack + 1,
5310 			(caddr_t)label, sizeof (struct dk_label)) &&
5311 
5312 		    !(err = fdrw(fdc, unit, FDREAD, 0, 0, 1, (caddr_t)label,
5313 			sizeof (struct dk_label)))) {
5314 
5315 			FDERRPRINT(FDEP_L1, FDEM_GETL,
5316 				(C, "fdgetl: succeeded\n"));
5317 
5318 			break;
5319 		}
5320 
5321 		/*
5322 		 * try the next entry in the characteristics tbl
5323 		 * If curfdtype is -1, the nxt entry in tbl is 0 (the first).
5324 		 */
5325 
5326 		un->un_curfdtype = (un->un_curfdtype + 1) % nfdtypes;
5327 		*(un->un_chars) = fdtypes[un->un_curfdtype];
5328 
5329 
5330 	}
5331 
5332 	/* print errors again */
5333 	fderrlevel = oldlvl;
5334 
5335 	/* Couldn't read anything */
5336 	if (err) {
5337 
5338 		/* The default characteristics are high density (1.4MB) */
5339 		un->un_curfdtype = 1;
5340 		*(un->un_chars) = fdtypes[un->un_curfdtype];
5341 
5342 		fdunpacklabel(&fdlbl_high_80, &un->un_label);
5343 
5344 		FDERRPRINT(FDEP_L1, FDEM_GETL,
5345 			(C, "fdgetl: Can't autosense diskette\n"));
5346 
5347 		goto out;
5348 	}
5349 
5350 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5351 	    (C, "fdgetl: fdtype=%d !!!\n", un->un_curfdtype));
5352 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5353 	    (C, "fdgetl: rate=%d ssize=%d !!!\n",
5354 	    un->un_chars->fdc_transfer_rate, un->un_chars->fdc_sec_size));
5355 
5356 	/*
5357 	 * _something_ was read	 -  look for unixtype label
5358 	 */
5359 	if (label->dkl_magic != DKL_MAGIC) {
5360 
5361 		/*
5362 		 * The label isn't a unix label.  However, the diskette
5363 		 * is formatted because we were able to read the first
5364 		 * cylinder.
5365 		 */
5366 
5367 		FDERRPRINT(FDEP_L1, FDEM_GETL,
5368 		    (C, "fdgetl: not unix label\n"));
5369 
5370 		goto nolabel;
5371 	}
5372 
5373 	/*
5374 	 * Checksum the label
5375 	 */
5376 	count = sizeof (struct dk_label)/sizeof (short);
5377 	sp = (short *)label;
5378 	xsum = 0;
5379 	while (count--)
5380 		xsum ^= *sp++;	/* should add up to 0 */
5381 	if (xsum) {
5382 
5383 		/*
5384 		 * The checksum fails.  However, the diskette is formatted
5385 		 * because we were able to read the first cylinder
5386 		 */
5387 
5388 		FDERRPRINT(FDEP_L1, FDEM_GETL,
5389 		    (C, "fdgetl: bad cksum\n"));
5390 
5391 		goto nolabel;
5392 	}
5393 
5394 	/*
5395 	 * The diskette has a unix label with a correct checksum.
5396 	 * Copy the label into the unit structure
5397 	 */
5398 	un->un_label = *label;
5399 
5400 	goto out;
5401 
5402 nolabel:
5403 	/*
5404 	 * The diskette doesn't have a correct unix label, but it is formatted.
5405 	 * Use a default label according to the diskette's density
5406 	 * (mark default used)
5407 	 */
5408 	FDERRPRINT(FDEP_L1, FDEM_GETL,
5409 	    (C, "fdgetlabel: unit %d\n", unit));
5410 	un->un_flags |= FDUNIT_UNLABELED;
5411 	switch (un->un_chars->fdc_secptrack) {
5412 	case 9:
5413 		fdunpacklabel(&fdlbl_low_80, &un->un_label);
5414 		break;
5415 	case 8:
5416 		fdunpacklabel(&fdlbl_medium_80, &un->un_label);
5417 		break;
5418 	case 18:
5419 		fdunpacklabel(&fdlbl_high_80, &un->un_label);
5420 		break;
5421 	case 21:
5422 		fdunpacklabel(&fdlbl_high_21, &un->un_label);
5423 		break;
5424 	default:
5425 		fdunpacklabel(&fdlbl_high_80, &un->un_label);
5426 		break;
5427 	}
5428 
5429 out:
5430 	if (label != NULL)
5431 		kmem_free((caddr_t)label, sizeof (struct dk_label));
5432 	return (err);
5433 }
5434 
5435 /*
5436  * fdrw- used only for reading labels  and for DKIOCSVTOC ioctl
5437  *	 which reads the 1 sector.
5438  */
5439 static int
5440 fdrw(struct fdctlr *fdc, int unit, int rw, int cyl, int head,
5441     int sector, caddr_t bufp, uint_t len)
5442 {
5443 	struct fdcsb *csb;
5444 	struct	fd_char *ch;
5445 	int	cmdresult = 0;
5446 	caddr_t dma_addr;
5447 	size_t	real_length;
5448 	int	res;
5449 	ddi_device_acc_attr_t attr;
5450 	ddi_acc_handle_t	mem_handle = NULL;
5451 
5452 	FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw\n"));
5453 
5454 	ASSERT(fdc->c_un->un_unit_no == unit);
5455 
5456 	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
5457 
5458 	if (fdc->c_un->un_state == FD_STATE_STOPPED) {
5459 		mutex_exit(&fdc->c_lolock);
5460 		if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
5461 					!= DDI_SUCCESS) {
5462 			FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \
5463 failed. \n"));
5464 			mutex_enter(&fdc->c_lolock);
5465 			return (EIO);
5466 		}
5467 
5468 		mutex_enter(&fdc->c_lolock);
5469 	}
5470 
5471 	fdgetcsb(fdc);
5472 	csb = &fdc->c_csb;
5473 	ch = fdc->c_un->un_chars;
5474 	if (rw == FDREAD) {
5475 		if (fdc->c_fdtype & FDCTYPE_TCBUG) {
5476 			/*
5477 			 * kludge for lack of Multitrack functionality
5478 			 */
5479 			csb->csb_cmds[0] = SK + FDRAW_RDCMD;
5480 		} else
5481 			csb->csb_cmds[0] = MT + SK + FDRAW_RDCMD;
5482 	} else { /* write */
5483 		if (fdc->c_fdtype & FDCTYPE_TCBUG) {
5484 			/*
5485 			 * kludge for lack of Multitrack functionality
5486 			 */
5487 			csb->csb_cmds[0] = FDRAW_WRCMD;
5488 		} else
5489 			csb->csb_cmds[0] = MT + FDRAW_WRCMD;
5490 	}
5491 
5492 	if (rw == FDREAD)
5493 		fdc->c_csb.csb_read = CSB_READ;
5494 	else
5495 		fdc->c_csb.csb_read = CSB_WRITE;
5496 
5497 	/* always or in MFM bit */
5498 	csb->csb_cmds[0] |= MFM;
5499 	csb->csb_cmds[1] = (uchar_t)(unit | ((head & 0x1) << 2));
5500 	if (fdc->c_fdtype & FDCTYPE_SB)
5501 		csb->csb_cmds[1] |= IPS;
5502 	csb->csb_cmds[2] = (uchar_t)cyl;
5503 	csb->csb_cmds[3] = (uchar_t)head;
5504 	csb->csb_cmds[4] = (uchar_t)sector;
5505 	csb->csb_cmds[5] = ch->fdc_medium ? 3 : 2; /* sector size code */
5506 	/*
5507 	 * kludge for end-of-cylinder error.
5508 	 */
5509 	if (fdc->c_fdtype & FDCTYPE_TCBUG)
5510 		csb->csb_cmds[6] = sector + (len / ch->fdc_sec_size) - 1;
5511 	else
5512 		csb->csb_cmds[6] =
5513 		    (uchar_t)max(fdc->c_un->un_chars->fdc_secptrack, sector);
5514 	csb->csb_len = len;
5515 	csb->csb_cmds[7] = GPLN;
5516 	csb->csb_cmds[8] = SSSDTL;
5517 	csb->csb_ncmds = NCBRW;
5518 	csb->csb_len = len;
5519 	csb->csb_maxretry = 2;
5520 	csb->csb_retrys = 0;
5521 	bzero(csb->csb_rslt, NRBRW);
5522 	csb->csb_nrslts = NRBRW;
5523 	csb->csb_opflags = CSB_OFXFEROPS | CSB_OFTIMEIT;
5524 
5525 	/* If platform supports DMA, set up DMA resources */
5526 	if (fdc->c_fdtype & FDCTYPE_DMA) {
5527 
5528 		mutex_enter(&fdc->c_hilock);
5529 
5530 		attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
5531 		attr.devacc_attr_endian_flags  = DDI_STRUCTURE_BE_ACC;
5532 		attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
5533 
5534 		res = ddi_dma_mem_alloc(fdc->c_dmahandle, len,
5535 			&attr, DDI_DMA_STREAMING,
5536 			DDI_DMA_DONTWAIT, 0, &dma_addr, &real_length,
5537 			&mem_handle);
5538 
5539 		if (res != DDI_SUCCESS) {
5540 			FDERRPRINT(FDEP_L1, FDEM_RW,
5541 				(C, "fdrw: dma mem alloc failed\n"));
5542 
5543 			fdretcsb(fdc);
5544 			mutex_exit(&fdc->c_hilock);
5545 			return (EIO);
5546 		}
5547 
5548 		FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: allocated memory"));
5549 
5550 		if (fdstart_dma(fdc, dma_addr, len) != 0) {
5551 			fdretcsb(fdc);
5552 			ddi_dma_mem_free(&mem_handle);
5553 			mutex_exit(&fdc->c_hilock);
5554 			return (-1);
5555 
5556 		}
5557 
5558 		/*
5559 		 * If the command is a write, copy the data to be written to
5560 		 * dma_addr.
5561 		 */
5562 
5563 		if (fdc->c_csb.csb_read == CSB_WRITE) {
5564 			bcopy((char *)bufp, (char *)dma_addr, len);
5565 		}
5566 
5567 		csb->csb_addr = dma_addr;
5568 		mutex_exit(&fdc->c_hilock);
5569 	} else {
5570 		csb->csb_addr = bufp;
5571 	}
5572 
5573 
5574 	FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: call fdexec\n"));
5575 
5576 	if (fdexec(fdc, FDXC_SLEEP | FDXC_CHECKCHG) != 0) {
5577 		fdretcsb(fdc);
5578 
5579 		if (mem_handle)
5580 			ddi_dma_mem_free(&mem_handle);
5581 
5582 		return (EIO);
5583 
5584 	}
5585 
5586 	FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fdrw: fdexec returned\n"));
5587 
5588 	/*
5589 	 * if DMA was used and the command was a read
5590 	 * copy the results into bufp
5591 	 */
5592 	if (fdc->c_fdtype & FDCTYPE_DMA) {
5593 		if (fdc->c_csb.csb_read == CSB_READ) {
5594 			bcopy((char *)dma_addr, (char *)bufp, len);
5595 		}
5596 		ddi_dma_mem_free(&mem_handle);
5597 	}
5598 
5599 	if (csb->csb_cmdstat)
5600 		cmdresult = EIO;	/* XXX TBD NYD for now */
5601 
5602 	fdretcsb(fdc);
5603 	return (cmdresult);
5604 }
5605 
5606 /*
5607  * fdunpacklabel
5608  *	this unpacks a (packed) struct dk_label into a standard dk_label.
5609  */
5610 static void
5611 fdunpacklabel(struct packed_label *from, struct dk_label *to)
5612 {
5613 	FDERRPRINT(FDEP_L1, FDEM_PACK, (C, "fdpacklabel\n"));
5614 	bzero((caddr_t)to, sizeof (*to));
5615 	bcopy((caddr_t)&from->dkl_vname, (caddr_t)to->dkl_asciilabel,
5616 	    sizeof (to->dkl_asciilabel));
5617 	to->dkl_rpm = from->dkl_rpm;	/* rotations per minute */
5618 	to->dkl_pcyl = from->dkl_pcyl;	/* # physical cylinders */
5619 	to->dkl_apc = from->dkl_apc;	/* alternates per cylinder */
5620 	to->dkl_intrlv = from->dkl_intrlv;	/* interleave factor */
5621 	to->dkl_ncyl = from->dkl_ncyl;	/* # of data cylinders */
5622 	to->dkl_acyl = from->dkl_acyl;	/* # of alternate cylinders */
5623 	to->dkl_nhead = from->dkl_nhead; /* # of heads in this partition */
5624 	to->dkl_nsect = from->dkl_nsect; /* # of 512 byte sectors per track */
5625 	/* logical partitions */
5626 	bcopy((caddr_t)from->dkl_map, (caddr_t)to->dkl_map,
5627 	    sizeof (struct dk_map32) * NDKMAP);
5628 	to->dkl_vtoc = from->dkl_vtoc;
5629 }
5630 
5631 static struct fdctlr *
5632 fd_getctlr(dev_t dev)
5633 {
5634 
5635 	struct fdctlr *fdc = fdctlrs;
5636 	int ctlr = FDCTLR(dev);
5637 
5638 	while (fdc) {
5639 		if (ddi_get_instance(fdc->c_dip) == ctlr)
5640 			return (fdc);
5641 		fdc = fdc->c_next;
5642 	}
5643 	return (fdc);
5644 }
5645 
5646 static int
5647 fd_unit_is_open(struct fdunit *un)
5648 {
5649 	int i;
5650 	for (i = 0; i < NDKMAP; i++)
5651 		if (un->un_lyropen[i])
5652 			return (1);
5653 	for (i = 0; i < OTYPCNT - 1; i++)
5654 		if (un->un_regopen[i])
5655 			return (1);
5656 	return (0);
5657 }
5658 
5659 /*
5660  * Return the a vtoc structure in *vtoc.
5661  * The vtoc is built from information in
5662  * the diskette's label.
5663  */
5664 static void
5665 fd_build_user_vtoc(struct fdunit *un, struct vtoc *vtoc)
5666 {
5667 	int i;
5668 	int nblks;			/* DEV_BSIZE sectors per cylinder */
5669 	struct dk_map2 *lpart;
5670 	struct dk_map32	*lmap;
5671 	struct partition *vpart;
5672 
5673 	bzero(vtoc, sizeof (struct vtoc));
5674 
5675 	/* Initialize info. needed by mboot.  (unsupported) */
5676 	vtoc->v_bootinfo[0] = un->un_label.dkl_vtoc.v_bootinfo[0];
5677 	vtoc->v_bootinfo[1] = un->un_label.dkl_vtoc.v_bootinfo[1];
5678 	vtoc->v_bootinfo[2] = un->un_label.dkl_vtoc.v_bootinfo[2];
5679 
5680 	/* Fill in vtoc sanity and version information */
5681 	vtoc->v_sanity		= un->un_label.dkl_vtoc.v_sanity;
5682 	vtoc->v_version		= un->un_label.dkl_vtoc.v_version;
5683 
5684 	/* Copy the volume name */
5685 	bcopy(un->un_label.dkl_vtoc.v_volume,
5686 	    vtoc->v_volume, LEN_DKL_VVOL);
5687 
5688 	/*
5689 	 * The dk_map32 structure is based on DEV_BSIZE byte blocks.
5690 	 * However, medium density diskettes have 1024 byte blocks.
5691 	 * The number of sectors per partition listed in the dk_map32 structure
5692 	 * accounts for this by multiplying the number of 1024 byte
5693 	 * blocks by 2.  (See the packed_label initializations.)  The
5694 	 * 1024 byte block size can not be listed for medium density
5695 	 * diskettes because the kernel is hard coded for DEV_BSIZE
5696 	 * blocks.
5697 	 */
5698 	vtoc->v_sectorsz = DEV_BSIZE;
5699 	vtoc->v_nparts = un->un_label.dkl_vtoc.v_nparts;
5700 
5701 	/* Copy the reserved space */
5702 	bcopy(un->un_label.dkl_vtoc.v_reserved,
5703 	    vtoc->v_reserved, sizeof (un->un_label.dkl_vtoc.v_reserved));
5704 	/*
5705 	 * Convert partitioning information.
5706 	 *
5707 	 * Note the conversion from starting cylinder number
5708 	 * to starting sector number.
5709 	 */
5710 	lmap = un->un_label.dkl_map;
5711 	lpart = un->un_label.dkl_vtoc.v_part;
5712 	vpart = vtoc->v_part;
5713 
5714 	nblks = (un->un_chars->fdc_nhead * un->un_chars->fdc_secptrack *
5715 		un->un_chars->fdc_sec_size) / DEV_BSIZE;
5716 
5717 	for (i = 0; i < V_NUMPAR; i++) {
5718 		vpart->p_tag	= lpart->p_tag;
5719 		vpart->p_flag	= lpart->p_flag;
5720 		vpart->p_start	= lmap->dkl_cylno * nblks;
5721 		vpart->p_size	= lmap->dkl_nblk;
5722 
5723 		lmap++;
5724 		lpart++;
5725 		vpart++;
5726 	}
5727 
5728 	/* Initialize timestamp and label */
5729 	bcopy(un->un_label.dkl_vtoc.v_timestamp,
5730 	    vtoc->timestamp, sizeof (vtoc->timestamp));
5731 
5732 	bcopy(un->un_label.dkl_asciilabel,
5733 	    vtoc->v_asciilabel, LEN_DKL_ASCII);
5734 }
5735 
5736 /*
5737  * Build a label out of a vtoc structure.
5738  */
5739 static int
5740 fd_build_label_vtoc(struct fdunit *un, struct vtoc *vtoc)
5741 {
5742 	struct dk_map32		*lmap;
5743 	struct dk_map2		*lpart;
5744 	struct partition	*vpart;
5745 	int			nblks;	/* no. blocks per cylinder */
5746 	int			ncyl;
5747 	int			i;
5748 	short	 sum, *sp;
5749 
5750 	/* Sanity-check the vtoc */
5751 	if ((vtoc->v_sanity != VTOC_SANE) ||
5752 			(vtoc->v_nparts > NDKMAP) || (vtoc->v_nparts <= 0)) {
5753 		FDERRPRINT(FDEP_L1, FDEM_IOCT,
5754 		    (C, "fd_build_label:  sanity check on vtoc failed\n"));
5755 		return (EINVAL);
5756 	}
5757 
5758 	nblks = (un->un_chars->fdc_nhead * un->un_chars->fdc_secptrack *
5759 		un->un_chars->fdc_sec_size) / DEV_BSIZE;
5760 
5761 	vpart = vtoc->v_part;
5762 
5763 	/*
5764 	 * Check the partition information in the vtoc.  The starting sectors
5765 	 * must lie along partition boundaries. (NDKMAP entries are checked
5766 	 * to ensure that the unused entries are set to 0 if vtoc->v_nparts
5767 	 * is less than NDKMAP)
5768 	 */
5769 
5770 	for (i = 0; i < NDKMAP; i++) {
5771 		if ((vpart->p_start % nblks) != 0) {
5772 			return (EINVAL);
5773 		}
5774 		ncyl = vpart->p_start % nblks;
5775 		ncyl += vpart->p_size % nblks;
5776 		if ((vpart->p_size % nblks) != 0)
5777 			ncyl++;
5778 		if (ncyl > un->un_chars->fdc_ncyl) {
5779 			return (EINVAL);
5780 		}
5781 		vpart++;
5782 	}
5783 
5784 	/*
5785 	 * reinitialize the existing label
5786 	 */
5787 	bzero(&un->un_label, sizeof (un->un_label));
5788 
5789 	/* Put appropriate vtoc structure fields into the disk label */
5790 	un->un_label.dkl_vtoc.v_bootinfo[0] = (uint32_t)vtoc->v_bootinfo[0];
5791 	un->un_label.dkl_vtoc.v_bootinfo[1] = (uint32_t)vtoc->v_bootinfo[1];
5792 	un->un_label.dkl_vtoc.v_bootinfo[2] = (uint32_t)vtoc->v_bootinfo[2];
5793 
5794 	un->un_label.dkl_vtoc.v_sanity = vtoc->v_sanity;
5795 	un->un_label.dkl_vtoc.v_version = vtoc->v_version;
5796 
5797 	bcopy(vtoc->v_volume, un->un_label.dkl_vtoc.v_volume, LEN_DKL_VVOL);
5798 
5799 	un->un_label.dkl_vtoc.v_nparts = vtoc->v_nparts;
5800 
5801 	bcopy(vtoc->v_reserved, un->un_label.dkl_vtoc.v_reserved,
5802 	    sizeof (un->un_label.dkl_vtoc.v_reserved));
5803 
5804 	/*
5805 	 * Initialize cylinder information in the label.
5806 	 * Note the conversion from starting sector number
5807 	 * to starting cylinder number.
5808 	 * Return error if division results in a remainder.
5809 	 */
5810 	lmap = un->un_label.dkl_map;
5811 	lpart = un->un_label.dkl_vtoc.v_part;
5812 	vpart = vtoc->v_part;
5813 
5814 	for (i = 0; i < (int)vtoc->v_nparts; i++) {
5815 		lpart->p_tag  = vtoc->v_part[i].p_tag;
5816 		lpart->p_flag = vtoc->v_part[i].p_flag;
5817 		lmap->dkl_cylno = vpart->p_start / nblks;
5818 		lmap->dkl_nblk = vpart->p_size;
5819 
5820 		lmap++;
5821 		lpart++;
5822 		vpart++;
5823 	}
5824 
5825 	/* Copy the timestamp and ascii label */
5826 	for (i = 0; i < NDKMAP; i++) {
5827 		un->un_label.dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
5828 	}
5829 
5830 
5831 	bcopy(vtoc->v_asciilabel, un->un_label.dkl_asciilabel, LEN_DKL_ASCII);
5832 
5833 	FDERRPRINT(FDEP_L1, FDEM_IOCT,
5834 		    (C, "fd_build_label: asciilabel %s\n",
5835 			un->un_label.dkl_asciilabel));
5836 
5837 	/* Initialize the magic number */
5838 	un->un_label.dkl_magic = DKL_MAGIC;
5839 
5840 	un->un_label.dkl_pcyl = un->un_chars->fdc_ncyl;
5841 
5842 	/*
5843 	 * The fdc_secptrack filed of the fd_char structure is the number
5844 	 * of sectors per track where the sectors are fdc_sec_size.  The
5845 	 * dkl_nsect field of the dk_label structure is the number of
5846 	 * 512 (DEVBSIZE) byte sectors per track.
5847 	 */
5848 	un->un_label.dkl_nsect = (un->un_chars->fdc_secptrack *
5849 				un->un_chars->fdc_sec_size) / DEV_BSIZE;
5850 
5851 
5852 	un->un_label.dkl_ncyl = un->un_label.dkl_pcyl;
5853 	un->un_label.dkl_nhead = un->un_chars->fdc_nhead;
5854 	un->un_label.dkl_rpm = un->un_chars->fdc_medium ? 360 : 300;
5855 	un->un_label.dkl_intrlv = 1;
5856 
5857 	/* Create the checksum */
5858 	sum = 0;
5859 	un->un_label.dkl_cksum = 0;
5860 	sp = (short *)&un->un_label;
5861 	i = sizeof (struct dk_label)/sizeof (short);
5862 	while (i--) {
5863 		sum ^= *sp++;
5864 	}
5865 	un->un_label.dkl_cksum = sum;
5866 
5867 	return (0);
5868 }
5869 
5870 /*
5871  * Check for auxio register node
5872  */
5873 
5874 int
5875 fd_isauxiodip(dev_info_t *dip)
5876 {
5877 	if (strcmp(ddi_get_name(dip), "auxio") == 0 ||
5878 	    strcmp(ddi_get_name(dip), "auxiliary-io") == 0) {
5879 		return (1);
5880 	}
5881 	return (0);
5882 }
5883 
5884 /*
5885  * Search for auxio register node, then for address property
5886  */
5887 
5888 caddr_t
5889 fd_getauxiova(dev_info_t *dip)
5890 {
5891 	dev_info_t *auxdip;
5892 	caddr_t addr;
5893 
5894 	/*
5895 	 * Search sibling list, which happens to be safe inside attach
5896 	 */
5897 	auxdip = ddi_get_child(ddi_get_parent(dip));
5898 	while (auxdip) {
5899 		if (fd_isauxiodip(auxdip))
5900 			break;
5901 		auxdip = ddi_get_next_sibling(auxdip);
5902 	}
5903 
5904 	if (auxdip == NULL)
5905 		return (NULL);
5906 
5907 	addr = (caddr_t)(caddr32_t)ddi_getprop(DDI_DEV_T_ANY,
5908 		auxdip, DDI_PROP_DONTPASS, "address", 0);
5909 
5910 	/*
5911 	 * The device tree on some sun4c machines (SS1+) incorrectly
5912 	 * reports the "auxiliary-io" as being word wide at an
5913 	 * aligned address rather than byte wide at an offset of 3.
5914 	 * Here we correct for this ..
5915 	 */
5916 	if (strcmp(ddi_get_name(auxdip), "auxiliary-io") == 0 &&
5917 	    (((int)addr & 3) == 0))
5918 		addr += 3;
5919 
5920 	return (addr);
5921 }
5922 
5923 
5924 /*
5925  * set_rotational speed
5926  * 300 rpm for high and low density.
5927  * 360 rpm for medium density.
5928  * for now, we assume that 3rd density is supported only for Sun4M,
5929  * not for Clones. (else we would have to check for 82077, and do
5930  * specific things for the MEDIUM_DENSITY BIT for clones.
5931  * this code should not break CLONES.
5932  *
5933  * REMARK: there is a SOny requirement, to deselect the drive then
5934  * select it again after the medium density change, since the
5935  * leading edge of the select line latches the rotational Speed.
5936  * then after that, we have to wait 500 ms for the rotation to
5937  * stabilize.
5938  *
5939  */
5940 static void
5941 set_rotational_speed(struct fdctlr *fdc, int unit)
5942 {
5943 	int check;
5944 	int is_medium;
5945 
5946 	ASSERT(fdc->c_un->un_unit_no == unit);
5947 
5948 	/*
5949 	 * if we do not have a Sun4m, medium density is not supported.
5950 	 */
5951 	if (fdc->c_fdtype & FDCTYPE_MACHIO)
5952 		return;
5953 
5954 	/*
5955 	 * if FDUNIT_SET_SPEED is set, set the speed.
5956 	 * else,
5957 	 *	if there is a change, do it, if not leave it alone.
5958 	 *	there is a change if un->un_chars->fdc_medium does not match
5959 	 *	un->un_flags & FDUNIT_MEDIUM
5960 	 *	un->un_flags & FDUNIT_MEDIUM specifies the last setting.
5961 	 *	un->un_chars->fdc_medium specifies next setting.
5962 	 *	if there is a change, wait 500ms according to Sony spec.
5963 	 */
5964 
5965 	is_medium = fdc->c_un->un_chars->fdc_medium;
5966 
5967 	if (fdc->c_un->un_flags & FDUNIT_SET_SPEED) {
5968 		check = 1;
5969 	} else {
5970 		check = is_medium ^
5971 			((fdc->c_un->un_flags & FDUNIT_MEDIUM) ? 1 : 0);
5972 
5973 		/* Set the un_flags if necessary */
5974 
5975 		if (check)
5976 			fdc->c_un->un_flags ^= FDUNIT_MEDIUM;
5977 	}
5978 
5979 	fdc->c_un->un_flags &= ~FDUNIT_SET_SPEED;
5980 
5981 
5982 	if (check) {
5983 
5984 		fdselect(fdc, unit, 0);
5985 		drv_usecwait(5);
5986 
5987 		if ((fdc->c_fdtype & FDCTYPE_AUXIOMASK) == FDCTYPE_SLAVIO) {
5988 			Set_dor(fdc, MEDIUM_DENSITY, is_medium);
5989 		}
5990 
5991 		if ((fdc->c_fdtype & FDCTYPE_AUXIOMASK) == FDCTYPE_CHEERIO) {
5992 			if (is_medium) {
5993 				Set_auxio(fdc, AUX_MEDIUM_DENSITY);
5994 			} else {
5995 				Set_auxio(fdc, AUX_HIGH_DENSITY);
5996 			}
5997 
5998 		}
5999 
6000 		if (is_medium) {
6001 			drv_usecwait(5);
6002 		}
6003 
6004 		fdselect(fdc, unit, 1);	/* Sony requirement */
6005 		FDERRPRINT(FDEP_L1, FDEM_EXEC, (C, "rotation:medium\n"));
6006 		drv_usecwait(500000);
6007 	}
6008 }
6009 
6010 static void
6011 fd_media_watch(void *arg)
6012 {
6013 	dev_t		dev;
6014 	struct fdunit *un;
6015 	struct fdctlr *fdc;
6016 	int		unit;
6017 
6018 	dev = (dev_t)arg;
6019 	fdc = fd_getctlr(dev);
6020 	unit = fdc->c_un->un_unit_no;
6021 	un = fdc->c_un;
6022 
6023 	mutex_enter(&fdc->c_lolock);
6024 
6025 	if (un->un_media_timeout_id == 0) {
6026 		/*
6027 		 * Untimeout is about to be called.
6028 		 * Don't call fd_get_media_state again
6029 		 */
6030 		mutex_exit(&fdc->c_lolock);
6031 		return;
6032 	}
6033 
6034 
6035 	un->un_media_state = fd_get_media_state(fdc, unit);
6036 	cv_broadcast(&fdc->c_statecv);
6037 
6038 	mutex_exit(&fdc->c_lolock);
6039 
6040 	if (un->un_media_timeout) {
6041 		un->un_media_timeout_id = timeout(fd_media_watch,
6042 			(void *)(ulong_t)dev, un->un_media_timeout);
6043 	}
6044 }
6045 
6046 enum dkio_state
6047 fd_get_media_state(struct fdctlr *fdc, int unit)
6048 {
6049 	enum dkio_state state;
6050 
6051 	ASSERT(fdc->c_un->un_unit_no == unit);
6052 
6053 	if (fdsense_chng(fdc, unit)) {
6054 		/* check disk only if DSKCHG "high" */
6055 		if (fdcheckdisk(fdc, unit)) {
6056 			state = DKIO_EJECTED;
6057 		} else {
6058 			state = DKIO_INSERTED;
6059 		}
6060 	} else {
6061 		state = DKIO_INSERTED;
6062 	}
6063 	return (state);
6064 }
6065 
6066 static int
6067 fd_check_media(dev_t dev, enum dkio_state state)
6068 {
6069 	struct fdunit *un;
6070 	struct fdctlr *fdc;
6071 	int		unit;
6072 
6073 	FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fd_check_media: start\n"));
6074 
6075 	fdc = fd_getctlr(dev);
6076 	unit = fdc->c_un->un_unit_no;
6077 	un = fdc->c_un;
6078 
6079 	mutex_enter(&fdc->c_lolock);
6080 
6081 	CHECK_AND_WAIT_FD_STATE_SUSPENDED(fdc);
6082 
6083 	if (fdc->c_un->un_state == FD_STATE_STOPPED) {
6084 		mutex_exit(&fdc->c_lolock);
6085 		if ((pm_raise_power(fdc->c_dip, 0, PM_LEVEL_ON))
6086 					!= DDI_SUCCESS) {
6087 			FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "Power change \
6088 failed. \n"));
6089 
6090 			(void) pm_idle_component(fdc->c_dip, 0);
6091 			return (EIO);
6092 		}
6093 
6094 		mutex_enter(&fdc->c_lolock);
6095 	}
6096 
6097 	un->un_media_state = fd_get_media_state(fdc, unit);
6098 
6099 	/* turn on timeout */
6100 	un->un_media_timeout = drv_usectohz(fd_check_media_time);
6101 	un->un_media_timeout_id = timeout(fd_media_watch,
6102 			(void *)(ulong_t)dev, un->un_media_timeout);
6103 
6104 	while (un->un_media_state == state) {
6105 		if (cv_wait_sig(&fdc->c_statecv, &fdc->c_lolock) == 0) {
6106 			un->un_media_timeout = 0;
6107 			mutex_exit(&fdc->c_lolock);
6108 			return (EINTR);
6109 		}
6110 	}
6111 
6112 	if (un->un_media_timeout_id) {
6113 		timeout_id_t timeid = un->un_media_timeout_id;
6114 		un->un_media_timeout_id = 0;
6115 
6116 		mutex_exit(&fdc->c_lolock);
6117 		(void) untimeout(timeid);
6118 		mutex_enter(&fdc->c_lolock);
6119 	}
6120 
6121 	if (un->un_media_state == DKIO_INSERTED) {
6122 		if (fdgetlabel(fdc, unit)) {
6123 			mutex_exit(&fdc->c_lolock);
6124 			return (EIO);
6125 		}
6126 	}
6127 	mutex_exit(&fdc->c_lolock);
6128 
6129 	FDERRPRINT(FDEP_L1, FDEM_RW, (C, "fd_check_media: end\n"));
6130 	return (0);
6131 }
6132 
6133 /*
6134  * fd_get_media_info :
6135  * 	Collects medium information for
6136  *	DKIOCGMEDIAINFO ioctl.
6137  */
6138 
6139 static int
6140 fd_get_media_info(struct fdunit *un, caddr_t buf, int flag)
6141 {
6142 	struct dk_minfo media_info;
6143 	int err = 0;
6144 
6145 	media_info.dki_media_type = DK_FLOPPY;
6146 	media_info.dki_lbsize = un->un_chars->fdc_sec_size;
6147 	media_info.dki_capacity = un->un_chars->fdc_ncyl *
6148 		un->un_chars->fdc_secptrack * un->un_chars->fdc_nhead;
6149 
6150 	if (ddi_copyout((caddr_t)&media_info, buf,
6151 					sizeof (struct dk_minfo), flag))
6152 			err = EFAULT;
6153 	return (err);
6154 }
6155 
6156 /*
6157  * fd_power :
6158  *	Power entry point of fd driver.
6159  */
6160 
6161 static int
6162 fd_power(dev_info_t *dip, int component, int level)
6163 {
6164 
6165 	struct fdctlr *fdc;
6166 	int instance;
6167 	int rval;
6168 
6169 	if ((level < PM_LEVEL_OFF) || (level > PM_LEVEL_ON) ||
6170 						(component != 0)) {
6171 		return (DDI_FAILURE);
6172 	}
6173 
6174 	instance = ddi_get_instance(dip);
6175 	fdc = fd_getctlr(instance << FDINSTSHIFT);
6176 	if (fdc->c_un == NULL)
6177 		return (DDI_FAILURE);
6178 
6179 	if (level == PM_LEVEL_OFF) {
6180 		rval = fd_pm_lower_power(fdc);
6181 	}
6182 	if (level == PM_LEVEL_ON) {
6183 		rval = fd_pm_raise_power(fdc);
6184 	}
6185 	return (rval);
6186 }
6187 
6188 /*
6189  * fd_pm_lower_power :
6190  *	This function is called only during pm suspend. At this point,
6191  *	the power management framework thinks the device is idle for
6192  *	long enough to go to a low power mode. If the device is busy,
6193  *	then this function returns DDI_FAILURE.
6194  */
6195 
6196 static int
6197 fd_pm_lower_power(struct fdctlr *fdc)
6198 {
6199 
6200 	mutex_enter(&fdc->c_lolock);
6201 
6202 	if ((fdc->c_un->un_state == FD_STATE_SUSPENDED) ||
6203 			(fdc->c_un->un_state == FD_STATE_STOPPED)) {
6204 		mutex_exit(&fdc->c_lolock);
6205 		return (DDI_SUCCESS);
6206 	}
6207 
6208 
6209 	FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "fd_pm_lower_power called\n"));
6210 
6211 	/* if the device is busy then we fail the lower power request */
6212 	if (fdc->c_flags & FDCFLG_BUSY) {
6213 		FDERRPRINT(FDEP_L2, FDEM_PWR, (C, "fd_pm_lower_power : \
6214 controller is busy.\n"));
6215 		mutex_exit(&fdc->c_lolock);
6216 		return (DDI_FAILURE);
6217 	}
6218 
6219 	fdc->c_un->un_state = FD_STATE_STOPPED;
6220 
6221 	mutex_exit(&fdc->c_lolock);
6222 	return (DDI_SUCCESS);
6223 }
6224 
6225 /*
6226  * fd_pm_raise_power :
6227  *	This function performs the necessary steps for resuming a
6228  *	device, either from pm suspend or CPR. Here the controller
6229  *	is reset, initialized and the state is set to FD_STATE_NORMAL.
6230  */
6231 
6232 static int
6233 fd_pm_raise_power(struct fdctlr *fdc)
6234 {
6235 
6236 	struct fdunit *un = fdc->c_un;
6237 	int unit;
6238 
6239 	FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "fd_pm_raise_power called\n"));
6240 	mutex_enter(&fdc->c_lolock);
6241 	fdgetcsb(fdc);
6242 
6243 	/* Reset the dma engine */
6244 	if (fdc->c_fdtype & FDCTYPE_DMA) {
6245 		mutex_enter(&fdc->c_hilock);
6246 		reset_dma_controller(fdc);
6247 		set_dma_control_register(fdc, DCSR_INIT_BITS);
6248 		mutex_exit(&fdc->c_hilock);
6249 	}
6250 
6251 	/*
6252 	 * Force a rotational speed set in the next
6253 	 * call to set_rotational_speed().
6254 	 */
6255 
6256 	fdc->c_un->un_flags |= FDUNIT_SET_SPEED;
6257 
6258 	/* Reset and configure the controller */
6259 	(void) fdreset(fdc);
6260 
6261 	unit = fdc->c_un->un_unit_no;
6262 
6263 	/* Recalibrate the drive */
6264 	if (fdrecalseek(fdc, unit, -1, 0) != 0) {
6265 		FDERRPRINT(FDEP_L1, FDEM_PWR, (C, "raise_power : recalibrate \
6266 failed\n"));
6267 		fdretcsb(fdc);
6268 		mutex_exit(&fdc->c_lolock);
6269 		return (DDI_FAILURE);
6270 	}
6271 
6272 	/* Select the drive through the AUXIO registers */
6273 	fdselect(fdc, unit, 0);
6274 	un->un_state = FD_STATE_NORMAL;
6275 	fdretcsb(fdc);
6276 	mutex_exit(&fdc->c_lolock);
6277 	return (DDI_SUCCESS);
6278 }
6279 
6280 /*
6281  * create_pm_components :
6282  *	creates the power management components for auto pm framework.
6283  */
6284 
6285 static void
6286 create_pm_components(dev_info_t *dip)
6287 {
6288 	char	*un_pm_comp[] = { "NAME=spindle-motor", "0=off", "1=on"};
6289 
6290 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
6291 		"pm-components", un_pm_comp, 3) == DDI_PROP_SUCCESS) {
6292 
6293 		(void) pm_raise_power(dip, 0, PM_LEVEL_ON);
6294 	}
6295 }
6296 
6297 /*
6298  * set_data_count_register(struct fdctlr *fdc, uint32_t count)
6299  * 	Set the data count in appropriate dma register.
6300  */
6301 
6302 static void
6303 set_data_count_register(struct fdctlr *fdc, uint32_t count)
6304 {
6305 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6306 		struct cheerio_dma_reg *dma_reg;
6307 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6308 		ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dbcr, count);
6309 	} else if (fdc->c_fdtype & FDCTYPE_SB) {
6310 		struct sb_dma_reg *dma_reg;
6311 		count = count - 1; /* 8237 needs it */
6312 		dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6313 		switch (fdc->sb_dma_channel) {
6314 			case 0 :
6315 				ddi_put16(fdc->c_handlep_dma,
6316 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_0WCNT],
6317 				count & 0xFFFF);
6318 				break;
6319 			case 1 :
6320 				ddi_put16(fdc->c_handlep_dma,
6321 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_1WCNT],
6322 				count & 0xFFFF);
6323 				break;
6324 			case 2 :
6325 				ddi_put16(fdc->c_handlep_dma,
6326 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_2WCNT],
6327 				count & 0xFFFF);
6328 				break;
6329 			case 3 :
6330 				ddi_put16(fdc->c_handlep_dma,
6331 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_3WCNT],
6332 				count & 0xFFFF);
6333 				break;
6334 			default :
6335 				FDERRPRINT(FDEP_L3, FDEM_SDMA,
6336 				(C, "set_data_count: wrong channel %x\n",
6337 				fdc->sb_dma_channel));
6338 				break;
6339 		}
6340 	}
6341 }
6342 
6343 /*
6344  * get_data_count_register(struct fdctlr *fdc)
6345  * 	Read the data count from appropriate dma register.
6346  */
6347 
6348 static uint32_t
6349 get_data_count_register(struct fdctlr *fdc)
6350 {
6351 	uint32_t retval = 0;
6352 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6353 		struct cheerio_dma_reg *dma_reg;
6354 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6355 		retval = ddi_get32(fdc->c_handlep_dma, &dma_reg->fdc_dbcr);
6356 	} else if (fdc->c_fdtype & FDCTYPE_SB) {
6357 		struct sb_dma_reg *dma_reg;
6358 		dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6359 		switch (fdc->sb_dma_channel) {
6360 			case 0 :
6361 				retval = ddi_get16(fdc->c_handlep_dma,
6362 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_0WCNT]);
6363 				break;
6364 			case 1 :
6365 				retval = ddi_get16(fdc->c_handlep_dma,
6366 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_1WCNT]);
6367 				break;
6368 			case 2 :
6369 				retval = ddi_get16(fdc->c_handlep_dma,
6370 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_2WCNT]);
6371 				break;
6372 			case 3 :
6373 				retval = ddi_get16(fdc->c_handlep_dma,
6374 				(ushort_t *)&dma_reg->sb_dma_regs[DMA_3WCNT]);
6375 				break;
6376 			default :
6377 				FDERRPRINT(FDEP_L3, FDEM_SDMA,
6378 				(C, "get_data_count: wrong channel %x\n",
6379 				fdc->sb_dma_channel));
6380 				break;
6381 		}
6382 		retval = (uint32_t)((uint16_t)(retval +1));
6383 	}
6384 
6385 	return (retval);
6386 
6387 }
6388 
6389 /*
6390  * reset_dma_controller(struct fdctlr *fdc)
6391  * 	Reset and initialize the dma controller.
6392  */
6393 
6394 static void
6395 reset_dma_controller(struct fdctlr *fdc)
6396 {
6397 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6398 		struct cheerio_dma_reg *dma_reg;
6399 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6400 		ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, DCSR_RESET);
6401 		while (get_dma_control_register(fdc) & DCSR_CYC_PEND);
6402 		ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, 0);
6403 	} else if (fdc->c_fdtype & FDCTYPE_SB) {
6404 		struct sb_dma_reg *dma_reg;
6405 		dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6406 		ddi_put8(fdc->c_handlep_dma, &dma_reg->sb_dma_regs[DMAC1_MASK],
6407 		    (fdc->sb_dma_channel & 0x3));
6408 
6409 	}
6410 }
6411 
6412 /*
6413  * Get the DMA control register for CHEERIO.
6414  * For SouthBridge 8237 DMA controller, this register is not valid.
6415  * So, just return 0.
6416  */
6417 static uint32_t
6418 get_dma_control_register(struct fdctlr *fdc)
6419 {
6420 	uint32_t retval = 0;
6421 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6422 		struct cheerio_dma_reg *dma_reg;
6423 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6424 		retval = ddi_get32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr);
6425 	}
6426 
6427 	return (retval);
6428 }
6429 
6430 
6431 /*
6432  * set_data_address_register(struct fdctlr *fdc)
6433  * 	Set the data address in appropriate dma register.
6434  */
6435 static void
6436 set_data_address_register(struct fdctlr *fdc, uint32_t address)
6437 {
6438 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6439 		struct cheerio_dma_reg *dma_reg;
6440 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6441 		ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dacr, address);
6442 	} else if (fdc->c_fdtype & FDCTYPE_SB) {
6443 		struct sb_dma_reg *dma_reg;
6444 		dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6445 		switch (fdc->sb_dma_channel) {
6446 			case 0 :
6447 				ddi_put8(fdc->c_handlep_dma,
6448 				    &dma_reg->sb_dma_regs[DMA_0PAGE],
6449 				    (address & 0xFF0000) >>16);
6450 				ddi_put8(fdc->c_handlep_dma,
6451 				    &dma_reg->sb_dma_regs[DMA_0HPG],
6452 				    (address & 0xFF000000) >>24);
6453 				ddi_put16(fdc->c_handlep_dma,
6454 				    (ushort_t *)&dma_reg->sb_dma_regs[DMA_0ADR],
6455 				    address & 0xFFFF);
6456 				break;
6457 			case 1 :
6458 				ddi_put8(fdc->c_handlep_dma,
6459 				    &dma_reg->sb_dma_regs[DMA_1PAGE],
6460 				    (address & 0xFF0000) >>16);
6461 				ddi_put8(fdc->c_handlep_dma,
6462 				    &dma_reg->sb_dma_regs[DMA_1HPG],
6463 				    (address & 0xFF000000) >>24);
6464 				ddi_put16(fdc->c_handlep_dma,
6465 				    (ushort_t *)&dma_reg->sb_dma_regs[DMA_1ADR],
6466 				    address & 0xFFFF);
6467 				break;
6468 			case 2 :
6469 				ddi_put8(fdc->c_handlep_dma,
6470 				    &dma_reg->sb_dma_regs[DMA_2PAGE],
6471 				    (address & 0xFF0000) >>16);
6472 				ddi_put8(fdc->c_handlep_dma,
6473 				    &dma_reg->sb_dma_regs[DMA_2HPG],
6474 				    (address & 0xFF000000) >>24);
6475 				ddi_put16(fdc->c_handlep_dma,
6476 				    (ushort_t *)&dma_reg->sb_dma_regs[DMA_2ADR],
6477 				    address & 0xFFFF);
6478 				break;
6479 			case 3 :
6480 				ddi_put8(fdc->c_handlep_dma,
6481 				    &dma_reg->sb_dma_regs[DMA_3PAGE],
6482 				    (address & 0xFF0000) >>16);
6483 				ddi_put8(fdc->c_handlep_dma,
6484 				    &dma_reg->sb_dma_regs[DMA_3HPG],
6485 				    (address & 0xFF000000) >>24);
6486 				ddi_put16(fdc->c_handlep_dma,
6487 				    (ushort_t *)&dma_reg->sb_dma_regs[DMA_3ADR],
6488 				    address & 0xFFFF);
6489 				break;
6490 			default :
6491 				FDERRPRINT(FDEP_L3, FDEM_SDMA,
6492 				(C, "set_data_address: wrong channel %x\n",
6493 				fdc->sb_dma_channel));
6494 			break;
6495 		}
6496 	}
6497 
6498 }
6499 
6500 
6501 /*
6502  * set_dma_mode(struct fdctlr *fdc, int val)
6503  * 	Set the appropriate dma direction and registers.
6504  */
6505 static void
6506 set_dma_mode(struct fdctlr *fdc, int val)
6507 {
6508 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6509 		struct cheerio_dma_reg *dma_reg;
6510 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6511 		if (val == CSB_READ)
6512 			ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr,
6513 				DCSR_INIT_BITS|DCSR_WRITE);
6514 		else
6515 			ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr,
6516 				DCSR_INIT_BITS);
6517 
6518 	} else if (fdc->c_fdtype & FDCTYPE_SB) {
6519 		uint8_t mode_reg_val, chn_mask;
6520 		struct sb_dma_reg *dma_reg;
6521 		dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6522 
6523 		if (val == CSB_READ) {
6524 			mode_reg_val = fdc->sb_dma_channel | DMAMODE_READ
6525 					| DMAMODE_SINGLE;
6526 		} else { /* Read operation */
6527 			mode_reg_val = fdc->sb_dma_channel | DMAMODE_WRITE
6528 					| DMAMODE_SINGLE;
6529 		}
6530 		ddi_put8(fdc->c_handlep_dma, &dma_reg->sb_dma_regs[DMAC1_MODE],
6531 			mode_reg_val);
6532 		chn_mask = 1 << (fdc->sb_dma_channel & 0x3);
6533 		ddi_put8(fdc->c_handlep_dma,
6534 			&dma_reg->sb_dma_regs[DMAC1_ALLMASK], ~chn_mask);
6535 		fdc->sb_dma_lock = 1;
6536 	}
6537 }
6538 
6539 /*
6540  * This function is valid only for CHEERIO/RIO based
6541  * controllers. The control register for the dma channel
6542  * is initialized by this function.
6543  */
6544 
6545 static void
6546 set_dma_control_register(struct fdctlr *fdc, uint32_t val)
6547 {
6548 	if (fdc->c_fdtype & FDCTYPE_CHEERIO) {
6549 		struct cheerio_dma_reg *dma_reg;
6550 		dma_reg = (struct cheerio_dma_reg *)fdc->c_dma_regs;
6551 		ddi_put32(fdc->c_handlep_dma, &dma_reg->fdc_dcsr, val);
6552 	}
6553 }
6554 
6555 static void
6556 release_sb_dma(struct fdctlr *fdc)
6557 {
6558 	struct sb_dma_reg *dma_reg;
6559 	dma_reg = (struct sb_dma_reg *)fdc->c_dma_regs;
6560 	/* Unmask all the channels to release the DMA controller */
6561 	ddi_put8(fdc->c_handlep_dma,
6562 		&dma_reg->sb_dma_regs[DMAC1_ALLMASK], NULL);
6563 	fdc->sb_dma_lock = 0;
6564 }
6565 
6566 static void
6567 quiesce_fd_interrupt(struct fdctlr *fdc)
6568 {
6569 	/*
6570 	 * The following code is put here to take care of HW problem.
6571 	 * The HW problem is as follows:
6572 	 *
6573 	 *	After poweron the Southbridge floppy controller asserts the
6574 	 * interrupt in tristate. This causes continuous interrupts to
6575 	 * be generated.
6576 	 * Until the Hardware is FIXED we will have to use the following code
6577 	 * to set the interrupt line to proper state after poweron.
6578 	 */
6579 	if (fdc->c_fdtype & FDCTYPE_SB) {
6580 		ddi_put8(fdc->c_handlep_cont, ((uint8_t *)fdc->c_dor),
6581 			0x0);
6582 		drv_usecwait(200);
6583 		ddi_put8(fdc->c_handlep_cont, ((uint8_t *)fdc->c_dor),
6584 			0xC);
6585 		drv_usecwait(200);
6586 		Set_Fifo(fdc, 0xE6);
6587 		drv_usecwait(200);
6588 	}
6589 }
6590