xref: /titanic_52/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision ac88567a7a5bb7f01cf22cf366bc9d6203e24d7a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * VM - Hardware Address Translation management.
28  *
29  * This file describes the contents of the sun-reference-mmu(sfmmu)-
30  * specific hat data structures and the sfmmu-specific hat procedures.
31  * The machine-independent interface is described in <vm/hat.h>.
32  */
33 
34 #ifndef	_VM_HAT_SFMMU_H
35 #define	_VM_HAT_SFMMU_H
36 
37 #ifdef	__cplusplus
38 extern "C" {
39 #endif
40 
41 #ifndef _ASM
42 
43 #include <sys/types.h>
44 
45 #endif /* _ASM */
46 
47 #ifdef	_KERNEL
48 
49 #include <sys/pte.h>
50 #include <vm/mach_sfmmu.h>
51 #include <sys/mmu.h>
52 
53 /*
54  * Don't alter these without considering changes to ism_map_t.
55  */
56 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
57 #define	DEFAULT_ISM_PAGESZC		TTE4M
58 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
59 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
60 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
61 
62 #ifndef _ASM
63 
64 #include <sys/t_lock.h>
65 #include <vm/hat.h>
66 #include <vm/seg.h>
67 #include <sys/machparam.h>
68 #include <sys/systm.h>
69 #include <sys/x_call.h>
70 #include <vm/page.h>
71 #include <sys/ksynch.h>
72 
73 typedef struct hat sfmmu_t;
74 typedef struct sf_scd sf_scd_t;
75 
76 /*
77  * SFMMU attributes for hat_memload/hat_devload
78  */
79 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
80 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
81 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
82 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
83 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
84 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
85 
86 
87 /*
88  * sfmmu flags for hat_memload/hat_devload
89  */
90 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
91 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
92 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
93 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
94 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
95 
96 /*
97  * sfmmu internal flag to hat_pageunload that spares locked mappings
98  */
99 #define	SFMMU_KERNEL_RELOC	0x8000
100 
101 /*
102  * mode for sfmmu_chgattr
103  */
104 #define	SFMMU_SETATTR	0x0
105 #define	SFMMU_CLRATTR	0x1
106 #define	SFMMU_CHGATTR	0x2
107 
108 /*
109  * sfmmu specific flags for page_t
110  */
111 #define	P_PNC	0x8		/* non-caching is permanent bit */
112 #define	P_TNC	0x10		/* non-caching is temporary bit */
113 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
114 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
115 
116 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
117 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
118 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
119 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
120 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
121 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
122 #ifdef VAC
123 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
124 #endif
125 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
126 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
127 
128 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
129 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
130 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
131 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
132 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
133 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
134 #ifdef VAC
135 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
136 #endif
137 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
138 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
139 
140 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
141 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
142 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
143 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
144 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
145 #ifdef VAC
146 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
147 #endif
148 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
149 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
150 
151 /*
152  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
153  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
154  * created ISM segment is created out of a new address space at base va
155  * of 0 we don't need to store it.
156  */
157 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
158 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
159 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
160 
161 /*
162  * Pad locks out to cache sub-block boundaries to prevent
163  * false sharing, so several processes don't contend for
164  * the same line if they aren't using the same lock.  Since
165  * this is a typedef we also have a bit of freedom in
166  * changing lock implementations later if we decide it
167  * is necessary.
168  */
169 typedef struct hat_lock {
170 	kmutex_t hl_mutex;
171 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
172 } hatlock_t;
173 
174 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
175 
176 /*
177  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
178  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
179  * ism_seg consists of the following members:
180  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
181  *	caddr_t is 64 bits or 32 bits.
182  * [21..0] size of segment.
183  *
184  * NOTE: Don't alter this structure without changing defines above and
185  * the tsb_miss and protection handlers.
186  */
187 typedef struct ism_map {
188 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
189 	uchar_t		imap_vb_shift;	/* mmu_pageshift for ism page size */
190 	uchar_t		imap_rid;	/* region id for ism */
191 	ushort_t	imap_hatflags;	/* primary ism page size */
192 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
193 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
194 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
195 } ism_map_t;
196 
197 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
198 				~ISM_SZ_MASK((map).imap_vb_shift)))
199 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
200 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
201 				ISM_PG_SIZE((map).imap_vb_shift))))
202 /*
203  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
204  * Same function as the p_mapping list for a page.
205  */
206 typedef struct ism_ment {
207 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
208 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
209 	struct ism_ment	*iment_next;	/* next ism map entry */
210 	struct ism_ment	*iment_prev;	/* prev ism map entry */
211 } ism_ment_t;
212 
213 /*
214  * ISM segment block. One will be hung off the sfmmu structure if a
215  * a process uses ISM.  More will be linked using ismblk_next if more
216  * than ISM_MAP_SLOTS segments are attached to this proc.
217  *
218  * All modifications to fields in this structure will be protected
219  * by the hat mutex.  In order to avoid grabbing this lock in low level
220  * routines (tsb miss/protection handlers and vatopfn) while not
221  * introducing any race conditions with hat_unshare, we will set
222  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
223  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
224  * where it will synchronize behind the hat mutex.
225  */
226 typedef struct ism_blk {
227 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
228 	struct ism_blk		*iblk_next;
229 	uint64_t		iblk_nextpa;
230 } ism_blk_t;
231 
232 /*
233  * TSB access information.  All fields are protected by the process's
234  * hat lock.
235  */
236 
237 struct tsb_info {
238 	caddr_t		tsb_va;		/* tsb base virtual address */
239 	uint64_t	tsb_pa;		/* tsb base physical address */
240 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
241 	uint16_t	tsb_szc;	/* tsb size code */
242 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
243 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
244 
245 	tte_t		tsb_tte;	/* tte to lock into DTLB */
246 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
247 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
248 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
249 };
250 
251 /*
252  * Values for "tsb_ttesz_mask" bitmask.
253  */
254 #define	TSB8K	(1 << TTE8K)
255 #define	TSB64K  (1 << TTE64K)
256 #define	TSB512K (1 << TTE512K)
257 #define	TSB4M   (1 << TTE4M)
258 #define	TSB32M  (1 << TTE32M)
259 #define	TSB256M (1 << TTE256M)
260 
261 /*
262  * Values for "tsb_flags" field.
263  */
264 #define	TSB_RELOC_FLAG		0x1
265 #define	TSB_FLUSH_NEEDED	0x2
266 #define	TSB_SWAPPED	0x4
267 #define	TSB_SHAREDCTX		0x8
268 
269 #endif	/* !_ASM */
270 
271 /*
272  * Data structures for shared hmeblk support.
273  */
274 
275 /*
276  * Do not increase the maximum number of ism/hme regions without checking first
277  * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
278  * sf_region structure.
279  * Initially, shared hmes will only be used for the main text segment
280  * therefore this value will be set to 64, it will be increased when shared
281  * libraries are included.
282  */
283 
284 #define	SFMMU_MAX_HME_REGIONS		(64)
285 #define	SFMMU_HMERGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_HME_REGIONS)
286 
287 #define	SFMMU_PRIVATE	0
288 #define	SFMMU_SHARED	1
289 
290 #define	HMEBLK_ENDPA	1
291 
292 #ifndef _ASM
293 
294 #define	SFMMU_MAX_ISM_REGIONS		(64)
295 #define	SFMMU_ISMRGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
296 
297 #define	SFMMU_RGNMAP_WORDS	(SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
298 
299 #define	SFMMU_MAX_REGION_BUCKETS	(128)
300 #define	SFMMU_MAX_SRD_BUCKETS		(2048)
301 
302 typedef struct sf_hmeregion_map {
303 	ulong_t	bitmap[SFMMU_HMERGNMAP_WORDS];
304 } sf_hmeregion_map_t;
305 
306 typedef struct sf_ismregion_map {
307 	ulong_t	bitmap[SFMMU_ISMRGNMAP_WORDS];
308 } sf_ismregion_map_t;
309 
310 typedef union sf_region_map_u {
311 	struct _h_rmap_s {
312 		sf_hmeregion_map_t hmeregion_map;
313 		sf_ismregion_map_t ismregion_map;
314 	} h_rmap_s;
315 	ulong_t	bitmap[SFMMU_RGNMAP_WORDS];
316 } sf_region_map_t;
317 
318 #define	SF_RGNMAP_ZERO(map) {				\
319 	int _i;						\
320 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {	\
321 		(map).bitmap[_i] = 0;			\
322 	}						\
323 }
324 
325 /*
326  * Returns 1 if map1 and map2 are equal.
327  */
328 #define	SF_RGNMAP_EQUAL(map1, map2, rval)	{		\
329 	int _i;							\
330 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
331 		if ((map1)->bitmap[_i] != (map2)->bitmap[_i])	\
332 			break;					\
333 	}							\
334 	if (_i < SFMMU_RGNMAP_WORDS)				\
335 		rval = 0;					\
336 	else							\
337 		rval = 1;					\
338 }
339 
340 #define	SF_RGNMAP_ADD(map, r)		BT_SET((map).bitmap, r)
341 #define	SF_RGNMAP_DEL(map, r)		BT_CLEAR((map).bitmap, r)
342 #define	SF_RGNMAP_TEST(map, r)		BT_TEST((map).bitmap, r)
343 
344 /*
345  * Tests whether map2 is a subset of map1, returns 1 if
346  * this assertion is true.
347  */
348 #define	SF_RGNMAP_IS_SUBSET(map1, map2, rval)	{		\
349 	int _i;							\
350 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
351 		if (((map1)->bitmap[_i]	& (map2)->bitmap[_i])	\
352 		    != (map2)->bitmap[_i])  {	 		\
353 			break;					\
354 		}						\
355 	}							\
356 	if (_i < SFMMU_RGNMAP_WORDS)		 		\
357 		rval = 0;					\
358 	else							\
359 		rval = 1;					\
360 }
361 
362 #define	SF_SCD_INCR_REF(scdp) {						\
363 	atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1);	\
364 }
365 
366 #define	SF_SCD_DECR_REF(srdp, scdp) {				\
367 	sf_region_map_t _scd_rmap = (scdp)->scd_region_map;	\
368 	if (!atomic_add_32_nv(					\
369 	    (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) {	\
370 		sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap);	\
371 	}							\
372 }
373 
374 /*
375  * A sfmmup link in the link list of sfmmups that share the same region.
376  */
377 typedef struct sf_rgn_link {
378 	sfmmu_t	*next;
379 	sfmmu_t *prev;
380 } sf_rgn_link_t;
381 
382 /*
383  * rgn_flags values.
384  */
385 #define	SFMMU_REGION_HME	0x1
386 #define	SFMMU_REGION_ISM	0x2
387 #define	SFMMU_REGION_FREE	0x8
388 
389 #define	SFMMU_REGION_TYPE_MASK	(0x3)
390 
391 /*
392  * sf_region defines a text or (D)ISM segment which map
393  * the same underlying physical object.
394  */
395 typedef struct sf_region {
396 	caddr_t			rgn_saddr;   /* base addr of attached seg */
397 	size_t			rgn_size;    /* size of attached seg */
398 	void			*rgn_obj;    /* the underlying object id */
399 	u_offset_t		rgn_objoff;  /* offset in the object mapped */
400 	uchar_t			rgn_perm;    /* PROT_READ/WRITE/EXEC */
401 	uchar_t			rgn_pgszc;   /* page size of the region */
402 	uchar_t			rgn_flags;   /* region type, free flag */
403 	uchar_t			rgn_id;
404 	int			rgn_refcnt;  /* # of hats sharing the region */
405 	/* callback function for hat_unload_callback */
406 	hat_rgn_cb_func_t	rgn_cb_function;
407 	struct sf_region	*rgn_hash;   /* hash chain linking the rgns */
408 	kmutex_t		rgn_mutex;   /* protect region sfmmu list */
409 	/* A link list of processes attached to this region */
410 	sfmmu_t			*rgn_sfmmu_head;
411 	ulong_t			rgn_ttecnt[MMU_PAGE_SIZES];
412 	uint16_t		rgn_hmeflags; /* rgn tte size flags */
413 } sf_region_t;
414 
415 #define	rgn_next	rgn_hash
416 
417 /* srd */
418 typedef struct sf_shared_region_domain {
419 	vnode_t			*srd_evp;	/* executable vnode */
420 	/* hme region table */
421 	sf_region_t		*srd_hmergnp[SFMMU_MAX_HME_REGIONS];
422 	/* ism region table */
423 	sf_region_t		*srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
424 	/* hash chain linking srds */
425 	struct sf_shared_region_domain *srd_hash;
426 	/* pointer to the next free hme region */
427 	sf_region_t		*srd_hmergnfree;
428 	/* pointer to the next free ism region */
429 	sf_region_t		*srd_ismrgnfree;
430 	/* id of next ism region created */
431 	uint16_t		srd_next_ismrid;
432 	/* id of next hme region created */
433 	uint16_t		srd_next_hmerid;
434 	uint16_t		srd_ismbusyrgns; /* # of ism rgns in use */
435 	uint16_t		srd_hmebusyrgns; /* # of hme rgns in use */
436 	int			srd_refcnt;	 /* # of procs in the srd */
437 	kmutex_t		srd_mutex;	 /* sync add/remove rgns */
438 	kmutex_t		srd_scd_mutex;
439 	sf_scd_t		*srd_scdp;	 /* list of scds in srd */
440 	/* hash of regions associated with the same executable */
441 	sf_region_t		*srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
442 } sf_srd_t;
443 
444 typedef struct sf_srd_bucket {
445 	kmutex_t	srdb_lock;
446 	sf_srd_t	*srdb_srdp;
447 } sf_srd_bucket_t;
448 
449 /*
450  * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
451  * to 16 when the use of shared hmes for shared libraries is enabled.
452  */
453 
454 #define	SFMMU_L1_HMERLINKS		(8)
455 #define	SFMMU_L2_HMERLINKS		(8)
456 #define	SFMMU_L1_HMERLINKS_SHIFT	(3)
457 #define	SFMMU_L1_HMERLINKS_MASK		(SFMMU_L1_HMERLINKS - 1)
458 #define	SFMMU_L2_HMERLINKS_MASK		(SFMMU_L2_HMERLINKS - 1)
459 #define	SFMMU_L1_HMERLINKS_SIZE		\
460 	(SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
461 #define	SFMMU_L2_HMERLINKS_SIZE		\
462 	(SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
463 
464 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
465 #error Not Enough HMERLINKS
466 #endif
467 
468 /*
469  * This macro grabs hat lock and allocates level 2 hat chain
470  * associated with a shme rgn. In the majority of cases, the macro
471  * is called with alloc = 0, and lock = 0.
472  * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
473  * parameter.
474  */
475 #define	SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock)		\
476 {									\
477 	int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) &		\
478 	    SFMMU_L1_HMERLINKS_MASK;					\
479 	int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK);			\
480 	hatlock_t *_hatlockp;						\
481 	lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];			\
482 	if (lnkp != NULL) {						\
483 		lnkp = &lnkp[_l2ix];					\
484 	} else if (alloc && lock) {					\
485 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
486 		_hatlockp = sfmmu_hat_enter(sfmmup);			\
487 		if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) {	\
488 			sfmmu_hat_exit(_hatlockp);			\
489 			kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE);	\
490 			lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];	\
491 			ASSERT(lnkp != NULL);				\
492 		} else {						\
493 			(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;	\
494 			sfmmu_hat_exit(_hatlockp);			\
495 		}							\
496 		lnkp = &lnkp[_l2ix];					\
497 	} else if (alloc) {						\
498 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
499 		ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL);	\
500 		(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;		\
501 		lnkp = &lnkp[_l2ix];					\
502 	}								\
503 }
504 
505 /*
506  *  Per cpu pending freelist of hmeblks.
507  */
508 typedef struct cpu_hme_pend {
509 	struct   hme_blk *chp_listp;
510 	kmutex_t chp_mutex;
511 	time_t	 chp_timestamp;
512 	uint_t   chp_count;
513 	uint8_t	 chp_pad[36];		/* pad to 64 bytes */
514 } cpu_hme_pend_t;
515 
516 /*
517  * The default value of the threshold for the per cpu pending queues of hmeblks.
518  * The queues are flushed if either the number of hmeblks on the queue is above
519  * the threshold, or one second has elapsed since the last flush.
520  */
521 #define	CPU_HME_PEND_THRESH 1000
522 
523 /*
524  * Per-MMU context domain kstats.
525  *
526  * TSB Miss Exceptions
527  *	Number of times a TSB miss exception is handled in an MMU. See
528  *	sfmmu_tsbmiss_exception() for more details.
529  * TSB Raise Exception
530  *	Number of times the CPUs within an MMU are cross-called
531  *	to invalidate either a specific process context (when the process
532  *	switches MMU contexts) or the context of any process that is
533  *	running on those CPUs (as part of the MMU context wrap-around).
534  * Wrap Around
535  *	The number of times a wrap-around of MMU context happens.
536  */
537 typedef enum mmu_ctx_stat_types {
538 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
539 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
540 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
541 	MMU_CTX_NUM_STATS
542 } mmu_ctx_stat_t;
543 
544 /*
545  * Per-MMU context domain structure. This is instantiated the first time a CPU
546  * belonging to the MMU context domain is configured into the system, at boot
547  * time or at DR time.
548  *
549  * mmu_gnum
550  *	The current generation number for the context IDs on this MMU context
551  *	domain. It is protected by mmu_lock.
552  * mmu_cnum
553  *	The current cnum to be allocated on this MMU context domain. It
554  *	is protected via CAS.
555  * mmu_nctxs
556  *	The max number of context IDs supported on every CPU in this
557  *	MMU context domain. This is needed here in case the system supports
558  *      mixed type of processors/MMUs. It also helps to make ctx switch code
559  *      access fewer cache lines i.e. no need to retrieve it from some global
560  *      nctxs.
561  * mmu_lock
562  *	The mutex spin lock used to serialize context ID wrap around
563  * mmu_idx
564  *	The index for this MMU context domain structure in the global array
565  *	mmu_ctxdoms.
566  * mmu_ncpus
567  *	The actual number of CPUs that have been configured in this
568  *	MMU context domain. This also acts as a reference count for the
569  *	structure. When the last CPU in an MMU context domain is unconfigured,
570  *	the structure is freed. It is protected by mmu_lock.
571  * mmu_cpuset
572  *	The CPU set of configured CPUs for this MMU context domain. Used
573  *	to cross-call all the CPUs in the MMU context domain to invalidate
574  *	context IDs during a wraparound operation. It is protected by mmu_lock.
575  */
576 
577 typedef struct mmu_ctx {
578 	uint64_t	mmu_gnum;
579 	uint_t		mmu_cnum;
580 	uint_t		mmu_nctxs;
581 	kmutex_t	mmu_lock;
582 	uint_t		mmu_idx;
583 	uint_t		mmu_ncpus;
584 	cpuset_t	mmu_cpuset;
585 	kstat_t		*mmu_kstat;
586 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
587 } mmu_ctx_t;
588 
589 #define	mmu_tsb_exceptions	\
590 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
591 #define	mmu_tsb_raise_exception	\
592 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
593 #define	mmu_wrap_around		\
594 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
595 
596 extern uint_t		max_mmu_ctxdoms;
597 extern mmu_ctx_t	**mmu_ctxs_tbl;
598 
599 extern void	sfmmu_cpu_init(cpu_t *);
600 extern void	sfmmu_cpu_cleanup(cpu_t *);
601 
602 extern uint_t	sfmmu_ctxdom_nctxs(int);
603 
604 #ifdef sun4v
605 extern void	sfmmu_ctxdoms_remove(void);
606 extern void	sfmmu_ctxdoms_lock(void);
607 extern void	sfmmu_ctxdoms_unlock(void);
608 extern void	sfmmu_ctxdoms_update(void);
609 #endif
610 
611 /*
612  * The following structure is used to get MMU context domain information for
613  * a CPU from the platform.
614  *
615  * mmu_idx
616  *	The MMU context domain index within the global array mmu_ctxs
617  * mmu_nctxs
618  *	The number of context IDs supported in the MMU context domain
619  */
620 typedef struct mmu_ctx_info {
621 	uint_t		mmu_idx;
622 	uint_t		mmu_nctxs;
623 } mmu_ctx_info_t;
624 
625 #pragma weak plat_cpuid_to_mmu_ctx_info
626 
627 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
628 
629 /*
630  * Each address space has an array of sfmmu_ctx_t structures, one structure
631  * per MMU context domain.
632  *
633  * cnum
634  *	The context ID allocated for an address space on an MMU context domain
635  * gnum
636  *	The generation number for the context ID in the MMU context domain.
637  *
638  * This structure needs to be a power-of-two in size.
639  */
640 typedef struct sfmmu_ctx {
641 	uint64_t	gnum:48;
642 	uint64_t	cnum:16;
643 } sfmmu_ctx_t;
644 
645 
646 /*
647  * The platform dependent hat structure.
648  * tte counts should be protected by cas.
649  * cpuset is protected by cas.
650  *
651  * ttecnt accounting for mappings which do not use shared hme is carried out
652  * during pagefault handling. In the shared hme case, only the first process
653  * to access a mapping generates a pagefault, subsequent processes simply
654  * find the shared hme entry during trap handling and therefore there is no
655  * corresponding event to initiate ttecnt accounting. Currently, as shared
656  * hmes are only used for text segments, when joining a region we assume the
657  * worst case and add the the number of ttes required to map the entire region
658  * to the ttecnt corresponding to the region pagesize. However, if the region
659  * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
660  * then 8K pages will be allocated instead and the first TSB which stores 8K
661  * mappings will potentially be undersized. To compensate for the potential
662  * underaccounting in this case we always add 1/4 of the region size to the 8K
663  * ttecnt.
664  *
665  * Note that sfmmu_xhat_provider MUST be the first element.
666  */
667 
668 struct hat {
669 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
670 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
671 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
672 	/* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
673 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES];
674 	/* shme rgns ttecnt for rgns in SCD */
675 	ulong_t		sfmmu_scdrttecnt[MMU_PAGE_SIZES];
676 	/* est. ism ttes that are NOT in a SCD */
677 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES];
678 	/* ttecnt for isms that are in a SCD */
679 	ulong_t		sfmmu_scdismttecnt[MMU_PAGE_SIZES];
680 	/* inflate tsb0 to allow for large page alloc failure in region */
681 	ulong_t		sfmmu_tsb0_4minflcnt;
682 	union _h_un {
683 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
684 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
685 	} h_un;
686 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
687 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
688 	uint_t		sfmmu_scdhat:1;	/* hat is dummy scd hatid */
689 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
690 	ushort_t	sfmmu_clrstart;	/* start color bin for page coloring */
691 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
692 	ushort_t	sfmmu_flags;	/* flags */
693 	uchar_t		sfmmu_tteflags;	/* pgsz flags */
694 	uchar_t		sfmmu_rtteflags; /* pgsz flags for SRD hmes */
695 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
696 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
697 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
698 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
699 	uchar_t		sfmmu_cext;	/* context page size encoding */
700 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
701 	sf_srd_t	*sfmmu_srdp;
702 	sf_scd_t	*sfmmu_scdp;	/* scd this address space belongs to */
703 	sf_region_map_t	sfmmu_region_map;
704 	sf_rgn_link_t	*sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
705 	sf_rgn_link_t	sfmmu_scd_link;	/* link to scd or pending queue */
706 #ifdef sun4v
707 	struct hv_tsb_block sfmmu_hvblock;
708 #endif
709 	/*
710 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
711 	 * elements. max_mmu_ctxdoms is determined at run-time.
712 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
713 	 * has to be the last field to ensure that the memory allocated
714 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
715 	 * the hat data structure.
716 	 */
717 	sfmmu_ctx_t	sfmmu_ctxs[1];
718 
719 };
720 
721 #define	sfmmu_iblk	h_un.sfmmu_iblkp
722 #define	sfmmu_iment	h_un.sfmmu_imentp
723 
724 #define	sfmmu_hmeregion_map	sfmmu_region_map.h_rmap_s.hmeregion_map
725 #define	sfmmu_ismregion_map	sfmmu_region_map.h_rmap_s.ismregion_map
726 
727 #define	SF_RGNMAP_ISNULL(sfmmup)	\
728 	(sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
729 #define	SF_HMERGNMAP_ISNULL(sfmmup)	\
730 	(sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
731 
732 struct sf_scd {
733 	sfmmu_t		*scd_sfmmup;	/* shared context hat */
734 	/* per pgsz ttecnt for shme rgns in SCD */
735 	ulong_t		scd_rttecnt[MMU_PAGE_SIZES];
736 	uint_t		scd_refcnt;	/* address spaces attached to scd */
737 	sf_region_map_t scd_region_map; /* bit mask of attached segments */
738 	sf_scd_t	*scd_next;	/* link pointers for srd_scd list */
739 	sf_scd_t	*scd_prev;
740 	sfmmu_t 	*scd_sf_list;	/* list of doubly linked hat structs */
741 	kmutex_t 	scd_mutex;
742 	/*
743 	 * Link used to add an scd to the sfmmu_iment list.
744 	 */
745 	ism_ment_t	scd_ism_links[SFMMU_MAX_ISM_REGIONS];
746 };
747 
748 #define	scd_hmeregion_map	scd_region_map.h_rmap_s.hmeregion_map
749 #define	scd_ismregion_map	scd_region_map.h_rmap_s.ismregion_map
750 
751 extern int disable_shctx;
752 extern int shctx_on;
753 
754 /*
755  * bit mask for managing vac conflicts on large pages.
756  * bit 1 is for uncache flag.
757  * bits 2 through min(num of cache colors + 1,31) are
758  * for cache colors that have already been flushed.
759  */
760 #ifdef VAC
761 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
762 #else
763 #define	CACHE_NUM_COLOR		1
764 #endif
765 
766 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
767 
768 #define	CacheColor_IsFlushed(flag, vcolor) \
769 					((flag) & CACHE_VCOLOR_MASK(vcolor))
770 
771 #define	CacheColor_SetFlushed(flag, vcolor) \
772 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
773 /*
774  * Flags passed to sfmmu_page_cache to flush page from vac or not.
775  */
776 #define	CACHE_FLUSH	0
777 #define	CACHE_NO_FLUSH	1
778 
779 /*
780  * Flags passed to sfmmu_tlbcache_demap
781  */
782 #define	FLUSH_NECESSARY_CPUS	0
783 #define	FLUSH_ALL_CPUS		1
784 
785 #ifdef	DEBUG
786 /*
787  * For debugging purpose only. Maybe removed later.
788  */
789 struct ctx_trace {
790 	sfmmu_t		*sc_sfmmu_stolen;
791 	sfmmu_t		*sc_sfmmu_stealing;
792 	clock_t		sc_time;
793 	ushort_t	sc_type;
794 	ushort_t	sc_cnum;
795 };
796 #define	CTX_TRC_STEAL	0x1
797 #define	CTX_TRC_FREE	0x0
798 #define	TRSIZE	0x400
799 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
800 		ctx_trace_first : ((ptr) + 1))
801 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
802 	mutex_enter(mutex);						\
803 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
804 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
805 	(ptr)->sc_cnum = (cnum);					\
806 	(ptr)->sc_type = (type);					\
807 	(ptr)->sc_time = ddi_get_lbolt();				\
808 	(ptr) = NEXT_CTXTR(ptr);					\
809 	num_ctx_stolen += (type);					\
810 	mutex_exit(mutex);
811 #else
812 
813 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
814 
815 #endif	/* DEBUG */
816 
817 #endif	/* !_ASM */
818 
819 /*
820  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
821  * ASSERT() that we're holding the HAT lock before changing the flags;
822  * however callers that read the flags may do so without acquiring the lock
823  * in a fast path, and then recheck the flag after acquiring the lock in
824  * a slow path.
825  */
826 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
827 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
828 
829 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
830 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
831 	(sfmmup)->sfmmu_flags &= ~(flags))
832 
833 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
834 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
835 	(sfmmup)->sfmmu_flags |= (flags))
836 
837 #define	SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
838 	((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
839 	    (flags))
840 
841 
842 /*
843  * sfmmu tte HAT flags, must fit in 8 bits
844  */
845 #define	HAT_CHKCTX1_FLAG 0x1
846 #define	HAT_64K_FLAG	(0x1 << TTE64K)
847 #define	HAT_512K_FLAG	(0x1 << TTE512K)
848 #define	HAT_4M_FLAG	(0x1 << TTE4M)
849 #define	HAT_32M_FLAG	(0x1 << TTE32M)
850 #define	HAT_256M_FLAG	(0x1 << TTE256M)
851 
852 /*
853  * sfmmu HAT flags, 16 bits at the moment.
854  */
855 #define	HAT_4MTEXT_FLAG		0x01
856 #define	HAT_32M_ISM		0x02
857 #define	HAT_256M_ISM		0x04
858 #define	HAT_SWAPPED		0x08 /* swapped out */
859 #define	HAT_SWAPIN		0x10 /* swapping in */
860 #define	HAT_BUSY		0x20 /* replacing TSB(s) */
861 #define	HAT_ISMBUSY		0x40 /* adding/removing/traversing ISM maps */
862 
863 #define	HAT_CTX1_FLAG   	0x100 /* ISM imap hatflag for ctx1 */
864 #define	HAT_JOIN_SCD		0x200 /* region is joining scd */
865 #define	HAT_ALLCTX_INVALID	0x400 /* all per-MMU ctxs are invalidated */
866 
867 #define	SFMMU_LGPGS_INUSE(sfmmup)					\
868 	(((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) ||	\
869 	    ((sfmmup)->sfmmu_iblk != NULL))
870 
871 /*
872  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
873  * are locked so that sfmmu_getctx can't steal any of these
874  * contexts.  At the time this software was being developed, the
875  * only context that needs to be locked is context 0 (the kernel
876  * context), and context 1 (reserved for stolen context). So this constant
877  * was originally defined to be 2.
878  *
879  * For sun4v only, USER_CONTEXT_TYPE represents any user context.  Many
880  * routines only care whether the context is kernel, invalid or user.
881  */
882 
883 #define	NUM_LOCKED_CTXS 2
884 #define	INVALID_CONTEXT	1
885 
886 #ifdef sun4v
887 #define	USER_CONTEXT_TYPE	NUM_LOCKED_CTXS
888 #endif
889 #if defined(sun4v) || defined(UTSB_PHYS)
890 /*
891  * Get the location in the 4MB base TSB of the tsbe for this fault.
892  * Assumes that the second TSB only contains 4M mappings.
893  *
894  * In:
895  *   tagacc = tag access register (not clobbered)
896  *   tsbe = 2nd TSB base register
897  *   tmp1, tmp2 = scratch registers
898  * Out:
899  *   tsbe = pointer to the tsbe in the 2nd TSB
900  */
901 
902 #define	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
903 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;	/* tmp2=szc */		\
904 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;	/* tsbbase */		\
905 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
906 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
907 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
908 	srlx	tagacc, MMU_PAGESHIFT4M, tmp2; 				\
909 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
910 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;	/* entry num --> ptr */	\
911 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
912 
913 #define	GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
914 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
915 
916 /*
917  * Get the location in the 3rd TSB of the tsbe for this fault.
918  * The 3rd TSB corresponds to the shared context, and is used
919  * for 8K - 512k pages.
920  *
921  * In:
922  *   tagacc = tag access register (not clobbered)
923  *   tsbe, tmp1, tmp2 = scratch registers
924  * Out:
925  *   tsbe = pointer to the tsbe in the 3rd TSB
926  */
927 
928 #define	GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
929 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;    /* tmp2=szc */		\
930 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;    /* tsbbase */		\
931 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
932 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
933 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
934 	srlx	tagacc, MMU_PAGESHIFT, tmp2;				\
935 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
936 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;    /* entry num --> ptr */	\
937 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
938 
939 #define	GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)                      \
940 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
941 /*
942  * Copy the sfmmu_region_map or scd_region_map to the tsbmiss
943  * shmermap or scd_shmermap, from sfmmu_load_mmustate.
944  */
945 #define	SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label)		\
946 	/* BEGIN CSTYLED */						\
947 label:									;\
948         ldx     [rgn_map], tmp						;\
949         dec     cnt							;\
950         add     rgn_map, CLONGSIZE, rgn_map                             ;\
951         stx     tmp, [tsbmiss_map]                                      ;\
952         brnz,pt cnt, label                                              ;\
953 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map                    \
954 	/* END CSTYLED */
955 
956 /*
957  * If there is no scd, then zero the tsbmiss scd_shmermap,
958  * from sfmmu_load_mmustate.
959  */
960 #define	ZERO_REGION_MAP(tsbmiss_map, cnt, label)                        \
961 	/* BEGIN CSTYLED */                                             \
962 label:                                                                  ;\
963         dec     cnt                                                     ;\
964         stx     %g0, [tsbmiss_map]                                      ;\
965         brnz,pt cnt, label                                              ;\
966 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map
967 	/* END CSTYLED */
968 
969 /*
970  * Set hmemisc to 1 if the shared hme is also part of an scd.
971  * In:
972  *   tsbarea = tsbmiss area (not clobbered)
973  *   hmeblkpa  = hmeblkpa +  hmentoff + SFHME_TTE (not clobbered)
974  *   hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered)
975  * Out:
976  *   use_shctx = 1 if shme is in scd and 0 otherwise
977  */
978 #define	GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx)               \
979 	/* BEGIN CSTYLED */   	                                              \
980         sub     hmeblkpa, hmentoff, hmentoff    /* hmentofff = hmeblkpa */   ;\
981         add     hmentoff, HMEBLK_TAG, hmentoff                               ;\
982         ldxa    [hmentoff]ASI_MEM, hmentoff     /* read 1st part of tag */   ;\
983         and     hmentoff, HTAG_RID_MASK, hmentoff       /* mask off rid */   ;\
984         and     hmentoff, BT_ULMASK, use_shctx  /* mask bit index */         ;\
985         srlx    hmentoff, BT_ULSHIFT, hmentoff  /* extract word */           ;\
986         sllx    hmentoff, CLONGSHIFT, hmentoff  /* index */                  ;\
987         add     tsbarea, hmentoff, hmentoff             /* add to tsbarea */ ;\
988         ldx     [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff      /* scdrgn */ ;\
989         srlx    hmentoff, use_shctx, use_shctx                               ;\
990         and     use_shctx, 0x1, use_shctx                                     \
991 	/* END CSTYLED */
992 
993 /*
994  * Synthesize a TSB base register contents for a process.
995  *
996  * In:
997  *   tsbinfo = TSB info pointer (ro)
998  *   tsbreg, tmp1 = scratch registers
999  * Out:
1000  *   tsbreg = value to program into TSB base register
1001  */
1002 
1003 #define	MAKE_UTSBREG(tsbinfo, tsbreg, tmp1)			\
1004 	ldx	[tsbinfo + TSBINFO_PADDR], tsbreg;		\
1005 	lduh	[tsbinfo + TSBINFO_SZCODE], tmp1;		\
1006 	and	tmp1, TSB_SOFTSZ_MASK, tmp1;			\
1007 	or	tsbreg, tmp1, tsbreg;
1008 
1009 
1010 /*
1011  * Load TSB base register to TSBMISS area for privte contexts.
1012  * This register contains utsb_pabase in bits 63:13, and TSB size
1013  * code in bits 2:0.
1014  *
1015  * For private context
1016  * In:
1017  *   tsbreg = value to load (ro)
1018  *   regnum = constant or register
1019  *   tmp1 = scratch register
1020  * Out:
1021  *   Specified scratchpad register updated
1022  *
1023  */
1024 #define	SET_UTSBREG(regnum, tsbreg, tmp1)				\
1025 	mov	regnum, tmp1;						\
1026 	stxa	tsbreg, [tmp1]ASI_SCRATCHPAD	/* save tsbreg */
1027 /*
1028  * Get TSB base register from the scratchpad for private contexts
1029  *
1030  * In:
1031  *   regnum = constant or register
1032  *   tsbreg = scratch
1033  * Out:
1034  *   tsbreg = tsbreg from the specified scratchpad register
1035  */
1036 #define	GET_UTSBREG(regnum, tsbreg)					\
1037 	mov	regnum, tsbreg;						\
1038 	ldxa	[tsbreg]ASI_SCRATCHPAD, tsbreg
1039 
1040 /*
1041  * Load TSB base register to TSBMISS area for shared contexts.
1042  * This register contains utsb_pabase in bits 63:13, and TSB size
1043  * code in bits 2:0.
1044  *
1045  * In:
1046  *   tsbmiss = pointer to tsbmiss area
1047  *   tsbmissoffset = offset to right tsb pointer
1048  *   tsbreg = value to load (ro)
1049  * Out:
1050  *   Specified tsbmiss area updated
1051  *
1052  */
1053 #define	SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1054 	stx	tsbreg, [tsbmiss + tsbmissoffset]	/* save tsbreg */
1055 
1056 /*
1057  * Get TSB base register from the scratchpad for
1058  * shared contexts
1059  *
1060  * In:
1061  *   tsbmiss = pointer to tsbmiss area
1062  *   tsbmissoffset = offset to right tsb pointer
1063  *   tsbreg = scratch
1064  * Out:
1065  *   tsbreg = tsbreg from the specified scratchpad register
1066  */
1067 #define	GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1068 	ldx	[tsbmiss + tsbmissoffset], tsbreg
1069 
1070 #endif /* defined(sun4v) || defined(UTSB_PHYS) */
1071 
1072 #ifndef	_ASM
1073 
1074 /*
1075  * Kernel page relocation stuff.
1076  */
1077 struct sfmmu_callback {
1078 	int key;
1079 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
1080 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
1081 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
1082 	int capture_cpus;
1083 };
1084 
1085 extern int sfmmu_max_cb_id;
1086 extern struct sfmmu_callback *sfmmu_cb_table;
1087 
1088 extern int hat_kpr_enabled;
1089 
1090 struct pa_hment;
1091 
1092 /*
1093  * RFE: With multihat gone we gain back an int.  We could use this to
1094  * keep ref bits on a per cpu basis to eliminate xcalls.
1095  */
1096 struct sf_hment {
1097 	tte_t hme_tte;			/* tte for this hment */
1098 
1099 	union {
1100 		struct page *page;	/* what page this maps */
1101 		struct pa_hment *data;	/* pa_hment */
1102 	} sf_hment_un;
1103 
1104 	struct	sf_hment *hme_next;	/* next hment */
1105 	struct	sf_hment *hme_prev;	/* prev hment */
1106 };
1107 
1108 struct pa_hment {
1109 	caddr_t		addr;		/* va */
1110 	uint_t		len;		/* bytes */
1111 	ushort_t	flags;		/* internal flags */
1112 	ushort_t	refcnt;		/* reference count */
1113 	id_t		cb_id;		/* callback id, table index */
1114 	void		*pvt;		/* handler's private data */
1115 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
1116 };
1117 
1118 #define	hme_page		sf_hment_un.page
1119 #define	hme_data		sf_hment_un.data
1120 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
1121 #define	PAHME_SZ		(sizeof (struct pa_hment))
1122 #define	SFHME_SZ		(sizeof (struct sf_hment))
1123 
1124 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
1125 
1126 /*
1127  * hmeblk_tag structure
1128  * structure used to obtain a match on a hme_blk.  Currently consists of
1129  * the address of the sfmmu struct (or hatid), the base page address of the
1130  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
1131  * and has the following meaning:
1132  * 1 = 8k or 64k hash sequence.
1133  * 2 = 512k hash sequence.
1134  * 3 = 4M hash sequence.
1135  * We require this count because we don't want to get a false hit on a 512K or
1136  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
1137  * Note:  The ordering and size of the hmeblk_tag members are implictly known
1138  * by the tsb miss handlers written in assembly.  Do not change this structure
1139  * without checking those routines.  See HTAG_SFMMUPSZ define.
1140  */
1141 
1142 /*
1143  * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
1144  */
1145 typedef union {
1146 	struct {
1147 		uint64_t	hblk_basepg: 51,	/* hme_blk base pg # */
1148 				hblk_rehash: 3,		/* rehash number */
1149 				hblk_rid: 10;		/* hme_blk region id */
1150 		void		*hblk_id;
1151 	} hblk_tag_un;
1152 	uint64_t		htag_tag[2];
1153 } hmeblk_tag;
1154 
1155 #define	htag_id		hblk_tag_un.hblk_id
1156 #define	htag_bspage	hblk_tag_un.hblk_basepg
1157 #define	htag_rehash	hblk_tag_un.hblk_rehash
1158 #define	htag_rid	hblk_tag_un.hblk_rid
1159 
1160 #endif /* !_ASM */
1161 
1162 #define	HTAG_REHASH_SHIFT	10
1163 #define	HTAG_MAX_RID	(((0x1 << HTAG_REHASH_SHIFT) - 1))
1164 #define	HTAG_RID_MASK	HTAG_MAX_RID
1165 
1166 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
1167 #define	SFMMU_INVALID_SHMERID	HTAG_MAX_RID
1168 
1169 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1170 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1171 #endif
1172 
1173 #define	SFMMU_IS_SHMERID_VALID(rid)	((rid) != SFMMU_INVALID_SHMERID)
1174 
1175 /* ISM regions */
1176 #define	SFMMU_INVALID_ISMRID	0xff
1177 
1178 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1179 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1180 #endif
1181 
1182 #define	SFMMU_IS_ISMRID_VALID(rid)	((rid) != SFMMU_INVALID_ISMRID)
1183 
1184 
1185 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
1186 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
1187 
1188 /*
1189  * this macro must only be used for comparing tags in shared hmeblks.
1190  */
1191 #define	HTAGS_EQ_SHME(hmetag, tag, hrmap)				\
1192 	(((hmetag).htag_rid != SFMMU_INVALID_SHMERID) &&	        \
1193 	(((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) &			\
1194 		~HTAG_RID_MASK) |	        			\
1195 	    ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) &&	\
1196 	SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
1197 
1198 #define	HME_REHASH(sfmmup)						\
1199 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
1200 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
1201 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
1202 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
1203 
1204 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
1205 					/* needs to be multiple of 2 */
1206 
1207 #ifndef	_ASM
1208 
1209 #ifdef	HBLK_TRACE
1210 
1211 #define	HBLK_LOCK		1
1212 #define	HBLK_UNLOCK		0
1213 #define	HBLK_STACK_DEPTH	6
1214 #define	HBLK_AUDIT_CACHE_SIZE	16
1215 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
1216 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
1217 
1218 struct hblk_lockcnt_audit {
1219 	int		flag;		/* lock or unlock */
1220 	kthread_id_t	thread;
1221 	int		depth;
1222 	pc_t		stack[HBLK_STACK_DEPTH];
1223 };
1224 
1225 #endif	/* HBLK_TRACE */
1226 
1227 
1228 /*
1229  * Hment block structure.
1230  * The hme_blk is the node data structure which the hash structure
1231  * mantains. An hme_blk can have 2 different sizes depending on the
1232  * number of hments it implicitly contains.  When dealing with 64K, 512K,
1233  * or 4M hments there is one hment per hme_blk.  When dealing with
1234  * 8k hments we allocate an hme_blk plus an additional 7 hments to
1235  * give us a total of 8 (NHMENTS) hments that can be referenced through a
1236  * hme_blk.
1237  *
1238  * The hmeblk structure contains 2 tte reference counters used to determine if
1239  * it is ok to free up the hmeblk.  Both counters have to be zero in order
1240  * to be able to free up hmeblk.  They are protected by cas.
1241  * hblk_hmecnt is the number of hments present on pp mapping lists.
1242  * hblk_vcnt reflects number of valid ttes in hmeblk.
1243  *
1244  * The hmeblk now also has per tte lock cnts.  This is required because
1245  * the counts can be high and there are not enough bits in the tte. When
1246  * physio is fixed to not lock the translations we should be able to move
1247  * the lock cnt back to the tte.  See bug id 1198554.
1248  *
1249  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
1250  * and sf_hment are at the same offsets in both structures. Whenever
1251  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
1252  */
1253 
1254 struct hme_blk_misc {
1255 	uint_t	notused:25;
1256 	uint_t	shared_bit:1;	/* set for SRD shared hmeblk */
1257 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
1258 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
1259 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
1260 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
1261 };
1262 
1263 struct hme_blk {
1264 	volatile uint64_t hblk_nextpa;	/* physical address for hash list */
1265 
1266 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
1267 
1268 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
1269 					/* protected by hash lock */
1270 
1271 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
1272 					/* protected by hash lock */
1273 	uint_t		hblk_span;	/* span of memory hmeblk maps */
1274 
1275 	struct hme_blk_misc	hblk_misc;
1276 
1277 	union {
1278 		struct {
1279 			ushort_t hblk_hmecount;	/* hment on mlists counter */
1280 			ushort_t hblk_validcnt;	/* valid tte reference count */
1281 		} hblk_counts;
1282 		uint_t		hblk_shadow_mask;
1283 	} hblk_un;
1284 
1285 	uint_t		hblk_lckcnt;
1286 
1287 #ifdef	HBLK_TRACE
1288 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
1289 	uint_t		hblk_audit_index;	/* index into audit_cache */
1290 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1291 #endif	/* HBLK_AUDIT */
1292 
1293 	struct sf_hment hblk_hme[1];	/* hment array */
1294 };
1295 
1296 #define	hblk_shared	hblk_misc.shared_bit
1297 #define	hblk_xhat_bit   hblk_misc.xhat_bit
1298 #define	hblk_shw_bit	hblk_misc.shadow_bit
1299 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
1300 #define	hblk_ttesz	hblk_misc.ttesize
1301 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
1302 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
1303 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
1304 
1305 #define	MAX_HBLK_LCKCNT	0xFFFFFFFF
1306 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
1307 
1308 #ifdef	HBLK_TRACE
1309 
1310 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
1311 {									\
1312 	int flag = lock;	/* to pacify lint */			\
1313 	int audit_index;						\
1314 									\
1315 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
1316 	audit_index = hmeblkp->hblk_audit_index;			\
1317 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
1318 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
1319 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
1320 									\
1321 	if (flag)							\
1322 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1323 		    HBLK_LOCK_PATTERN;					\
1324 	else								\
1325 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1326 		    HBLK_UNLOCK_PATTERN;				\
1327 									\
1328 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
1329 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
1330 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
1331 	    HBLK_STACK_DEPTH);						\
1332 }
1333 
1334 #else
1335 
1336 #define	HBLK_STACK_TRACE(hmeblkp, lock)
1337 
1338 #endif	/* HBLK_TRACE */
1339 
1340 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
1341 
1342 /*
1343  * A maximum number of user hmeblks is defined in order to place an upper
1344  * limit on how much nucleus memory is required and to avoid overflowing the
1345  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1346  * the number of buckets required, for an average hash chain length of 4 on
1347  * a 16TB machine.
1348  */
1349 
1350 #define	MAX_UHME_BUCKETS	(0x1 << 30)
1351 #define	MAX_KHME_BUCKETS	(0x1 << 30)
1352 
1353 /*
1354  * The minimum number of kernel hash buckets.
1355  */
1356 #define	MIN_KHME_BUCKETS	0x800
1357 
1358 /*
1359  * The number of hash buckets must be a power of 2. If the initial calculated
1360  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1361  * power of 2, otherwise we round down to avoid huge over allocations.
1362  */
1363 #define	USER_BUCKETS_THRESHOLD	(1<<22)
1364 
1365 #define	MAX_NUCUHME_BUCKETS	0x4000
1366 #define	MAX_NUCKHME_BUCKETS	0x2000
1367 
1368 /*
1369  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
1370  * a regular mutex used to make sure operations on a hash link are only
1371  * done by one thread.  Any operation which comes into the hat with
1372  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
1373  * the tsb miss handlers to grab the hash lock to make sure the hash list
1374  * is consistent while we traverse it.  Unfortunately this can lead to
1375  * deadlocks or recursive mutex enters since it is possible for
1376  * someone holding the lock to take a tlb/tsb miss.
1377  * To solve this problem we have added the hmehash_listlock.  This lock
1378  * is only grabbed by the tsb miss handlers, vatopfn, and while
1379  * adding/removing a hmeblk from the hash list. The code is written to
1380  * guarantee we won't take a tlb miss while holding this lock.
1381  */
1382 struct hmehash_bucket {
1383 	kmutex_t	hmehash_mutex;
1384 	volatile uint64_t hmeh_nextpa;	/* physical address for hash list */
1385 	struct hme_blk *hmeblkp;
1386 	uint_t		hmeh_listlock;
1387 };
1388 
1389 #endif /* !_ASM */
1390 
1391 #define	SFMMU_PGCNT_MASK	0x3f
1392 #define	SFMMU_PGCNT_SHIFT	6
1393 #define	INVALID_MMU_ID		-1
1394 #define	SFMMU_MMU_GNUM_RSHIFT	16
1395 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
1396 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
1397 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
1398 
1399 /*
1400  * The tsb miss handlers written in assembly know that sfmmup
1401  * is a 64 bit ptr.
1402  *
1403  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1404  * bits.
1405  */
1406 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
1407 #define	HTAG_BSPAGE_SHIFT	13
1408 
1409 /*
1410  * Assembly routines need to be able to get to ttesz
1411  */
1412 #define	HBLK_SZMASK		0x7
1413 
1414 #ifndef _ASM
1415 
1416 /*
1417  * Returns the number of bytes that an hmeblk spans given its tte size
1418  */
1419 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1420 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
1421 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
1422 	sfmmu8_cache : sfmmu1_cache)
1423 #define	HMEBLK_SPAN(ttesz)						\
1424 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1425 
1426 #define	set_hblk_sz(hmeblkp, ttesz)				\
1427 	(hmeblkp)->hblk_ttesz = (ttesz);			\
1428 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1429 
1430 #define	get_hblk_base(hmeblkp)					\
1431 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1432 
1433 #define	get_hblk_endaddr(hmeblkp)				\
1434 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1435 
1436 #define	in_hblk_range(hmeblkp, vaddr)					\
1437 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
1438 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
1439 	get_hblk_span(hmeblkp))))
1440 
1441 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
1442 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1443 
1444 #define	tte_to_evaddr(hmeblkp, ttep)	((caddr_t)(get_hblk_base(hmeblkp) \
1445 	+ (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1446 
1447 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
1448 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1449 	TTE_BSZS_SHIFT((shwsz) - 1))
1450 
1451 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
1452 			(NHMENTS - 1) * sizeof (struct sf_hment))
1453 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
1454 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
1455 
1456 /*
1457  * Hme_blk hash structure
1458  * Active mappings are kept in a hash structure of hme_blks.  The hash
1459  * function is based on (ctx, vaddr) The size of the hash table size is a
1460  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1461  * The hash actually consists of 2 separate hashes.  One hash is for the user
1462  * address space and the other hash is for the kernel address space.
1463  * The number of buckets are calculated at boot time and stored in the global
1464  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
1465  * a power of 2 we can use a simply & function to derive an index instead of
1466  * a divide.
1467  *
1468  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1469  * bucket.
1470  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1471  * protects the link list.
1472  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
1473  * 512K pages need 2 hashes and 4M pages need 3 hashes.
1474  * The 'shift' parameter controls how many bits the vaddr will be shifted in
1475  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1476  * and it varies depending on the page size as follows:
1477  *	8k pages:  	HBLK_RANGE_SHIFT
1478  *	64k pages:	MMU_PAGESHIFT64K
1479  *	512K pages:	MMU_PAGESHIFT512K
1480  *	4M pages:	MMU_PAGESHIFT4M
1481  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1482  * changes should be reflected in both versions.  This function and the TSB
1483  * miss handlers are the only places which know about the two hashes.
1484  *
1485  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1486  * into the same bucket for a particular process.  It is currently set to
1487  * be equivalent to 64K range or one hme_blk.
1488  *
1489  * The hme_blks in the hash are protected by a per hash bucket mutex
1490  * known as SFMMU_HASH_LOCK.
1491  * You need to acquire this lock before traversing the hash bucket link
1492  * list, while adding/removing a hme_blk to the list, and while
1493  * modifying an hme_blk.  A possible optimization is to replace these
1494  * mutexes by readers/writer lock but right now it is not clear whether
1495  * this is a win or not.
1496  *
1497  * The HME_HASH_TABLE_SEARCH will search the hash table for the
1498  * hme_blk that contains the hment that corresponds to the passed
1499  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
1500  */
1501 
1502 #endif /* ! _ASM */
1503 
1504 #define	KHATID			ksfmmup
1505 #define	UHMEHASH_SZ		uhmehash_num
1506 #define	KHMEHASH_SZ		khmehash_num
1507 #define	HMENT_HASHAVELEN	4
1508 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1509 #define	HBLK_MIN_TTESZ		1
1510 #define	HBLK_MIN_BYTES		MMU_PAGESIZE64K
1511 #define	HBLK_MIN_SHIFT		MMU_PAGESHIFT64K
1512 #define	MAX_HASHCNT		5
1513 #define	DEFAULT_MAX_HASHCNT	3
1514 
1515 #ifndef _ASM
1516 
1517 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
1518 
1519 #define	HME_HASH_SHIFT(ttesz)						\
1520 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1521 
1522 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
1523 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1524 
1525 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
1526 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1527 
1528 #define	HME_HASH_REHASH(ttesz)						\
1529 	(((ttesz) < TTE512K)? 1 : (ttesz))
1530 
1531 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				     \
1532 	((((void *)hatid) != ((void *)KHATID)) ?			     \
1533 	(&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1534 	    UHMEHASH_SZ) ]):						     \
1535 	(&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1536 	    KHMEHASH_SZ) ]))
1537 
1538 /*
1539  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1540  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1541  * will be set to NULL, otherwise it will point to the correct hme_blk.
1542  * This macro also cleans empty hblks.
1543  */
1544 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp)	\
1545 {									\
1546 	struct hme_blk *nx_hblk;					\
1547 									\
1548 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1549 	hblkp = hmebp->hmeblkp;						\
1550 	pr_hblk = NULL;							\
1551 	while (hblkp) {							\
1552 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1553 			/* found hme_blk */				\
1554 			break;						\
1555 		}							\
1556 		nx_hblk = hblkp->hblk_next;				\
1557 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1558 			sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk,	\
1559 			    listp, 0);					\
1560 		} else {						\
1561 			pr_hblk = hblkp;				\
1562 		}							\
1563 		hblkp = nx_hblk;					\
1564 	}								\
1565 }
1566 
1567 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1568 {									\
1569 	struct hme_blk *pr_hblk;					\
1570 									\
1571 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp,  pr_hblk, listp);	\
1572 }
1573 
1574 /*
1575  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1576  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1577  * will be set to NULL, otherwise it will point to the correct hme_blk.
1578  * It doesn't remove empty hblks.
1579  */
1580 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1581 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1582 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1583 	    hblkp = hblkp->hblk_next) {					\
1584 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1585 			/* found hme_blk */				\
1586 			break;						\
1587 		}							\
1588 	}
1589 
1590 #define	SFMMU_HASH_LOCK(hmebp)						\
1591 		(mutex_enter(&hmebp->hmehash_mutex))
1592 
1593 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1594 		(mutex_exit(&hmebp->hmehash_mutex))
1595 
1596 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1597 		(mutex_tryenter(&hmebp->hmehash_mutex))
1598 
1599 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1600 		(mutex_owned(&hmebp->hmehash_mutex))
1601 
1602 #define	SFMMU_XCALL_STATS(sfmmup)					\
1603 {									\
1604 	if (sfmmup == ksfmmup) {					\
1605 		SFMMU_STAT(sf_kernel_xcalls);				\
1606 	} else {							\
1607 		SFMMU_STAT(sf_user_xcalls);				\
1608 	}								\
1609 }
1610 
1611 #define	astosfmmu(as)		((as)->a_hat)
1612 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1613 #define	hblktosrd(hmeblkp)	((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1614 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1615 
1616 #define	sfmmutohtagid(sfmmup, rid)			   \
1617 	(((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1618 	(void *)((sfmmup)->sfmmu_srdp))
1619 
1620 /*
1621  * We use the sfmmu data structure to keep the per as page coloring info.
1622  */
1623 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1624 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1625 
1626 typedef struct {
1627 	char	h8[HME8BLK_SZ];
1628 } hblk8_t;
1629 
1630 typedef struct {
1631 	char	h1[HME1BLK_SZ];
1632 } hblk1_t;
1633 
1634 typedef struct {
1635 	ulong_t  	index;
1636 	ulong_t  	len;
1637 	hblk8_t		*list;
1638 } nucleus_hblk8_info_t;
1639 
1640 typedef struct {
1641 	ulong_t		index;
1642 	ulong_t		len;
1643 	hblk1_t		*list;
1644 } nucleus_hblk1_info_t;
1645 
1646 /*
1647  * This struct is used for accumlating information about a range
1648  * of pages that are unloading so that a single xcall can flush
1649  * the entire range from remote tlbs. A function that must demap
1650  * a range of virtual addresses declares one of these structures
1651  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1652  * struct to the appropriate sfmmu_hblk_* level function which does
1653  * all the bookkeeping using the other macros. When the function has
1654  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1655  * macro to take care of any remaining unflushed mappings.
1656  *
1657  * The maximum range this struct can represent is the number of bits
1658  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1659  * MMU_PAGESIZE pages are supported.
1660  *
1661  * Since there are now cases where it's no longer necessary to do
1662  * flushes (e.g. when the process isn't runnable because it's swapping
1663  * out or exiting) we allow these macros to take a NULL dmr input and do
1664  * nothing in that case.
1665  */
1666 typedef struct {
1667 	sfmmu_t		*dmr_sfmmup;	/* relevant hat */
1668 	caddr_t		dmr_addr;	/* beginning address */
1669 	caddr_t		dmr_endaddr;	/* ending  address */
1670 	ulong_t		dmr_bitvec;	/* valid pages found */
1671 	ulong_t		dmr_bit;	/* next page to examine */
1672 	ulong_t		dmr_maxbit;	/* highest page in range */
1673 	ulong_t		dmr_pgsz;	/* page size in range */
1674 } demap_range_t;
1675 
1676 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1677 
1678 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1679 	if ((dmrp) != NULL) { \
1680 	(dmrp)->dmr_sfmmup = (sfmmup); \
1681 	(dmrp)->dmr_bitvec = 0; \
1682 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1683 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1684 	}
1685 
1686 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1687 
1688 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1689 	if ((dmrp) != NULL) { \
1690 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1691 		sfmmu_tlb_range_demap(dmrp); \
1692 	(dmrp)->dmr_endaddr = (endaddr); \
1693 	}
1694 
1695 #define	DEMAP_RANGE_FLUSH(dmrp) \
1696 	if ((dmrp) != NULL) { \
1697 		if ((dmrp)->dmr_bitvec != 0) \
1698 			sfmmu_tlb_range_demap(dmrp); \
1699 	}
1700 
1701 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1702 	if ((dmrp) != NULL) { \
1703 		if ((dmrp)->dmr_bitvec == 0) { \
1704 			(dmrp)->dmr_addr = (addr); \
1705 			(dmrp)->dmr_bit = 1; \
1706 		} \
1707 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1708 	}
1709 
1710 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1711 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1712 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1713 			sfmmu_tlb_range_demap(dmrp); \
1714 		} else { \
1715 			(dmrp)->dmr_bit <<= 1; \
1716 		} \
1717 	}
1718 
1719 /*
1720  * TSB related structures
1721  *
1722  * The TSB is made up of tte entries.  Both the tag and data are present
1723  * in the TSB.  The TSB locking is managed as follows:
1724  * A software bit in the tsb tag is used to indicate that entry is locked.
1725  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1726  * fail forcing the cpu to go to the hat hash for the translation.
1727  * The cpu who holds the lock can then modify the data side, and the tag side.
1728  * The last write should be to the word containing the lock bit which will
1729  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1730  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1731  * bit load is required to prevent the following from happening:
1732  *
1733  * cpu 0			cpu 1			comments
1734  *
1735  * ldx tag						tag unlocked
1736  *				ldstub lock		set lock
1737  *				stx data
1738  *				stx tag			unlock
1739  * ldx tag						incorrect tte!!!
1740  *
1741  * The software also maintains a bit in the tag to indicate an invalid
1742  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1743  * to invalidate a tsb entry with a single cas.  See code for details.
1744  */
1745 
1746 union tsb_tag {
1747 	struct {
1748 		uint32_t	tag_res0:16;	/* reserved - context area */
1749 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1750 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1751 		uint32_t	tag_res1:4;	/* reserved */
1752 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1753 		uint32_t	tag_va_lo;	/* va[53:22] */
1754 	} tagbits;
1755 	struct tsb_tagints {
1756 		uint32_t	inthi;
1757 		uint32_t	intlo;
1758 	} tagints;
1759 };
1760 #define	tag_invalid		tagbits.tag_inv
1761 #define	tag_locked		tagbits.tag_lock
1762 #define	tag_vahi		tagbits.tag_va_hi
1763 #define	tag_valo		tagbits.tag_va_lo
1764 #define	tag_inthi		tagints.inthi
1765 #define	tag_intlo		tagints.intlo
1766 
1767 struct tsbe {
1768 	union tsb_tag	tte_tag;
1769 	tte_t		tte_data;
1770 };
1771 
1772 /*
1773  * A per cpu struct is kept that duplicates some info
1774  * used by the tl>0 tsb miss handlers plus it provides
1775  * a scratch area.  Its purpose is to minimize cache misses
1776  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1777  *
1778  * There should be one allocated per cpu in nucleus memory
1779  * and should be aligned on an ecache line boundary.
1780  */
1781 struct tsbmiss {
1782 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1783 	sfmmu_t			*usfmmup;	/* user hat id */
1784 	sf_srd_t		*usrdp;		/* user's SRD hat id */
1785 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1786 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1787 	struct tsbe		*tsbscdptr;	/* hardware computed ptr */
1788 	struct tsbe		*tsbscdptr4m;	/* hardware computed ptr */
1789 	uint64_t		ismblkpa;
1790 	struct hmehash_bucket	*khashstart;
1791 	struct hmehash_bucket	*uhashstart;
1792 	uint_t			khashsz;
1793 	uint_t			uhashsz;
1794 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1795 	uchar_t			uhat_tteflags;	/* private page sizes */
1796 	uchar_t			uhat_rtteflags;	/* SHME pagesizes */
1797 	uint32_t		utsb_misses;
1798 	uint32_t		ktsb_misses;
1799 	uint16_t		uprot_traps;
1800 	uint16_t		kprot_traps;
1801 	/*
1802 	 * scratch[0] -> TSB_TAGACC
1803 	 * scratch[1] -> TSBMISS_HMEBP
1804 	 * scratch[2] -> TSBMISS_HATID
1805 	 */
1806 	uintptr_t		scratch[3];
1807 	ulong_t		shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1808 	ulong_t		scd_shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1809 	uint8_t		pad[48];			/* pad to 64 bytes */
1810 };
1811 
1812 /*
1813  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1814  * miss handler. Some members are duplicates of common data or
1815  * the physical addresses of common data. A few members are also
1816  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1817  * minimize cache misses in the kpm tsb miss handler and occupies
1818  * one ecache line. There should be one allocated per cpu in
1819  * nucleus memory and it should be aligned on an ecache line
1820  * boundary. It is not merged w/ struct tsbmiss since there is
1821  * not much to share and the tsbmiss pathes are different, so
1822  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1823  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1824  * of struct tsbmiss is used on every dtlb miss.
1825  */
1826 struct kpmtsbm {
1827 	caddr_t		vbase;		/* start of address kpm range */
1828 	caddr_t		vend;		/* end of address kpm range */
1829 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1830 	uchar_t		sz_shift;	/* for single kpm window */
1831 	uchar_t		kpmp_shift;	/* hash lock shift */
1832 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1833 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1834 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1835 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1836 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1837 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1838 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1839 	uintptr_t	pad[1];
1840 };
1841 
1842 extern size_t	tsb_slab_size;
1843 extern uint_t	tsb_slab_shift;
1844 extern size_t	tsb_slab_mask;
1845 
1846 #endif /* !_ASM */
1847 
1848 /*
1849  * Flags for TL kpm tsbmiss handler
1850  */
1851 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1852 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1853 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1854 
1855 /*
1856  * The TSB
1857  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1858  * For kernel TSBs we may go beyond the hardware supported sizes and support
1859  * larger TSBs via software.
1860  * All TTE sizes are supported in the TSB; the manner in which this is
1861  * done is cpu dependent.
1862  */
1863 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1864 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1865 
1866 #ifdef sun4v
1867 #define	UTSB_MAX_SZCODE		TSB_256M_SZCODE /* max. supported TSB size */
1868 #else /* sun4u */
1869 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE	/* max. supported TSB size */
1870 #endif /* sun4v */
1871 
1872 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1873 
1874 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1875 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1876 #define	TSB_8K_SZCODE		0		/* 512 entries */
1877 #define	TSB_16K_SZCODE		1		/* 1k entries */
1878 #define	TSB_32K_SZCODE		2		/* 2k entries */
1879 #define	TSB_64K_SZCODE		3		/* 4k entries */
1880 #define	TSB_128K_SZCODE		4		/* 8k entries */
1881 #define	TSB_256K_SZCODE		5		/* 16k entries */
1882 #define	TSB_512K_SZCODE		6		/* 32k entries */
1883 #define	TSB_1M_SZCODE		7		/* 64k entries */
1884 #define	TSB_2M_SZCODE		8		/* 128k entries */
1885 #define	TSB_4M_SZCODE		9		/* 256k entries */
1886 #define	TSB_8M_SZCODE		10		/* 512k entries */
1887 #define	TSB_16M_SZCODE		11		/* 1M entries */
1888 #define	TSB_32M_SZCODE		12		/* 2M entries */
1889 #define	TSB_64M_SZCODE		13		/* 4M entries */
1890 #define	TSB_128M_SZCODE		14		/* 8M entries */
1891 #define	TSB_256M_SZCODE		15		/* 16M entries */
1892 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1893 #define	TSB_ENTRY_SIZE		(1 << 4)
1894 #define	TSB_START_SIZE		9
1895 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1896 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1897 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1898 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1899 
1900 /*
1901  * sun4u platforms
1902  * ---------------
1903  * We now support two user TSBs with one TSB base register.
1904  * Hence the TSB base register is split up as follows:
1905  *
1906  * When only one TSB present:
1907  *   [63  62..42  41..13  12..4  3..0]
1908  *     ^   ^       ^       ^     ^
1909  *     |   |       |       |     |
1910  *     |   |       |       |     |_ TSB size code
1911  *     |   |       |       |
1912  *     |   |       |       |_ Reserved 0
1913  *     |   |       |
1914  *     |   |       |_ TSB VA[41..13]
1915  *     |   |
1916  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1917  *     |
1918  *     |_ 0
1919  *
1920  * When second TSB present:
1921  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1922  *     ^   ^       ^       ^       ^       ^       ^     ^
1923  *     |   |       |       |       |       |       |     |
1924  *     |   |       |       |       |       |       |     |_ First TSB size code
1925  *     |   |       |       |       |       |       |
1926  *     |   |       |       |       |       |       |_ Reserved 0
1927  *     |   |       |       |       |       |
1928  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1929  *     |   |       |       |       |
1930  *     |   |       |       |       |_ Reserved for future use
1931  *     |   |       |       |
1932  *     |   |       |       |_ Second TSB's size code
1933  *     |   |       |
1934  *     |   |       |_ Second TSB's VA[21..13]
1935  *     |   |
1936  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1937  *     |
1938  *     |_ 1
1939  *
1940  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1941  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1942  * are supported, though the slabs are usually 4M in size.
1943  *
1944  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1945  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1946  * registers.  The second TSB base uses a dedicated scratchpad register which
1947  * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h.  The layout for
1948  * both registers is equivalent to sun4v below, except the TSB PA range is
1949  * [46..13] for sun4u.
1950  *
1951  * sun4v platforms
1952  * ---------------
1953  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1954  * hardware TSB base registers to hold up to two different user TSBs.
1955  *
1956  * Each register contains TSB's physical base and size code information
1957  * as follows:
1958  *
1959  *   [63..56  55..13  12..4  3..0]
1960  *      ^       ^       ^     ^
1961  *      |       |       |     |
1962  *      |       |       |     |_ TSB size code
1963  *      |       |       |
1964  *      |       |       |_ Reserved 0
1965  *      |       |
1966  *      |       |_ TSB PA[55..13]
1967  *      |
1968  *      |
1969  *      |
1970  *      |_ 0 for valid TSB
1971  *
1972  * Absence of a user TSB (primarily the second user TSB) is indicated by
1973  * storing a negative value in the TSB base register. This allows us to
1974  * check for presence of a user TSB by simply checking bit# 63.
1975  */
1976 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1977 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1978 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1979 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1980 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1981 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1982 						/* sectsb va -> bits 21:13 */
1983 						/* after clearing upper bits */
1984 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1985 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1986 
1987 #define	BIGKTSB_SZ_MASK		0xf
1988 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1989 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1990 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1991 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1992 
1993 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
1994 /*
1995  * sw bits used on tsb_tag - bit masks used only in assembly
1996  * use only a sethi for these fields.
1997  */
1998 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
1999 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
2000 
2001 #ifdef	_ASM
2002 
2003 /*
2004  * Marker to indicate that this instruction will be hot patched at runtime
2005  * to some other value.
2006  * This value must be zero since it fills in the imm bits of the target
2007  * instructions to be patched
2008  */
2009 #define	RUNTIME_PATCH	(0)
2010 
2011 /*
2012  * V9 defines nop instruction as the following, which we use
2013  * at runtime to nullify some instructions we don't want to
2014  * execute in the trap handlers on certain platforms.
2015  */
2016 #define	MAKE_NOP_INSTR(reg)	\
2017 	sethi	%hi(0x1000000), reg
2018 
2019 /*
2020  * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
2021  * instruction, with the source register specified by the jump_reg_number.
2022  * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
2023  * The instruction is returned in reg. The macro is used to patch in a jmpl
2024  * instruction at runtime.
2025  */
2026 #define	MAKE_JMP_INSTR(jump_reg_number, reg, tmp)	\
2027 	sethi	%hi(0x81c00000), reg;			\
2028 	mov	jump_reg_number, tmp;			\
2029 	sll	tmp, 14, tmp;				\
2030 	or	reg, tmp, reg
2031 
2032 /*
2033  * Macro to get hat per-MMU cnum on this CPU.
2034  * sfmmu - In, pass in "sfmmup" from the caller.
2035  * cnum	- Out, return 'cnum' to the caller
2036  * scr	- scratch
2037  */
2038 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
2039 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
2040 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
2041 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
2042 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
2043 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
2044 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
2045 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
2046 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
2047 
2048 /*
2049  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
2050  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
2051  * gnum - Out, return sfmmu gnum
2052  * cnum - Out, return sfmmu cnum
2053  * reg	- scratch
2054  */
2055 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
2056 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
2057 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
2058 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
2059 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
2060 
2061 /*
2062  * Macro to get this CPU's tsbmiss area.
2063  */
2064 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
2065 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
2066 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
2067 	mulx    tmp1, TSBMISS_SIZE, tmp1;	/* byte offset */	\
2068 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
2069 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
2070 
2071 
2072 /*
2073  * Macro to set kernel context + page size codes in DMMU primary context
2074  * register. It is only necessary for sun4u because sun4v does not need
2075  * page size codes
2076  */
2077 #ifdef sun4v
2078 
2079 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
2080 
2081 #else
2082 
2083 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
2084 	sethi	%hi(kcontextreg), reg0;					\
2085 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
2086 	mov	MMU_PCONTEXT, reg1;					\
2087 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
2088 	xor	reg0, reg2, reg2;					\
2089 	brz	reg2, label3;						\
2090 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
2091 	rdpr	%pstate, reg3;		/* disable interrupts */	\
2092 	btst	PSTATE_IE, reg3;					\
2093 /*CSTYLED*/								\
2094 	bnz,a,pt %icc, label1;						\
2095 	wrpr	reg3, PSTATE_IE, %pstate;				\
2096 /*CSTYLED*/								\
2097 label1:;								\
2098 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
2099 	sethi	%hi(FLUSH_ADDR), reg4;					\
2100 	mov	DEMAP_ALL_TYPE, reg2;					\
2101 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
2102 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
2103 /*CSTYLED*/								\
2104 label2:;								\
2105 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
2106 	flush	reg4;							\
2107 	btst	PSTATE_IE, reg3;					\
2108 /*CSTYLED*/								\
2109 	bnz,a,pt %icc, label3;						\
2110 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
2111 label3:;
2112 
2113 #endif
2114 
2115 /*
2116  * Macro to setup arguments with kernel sfmmup context + page size before
2117  * calling sfmmu_setctx_sec()
2118  */
2119 #ifdef sun4v
2120 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2121 	set	KCONTEXT, arg0;					\
2122 	set	0, arg1;
2123 #else
2124 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2125 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
2126 	set	KCONTEXT, arg0;					\
2127 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
2128 #endif
2129 
2130 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
2131 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
2132 /*CSTYLED*/								\
2133 	bnz,pt	%icc, label;			/* already disabled */	\
2134 	nop;								\
2135 									\
2136 	sethi	%hi(panicstr), scr;					\
2137 	ldx	[scr + %lo(panicstr)], scr;				\
2138 	tst	scr;							\
2139 /*CSTYLED*/								\
2140 	bnz,pt	%xcc, label;						\
2141 	nop;								\
2142 									\
2143 	save	%sp, -SA(MINFRAME), %sp;				\
2144 	sethi	%hi(sfmmu_panic1), %o0;					\
2145 	call	panic;							\
2146 	or	%o0, %lo(sfmmu_panic1), %o0;				\
2147 /*CSTYLED*/								\
2148 label:
2149 
2150 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
2151 	/*								\
2152 	 * The caller must have disabled interrupts.			\
2153 	 * If interrupts are not disabled, panic			\
2154 	 */								\
2155 	rdpr	%pstate, scr;						\
2156 	andcc	scr, PSTATE_IE, %g0;					\
2157 /*CSTYLED*/								\
2158 	bz,pt	%icc, label;						\
2159 	nop;								\
2160 									\
2161 	sethi	%hi(panicstr), scr;					\
2162 	ldx	[scr + %lo(panicstr)], scr;				\
2163 	tst	scr;							\
2164 /*CSTYLED*/								\
2165 	bnz,pt	%xcc, label;						\
2166 	nop;								\
2167 									\
2168 	sethi	%hi(sfmmu_panic6), %o0;					\
2169 	call	panic;							\
2170 	or	%o0, %lo(sfmmu_panic6), %o0;				\
2171 /*CSTYLED*/								\
2172 label:
2173 
2174 #endif	/* _ASM */
2175 
2176 #ifndef _ASM
2177 
2178 #ifdef VAC
2179 /*
2180  * Page coloring
2181  * The p_vcolor field of the page struct (1 byte) is used to store the
2182  * virtual page color.  This provides for 255 colors.  The value zero is
2183  * used to mean the page has no color - never been mapped or somehow
2184  * purified.
2185  */
2186 
2187 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
2188 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
2189 #define	PP_SET_VCOLOR(pp, color)                                          \
2190 	((pp)->p_vcolor = ((color) + 1))
2191 
2192 /*
2193  * As mentioned p_vcolor == 0 means there is no color for this page.
2194  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
2195  * one so we define this constant.
2196  */
2197 #define	NO_VCOLOR	(-1)
2198 
2199 #define	addr_to_vcolor(addr) \
2200 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2201 #else	/* VAC */
2202 #define	addr_to_vcolor(addr)	(0)
2203 #endif	/* VAC */
2204 
2205 /*
2206  * The field p_index in the psm page structure is for large pages support.
2207  * P_index is a bit-vector of the different mapping sizes that a given page
2208  * is part of. An hme structure for a large mapping is only added in the
2209  * group leader page (first page). All pages covered by a given large mapping
2210  * have the corrosponding mapping bit set in their p_index field. This allows
2211  * us to only store an explicit hme structure in the leading page which
2212  * simplifies the mapping link list management. Furthermore, it provides us
2213  * a fast mechanism for determining the largest mapping a page is part of. For
2214  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2215  *
2216  * Implementation note: even though the first bit in p_index is reserved
2217  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2218  * In addition, the upper four bits of the p_index field are used by the
2219  * code as temporaries
2220  */
2221 
2222 /*
2223  * Defines for psm page struct fields and large page support
2224  */
2225 #define	SFMMU_INDEX_SHIFT		6
2226 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
2227 
2228 /* Return the mapping index */
2229 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
2230 
2231 /*
2232  * These macros rely on the following property:
2233  * All pages constituting a large page are covered by a virtually
2234  * contiguous set of page_t's.
2235  */
2236 
2237 /* Return the leader for this mapping size */
2238 #define	PP_GROUPLEADER(pp, sz) \
2239 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2240 
2241 /* Return the root page for this page based on p_szc */
2242 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
2243 	PP_GROUPLEADER((pp), (pp)->p_szc))
2244 
2245 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
2246 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
2247 
2248 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
2249 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
2250 
2251 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
2252 
2253 /* Need function to test the page mappping which takes p_index into account */
2254 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2255 
2256 /*
2257  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2258  * set p_index field.
2259  */
2260 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
2261 
2262 
2263 /*
2264  * prototypes for hat assembly routines.  Some of these are
2265  * known to machine dependent VM code.
2266  */
2267 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2268 extern struct tsbe *
2269 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2270 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2271 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2272 extern void	sfmmu_load_mmustate(sfmmu_t *);
2273 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2274 #ifndef sun4v
2275 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2276 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2277 #endif /* sun4v */
2278 extern void	sfmmu_copytte(tte_t *, tte_t *);
2279 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2280 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2281 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
2282 extern uint_t	sfmmu_disable_intrs(void);
2283 extern void	sfmmu_enable_intrs(uint_t);
2284 /*
2285  * functions exported to machine dependent VM code
2286  */
2287 extern void	sfmmu_patch_ktsb(void);
2288 #ifndef UTSB_PHYS
2289 extern void	sfmmu_patch_utsb(void);
2290 #endif /* UTSB_PHYS */
2291 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2292 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2293 extern pfn_t	sfmmu_kvaszc2pfn(caddr_t, int);
2294 #ifdef	DEBUG
2295 extern void	sfmmu_check_kpfn(pfn_t);
2296 #else
2297 #define		sfmmu_check_kpfn(pfn)	/* disabled */
2298 #endif	/* DEBUG */
2299 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2300 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
2301 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2302 extern void	sfmmu_init_tsbs(void);
2303 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
2304 extern int	sfmmu_getctx_pri(void);
2305 extern int	sfmmu_getctx_sec(void);
2306 extern void	sfmmu_setctx_sec(uint_t);
2307 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
2308 extern void	sfmmu_init_ktsbinfo(void);
2309 extern int	sfmmu_setup_4lp(void);
2310 extern void	sfmmu_patch_mmu_asi(int);
2311 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2312 extern void	sfmmu_cache_flushall(void);
2313 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
2314 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2315 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2316 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2317 
2318 extern void	hat_kern_setup(void);
2319 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2320 extern int	sfmmu_get_ppvcolor(struct page *);
2321 extern int	sfmmu_get_addrvcolor(caddr_t);
2322 extern int	sfmmu_hat_lock_held(sfmmu_t *);
2323 extern int	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2324 
2325 /*
2326  * Functions exported to xhat_sfmmu.c
2327  */
2328 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2329 extern void	sfmmu_mlist_exit(kmutex_t *);
2330 extern int	sfmmu_mlist_held(struct page *);
2331 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2332 
2333 /*
2334  * MMU-specific functions optionally imported from the CPU module
2335  */
2336 #pragma weak mmu_init_scd
2337 #pragma weak mmu_large_pages_disabled
2338 #pragma weak mmu_set_ctx_page_sizes
2339 #pragma weak mmu_check_page_sizes
2340 
2341 extern void mmu_init_scd(sf_scd_t *);
2342 extern uint_t mmu_large_pages_disabled(uint_t);
2343 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2344 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2345 
2346 extern sfmmu_t 		*ksfmmup;
2347 extern caddr_t		ktsb_base;
2348 extern uint64_t		ktsb_pbase;
2349 extern int		ktsb_sz;
2350 extern int		ktsb_szcode;
2351 extern caddr_t		ktsb4m_base;
2352 extern uint64_t		ktsb4m_pbase;
2353 extern int		ktsb4m_sz;
2354 extern int		ktsb4m_szcode;
2355 extern uint64_t		kpm_tsbbase;
2356 extern int		kpm_tsbsz;
2357 extern int		ktsb_phys;
2358 extern int		enable_bigktsb;
2359 #ifndef sun4v
2360 extern int		utsb_dtlb_ttenum;
2361 extern int		utsb4m_dtlb_ttenum;
2362 #endif /* sun4v */
2363 extern int		uhmehash_num;
2364 extern int		khmehash_num;
2365 extern struct hmehash_bucket *uhme_hash;
2366 extern struct hmehash_bucket *khme_hash;
2367 extern kmutex_t		*mml_table;
2368 extern uint_t		mml_table_sz;
2369 extern uint_t		mml_shift;
2370 extern uint_t		hblk_alloc_dynamic;
2371 extern struct tsbmiss	tsbmiss_area[NCPU];
2372 extern struct kpmtsbm	kpmtsbm_area[NCPU];
2373 
2374 #ifndef sun4v
2375 extern int		dtlb_resv_ttenum;
2376 extern caddr_t		utsb_vabase;
2377 extern caddr_t		utsb4m_vabase;
2378 #endif /* sun4v */
2379 extern vmem_t		*kmem_tsb_default_arena[];
2380 extern int		tsb_lgrp_affinity;
2381 
2382 extern uint_t		disable_large_pages;
2383 extern uint_t		disable_ism_large_pages;
2384 extern uint_t		disable_auto_data_large_pages;
2385 extern uint_t		disable_auto_text_large_pages;
2386 
2387 /* kpm externals */
2388 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
2389 extern void		sfmmu_kpm_patch_tlbm(void);
2390 extern void		sfmmu_kpm_patch_tsbm(void);
2391 extern void		sfmmu_patch_shctx(void);
2392 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2393 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
2394 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2395 extern int		sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int);
2396 extern caddr_t		kpm_vbase;
2397 extern size_t		kpm_size;
2398 extern struct memseg	*memseg_hash[];
2399 extern uint64_t		memseg_phash[];
2400 extern kpm_hlk_t	*kpmp_table;
2401 extern kpm_shlk_t	*kpmp_stable;
2402 extern uint_t		kpmp_table_sz;
2403 extern uint_t		kpmp_stable_sz;
2404 extern uchar_t		kpmp_shift;
2405 
2406 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
2407 
2408 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
2409 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2410 
2411 #endif /* !_ASM */
2412 
2413 /* sfmmu_kpm_tsbmtl flags */
2414 #define	KPMTSBM_STOP		0
2415 #define	KPMTSBM_START		1
2416 
2417 /*
2418  * For kpm_smallpages, the state about how a kpm page is mapped and whether
2419  * it is ready to go is indicated by the two 4-bit fields defined in the
2420  * kpm_spage structure as follows:
2421  * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not
2422  * kp_mapped_flag bit[4:7] - the mapping is ready to go or not
2423  * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss
2424  * handler can drop the mapping in regardless of the caching state of the
2425  * mapping. Otherwise, we will have C handler resolve the VAC conflict no
2426  * matter the page is currently mapped cacheable or non-cacheable.
2427  */
2428 #define	KPM_MAPPEDS		0x1	/* small mapping valid, no conflict */
2429 #define	KPM_MAPPEDSC		0x2	/* small mapping valid, conflict */
2430 #define	KPM_MAPPED_GO		0x10	/* the mapping is ready to go */
2431 #define	KPM_MAPPED_MASK		0xf
2432 
2433 /* Physical memseg address NULL marker */
2434 #define	MSEG_NULLPTR_PA		-1
2435 
2436 /*
2437  * Memseg hash defines for kpm trap level tsbmiss handler.
2438  * Must be in sync w/ page.h .
2439  */
2440 #define	SFMMU_MEM_HASH_SHIFT		0x9
2441 #define	SFMMU_N_MEM_SLOTS		0x200
2442 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
2443 
2444 #ifndef	_ASM
2445 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2446 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2447 #endif
2448 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2449 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2450 #endif
2451 
2452 /* Physical memseg address NULL marker */
2453 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
2454 
2455 /*
2456  * Check KCONTEXT to be zero, asm parts depend on that assumption.
2457  */
2458 #if (KCONTEXT != 0)
2459 #error KCONTEXT != 0
2460 #endif
2461 #endif	/* !_ASM */
2462 
2463 
2464 #endif /* _KERNEL */
2465 
2466 #ifndef _ASM
2467 /*
2468  * ctx, hmeblk, mlistlock and other stats for sfmmu
2469  */
2470 struct sfmmu_global_stat {
2471 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
2472 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
2473 
2474 	int		sf_pagefaults;		/* # of pagefaults */
2475 
2476 	int		sf_uhash_searches;	/* # of user hash searches */
2477 	int		sf_uhash_links;		/* # of user hash links */
2478 	int		sf_khash_searches;	/* # of kernel hash searches */
2479 	int		sf_khash_links;		/* # of kernel hash links */
2480 
2481 	int		sf_swapout;		/* # times hat swapped out */
2482 
2483 	int		sf_tsb_alloc;		/* # TSB allocations */
2484 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
2485 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
2486 
2487 	int		sf_scd_1sttsb_alloc;	/* # SCD 1st TSB allocations */
2488 	int		sf_scd_2ndtsb_alloc;	/* # SCD 2nd TSB allocations */
2489 	int		sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2490 	int		sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2491 
2492 
2493 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
2494 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
2495 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
2496 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
2497 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
2498 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
2499 
2500 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
2501 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
2502 
2503 	int		sf_hblk_hit;		/* found hblk during tteload */
2504 	int		sf_hblk8_ncreate;	/* static hblk8's created */
2505 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
2506 	int		sf_hblk1_ncreate;	/* static hblk1's created */
2507 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
2508 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
2509 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
2510 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
2511 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
2512 	int		sf_get_free_success;	/* reserve list allocs */
2513 	int		sf_get_free_throttle;	/* fails due to throttling */
2514 	int		sf_get_free_fail;	/* fails due to empty list */
2515 	int		sf_put_free_success;	/* reserve list frees */
2516 	int		sf_put_free_fail;	/* fails due to full list */
2517 
2518 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
2519 	int		sf_uncache_conflict;	/* VAC conflict resolution */
2520 	int		sf_unload_conflict;	/* VAC unload resolution */
2521 	int		sf_ism_uncache;		/* VAC conflict resolution */
2522 	int		sf_ism_recache;		/* VAC conflict resolution */
2523 	int		sf_recache;		/* VAC conflict resolution */
2524 
2525 	int		sf_steal_count;		/* # of hblks stolen */
2526 
2527 	int		sf_pagesync;		/* # of pagesyncs */
2528 	int		sf_clrwrt;		/* # of clear write perms */
2529 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
2530 
2531 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
2532 	int		sf_user_xcalls;		/* # of user cross calls */
2533 
2534 	int		sf_tsb_grow;		/* # of user tsb grows */
2535 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
2536 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
2537 	int		sf_tsb_reloc;		/* # of user tsb relocations */
2538 
2539 	int		sf_user_vtop;		/* # of user vatopfn calls */
2540 
2541 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
2542 
2543 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
2544 
2545 	int		sf_region_remap_demap;	/* # times shme remap demap */
2546 
2547 	int		sf_create_scd;		/* # times SCD is created */
2548 	int		sf_join_scd;		/* # process joined scd */
2549 	int		sf_leave_scd;		/* # process left scd */
2550 	int		sf_destroy_scd;		/* # times SCD is destroyed */
2551 };
2552 
2553 struct sfmmu_tsbsize_stat {
2554 	int		sf_tsbsz_8k;
2555 	int		sf_tsbsz_16k;
2556 	int		sf_tsbsz_32k;
2557 	int		sf_tsbsz_64k;
2558 	int		sf_tsbsz_128k;
2559 	int		sf_tsbsz_256k;
2560 	int		sf_tsbsz_512k;
2561 	int		sf_tsbsz_1m;
2562 	int		sf_tsbsz_2m;
2563 	int		sf_tsbsz_4m;
2564 	int		sf_tsbsz_8m;
2565 	int		sf_tsbsz_16m;
2566 	int		sf_tsbsz_32m;
2567 	int		sf_tsbsz_64m;
2568 	int		sf_tsbsz_128m;
2569 	int		sf_tsbsz_256m;
2570 };
2571 
2572 struct sfmmu_percpu_stat {
2573 	int	sf_itlb_misses;		/* # of itlb misses */
2574 	int	sf_dtlb_misses;		/* # of dtlb misses */
2575 	int	sf_utsb_misses;		/* # of user tsb misses */
2576 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
2577 	int	sf_tsb_hits;		/* # of tsb hits */
2578 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
2579 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
2580 };
2581 
2582 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
2583 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
2584 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
2585 
2586 #define	SFMMU_MMU_STAT(stat)		{		\
2587 	mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp;	\
2588 	if (ctx)					\
2589 		ctx->stat++;				\
2590 }
2591 
2592 #endif /* !_ASM */
2593 
2594 #ifdef	__cplusplus
2595 }
2596 #endif
2597 
2598 #endif	/* _VM_HAT_SFMMU_H */
2599