xref: /titanic_52/usr/src/uts/sfmmu/vm/hat_sfmmu.h (revision 5a7797ce9bcfe70ce0ab366abc3051dce3cede6f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1987, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * VM - Hardware Address Translation management.
27  *
28  * This file describes the contents of the sun-reference-mmu(sfmmu)-
29  * specific hat data structures and the sfmmu-specific hat procedures.
30  * The machine-independent interface is described in <vm/hat.h>.
31  */
32 
33 #ifndef	_VM_HAT_SFMMU_H
34 #define	_VM_HAT_SFMMU_H
35 
36 #ifdef	__cplusplus
37 extern "C" {
38 #endif
39 
40 #ifndef _ASM
41 
42 #include <sys/types.h>
43 
44 #endif /* _ASM */
45 
46 #ifdef	_KERNEL
47 
48 #include <sys/pte.h>
49 #include <vm/mach_sfmmu.h>
50 #include <sys/mmu.h>
51 
52 /*
53  * Don't alter these without considering changes to ism_map_t.
54  */
55 #define	DEFAULT_ISM_PAGESIZE		MMU_PAGESIZE4M
56 #define	DEFAULT_ISM_PAGESZC		TTE4M
57 #define	ISM_PG_SIZE(ism_vbshift)	(1 << ism_vbshift)
58 #define	ISM_SZ_MASK(ism_vbshift)	(ISM_PG_SIZE(ism_vbshift) - 1)
59 #define	ISM_MAP_SLOTS	8	/* Change this carefully. */
60 
61 #ifndef _ASM
62 
63 #include <sys/t_lock.h>
64 #include <vm/hat.h>
65 #include <vm/seg.h>
66 #include <sys/machparam.h>
67 #include <sys/systm.h>
68 #include <sys/x_call.h>
69 #include <vm/page.h>
70 #include <sys/ksynch.h>
71 
72 typedef struct hat sfmmu_t;
73 typedef struct sf_scd sf_scd_t;
74 
75 /*
76  * SFMMU attributes for hat_memload/hat_devload
77  */
78 #define	SFMMU_UNCACHEPTTE	0x01000000	/* unencache in physical $ */
79 #define	SFMMU_UNCACHEVTTE	0x02000000	/* unencache in virtual $ */
80 #define	SFMMU_SIDEFFECT		0x04000000	/* set side effect bit */
81 #define	SFMMU_LOAD_ALLATTR	(HAT_PROT_MASK | HAT_ORDER_MASK |	\
82 		HAT_ENDIAN_MASK | HAT_NOFAULT | HAT_NOSYNC |		\
83 		SFMMU_UNCACHEPTTE | SFMMU_UNCACHEVTTE | SFMMU_SIDEFFECT)
84 
85 
86 /*
87  * sfmmu flags for hat_memload/hat_devload
88  */
89 #define	SFMMU_NO_TSBLOAD	0x08000000	/* do not preload tsb */
90 #define	SFMMU_LOAD_ALLFLAG	(HAT_LOAD | HAT_LOAD_LOCK |		\
91 		HAT_LOAD_ADV | HAT_LOAD_CONTIG | HAT_LOAD_NOCONSIST |	\
92 		HAT_LOAD_SHARE | HAT_LOAD_REMAP | SFMMU_NO_TSBLOAD |	\
93 		HAT_RELOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_TEXT)
94 
95 /*
96  * sfmmu internal flag to hat_pageunload that spares locked mappings
97  */
98 #define	SFMMU_KERNEL_RELOC	0x8000
99 
100 /*
101  * mode for sfmmu_chgattr
102  */
103 #define	SFMMU_SETATTR	0x0
104 #define	SFMMU_CLRATTR	0x1
105 #define	SFMMU_CHGATTR	0x2
106 
107 /*
108  * sfmmu specific flags for page_t
109  */
110 #define	P_PNC	0x8		/* non-caching is permanent bit */
111 #define	P_TNC	0x10		/* non-caching is temporary bit */
112 #define	P_KPMS	0x20		/* kpm mapped small (vac alias prevention) */
113 #define	P_KPMC	0x40		/* kpm conflict page (vac alias prevention) */
114 
115 #define	PP_GENERIC_ATTR(pp)	((pp)->p_nrm & (P_MOD | P_REF | P_RO))
116 #define	PP_ISMOD(pp)		((pp)->p_nrm & P_MOD)
117 #define	PP_ISREF(pp)		((pp)->p_nrm & P_REF)
118 #define	PP_ISRO(pp)		((pp)->p_nrm & P_RO)
119 #define	PP_ISNC(pp)		((pp)->p_nrm & (P_PNC|P_TNC))
120 #define	PP_ISPNC(pp)		((pp)->p_nrm & P_PNC)
121 #ifdef VAC
122 #define	PP_ISTNC(pp)		((pp)->p_nrm & P_TNC)
123 #endif
124 #define	PP_ISKPMS(pp)		((pp)->p_nrm & P_KPMS)
125 #define	PP_ISKPMC(pp)		((pp)->p_nrm & P_KPMC)
126 
127 #define	PP_SETMOD(pp)		((pp)->p_nrm |= P_MOD)
128 #define	PP_SETREF(pp)		((pp)->p_nrm |= P_REF)
129 #define	PP_SETREFMOD(pp)	((pp)->p_nrm |= (P_REF|P_MOD))
130 #define	PP_SETRO(pp)		((pp)->p_nrm |= P_RO)
131 #define	PP_SETREFRO(pp)		((pp)->p_nrm |= (P_REF|P_RO))
132 #define	PP_SETPNC(pp)		((pp)->p_nrm |= P_PNC)
133 #ifdef VAC
134 #define	PP_SETTNC(pp)		((pp)->p_nrm |= P_TNC)
135 #endif
136 #define	PP_SETKPMS(pp)		((pp)->p_nrm |= P_KPMS)
137 #define	PP_SETKPMC(pp)		((pp)->p_nrm |= P_KPMC)
138 
139 #define	PP_CLRMOD(pp)		((pp)->p_nrm &= ~P_MOD)
140 #define	PP_CLRREF(pp)		((pp)->p_nrm &= ~P_REF)
141 #define	PP_CLRREFMOD(pp)	((pp)->p_nrm &= ~(P_REF|P_MOD))
142 #define	PP_CLRRO(pp)		((pp)->p_nrm &= ~P_RO)
143 #define	PP_CLRPNC(pp)		((pp)->p_nrm &= ~P_PNC)
144 #ifdef VAC
145 #define	PP_CLRTNC(pp)		((pp)->p_nrm &= ~P_TNC)
146 #endif
147 #define	PP_CLRKPMS(pp)		((pp)->p_nrm &= ~P_KPMS)
148 #define	PP_CLRKPMC(pp)		((pp)->p_nrm &= ~P_KPMC)
149 
150 /*
151  * All shared memory segments attached with the SHM_SHARE_MMU flag (ISM)
152  * will be constrained to a 4M, 32M or 256M alignment. Also since every newly-
153  * created ISM segment is created out of a new address space at base va
154  * of 0 we don't need to store it.
155  */
156 #define	ISM_ALIGN(shift)	(1 << shift)	/* base va aligned to <n>M  */
157 #define	ISM_ALIGNED(shift, va)	(((uintptr_t)va & (ISM_ALIGN(shift) - 1)) == 0)
158 #define	ISM_SHIFT(shift, x)	((uintptr_t)x >> (shift))
159 
160 /*
161  * Pad locks out to cache sub-block boundaries to prevent
162  * false sharing, so several processes don't contend for
163  * the same line if they aren't using the same lock.  Since
164  * this is a typedef we also have a bit of freedom in
165  * changing lock implementations later if we decide it
166  * is necessary.
167  */
168 typedef struct hat_lock {
169 	kmutex_t hl_mutex;
170 	uchar_t hl_pad[64 - sizeof (kmutex_t)];
171 } hatlock_t;
172 
173 #define	HATLOCK_MUTEXP(hatlockp)	(&((hatlockp)->hl_mutex))
174 
175 /*
176  * All segments mapped with ISM are guaranteed to be 4M, 32M or 256M aligned.
177  * Also size is guaranteed to be in 4M, 32M or 256M chunks.
178  * ism_seg consists of the following members:
179  * [XX..22] base address of ism segment. XX is 63 or 31 depending whether
180  *	caddr_t is 64 bits or 32 bits.
181  * [21..0] size of segment.
182  *
183  * NOTE: Don't alter this structure without changing defines above and
184  * the tsb_miss and protection handlers.
185  */
186 typedef struct ism_map {
187 	uintptr_t	imap_seg;  	/* base va + sz of ISM segment */
188 	uchar_t		imap_vb_shift;	/* mmu_pageshift for ism page size */
189 	uchar_t		imap_rid;	/* region id for ism */
190 	ushort_t	imap_hatflags;	/* primary ism page size */
191 	uint_t		imap_sz_mask;	/* mmu_pagemask for ism page size */
192 	sfmmu_t		*imap_ismhat; 	/* hat id of dummy ISM as */
193 	struct ism_ment	*imap_ment;	/* pointer to mapping list entry */
194 } ism_map_t;
195 
196 #define	ism_start(map)	((caddr_t)((map).imap_seg & \
197 				~ISM_SZ_MASK((map).imap_vb_shift)))
198 #define	ism_size(map)	((map).imap_seg & ISM_SZ_MASK((map).imap_vb_shift))
199 #define	ism_end(map)	((caddr_t)(ism_start(map) + (ism_size(map) * \
200 				ISM_PG_SIZE((map).imap_vb_shift))))
201 /*
202  * ISM mapping entry. Used to link all hat's sharing a ism_hat.
203  * Same function as the p_mapping list for a page.
204  */
205 typedef struct ism_ment {
206 	sfmmu_t		*iment_hat;	/* back pointer to hat_share() hat */
207 	caddr_t		iment_base_va;	/* hat's va base for this ism seg */
208 	struct ism_ment	*iment_next;	/* next ism map entry */
209 	struct ism_ment	*iment_prev;	/* prev ism map entry */
210 } ism_ment_t;
211 
212 /*
213  * ISM segment block. One will be hung off the sfmmu structure if a
214  * a process uses ISM.  More will be linked using ismblk_next if more
215  * than ISM_MAP_SLOTS segments are attached to this proc.
216  *
217  * All modifications to fields in this structure will be protected
218  * by the hat mutex.  In order to avoid grabbing this lock in low level
219  * routines (tsb miss/protection handlers and vatopfn) while not
220  * introducing any race conditions with hat_unshare, we will set
221  * CTX_ISM_BUSY bit in the ctx struct. Any mmu traps that occur
222  * for this ctx while this bit is set will be handled in sfmmu_tsb_excption
223  * where it will synchronize behind the hat mutex.
224  */
225 typedef struct ism_blk {
226 	ism_map_t		iblk_maps[ISM_MAP_SLOTS];
227 	struct ism_blk		*iblk_next;
228 	uint64_t		iblk_nextpa;
229 } ism_blk_t;
230 
231 /*
232  * TSB access information.  All fields are protected by the process's
233  * hat lock.
234  */
235 
236 struct tsb_info {
237 	caddr_t		tsb_va;		/* tsb base virtual address */
238 	uint64_t	tsb_pa;		/* tsb base physical address */
239 	struct tsb_info	*tsb_next;	/* next tsb used by this process */
240 	uint16_t	tsb_szc;	/* tsb size code */
241 	uint16_t	tsb_flags;	/* flags for this tsb; see below */
242 	uint_t		tsb_ttesz_mask;	/* page size masks; see below */
243 
244 	tte_t		tsb_tte;	/* tte to lock into DTLB */
245 	sfmmu_t		*tsb_sfmmu;	/* sfmmu */
246 	kmem_cache_t	*tsb_cache;	/* cache from which mem allocated */
247 	vmem_t		*tsb_vmp;	/* vmem arena from which mem alloc'd */
248 };
249 
250 /*
251  * Values for "tsb_ttesz_mask" bitmask.
252  */
253 #define	TSB8K	(1 << TTE8K)
254 #define	TSB64K  (1 << TTE64K)
255 #define	TSB512K (1 << TTE512K)
256 #define	TSB4M   (1 << TTE4M)
257 #define	TSB32M  (1 << TTE32M)
258 #define	TSB256M (1 << TTE256M)
259 
260 /*
261  * Values for "tsb_flags" field.
262  */
263 #define	TSB_RELOC_FLAG		0x1
264 #define	TSB_FLUSH_NEEDED	0x2
265 #define	TSB_SWAPPED	0x4
266 #define	TSB_SHAREDCTX		0x8
267 
268 #endif	/* !_ASM */
269 
270 /*
271  * Data structures for shared hmeblk support.
272  */
273 
274 /*
275  * Do not increase the maximum number of ism/hme regions without checking first
276  * the impact on ism_map_t, TSB miss area, hblk tag and region id type in
277  * sf_region structure.
278  * Initially, shared hmes will only be used for the main text segment
279  * therefore this value will be set to 64, it will be increased when shared
280  * libraries are included.
281  */
282 
283 #define	SFMMU_MAX_HME_REGIONS		(64)
284 #define	SFMMU_HMERGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_HME_REGIONS)
285 
286 #define	SFMMU_PRIVATE	0
287 #define	SFMMU_SHARED	1
288 
289 #define	HMEBLK_ENDPA	1
290 
291 #ifndef _ASM
292 
293 #define	SFMMU_MAX_ISM_REGIONS		(64)
294 #define	SFMMU_ISMRGNMAP_WORDS		BT_BITOUL(SFMMU_MAX_ISM_REGIONS)
295 
296 #define	SFMMU_RGNMAP_WORDS	(SFMMU_HMERGNMAP_WORDS + SFMMU_ISMRGNMAP_WORDS)
297 
298 #define	SFMMU_MAX_REGION_BUCKETS	(128)
299 #define	SFMMU_MAX_SRD_BUCKETS		(2048)
300 
301 typedef struct sf_hmeregion_map {
302 	ulong_t	bitmap[SFMMU_HMERGNMAP_WORDS];
303 } sf_hmeregion_map_t;
304 
305 typedef struct sf_ismregion_map {
306 	ulong_t	bitmap[SFMMU_ISMRGNMAP_WORDS];
307 } sf_ismregion_map_t;
308 
309 typedef union sf_region_map_u {
310 	struct _h_rmap_s {
311 		sf_hmeregion_map_t hmeregion_map;
312 		sf_ismregion_map_t ismregion_map;
313 	} h_rmap_s;
314 	ulong_t	bitmap[SFMMU_RGNMAP_WORDS];
315 } sf_region_map_t;
316 
317 #define	SF_RGNMAP_ZERO(map) {				\
318 	int _i;						\
319 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {	\
320 		(map).bitmap[_i] = 0;			\
321 	}						\
322 }
323 
324 /*
325  * Returns 1 if map1 and map2 are equal.
326  */
327 #define	SF_RGNMAP_EQUAL(map1, map2, rval)	{		\
328 	int _i;							\
329 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
330 		if ((map1)->bitmap[_i] != (map2)->bitmap[_i])	\
331 			break;					\
332 	}							\
333 	if (_i < SFMMU_RGNMAP_WORDS)				\
334 		rval = 0;					\
335 	else							\
336 		rval = 1;					\
337 }
338 
339 #define	SF_RGNMAP_ADD(map, r)		BT_SET((map).bitmap, r)
340 #define	SF_RGNMAP_DEL(map, r)		BT_CLEAR((map).bitmap, r)
341 #define	SF_RGNMAP_TEST(map, r)		BT_TEST((map).bitmap, r)
342 
343 /*
344  * Tests whether map2 is a subset of map1, returns 1 if
345  * this assertion is true.
346  */
347 #define	SF_RGNMAP_IS_SUBSET(map1, map2, rval)	{		\
348 	int _i;							\
349 	for (_i = 0; _i < SFMMU_RGNMAP_WORDS; _i++) {		\
350 		if (((map1)->bitmap[_i]	& (map2)->bitmap[_i])	\
351 		    != (map2)->bitmap[_i])  {	 		\
352 			break;					\
353 		}						\
354 	}							\
355 	if (_i < SFMMU_RGNMAP_WORDS)		 		\
356 		rval = 0;					\
357 	else							\
358 		rval = 1;					\
359 }
360 
361 #define	SF_SCD_INCR_REF(scdp) {						\
362 	atomic_add_32((volatile uint32_t *)&(scdp)->scd_refcnt, 1);	\
363 }
364 
365 #define	SF_SCD_DECR_REF(srdp, scdp) {				\
366 	sf_region_map_t _scd_rmap = (scdp)->scd_region_map;	\
367 	if (!atomic_add_32_nv(					\
368 	    (volatile uint32_t *)&(scdp)->scd_refcnt, -1)) {	\
369 		sfmmu_destroy_scd((srdp), (scdp), &_scd_rmap);	\
370 	}							\
371 }
372 
373 /*
374  * A sfmmup link in the link list of sfmmups that share the same region.
375  */
376 typedef struct sf_rgn_link {
377 	sfmmu_t	*next;
378 	sfmmu_t *prev;
379 } sf_rgn_link_t;
380 
381 /*
382  * rgn_flags values.
383  */
384 #define	SFMMU_REGION_HME	0x1
385 #define	SFMMU_REGION_ISM	0x2
386 #define	SFMMU_REGION_FREE	0x8
387 
388 #define	SFMMU_REGION_TYPE_MASK	(0x3)
389 
390 /*
391  * sf_region defines a text or (D)ISM segment which map
392  * the same underlying physical object.
393  */
394 typedef struct sf_region {
395 	caddr_t			rgn_saddr;   /* base addr of attached seg */
396 	size_t			rgn_size;    /* size of attached seg */
397 	void			*rgn_obj;    /* the underlying object id */
398 	u_offset_t		rgn_objoff;  /* offset in the object mapped */
399 	uchar_t			rgn_perm;    /* PROT_READ/WRITE/EXEC */
400 	uchar_t			rgn_pgszc;   /* page size of the region */
401 	uchar_t			rgn_flags;   /* region type, free flag */
402 	uchar_t			rgn_id;
403 	int			rgn_refcnt;  /* # of hats sharing the region */
404 	/* callback function for hat_unload_callback */
405 	hat_rgn_cb_func_t	rgn_cb_function;
406 	struct sf_region	*rgn_hash;   /* hash chain linking the rgns */
407 	kmutex_t		rgn_mutex;   /* protect region sfmmu list */
408 	/* A link list of processes attached to this region */
409 	sfmmu_t			*rgn_sfmmu_head;
410 	ulong_t			rgn_ttecnt[MMU_PAGE_SIZES];
411 	uint16_t		rgn_hmeflags; /* rgn tte size flags */
412 } sf_region_t;
413 
414 #define	rgn_next	rgn_hash
415 
416 /* srd */
417 typedef struct sf_shared_region_domain {
418 	vnode_t			*srd_evp;	/* executable vnode */
419 	/* hme region table */
420 	sf_region_t		*srd_hmergnp[SFMMU_MAX_HME_REGIONS];
421 	/* ism region table */
422 	sf_region_t		*srd_ismrgnp[SFMMU_MAX_ISM_REGIONS];
423 	/* hash chain linking srds */
424 	struct sf_shared_region_domain *srd_hash;
425 	/* pointer to the next free hme region */
426 	sf_region_t		*srd_hmergnfree;
427 	/* pointer to the next free ism region */
428 	sf_region_t		*srd_ismrgnfree;
429 	/* id of next ism region created */
430 	uint16_t		srd_next_ismrid;
431 	/* id of next hme region created */
432 	uint16_t		srd_next_hmerid;
433 	uint16_t		srd_ismbusyrgns; /* # of ism rgns in use */
434 	uint16_t		srd_hmebusyrgns; /* # of hme rgns in use */
435 	int			srd_refcnt;	 /* # of procs in the srd */
436 	kmutex_t		srd_mutex;	 /* sync add/remove rgns */
437 	kmutex_t		srd_scd_mutex;
438 	sf_scd_t		*srd_scdp;	 /* list of scds in srd */
439 	/* hash of regions associated with the same executable */
440 	sf_region_t		*srd_rgnhash[SFMMU_MAX_REGION_BUCKETS];
441 } sf_srd_t;
442 
443 typedef struct sf_srd_bucket {
444 	kmutex_t	srdb_lock;
445 	sf_srd_t	*srdb_srdp;
446 } sf_srd_bucket_t;
447 
448 /*
449  * The value of SFMMU_L1_HMERLINKS and SFMMU_L2_HMERLINKS will be increased
450  * to 16 when the use of shared hmes for shared libraries is enabled.
451  */
452 
453 #define	SFMMU_L1_HMERLINKS		(8)
454 #define	SFMMU_L2_HMERLINKS		(8)
455 #define	SFMMU_L1_HMERLINKS_SHIFT	(3)
456 #define	SFMMU_L1_HMERLINKS_MASK		(SFMMU_L1_HMERLINKS - 1)
457 #define	SFMMU_L2_HMERLINKS_MASK		(SFMMU_L2_HMERLINKS - 1)
458 #define	SFMMU_L1_HMERLINKS_SIZE		\
459 	(SFMMU_L1_HMERLINKS * sizeof (sf_rgn_link_t *))
460 #define	SFMMU_L2_HMERLINKS_SIZE		\
461 	(SFMMU_L2_HMERLINKS * sizeof (sf_rgn_link_t))
462 
463 #if (SFMMU_L1_HMERLINKS * SFMMU_L2_HMERLINKS < SFMMU_MAX_HME_REGIONS)
464 #error Not Enough HMERLINKS
465 #endif
466 
467 /*
468  * This macro grabs hat lock and allocates level 2 hat chain
469  * associated with a shme rgn. In the majority of cases, the macro
470  * is called with alloc = 0, and lock = 0.
471  * A pointer to the level 2 sf_rgn_link_t structure is returned in the lnkp
472  * parameter.
473  */
474 #define	SFMMU_HMERID2RLINKP(sfmmup, rid, lnkp, alloc, lock)		\
475 {									\
476 	int _l1ix = ((rid) >> SFMMU_L1_HMERLINKS_SHIFT) &		\
477 	    SFMMU_L1_HMERLINKS_MASK;					\
478 	int _l2ix = ((rid) & SFMMU_L2_HMERLINKS_MASK);			\
479 	hatlock_t *_hatlockp;						\
480 	lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];			\
481 	if (lnkp != NULL) {						\
482 		lnkp = &lnkp[_l2ix];					\
483 	} else if (alloc && lock) {					\
484 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
485 		_hatlockp = sfmmu_hat_enter(sfmmup);			\
486 		if ((sfmmup)->sfmmu_hmeregion_links[_l1ix] != NULL) {	\
487 			sfmmu_hat_exit(_hatlockp);			\
488 			kmem_free(lnkp, SFMMU_L2_HMERLINKS_SIZE);	\
489 			lnkp = (sfmmup)->sfmmu_hmeregion_links[_l1ix];	\
490 			ASSERT(lnkp != NULL);				\
491 		} else {						\
492 			(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;	\
493 			sfmmu_hat_exit(_hatlockp);			\
494 		}							\
495 		lnkp = &lnkp[_l2ix];					\
496 	} else if (alloc) {						\
497 		lnkp = kmem_zalloc(SFMMU_L2_HMERLINKS_SIZE, KM_SLEEP);	\
498 		ASSERT((sfmmup)->sfmmu_hmeregion_links[_l1ix] == NULL);	\
499 		(sfmmup)->sfmmu_hmeregion_links[_l1ix] = lnkp;		\
500 		lnkp = &lnkp[_l2ix];					\
501 	}								\
502 }
503 
504 /*
505  *  Per cpu pending freelist of hmeblks.
506  */
507 typedef struct cpu_hme_pend {
508 	struct   hme_blk *chp_listp;
509 	kmutex_t chp_mutex;
510 	time_t	 chp_timestamp;
511 	uint_t   chp_count;
512 	uint8_t	 chp_pad[36];		/* pad to 64 bytes */
513 } cpu_hme_pend_t;
514 
515 /*
516  * The default value of the threshold for the per cpu pending queues of hmeblks.
517  * The queues are flushed if either the number of hmeblks on the queue is above
518  * the threshold, or one second has elapsed since the last flush.
519  */
520 #define	CPU_HME_PEND_THRESH 1000
521 
522 /*
523  * Per-MMU context domain kstats.
524  *
525  * TSB Miss Exceptions
526  *	Number of times a TSB miss exception is handled in an MMU. See
527  *	sfmmu_tsbmiss_exception() for more details.
528  * TSB Raise Exception
529  *	Number of times the CPUs within an MMU are cross-called
530  *	to invalidate either a specific process context (when the process
531  *	switches MMU contexts) or the context of any process that is
532  *	running on those CPUs (as part of the MMU context wrap-around).
533  * Wrap Around
534  *	The number of times a wrap-around of MMU context happens.
535  */
536 typedef enum mmu_ctx_stat_types {
537 	MMU_CTX_TSB_EXCEPTIONS,		/* TSB miss exceptions handled */
538 	MMU_CTX_TSB_RAISE_EXCEPTION,	/* ctx invalidation cross calls */
539 	MMU_CTX_WRAP_AROUND,		/* wraparounds */
540 	MMU_CTX_NUM_STATS
541 } mmu_ctx_stat_t;
542 
543 /*
544  * Per-MMU context domain structure. This is instantiated the first time a CPU
545  * belonging to the MMU context domain is configured into the system, at boot
546  * time or at DR time.
547  *
548  * mmu_gnum
549  *	The current generation number for the context IDs on this MMU context
550  *	domain. It is protected by mmu_lock.
551  * mmu_cnum
552  *	The current cnum to be allocated on this MMU context domain. It
553  *	is protected via CAS.
554  * mmu_nctxs
555  *	The max number of context IDs supported on every CPU in this
556  *	MMU context domain. This is needed here in case the system supports
557  *      mixed type of processors/MMUs. It also helps to make ctx switch code
558  *      access fewer cache lines i.e. no need to retrieve it from some global
559  *      nctxs.
560  * mmu_lock
561  *	The mutex spin lock used to serialize context ID wrap around
562  * mmu_idx
563  *	The index for this MMU context domain structure in the global array
564  *	mmu_ctxdoms.
565  * mmu_ncpus
566  *	The actual number of CPUs that have been configured in this
567  *	MMU context domain. This also acts as a reference count for the
568  *	structure. When the last CPU in an MMU context domain is unconfigured,
569  *	the structure is freed. It is protected by mmu_lock.
570  * mmu_cpuset
571  *	The CPU set of configured CPUs for this MMU context domain. Used
572  *	to cross-call all the CPUs in the MMU context domain to invalidate
573  *	context IDs during a wraparound operation. It is protected by mmu_lock.
574  */
575 
576 typedef struct mmu_ctx {
577 	uint64_t	mmu_gnum;
578 	uint_t		mmu_cnum;
579 	uint_t		mmu_nctxs;
580 	kmutex_t	mmu_lock;
581 	uint_t		mmu_idx;
582 	uint_t		mmu_ncpus;
583 	cpuset_t	mmu_cpuset;
584 	kstat_t		*mmu_kstat;
585 	kstat_named_t	mmu_kstat_data[MMU_CTX_NUM_STATS];
586 } mmu_ctx_t;
587 
588 #define	mmu_tsb_exceptions	\
589 		mmu_kstat_data[MMU_CTX_TSB_EXCEPTIONS].value.ui64
590 #define	mmu_tsb_raise_exception	\
591 		mmu_kstat_data[MMU_CTX_TSB_RAISE_EXCEPTION].value.ui64
592 #define	mmu_wrap_around		\
593 		mmu_kstat_data[MMU_CTX_WRAP_AROUND].value.ui64
594 
595 extern uint_t		max_mmu_ctxdoms;
596 extern mmu_ctx_t	**mmu_ctxs_tbl;
597 
598 extern void	sfmmu_cpu_init(cpu_t *);
599 extern void	sfmmu_cpu_cleanup(cpu_t *);
600 
601 extern uint_t	sfmmu_ctxdom_nctxs(int);
602 
603 #ifdef sun4v
604 extern void	sfmmu_ctxdoms_remove(void);
605 extern void	sfmmu_ctxdoms_lock(void);
606 extern void	sfmmu_ctxdoms_unlock(void);
607 extern void	sfmmu_ctxdoms_update(void);
608 #endif
609 
610 /*
611  * The following structure is used to get MMU context domain information for
612  * a CPU from the platform.
613  *
614  * mmu_idx
615  *	The MMU context domain index within the global array mmu_ctxs
616  * mmu_nctxs
617  *	The number of context IDs supported in the MMU context domain
618  */
619 typedef struct mmu_ctx_info {
620 	uint_t		mmu_idx;
621 	uint_t		mmu_nctxs;
622 } mmu_ctx_info_t;
623 
624 #pragma weak plat_cpuid_to_mmu_ctx_info
625 
626 extern void	plat_cpuid_to_mmu_ctx_info(processorid_t, mmu_ctx_info_t *);
627 
628 /*
629  * Each address space has an array of sfmmu_ctx_t structures, one structure
630  * per MMU context domain.
631  *
632  * cnum
633  *	The context ID allocated for an address space on an MMU context domain
634  * gnum
635  *	The generation number for the context ID in the MMU context domain.
636  *
637  * This structure needs to be a power-of-two in size.
638  */
639 typedef struct sfmmu_ctx {
640 	uint64_t	gnum:48;
641 	uint64_t	cnum:16;
642 } sfmmu_ctx_t;
643 
644 
645 /*
646  * The platform dependent hat structure.
647  * tte counts should be protected by cas.
648  * cpuset is protected by cas.
649  *
650  * ttecnt accounting for mappings which do not use shared hme is carried out
651  * during pagefault handling. In the shared hme case, only the first process
652  * to access a mapping generates a pagefault, subsequent processes simply
653  * find the shared hme entry during trap handling and therefore there is no
654  * corresponding event to initiate ttecnt accounting. Currently, as shared
655  * hmes are only used for text segments, when joining a region we assume the
656  * worst case and add the the number of ttes required to map the entire region
657  * to the ttecnt corresponding to the region pagesize. However, if the region
658  * has a 4M pagesize, and memory is low, the allocation of 4M pages may fail
659  * then 8K pages will be allocated instead and the first TSB which stores 8K
660  * mappings will potentially be undersized. To compensate for the potential
661  * underaccounting in this case we always add 1/4 of the region size to the 8K
662  * ttecnt.
663  *
664  * Note that sfmmu_xhat_provider MUST be the first element.
665  */
666 
667 struct hat {
668 	void		*sfmmu_xhat_provider;	/* NULL for CPU hat */
669 	cpuset_t	sfmmu_cpusran;	/* cpu bit mask for efficient xcalls */
670 	struct	as	*sfmmu_as;	/* as this hat provides mapping for */
671 	/* per pgsz private ttecnt + shme rgns ttecnt for rgns not in SCD */
672 	ulong_t		sfmmu_ttecnt[MMU_PAGE_SIZES];
673 	/* shme rgns ttecnt for rgns in SCD */
674 	ulong_t		sfmmu_scdrttecnt[MMU_PAGE_SIZES];
675 	/* est. ism ttes that are NOT in a SCD */
676 	ulong_t		sfmmu_ismttecnt[MMU_PAGE_SIZES];
677 	/* ttecnt for isms that are in a SCD */
678 	ulong_t		sfmmu_scdismttecnt[MMU_PAGE_SIZES];
679 	/* inflate tsb0 to allow for large page alloc failure in region */
680 	ulong_t		sfmmu_tsb0_4minflcnt;
681 	union _h_un {
682 		ism_blk_t	*sfmmu_iblkp;  /* maps to ismhat(s) */
683 		ism_ment_t	*sfmmu_imentp; /* ism hat's mapping list */
684 	} h_un;
685 	uint_t		sfmmu_free:1;	/* hat to be freed - set on as_free */
686 	uint_t		sfmmu_ismhat:1;	/* hat is dummy ism hatid */
687 	uint_t		sfmmu_scdhat:1;	/* hat is dummy scd hatid */
688 	uchar_t		sfmmu_rmstat;	/* refmod stats refcnt */
689 	ushort_t	sfmmu_clrstart;	/* start color bin for page coloring */
690 	ushort_t	sfmmu_clrbin;	/* per as phys page coloring bin */
691 	ushort_t	sfmmu_flags;	/* flags */
692 	uchar_t		sfmmu_tteflags;	/* pgsz flags */
693 	uchar_t		sfmmu_rtteflags; /* pgsz flags for SRD hmes */
694 	struct tsb_info	*sfmmu_tsb;	/* list of per as tsbs */
695 	uint64_t	sfmmu_ismblkpa; /* pa of sfmmu_iblkp, or -1 */
696 	lock_t		sfmmu_ctx_lock;	/* sync ctx alloc and invalidation */
697 	kcondvar_t	sfmmu_tsb_cv;	/* signals TSB swapin or relocation */
698 	uchar_t		sfmmu_cext;	/* context page size encoding */
699 	uint8_t		sfmmu_pgsz[MMU_PAGE_SIZES];  /* ranking for MMU */
700 	sf_srd_t	*sfmmu_srdp;
701 	sf_scd_t	*sfmmu_scdp;	/* scd this address space belongs to */
702 	sf_region_map_t	sfmmu_region_map;
703 	sf_rgn_link_t	*sfmmu_hmeregion_links[SFMMU_L1_HMERLINKS];
704 	sf_rgn_link_t	sfmmu_scd_link;	/* link to scd or pending queue */
705 #ifdef sun4v
706 	struct hv_tsb_block sfmmu_hvblock;
707 #endif
708 	/*
709 	 * sfmmu_ctxs is a variable length array of max_mmu_ctxdoms # of
710 	 * elements. max_mmu_ctxdoms is determined at run-time.
711 	 * sfmmu_ctxs[1] is just the fist element of an array, it always
712 	 * has to be the last field to ensure that the memory allocated
713 	 * for sfmmu_ctxs is consecutive with the memory of the rest of
714 	 * the hat data structure.
715 	 */
716 	sfmmu_ctx_t	sfmmu_ctxs[1];
717 
718 };
719 
720 #define	sfmmu_iblk	h_un.sfmmu_iblkp
721 #define	sfmmu_iment	h_un.sfmmu_imentp
722 
723 #define	sfmmu_hmeregion_map	sfmmu_region_map.h_rmap_s.hmeregion_map
724 #define	sfmmu_ismregion_map	sfmmu_region_map.h_rmap_s.ismregion_map
725 
726 #define	SF_RGNMAP_ISNULL(sfmmup)	\
727 	(sfrgnmap_isnull(&(sfmmup)->sfmmu_region_map))
728 #define	SF_HMERGNMAP_ISNULL(sfmmup)	\
729 	(sfhmergnmap_isnull(&(sfmmup)->sfmmu_hmeregion_map))
730 
731 struct sf_scd {
732 	sfmmu_t		*scd_sfmmup;	/* shared context hat */
733 	/* per pgsz ttecnt for shme rgns in SCD */
734 	ulong_t		scd_rttecnt[MMU_PAGE_SIZES];
735 	uint_t		scd_refcnt;	/* address spaces attached to scd */
736 	sf_region_map_t scd_region_map; /* bit mask of attached segments */
737 	sf_scd_t	*scd_next;	/* link pointers for srd_scd list */
738 	sf_scd_t	*scd_prev;
739 	sfmmu_t 	*scd_sf_list;	/* list of doubly linked hat structs */
740 	kmutex_t 	scd_mutex;
741 	/*
742 	 * Link used to add an scd to the sfmmu_iment list.
743 	 */
744 	ism_ment_t	scd_ism_links[SFMMU_MAX_ISM_REGIONS];
745 };
746 
747 #define	scd_hmeregion_map	scd_region_map.h_rmap_s.hmeregion_map
748 #define	scd_ismregion_map	scd_region_map.h_rmap_s.ismregion_map
749 
750 extern int disable_shctx;
751 extern int shctx_on;
752 
753 /*
754  * bit mask for managing vac conflicts on large pages.
755  * bit 1 is for uncache flag.
756  * bits 2 through min(num of cache colors + 1,31) are
757  * for cache colors that have already been flushed.
758  */
759 #ifdef VAC
760 #define	CACHE_NUM_COLOR		(shm_alignment >> MMU_PAGESHIFT)
761 #else
762 #define	CACHE_NUM_COLOR		1
763 #endif
764 
765 #define	CACHE_VCOLOR_MASK(vcolor)	(2 << (vcolor & (CACHE_NUM_COLOR - 1)))
766 
767 #define	CacheColor_IsFlushed(flag, vcolor) \
768 					((flag) & CACHE_VCOLOR_MASK(vcolor))
769 
770 #define	CacheColor_SetFlushed(flag, vcolor) \
771 					((flag) |= CACHE_VCOLOR_MASK(vcolor))
772 /*
773  * Flags passed to sfmmu_page_cache to flush page from vac or not.
774  */
775 #define	CACHE_FLUSH	0
776 #define	CACHE_NO_FLUSH	1
777 
778 /*
779  * Flags passed to sfmmu_tlbcache_demap
780  */
781 #define	FLUSH_NECESSARY_CPUS	0
782 #define	FLUSH_ALL_CPUS		1
783 
784 #ifdef	DEBUG
785 /*
786  * For debugging purpose only. Maybe removed later.
787  */
788 struct ctx_trace {
789 	sfmmu_t		*sc_sfmmu_stolen;
790 	sfmmu_t		*sc_sfmmu_stealing;
791 	clock_t		sc_time;
792 	ushort_t	sc_type;
793 	ushort_t	sc_cnum;
794 };
795 #define	CTX_TRC_STEAL	0x1
796 #define	CTX_TRC_FREE	0x0
797 #define	TRSIZE	0x400
798 #define	NEXT_CTXTR(ptr)	(((ptr) >= ctx_trace_last) ? \
799 		ctx_trace_first : ((ptr) + 1))
800 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type) \
801 	mutex_enter(mutex);						\
802 	(ptr)->sc_sfmmu_stolen = (stolen_sfmmu);			\
803 	(ptr)->sc_sfmmu_stealing = (stealing_sfmmu);			\
804 	(ptr)->sc_cnum = (cnum);					\
805 	(ptr)->sc_type = (type);					\
806 	(ptr)->sc_time = ddi_get_lbolt();				\
807 	(ptr) = NEXT_CTXTR(ptr);					\
808 	num_ctx_stolen += (type);					\
809 	mutex_exit(mutex);
810 #else
811 
812 #define	TRACE_CTXS(mutex, ptr, cnum, stolen_sfmmu, stealing_sfmmu, type)
813 
814 #endif	/* DEBUG */
815 
816 #endif	/* !_ASM */
817 
818 /*
819  * Macros for sfmmup->sfmmu_flags access.  The macros that change the flags
820  * ASSERT() that we're holding the HAT lock before changing the flags;
821  * however callers that read the flags may do so without acquiring the lock
822  * in a fast path, and then recheck the flag after acquiring the lock in
823  * a slow path.
824  */
825 #define	SFMMU_FLAGS_ISSET(sfmmup, flags) \
826 	(((sfmmup)->sfmmu_flags & (flags)) == (flags))
827 
828 #define	SFMMU_FLAGS_CLEAR(sfmmup, flags) \
829 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
830 	(sfmmup)->sfmmu_flags &= ~(flags))
831 
832 #define	SFMMU_FLAGS_SET(sfmmup, flags) \
833 	(ASSERT(sfmmu_hat_lock_held((sfmmup))), \
834 	(sfmmup)->sfmmu_flags |= (flags))
835 
836 #define	SFMMU_TTEFLAGS_ISSET(sfmmup, flags) \
837 	((((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) & (flags)) == \
838 	    (flags))
839 
840 
841 /*
842  * sfmmu tte HAT flags, must fit in 8 bits
843  */
844 #define	HAT_CHKCTX1_FLAG 0x1
845 #define	HAT_64K_FLAG	(0x1 << TTE64K)
846 #define	HAT_512K_FLAG	(0x1 << TTE512K)
847 #define	HAT_4M_FLAG	(0x1 << TTE4M)
848 #define	HAT_32M_FLAG	(0x1 << TTE32M)
849 #define	HAT_256M_FLAG	(0x1 << TTE256M)
850 
851 /*
852  * sfmmu HAT flags, 16 bits at the moment.
853  */
854 #define	HAT_4MTEXT_FLAG		0x01
855 #define	HAT_32M_ISM		0x02
856 #define	HAT_256M_ISM		0x04
857 #define	HAT_SWAPPED		0x08 /* swapped out */
858 #define	HAT_SWAPIN		0x10 /* swapping in */
859 #define	HAT_BUSY		0x20 /* replacing TSB(s) */
860 #define	HAT_ISMBUSY		0x40 /* adding/removing/traversing ISM maps */
861 
862 #define	HAT_CTX1_FLAG   	0x100 /* ISM imap hatflag for ctx1 */
863 #define	HAT_JOIN_SCD		0x200 /* region is joining scd */
864 #define	HAT_ALLCTX_INVALID	0x400 /* all per-MMU ctxs are invalidated */
865 
866 #define	SFMMU_LGPGS_INUSE(sfmmup)					\
867 	(((sfmmup)->sfmmu_tteflags | (sfmmup)->sfmmu_rtteflags) ||	\
868 	    ((sfmmup)->sfmmu_iblk != NULL))
869 
870 /*
871  * Starting with context 0, the first NUM_LOCKED_CTXS contexts
872  * are locked so that sfmmu_getctx can't steal any of these
873  * contexts.  At the time this software was being developed, the
874  * only context that needs to be locked is context 0 (the kernel
875  * context), and context 1 (reserved for stolen context). So this constant
876  * was originally defined to be 2.
877  *
878  * For sun4v only, USER_CONTEXT_TYPE represents any user context.  Many
879  * routines only care whether the context is kernel, invalid or user.
880  */
881 
882 #define	NUM_LOCKED_CTXS 2
883 #define	INVALID_CONTEXT	1
884 
885 #ifdef sun4v
886 #define	USER_CONTEXT_TYPE	NUM_LOCKED_CTXS
887 #endif
888 #if defined(sun4v) || defined(UTSB_PHYS)
889 /*
890  * Get the location in the 4MB base TSB of the tsbe for this fault.
891  * Assumes that the second TSB only contains 4M mappings.
892  *
893  * In:
894  *   tagacc = tag access register (not clobbered)
895  *   tsbe = 2nd TSB base register
896  *   tmp1, tmp2 = scratch registers
897  * Out:
898  *   tsbe = pointer to the tsbe in the 2nd TSB
899  */
900 
901 #define	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
902 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;	/* tmp2=szc */		\
903 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;	/* tsbbase */		\
904 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
905 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
906 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
907 	srlx	tagacc, MMU_PAGESHIFT4M, tmp2; 				\
908 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
909 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;	/* entry num --> ptr */	\
910 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
911 
912 #define	GET_2ND_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
913 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
914 
915 /*
916  * Get the location in the 3rd TSB of the tsbe for this fault.
917  * The 3rd TSB corresponds to the shared context, and is used
918  * for 8K - 512k pages.
919  *
920  * In:
921  *   tagacc = tag access register (not clobbered)
922  *   tsbe, tmp1, tmp2 = scratch registers
923  * Out:
924  *   tsbe = pointer to the tsbe in the 3rd TSB
925  */
926 
927 #define	GET_3RD_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)			\
928 	and	tsbe, TSB_SOFTSZ_MASK, tmp2;    /* tmp2=szc */		\
929 	andn	tsbe, TSB_SOFTSZ_MASK, tsbe;    /* tsbbase */		\
930 	mov	TSB_ENTRIES(0), tmp1;	/* nentries in TSB size 0 */	\
931 	sllx	tmp1, tmp2, tmp1;	/* tmp1 = nentries in TSB */	\
932 	sub	tmp1, 1, tmp1;		/* mask = nentries - 1 */	\
933 	srlx	tagacc, MMU_PAGESHIFT, tmp2;				\
934 	and	tmp2, tmp1, tmp1;	/* tsbent = virtpage & mask */	\
935 	sllx	tmp1, TSB_ENTRY_SHIFT, tmp1;    /* entry num --> ptr */	\
936 	add	tsbe, tmp1, tsbe	/* add entry offset to TSB base */
937 
938 #define	GET_4TH_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)                      \
939 	GET_4MBASE_TSBE_PTR(tagacc, tsbe, tmp1, tmp2)
940 /*
941  * Copy the sfmmu_region_map or scd_region_map to the tsbmiss
942  * shmermap or scd_shmermap, from sfmmu_load_mmustate.
943  */
944 #define	SET_REGION_MAP(rgn_map, tsbmiss_map, cnt, tmp, label)		\
945 	/* BEGIN CSTYLED */						\
946 label:									;\
947         ldx     [rgn_map], tmp						;\
948         dec     cnt							;\
949         add     rgn_map, CLONGSIZE, rgn_map                             ;\
950         stx     tmp, [tsbmiss_map]                                      ;\
951         brnz,pt cnt, label                                              ;\
952 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map                    \
953 	/* END CSTYLED */
954 
955 /*
956  * If there is no scd, then zero the tsbmiss scd_shmermap,
957  * from sfmmu_load_mmustate.
958  */
959 #define	ZERO_REGION_MAP(tsbmiss_map, cnt, label)                        \
960 	/* BEGIN CSTYLED */                                             \
961 label:                                                                  ;\
962         dec     cnt                                                     ;\
963         stx     %g0, [tsbmiss_map]                                      ;\
964         brnz,pt cnt, label                                              ;\
965 	    add   tsbmiss_map, CLONGSIZE, tsbmiss_map
966 	/* END CSTYLED */
967 
968 /*
969  * Set hmemisc to 1 if the shared hme is also part of an scd.
970  * In:
971  *   tsbarea = tsbmiss area (not clobbered)
972  *   hmeblkpa  = hmeblkpa +  hmentoff + SFHME_TTE (not clobbered)
973  *   hmentoff = hmentoff + SFHME_TTE = tte offset(clobbered)
974  * Out:
975  *   use_shctx = 1 if shme is in scd and 0 otherwise
976  */
977 #define	GET_SCDSHMERMAP(tsbarea, hmeblkpa, hmentoff, use_shctx)               \
978 	/* BEGIN CSTYLED */   	                                              \
979         sub     hmeblkpa, hmentoff, hmentoff    /* hmentofff = hmeblkpa */   ;\
980         add     hmentoff, HMEBLK_TAG, hmentoff                               ;\
981         ldxa    [hmentoff]ASI_MEM, hmentoff     /* read 1st part of tag */   ;\
982         and     hmentoff, HTAG_RID_MASK, hmentoff       /* mask off rid */   ;\
983         and     hmentoff, BT_ULMASK, use_shctx  /* mask bit index */         ;\
984         srlx    hmentoff, BT_ULSHIFT, hmentoff  /* extract word */           ;\
985         sllx    hmentoff, CLONGSHIFT, hmentoff  /* index */                  ;\
986         add     tsbarea, hmentoff, hmentoff             /* add to tsbarea */ ;\
987         ldx     [hmentoff + TSBMISS_SCDSHMERMAP], hmentoff      /* scdrgn */ ;\
988         srlx    hmentoff, use_shctx, use_shctx                               ;\
989         and     use_shctx, 0x1, use_shctx                                     \
990 	/* END CSTYLED */
991 
992 /*
993  * Synthesize a TSB base register contents for a process.
994  *
995  * In:
996  *   tsbinfo = TSB info pointer (ro)
997  *   tsbreg, tmp1 = scratch registers
998  * Out:
999  *   tsbreg = value to program into TSB base register
1000  */
1001 
1002 #define	MAKE_UTSBREG(tsbinfo, tsbreg, tmp1)			\
1003 	ldx	[tsbinfo + TSBINFO_PADDR], tsbreg;		\
1004 	lduh	[tsbinfo + TSBINFO_SZCODE], tmp1;		\
1005 	and	tmp1, TSB_SOFTSZ_MASK, tmp1;			\
1006 	or	tsbreg, tmp1, tsbreg;
1007 
1008 
1009 /*
1010  * Load TSB base register to TSBMISS area for privte contexts.
1011  * This register contains utsb_pabase in bits 63:13, and TSB size
1012  * code in bits 2:0.
1013  *
1014  * For private context
1015  * In:
1016  *   tsbreg = value to load (ro)
1017  *   regnum = constant or register
1018  *   tmp1 = scratch register
1019  * Out:
1020  *   Specified scratchpad register updated
1021  *
1022  */
1023 #define	SET_UTSBREG(regnum, tsbreg, tmp1)				\
1024 	mov	regnum, tmp1;						\
1025 	stxa	tsbreg, [tmp1]ASI_SCRATCHPAD	/* save tsbreg */
1026 /*
1027  * Get TSB base register from the scratchpad for private contexts
1028  *
1029  * In:
1030  *   regnum = constant or register
1031  *   tsbreg = scratch
1032  * Out:
1033  *   tsbreg = tsbreg from the specified scratchpad register
1034  */
1035 #define	GET_UTSBREG(regnum, tsbreg)					\
1036 	mov	regnum, tsbreg;						\
1037 	ldxa	[tsbreg]ASI_SCRATCHPAD, tsbreg
1038 
1039 /*
1040  * Load TSB base register to TSBMISS area for shared contexts.
1041  * This register contains utsb_pabase in bits 63:13, and TSB size
1042  * code in bits 2:0.
1043  *
1044  * In:
1045  *   tsbmiss = pointer to tsbmiss area
1046  *   tsbmissoffset = offset to right tsb pointer
1047  *   tsbreg = value to load (ro)
1048  * Out:
1049  *   Specified tsbmiss area updated
1050  *
1051  */
1052 #define	SET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1053 	stx	tsbreg, [tsbmiss + tsbmissoffset]	/* save tsbreg */
1054 
1055 /*
1056  * Get TSB base register from the scratchpad for
1057  * shared contexts
1058  *
1059  * In:
1060  *   tsbmiss = pointer to tsbmiss area
1061  *   tsbmissoffset = offset to right tsb pointer
1062  *   tsbreg = scratch
1063  * Out:
1064  *   tsbreg = tsbreg from the specified scratchpad register
1065  */
1066 #define	GET_UTSBREG_SHCTX(tsbmiss, tsbmissoffset, tsbreg)		\
1067 	ldx	[tsbmiss + tsbmissoffset], tsbreg
1068 
1069 #endif /* defined(sun4v) || defined(UTSB_PHYS) */
1070 
1071 #ifndef	_ASM
1072 
1073 /*
1074  * Kernel page relocation stuff.
1075  */
1076 struct sfmmu_callback {
1077 	int key;
1078 	int (*prehandler)(caddr_t, uint_t, uint_t, void *);
1079 	int (*posthandler)(caddr_t, uint_t, uint_t, void *, pfn_t);
1080 	int (*errhandler)(caddr_t, uint_t, uint_t, void *);
1081 	int capture_cpus;
1082 };
1083 
1084 extern int sfmmu_max_cb_id;
1085 extern struct sfmmu_callback *sfmmu_cb_table;
1086 
1087 extern int hat_kpr_enabled;
1088 
1089 struct pa_hment;
1090 
1091 /*
1092  * RFE: With multihat gone we gain back an int.  We could use this to
1093  * keep ref bits on a per cpu basis to eliminate xcalls.
1094  */
1095 struct sf_hment {
1096 	tte_t hme_tte;			/* tte for this hment */
1097 
1098 	union {
1099 		struct page *page;	/* what page this maps */
1100 		struct pa_hment *data;	/* pa_hment */
1101 	} sf_hment_un;
1102 
1103 	struct	sf_hment *hme_next;	/* next hment */
1104 	struct	sf_hment *hme_prev;	/* prev hment */
1105 };
1106 
1107 struct pa_hment {
1108 	caddr_t		addr;		/* va */
1109 	uint_t		len;		/* bytes */
1110 	ushort_t	flags;		/* internal flags */
1111 	ushort_t	refcnt;		/* reference count */
1112 	id_t		cb_id;		/* callback id, table index */
1113 	void		*pvt;		/* handler's private data */
1114 	struct sf_hment	sfment;		/* corresponding dummy sf_hment */
1115 };
1116 
1117 #define	hme_page		sf_hment_un.page
1118 #define	hme_data		sf_hment_un.data
1119 #define	hme_size(sfhmep)	((int)(TTE_CSZ(&(sfhmep)->hme_tte)))
1120 #define	PAHME_SZ		(sizeof (struct pa_hment))
1121 #define	SFHME_SZ		(sizeof (struct sf_hment))
1122 
1123 #define	IS_PAHME(hme)	((hme)->hme_tte.ll == 0)
1124 
1125 /*
1126  * hmeblk_tag structure
1127  * structure used to obtain a match on a hme_blk.  Currently consists of
1128  * the address of the sfmmu struct (or hatid), the base page address of the
1129  * hme_blk, and the rehash count.  The rehash count is actually only 2 bits
1130  * and has the following meaning:
1131  * 1 = 8k or 64k hash sequence.
1132  * 2 = 512k hash sequence.
1133  * 3 = 4M hash sequence.
1134  * We require this count because we don't want to get a false hit on a 512K or
1135  * 4M rehash with a base address corresponding to a 8k or 64k hmeblk.
1136  * Note:  The ordering and size of the hmeblk_tag members are implictly known
1137  * by the tsb miss handlers written in assembly.  Do not change this structure
1138  * without checking those routines.  See HTAG_SFMMUPSZ define.
1139  */
1140 
1141 /*
1142  * In private hmeblks hblk_rid field must be SFMMU_INVALID_RID.
1143  */
1144 typedef union {
1145 	struct {
1146 		uint64_t	hblk_basepg: 51,	/* hme_blk base pg # */
1147 				hblk_rehash: 3,		/* rehash number */
1148 				hblk_rid: 10;		/* hme_blk region id */
1149 		void		*hblk_id;
1150 	} hblk_tag_un;
1151 	uint64_t		htag_tag[2];
1152 } hmeblk_tag;
1153 
1154 #define	htag_id		hblk_tag_un.hblk_id
1155 #define	htag_bspage	hblk_tag_un.hblk_basepg
1156 #define	htag_rehash	hblk_tag_un.hblk_rehash
1157 #define	htag_rid	hblk_tag_un.hblk_rid
1158 
1159 #endif /* !_ASM */
1160 
1161 #define	HTAG_REHASH_SHIFT	10
1162 #define	HTAG_MAX_RID	(((0x1 << HTAG_REHASH_SHIFT) - 1))
1163 #define	HTAG_RID_MASK	HTAG_MAX_RID
1164 
1165 /* used for tagging all per sfmmu (i.e. non SRD) private hmeblks */
1166 #define	SFMMU_INVALID_SHMERID	HTAG_MAX_RID
1167 
1168 #if SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1169 #error SFMMU_INVALID_SHMERID < SFMMU_MAX_HME_REGIONS
1170 #endif
1171 
1172 #define	SFMMU_IS_SHMERID_VALID(rid)	((rid) != SFMMU_INVALID_SHMERID)
1173 
1174 /* ISM regions */
1175 #define	SFMMU_INVALID_ISMRID	0xff
1176 
1177 #if SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1178 #error SFMMU_INVALID_ISMRID < SFMMU_MAX_ISM_REGIONS
1179 #endif
1180 
1181 #define	SFMMU_IS_ISMRID_VALID(rid)	((rid) != SFMMU_INVALID_ISMRID)
1182 
1183 
1184 #define	HTAGS_EQ(tag1, tag2)	(((tag1.htag_tag[0] ^ tag2.htag_tag[0]) | \
1185 				(tag1.htag_tag[1] ^ tag2.htag_tag[1])) == 0)
1186 
1187 /*
1188  * this macro must only be used for comparing tags in shared hmeblks.
1189  */
1190 #define	HTAGS_EQ_SHME(hmetag, tag, hrmap)				\
1191 	(((hmetag).htag_rid != SFMMU_INVALID_SHMERID) &&	        \
1192 	(((((hmetag).htag_tag[0] ^ (tag).htag_tag[0]) &			\
1193 		~HTAG_RID_MASK) |	        			\
1194 	    ((hmetag).htag_tag[1] ^ (tag).htag_tag[1])) == 0) &&	\
1195 	SF_RGNMAP_TEST(hrmap, hmetag.htag_rid))
1196 
1197 #define	HME_REHASH(sfmmup)						\
1198 	((sfmmup)->sfmmu_ttecnt[TTE512K] != 0 ||			\
1199 	(sfmmup)->sfmmu_ttecnt[TTE4M] != 0 ||				\
1200 	(sfmmup)->sfmmu_ttecnt[TTE32M] != 0 ||				\
1201 	(sfmmup)->sfmmu_ttecnt[TTE256M] != 0)
1202 
1203 #define	NHMENTS		8		/* # of hments in an 8k hme_blk */
1204 					/* needs to be multiple of 2 */
1205 
1206 #ifndef	_ASM
1207 
1208 #ifdef	HBLK_TRACE
1209 
1210 #define	HBLK_LOCK		1
1211 #define	HBLK_UNLOCK		0
1212 #define	HBLK_STACK_DEPTH	6
1213 #define	HBLK_AUDIT_CACHE_SIZE	16
1214 #define	HBLK_LOCK_PATTERN	0xaaaaaaaa
1215 #define	HBLK_UNLOCK_PATTERN	0xbbbbbbbb
1216 
1217 struct hblk_lockcnt_audit {
1218 	int		flag;		/* lock or unlock */
1219 	kthread_id_t	thread;
1220 	int		depth;
1221 	pc_t		stack[HBLK_STACK_DEPTH];
1222 };
1223 
1224 #endif	/* HBLK_TRACE */
1225 
1226 
1227 /*
1228  * Hment block structure.
1229  * The hme_blk is the node data structure which the hash structure
1230  * mantains. An hme_blk can have 2 different sizes depending on the
1231  * number of hments it implicitly contains.  When dealing with 64K, 512K,
1232  * or 4M hments there is one hment per hme_blk.  When dealing with
1233  * 8k hments we allocate an hme_blk plus an additional 7 hments to
1234  * give us a total of 8 (NHMENTS) hments that can be referenced through a
1235  * hme_blk.
1236  *
1237  * The hmeblk structure contains 2 tte reference counters used to determine if
1238  * it is ok to free up the hmeblk.  Both counters have to be zero in order
1239  * to be able to free up hmeblk.  They are protected by cas.
1240  * hblk_hmecnt is the number of hments present on pp mapping lists.
1241  * hblk_vcnt reflects number of valid ttes in hmeblk.
1242  *
1243  * The hmeblk now also has per tte lock cnts.  This is required because
1244  * the counts can be high and there are not enough bits in the tte. When
1245  * physio is fixed to not lock the translations we should be able to move
1246  * the lock cnt back to the tte.  See bug id 1198554.
1247  *
1248  * Note that xhat_hme_blk's layout follows this structure: hme_blk_misc
1249  * and sf_hment are at the same offsets in both structures. Whenever
1250  * hme_blk is changed, xhat_hme_blk may need to be updated as well.
1251  */
1252 
1253 struct hme_blk_misc {
1254 	uint_t	notused:25;
1255 	uint_t	shared_bit:1;	/* set for SRD shared hmeblk */
1256 	uint_t	xhat_bit:1;	/* set for an xhat hme_blk */
1257 	uint_t	shadow_bit:1;	/* set for a shadow hme_blk */
1258 	uint_t	nucleus_bit:1;	/* set for a nucleus hme_blk */
1259 	uint_t	ttesize:3;	/* contains ttesz of hmeblk */
1260 };
1261 
1262 struct hme_blk {
1263 	volatile uint64_t hblk_nextpa;	/* physical address for hash list */
1264 
1265 	hmeblk_tag	hblk_tag;	/* tag used to obtain an hmeblk match */
1266 
1267 	struct hme_blk	*hblk_next;	/* on free list or on hash list */
1268 					/* protected by hash lock */
1269 
1270 	struct hme_blk	*hblk_shadow;	/* pts to shadow hblk */
1271 					/* protected by hash lock */
1272 	uint_t		hblk_span;	/* span of memory hmeblk maps */
1273 
1274 	struct hme_blk_misc	hblk_misc;
1275 
1276 	union {
1277 		struct {
1278 			ushort_t hblk_hmecount;	/* hment on mlists counter */
1279 			ushort_t hblk_validcnt;	/* valid tte reference count */
1280 		} hblk_counts;
1281 		uint_t		hblk_shadow_mask;
1282 	} hblk_un;
1283 
1284 	uint_t		hblk_lckcnt;
1285 
1286 #ifdef	HBLK_TRACE
1287 	kmutex_t	hblk_audit_lock;	/* lock to protect index */
1288 	uint_t		hblk_audit_index;	/* index into audit_cache */
1289 	struct	hblk_lockcnt_audit hblk_audit_cache[HBLK_AUDIT_CACHE_SIZE];
1290 #endif	/* HBLK_AUDIT */
1291 
1292 	struct sf_hment hblk_hme[1];	/* hment array */
1293 };
1294 
1295 #define	hblk_shared	hblk_misc.shared_bit
1296 #define	hblk_xhat_bit   hblk_misc.xhat_bit
1297 #define	hblk_shw_bit	hblk_misc.shadow_bit
1298 #define	hblk_nuc_bit	hblk_misc.nucleus_bit
1299 #define	hblk_ttesz	hblk_misc.ttesize
1300 #define	hblk_hmecnt	hblk_un.hblk_counts.hblk_hmecount
1301 #define	hblk_vcnt	hblk_un.hblk_counts.hblk_validcnt
1302 #define	hblk_shw_mask	hblk_un.hblk_shadow_mask
1303 
1304 #define	MAX_HBLK_LCKCNT	0xFFFFFFFF
1305 #define	HMEBLK_ALIGN	0x8		/* hmeblk has to be double aligned */
1306 
1307 #ifdef	HBLK_TRACE
1308 
1309 #define	HBLK_STACK_TRACE(hmeblkp, lock)					\
1310 {									\
1311 	int flag = lock;	/* to pacify lint */			\
1312 	int audit_index;						\
1313 									\
1314 	mutex_enter(&hmeblkp->hblk_audit_lock);				\
1315 	audit_index = hmeblkp->hblk_audit_index;			\
1316 	hmeblkp->hblk_audit_index = ((hmeblkp->hblk_audit_index + 1) &	\
1317 	    (HBLK_AUDIT_CACHE_SIZE - 1));				\
1318 	mutex_exit(&hmeblkp->hblk_audit_lock);				\
1319 									\
1320 	if (flag)							\
1321 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1322 		    HBLK_LOCK_PATTERN;					\
1323 	else								\
1324 		hmeblkp->hblk_audit_cache[audit_index].flag =		\
1325 		    HBLK_UNLOCK_PATTERN;				\
1326 									\
1327 	hmeblkp->hblk_audit_cache[audit_index].thread = curthread;	\
1328 	hmeblkp->hblk_audit_cache[audit_index].depth =			\
1329 	    getpcstack(hmeblkp->hblk_audit_cache[audit_index].stack,	\
1330 	    HBLK_STACK_DEPTH);						\
1331 }
1332 
1333 #else
1334 
1335 #define	HBLK_STACK_TRACE(hmeblkp, lock)
1336 
1337 #endif	/* HBLK_TRACE */
1338 
1339 #define	HMEHASH_FACTOR	16	/* used to calc # of buckets in hme hash */
1340 
1341 /*
1342  * A maximum number of user hmeblks is defined in order to place an upper
1343  * limit on how much nucleus memory is required and to avoid overflowing the
1344  * tsbmiss uhashsz and khashsz data areas. The number below corresponds to
1345  * the number of buckets required, for an average hash chain length of 4 on
1346  * a 16TB machine.
1347  */
1348 
1349 #define	MAX_UHME_BUCKETS	(0x1 << 30)
1350 #define	MAX_KHME_BUCKETS	(0x1 << 30)
1351 
1352 /*
1353  * The minimum number of kernel hash buckets.
1354  */
1355 #define	MIN_KHME_BUCKETS	0x800
1356 
1357 /*
1358  * The number of hash buckets must be a power of 2. If the initial calculated
1359  * value is less than USER_BUCKETS_THRESHOLD we round up to the next greater
1360  * power of 2, otherwise we round down to avoid huge over allocations.
1361  */
1362 #define	USER_BUCKETS_THRESHOLD	(1<<22)
1363 
1364 #define	MAX_NUCUHME_BUCKETS	0x4000
1365 #define	MAX_NUCKHME_BUCKETS	0x2000
1366 
1367 /*
1368  * There are 2 locks in the hmehash bucket.  The hmehash_mutex is
1369  * a regular mutex used to make sure operations on a hash link are only
1370  * done by one thread.  Any operation which comes into the hat with
1371  * a <vaddr, as> will grab the hmehash_mutex.  Normally one would expect
1372  * the tsb miss handlers to grab the hash lock to make sure the hash list
1373  * is consistent while we traverse it.  Unfortunately this can lead to
1374  * deadlocks or recursive mutex enters since it is possible for
1375  * someone holding the lock to take a tlb/tsb miss.
1376  * To solve this problem we have added the hmehash_listlock.  This lock
1377  * is only grabbed by the tsb miss handlers, vatopfn, and while
1378  * adding/removing a hmeblk from the hash list. The code is written to
1379  * guarantee we won't take a tlb miss while holding this lock.
1380  */
1381 struct hmehash_bucket {
1382 	kmutex_t	hmehash_mutex;
1383 	volatile uint64_t hmeh_nextpa;	/* physical address for hash list */
1384 	struct hme_blk *hmeblkp;
1385 	uint_t		hmeh_listlock;
1386 };
1387 
1388 #endif /* !_ASM */
1389 
1390 #define	SFMMU_PGCNT_MASK	0x3f
1391 #define	SFMMU_PGCNT_SHIFT	6
1392 #define	INVALID_MMU_ID		-1
1393 #define	SFMMU_MMU_GNUM_RSHIFT	16
1394 #define	SFMMU_MMU_CNUM_LSHIFT	(64 - SFMMU_MMU_GNUM_RSHIFT)
1395 #define	MAX_SFMMU_CTX_VAL	((1 << 16) - 1) /* for sanity check */
1396 #define	MAX_SFMMU_GNUM_VAL	((0x1UL << 48) - 1)
1397 
1398 /*
1399  * The tsb miss handlers written in assembly know that sfmmup
1400  * is a 64 bit ptr.
1401  *
1402  * The bspage and re-hash part is 64 bits, with the sfmmup being another 64
1403  * bits.
1404  */
1405 #define	HTAG_SFMMUPSZ		0	/* Not really used for LP64 */
1406 #define	HTAG_BSPAGE_SHIFT	13
1407 
1408 /*
1409  * Assembly routines need to be able to get to ttesz
1410  */
1411 #define	HBLK_SZMASK		0x7
1412 
1413 #ifndef _ASM
1414 
1415 /*
1416  * Returns the number of bytes that an hmeblk spans given its tte size
1417  */
1418 #define	get_hblk_span(hmeblkp) ((hmeblkp)->hblk_span)
1419 #define	get_hblk_ttesz(hmeblkp)	((hmeblkp)->hblk_ttesz)
1420 #define	get_hblk_cache(hmeblkp)	(((hmeblkp)->hblk_ttesz == TTE8K) ? \
1421 	sfmmu8_cache : sfmmu1_cache)
1422 #define	HMEBLK_SPAN(ttesz)						\
1423 	((ttesz == TTE8K)? (TTEBYTES(ttesz) * NHMENTS) : TTEBYTES(ttesz))
1424 
1425 #define	set_hblk_sz(hmeblkp, ttesz)				\
1426 	(hmeblkp)->hblk_ttesz = (ttesz);			\
1427 	(hmeblkp)->hblk_span = HMEBLK_SPAN(ttesz)
1428 
1429 #define	get_hblk_base(hmeblkp)					\
1430 	((uintptr_t)(hmeblkp)->hblk_tag.htag_bspage << MMU_PAGESHIFT)
1431 
1432 #define	get_hblk_endaddr(hmeblkp)				\
1433 	((caddr_t)(get_hblk_base(hmeblkp) + get_hblk_span(hmeblkp)))
1434 
1435 #define	in_hblk_range(hmeblkp, vaddr)					\
1436 	(((uintptr_t)(vaddr) >= get_hblk_base(hmeblkp)) &&		\
1437 	((uintptr_t)(vaddr) < (get_hblk_base(hmeblkp) +			\
1438 	get_hblk_span(hmeblkp))))
1439 
1440 #define	tte_to_vaddr(hmeblkp, tte)	((caddr_t)(get_hblk_base(hmeblkp) \
1441 	+ (TTEBYTES(TTE_CSZ(&tte)) * (tte).tte_hmenum)))
1442 
1443 #define	tte_to_evaddr(hmeblkp, ttep)	((caddr_t)(get_hblk_base(hmeblkp) \
1444 	+ (TTEBYTES(TTE_CSZ(ttep)) * ((ttep)->tte_hmenum + 1))))
1445 
1446 #define	vaddr_to_vshift(hblktag, vaddr, shwsz)				\
1447 	((((uintptr_t)(vaddr) >> MMU_PAGESHIFT) - (hblktag.htag_bspage)) >>\
1448 	TTE_BSZS_SHIFT((shwsz) - 1))
1449 
1450 #define	HME8BLK_SZ	(sizeof (struct hme_blk) + \
1451 			(NHMENTS - 1) * sizeof (struct sf_hment))
1452 #define	HME1BLK_SZ	(sizeof (struct hme_blk))
1453 #define	H1MIN		(2 + MAX_BIGKTSB_TTES)	/* nucleus text+data, ktsb */
1454 
1455 /*
1456  * Hme_blk hash structure
1457  * Active mappings are kept in a hash structure of hme_blks.  The hash
1458  * function is based on (ctx, vaddr) The size of the hash table size is a
1459  * power of 2 such that the average hash chain lenth is HMENT_HASHAVELEN.
1460  * The hash actually consists of 2 separate hashes.  One hash is for the user
1461  * address space and the other hash is for the kernel address space.
1462  * The number of buckets are calculated at boot time and stored in the global
1463  * variables "uhmehash_num" and "khmehash_num".  By making the hash table size
1464  * a power of 2 we can use a simply & function to derive an index instead of
1465  * a divide.
1466  *
1467  * HME_HASH_FUNCTION(hatid, vaddr, shift) returns a pointer to a hme_hash
1468  * bucket.
1469  * An hme hash bucket contains a pointer to an hme_blk and the mutex that
1470  * protects the link list.
1471  * Spitfire supports 4 page sizes.  8k and 64K pages only need one hash.
1472  * 512K pages need 2 hashes and 4M pages need 3 hashes.
1473  * The 'shift' parameter controls how many bits the vaddr will be shifted in
1474  * the hash function. It is calculated in the HME_HASH_SHIFT(ttesz) function
1475  * and it varies depending on the page size as follows:
1476  *	8k pages:  	HBLK_RANGE_SHIFT
1477  *	64k pages:	MMU_PAGESHIFT64K
1478  *	512K pages:	MMU_PAGESHIFT512K
1479  *	4M pages:	MMU_PAGESHIFT4M
1480  * An assembly version of the hash function exists in sfmmu_ktsb_miss(). All
1481  * changes should be reflected in both versions.  This function and the TSB
1482  * miss handlers are the only places which know about the two hashes.
1483  *
1484  * HBLK_RANGE_SHIFT controls range of virtual addresses that will fall
1485  * into the same bucket for a particular process.  It is currently set to
1486  * be equivalent to 64K range or one hme_blk.
1487  *
1488  * The hme_blks in the hash are protected by a per hash bucket mutex
1489  * known as SFMMU_HASH_LOCK.
1490  * You need to acquire this lock before traversing the hash bucket link
1491  * list, while adding/removing a hme_blk to the list, and while
1492  * modifying an hme_blk.  A possible optimization is to replace these
1493  * mutexes by readers/writer lock but right now it is not clear whether
1494  * this is a win or not.
1495  *
1496  * The HME_HASH_TABLE_SEARCH will search the hash table for the
1497  * hme_blk that contains the hment that corresponds to the passed
1498  * ctx and vaddr.  It assumed the SFMMU_HASH_LOCK is held.
1499  */
1500 
1501 #endif /* ! _ASM */
1502 
1503 #define	KHATID			ksfmmup
1504 #define	UHMEHASH_SZ		uhmehash_num
1505 #define	KHMEHASH_SZ		khmehash_num
1506 #define	HMENT_HASHAVELEN	4
1507 #define	HBLK_RANGE_SHIFT	MMU_PAGESHIFT64K /* shift for HBLK_BS_MASK */
1508 #define	HBLK_MIN_TTESZ		1
1509 #define	HBLK_MIN_BYTES		MMU_PAGESIZE64K
1510 #define	HBLK_MIN_SHIFT		MMU_PAGESHIFT64K
1511 #define	MAX_HASHCNT		5
1512 #define	DEFAULT_MAX_HASHCNT	3
1513 
1514 #ifndef _ASM
1515 
1516 #define	HASHADDR_MASK(hashno)	TTE_PAGEMASK(hashno)
1517 
1518 #define	HME_HASH_SHIFT(ttesz)						\
1519 	((ttesz == TTE8K)? HBLK_RANGE_SHIFT : TTE_PAGE_SHIFT(ttesz))
1520 
1521 #define	HME_HASH_ADDR(vaddr, hmeshift)					\
1522 	((caddr_t)(((uintptr_t)(vaddr) >> (hmeshift)) << (hmeshift)))
1523 
1524 #define	HME_HASH_BSPAGE(vaddr, hmeshift)				\
1525 	(((uintptr_t)(vaddr) >> (hmeshift)) << ((hmeshift) - MMU_PAGESHIFT))
1526 
1527 #define	HME_HASH_REHASH(ttesz)						\
1528 	(((ttesz) < TTE512K)? 1 : (ttesz))
1529 
1530 #define	HME_HASH_FUNCTION(hatid, vaddr, shift)				     \
1531 	((((void *)hatid) != ((void *)KHATID)) ?			     \
1532 	(&uhme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1533 	    UHMEHASH_SZ) ]):						     \
1534 	(&khme_hash[ (((uintptr_t)(hatid) ^ ((uintptr_t)vaddr >> (shift))) & \
1535 	    KHMEHASH_SZ) ]))
1536 
1537 /*
1538  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1539  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1540  * will be set to NULL, otherwise it will point to the correct hme_blk.
1541  * This macro also cleans empty hblks.
1542  */
1543 #define	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp, pr_hblk, listp)	\
1544 {									\
1545 	struct hme_blk *nx_hblk;					\
1546 									\
1547 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1548 	hblkp = hmebp->hmeblkp;						\
1549 	pr_hblk = NULL;							\
1550 	while (hblkp) {							\
1551 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1552 			/* found hme_blk */				\
1553 			break;						\
1554 		}							\
1555 		nx_hblk = hblkp->hblk_next;				\
1556 		if (!hblkp->hblk_vcnt && !hblkp->hblk_hmecnt) {		\
1557 			sfmmu_hblk_hash_rm(hmebp, hblkp, pr_hblk,	\
1558 			    listp, 0);					\
1559 		} else {						\
1560 			pr_hblk = hblkp;				\
1561 		}							\
1562 		hblkp = nx_hblk;					\
1563 	}								\
1564 }
1565 
1566 #define	HME_HASH_SEARCH(hmebp, hblktag, hblkp, listp)			\
1567 {									\
1568 	struct hme_blk *pr_hblk;					\
1569 									\
1570 	HME_HASH_SEARCH_PREV(hmebp, hblktag, hblkp,  pr_hblk, listp);	\
1571 }
1572 
1573 /*
1574  * This macro will traverse a hmeblk hash link list looking for an hme_blk
1575  * that owns the specified vaddr and hatid.  If if doesn't find one , hmeblkp
1576  * will be set to NULL, otherwise it will point to the correct hme_blk.
1577  * It doesn't remove empty hblks.
1578  */
1579 #define	HME_HASH_FAST_SEARCH(hmebp, hblktag, hblkp)			\
1580 	ASSERT(SFMMU_HASH_LOCK_ISHELD(hmebp));				\
1581 	for (hblkp = hmebp->hmeblkp; hblkp;				\
1582 	    hblkp = hblkp->hblk_next) {					\
1583 		if (HTAGS_EQ(hblkp->hblk_tag, hblktag)) {		\
1584 			/* found hme_blk */				\
1585 			break;						\
1586 		}							\
1587 	}
1588 
1589 #define	SFMMU_HASH_LOCK(hmebp)						\
1590 		(mutex_enter(&hmebp->hmehash_mutex))
1591 
1592 #define	SFMMU_HASH_UNLOCK(hmebp)					\
1593 		(mutex_exit(&hmebp->hmehash_mutex))
1594 
1595 #define	SFMMU_HASH_LOCK_TRYENTER(hmebp)					\
1596 		(mutex_tryenter(&hmebp->hmehash_mutex))
1597 
1598 #define	SFMMU_HASH_LOCK_ISHELD(hmebp)					\
1599 		(mutex_owned(&hmebp->hmehash_mutex))
1600 
1601 #define	SFMMU_XCALL_STATS(sfmmup)					\
1602 {									\
1603 	if (sfmmup == ksfmmup) {					\
1604 		SFMMU_STAT(sf_kernel_xcalls);				\
1605 	} else {							\
1606 		SFMMU_STAT(sf_user_xcalls);				\
1607 	}								\
1608 }
1609 
1610 #define	astosfmmu(as)		((as)->a_hat)
1611 #define	hblktosfmmu(hmeblkp)	((sfmmu_t *)(hmeblkp)->hblk_tag.htag_id)
1612 #define	hblktosrd(hmeblkp)	((sf_srd_t *)(hmeblkp)->hblk_tag.htag_id)
1613 #define	sfmmutoas(sfmmup)	((sfmmup)->sfmmu_as)
1614 
1615 #define	sfmmutohtagid(sfmmup, rid)			   \
1616 	(((rid) == SFMMU_INVALID_SHMERID) ? (void *)(sfmmup) : \
1617 	(void *)((sfmmup)->sfmmu_srdp))
1618 
1619 /*
1620  * We use the sfmmu data structure to keep the per as page coloring info.
1621  */
1622 #define	as_color_bin(as)	(astosfmmu(as)->sfmmu_clrbin)
1623 #define	as_color_start(as)	(astosfmmu(as)->sfmmu_clrstart)
1624 
1625 typedef struct {
1626 	char	h8[HME8BLK_SZ];
1627 } hblk8_t;
1628 
1629 typedef struct {
1630 	char	h1[HME1BLK_SZ];
1631 } hblk1_t;
1632 
1633 typedef struct {
1634 	ulong_t  	index;
1635 	ulong_t  	len;
1636 	hblk8_t		*list;
1637 } nucleus_hblk8_info_t;
1638 
1639 typedef struct {
1640 	ulong_t		index;
1641 	ulong_t		len;
1642 	hblk1_t		*list;
1643 } nucleus_hblk1_info_t;
1644 
1645 /*
1646  * This struct is used for accumlating information about a range
1647  * of pages that are unloading so that a single xcall can flush
1648  * the entire range from remote tlbs. A function that must demap
1649  * a range of virtual addresses declares one of these structures
1650  * and initializes using DEMP_RANGE_INIT(). It then passes a pointer to this
1651  * struct to the appropriate sfmmu_hblk_* level function which does
1652  * all the bookkeeping using the other macros. When the function has
1653  * finished the virtual address range, it needs to call DEMAP_RANGE_FLUSH()
1654  * macro to take care of any remaining unflushed mappings.
1655  *
1656  * The maximum range this struct can represent is the number of bits
1657  * in the dmr_bitvec field times the pagesize in dmr_pgsz. Currently, only
1658  * MMU_PAGESIZE pages are supported.
1659  *
1660  * Since there are now cases where it's no longer necessary to do
1661  * flushes (e.g. when the process isn't runnable because it's swapping
1662  * out or exiting) we allow these macros to take a NULL dmr input and do
1663  * nothing in that case.
1664  */
1665 typedef struct {
1666 	sfmmu_t		*dmr_sfmmup;	/* relevant hat */
1667 	caddr_t		dmr_addr;	/* beginning address */
1668 	caddr_t		dmr_endaddr;	/* ending  address */
1669 	ulong_t		dmr_bitvec;	/* valid pages found */
1670 	ulong_t		dmr_bit;	/* next page to examine */
1671 	ulong_t		dmr_maxbit;	/* highest page in range */
1672 	ulong_t		dmr_pgsz;	/* page size in range */
1673 } demap_range_t;
1674 
1675 #define	DMR_MAXBIT ((ulong_t)1<<63) /* dmr_bit high bit */
1676 
1677 #define	DEMAP_RANGE_INIT(sfmmup, dmrp) \
1678 	if ((dmrp) != NULL) { \
1679 	(dmrp)->dmr_sfmmup = (sfmmup); \
1680 	(dmrp)->dmr_bitvec = 0; \
1681 	(dmrp)->dmr_maxbit = sfmmu_dmr_maxbit; \
1682 	(dmrp)->dmr_pgsz = MMU_PAGESIZE; \
1683 	}
1684 
1685 #define	DEMAP_RANGE_PGSZ(dmrp) ((dmrp)? (dmrp)->dmr_pgsz : MMU_PAGESIZE)
1686 
1687 #define	DEMAP_RANGE_CONTINUE(dmrp, addr, endaddr) \
1688 	if ((dmrp) != NULL) { \
1689 	if ((dmrp)->dmr_bitvec != 0 && (dmrp)->dmr_endaddr != (addr)) \
1690 		sfmmu_tlb_range_demap(dmrp); \
1691 	(dmrp)->dmr_endaddr = (endaddr); \
1692 	}
1693 
1694 #define	DEMAP_RANGE_FLUSH(dmrp) \
1695 	if ((dmrp) != NULL) { \
1696 		if ((dmrp)->dmr_bitvec != 0) \
1697 			sfmmu_tlb_range_demap(dmrp); \
1698 	}
1699 
1700 #define	DEMAP_RANGE_MARKPG(dmrp, addr) \
1701 	if ((dmrp) != NULL) { \
1702 		if ((dmrp)->dmr_bitvec == 0) { \
1703 			(dmrp)->dmr_addr = (addr); \
1704 			(dmrp)->dmr_bit = 1; \
1705 		} \
1706 		(dmrp)->dmr_bitvec |= (dmrp)->dmr_bit; \
1707 	}
1708 
1709 #define	DEMAP_RANGE_NEXTPG(dmrp) \
1710 	if ((dmrp) != NULL && (dmrp)->dmr_bitvec != 0) { \
1711 		if ((dmrp)->dmr_bit & (dmrp)->dmr_maxbit) { \
1712 			sfmmu_tlb_range_demap(dmrp); \
1713 		} else { \
1714 			(dmrp)->dmr_bit <<= 1; \
1715 		} \
1716 	}
1717 
1718 /*
1719  * TSB related structures
1720  *
1721  * The TSB is made up of tte entries.  Both the tag and data are present
1722  * in the TSB.  The TSB locking is managed as follows:
1723  * A software bit in the tsb tag is used to indicate that entry is locked.
1724  * If a cpu servicing a tsb miss reads a locked entry the tag compare will
1725  * fail forcing the cpu to go to the hat hash for the translation.
1726  * The cpu who holds the lock can then modify the data side, and the tag side.
1727  * The last write should be to the word containing the lock bit which will
1728  * clear the lock and allow the tsb entry to be read.  It is assumed that all
1729  * cpus reading the tsb will do so with atomic 128-bit loads.  An atomic 128
1730  * bit load is required to prevent the following from happening:
1731  *
1732  * cpu 0			cpu 1			comments
1733  *
1734  * ldx tag						tag unlocked
1735  *				ldstub lock		set lock
1736  *				stx data
1737  *				stx tag			unlock
1738  * ldx tag						incorrect tte!!!
1739  *
1740  * The software also maintains a bit in the tag to indicate an invalid
1741  * tsb entry.  The purpose of this bit is to allow the tsb invalidate code
1742  * to invalidate a tsb entry with a single cas.  See code for details.
1743  */
1744 
1745 union tsb_tag {
1746 	struct {
1747 		uint32_t	tag_res0:16;	/* reserved - context area */
1748 		uint32_t	tag_inv:1;	/* sw - invalid tsb entry */
1749 		uint32_t	tag_lock:1;	/* sw - locked tsb entry */
1750 		uint32_t	tag_res1:4;	/* reserved */
1751 		uint32_t	tag_va_hi:10;	/* va[63:54] */
1752 		uint32_t	tag_va_lo;	/* va[53:22] */
1753 	} tagbits;
1754 	struct tsb_tagints {
1755 		uint32_t	inthi;
1756 		uint32_t	intlo;
1757 	} tagints;
1758 };
1759 #define	tag_invalid		tagbits.tag_inv
1760 #define	tag_locked		tagbits.tag_lock
1761 #define	tag_vahi		tagbits.tag_va_hi
1762 #define	tag_valo		tagbits.tag_va_lo
1763 #define	tag_inthi		tagints.inthi
1764 #define	tag_intlo		tagints.intlo
1765 
1766 struct tsbe {
1767 	union tsb_tag	tte_tag;
1768 	tte_t		tte_data;
1769 };
1770 
1771 /*
1772  * A per cpu struct is kept that duplicates some info
1773  * used by the tl>0 tsb miss handlers plus it provides
1774  * a scratch area.  Its purpose is to minimize cache misses
1775  * in the tsb miss handler and is 128 bytes (2 e$ lines).
1776  *
1777  * There should be one allocated per cpu in nucleus memory
1778  * and should be aligned on an ecache line boundary.
1779  */
1780 struct tsbmiss {
1781 	sfmmu_t			*ksfmmup;	/* kernel hat id */
1782 	sfmmu_t			*usfmmup;	/* user hat id */
1783 	sf_srd_t		*usrdp;		/* user's SRD hat id */
1784 	struct tsbe		*tsbptr;	/* hardware computed ptr */
1785 	struct tsbe		*tsbptr4m;	/* hardware computed ptr */
1786 	struct tsbe		*tsbscdptr;	/* hardware computed ptr */
1787 	struct tsbe		*tsbscdptr4m;	/* hardware computed ptr */
1788 	uint64_t		ismblkpa;
1789 	struct hmehash_bucket	*khashstart;
1790 	struct hmehash_bucket	*uhashstart;
1791 	uint_t			khashsz;
1792 	uint_t			uhashsz;
1793 	uint16_t 		dcache_line_mask; /* used to flush dcache */
1794 	uchar_t			uhat_tteflags;	/* private page sizes */
1795 	uchar_t			uhat_rtteflags;	/* SHME pagesizes */
1796 	uint32_t		utsb_misses;
1797 	uint32_t		ktsb_misses;
1798 	uint16_t		uprot_traps;
1799 	uint16_t		kprot_traps;
1800 	/*
1801 	 * scratch[0] -> TSB_TAGACC
1802 	 * scratch[1] -> TSBMISS_HMEBP
1803 	 * scratch[2] -> TSBMISS_HATID
1804 	 */
1805 	uintptr_t		scratch[3];
1806 	ulong_t		shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1807 	ulong_t		scd_shmermap[SFMMU_HMERGNMAP_WORDS];	/* 8 bytes */
1808 	uint8_t		pad[48];			/* pad to 64 bytes */
1809 };
1810 
1811 /*
1812  * A per cpu struct is kept for the use within the tl>0 kpm tsb
1813  * miss handler. Some members are duplicates of common data or
1814  * the physical addresses of common data. A few members are also
1815  * written by the tl>0 kpm tsb miss handler. Its purpose is to
1816  * minimize cache misses in the kpm tsb miss handler and occupies
1817  * one ecache line. There should be one allocated per cpu in
1818  * nucleus memory and it should be aligned on an ecache line
1819  * boundary. It is not merged w/ struct tsbmiss since there is
1820  * not much to share and the tsbmiss pathes are different, so
1821  * a kpm tlbmiss/tsbmiss only touches one cacheline, except for
1822  * (DEBUG || SFMMU_STAT_GATHER) where the dtlb_misses counter
1823  * of struct tsbmiss is used on every dtlb miss.
1824  */
1825 struct kpmtsbm {
1826 	caddr_t		vbase;		/* start of address kpm range */
1827 	caddr_t		vend;		/* end of address kpm range */
1828 	uchar_t		flags;		/* flags needed in TL tsbmiss handler */
1829 	uchar_t		sz_shift;	/* for single kpm window */
1830 	uchar_t		kpmp_shift;	/* hash lock shift */
1831 	uchar_t		kpmp2pshft;	/* kpm page to page shift */
1832 	uint_t		kpmp_table_sz;	/* size of kpmp_table or kpmp_stable */
1833 	uint64_t	kpmp_tablepa;	/* paddr of kpmp_table or kpmp_stable */
1834 	uint64_t	msegphashpa;	/* paddr of memseg_phash */
1835 	struct tsbe	*tsbptr;	/* saved ktsb pointer */
1836 	uint_t		kpm_dtlb_misses; /* kpm tlbmiss counter */
1837 	uint_t		kpm_tsb_misses;	/* kpm tsbmiss counter */
1838 	uintptr_t	pad[1];
1839 };
1840 
1841 extern size_t	tsb_slab_size;
1842 extern uint_t	tsb_slab_shift;
1843 extern size_t	tsb_slab_mask;
1844 
1845 #endif /* !_ASM */
1846 
1847 /*
1848  * Flags for TL kpm tsbmiss handler
1849  */
1850 #define	KPMTSBM_ENABLE_FLAG	0x01	/* bit copy of kpm_enable */
1851 #define	KPMTSBM_TLTSBM_FLAG	0x02	/* use TL tsbmiss handler */
1852 #define	KPMTSBM_TSBPHYS_FLAG	0x04	/* use ASI_MEM for TSB update */
1853 
1854 /*
1855  * The TSB
1856  * All TSB sizes supported by the hardware are now supported (8K - 1M).
1857  * For kernel TSBs we may go beyond the hardware supported sizes and support
1858  * larger TSBs via software.
1859  * All TTE sizes are supported in the TSB; the manner in which this is
1860  * done is cpu dependent.
1861  */
1862 #define	TSB_MIN_SZCODE		TSB_8K_SZCODE	/* min. supported TSB size */
1863 #define	TSB_MIN_OFFSET_MASK	(TSB_OFFSET_MASK(TSB_MIN_SZCODE))
1864 
1865 #ifdef sun4v
1866 #define	UTSB_MAX_SZCODE		TSB_256M_SZCODE /* max. supported TSB size */
1867 #else /* sun4u */
1868 #define	UTSB_MAX_SZCODE		TSB_1M_SZCODE	/* max. supported TSB size */
1869 #endif /* sun4v */
1870 
1871 #define	UTSB_MAX_OFFSET_MASK	(TSB_OFFSET_MASK(UTSB_MAX_SZCODE))
1872 
1873 #define	TSB_FREEMEM_MIN		0x1000		/* 32 mb */
1874 #define	TSB_FREEMEM_LARGE	0x10000		/* 512 mb */
1875 #define	TSB_8K_SZCODE		0		/* 512 entries */
1876 #define	TSB_16K_SZCODE		1		/* 1k entries */
1877 #define	TSB_32K_SZCODE		2		/* 2k entries */
1878 #define	TSB_64K_SZCODE		3		/* 4k entries */
1879 #define	TSB_128K_SZCODE		4		/* 8k entries */
1880 #define	TSB_256K_SZCODE		5		/* 16k entries */
1881 #define	TSB_512K_SZCODE		6		/* 32k entries */
1882 #define	TSB_1M_SZCODE		7		/* 64k entries */
1883 #define	TSB_2M_SZCODE		8		/* 128k entries */
1884 #define	TSB_4M_SZCODE		9		/* 256k entries */
1885 #define	TSB_8M_SZCODE		10		/* 512k entries */
1886 #define	TSB_16M_SZCODE		11		/* 1M entries */
1887 #define	TSB_32M_SZCODE		12		/* 2M entries */
1888 #define	TSB_64M_SZCODE		13		/* 4M entries */
1889 #define	TSB_128M_SZCODE		14		/* 8M entries */
1890 #define	TSB_256M_SZCODE		15		/* 16M entries */
1891 #define	TSB_ENTRY_SHIFT		4	/* each entry = 128 bits = 16 bytes */
1892 #define	TSB_ENTRY_SIZE		(1 << 4)
1893 #define	TSB_START_SIZE		9
1894 #define	TSB_ENTRIES(tsbsz)	(1 << (TSB_START_SIZE + tsbsz))
1895 #define	TSB_BYTES(tsbsz)	(TSB_ENTRIES(tsbsz) << TSB_ENTRY_SHIFT)
1896 #define	TSB_OFFSET_MASK(tsbsz)	(TSB_ENTRIES(tsbsz) - 1)
1897 #define	TSB_BASEADDR_MASK	((1 << 12) - 1)
1898 
1899 /*
1900  * sun4u platforms
1901  * ---------------
1902  * We now support two user TSBs with one TSB base register.
1903  * Hence the TSB base register is split up as follows:
1904  *
1905  * When only one TSB present:
1906  *   [63  62..42  41..13  12..4  3..0]
1907  *     ^   ^       ^       ^     ^
1908  *     |   |       |       |     |
1909  *     |   |       |       |     |_ TSB size code
1910  *     |   |       |       |
1911  *     |   |       |       |_ Reserved 0
1912  *     |   |       |
1913  *     |   |       |_ TSB VA[41..13]
1914  *     |   |
1915  *     |   |_ VA hole (Spitfire), zeros (Cheetah and beyond)
1916  *     |
1917  *     |_ 0
1918  *
1919  * When second TSB present:
1920  *   [63  62..42  41..33  32..29  28..22  21..13  12..4  3..0]
1921  *     ^   ^       ^       ^       ^       ^       ^     ^
1922  *     |   |       |       |       |       |       |     |
1923  *     |   |       |       |       |       |       |     |_ First TSB size code
1924  *     |   |       |       |       |       |       |
1925  *     |   |       |       |       |       |       |_ Reserved 0
1926  *     |   |       |       |       |       |
1927  *     |   |       |       |       |       |_ First TSB's VA[21..13]
1928  *     |   |       |       |       |
1929  *     |   |       |       |       |_ Reserved for future use
1930  *     |   |       |       |
1931  *     |   |       |       |_ Second TSB's size code
1932  *     |   |       |
1933  *     |   |       |_ Second TSB's VA[21..13]
1934  *     |   |
1935  *     |   |_ VA hole (Spitfire) / ones (Cheetah and beyond)
1936  *     |
1937  *     |_ 1
1938  *
1939  * Note that since we store 21..13 of each TSB's VA, TSBs and their slabs
1940  * may be up to 4M in size.  For now, only hardware supported TSB sizes
1941  * are supported, though the slabs are usually 4M in size.
1942  *
1943  * sun4u platforms that define UTSB_PHYS use physical addressing to access
1944  * the user TSBs at TL>0.  The first user TSB base is in the MMU I/D TSB Base
1945  * registers.  The second TSB base uses a dedicated scratchpad register which
1946  * requires a definition of SCRATCHPAD_UTSBREG2 in mach_sfmmu.h.  The layout for
1947  * both registers is equivalent to sun4v below, except the TSB PA range is
1948  * [46..13] for sun4u.
1949  *
1950  * sun4v platforms
1951  * ---------------
1952  * On sun4v platforms, we use two dedicated scratchpad registers as pseudo
1953  * hardware TSB base registers to hold up to two different user TSBs.
1954  *
1955  * Each register contains TSB's physical base and size code information
1956  * as follows:
1957  *
1958  *   [63..56  55..13  12..4  3..0]
1959  *      ^       ^       ^     ^
1960  *      |       |       |     |
1961  *      |       |       |     |_ TSB size code
1962  *      |       |       |
1963  *      |       |       |_ Reserved 0
1964  *      |       |
1965  *      |       |_ TSB PA[55..13]
1966  *      |
1967  *      |
1968  *      |
1969  *      |_ 0 for valid TSB
1970  *
1971  * Absence of a user TSB (primarily the second user TSB) is indicated by
1972  * storing a negative value in the TSB base register. This allows us to
1973  * check for presence of a user TSB by simply checking bit# 63.
1974  */
1975 #define	TSBREG_MSB_SHIFT	32		/* set upper bits */
1976 #define	TSBREG_MSB_CONST	0xfffff800	/* set bits 63..43 */
1977 #define	TSBREG_FIRTSB_SHIFT	42		/* to clear bits 63:22 */
1978 #define	TSBREG_SECTSB_MKSHIFT	20		/* 21:13 --> 41:33 */
1979 #define	TSBREG_SECTSB_LSHIFT	22		/* to clear bits 63:42 */
1980 #define	TSBREG_SECTSB_RSHIFT	(TSBREG_SECTSB_MKSHIFT + TSBREG_SECTSB_LSHIFT)
1981 						/* sectsb va -> bits 21:13 */
1982 						/* after clearing upper bits */
1983 #define	TSBREG_SECSZ_SHIFT	29		/* to get sectsb szc to 3:0 */
1984 #define	TSBREG_VAMASK_SHIFT	13		/* set up VA mask */
1985 
1986 #define	BIGKTSB_SZ_MASK		0xf
1987 #define	TSB_SOFTSZ_MASK		BIGKTSB_SZ_MASK
1988 #define	MIN_BIGKTSB_SZCODE	9	/* 256k entries */
1989 #define	MAX_BIGKTSB_SZCODE	11	/* 1024k entries */
1990 #define	MAX_BIGKTSB_TTES	(TSB_BYTES(MAX_BIGKTSB_SZCODE) / MMU_PAGESIZE4M)
1991 
1992 #define	TAG_VALO_SHIFT		22		/* tag's va are bits 63-22 */
1993 /*
1994  * sw bits used on tsb_tag - bit masks used only in assembly
1995  * use only a sethi for these fields.
1996  */
1997 #define	TSBTAG_INVALID	0x00008000		/* tsb_tag.tag_invalid */
1998 #define	TSBTAG_LOCKED	0x00004000		/* tsb_tag.tag_locked */
1999 
2000 #ifdef	_ASM
2001 
2002 /*
2003  * Marker to indicate that this instruction will be hot patched at runtime
2004  * to some other value.
2005  * This value must be zero since it fills in the imm bits of the target
2006  * instructions to be patched
2007  */
2008 #define	RUNTIME_PATCH	(0)
2009 
2010 /*
2011  * V9 defines nop instruction as the following, which we use
2012  * at runtime to nullify some instructions we don't want to
2013  * execute in the trap handlers on certain platforms.
2014  */
2015 #define	MAKE_NOP_INSTR(reg)	\
2016 	sethi	%hi(0x1000000), reg
2017 
2018 /*
2019  * This macro constructs a SPARC V9 "jmpl <source reg>, %g0"
2020  * instruction, with the source register specified by the jump_reg_number.
2021  * The jmp opcode [24:19] = 11 1000 and source register is bits [18:14].
2022  * The instruction is returned in reg. The macro is used to patch in a jmpl
2023  * instruction at runtime.
2024  */
2025 #define	MAKE_JMP_INSTR(jump_reg_number, reg, tmp)	\
2026 	sethi	%hi(0x81c00000), reg;			\
2027 	mov	jump_reg_number, tmp;			\
2028 	sll	tmp, 14, tmp;				\
2029 	or	reg, tmp, reg
2030 
2031 /*
2032  * Macro to get hat per-MMU cnum on this CPU.
2033  * sfmmu - In, pass in "sfmmup" from the caller.
2034  * cnum	- Out, return 'cnum' to the caller
2035  * scr	- scratch
2036  */
2037 #define	SFMMU_CPU_CNUM(sfmmu, cnum, scr)				      \
2038 	CPU_ADDR(scr, cnum);	/* scr = load CPU struct addr */	      \
2039 	ld	[scr + CPU_MMU_IDX], cnum;	/* cnum = mmuid */	      \
2040 	add	sfmmu, SFMMU_CTXS, scr;	/* scr = sfmmup->sfmmu_ctxs[] */      \
2041 	sllx    cnum, SFMMU_MMU_CTX_SHIFT, cnum;			      \
2042 	add	scr, cnum, scr;		/* scr = sfmmup->sfmmu_ctxs[id] */    \
2043 	ldx	[scr + SFMMU_MMU_GC_NUM], scr;	/* sfmmu_ctxs[id].gcnum */    \
2044 	sllx    scr, SFMMU_MMU_CNUM_LSHIFT, scr;			      \
2045 	srlx    scr, SFMMU_MMU_CNUM_LSHIFT, cnum;	/* cnum = sfmmu cnum */
2046 
2047 /*
2048  * Macro to get hat gnum & cnum assocaited with sfmmu_ctx[mmuid] entry
2049  * entry - In,  pass in (&sfmmu_ctxs[mmuid] - SFMMU_CTXS) from the caller.
2050  * gnum - Out, return sfmmu gnum
2051  * cnum - Out, return sfmmu cnum
2052  * reg	- scratch
2053  */
2054 #define	SFMMU_MMUID_GNUM_CNUM(entry, gnum, cnum, reg)			     \
2055 	ldx	[entry + SFMMU_CTXS], reg;  /* reg = sfmmu (gnum | cnum) */  \
2056 	srlx	reg, SFMMU_MMU_GNUM_RSHIFT, gnum;    /* gnum = sfmmu gnum */ \
2057 	sllx	reg, SFMMU_MMU_CNUM_LSHIFT, cnum;			     \
2058 	srlx	cnum, SFMMU_MMU_CNUM_LSHIFT, cnum;   /* cnum = sfmmu cnum */
2059 
2060 /*
2061  * Macro to get this CPU's tsbmiss area.
2062  */
2063 #define	CPU_TSBMISS_AREA(tsbmiss, tmp1)					\
2064 	CPU_INDEX(tmp1, tsbmiss);		/* tmp1 = cpu idx */	\
2065 	sethi	%hi(tsbmiss_area), tsbmiss;	/* tsbmiss base ptr */	\
2066 	mulx    tmp1, TSBMISS_SIZE, tmp1;	/* byte offset */	\
2067 	or	tsbmiss, %lo(tsbmiss_area), tsbmiss;			\
2068 	add	tsbmiss, tmp1, tsbmiss		/* tsbmiss area of CPU */
2069 
2070 
2071 /*
2072  * Macro to set kernel context + page size codes in DMMU primary context
2073  * register. It is only necessary for sun4u because sun4v does not need
2074  * page size codes
2075  */
2076 #ifdef sun4v
2077 
2078 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3)
2079 
2080 #else
2081 
2082 #define	SET_KCONTEXTREG(reg0, reg1, reg2, reg3, reg4, label1, label2, label3) \
2083 	sethi	%hi(kcontextreg), reg0;					\
2084 	ldx	[reg0 + %lo(kcontextreg)], reg0;			\
2085 	mov	MMU_PCONTEXT, reg1;					\
2086 	ldxa	[reg1]ASI_MMU_CTX, reg2;				\
2087 	xor	reg0, reg2, reg2;					\
2088 	brz	reg2, label3;						\
2089 	srlx	reg2, CTXREG_NEXT_SHIFT, reg2;				\
2090 	rdpr	%pstate, reg3;		/* disable interrupts */	\
2091 	btst	PSTATE_IE, reg3;					\
2092 /*CSTYLED*/								\
2093 	bnz,a,pt %icc, label1;						\
2094 	wrpr	reg3, PSTATE_IE, %pstate;				\
2095 /*CSTYLED*/								\
2096 label1:;								\
2097 	brz	reg2, label2;	   /* need demap if N_pgsz0/1 change */	\
2098 	sethi	%hi(FLUSH_ADDR), reg4;					\
2099 	mov	DEMAP_ALL_TYPE, reg2;					\
2100 	stxa	%g0, [reg2]ASI_DTLB_DEMAP;				\
2101 	stxa	%g0, [reg2]ASI_ITLB_DEMAP;				\
2102 /*CSTYLED*/								\
2103 label2:;								\
2104 	stxa	reg0, [reg1]ASI_MMU_CTX;				\
2105 	flush	reg4;							\
2106 	btst	PSTATE_IE, reg3;					\
2107 /*CSTYLED*/								\
2108 	bnz,a,pt %icc, label3;						\
2109 	wrpr	%g0, reg3, %pstate;	/* restore interrupt state */	\
2110 label3:;
2111 
2112 #endif
2113 
2114 /*
2115  * Macro to setup arguments with kernel sfmmup context + page size before
2116  * calling sfmmu_setctx_sec()
2117  */
2118 #ifdef sun4v
2119 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2120 	set	KCONTEXT, arg0;					\
2121 	set	0, arg1;
2122 #else
2123 #define	SET_KAS_CTXSEC_ARGS(sfmmup, arg0, arg1)			\
2124 	ldub	[sfmmup + SFMMU_CEXT], arg1;			\
2125 	set	KCONTEXT, arg0;					\
2126 	sll	arg1, CTXREG_EXT_SHIFT, arg1;
2127 #endif
2128 
2129 #define	PANIC_IF_INTR_DISABLED_PSTR(pstatereg, label, scr)	       	\
2130 	andcc	pstatereg, PSTATE_IE, %g0;	/* panic if intrs */	\
2131 /*CSTYLED*/								\
2132 	bnz,pt	%icc, label;			/* already disabled */	\
2133 	nop;								\
2134 									\
2135 	sethi	%hi(panicstr), scr;					\
2136 	ldx	[scr + %lo(panicstr)], scr;				\
2137 	tst	scr;							\
2138 /*CSTYLED*/								\
2139 	bnz,pt	%xcc, label;						\
2140 	nop;								\
2141 									\
2142 	save	%sp, -SA(MINFRAME), %sp;				\
2143 	sethi	%hi(sfmmu_panic1), %o0;					\
2144 	call	panic;							\
2145 	or	%o0, %lo(sfmmu_panic1), %o0;				\
2146 /*CSTYLED*/								\
2147 label:
2148 
2149 #define	PANIC_IF_INTR_ENABLED_PSTR(label, scr)				\
2150 	/*								\
2151 	 * The caller must have disabled interrupts.			\
2152 	 * If interrupts are not disabled, panic			\
2153 	 */								\
2154 	rdpr	%pstate, scr;						\
2155 	andcc	scr, PSTATE_IE, %g0;					\
2156 /*CSTYLED*/								\
2157 	bz,pt	%icc, label;						\
2158 	nop;								\
2159 									\
2160 	sethi	%hi(panicstr), scr;					\
2161 	ldx	[scr + %lo(panicstr)], scr;				\
2162 	tst	scr;							\
2163 /*CSTYLED*/								\
2164 	bnz,pt	%xcc, label;						\
2165 	nop;								\
2166 									\
2167 	sethi	%hi(sfmmu_panic6), %o0;					\
2168 	call	panic;							\
2169 	or	%o0, %lo(sfmmu_panic6), %o0;				\
2170 /*CSTYLED*/								\
2171 label:
2172 
2173 #endif	/* _ASM */
2174 
2175 #ifndef _ASM
2176 
2177 #ifdef VAC
2178 /*
2179  * Page coloring
2180  * The p_vcolor field of the page struct (1 byte) is used to store the
2181  * virtual page color.  This provides for 255 colors.  The value zero is
2182  * used to mean the page has no color - never been mapped or somehow
2183  * purified.
2184  */
2185 
2186 #define	PP_GET_VCOLOR(pp)	(((pp)->p_vcolor) - 1)
2187 #define	PP_NEWPAGE(pp)		(!(pp)->p_vcolor)
2188 #define	PP_SET_VCOLOR(pp, color)                                          \
2189 	((pp)->p_vcolor = ((color) + 1))
2190 
2191 /*
2192  * As mentioned p_vcolor == 0 means there is no color for this page.
2193  * But PP_SET_VCOLOR(pp, color) expects 'color' to be real color minus
2194  * one so we define this constant.
2195  */
2196 #define	NO_VCOLOR	(-1)
2197 
2198 #define	addr_to_vcolor(addr) \
2199 	(((uint_t)(uintptr_t)(addr) >> MMU_PAGESHIFT) & vac_colors_mask)
2200 #else	/* VAC */
2201 #define	addr_to_vcolor(addr)	(0)
2202 #endif	/* VAC */
2203 
2204 /*
2205  * The field p_index in the psm page structure is for large pages support.
2206  * P_index is a bit-vector of the different mapping sizes that a given page
2207  * is part of. An hme structure for a large mapping is only added in the
2208  * group leader page (first page). All pages covered by a given large mapping
2209  * have the corrosponding mapping bit set in their p_index field. This allows
2210  * us to only store an explicit hme structure in the leading page which
2211  * simplifies the mapping link list management. Furthermore, it provides us
2212  * a fast mechanism for determining the largest mapping a page is part of. For
2213  * exmaple, a page with a 64K and a 4M mappings has a p_index value of 0x0A.
2214  *
2215  * Implementation note: even though the first bit in p_index is reserved
2216  * for 8K mappings, it is NOT USED by the code and SHOULD NOT be set.
2217  * In addition, the upper four bits of the p_index field are used by the
2218  * code as temporaries
2219  */
2220 
2221 /*
2222  * Defines for psm page struct fields and large page support
2223  */
2224 #define	SFMMU_INDEX_SHIFT		6
2225 #define	SFMMU_INDEX_MASK		((1 << SFMMU_INDEX_SHIFT) - 1)
2226 
2227 /* Return the mapping index */
2228 #define	PP_MAPINDEX(pp)	((pp)->p_index & SFMMU_INDEX_MASK)
2229 
2230 /*
2231  * These macros rely on the following property:
2232  * All pages constituting a large page are covered by a virtually
2233  * contiguous set of page_t's.
2234  */
2235 
2236 /* Return the leader for this mapping size */
2237 #define	PP_GROUPLEADER(pp, sz) \
2238 	(&(pp)[-(int)(pp->p_pagenum & (TTEPAGES(sz)-1))])
2239 
2240 /* Return the root page for this page based on p_szc */
2241 #define	PP_PAGEROOT(pp)	((pp)->p_szc == 0 ? (pp) : \
2242 	PP_GROUPLEADER((pp), (pp)->p_szc))
2243 
2244 #define	PP_PAGENEXT_N(pp, n)	((pp) + (n))
2245 #define	PP_PAGENEXT(pp)		PP_PAGENEXT_N((pp), 1)
2246 
2247 #define	PP_PAGEPREV_N(pp, n)	((pp) - (n))
2248 #define	PP_PAGEPREV(pp)		PP_PAGEPREV_N((pp), 1)
2249 
2250 #define	PP_ISMAPPED_LARGE(pp)	(PP_MAPINDEX(pp) != 0)
2251 
2252 /* Need function to test the page mappping which takes p_index into account */
2253 #define	PP_ISMAPPED(pp)	((pp)->p_mapping || PP_ISMAPPED_LARGE(pp))
2254 
2255 /*
2256  * Don't call this macro with sz equal to zero. 8K mappings SHOULD NOT
2257  * set p_index field.
2258  */
2259 #define	PAGESZ_TO_INDEX(sz)	(1 << (sz))
2260 
2261 
2262 /*
2263  * prototypes for hat assembly routines.  Some of these are
2264  * known to machine dependent VM code.
2265  */
2266 extern uint64_t sfmmu_make_tsbtag(caddr_t);
2267 extern struct tsbe *
2268 		sfmmu_get_tsbe(uint64_t, caddr_t, int, int);
2269 extern void	sfmmu_load_tsbe(struct tsbe *, uint64_t, tte_t *, int);
2270 extern void	sfmmu_unload_tsbe(struct tsbe *, uint64_t, int);
2271 extern void	sfmmu_load_mmustate(sfmmu_t *);
2272 extern void	sfmmu_raise_tsb_exception(uint64_t, uint64_t);
2273 #ifndef sun4v
2274 extern void	sfmmu_itlb_ld_kva(caddr_t, tte_t *);
2275 extern void	sfmmu_dtlb_ld_kva(caddr_t, tte_t *);
2276 #endif /* sun4v */
2277 extern void	sfmmu_copytte(tte_t *, tte_t *);
2278 extern int	sfmmu_modifytte(tte_t *, tte_t *, tte_t *);
2279 extern int	sfmmu_modifytte_try(tte_t *, tte_t *, tte_t *);
2280 extern pfn_t	sfmmu_ttetopfn(tte_t *, caddr_t);
2281 extern uint_t	sfmmu_disable_intrs(void);
2282 extern void	sfmmu_enable_intrs(uint_t);
2283 /*
2284  * functions exported to machine dependent VM code
2285  */
2286 extern void	sfmmu_patch_ktsb(void);
2287 #ifndef UTSB_PHYS
2288 extern void	sfmmu_patch_utsb(void);
2289 #endif /* UTSB_PHYS */
2290 extern pfn_t	sfmmu_vatopfn(caddr_t, sfmmu_t *, tte_t *);
2291 extern void	sfmmu_vatopfn_suspended(caddr_t, sfmmu_t *, tte_t *);
2292 extern pfn_t	sfmmu_kvaszc2pfn(caddr_t, int);
2293 #ifdef	DEBUG
2294 extern void	sfmmu_check_kpfn(pfn_t);
2295 #else
2296 #define		sfmmu_check_kpfn(pfn)	/* disabled */
2297 #endif	/* DEBUG */
2298 extern void	sfmmu_memtte(tte_t *, pfn_t, uint_t, int);
2299 extern void	sfmmu_tteload(struct hat *, tte_t *, caddr_t, page_t *,	uint_t);
2300 extern void	sfmmu_tsbmiss_exception(struct regs *, uintptr_t, uint_t);
2301 extern void	sfmmu_init_tsbs(void);
2302 extern caddr_t  sfmmu_ktsb_alloc(caddr_t);
2303 extern int	sfmmu_getctx_pri(void);
2304 extern int	sfmmu_getctx_sec(void);
2305 extern void	sfmmu_setctx_sec(uint_t);
2306 extern void	sfmmu_inv_tsb(caddr_t, uint_t);
2307 extern void	sfmmu_init_ktsbinfo(void);
2308 extern int	sfmmu_setup_4lp(void);
2309 extern void	sfmmu_patch_mmu_asi(int);
2310 extern void	sfmmu_init_nucleus_hblks(caddr_t, size_t, int, int);
2311 extern void	sfmmu_cache_flushall(void);
2312 extern pgcnt_t  sfmmu_tte_cnt(sfmmu_t *, uint_t);
2313 extern void	*sfmmu_tsb_segkmem_alloc(vmem_t *, size_t, int);
2314 extern void	sfmmu_tsb_segkmem_free(vmem_t *, void *, size_t);
2315 extern void	sfmmu_reprog_pgsz_arr(sfmmu_t *, uint8_t *);
2316 
2317 extern void	hat_kern_setup(void);
2318 extern int	hat_page_relocate(page_t **, page_t **, spgcnt_t *);
2319 extern int	sfmmu_get_ppvcolor(struct page *);
2320 extern int	sfmmu_get_addrvcolor(caddr_t);
2321 extern int	sfmmu_hat_lock_held(sfmmu_t *);
2322 extern int	sfmmu_alloc_ctx(sfmmu_t *, int, struct cpu *, int);
2323 
2324 /*
2325  * Functions exported to xhat_sfmmu.c
2326  */
2327 extern kmutex_t *sfmmu_mlist_enter(page_t *);
2328 extern void	sfmmu_mlist_exit(kmutex_t *);
2329 extern int	sfmmu_mlist_held(struct page *);
2330 extern struct hme_blk *sfmmu_hmetohblk(struct sf_hment *);
2331 
2332 /*
2333  * MMU-specific functions optionally imported from the CPU module
2334  */
2335 #pragma weak mmu_init_scd
2336 #pragma weak mmu_large_pages_disabled
2337 #pragma weak mmu_set_ctx_page_sizes
2338 #pragma weak mmu_check_page_sizes
2339 
2340 extern void mmu_init_scd(sf_scd_t *);
2341 extern uint_t mmu_large_pages_disabled(uint_t);
2342 extern void mmu_set_ctx_page_sizes(sfmmu_t *);
2343 extern void mmu_check_page_sizes(sfmmu_t *, uint64_t *);
2344 
2345 extern sfmmu_t 		*ksfmmup;
2346 extern caddr_t		ktsb_base;
2347 extern uint64_t		ktsb_pbase;
2348 extern int		ktsb_sz;
2349 extern int		ktsb_szcode;
2350 extern caddr_t		ktsb4m_base;
2351 extern uint64_t		ktsb4m_pbase;
2352 extern int		ktsb4m_sz;
2353 extern int		ktsb4m_szcode;
2354 extern uint64_t		kpm_tsbbase;
2355 extern int		kpm_tsbsz;
2356 extern int		ktsb_phys;
2357 extern int		enable_bigktsb;
2358 #ifndef sun4v
2359 extern int		utsb_dtlb_ttenum;
2360 extern int		utsb4m_dtlb_ttenum;
2361 #endif /* sun4v */
2362 extern int		uhmehash_num;
2363 extern int		khmehash_num;
2364 extern struct hmehash_bucket *uhme_hash;
2365 extern struct hmehash_bucket *khme_hash;
2366 extern uint_t		hblk_alloc_dynamic;
2367 extern struct tsbmiss	tsbmiss_area[NCPU];
2368 extern struct kpmtsbm	kpmtsbm_area[NCPU];
2369 
2370 #ifndef sun4v
2371 extern int		dtlb_resv_ttenum;
2372 extern caddr_t		utsb_vabase;
2373 extern caddr_t		utsb4m_vabase;
2374 #endif /* sun4v */
2375 extern vmem_t		*kmem_tsb_default_arena[];
2376 extern int		tsb_lgrp_affinity;
2377 
2378 extern uint_t		disable_large_pages;
2379 extern uint_t		disable_ism_large_pages;
2380 extern uint_t		disable_auto_data_large_pages;
2381 extern uint_t		disable_auto_text_large_pages;
2382 
2383 /* kpm externals */
2384 extern pfn_t		sfmmu_kpm_vatopfn(caddr_t);
2385 extern void		sfmmu_kpm_patch_tlbm(void);
2386 extern void		sfmmu_kpm_patch_tsbm(void);
2387 extern void		sfmmu_patch_shctx(void);
2388 extern void		sfmmu_kpm_load_tsb(caddr_t, tte_t *, int);
2389 extern void		sfmmu_kpm_unload_tsb(caddr_t, int);
2390 extern void		sfmmu_kpm_tsbmtl(short *, uint_t *, int);
2391 extern int		sfmmu_kpm_stsbmtl(uchar_t *, uint_t *, int);
2392 extern caddr_t		kpm_vbase;
2393 extern size_t		kpm_size;
2394 extern struct memseg	*memseg_hash[];
2395 extern uint64_t		memseg_phash[];
2396 extern kpm_hlk_t	*kpmp_table;
2397 extern kpm_shlk_t	*kpmp_stable;
2398 extern uint_t		kpmp_table_sz;
2399 extern uint_t		kpmp_stable_sz;
2400 extern uchar_t		kpmp_shift;
2401 
2402 #define	PP_ISMAPPED_KPM(pp)	((pp)->p_kpmref > 0)
2403 
2404 #define	IS_KPM_ALIAS_RANGE(vaddr)					\
2405 	(((vaddr) - kpm_vbase) >> (uintptr_t)kpm_size_shift > 0)
2406 
2407 #endif /* !_ASM */
2408 
2409 /* sfmmu_kpm_tsbmtl flags */
2410 #define	KPMTSBM_STOP		0
2411 #define	KPMTSBM_START		1
2412 
2413 /*
2414  * For kpm_smallpages, the state about how a kpm page is mapped and whether
2415  * it is ready to go is indicated by the two 4-bit fields defined in the
2416  * kpm_spage structure as follows:
2417  * kp_mapped_flag bit[0:3] - the page is mapped cacheable or not
2418  * kp_mapped_flag bit[4:7] - the mapping is ready to go or not
2419  * If the bit KPM_MAPPED_GO is on, it indicates that the assembly tsb miss
2420  * handler can drop the mapping in regardless of the caching state of the
2421  * mapping. Otherwise, we will have C handler resolve the VAC conflict no
2422  * matter the page is currently mapped cacheable or non-cacheable.
2423  */
2424 #define	KPM_MAPPEDS		0x1	/* small mapping valid, no conflict */
2425 #define	KPM_MAPPEDSC		0x2	/* small mapping valid, conflict */
2426 #define	KPM_MAPPED_GO		0x10	/* the mapping is ready to go */
2427 #define	KPM_MAPPED_MASK		0xf
2428 
2429 /* Physical memseg address NULL marker */
2430 #define	MSEG_NULLPTR_PA		-1
2431 
2432 /*
2433  * Memseg hash defines for kpm trap level tsbmiss handler.
2434  * Must be in sync w/ page.h .
2435  */
2436 #define	SFMMU_MEM_HASH_SHIFT		0x9
2437 #define	SFMMU_N_MEM_SLOTS		0x200
2438 #define	SFMMU_MEM_HASH_ENTRY_SHIFT	3
2439 
2440 #ifndef	_ASM
2441 #if (SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT)
2442 #error SFMMU_MEM_HASH_SHIFT != MEM_HASH_SHIFT
2443 #endif
2444 #if (SFMMU_N_MEM_SLOTS != N_MEM_SLOTS)
2445 #error SFMMU_N_MEM_SLOTS != N_MEM_SLOTS
2446 #endif
2447 
2448 /* Physical memseg address NULL marker */
2449 #define	SFMMU_MEMSEG_NULLPTR_PA		-1
2450 
2451 /*
2452  * Check KCONTEXT to be zero, asm parts depend on that assumption.
2453  */
2454 #if (KCONTEXT != 0)
2455 #error KCONTEXT != 0
2456 #endif
2457 #endif	/* !_ASM */
2458 
2459 
2460 #endif /* _KERNEL */
2461 
2462 #ifndef _ASM
2463 /*
2464  * ctx, hmeblk, mlistlock and other stats for sfmmu
2465  */
2466 struct sfmmu_global_stat {
2467 	int		sf_tsb_exceptions;	/* # of tsb exceptions */
2468 	int		sf_tsb_raise_exception;	/* # tsb exc. w/o TLB flush */
2469 
2470 	int		sf_pagefaults;		/* # of pagefaults */
2471 
2472 	int		sf_uhash_searches;	/* # of user hash searches */
2473 	int		sf_uhash_links;		/* # of user hash links */
2474 	int		sf_khash_searches;	/* # of kernel hash searches */
2475 	int		sf_khash_links;		/* # of kernel hash links */
2476 
2477 	int		sf_swapout;		/* # times hat swapped out */
2478 
2479 	int		sf_tsb_alloc;		/* # TSB allocations */
2480 	int		sf_tsb_allocfail;	/* # times TSB alloc fail */
2481 	int		sf_tsb_sectsb_create;	/* # times second TSB added */
2482 
2483 	int		sf_scd_1sttsb_alloc;	/* # SCD 1st TSB allocations */
2484 	int		sf_scd_2ndtsb_alloc;	/* # SCD 2nd TSB allocations */
2485 	int		sf_scd_1sttsb_allocfail; /* # SCD 1st TSB alloc fail */
2486 	int		sf_scd_2ndtsb_allocfail; /* # SCD 2nd TSB alloc fail */
2487 
2488 
2489 	int		sf_tteload8k;		/* calls to sfmmu_tteload */
2490 	int		sf_tteload64k;		/* calls to sfmmu_tteload */
2491 	int		sf_tteload512k;		/* calls to sfmmu_tteload */
2492 	int		sf_tteload4m;		/* calls to sfmmu_tteload */
2493 	int		sf_tteload32m;		/* calls to sfmmu_tteload */
2494 	int		sf_tteload256m;		/* calls to sfmmu_tteload */
2495 
2496 	int		sf_tsb_load8k;		/* # times loaded 8K tsbent */
2497 	int		sf_tsb_load4m;		/* # times loaded 4M tsbent */
2498 
2499 	int		sf_hblk_hit;		/* found hblk during tteload */
2500 	int		sf_hblk8_ncreate;	/* static hblk8's created */
2501 	int		sf_hblk8_nalloc;	/* static hblk8's allocated */
2502 	int		sf_hblk1_ncreate;	/* static hblk1's created */
2503 	int		sf_hblk1_nalloc;	/* static hblk1's allocated */
2504 	int		sf_hblk_slab_cnt;	/* sfmmu8_cache slab creates */
2505 	int		sf_hblk_reserve_cnt;	/* hblk_reserve usage */
2506 	int		sf_hblk_recurse_cnt;	/* hblk_reserve	owner reqs */
2507 	int		sf_hblk_reserve_hit;	/* hblk_reserve hash hits */
2508 	int		sf_get_free_success;	/* reserve list allocs */
2509 	int		sf_get_free_throttle;	/* fails due to throttling */
2510 	int		sf_get_free_fail;	/* fails due to empty list */
2511 	int		sf_put_free_success;	/* reserve list frees */
2512 	int		sf_put_free_fail;	/* fails due to full list */
2513 
2514 	int		sf_pgcolor_conflict;	/* VAC conflict resolution */
2515 	int		sf_uncache_conflict;	/* VAC conflict resolution */
2516 	int		sf_unload_conflict;	/* VAC unload resolution */
2517 	int		sf_ism_uncache;		/* VAC conflict resolution */
2518 	int		sf_ism_recache;		/* VAC conflict resolution */
2519 	int		sf_recache;		/* VAC conflict resolution */
2520 
2521 	int		sf_steal_count;		/* # of hblks stolen */
2522 
2523 	int		sf_pagesync;		/* # of pagesyncs */
2524 	int		sf_clrwrt;		/* # of clear write perms */
2525 	int		sf_pagesync_invalid;	/* pagesync with inv tte */
2526 
2527 	int		sf_kernel_xcalls;	/* # of kernel cross calls */
2528 	int		sf_user_xcalls;		/* # of user cross calls */
2529 
2530 	int		sf_tsb_grow;		/* # of user tsb grows */
2531 	int		sf_tsb_shrink;		/* # of user tsb shrinks */
2532 	int		sf_tsb_resize_failures;	/* # of user tsb resize */
2533 	int		sf_tsb_reloc;		/* # of user tsb relocations */
2534 
2535 	int		sf_user_vtop;		/* # of user vatopfn calls */
2536 
2537 	int		sf_ctx_inv;		/* #times invalidate MMU ctx */
2538 
2539 	int		sf_tlb_reprog_pgsz;	/* # times switch TLB pgsz */
2540 
2541 	int		sf_region_remap_demap;	/* # times shme remap demap */
2542 
2543 	int		sf_create_scd;		/* # times SCD is created */
2544 	int		sf_join_scd;		/* # process joined scd */
2545 	int		sf_leave_scd;		/* # process left scd */
2546 	int		sf_destroy_scd;		/* # times SCD is destroyed */
2547 };
2548 
2549 struct sfmmu_tsbsize_stat {
2550 	int		sf_tsbsz_8k;
2551 	int		sf_tsbsz_16k;
2552 	int		sf_tsbsz_32k;
2553 	int		sf_tsbsz_64k;
2554 	int		sf_tsbsz_128k;
2555 	int		sf_tsbsz_256k;
2556 	int		sf_tsbsz_512k;
2557 	int		sf_tsbsz_1m;
2558 	int		sf_tsbsz_2m;
2559 	int		sf_tsbsz_4m;
2560 	int		sf_tsbsz_8m;
2561 	int		sf_tsbsz_16m;
2562 	int		sf_tsbsz_32m;
2563 	int		sf_tsbsz_64m;
2564 	int		sf_tsbsz_128m;
2565 	int		sf_tsbsz_256m;
2566 };
2567 
2568 struct sfmmu_percpu_stat {
2569 	int	sf_itlb_misses;		/* # of itlb misses */
2570 	int	sf_dtlb_misses;		/* # of dtlb misses */
2571 	int	sf_utsb_misses;		/* # of user tsb misses */
2572 	int	sf_ktsb_misses;		/* # of kernel tsb misses */
2573 	int	sf_tsb_hits;		/* # of tsb hits */
2574 	int	sf_umod_faults;		/* # of mod (prot viol) flts */
2575 	int	sf_kmod_faults;		/* # of mod (prot viol) flts */
2576 };
2577 
2578 #define	SFMMU_STAT(stat)		sfmmu_global_stat.stat++
2579 #define	SFMMU_STAT_ADD(stat, amount)	sfmmu_global_stat.stat += (amount)
2580 #define	SFMMU_STAT_SET(stat, count)	sfmmu_global_stat.stat = (count)
2581 
2582 #define	SFMMU_MMU_STAT(stat)		{		\
2583 	mmu_ctx_t *ctx = CPU->cpu_m.cpu_mmu_ctxp;	\
2584 	if (ctx)					\
2585 		ctx->stat++;				\
2586 }
2587 
2588 #endif /* !_ASM */
2589 
2590 #ifdef	__cplusplus
2591 }
2592 #endif
2593 
2594 #endif	/* _VM_HAT_SFMMU_H */
2595