xref: /titanic_52/usr/src/uts/intel/pcbe/opteron_pcbe.c (revision e4a2bec7d50838378a9a8d23992ab4a6fa8726ab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors.
31  */
32 
33 #include <sys/cpuvar.h>
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/cpc_pcbe.h>
37 #include <sys/kmem.h>
38 #include <sys/sdt.h>
39 #include <sys/modctl.h>
40 #include <sys/errno.h>
41 #include <sys/debug.h>
42 #include <sys/archsystm.h>
43 #include <sys/x86_archext.h>
44 #include <sys/privregs.h>
45 
46 static int opt_pcbe_init(void);
47 static uint_t opt_pcbe_ncounters(void);
48 static const char *opt_pcbe_impl_name(void);
49 static const char *opt_pcbe_cpuref(void);
50 static char *opt_pcbe_list_events(uint_t picnum);
51 static char *opt_pcbe_list_attrs(void);
52 static uint64_t opt_pcbe_event_coverage(char *event);
53 static uint64_t opt_pcbe_overflow_bitmap(void);
54 static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset,
55     uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data,
56     void *token);
57 static void opt_pcbe_program(void *token);
58 static void opt_pcbe_allstop(void);
59 static void opt_pcbe_sample(void *token);
60 static void opt_pcbe_free(void *config);
61 
62 static pcbe_ops_t opt_pcbe_ops = {
63 	PCBE_VER_1,
64 	CPC_CAP_OVERFLOW_INTERRUPT,
65 	opt_pcbe_ncounters,
66 	opt_pcbe_impl_name,
67 	opt_pcbe_cpuref,
68 	opt_pcbe_list_events,
69 	opt_pcbe_list_attrs,
70 	opt_pcbe_event_coverage,
71 	opt_pcbe_overflow_bitmap,
72 	opt_pcbe_configure,
73 	opt_pcbe_program,
74 	opt_pcbe_allstop,
75 	opt_pcbe_sample,
76 	opt_pcbe_free
77 };
78 
79 /*
80  * Define offsets and masks for the fields in the Performance
81  * Event-Select (PES) registers.
82  */
83 #define	OPT_PES_CMASK_SHIFT	24
84 #define	OPT_PES_CMASK_MASK	0xFF
85 #define	OPT_PES_INV_SHIFT	23
86 #define	OPT_PES_ENABLE_SHIFT	22
87 #define	OPT_PES_INT_SHIFT	20
88 #define	OPT_PES_PC_SHIFT	19
89 #define	OPT_PES_EDGE_SHIFT	18
90 #define	OPT_PES_OS_SHIFT	17
91 #define	OPT_PES_USR_SHIFT	16
92 #define	OPT_PES_UMASK_SHIFT	8
93 #define	OPT_PES_UMASK_MASK	0xFF
94 
95 #define	OPT_PES_INV		(1 << OPT_PES_INV_SHIFT)
96 #define	OPT_PES_ENABLE		(1 << OPT_PES_ENABLE_SHIFT)
97 #define	OPT_PES_INT		(1 << OPT_PES_INT_SHIFT)
98 #define	OPT_PES_PC		(1 << OPT_PES_PC_SHIFT)
99 #define	OPT_PES_EDGE		(1 << OPT_PES_EDGE_SHIFT)
100 #define	OPT_PES_OS		(1 << OPT_PES_OS_SHIFT)
101 #define	OPT_PES_USR		(1 << OPT_PES_USR_SHIFT)
102 
103 typedef struct _opt_pcbe_config {
104 	uint8_t		opt_picno;	/* Counter number: 0, 1, 2, or 3 */
105 	uint64_t	opt_evsel;	/* Event Selection register */
106 	uint64_t	opt_rawpic;	/* Raw counter value */
107 } opt_pcbe_config_t;
108 
109 opt_pcbe_config_t nullcfgs[4] = {
110 	{ 0, 0, 0 },
111 	{ 1, 0, 0 },
112 	{ 2, 0, 0 },
113 	{ 3, 0, 0 }
114 };
115 
116 typedef struct _opt_event {
117 	char		*name;
118 	uint8_t		emask;		/* Event mask setting */
119 	uint8_t		umask_valid;	/* Mask of unreserved UNIT_MASK bits */
120 } opt_event_t;
121 
122 /*
123  * Base MSR addresses for the PerfEvtSel registers and the counters themselves.
124  * Add counter number to base address to get corresponding MSR address.
125  */
126 #define	PES_BASE_ADDR	0xC0010000
127 #define	PIC_BASE_ADDR	0xC0010004
128 
129 #define	MASK48		0xFFFFFFFFFFFF
130 
131 #define	EV_END {NULL, 0, 0}
132 
133 static opt_event_t opt_events[] = {
134 	{ "FP_dispatched_fpu_ops",				0x0, 0x1F },
135 	{ "FP_cycles_no_fpu_ops_retired",			0x1, 0x0 },
136 	{ "FP_dispatched_fpu_ops_ff",				0x2, 0x0 },
137 	{ "LS_seg_reg_load",					0x20, 0x7F },
138 	{ "LS_uarch_resync_self_modify",			0x21, 0x0 },
139 	{ "LS_uarch_resync_snoop",				0x22, 0x0 },
140 	{ "LS_buffer_2_full",					0x23, 0x0 },
141 	{ "LS_locked_operation",				0x24, 0x7 },
142 	{ "LS_uarch_late_cancel_op",				0x25, 0x0 },
143 	{ "LS_retired_cflush",					0x26, 0x0 },
144 	{ "LS_retired_cpuid",					0x27, 0x0 },
145 	{ "DC_access",						0x40, 0x0 },
146 	{ "DC_miss",						0x41, 0x0 },
147 	{ "DC_refill_from_L2",					0x42, 0x1F },
148 	{ "DC_refill_from_system",				0x43, 0x1F },
149 	{ "DC_copyback",					0x44, 0x1F },
150 	{ "DC_dtlb_L1_miss_L2_hit",				0x45, 0x0 },
151 	{ "DC_dtlb_L1_miss_L2_miss",				0x46, 0x0 },
152 	{ "DC_misaligned_data_ref",				0x47, 0x0 },
153 	{ "DC_uarch_late_cancel_access",			0x48, 0x0 },
154 	{ "DC_uarch_early_cancel_access",			0x49, 0x0 },
155 	{ "DC_1bit_ecc_error_found",				0x4A, 0x3 },
156 	{ "DC_dispatched_prefetch_instr",			0x4B, 0x7 },
157 	{ "DC_dcache_accesses_by_locks",			0x4C, 0x3 },
158 	{ "BU_cpu_clk_unhalted",				0x76, 0x0 },
159 	{ "BU_internal_L2_req",					0x7D, 0x1F },
160 	{ "BU_fill_req_missed_L2",				0x7E, 0x7 },
161 	{ "BU_fill_into_L2",					0x7F, 0x3 },
162 	{ "IC_fetch",						0x80, 0x0 },
163 	{ "IC_miss",						0x81, 0x0 },
164 	{ "IC_refill_from_L2",					0x82, 0x0 },
165 	{ "IC_refill_from_system",				0x83, 0x0 },
166 	{ "IC_itlb_L1_miss_L2_hit",				0x84, 0x0 },
167 	{ "IC_itlb_L1_miss_L2_miss",				0x85, 0x0 },
168 	{ "IC_uarch_resync_snoop",				0x86, 0x0 },
169 	{ "IC_instr_fetch_stall",				0x87, 0x0 },
170 	{ "IC_return_stack_hit",				0x88, 0x0 },
171 	{ "IC_return_stack_overflow",				0x89, 0x0 },
172 	{ "FR_retired_x86_instr_w_excp_intr",			0xC0, 0x0 },
173 	{ "FR_retired_uops",					0xC1, 0x0 },
174 	{ "FR_retired_branches_w_excp_intr",			0xC2, 0x0 },
175 	{ "FR_retired_branches_mispred",			0xC3, 0x0 },
176 	{ "FR_retired_taken_branches",				0xC4, 0x0 },
177 	{ "FR_retired_taken_branches_mispred",			0xC5, 0x0 },
178 	{ "FR_retired_far_ctl_transfer",			0xC6, 0x0 },
179 	{ "FR_retired_resyncs",					0xC7, 0x0 },
180 	{ "FR_retired_near_rets",				0xC8, 0x0 },
181 	{ "FR_retired_near_rets_mispred",			0xC9, 0x0 },
182 	{ "FR_retired_taken_branches_mispred_addr_miscomp",	0xCA, 0x0 },
183 	{ "FR_retired_fpu_instr",				0xCB, 0xF },
184 	{ "FR_retired_fastpath_double_op_instr",		0xCC, 0x7 },
185 	{ "FR_intr_masked_cycles",				0xCD, 0x0 },
186 	{ "FR_intr_masked_while_pending_cycles",		0xCE, 0x0 },
187 	{ "FR_taken_hardware_intrs",				0xCF, 0x0 },
188 	{ "FR_nothing_to_dispatch",				0xD0, 0x0 },
189 	{ "FR_dispatch_stalls",					0xD1, 0x0 },
190 	{ "FR_dispatch_stall_branch_abort_to_retire",		0xD2, 0x0 },
191 	{ "FR_dispatch_stall_serialization",			0xD3, 0x0 },
192 	{ "FR_dispatch_stall_segment_load",			0xD4, 0x0 },
193 	{ "FR_dispatch_stall_reorder_buffer_full",		0xD5, 0x0 },
194 	{ "FR_dispatch_stall_resv_stations_full",		0xD6, 0x0 },
195 	{ "FR_dispatch_stall_fpu_full",				0xD7, 0x0 },
196 	{ "FR_dispatch_stall_ls_full",				0xD8, 0x0 },
197 	{ "FR_dispatch_stall_waiting_all_quiet",		0xD9, 0x0 },
198 	{ "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend",	0xDA, 0x0 },
199 	{ "FR_fpu_exception",					0xDB, 0xF },
200 	{ "FR_num_brkpts_dr0",					0xDC, 0x0 },
201 	{ "FR_num_brkpts_dr1",					0xDD, 0x0 },
202 	{ "FR_num_brkpts_dr2",					0xDE, 0x0 },
203 	{ "FR_num_brkpts_dr3",					0xDF, 0x0 },
204 	{ "NB_mem_ctrlr_page_access",				0xE0, 0x7 },
205 	{ "NB_mem_ctrlr_page_table_overflow",			0xE1, 0x0 },
206 	{ "NB_mem_ctrlr_dram_cmd_slots_missed",			0xE2, 0x0 },
207 	{ "NB_mem_ctrlr_turnaround",				0xE3, 0x7 },
208 	{ "NB_mem_ctrlr_bypass_counter_saturation",		0xE4, 0xF },
209 	{ "NB_sized_commands",					0xEB, 0x7F },
210 	{ "NB_probe_result",					0xEC, 0xF },
211 	{ "NB_ht_bus0_bandwidth",				0xF6, 0xF },
212 	{ "NB_ht_bus1_bandwidth",				0xF7, 0xF },
213 	{ "NB_ht_bus2_bandwidth",				0xF8, 0xF },
214 	EV_END
215 };
216 
217 static char	*evlist;
218 static size_t	evlist_sz;
219 
220 #define	BITS(v, u, l)   \
221 	(((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1))
222 
223 #define	OPTERON_FAMILY	15
224 
225 static int
226 opt_pcbe_init(void)
227 {
228 	opt_event_t		*evp;
229 
230 	/*
231 	 * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel
232 	 * loads this module based on its name in the module directory, but it
233 	 * could have been renamed.
234 	 */
235 	if (cpuid_getvendor(CPU) != X86_VENDOR_AMD ||
236 	    cpuid_getfamily(CPU) != OPTERON_FAMILY)
237 		return (-1);
238 
239 	/*
240 	 * Construct event list.
241 	 *
242 	 * First pass:  Calculate size needed. We'll need an additional byte
243 	 *		for the NULL pointer during the last strcat.
244 	 *
245 	 * Second pass: Copy strings.
246 	 */
247 	for (evp = opt_events; evp->name != NULL; evp++)
248 		evlist_sz += strlen(evp->name) + 1;
249 
250 	evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP);
251 	evlist[0] = '\0';
252 
253 	for (evp = opt_events; evp->name != NULL; evp++) {
254 		(void) strcat(evlist, evp->name);
255 		(void) strcat(evlist, ",");
256 	}
257 	/*
258 	 * Remove trailing comma.
259 	 */
260 	evlist[evlist_sz - 1] = '\0';
261 
262 	return (0);
263 }
264 
265 static uint_t
266 opt_pcbe_ncounters(void)
267 {
268 	return (4);
269 }
270 
271 static const char *
272 opt_pcbe_impl_name(void)
273 {
274 	return ("AMD Opteron & Athlon64");
275 }
276 
277 static const char *
278 opt_pcbe_cpuref(void)
279 {
280 	return ("See Chapter 10 of the \"BIOS and Kernel Developer's Guide "
281 		"for the AMD Athlon 64 and AMD Opteron Processors,\" "
282 		"AMD publication #26094");
283 }
284 
285 /*ARGSUSED*/
286 static char *
287 opt_pcbe_list_events(uint_t picnum)
288 {
289 	return (evlist);
290 }
291 
292 static char *
293 opt_pcbe_list_attrs(void)
294 {
295 	return ("edge,pc,inv,cmask,umask");
296 }
297 
298 /*ARGSUSED*/
299 static uint64_t
300 opt_pcbe_event_coverage(char *event)
301 {
302 	/*
303 	 * Fortunately, all counters can count all events.
304 	 */
305 	return (0xF);
306 }
307 
308 static uint64_t
309 opt_pcbe_overflow_bitmap(void)
310 {
311 	/*
312 	 * Unfortunately, this chip cannot detect which counter overflowed, so
313 	 * we must act as if they all did.
314 	 */
315 	return (0xF);
316 }
317 
318 static opt_event_t *
319 find_event(char *name)
320 {
321 	opt_event_t	*evp;
322 
323 	for (evp = opt_events; evp->name != NULL; evp++)
324 		if (strcmp(name, evp->name) == 0)
325 			return (evp);
326 
327 	return (NULL);
328 }
329 
330 /*ARGSUSED*/
331 static int
332 opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags,
333     uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token)
334 {
335 	opt_pcbe_config_t	*cfg;
336 	opt_event_t		*evp;
337 	int			i;
338 	uint32_t		evsel = 0;
339 
340 	/*
341 	 * If we've been handed an existing configuration, we need only preset
342 	 * the counter value.
343 	 */
344 	if (*data != NULL) {
345 		cfg = *data;
346 		cfg->opt_rawpic = preset & MASK48;
347 		return (0);
348 	}
349 
350 	if (picnum >= 4)
351 		return (CPC_INVALID_PICNUM);
352 
353 	if ((evp = find_event(event)) == NULL)
354 		return (CPC_INVALID_EVENT);
355 
356 	evsel |= evp->emask;
357 
358 	if (flags & CPC_COUNT_USER)
359 		evsel |= OPT_PES_USR;
360 	if (flags & CPC_COUNT_SYSTEM)
361 		evsel |= OPT_PES_OS;
362 	if (flags & CPC_OVF_NOTIFY_EMT)
363 		evsel |= OPT_PES_INT;
364 
365 	for (i = 0; i < nattrs; i++) {
366 		if (strcmp(attrs[i].ka_name, "edge") == 0) {
367 			if (attrs[i].ka_val != 0)
368 				evsel |= OPT_PES_EDGE;
369 		} else if (strcmp(attrs[i].ka_name, "pc") == 0) {
370 			if (attrs[i].ka_val != 0)
371 				evsel |= OPT_PES_PC;
372 		} else if (strcmp(attrs[i].ka_name, "inv") == 0) {
373 			if (attrs[i].ka_val != 0)
374 				evsel |= OPT_PES_INV;
375 		} else if (strcmp(attrs[i].ka_name, "cmask") == 0) {
376 			if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) !=
377 			    OPT_PES_CMASK_MASK)
378 				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
379 			evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT;
380 		} else if (strcmp(attrs[i].ka_name, "umask") == 0) {
381 			if ((attrs[i].ka_val | evp->umask_valid) !=
382 			    evp->umask_valid)
383 				return (CPC_ATTRIBUTE_OUT_OF_RANGE);
384 			evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT;
385 		} else
386 			return (CPC_INVALID_ATTRIBUTE);
387 	}
388 
389 	cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP);
390 
391 	cfg->opt_picno = picnum;
392 	cfg->opt_evsel = evsel;
393 	cfg->opt_rawpic = preset & MASK48;
394 
395 	*data = cfg;
396 	return (0);
397 }
398 
399 static void
400 opt_pcbe_program(void *token)
401 {
402 	opt_pcbe_config_t	*cfgs[4] = { &nullcfgs[0], &nullcfgs[1],
403 						&nullcfgs[2], &nullcfgs[3] };
404 	opt_pcbe_config_t	*pcfg = NULL;
405 	int			i;
406 	uint32_t		curcr4 = getcr4();
407 
408 	/*
409 	 * Allow nonprivileged code to read the performance counters if desired.
410 	 */
411 	if (kcpc_allow_nonpriv(token))
412 		setcr4(curcr4 | CR4_PCE);
413 	else
414 		setcr4(curcr4 & ~CR4_PCE);
415 
416 	/*
417 	 * Query kernel for all configs which will be co-programmed.
418 	 */
419 	do {
420 		pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL);
421 
422 		if (pcfg != NULL) {
423 			ASSERT(pcfg->opt_picno < 4);
424 			cfgs[pcfg->opt_picno] = pcfg;
425 		}
426 	} while (pcfg != NULL);
427 
428 	/*
429 	 * Program in two loops. The first configures and presets the counter,
430 	 * and the second loop enables the counters. This ensures that the
431 	 * counters are all enabled as closely together in time as possible.
432 	 */
433 
434 	for (i = 0; i < 4; i++) {
435 		wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel);
436 		wrmsr(PIC_BASE_ADDR + i, cfgs[i]->opt_rawpic);
437 	}
438 
439 	for (i = 0; i < 4; i++) {
440 		wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel |
441 		    (uint64_t)(uintptr_t)OPT_PES_ENABLE);
442 	}
443 }
444 
445 static void
446 opt_pcbe_allstop(void)
447 {
448 	int		i;
449 
450 	for (i = 0; i < 4; i++)
451 		wrmsr(PES_BASE_ADDR + i, 0ULL);
452 
453 	/*
454 	 * Disable non-privileged access to the counter registers.
455 	 */
456 	setcr4((uint32_t)getcr4() & ~CR4_PCE);
457 }
458 
459 static void
460 opt_pcbe_sample(void *token)
461 {
462 	opt_pcbe_config_t	*cfgs[4] = { NULL, NULL, NULL, NULL };
463 	opt_pcbe_config_t	*pcfg = NULL;
464 	int			i;
465 	uint64_t		curpic[4];
466 	uint64_t		*addrs[4];
467 	uint64_t		*tmp;
468 	int64_t			diff;
469 
470 	for (i = 0; i < 4; i++)
471 		curpic[i] = rdmsr(PIC_BASE_ADDR);
472 
473 	/*
474 	 * Query kernel for all configs which are co-programmed.
475 	 */
476 	do {
477 		pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp);
478 
479 		if (pcfg != NULL) {
480 			ASSERT(pcfg->opt_picno < 4);
481 			cfgs[pcfg->opt_picno] = pcfg;
482 			addrs[pcfg->opt_picno] = tmp;
483 		}
484 	} while (pcfg != NULL);
485 
486 	for (i = 0; i < 4; i++) {
487 		if (cfgs[i] == NULL)
488 			continue;
489 
490 		diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48;
491 		*addrs[i] += diff;
492 		DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i],
493 		    uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic);
494 		cfgs[i]->opt_rawpic = *addrs[i] & MASK48;
495 	}
496 }
497 
498 static void
499 opt_pcbe_free(void *config)
500 {
501 	kmem_free(config, sizeof (opt_pcbe_config_t));
502 }
503 
504 
505 static struct modlpcbe modlpcbe = {
506 	&mod_pcbeops,
507 	"AMD Performance Counters v%I%",
508 	&opt_pcbe_ops
509 };
510 
511 static struct modlinkage modl = {
512 	MODREV_1,
513 	&modlpcbe,
514 };
515 
516 int
517 _init(void)
518 {
519 	int ret;
520 
521 	if (opt_pcbe_init() != 0)
522 		return (ENOTSUP);
523 
524 	if ((ret = mod_install(&modl)) != 0)
525 		kmem_free(evlist, evlist_sz + 1);
526 
527 	return (ret);
528 }
529 
530 int
531 _fini(void)
532 {
533 	int ret;
534 
535 	if ((ret = mod_remove(&modl)) == 0)
536 		kmem_free(evlist, evlist_sz + 1);
537 	return (ret);
538 }
539 
540 int
541 _info(struct modinfo *mi)
542 {
543 	return (mod_info(&modl, mi));
544 }
545