1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors. 31 */ 32 33 #include <sys/cpuvar.h> 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/cpc_pcbe.h> 37 #include <sys/kmem.h> 38 #include <sys/sdt.h> 39 #include <sys/modctl.h> 40 #include <sys/errno.h> 41 #include <sys/debug.h> 42 #include <sys/archsystm.h> 43 #include <sys/x86_archext.h> 44 #include <sys/privregs.h> 45 46 static int opt_pcbe_init(void); 47 static uint_t opt_pcbe_ncounters(void); 48 static const char *opt_pcbe_impl_name(void); 49 static const char *opt_pcbe_cpuref(void); 50 static char *opt_pcbe_list_events(uint_t picnum); 51 static char *opt_pcbe_list_attrs(void); 52 static uint64_t opt_pcbe_event_coverage(char *event); 53 static uint64_t opt_pcbe_overflow_bitmap(void); 54 static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, 55 uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, 56 void *token); 57 static void opt_pcbe_program(void *token); 58 static void opt_pcbe_allstop(void); 59 static void opt_pcbe_sample(void *token); 60 static void opt_pcbe_free(void *config); 61 62 static pcbe_ops_t opt_pcbe_ops = { 63 PCBE_VER_1, 64 CPC_CAP_OVERFLOW_INTERRUPT, 65 opt_pcbe_ncounters, 66 opt_pcbe_impl_name, 67 opt_pcbe_cpuref, 68 opt_pcbe_list_events, 69 opt_pcbe_list_attrs, 70 opt_pcbe_event_coverage, 71 opt_pcbe_overflow_bitmap, 72 opt_pcbe_configure, 73 opt_pcbe_program, 74 opt_pcbe_allstop, 75 opt_pcbe_sample, 76 opt_pcbe_free 77 }; 78 79 /* 80 * Define offsets and masks for the fields in the Performance 81 * Event-Select (PES) registers. 82 */ 83 #define OPT_PES_CMASK_SHIFT 24 84 #define OPT_PES_CMASK_MASK 0xFF 85 #define OPT_PES_INV_SHIFT 23 86 #define OPT_PES_ENABLE_SHIFT 22 87 #define OPT_PES_INT_SHIFT 20 88 #define OPT_PES_PC_SHIFT 19 89 #define OPT_PES_EDGE_SHIFT 18 90 #define OPT_PES_OS_SHIFT 17 91 #define OPT_PES_USR_SHIFT 16 92 #define OPT_PES_UMASK_SHIFT 8 93 #define OPT_PES_UMASK_MASK 0xFF 94 95 #define OPT_PES_INV (1 << OPT_PES_INV_SHIFT) 96 #define OPT_PES_ENABLE (1 << OPT_PES_ENABLE_SHIFT) 97 #define OPT_PES_INT (1 << OPT_PES_INT_SHIFT) 98 #define OPT_PES_PC (1 << OPT_PES_PC_SHIFT) 99 #define OPT_PES_EDGE (1 << OPT_PES_EDGE_SHIFT) 100 #define OPT_PES_OS (1 << OPT_PES_OS_SHIFT) 101 #define OPT_PES_USR (1 << OPT_PES_USR_SHIFT) 102 103 typedef struct _opt_pcbe_config { 104 uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */ 105 uint64_t opt_evsel; /* Event Selection register */ 106 uint64_t opt_rawpic; /* Raw counter value */ 107 } opt_pcbe_config_t; 108 109 opt_pcbe_config_t nullcfgs[4] = { 110 { 0, 0, 0 }, 111 { 1, 0, 0 }, 112 { 2, 0, 0 }, 113 { 3, 0, 0 } 114 }; 115 116 typedef struct _opt_event { 117 char *name; 118 uint8_t emask; /* Event mask setting */ 119 uint8_t umask_valid; /* Mask of unreserved UNIT_MASK bits */ 120 } opt_event_t; 121 122 /* 123 * Base MSR addresses for the PerfEvtSel registers and the counters themselves. 124 * Add counter number to base address to get corresponding MSR address. 125 */ 126 #define PES_BASE_ADDR 0xC0010000 127 #define PIC_BASE_ADDR 0xC0010004 128 129 #define MASK48 0xFFFFFFFFFFFF 130 131 #define EV_END {NULL, 0, 0} 132 133 static opt_event_t opt_events[] = { 134 { "FP_dispatched_fpu_ops", 0x0, 0x1F }, 135 { "FP_cycles_no_fpu_ops_retired", 0x1, 0x0 }, 136 { "FP_dispatched_fpu_ops_ff", 0x2, 0x0 }, 137 { "LS_seg_reg_load", 0x20, 0x7F }, 138 { "LS_uarch_resync_self_modify", 0x21, 0x0 }, 139 { "LS_uarch_resync_snoop", 0x22, 0x0 }, 140 { "LS_buffer_2_full", 0x23, 0x0 }, 141 { "LS_locked_operation", 0x24, 0x7 }, 142 { "LS_uarch_late_cancel_op", 0x25, 0x0 }, 143 { "LS_retired_cflush", 0x26, 0x0 }, 144 { "LS_retired_cpuid", 0x27, 0x0 }, 145 { "DC_access", 0x40, 0x0 }, 146 { "DC_miss", 0x41, 0x0 }, 147 { "DC_refill_from_L2", 0x42, 0x1F }, 148 { "DC_refill_from_system", 0x43, 0x1F }, 149 { "DC_copyback", 0x44, 0x1F }, 150 { "DC_dtlb_L1_miss_L2_hit", 0x45, 0x0 }, 151 { "DC_dtlb_L1_miss_L2_miss", 0x46, 0x0 }, 152 { "DC_misaligned_data_ref", 0x47, 0x0 }, 153 { "DC_uarch_late_cancel_access", 0x48, 0x0 }, 154 { "DC_uarch_early_cancel_access", 0x49, 0x0 }, 155 { "DC_1bit_ecc_error_found", 0x4A, 0x3 }, 156 { "DC_dispatched_prefetch_instr", 0x4B, 0x7 }, 157 { "DC_dcache_accesses_by_locks", 0x4C, 0x3 }, 158 { "BU_cpu_clk_unhalted", 0x76, 0x0 }, 159 { "BU_internal_L2_req", 0x7D, 0x1F }, 160 { "BU_fill_req_missed_L2", 0x7E, 0x7 }, 161 { "BU_fill_into_L2", 0x7F, 0x3 }, 162 { "IC_fetch", 0x80, 0x0 }, 163 { "IC_miss", 0x81, 0x0 }, 164 { "IC_refill_from_L2", 0x82, 0x0 }, 165 { "IC_refill_from_system", 0x83, 0x0 }, 166 { "IC_itlb_L1_miss_L2_hit", 0x84, 0x0 }, 167 { "IC_itlb_L1_miss_L2_miss", 0x85, 0x0 }, 168 { "IC_uarch_resync_snoop", 0x86, 0x0 }, 169 { "IC_instr_fetch_stall", 0x87, 0x0 }, 170 { "IC_return_stack_hit", 0x88, 0x0 }, 171 { "IC_return_stack_overflow", 0x89, 0x0 }, 172 { "FR_retired_x86_instr_w_excp_intr", 0xC0, 0x0 }, 173 { "FR_retired_uops", 0xC1, 0x0 }, 174 { "FR_retired_branches_w_excp_intr", 0xC2, 0x0 }, 175 { "FR_retired_branches_mispred", 0xC3, 0x0 }, 176 { "FR_retired_taken_branches", 0xC4, 0x0 }, 177 { "FR_retired_taken_branches_mispred", 0xC5, 0x0 }, 178 { "FR_retired_far_ctl_transfer", 0xC6, 0x0 }, 179 { "FR_retired_resyncs", 0xC7, 0x0 }, 180 { "FR_retired_near_rets", 0xC8, 0x0 }, 181 { "FR_retired_near_rets_mispred", 0xC9, 0x0 }, 182 { "FR_retired_taken_branches_mispred_addr_miscomp", 0xCA, 0x0 }, 183 { "FR_retired_fpu_instr", 0xCB, 0xF }, 184 { "FR_retired_fastpath_double_op_instr", 0xCC, 0x7 }, 185 { "FR_intr_masked_cycles", 0xCD, 0x0 }, 186 { "FR_intr_masked_while_pending_cycles", 0xCE, 0x0 }, 187 { "FR_taken_hardware_intrs", 0xCF, 0x0 }, 188 { "FR_nothing_to_dispatch", 0xD0, 0x0 }, 189 { "FR_dispatch_stalls", 0xD1, 0x0 }, 190 { "FR_dispatch_stall_branch_abort_to_retire", 0xD2, 0x0 }, 191 { "FR_dispatch_stall_serialization", 0xD3, 0x0 }, 192 { "FR_dispatch_stall_segment_load", 0xD4, 0x0 }, 193 { "FR_dispatch_stall_reorder_buffer_full", 0xD5, 0x0 }, 194 { "FR_dispatch_stall_resv_stations_full", 0xD6, 0x0 }, 195 { "FR_dispatch_stall_fpu_full", 0xD7, 0x0 }, 196 { "FR_dispatch_stall_ls_full", 0xD8, 0x0 }, 197 { "FR_dispatch_stall_waiting_all_quiet", 0xD9, 0x0 }, 198 { "FR_dispatch_stall_far_ctl_trsfr_resync_branch_pend", 0xDA, 0x0 }, 199 { "FR_fpu_exception", 0xDB, 0xF }, 200 { "FR_num_brkpts_dr0", 0xDC, 0x0 }, 201 { "FR_num_brkpts_dr1", 0xDD, 0x0 }, 202 { "FR_num_brkpts_dr2", 0xDE, 0x0 }, 203 { "FR_num_brkpts_dr3", 0xDF, 0x0 }, 204 { "NB_mem_ctrlr_page_access", 0xE0, 0x7 }, 205 { "NB_mem_ctrlr_page_table_overflow", 0xE1, 0x0 }, 206 { "NB_mem_ctrlr_dram_cmd_slots_missed", 0xE2, 0x0 }, 207 { "NB_mem_ctrlr_turnaround", 0xE3, 0x7 }, 208 { "NB_mem_ctrlr_bypass_counter_saturation", 0xE4, 0xF }, 209 { "NB_sized_commands", 0xEB, 0x7F }, 210 { "NB_probe_result", 0xEC, 0xF }, 211 { "NB_ht_bus0_bandwidth", 0xF6, 0xF }, 212 { "NB_ht_bus1_bandwidth", 0xF7, 0xF }, 213 { "NB_ht_bus2_bandwidth", 0xF8, 0xF }, 214 EV_END 215 }; 216 217 static char *evlist; 218 static size_t evlist_sz; 219 220 #define BITS(v, u, l) \ 221 (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1)) 222 223 #define OPTERON_FAMILY 15 224 225 static int 226 opt_pcbe_init(void) 227 { 228 opt_event_t *evp; 229 230 /* 231 * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel 232 * loads this module based on its name in the module directory, but it 233 * could have been renamed. 234 */ 235 if (cpuid_getvendor(CPU) != X86_VENDOR_AMD || 236 cpuid_getfamily(CPU) != OPTERON_FAMILY) 237 return (-1); 238 239 /* 240 * Construct event list. 241 * 242 * First pass: Calculate size needed. We'll need an additional byte 243 * for the NULL pointer during the last strcat. 244 * 245 * Second pass: Copy strings. 246 */ 247 for (evp = opt_events; evp->name != NULL; evp++) 248 evlist_sz += strlen(evp->name) + 1; 249 250 evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP); 251 evlist[0] = '\0'; 252 253 for (evp = opt_events; evp->name != NULL; evp++) { 254 (void) strcat(evlist, evp->name); 255 (void) strcat(evlist, ","); 256 } 257 /* 258 * Remove trailing comma. 259 */ 260 evlist[evlist_sz - 1] = '\0'; 261 262 return (0); 263 } 264 265 static uint_t 266 opt_pcbe_ncounters(void) 267 { 268 return (4); 269 } 270 271 static const char * 272 opt_pcbe_impl_name(void) 273 { 274 return ("AMD Opteron & Athlon64"); 275 } 276 277 static const char * 278 opt_pcbe_cpuref(void) 279 { 280 return ("See Chapter 10 of the \"BIOS and Kernel Developer's Guide " 281 "for the AMD Athlon 64 and AMD Opteron Processors,\" " 282 "AMD publication #26094"); 283 } 284 285 /*ARGSUSED*/ 286 static char * 287 opt_pcbe_list_events(uint_t picnum) 288 { 289 return (evlist); 290 } 291 292 static char * 293 opt_pcbe_list_attrs(void) 294 { 295 return ("edge,pc,inv,cmask,umask"); 296 } 297 298 /*ARGSUSED*/ 299 static uint64_t 300 opt_pcbe_event_coverage(char *event) 301 { 302 /* 303 * Fortunately, all counters can count all events. 304 */ 305 return (0xF); 306 } 307 308 static uint64_t 309 opt_pcbe_overflow_bitmap(void) 310 { 311 /* 312 * Unfortunately, this chip cannot detect which counter overflowed, so 313 * we must act as if they all did. 314 */ 315 return (0xF); 316 } 317 318 static opt_event_t * 319 find_event(char *name) 320 { 321 opt_event_t *evp; 322 323 for (evp = opt_events; evp->name != NULL; evp++) 324 if (strcmp(name, evp->name) == 0) 325 return (evp); 326 327 return (NULL); 328 } 329 330 /*ARGSUSED*/ 331 static int 332 opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, 333 uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token) 334 { 335 opt_pcbe_config_t *cfg; 336 opt_event_t *evp; 337 int i; 338 uint32_t evsel = 0; 339 340 /* 341 * If we've been handed an existing configuration, we need only preset 342 * the counter value. 343 */ 344 if (*data != NULL) { 345 cfg = *data; 346 cfg->opt_rawpic = preset & MASK48; 347 return (0); 348 } 349 350 if (picnum >= 4) 351 return (CPC_INVALID_PICNUM); 352 353 if ((evp = find_event(event)) == NULL) 354 return (CPC_INVALID_EVENT); 355 356 evsel |= evp->emask; 357 358 if (flags & CPC_COUNT_USER) 359 evsel |= OPT_PES_USR; 360 if (flags & CPC_COUNT_SYSTEM) 361 evsel |= OPT_PES_OS; 362 if (flags & CPC_OVF_NOTIFY_EMT) 363 evsel |= OPT_PES_INT; 364 365 for (i = 0; i < nattrs; i++) { 366 if (strcmp(attrs[i].ka_name, "edge") == 0) { 367 if (attrs[i].ka_val != 0) 368 evsel |= OPT_PES_EDGE; 369 } else if (strcmp(attrs[i].ka_name, "pc") == 0) { 370 if (attrs[i].ka_val != 0) 371 evsel |= OPT_PES_PC; 372 } else if (strcmp(attrs[i].ka_name, "inv") == 0) { 373 if (attrs[i].ka_val != 0) 374 evsel |= OPT_PES_INV; 375 } else if (strcmp(attrs[i].ka_name, "cmask") == 0) { 376 if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) != 377 OPT_PES_CMASK_MASK) 378 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 379 evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT; 380 } else if (strcmp(attrs[i].ka_name, "umask") == 0) { 381 if ((attrs[i].ka_val | evp->umask_valid) != 382 evp->umask_valid) 383 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 384 evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT; 385 } else 386 return (CPC_INVALID_ATTRIBUTE); 387 } 388 389 cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP); 390 391 cfg->opt_picno = picnum; 392 cfg->opt_evsel = evsel; 393 cfg->opt_rawpic = preset & MASK48; 394 395 *data = cfg; 396 return (0); 397 } 398 399 static void 400 opt_pcbe_program(void *token) 401 { 402 opt_pcbe_config_t *cfgs[4] = { &nullcfgs[0], &nullcfgs[1], 403 &nullcfgs[2], &nullcfgs[3] }; 404 opt_pcbe_config_t *pcfg = NULL; 405 int i; 406 uint32_t curcr4 = getcr4(); 407 408 /* 409 * Allow nonprivileged code to read the performance counters if desired. 410 */ 411 if (kcpc_allow_nonpriv(token)) 412 setcr4(curcr4 | CR4_PCE); 413 else 414 setcr4(curcr4 & ~CR4_PCE); 415 416 /* 417 * Query kernel for all configs which will be co-programmed. 418 */ 419 do { 420 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL); 421 422 if (pcfg != NULL) { 423 ASSERT(pcfg->opt_picno < 4); 424 cfgs[pcfg->opt_picno] = pcfg; 425 } 426 } while (pcfg != NULL); 427 428 /* 429 * Program in two loops. The first configures and presets the counter, 430 * and the second loop enables the counters. This ensures that the 431 * counters are all enabled as closely together in time as possible. 432 */ 433 434 for (i = 0; i < 4; i++) { 435 wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel); 436 wrmsr(PIC_BASE_ADDR + i, cfgs[i]->opt_rawpic); 437 } 438 439 for (i = 0; i < 4; i++) { 440 wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel | 441 (uint64_t)(uintptr_t)OPT_PES_ENABLE); 442 } 443 } 444 445 static void 446 opt_pcbe_allstop(void) 447 { 448 int i; 449 450 for (i = 0; i < 4; i++) 451 wrmsr(PES_BASE_ADDR + i, 0ULL); 452 453 /* 454 * Disable non-privileged access to the counter registers. 455 */ 456 setcr4((uint32_t)getcr4() & ~CR4_PCE); 457 } 458 459 static void 460 opt_pcbe_sample(void *token) 461 { 462 opt_pcbe_config_t *cfgs[4] = { NULL, NULL, NULL, NULL }; 463 opt_pcbe_config_t *pcfg = NULL; 464 int i; 465 uint64_t curpic[4]; 466 uint64_t *addrs[4]; 467 uint64_t *tmp; 468 int64_t diff; 469 470 for (i = 0; i < 4; i++) 471 curpic[i] = rdmsr(PIC_BASE_ADDR); 472 473 /* 474 * Query kernel for all configs which are co-programmed. 475 */ 476 do { 477 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp); 478 479 if (pcfg != NULL) { 480 ASSERT(pcfg->opt_picno < 4); 481 cfgs[pcfg->opt_picno] = pcfg; 482 addrs[pcfg->opt_picno] = tmp; 483 } 484 } while (pcfg != NULL); 485 486 for (i = 0; i < 4; i++) { 487 if (cfgs[i] == NULL) 488 continue; 489 490 diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48; 491 *addrs[i] += diff; 492 DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i], 493 uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic); 494 cfgs[i]->opt_rawpic = *addrs[i] & MASK48; 495 } 496 } 497 498 static void 499 opt_pcbe_free(void *config) 500 { 501 kmem_free(config, sizeof (opt_pcbe_config_t)); 502 } 503 504 505 static struct modlpcbe modlpcbe = { 506 &mod_pcbeops, 507 "AMD Performance Counters v%I%", 508 &opt_pcbe_ops 509 }; 510 511 static struct modlinkage modl = { 512 MODREV_1, 513 &modlpcbe, 514 }; 515 516 int 517 _init(void) 518 { 519 int ret; 520 521 if (opt_pcbe_init() != 0) 522 return (ENOTSUP); 523 524 if ((ret = mod_install(&modl)) != 0) 525 kmem_free(evlist, evlist_sz + 1); 526 527 return (ret); 528 } 529 530 int 531 _fini(void) 532 { 533 int ret; 534 535 if ((ret = mod_remove(&modl)) == 0) 536 kmem_free(evlist, evlist_sz + 1); 537 return (ret); 538 } 539 540 int 541 _info(struct modinfo *mi) 542 { 543 return (mod_info(&modl, mi)); 544 } 545