1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Performance Counter Back-End for AMD Opteron and AMD Athlon 64 processors. 30 */ 31 32 #include <sys/cpuvar.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/cpc_pcbe.h> 36 #include <sys/kmem.h> 37 #include <sys/sdt.h> 38 #include <sys/modctl.h> 39 #include <sys/errno.h> 40 #include <sys/debug.h> 41 #include <sys/archsystm.h> 42 #include <sys/x86_archext.h> 43 #include <sys/privregs.h> 44 #include <sys/ddi.h> 45 #include <sys/sunddi.h> 46 47 static int opt_pcbe_init(void); 48 static uint_t opt_pcbe_ncounters(void); 49 static const char *opt_pcbe_impl_name(void); 50 static const char *opt_pcbe_cpuref(void); 51 static char *opt_pcbe_list_events(uint_t picnum); 52 static char *opt_pcbe_list_attrs(void); 53 static uint64_t opt_pcbe_event_coverage(char *event); 54 static uint64_t opt_pcbe_overflow_bitmap(void); 55 static int opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, 56 uint32_t flags, uint_t nattrs, kcpc_attr_t *attrs, void **data, 57 void *token); 58 static void opt_pcbe_program(void *token); 59 static void opt_pcbe_allstop(void); 60 static void opt_pcbe_sample(void *token); 61 static void opt_pcbe_free(void *config); 62 63 static pcbe_ops_t opt_pcbe_ops = { 64 PCBE_VER_1, 65 CPC_CAP_OVERFLOW_INTERRUPT, 66 opt_pcbe_ncounters, 67 opt_pcbe_impl_name, 68 opt_pcbe_cpuref, 69 opt_pcbe_list_events, 70 opt_pcbe_list_attrs, 71 opt_pcbe_event_coverage, 72 opt_pcbe_overflow_bitmap, 73 opt_pcbe_configure, 74 opt_pcbe_program, 75 opt_pcbe_allstop, 76 opt_pcbe_sample, 77 opt_pcbe_free 78 }; 79 80 /* 81 * Define offsets and masks for the fields in the Performance 82 * Event-Select (PES) registers. 83 */ 84 #define OPT_PES_CMASK_SHIFT 24 85 #define OPT_PES_CMASK_MASK 0xFF 86 #define OPT_PES_INV_SHIFT 23 87 #define OPT_PES_ENABLE_SHIFT 22 88 #define OPT_PES_INT_SHIFT 20 89 #define OPT_PES_PC_SHIFT 19 90 #define OPT_PES_EDGE_SHIFT 18 91 #define OPT_PES_OS_SHIFT 17 92 #define OPT_PES_USR_SHIFT 16 93 #define OPT_PES_UMASK_SHIFT 8 94 #define OPT_PES_UMASK_MASK 0xFF 95 96 #define OPT_PES_INV (1 << OPT_PES_INV_SHIFT) 97 #define OPT_PES_ENABLE (1 << OPT_PES_ENABLE_SHIFT) 98 #define OPT_PES_INT (1 << OPT_PES_INT_SHIFT) 99 #define OPT_PES_PC (1 << OPT_PES_PC_SHIFT) 100 #define OPT_PES_EDGE (1 << OPT_PES_EDGE_SHIFT) 101 #define OPT_PES_OS (1 << OPT_PES_OS_SHIFT) 102 #define OPT_PES_USR (1 << OPT_PES_USR_SHIFT) 103 104 typedef struct _opt_pcbe_config { 105 uint8_t opt_picno; /* Counter number: 0, 1, 2, or 3 */ 106 uint64_t opt_evsel; /* Event Selection register */ 107 uint64_t opt_rawpic; /* Raw counter value */ 108 } opt_pcbe_config_t; 109 110 opt_pcbe_config_t nullcfgs[4] = { 111 { 0, 0, 0 }, 112 { 1, 0, 0 }, 113 { 2, 0, 0 }, 114 { 3, 0, 0 } 115 }; 116 117 typedef struct _opt_event { 118 char *name; 119 uint8_t emask; /* Event mask setting */ 120 uint8_t umask_valid; /* Mask of unreserved UNIT_MASK bits */ 121 } opt_event_t; 122 123 /* 124 * Base MSR addresses for the PerfEvtSel registers and the counters themselves. 125 * Add counter number to base address to get corresponding MSR address. 126 */ 127 #define PES_BASE_ADDR 0xC0010000 128 #define PIC_BASE_ADDR 0xC0010004 129 130 #define MASK48 0xFFFFFFFFFFFF 131 132 #define EV_END {NULL, 0, 0} 133 134 #define OPT_cmn_events \ 135 { "FP_dispatched_fpu_ops", 0x0, 0x1F }, \ 136 { "FP_cycles_no_fpu_ops_retired", 0x1, 0x0 }, \ 137 { "FP_dispatched_fpu_ops_ff", 0x2, 0x0 }, \ 138 { "LS_seg_reg_load", 0x20, 0x7F }, \ 139 { "LS_uarch_resync_self_modify", 0x21, 0x0 }, \ 140 { "LS_uarch_resync_snoop", 0x22, 0x0 }, \ 141 { "LS_buffer_2_full", 0x23, 0x0 }, \ 142 { "LS_locked_operation", 0x24, 0x7 }, \ 143 { "LS_retired_cflush", 0x26, 0x0 }, \ 144 { "LS_retired_cpuid", 0x27, 0x0 }, \ 145 { "DC_access", 0x40, 0x0 }, \ 146 { "DC_miss", 0x41, 0x0 }, \ 147 { "DC_refill_from_L2", 0x42, 0x1F }, \ 148 { "DC_refill_from_system", 0x43, 0x1F }, \ 149 { "DC_copyback", 0x44, 0x1F }, \ 150 { "DC_dtlb_L1_miss_L2_hit", 0x45, 0x0 }, \ 151 { "DC_dtlb_L1_miss_L2_miss", 0x46, 0x0 }, \ 152 { "DC_misaligned_data_ref", 0x47, 0x0 }, \ 153 { "DC_uarch_late_cancel_access", 0x48, 0x0 }, \ 154 { "DC_uarch_early_cancel_access", 0x49, 0x0 }, \ 155 { "DC_1bit_ecc_error_found", 0x4A, 0x3 }, \ 156 { "DC_dispatched_prefetch_instr", 0x4B, 0x7 }, \ 157 { "DC_dcache_accesses_by_locks", 0x4C, 0x2 }, \ 158 { "BU_memory_requests", 0x65, 0x83}, \ 159 { "BU_data_prefetch", 0x67, 0x3 }, \ 160 { "BU_system_read_responses", 0x6C, 0x7 }, \ 161 { "BU_quadwords_written_to_system", 0x6D, 0x1 }, \ 162 { "BU_cpu_clk_unhalted", 0x76, 0x0 }, \ 163 { "BU_internal_L2_req", 0x7D, 0x1F }, \ 164 { "BU_fill_req_missed_L2", 0x7E, 0x7 }, \ 165 { "BU_fill_into_L2", 0x7F, 0x1 }, \ 166 { "IC_fetch", 0x80, 0x0 }, \ 167 { "IC_miss", 0x81, 0x0 }, \ 168 { "IC_refill_from_L2", 0x82, 0x0 }, \ 169 { "IC_refill_from_system", 0x83, 0x0 }, \ 170 { "IC_itlb_L1_miss_L2_hit", 0x84, 0x0 }, \ 171 { "IC_itlb_L1_miss_L2_miss", 0x85, 0x0 }, \ 172 { "IC_uarch_resync_snoop", 0x86, 0x0 }, \ 173 { "IC_instr_fetch_stall", 0x87, 0x0 }, \ 174 { "IC_return_stack_hit", 0x88, 0x0 }, \ 175 { "IC_return_stack_overflow", 0x89, 0x0 }, \ 176 { "FR_retired_x86_instr_w_excp_intr", 0xC0, 0x0 }, \ 177 { "FR_retired_uops", 0xC1, 0x0 }, \ 178 { "FR_retired_branches_w_excp_intr", 0xC2, 0x0 }, \ 179 { "FR_retired_branches_mispred", 0xC3, 0x0 }, \ 180 { "FR_retired_taken_branches", 0xC4, 0x0 }, \ 181 { "FR_retired_taken_branches_mispred", 0xC5, 0x0 }, \ 182 { "FR_retired_far_ctl_transfer", 0xC6, 0x0 }, \ 183 { "FR_retired_resyncs", 0xC7, 0x0 }, \ 184 { "FR_retired_near_rets", 0xC8, 0x0 }, \ 185 { "FR_retired_near_rets_mispred", 0xC9, 0x0 }, \ 186 { "FR_retired_taken_branches_mispred_addr_miscop", 0xCA, 0x0 },\ 187 { "FR_retired_fpu_instr", 0xCB, 0xF }, \ 188 { "FR_retired_fastpath_double_op_instr", 0xCC, 0x7 }, \ 189 { "FR_intr_masked_cycles", 0xCD, 0x0 }, \ 190 { "FR_intr_masked_while_pending_cycles", 0xCE, 0x0 }, \ 191 { "FR_taken_hardware_intrs", 0xCF, 0x0 }, \ 192 { "FR_nothing_to_dispatch", 0xD0, 0x0 }, \ 193 { "FR_dispatch_stalls", 0xD1, 0x0 }, \ 194 { "FR_dispatch_stall_branch_abort_to_retire", 0xD2, 0x0 }, \ 195 { "FR_dispatch_stall_serialization", 0xD3, 0x0 }, \ 196 { "FR_dispatch_stall_segment_load", 0xD4, 0x0 }, \ 197 { "FR_dispatch_stall_reorder_buffer_full", 0xD5, 0x0 }, \ 198 { "FR_dispatch_stall_resv_stations_full", 0xD6, 0x0 }, \ 199 { "FR_dispatch_stall_fpu_full", 0xD7, 0x0 }, \ 200 { "FR_dispatch_stall_ls_full", 0xD8, 0x0 }, \ 201 { "FR_dispatch_stall_waiting_all_quiet", 0xD9, 0x0 }, \ 202 { "FR_dispatch_stall_far_ctl_trsfr_resync_branc_pend", 0xDA, 0x0 },\ 203 { "FR_fpu_exception", 0xDB, 0xF }, \ 204 { "FR_num_brkpts_dr0", 0xDC, 0x0 }, \ 205 { "FR_num_brkpts_dr1", 0xDD, 0x0 }, \ 206 { "FR_num_brkpts_dr2", 0xDE, 0x0 }, \ 207 { "FR_num_brkpts_dr3", 0xDF, 0x0 }, \ 208 { "NB_mem_ctrlr_page_access", 0xE0, 0x7 }, \ 209 { "NB_mem_ctrlr_page_table_overflow", 0xE1, 0x0 }, \ 210 { "NB_mem_ctrlr_turnaround", 0xE3, 0x7 }, \ 211 { "NB_mem_ctrlr_bypass_counter_saturation", 0xE4, 0xF }, \ 212 { "NB_ECC_errors", 0xE8, 0x80}, \ 213 { "NB_sized_commands", 0xEB, 0x7F }, \ 214 { "NB_probe_result", 0xEC, 0x7F}, \ 215 { "NB_gart_events", 0xEE, 0x7 }, \ 216 { "NB_ht_bus0_bandwidth", 0xF6, 0xF }, \ 217 { "NB_ht_bus1_bandwidth", 0xF7, 0xF }, \ 218 { "NB_ht_bus2_bandwidth", 0xF8, 0xF } 219 220 #define OPT_RevD_events \ 221 { "NB_sized_blocks", 0xE5, 0x3C } 222 223 #define OPT_RevE_events \ 224 { "NB_cpu_io_to_mem_io", 0xE9, 0xFF}, \ 225 { "NB_cache_block_commands", 0xEA, 0x3D} 226 227 228 static opt_event_t opt_events_cmn[] = { 229 OPT_cmn_events, 230 EV_END 231 }; 232 233 static opt_event_t opt_events_rev_D[] = { 234 OPT_cmn_events, 235 OPT_RevD_events, 236 EV_END 237 }; 238 239 static opt_event_t opt_events_rev_E[] = { 240 OPT_cmn_events, 241 OPT_RevD_events, 242 OPT_RevE_events, 243 EV_END 244 }; 245 246 static char *evlist; 247 static size_t evlist_sz; 248 static opt_event_t *opt_events; 249 250 #define BITS(v, u, l) \ 251 (((v) >> (l)) & ((1 << (1 + (u) - (l))) - 1)) 252 253 #define OPTERON_FAMILY 15 254 255 static int 256 opt_pcbe_init(void) 257 { 258 opt_event_t *evp; 259 uint32_t rev; 260 261 /* 262 * Make sure this really _is_ an Opteron or Athlon 64 system. The kernel 263 * loads this module based on its name in the module directory, but it 264 * could have been renamed. 265 */ 266 if (cpuid_getvendor(CPU) != X86_VENDOR_AMD || 267 cpuid_getfamily(CPU) != OPTERON_FAMILY) 268 return (-1); 269 270 /* 271 * Figure out processor revision here and assign appropriate 272 * event configuration. 273 */ 274 275 rev = cpuid_getchiprev(CPU); 276 277 if (!X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_D)) { 278 opt_events = opt_events_cmn; 279 } else if X86_CHIPREV_MATCH(rev, X86_CHIPREV_AMD_F_REV_D) { 280 opt_events = opt_events_rev_D; 281 } else if (X86_CHIPREV_MATCH(rev, X86_CHIPREV_AMD_F_REV_E) || 282 X86_CHIPREV_MATCH(rev, X86_CHIPREV_AMD_F_REV_F) || 283 X86_CHIPREV_MATCH(rev, X86_CHIPREV_AMD_F_REV_G)) { 284 opt_events = opt_events_rev_E; 285 }; 286 287 if (opt_events == NULL) 288 opt_events = opt_events_cmn; 289 290 /* 291 * Construct event list. 292 * 293 * First pass: Calculate size needed. We'll need an additional byte 294 * for the NULL pointer during the last strcat. 295 * 296 * Second pass: Copy strings. 297 */ 298 for (evp = opt_events; evp->name != NULL; evp++) 299 evlist_sz += strlen(evp->name) + 1; 300 301 evlist = kmem_alloc(evlist_sz + 1, KM_SLEEP); 302 evlist[0] = '\0'; 303 304 for (evp = opt_events; evp->name != NULL; evp++) { 305 (void) strcat(evlist, evp->name); 306 (void) strcat(evlist, ","); 307 } 308 /* 309 * Remove trailing comma. 310 */ 311 evlist[evlist_sz - 1] = '\0'; 312 313 return (0); 314 } 315 316 static uint_t 317 opt_pcbe_ncounters(void) 318 { 319 return (4); 320 } 321 322 static const char * 323 opt_pcbe_impl_name(void) 324 { 325 return ("AMD Opteron & Athlon64"); 326 } 327 328 static const char * 329 opt_pcbe_cpuref(void) 330 { 331 return ("See Chapter 10 of the \"BIOS and Kernel Developer's Guide " 332 "for the AMD Athlon 64 and AMD Opteron Processors,\" " 333 "AMD publication #26094"); 334 } 335 336 /*ARGSUSED*/ 337 static char * 338 opt_pcbe_list_events(uint_t picnum) 339 { 340 return (evlist); 341 } 342 343 static char * 344 opt_pcbe_list_attrs(void) 345 { 346 return ("edge,pc,inv,cmask,umask"); 347 } 348 349 /*ARGSUSED*/ 350 static uint64_t 351 opt_pcbe_event_coverage(char *event) 352 { 353 /* 354 * Fortunately, all counters can count all events. 355 */ 356 return (0xF); 357 } 358 359 static uint64_t 360 opt_pcbe_overflow_bitmap(void) 361 { 362 /* 363 * Unfortunately, this chip cannot detect which counter overflowed, so 364 * we must act as if they all did. 365 */ 366 return (0xF); 367 } 368 369 static opt_event_t * 370 find_event(char *name) 371 { 372 opt_event_t *evp; 373 374 for (evp = opt_events; evp->name != NULL; evp++) 375 if (strcmp(name, evp->name) == 0) 376 return (evp); 377 378 return (NULL); 379 } 380 381 /*ARGSUSED*/ 382 static int 383 opt_pcbe_configure(uint_t picnum, char *event, uint64_t preset, uint32_t flags, 384 uint_t nattrs, kcpc_attr_t *attrs, void **data, void *token) 385 { 386 opt_pcbe_config_t *cfg; 387 opt_event_t *evp; 388 opt_event_t ev_raw = { "raw", 0, 0xFF }; 389 int i; 390 uint32_t evsel = 0; 391 392 /* 393 * If we've been handed an existing configuration, we need only preset 394 * the counter value. 395 */ 396 if (*data != NULL) { 397 cfg = *data; 398 cfg->opt_rawpic = preset & MASK48; 399 return (0); 400 } 401 402 if (picnum >= 4) 403 return (CPC_INVALID_PICNUM); 404 405 if ((evp = find_event(event)) == NULL) { 406 long tmp; 407 408 /* 409 * If ddi_strtol() likes this event, use it as a raw event code. 410 */ 411 if (ddi_strtol(event, NULL, 0, &tmp) != 0) 412 return (CPC_INVALID_EVENT); 413 414 ev_raw.emask = tmp; 415 evp = &ev_raw; 416 } 417 418 evsel |= evp->emask; 419 420 if (flags & CPC_COUNT_USER) 421 evsel |= OPT_PES_USR; 422 if (flags & CPC_COUNT_SYSTEM) 423 evsel |= OPT_PES_OS; 424 if (flags & CPC_OVF_NOTIFY_EMT) 425 evsel |= OPT_PES_INT; 426 427 for (i = 0; i < nattrs; i++) { 428 if (strcmp(attrs[i].ka_name, "edge") == 0) { 429 if (attrs[i].ka_val != 0) 430 evsel |= OPT_PES_EDGE; 431 } else if (strcmp(attrs[i].ka_name, "pc") == 0) { 432 if (attrs[i].ka_val != 0) 433 evsel |= OPT_PES_PC; 434 } else if (strcmp(attrs[i].ka_name, "inv") == 0) { 435 if (attrs[i].ka_val != 0) 436 evsel |= OPT_PES_INV; 437 } else if (strcmp(attrs[i].ka_name, "cmask") == 0) { 438 if ((attrs[i].ka_val | OPT_PES_CMASK_MASK) != 439 OPT_PES_CMASK_MASK) 440 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 441 evsel |= attrs[i].ka_val << OPT_PES_CMASK_SHIFT; 442 } else if (strcmp(attrs[i].ka_name, "umask") == 0) { 443 if ((attrs[i].ka_val | evp->umask_valid) != 444 evp->umask_valid) 445 return (CPC_ATTRIBUTE_OUT_OF_RANGE); 446 evsel |= attrs[i].ka_val << OPT_PES_UMASK_SHIFT; 447 } else 448 return (CPC_INVALID_ATTRIBUTE); 449 } 450 451 cfg = kmem_alloc(sizeof (*cfg), KM_SLEEP); 452 453 cfg->opt_picno = picnum; 454 cfg->opt_evsel = evsel; 455 cfg->opt_rawpic = preset & MASK48; 456 457 *data = cfg; 458 return (0); 459 } 460 461 static void 462 opt_pcbe_program(void *token) 463 { 464 opt_pcbe_config_t *cfgs[4] = { &nullcfgs[0], &nullcfgs[1], 465 &nullcfgs[2], &nullcfgs[3] }; 466 opt_pcbe_config_t *pcfg = NULL; 467 int i; 468 ulong_t curcr4 = getcr4(); 469 470 /* 471 * Allow nonprivileged code to read the performance counters if desired. 472 */ 473 if (kcpc_allow_nonpriv(token)) 474 setcr4(curcr4 | CR4_PCE); 475 else 476 setcr4(curcr4 & ~CR4_PCE); 477 478 /* 479 * Query kernel for all configs which will be co-programmed. 480 */ 481 do { 482 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, NULL); 483 484 if (pcfg != NULL) { 485 ASSERT(pcfg->opt_picno < 4); 486 cfgs[pcfg->opt_picno] = pcfg; 487 } 488 } while (pcfg != NULL); 489 490 /* 491 * Program in two loops. The first configures and presets the counter, 492 * and the second loop enables the counters. This ensures that the 493 * counters are all enabled as closely together in time as possible. 494 */ 495 496 for (i = 0; i < 4; i++) { 497 wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel); 498 wrmsr(PIC_BASE_ADDR + i, cfgs[i]->opt_rawpic); 499 } 500 501 for (i = 0; i < 4; i++) { 502 wrmsr(PES_BASE_ADDR + i, cfgs[i]->opt_evsel | 503 (uint64_t)(uintptr_t)OPT_PES_ENABLE); 504 } 505 } 506 507 static void 508 opt_pcbe_allstop(void) 509 { 510 int i; 511 512 for (i = 0; i < 4; i++) 513 wrmsr(PES_BASE_ADDR + i, 0ULL); 514 515 /* 516 * Disable non-privileged access to the counter registers. 517 */ 518 setcr4(getcr4() & ~CR4_PCE); 519 } 520 521 static void 522 opt_pcbe_sample(void *token) 523 { 524 opt_pcbe_config_t *cfgs[4] = { NULL, NULL, NULL, NULL }; 525 opt_pcbe_config_t *pcfg = NULL; 526 int i; 527 uint64_t curpic[4]; 528 uint64_t *addrs[4]; 529 uint64_t *tmp; 530 int64_t diff; 531 532 for (i = 0; i < 4; i++) 533 curpic[i] = rdmsr(PIC_BASE_ADDR + i); 534 535 /* 536 * Query kernel for all configs which are co-programmed. 537 */ 538 do { 539 pcfg = (opt_pcbe_config_t *)kcpc_next_config(token, pcfg, &tmp); 540 541 if (pcfg != NULL) { 542 ASSERT(pcfg->opt_picno < 4); 543 cfgs[pcfg->opt_picno] = pcfg; 544 addrs[pcfg->opt_picno] = tmp; 545 } 546 } while (pcfg != NULL); 547 548 for (i = 0; i < 4; i++) { 549 if (cfgs[i] == NULL) 550 continue; 551 552 diff = (curpic[i] - cfgs[i]->opt_rawpic) & MASK48; 553 *addrs[i] += diff; 554 DTRACE_PROBE4(opt__pcbe__sample, int, i, uint64_t, *addrs[i], 555 uint64_t, curpic[i], uint64_t, cfgs[i]->opt_rawpic); 556 cfgs[i]->opt_rawpic = *addrs[i] & MASK48; 557 } 558 } 559 560 static void 561 opt_pcbe_free(void *config) 562 { 563 kmem_free(config, sizeof (opt_pcbe_config_t)); 564 } 565 566 567 static struct modlpcbe modlpcbe = { 568 &mod_pcbeops, 569 "AMD Performance Counters v%I%", 570 &opt_pcbe_ops 571 }; 572 573 static struct modlinkage modl = { 574 MODREV_1, 575 &modlpcbe, 576 }; 577 578 int 579 _init(void) 580 { 581 int ret; 582 583 if (opt_pcbe_init() != 0) 584 return (ENOTSUP); 585 586 if ((ret = mod_install(&modl)) != 0) 587 kmem_free(evlist, evlist_sz + 1); 588 589 return (ret); 590 } 591 592 int 593 _fini(void) 594 { 595 int ret; 596 597 if ((ret = mod_remove(&modl)) == 0) 598 kmem_free(evlist, evlist_sz + 1); 599 return (ret); 600 } 601 602 int 603 _info(struct modinfo *mi) 604 { 605 return (mod_info(&modl, mi)); 606 } 607