xref: /titanic_52/usr/src/uts/intel/io/dktp/disk/cmdk.c (revision f6f4cb8ada400367a1921f6b93fb9e02f53ac5e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/scsi/scsi.h>
27 #include <sys/dktp/cm.h>
28 #include <sys/dktp/quetypes.h>
29 #include <sys/dktp/queue.h>
30 #include <sys/dktp/fctypes.h>
31 #include <sys/dktp/flowctrl.h>
32 #include <sys/dktp/cmdev.h>
33 #include <sys/dkio.h>
34 #include <sys/dktp/tgdk.h>
35 #include <sys/dktp/dadk.h>
36 #include <sys/dktp/bbh.h>
37 #include <sys/dktp/altsctr.h>
38 #include <sys/dktp/cmdk.h>
39 
40 #include <sys/stat.h>
41 #include <sys/vtoc.h>
42 #include <sys/file.h>
43 #include <sys/dktp/dadkio.h>
44 #include <sys/aio_req.h>
45 
46 #include <sys/cmlb.h>
47 
48 /*
49  * Local Static Data
50  */
51 #ifdef CMDK_DEBUG
52 #define	DENT	0x0001
53 #define	DIO	0x0002
54 
55 static	int	cmdk_debug = DIO;
56 #endif
57 
58 #ifndef	TRUE
59 #define	TRUE	1
60 #endif
61 
62 #ifndef	FALSE
63 #define	FALSE	0
64 #endif
65 
66 /*
67  * NDKMAP is the base number for accessing the fdisk partitions.
68  * c?d?p0 --> cmdk@?,?:q
69  */
70 #define	PARTITION0_INDEX	(NDKMAP + 0)
71 
72 #define	DKTP_DATA		(dkp->dk_tgobjp)->tg_data
73 #define	DKTP_EXT		(dkp->dk_tgobjp)->tg_ext
74 
75 static void *cmdk_state;
76 
77 /*
78  * the cmdk_attach_mutex protects cmdk_max_instance in multi-threaded
79  * attach situations
80  */
81 static kmutex_t cmdk_attach_mutex;
82 static int cmdk_max_instance = 0;
83 
84 /*
85  * Panic dumpsys state
86  * There is only a single flag that is not mutex locked since
87  * the system is prevented from thread switching and cmdk_dump
88  * will only be called in a single threaded operation.
89  */
90 static int	cmdk_indump;
91 
92 /*
93  * Local Function Prototypes
94  */
95 static int cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp);
96 static void cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp);
97 static void cmdkmin(struct buf *bp);
98 static int cmdkrw(dev_t dev, struct uio *uio, int flag);
99 static int cmdkarw(dev_t dev, struct aio_req *aio, int flag);
100 
101 /*
102  * Bad Block Handling Functions Prototypes
103  */
104 static void cmdk_bbh_reopen(struct cmdk *dkp);
105 static opaque_t cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp);
106 static bbh_cookie_t cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle);
107 static void cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle);
108 static void cmdk_bbh_close(struct cmdk *dkp);
109 static void cmdk_bbh_setalts_idx(struct cmdk *dkp);
110 static int cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key);
111 
112 static struct bbh_objops cmdk_bbh_ops = {
113 	nulldev,
114 	nulldev,
115 	cmdk_bbh_gethandle,
116 	cmdk_bbh_htoc,
117 	cmdk_bbh_freehandle,
118 	0, 0
119 };
120 
121 static int cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp);
122 static int cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp);
123 static int cmdkstrategy(struct buf *bp);
124 static int cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
125 static int cmdkioctl(dev_t, int, intptr_t, int, cred_t *, int *);
126 static int cmdkread(dev_t dev, struct uio *uio, cred_t *credp);
127 static int cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp);
128 static int cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
129     int mod_flags, char *name, caddr_t valuep, int *lengthp);
130 static int cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp);
131 static int cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp);
132 
133 /*
134  * Device driver ops vector
135  */
136 
137 static struct cb_ops cmdk_cb_ops = {
138 	cmdkopen, 		/* open */
139 	cmdkclose, 		/* close */
140 	cmdkstrategy, 		/* strategy */
141 	nodev, 			/* print */
142 	cmdkdump, 		/* dump */
143 	cmdkread, 		/* read */
144 	cmdkwrite, 		/* write */
145 	cmdkioctl, 		/* ioctl */
146 	nodev, 			/* devmap */
147 	nodev, 			/* mmap */
148 	nodev, 			/* segmap */
149 	nochpoll, 		/* poll */
150 	cmdk_prop_op, 		/* cb_prop_op */
151 	0, 			/* streamtab  */
152 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
153 	CB_REV,			/* cb_rev */
154 	cmdkaread,		/* async read */
155 	cmdkawrite		/* async write */
156 };
157 
158 static int cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
159     void **result);
160 static int cmdkprobe(dev_info_t *dip);
161 static int cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd);
162 static int cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);
163 
164 static void cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp);
165 static int cmdkresume(dev_info_t *dip);
166 static int cmdksuspend(dev_info_t *dip);
167 static int cmdkpower(dev_info_t *dip, int component, int level);
168 
169 struct dev_ops cmdk_ops = {
170 	DEVO_REV, 		/* devo_rev, */
171 	0, 			/* refcnt  */
172 	cmdkinfo,		/* info */
173 	nulldev, 		/* identify */
174 	cmdkprobe, 		/* probe */
175 	cmdkattach, 		/* attach */
176 	cmdkdetach,		/* detach */
177 	nodev, 			/* reset */
178 	&cmdk_cb_ops, 		/* driver operations */
179 	(struct bus_ops *)0,	/* bus operations */
180 	cmdkpower		/* power */
181 };
182 
183 /*
184  * This is the loadable module wrapper.
185  */
186 #include <sys/modctl.h>
187 
188 extern struct mod_ops mod_driverops;
189 
190 static struct modldrv modldrv = {
191 	&mod_driverops, 	/* Type of module. This one is a driver */
192 	"Common Direct Access Disk",
193 	&cmdk_ops, 				/* driver ops 		*/
194 };
195 
196 static struct modlinkage modlinkage = {
197 	MODREV_1, (void *)&modldrv, NULL
198 };
199 
200 /* Function prototypes for cmlb callbacks */
201 
202 static int cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
203     diskaddr_t start, size_t length, void *tg_cookie);
204 
205 static int cmdk_lb_getinfo(dev_info_t *dip, int cmd,  void *arg,
206     void *tg_cookie);
207 
208 static void cmdk_devid_setup(struct cmdk *dkp);
209 static int cmdk_devid_modser(struct cmdk *dkp);
210 static int cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len);
211 static int cmdk_devid_fabricate(struct cmdk *dkp);
212 static int cmdk_devid_read(struct cmdk *dkp);
213 
214 static cmlb_tg_ops_t cmdk_lb_ops = {
215 	TG_DK_OPS_VERSION_1,
216 	cmdk_lb_rdwr,
217 	cmdk_lb_getinfo
218 };
219 
220 static boolean_t
221 cmdk_isopen(struct cmdk *dkp, dev_t dev)
222 {
223 	int		part, otyp;
224 	ulong_t		partbit;
225 
226 	ASSERT(MUTEX_HELD((&dkp->dk_mutex)));
227 
228 	part = CMDKPART(dev);
229 	partbit = 1 << part;
230 
231 	/* account for close */
232 	if (dkp->dk_open_lyr[part] != 0)
233 		return (B_TRUE);
234 	for (otyp = 0; otyp < OTYPCNT; otyp++)
235 		if (dkp->dk_open_reg[otyp] & partbit)
236 			return (B_TRUE);
237 	return (B_FALSE);
238 }
239 
240 int
241 _init(void)
242 {
243 	int 	rval;
244 
245 	if (rval = ddi_soft_state_init(&cmdk_state, sizeof (struct cmdk), 7))
246 		return (rval);
247 
248 	mutex_init(&cmdk_attach_mutex, NULL, MUTEX_DRIVER, NULL);
249 	if ((rval = mod_install(&modlinkage)) != 0) {
250 		mutex_destroy(&cmdk_attach_mutex);
251 		ddi_soft_state_fini(&cmdk_state);
252 	}
253 	return (rval);
254 }
255 
256 int
257 _fini(void)
258 {
259 	return (EBUSY);
260 
261 	/*
262 	 * This has been commented out until cmdk is a true
263 	 * unloadable module. Right now x86's are panicking on
264 	 * a diskless reconfig boot.
265 	 */
266 
267 #if 0 	/* bugid 1186679 */
268 	int	rval;
269 
270 	rval = mod_remove(&modlinkage);
271 	if (rval != 0)
272 		return (rval);
273 
274 	mutex_destroy(&cmdk_attach_mutex);
275 	ddi_soft_state_fini(&cmdk_state);
276 
277 	return (0);
278 #endif
279 }
280 
281 int
282 _info(struct modinfo *modinfop)
283 {
284 	return (mod_info(&modlinkage, modinfop));
285 }
286 
287 /*
288  * Autoconfiguration Routines
289  */
290 static int
291 cmdkprobe(dev_info_t *dip)
292 {
293 	int 	instance;
294 	int	status;
295 	struct	cmdk	*dkp;
296 
297 	instance = ddi_get_instance(dip);
298 
299 	if (ddi_get_soft_state(cmdk_state, instance))
300 		return (DDI_PROBE_PARTIAL);
301 
302 	if ((ddi_soft_state_zalloc(cmdk_state, instance) != DDI_SUCCESS) ||
303 	    ((dkp = ddi_get_soft_state(cmdk_state, instance)) == NULL))
304 		return (DDI_PROBE_PARTIAL);
305 
306 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
307 	rw_init(&dkp->dk_bbh_mutex, NULL, RW_DRIVER, NULL);
308 	dkp->dk_dip = dip;
309 	mutex_enter(&dkp->dk_mutex);
310 
311 	dkp->dk_dev = makedevice(ddi_driver_major(dip),
312 	    ddi_get_instance(dip) << CMDK_UNITSHF);
313 
314 	/* linkage to dadk and strategy */
315 	if (cmdk_create_obj(dip, dkp) != DDI_SUCCESS) {
316 		mutex_exit(&dkp->dk_mutex);
317 		mutex_destroy(&dkp->dk_mutex);
318 		rw_destroy(&dkp->dk_bbh_mutex);
319 		ddi_soft_state_free(cmdk_state, instance);
320 		return (DDI_PROBE_PARTIAL);
321 	}
322 
323 	status = dadk_probe(DKTP_DATA, KM_NOSLEEP);
324 	if (status != DDI_PROBE_SUCCESS) {
325 		cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
326 		mutex_exit(&dkp->dk_mutex);
327 		mutex_destroy(&dkp->dk_mutex);
328 		rw_destroy(&dkp->dk_bbh_mutex);
329 		ddi_soft_state_free(cmdk_state, instance);
330 		return (status);
331 	}
332 
333 	mutex_exit(&dkp->dk_mutex);
334 #ifdef CMDK_DEBUG
335 	if (cmdk_debug & DENT)
336 		PRF("cmdkprobe: instance= %d name= `%s`\n",
337 		    instance, ddi_get_name_addr(dip));
338 #endif
339 	return (status);
340 }
341 
342 static int
343 cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
344 {
345 	int 		instance;
346 	struct		cmdk *dkp;
347 	char 		*node_type;
348 
349 	switch (cmd) {
350 	case DDI_ATTACH:
351 		break;
352 	case DDI_RESUME:
353 		return (cmdkresume(dip));
354 	default:
355 		return (DDI_FAILURE);
356 	}
357 
358 	instance = ddi_get_instance(dip);
359 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
360 		return (DDI_FAILURE);
361 
362 	dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
363 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
364 
365 	mutex_enter(&dkp->dk_mutex);
366 
367 	/* dadk_attach is an empty function that only returns SUCCESS */
368 	(void) dadk_attach(DKTP_DATA);
369 
370 	node_type = (DKTP_EXT->tg_nodetype);
371 
372 	/*
373 	 * this open allows cmlb to read the device
374 	 * and determine the label types
375 	 * so that cmlb can create minor nodes for device
376 	 */
377 
378 	/* open the target disk	 */
379 	if (dadk_open(DKTP_DATA, 0) != DDI_SUCCESS)
380 		goto fail2;
381 
382 	/* mark as having opened target */
383 	dkp->dk_flag |= CMDK_TGDK_OPEN;
384 
385 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
386 
387 	if (cmlb_attach(dip,
388 	    &cmdk_lb_ops,
389 	    DTYPE_DIRECT,		/* device_type */
390 	    0,				/* removable */
391 	    0,				/* hot pluggable XXX */
392 	    node_type,
393 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* alter_behaviour */
394 	    dkp->dk_cmlbhandle,
395 	    0) != 0)
396 		goto fail1;
397 
398 	/* Calling validate will create minor nodes according to disk label */
399 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
400 
401 	/* set bbh (Bad Block Handling) */
402 	cmdk_bbh_reopen(dkp);
403 
404 	/* setup devid string */
405 	cmdk_devid_setup(dkp);
406 
407 	mutex_enter(&cmdk_attach_mutex);
408 	if (instance > cmdk_max_instance)
409 		cmdk_max_instance = instance;
410 	mutex_exit(&cmdk_attach_mutex);
411 
412 	mutex_exit(&dkp->dk_mutex);
413 
414 	/*
415 	 * Add a zero-length attribute to tell the world we support
416 	 * kernel ioctls (for layered drivers)
417 	 */
418 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
419 	    DDI_KERNEL_IOCTL, NULL, 0);
420 	ddi_report_dev(dip);
421 
422 	/*
423 	 * Initialize power management
424 	 */
425 	mutex_init(&dkp->dk_pm_mutex, NULL, MUTEX_DRIVER, NULL);
426 	cv_init(&dkp->dk_suspend_cv,   NULL, CV_DRIVER, NULL);
427 	cmdk_setup_pm(dip, dkp);
428 
429 	return (DDI_SUCCESS);
430 
431 fail1:
432 	cmlb_free_handle(&dkp->dk_cmlbhandle);
433 	(void) dadk_close(DKTP_DATA);
434 fail2:
435 	cmdk_destroy_obj(dip, dkp);
436 	rw_destroy(&dkp->dk_bbh_mutex);
437 	mutex_exit(&dkp->dk_mutex);
438 	mutex_destroy(&dkp->dk_mutex);
439 	ddi_soft_state_free(cmdk_state, instance);
440 	return (DDI_FAILURE);
441 }
442 
443 
444 static int
445 cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
446 {
447 	struct cmdk	*dkp;
448 	int 		instance;
449 	int		max_instance;
450 
451 	switch (cmd) {
452 	case DDI_DETACH:
453 		/* return (DDI_FAILURE); */
454 		break;
455 	case DDI_SUSPEND:
456 		return (cmdksuspend(dip));
457 	default:
458 #ifdef CMDK_DEBUG
459 		if (cmdk_debug & DIO) {
460 			PRF("cmdkdetach: cmd = %d unknown\n", cmd);
461 		}
462 #endif
463 		return (DDI_FAILURE);
464 	}
465 
466 	mutex_enter(&cmdk_attach_mutex);
467 	max_instance = cmdk_max_instance;
468 	mutex_exit(&cmdk_attach_mutex);
469 
470 	/* check if any instance of driver is open */
471 	for (instance = 0; instance < max_instance; instance++) {
472 		dkp = ddi_get_soft_state(cmdk_state, instance);
473 		if (!dkp)
474 			continue;
475 		if (dkp->dk_flag & CMDK_OPEN)
476 			return (DDI_FAILURE);
477 	}
478 
479 	instance = ddi_get_instance(dip);
480 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
481 		return (DDI_SUCCESS);
482 
483 	mutex_enter(&dkp->dk_mutex);
484 
485 	/*
486 	 * The cmdk_part_info call at the end of cmdkattach may have
487 	 * caused cmdk_reopen to do a TGDK_OPEN, make sure we close on
488 	 * detach for case when cmdkopen/cmdkclose never occurs.
489 	 */
490 	if (dkp->dk_flag & CMDK_TGDK_OPEN) {
491 		dkp->dk_flag &= ~CMDK_TGDK_OPEN;
492 		(void) dadk_close(DKTP_DATA);
493 	}
494 
495 	cmlb_detach(dkp->dk_cmlbhandle, 0);
496 	cmlb_free_handle(&dkp->dk_cmlbhandle);
497 	ddi_prop_remove_all(dip);
498 
499 	cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
500 	mutex_exit(&dkp->dk_mutex);
501 	mutex_destroy(&dkp->dk_mutex);
502 	rw_destroy(&dkp->dk_bbh_mutex);
503 	mutex_destroy(&dkp->dk_pm_mutex);
504 	cv_destroy(&dkp->dk_suspend_cv);
505 	ddi_soft_state_free(cmdk_state, instance);
506 
507 	return (DDI_SUCCESS);
508 }
509 
510 static int
511 cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
512 {
513 	dev_t		dev = (dev_t)arg;
514 	int 		instance;
515 	struct	cmdk	*dkp;
516 
517 #ifdef lint
518 	dip = dip;	/* no one ever uses this */
519 #endif
520 #ifdef CMDK_DEBUG
521 	if (cmdk_debug & DENT)
522 		PRF("cmdkinfo: call\n");
523 #endif
524 	instance = CMDKUNIT(dev);
525 
526 	switch (infocmd) {
527 		case DDI_INFO_DEVT2DEVINFO:
528 			if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
529 				return (DDI_FAILURE);
530 			*result = (void *) dkp->dk_dip;
531 			break;
532 		case DDI_INFO_DEVT2INSTANCE:
533 			*result = (void *)(intptr_t)instance;
534 			break;
535 		default:
536 			return (DDI_FAILURE);
537 	}
538 	return (DDI_SUCCESS);
539 }
540 
541 /*
542  * Initialize the power management components
543  */
544 static void
545 cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp)
546 {
547 	char *pm_comp[] = { "NAME=cmdk", "0=off", "1=on", NULL };
548 
549 	/*
550 	 * Since the cmdk device does not the 'reg' property,
551 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
552 	 * The following code is to tell cpr that this device
553 	 * DOES need to be suspended and resumed.
554 	 */
555 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip,
556 	    "pm-hardware-state", "needs-suspend-resume");
557 
558 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
559 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
560 		if (pm_raise_power(dip, 0, CMDK_SPINDLE_ON) == DDI_SUCCESS) {
561 			mutex_enter(&dkp->dk_pm_mutex);
562 			dkp->dk_pm_level = CMDK_SPINDLE_ON;
563 			dkp->dk_pm_is_enabled = 1;
564 			mutex_exit(&dkp->dk_pm_mutex);
565 		} else {
566 			mutex_enter(&dkp->dk_pm_mutex);
567 			dkp->dk_pm_level = CMDK_SPINDLE_OFF;
568 			dkp->dk_pm_is_enabled = 0;
569 			mutex_exit(&dkp->dk_pm_mutex);
570 		}
571 	} else {
572 		mutex_enter(&dkp->dk_pm_mutex);
573 		dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
574 		dkp->dk_pm_is_enabled = 0;
575 		mutex_exit(&dkp->dk_pm_mutex);
576 	}
577 }
578 
579 /*
580  * suspend routine, it will be run when get the command
581  * DDI_SUSPEND at detach(9E) from system power management
582  */
583 static int
584 cmdksuspend(dev_info_t *dip)
585 {
586 	struct cmdk	*dkp;
587 	int		instance;
588 	clock_t		count = 0;
589 
590 	instance = ddi_get_instance(dip);
591 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
592 		return (DDI_FAILURE);
593 	mutex_enter(&dkp->dk_mutex);
594 	if (dkp->dk_flag & CMDK_SUSPEND) {
595 		mutex_exit(&dkp->dk_mutex);
596 		return (DDI_SUCCESS);
597 	}
598 	dkp->dk_flag |= CMDK_SUSPEND;
599 
600 	/* need to wait a while */
601 	while (dadk_getcmds(DKTP_DATA) != 0) {
602 		delay(drv_usectohz(1000000));
603 		if (count > 60) {
604 			dkp->dk_flag &= ~CMDK_SUSPEND;
605 			cv_broadcast(&dkp->dk_suspend_cv);
606 			mutex_exit(&dkp->dk_mutex);
607 			return (DDI_FAILURE);
608 		}
609 		count++;
610 	}
611 	mutex_exit(&dkp->dk_mutex);
612 	return (DDI_SUCCESS);
613 }
614 
615 /*
616  * resume routine, it will be run when get the command
617  * DDI_RESUME at attach(9E) from system power management
618  */
619 static int
620 cmdkresume(dev_info_t *dip)
621 {
622 	struct cmdk	*dkp;
623 	int		instance;
624 
625 	instance = ddi_get_instance(dip);
626 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
627 		return (DDI_FAILURE);
628 	mutex_enter(&dkp->dk_mutex);
629 	if (!(dkp->dk_flag & CMDK_SUSPEND)) {
630 		mutex_exit(&dkp->dk_mutex);
631 		return (DDI_FAILURE);
632 	}
633 	dkp->dk_pm_level = CMDK_SPINDLE_ON;
634 	dkp->dk_flag &= ~CMDK_SUSPEND;
635 	cv_broadcast(&dkp->dk_suspend_cv);
636 	mutex_exit(&dkp->dk_mutex);
637 	return (DDI_SUCCESS);
638 
639 }
640 
641 /*
642  * power management entry point, it was used to
643  * change power management component.
644  * Actually, the real hard drive suspend/resume
645  * was handled in ata, so this function is not
646  * doing any real work other than verifying that
647  * the disk is idle.
648  */
649 static int
650 cmdkpower(dev_info_t *dip, int component, int level)
651 {
652 	struct cmdk	*dkp;
653 	int		instance;
654 
655 	instance = ddi_get_instance(dip);
656 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
657 	    component != 0 || level > CMDK_SPINDLE_ON ||
658 	    level < CMDK_SPINDLE_OFF) {
659 		return (DDI_FAILURE);
660 	}
661 
662 	mutex_enter(&dkp->dk_pm_mutex);
663 	if (dkp->dk_pm_is_enabled && dkp->dk_pm_level == level) {
664 		mutex_exit(&dkp->dk_pm_mutex);
665 		return (DDI_SUCCESS);
666 	}
667 	mutex_exit(&dkp->dk_pm_mutex);
668 
669 	if ((level == CMDK_SPINDLE_OFF) &&
670 	    (dadk_getcmds(DKTP_DATA) != 0)) {
671 		return (DDI_FAILURE);
672 	}
673 
674 	mutex_enter(&dkp->dk_pm_mutex);
675 	dkp->dk_pm_level = level;
676 	mutex_exit(&dkp->dk_pm_mutex);
677 	return (DDI_SUCCESS);
678 }
679 
680 static int
681 cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
682     char *name, caddr_t valuep, int *lengthp)
683 {
684 	struct	cmdk	*dkp;
685 
686 #ifdef CMDK_DEBUG
687 	if (cmdk_debug & DENT)
688 		PRF("cmdk_prop_op: call\n");
689 #endif
690 
691 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
692 	if (dkp == NULL)
693 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
694 		    name, valuep, lengthp));
695 
696 	return (cmlb_prop_op(dkp->dk_cmlbhandle,
697 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
698 	    CMDKPART(dev), NULL));
699 }
700 
701 /*
702  * dump routine
703  */
704 static int
705 cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
706 {
707 	int 		instance;
708 	struct	cmdk	*dkp;
709 	diskaddr_t	p_lblksrt;
710 	diskaddr_t	p_lblkcnt;
711 	struct	buf	local;
712 	struct	buf	*bp;
713 
714 #ifdef CMDK_DEBUG
715 	if (cmdk_debug & DENT)
716 		PRF("cmdkdump: call\n");
717 #endif
718 	instance = CMDKUNIT(dev);
719 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) || (blkno < 0))
720 		return (ENXIO);
721 
722 	if (cmlb_partinfo(
723 	    dkp->dk_cmlbhandle,
724 	    CMDKPART(dev),
725 	    &p_lblkcnt,
726 	    &p_lblksrt,
727 	    NULL,
728 	    NULL,
729 	    0)) {
730 		return (ENXIO);
731 	}
732 
733 	if ((blkno+nblk) > p_lblkcnt)
734 		return (EINVAL);
735 
736 	cmdk_indump = 1;	/* Tell disk targets we are panic dumpping */
737 
738 	bp = &local;
739 	bzero(bp, sizeof (*bp));
740 	bp->b_flags = B_BUSY;
741 	bp->b_un.b_addr = addr;
742 	bp->b_bcount = nblk << SCTRSHFT;
743 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + blkno)));
744 
745 	(void) dadk_dump(DKTP_DATA, bp);
746 	return (bp->b_error);
747 }
748 
749 /*
750  * Copy in the dadkio_rwcmd according to the user's data model.  If needed,
751  * convert it for our internal use.
752  */
753 static int
754 rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
755 {
756 	switch (ddi_model_convert_from(flag)) {
757 		case DDI_MODEL_ILP32: {
758 			struct dadkio_rwcmd32 cmd32;
759 
760 			if (ddi_copyin(inaddr, &cmd32,
761 			    sizeof (struct dadkio_rwcmd32), flag)) {
762 				return (EFAULT);
763 			}
764 
765 			rwcmdp->cmd = cmd32.cmd;
766 			rwcmdp->flags = cmd32.flags;
767 			rwcmdp->blkaddr = (daddr_t)cmd32.blkaddr;
768 			rwcmdp->buflen = cmd32.buflen;
769 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
770 			/*
771 			 * Note: we do not convert the 'status' field,
772 			 * as it should not contain valid data at this
773 			 * point.
774 			 */
775 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
776 			break;
777 		}
778 		case DDI_MODEL_NONE: {
779 			if (ddi_copyin(inaddr, rwcmdp,
780 			    sizeof (struct dadkio_rwcmd), flag)) {
781 				return (EFAULT);
782 			}
783 		}
784 	}
785 	return (0);
786 }
787 
788 /*
789  * If necessary, convert the internal rwcmdp and status to the appropriate
790  * data model and copy it out to the user.
791  */
792 static int
793 rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
794 {
795 	switch (ddi_model_convert_from(flag)) {
796 		case DDI_MODEL_ILP32: {
797 			struct dadkio_rwcmd32 cmd32;
798 
799 			cmd32.cmd = rwcmdp->cmd;
800 			cmd32.flags = rwcmdp->flags;
801 			cmd32.blkaddr = rwcmdp->blkaddr;
802 			cmd32.buflen = rwcmdp->buflen;
803 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
804 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
805 
806 			cmd32.status.status = rwcmdp->status.status;
807 			cmd32.status.resid = rwcmdp->status.resid;
808 			cmd32.status.failed_blk_is_valid =
809 			    rwcmdp->status.failed_blk_is_valid;
810 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
811 			cmd32.status.fru_code_is_valid =
812 			    rwcmdp->status.fru_code_is_valid;
813 			cmd32.status.fru_code = rwcmdp->status.fru_code;
814 
815 			bcopy(rwcmdp->status.add_error_info,
816 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
817 
818 			if (ddi_copyout(&cmd32, outaddr,
819 			    sizeof (struct dadkio_rwcmd32), flag))
820 				return (EFAULT);
821 			break;
822 		}
823 		case DDI_MODEL_NONE: {
824 			if (ddi_copyout(rwcmdp, outaddr,
825 			    sizeof (struct dadkio_rwcmd), flag))
826 			return (EFAULT);
827 		}
828 	}
829 	return (0);
830 }
831 
832 /*
833  * ioctl routine
834  */
835 static int
836 cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
837 {
838 	int 		instance;
839 	struct scsi_device *devp;
840 	struct cmdk	*dkp;
841 	char 		data[NBPSCTR];
842 
843 	instance = CMDKUNIT(dev);
844 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
845 		return (ENXIO);
846 
847 	mutex_enter(&dkp->dk_mutex);
848 	while (dkp->dk_flag & CMDK_SUSPEND) {
849 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
850 	}
851 	mutex_exit(&dkp->dk_mutex);
852 
853 	bzero(data, sizeof (data));
854 
855 	switch (cmd) {
856 
857 	case DKIOCGMEDIAINFO: {
858 		struct dk_minfo	media_info;
859 		struct  tgdk_geom phyg;
860 
861 		/* dadk_getphygeom always returns success */
862 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
863 
864 		media_info.dki_lbsize = phyg.g_secsiz;
865 		media_info.dki_capacity = phyg.g_cap;
866 		media_info.dki_media_type = DK_FIXED_DISK;
867 
868 		if (ddi_copyout(&media_info, (void *)arg,
869 		    sizeof (struct dk_minfo), flag)) {
870 			return (EFAULT);
871 		} else {
872 			return (0);
873 		}
874 	}
875 
876 	case DKIOCINFO: {
877 		struct dk_cinfo *info = (struct dk_cinfo *)data;
878 
879 		/* controller information */
880 		info->dki_ctype = (DKTP_EXT->tg_ctype);
881 		info->dki_cnum = ddi_get_instance(ddi_get_parent(dkp->dk_dip));
882 		(void) strcpy(info->dki_cname,
883 		    ddi_get_name(ddi_get_parent(dkp->dk_dip)));
884 
885 		/* Unit Information */
886 		info->dki_unit = ddi_get_instance(dkp->dk_dip);
887 		devp = ddi_get_driver_private(dkp->dk_dip);
888 		info->dki_slave = (CMDEV_TARG(devp)<<3) | CMDEV_LUN(devp);
889 		(void) strcpy(info->dki_dname, ddi_driver_name(dkp->dk_dip));
890 		info->dki_flags = DKI_FMTVOL;
891 		info->dki_partition = CMDKPART(dev);
892 
893 		info->dki_maxtransfer = maxphys / DEV_BSIZE;
894 		info->dki_addr = 1;
895 		info->dki_space = 0;
896 		info->dki_prio = 0;
897 		info->dki_vec = 0;
898 
899 		if (ddi_copyout(data, (void *)arg, sizeof (*info), flag))
900 			return (EFAULT);
901 		else
902 			return (0);
903 	}
904 
905 	case DKIOCSTATE: {
906 		int	state;
907 		int	rval;
908 		diskaddr_t	p_lblksrt;
909 		diskaddr_t	p_lblkcnt;
910 
911 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag))
912 			return (EFAULT);
913 
914 		/* dadk_check_media blocks until state changes */
915 		if (rval = dadk_check_media(DKTP_DATA, &state))
916 			return (rval);
917 
918 		if (state == DKIO_INSERTED) {
919 
920 			if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0)
921 				return (ENXIO);
922 
923 			if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(dev),
924 			    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0))
925 				return (ENXIO);
926 
927 			if (p_lblkcnt <= 0)
928 				return (ENXIO);
929 		}
930 
931 		if (ddi_copyout(&state, (caddr_t)arg, sizeof (int), flag))
932 			return (EFAULT);
933 
934 		return (0);
935 	}
936 
937 	/*
938 	 * is media removable?
939 	 */
940 	case DKIOCREMOVABLE: {
941 		int i;
942 
943 		i = (DKTP_EXT->tg_rmb) ? 1 : 0;
944 
945 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
946 			return (EFAULT);
947 
948 		return (0);
949 	}
950 
951 	case DKIOCADDBAD:
952 		/*
953 		 * This is not an update mechanism to add bad blocks
954 		 * to the bad block structures stored on disk.
955 		 *
956 		 * addbadsec(1M) will update the bad block data on disk
957 		 * and use this ioctl to force the driver to re-initialize
958 		 * the list of bad blocks in the driver.
959 		 */
960 
961 		/* start BBH */
962 		cmdk_bbh_reopen(dkp);
963 		return (0);
964 
965 	case DKIOCG_PHYGEOM:
966 	case DKIOCG_VIRTGEOM:
967 	case DKIOCGGEOM:
968 	case DKIOCSGEOM:
969 	case DKIOCGAPART:
970 	case DKIOCSAPART:
971 	case DKIOCGVTOC:
972 	case DKIOCSVTOC:
973 	case DKIOCPARTINFO:
974 	case DKIOCGMBOOT:
975 	case DKIOCSMBOOT:
976 	case DKIOCGETEFI:
977 	case DKIOCSETEFI:
978 	case DKIOCPARTITION:
979 	{
980 		int rc;
981 
982 		rc = cmlb_ioctl(dkp->dk_cmlbhandle, dev, cmd, arg, flag,
983 		    credp, rvalp, 0);
984 		if (cmd == DKIOCSVTOC)
985 			cmdk_devid_setup(dkp);
986 		return (rc);
987 	}
988 
989 	case DIOCTL_RWCMD: {
990 		struct	dadkio_rwcmd *rwcmdp;
991 		int	status;
992 
993 		rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
994 
995 		status = rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
996 
997 		if (status == 0) {
998 			bzero(&(rwcmdp->status), sizeof (struct dadkio_status));
999 			status = dadk_ioctl(DKTP_DATA,
1000 			    dev,
1001 			    cmd,
1002 			    (uintptr_t)rwcmdp,
1003 			    flag,
1004 			    credp,
1005 			    rvalp);
1006 		}
1007 		if (status == 0)
1008 			status = rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
1009 
1010 		kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
1011 		return (status);
1012 	}
1013 
1014 	default:
1015 		return (dadk_ioctl(DKTP_DATA,
1016 		    dev,
1017 		    cmd,
1018 		    arg,
1019 		    flag,
1020 		    credp,
1021 		    rvalp));
1022 	}
1023 }
1024 
1025 /*ARGSUSED1*/
1026 static int
1027 cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1028 {
1029 	int		part;
1030 	ulong_t		partbit;
1031 	int 		instance;
1032 	struct cmdk	*dkp;
1033 	int		lastclose = 1;
1034 	int		i;
1035 
1036 	instance = CMDKUNIT(dev);
1037 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1038 	    (otyp >= OTYPCNT))
1039 		return (ENXIO);
1040 
1041 	mutex_enter(&dkp->dk_mutex);
1042 
1043 	/* check if device has been opened */
1044 	ASSERT(cmdk_isopen(dkp, dev));
1045 	if (!(dkp->dk_flag & CMDK_OPEN)) {
1046 		mutex_exit(&dkp->dk_mutex);
1047 		return (ENXIO);
1048 	}
1049 
1050 	while (dkp->dk_flag & CMDK_SUSPEND) {
1051 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1052 	}
1053 
1054 	part = CMDKPART(dev);
1055 	partbit = 1 << part;
1056 
1057 	/* account for close */
1058 	if (otyp == OTYP_LYR) {
1059 		ASSERT(dkp->dk_open_lyr[part] > 0);
1060 		if (dkp->dk_open_lyr[part])
1061 			dkp->dk_open_lyr[part]--;
1062 	} else {
1063 		ASSERT((dkp->dk_open_reg[otyp] & partbit) != 0);
1064 		dkp->dk_open_reg[otyp] &= ~partbit;
1065 	}
1066 	dkp->dk_open_exl &= ~partbit;
1067 
1068 	for (i = 0; i < CMDK_MAXPART; i++)
1069 		if (dkp->dk_open_lyr[i] != 0) {
1070 			lastclose = 0;
1071 			break;
1072 		}
1073 
1074 	if (lastclose)
1075 		for (i = 0; i < OTYPCNT; i++)
1076 			if (dkp->dk_open_reg[i] != 0) {
1077 				lastclose = 0;
1078 				break;
1079 			}
1080 
1081 	mutex_exit(&dkp->dk_mutex);
1082 
1083 	if (lastclose)
1084 		cmlb_invalidate(dkp->dk_cmlbhandle, 0);
1085 
1086 	return (DDI_SUCCESS);
1087 }
1088 
1089 /*ARGSUSED3*/
1090 static int
1091 cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
1092 {
1093 	dev_t		dev = *dev_p;
1094 	int 		part;
1095 	ulong_t		partbit;
1096 	int 		instance;
1097 	struct	cmdk	*dkp;
1098 	diskaddr_t	p_lblksrt;
1099 	diskaddr_t	p_lblkcnt;
1100 	int		i;
1101 	int		nodelay;
1102 
1103 	instance = CMDKUNIT(dev);
1104 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1105 		return (ENXIO);
1106 
1107 	if (otyp >= OTYPCNT)
1108 		return (EINVAL);
1109 
1110 	mutex_enter(&dkp->dk_mutex);
1111 	while (dkp->dk_flag & CMDK_SUSPEND) {
1112 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1113 	}
1114 	mutex_exit(&dkp->dk_mutex);
1115 
1116 	part = CMDKPART(dev);
1117 	partbit = 1 << part;
1118 	nodelay = (flag & (FNDELAY | FNONBLOCK));
1119 
1120 	mutex_enter(&dkp->dk_mutex);
1121 
1122 	if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0) {
1123 
1124 		/* fail if not doing non block open */
1125 		if (!nodelay) {
1126 			mutex_exit(&dkp->dk_mutex);
1127 			return (ENXIO);
1128 		}
1129 	} else if (cmlb_partinfo(dkp->dk_cmlbhandle, part, &p_lblkcnt,
1130 	    &p_lblksrt, NULL, NULL, 0) == 0) {
1131 
1132 		if (p_lblkcnt <= 0 && (!nodelay || otyp != OTYP_CHR)) {
1133 			mutex_exit(&dkp->dk_mutex);
1134 			return (ENXIO);
1135 		}
1136 	} else {
1137 		/* fail if not doing non block open */
1138 		if (!nodelay) {
1139 			mutex_exit(&dkp->dk_mutex);
1140 			return (ENXIO);
1141 		}
1142 	}
1143 
1144 	if ((DKTP_EXT->tg_rdonly) && (flag & FWRITE)) {
1145 		mutex_exit(&dkp->dk_mutex);
1146 		return (EROFS);
1147 	}
1148 
1149 	/* check for part already opend exclusively */
1150 	if (dkp->dk_open_exl & partbit)
1151 		goto excl_open_fail;
1152 
1153 	/* check if we can establish exclusive open */
1154 	if (flag & FEXCL) {
1155 		if (dkp->dk_open_lyr[part])
1156 			goto excl_open_fail;
1157 		for (i = 0; i < OTYPCNT; i++) {
1158 			if (dkp->dk_open_reg[i] & partbit)
1159 				goto excl_open_fail;
1160 		}
1161 	}
1162 
1163 	/* open will succeed, account for open */
1164 	dkp->dk_flag |= CMDK_OPEN;
1165 	if (otyp == OTYP_LYR)
1166 		dkp->dk_open_lyr[part]++;
1167 	else
1168 		dkp->dk_open_reg[otyp] |= partbit;
1169 	if (flag & FEXCL)
1170 		dkp->dk_open_exl |= partbit;
1171 
1172 	mutex_exit(&dkp->dk_mutex);
1173 	return (DDI_SUCCESS);
1174 
1175 excl_open_fail:
1176 	mutex_exit(&dkp->dk_mutex);
1177 	return (EBUSY);
1178 }
1179 
1180 /*
1181  * read routine
1182  */
1183 /*ARGSUSED2*/
1184 static int
1185 cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
1186 {
1187 	return (cmdkrw(dev, uio, B_READ));
1188 }
1189 
1190 /*
1191  * async read routine
1192  */
1193 /*ARGSUSED2*/
1194 static int
1195 cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
1196 {
1197 	return (cmdkarw(dev, aio, B_READ));
1198 }
1199 
1200 /*
1201  * write routine
1202  */
1203 /*ARGSUSED2*/
1204 static int
1205 cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
1206 {
1207 	return (cmdkrw(dev, uio, B_WRITE));
1208 }
1209 
1210 /*
1211  * async write routine
1212  */
1213 /*ARGSUSED2*/
1214 static int
1215 cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1216 {
1217 	return (cmdkarw(dev, aio, B_WRITE));
1218 }
1219 
1220 static void
1221 cmdkmin(struct buf *bp)
1222 {
1223 	if (bp->b_bcount > DK_MAXRECSIZE)
1224 		bp->b_bcount = DK_MAXRECSIZE;
1225 }
1226 
1227 static int
1228 cmdkrw(dev_t dev, struct uio *uio, int flag)
1229 {
1230 	int 		instance;
1231 	struct	cmdk	*dkp;
1232 
1233 	instance = CMDKUNIT(dev);
1234 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1235 		return (ENXIO);
1236 
1237 	mutex_enter(&dkp->dk_mutex);
1238 	while (dkp->dk_flag & CMDK_SUSPEND) {
1239 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1240 	}
1241 	mutex_exit(&dkp->dk_mutex);
1242 
1243 	return (physio(cmdkstrategy, (struct buf *)0, dev, flag, cmdkmin, uio));
1244 }
1245 
1246 static int
1247 cmdkarw(dev_t dev, struct aio_req *aio, int flag)
1248 {
1249 	int 		instance;
1250 	struct	cmdk	*dkp;
1251 
1252 	instance = CMDKUNIT(dev);
1253 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1254 		return (ENXIO);
1255 
1256 	mutex_enter(&dkp->dk_mutex);
1257 	while (dkp->dk_flag & CMDK_SUSPEND) {
1258 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1259 	}
1260 	mutex_exit(&dkp->dk_mutex);
1261 
1262 	return (aphysio(cmdkstrategy, anocancel, dev, flag, cmdkmin, aio));
1263 }
1264 
1265 /*
1266  * strategy routine
1267  */
1268 static int
1269 cmdkstrategy(struct buf *bp)
1270 {
1271 	int 		instance;
1272 	struct	cmdk 	*dkp;
1273 	long		d_cnt;
1274 	diskaddr_t	p_lblksrt;
1275 	diskaddr_t	p_lblkcnt;
1276 
1277 	instance = CMDKUNIT(bp->b_edev);
1278 	if (cmdk_indump || !(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1279 	    (dkblock(bp) < 0)) {
1280 		bp->b_resid = bp->b_bcount;
1281 		SETBPERR(bp, ENXIO);
1282 		biodone(bp);
1283 		return (0);
1284 	}
1285 
1286 	mutex_enter(&dkp->dk_mutex);
1287 	ASSERT(cmdk_isopen(dkp, bp->b_edev));
1288 	while (dkp->dk_flag & CMDK_SUSPEND) {
1289 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1290 	}
1291 	mutex_exit(&dkp->dk_mutex);
1292 
1293 	bp->b_flags &= ~(B_DONE|B_ERROR);
1294 	bp->b_resid = 0;
1295 	bp->av_back = NULL;
1296 
1297 	/*
1298 	 * only re-read the vtoc if necessary (force == FALSE)
1299 	 */
1300 	if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(bp->b_edev),
1301 	    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0)) {
1302 		SETBPERR(bp, ENXIO);
1303 	}
1304 
1305 	if ((bp->b_bcount & (NBPSCTR-1)) || (dkblock(bp) > p_lblkcnt))
1306 		SETBPERR(bp, ENXIO);
1307 
1308 	if ((bp->b_flags & B_ERROR) || (dkblock(bp) == p_lblkcnt)) {
1309 		bp->b_resid = bp->b_bcount;
1310 		biodone(bp);
1311 		return (0);
1312 	}
1313 
1314 	d_cnt = bp->b_bcount >> SCTRSHFT;
1315 	if ((dkblock(bp) + d_cnt) > p_lblkcnt) {
1316 		bp->b_resid = ((dkblock(bp) + d_cnt) - p_lblkcnt) << SCTRSHFT;
1317 		bp->b_bcount -= bp->b_resid;
1318 	}
1319 
1320 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + dkblock(bp))));
1321 	if (dadk_strategy(DKTP_DATA, bp) != DDI_SUCCESS) {
1322 		bp->b_resid += bp->b_bcount;
1323 		biodone(bp);
1324 	}
1325 	return (0);
1326 }
1327 
1328 static int
1329 cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp)
1330 {
1331 	struct scsi_device *devp;
1332 	opaque_t	queobjp = NULL;
1333 	opaque_t	flcobjp = NULL;
1334 	char		que_keyvalp[64];
1335 	int		que_keylen;
1336 	char		flc_keyvalp[64];
1337 	int		flc_keylen;
1338 
1339 	ASSERT(mutex_owned(&dkp->dk_mutex));
1340 
1341 	/* Create linkage to queueing routines based on property */
1342 	que_keylen = sizeof (que_keyvalp);
1343 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1344 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1345 	    DDI_PROP_SUCCESS) {
1346 		cmn_err(CE_WARN, "cmdk_create_obj: queue property undefined");
1347 		return (DDI_FAILURE);
1348 	}
1349 	que_keyvalp[que_keylen] = (char)0;
1350 
1351 	if (strcmp(que_keyvalp, "qfifo") == 0) {
1352 		queobjp = (opaque_t)qfifo_create();
1353 	} else if (strcmp(que_keyvalp, "qsort") == 0) {
1354 		queobjp = (opaque_t)qsort_create();
1355 	} else {
1356 		return (DDI_FAILURE);
1357 	}
1358 
1359 	/* Create linkage to dequeueing routines based on property */
1360 	flc_keylen = sizeof (flc_keyvalp);
1361 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1362 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1363 	    DDI_PROP_SUCCESS) {
1364 		cmn_err(CE_WARN,
1365 		    "cmdk_create_obj: flow-control property undefined");
1366 		return (DDI_FAILURE);
1367 	}
1368 
1369 	flc_keyvalp[flc_keylen] = (char)0;
1370 
1371 	if (strcmp(flc_keyvalp, "dsngl") == 0) {
1372 		flcobjp = (opaque_t)dsngl_create();
1373 	} else if (strcmp(flc_keyvalp, "dmult") == 0) {
1374 		flcobjp = (opaque_t)dmult_create();
1375 	} else {
1376 		return (DDI_FAILURE);
1377 	}
1378 
1379 	/* populate bbh_obj object stored in dkp */
1380 	dkp->dk_bbh_obj.bbh_data = dkp;
1381 	dkp->dk_bbh_obj.bbh_ops = &cmdk_bbh_ops;
1382 
1383 	/* create linkage to dadk */
1384 	dkp->dk_tgobjp = (opaque_t)dadk_create();
1385 
1386 	devp = ddi_get_driver_private(dip);
1387 	(void) dadk_init(DKTP_DATA, devp, flcobjp, queobjp, &dkp->dk_bbh_obj,
1388 	    NULL);
1389 
1390 	return (DDI_SUCCESS);
1391 }
1392 
1393 static void
1394 cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp)
1395 {
1396 	char		que_keyvalp[64];
1397 	int		que_keylen;
1398 	char		flc_keyvalp[64];
1399 	int		flc_keylen;
1400 
1401 	ASSERT(mutex_owned(&dkp->dk_mutex));
1402 
1403 	(void) dadk_free((dkp->dk_tgobjp));
1404 	dkp->dk_tgobjp = NULL;
1405 
1406 	que_keylen = sizeof (que_keyvalp);
1407 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1408 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1409 	    DDI_PROP_SUCCESS) {
1410 		cmn_err(CE_WARN, "cmdk_destroy_obj: queue property undefined");
1411 		return;
1412 	}
1413 	que_keyvalp[que_keylen] = (char)0;
1414 
1415 	flc_keylen = sizeof (flc_keyvalp);
1416 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1417 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1418 	    DDI_PROP_SUCCESS) {
1419 		cmn_err(CE_WARN,
1420 		    "cmdk_destroy_obj: flow-control property undefined");
1421 		return;
1422 	}
1423 	flc_keyvalp[flc_keylen] = (char)0;
1424 }
1425 /*ARGSUSED5*/
1426 static int
1427 cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
1428     diskaddr_t start, size_t count, void *tg_cookie)
1429 {
1430 	struct cmdk	*dkp;
1431 	opaque_t	handle;
1432 	int		rc = 0;
1433 	char		*bufa;
1434 
1435 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1436 	if (dkp == NULL)
1437 		return (ENXIO);
1438 
1439 	if (cmd != TG_READ && cmd != TG_WRITE)
1440 		return (EINVAL);
1441 
1442 	/* count must be multiple of 512 */
1443 	count = (count + NBPSCTR - 1) & -NBPSCTR;
1444 	handle = dadk_iob_alloc(DKTP_DATA, start, count, KM_SLEEP);
1445 	if (!handle)
1446 		return (ENOMEM);
1447 
1448 	if (cmd == TG_READ) {
1449 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1450 		if (!bufa)
1451 			rc = EIO;
1452 		else
1453 			bcopy(bufa, bufaddr, count);
1454 	} else {
1455 		bufa = dadk_iob_htoc(DKTP_DATA, handle);
1456 		bcopy(bufaddr, bufa, count);
1457 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1458 		if (!bufa)
1459 			rc = EIO;
1460 	}
1461 	(void) dadk_iob_free(DKTP_DATA, handle);
1462 
1463 	return (rc);
1464 }
1465 
1466 /*ARGSUSED3*/
1467 static int
1468 cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1469 {
1470 
1471 	struct cmdk		*dkp;
1472 	struct tgdk_geom	phyg;
1473 
1474 
1475 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1476 	if (dkp == NULL)
1477 		return (ENXIO);
1478 
1479 	switch (cmd) {
1480 	case TG_GETPHYGEOM: {
1481 		cmlb_geom_t *phygeomp = (cmlb_geom_t *)arg;
1482 
1483 		/* dadk_getphygeom always returns success */
1484 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1485 
1486 		phygeomp->g_capacity	= phyg.g_cap;
1487 		phygeomp->g_nsect	= phyg.g_sec;
1488 		phygeomp->g_nhead	= phyg.g_head;
1489 		phygeomp->g_acyl	= phyg.g_acyl;
1490 		phygeomp->g_ncyl	= phyg.g_cyl;
1491 		phygeomp->g_secsize	= phyg.g_secsiz;
1492 		phygeomp->g_intrlv	= 1;
1493 		phygeomp->g_rpm		= 3600;
1494 
1495 		return (0);
1496 	}
1497 
1498 	case TG_GETVIRTGEOM: {
1499 		cmlb_geom_t *virtgeomp = (cmlb_geom_t *)arg;
1500 		diskaddr_t		capacity;
1501 
1502 		(void) dadk_getgeom(DKTP_DATA, &phyg);
1503 		capacity = phyg.g_cap;
1504 
1505 		/*
1506 		 * If the controller returned us something that doesn't
1507 		 * really fit into an Int 13/function 8 geometry
1508 		 * result, just fail the ioctl.  See PSARC 1998/313.
1509 		 */
1510 		if (capacity < 0 || capacity >= 63 * 254 * 1024)
1511 			return (EINVAL);
1512 
1513 		virtgeomp->g_capacity	= capacity;
1514 		virtgeomp->g_nsect	= 63;
1515 		virtgeomp->g_nhead	= 254;
1516 		virtgeomp->g_ncyl	= capacity / (63 * 254);
1517 		virtgeomp->g_acyl	= 0;
1518 		virtgeomp->g_secsize	= 512;
1519 		virtgeomp->g_intrlv	= 1;
1520 		virtgeomp->g_rpm	= 3600;
1521 
1522 		return (0);
1523 	}
1524 
1525 	case TG_GETCAPACITY:
1526 	case TG_GETBLOCKSIZE:
1527 	{
1528 
1529 		/* dadk_getphygeom always returns success */
1530 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1531 		if (cmd == TG_GETCAPACITY)
1532 			*(diskaddr_t *)arg = phyg.g_cap;
1533 		else
1534 			*(uint32_t *)arg = (uint32_t)phyg.g_secsiz;
1535 
1536 		return (0);
1537 	}
1538 
1539 	case TG_GETATTR: {
1540 		tg_attribute_t *tgattribute = (tg_attribute_t *)arg;
1541 		if ((DKTP_EXT->tg_rdonly))
1542 			tgattribute->media_is_writable = FALSE;
1543 		else
1544 			tgattribute->media_is_writable = TRUE;
1545 
1546 		return (0);
1547 	}
1548 
1549 	default:
1550 		return (ENOTTY);
1551 	}
1552 }
1553 
1554 
1555 
1556 
1557 
1558 /*
1559  * Create and register the devid.
1560  * There are 4 different ways we can get a device id:
1561  *    1. Already have one - nothing to do
1562  *    2. Build one from the drive's model and serial numbers
1563  *    3. Read one from the disk (first sector of last track)
1564  *    4. Fabricate one and write it on the disk.
1565  * If any of these succeeds, register the deviceid
1566  */
1567 static void
1568 cmdk_devid_setup(struct cmdk *dkp)
1569 {
1570 	int	rc;
1571 
1572 	/* Try options until one succeeds, or all have failed */
1573 
1574 	/* 1. All done if already registered */
1575 	if (dkp->dk_devid != NULL)
1576 		return;
1577 
1578 	/* 2. Build a devid from the model and serial number */
1579 	rc = cmdk_devid_modser(dkp);
1580 	if (rc != DDI_SUCCESS) {
1581 		/* 3. Read devid from the disk, if present */
1582 		rc = cmdk_devid_read(dkp);
1583 
1584 		/* 4. otherwise make one up and write it on the disk */
1585 		if (rc != DDI_SUCCESS)
1586 			rc = cmdk_devid_fabricate(dkp);
1587 	}
1588 
1589 	/* If we managed to get a devid any of the above ways, register it */
1590 	if (rc == DDI_SUCCESS)
1591 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
1592 
1593 }
1594 
1595 /*
1596  * Build a devid from the model and serial number
1597  * Return DDI_SUCCESS or DDI_FAILURE.
1598  */
1599 static int
1600 cmdk_devid_modser(struct cmdk *dkp)
1601 {
1602 	int	rc = DDI_FAILURE;
1603 	char	*hwid;
1604 	int	modlen;
1605 	int	serlen;
1606 
1607 	/*
1608 	 * device ID is a concatenation of model number, '=', serial number.
1609 	 */
1610 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
1611 	modlen = cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
1612 	if (modlen == 0) {
1613 		rc = DDI_FAILURE;
1614 		goto err;
1615 	}
1616 	hwid[modlen++] = '=';
1617 	serlen = cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
1618 	    hwid + modlen, CMDK_HWIDLEN - modlen);
1619 	if (serlen == 0) {
1620 		rc = DDI_FAILURE;
1621 		goto err;
1622 	}
1623 	hwid[modlen + serlen] = 0;
1624 
1625 	/* Initialize the device ID, trailing NULL not included */
1626 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
1627 	    hwid, (ddi_devid_t *)&dkp->dk_devid);
1628 	if (rc != DDI_SUCCESS) {
1629 		rc = DDI_FAILURE;
1630 		goto err;
1631 	}
1632 
1633 	rc = DDI_SUCCESS;
1634 
1635 err:
1636 	kmem_free(hwid, CMDK_HWIDLEN);
1637 	return (rc);
1638 }
1639 
1640 static int
1641 cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len)
1642 {
1643 	dadk_ioc_string_t strarg;
1644 	int		rval;
1645 	char		*s;
1646 	char		ch;
1647 	boolean_t	ret;
1648 	int		i;
1649 	int		tb;
1650 
1651 	strarg.is_buf = buf;
1652 	strarg.is_size = len;
1653 	if (dadk_ioctl(DKTP_DATA,
1654 	    dkp->dk_dev,
1655 	    ioccmd,
1656 	    (uintptr_t)&strarg,
1657 	    FNATIVE | FKIOCTL,
1658 	    NULL,
1659 	    &rval) != 0)
1660 		return (0);
1661 
1662 	/*
1663 	 * valid model/serial string must contain a non-zero non-space
1664 	 * trim trailing spaces/NULL
1665 	 */
1666 	ret = B_FALSE;
1667 	s = buf;
1668 	for (i = 0; i < strarg.is_size; i++) {
1669 		ch = *s++;
1670 		if (ch != ' ' && ch != '\0')
1671 			tb = i + 1;
1672 		if (ch != ' ' && ch != '\0' && ch != '0')
1673 			ret = B_TRUE;
1674 	}
1675 
1676 	if (ret == B_FALSE)
1677 		return (0);
1678 
1679 	return (tb);
1680 }
1681 
1682 /*
1683  * Read a devid from on the first block of the last track of
1684  * the last cylinder.  Make sure what we read is a valid devid.
1685  * Return DDI_SUCCESS or DDI_FAILURE.
1686  */
1687 static int
1688 cmdk_devid_read(struct cmdk *dkp)
1689 {
1690 	diskaddr_t	blk;
1691 	struct dk_devid *dkdevidp;
1692 	uint_t		*ip;
1693 	int		chksum;
1694 	int		i, sz;
1695 	tgdk_iob_handle	handle;
1696 	int		rc = DDI_FAILURE;
1697 
1698 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0))
1699 		goto err;
1700 
1701 	/* read the devid */
1702 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1703 	if (handle == NULL)
1704 		goto err;
1705 
1706 	dkdevidp = (struct dk_devid *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1707 	if (dkdevidp == NULL)
1708 		goto err;
1709 
1710 	/* Validate the revision */
1711 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1712 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
1713 		goto err;
1714 
1715 	/* Calculate the checksum */
1716 	chksum = 0;
1717 	ip = (uint_t *)dkdevidp;
1718 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1719 		chksum ^= ip[i];
1720 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
1721 		goto err;
1722 
1723 	/* Validate the device id */
1724 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
1725 		goto err;
1726 
1727 	/* keep a copy of the device id */
1728 	sz = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
1729 	dkp->dk_devid = kmem_alloc(sz, KM_SLEEP);
1730 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, sz);
1731 
1732 	rc = DDI_SUCCESS;
1733 
1734 err:
1735 	if (handle != NULL)
1736 		(void) dadk_iob_free(DKTP_DATA, handle);
1737 	return (rc);
1738 }
1739 
1740 /*
1741  * Create a devid and write it on the first block of the last track of
1742  * the last cylinder.
1743  * Return DDI_SUCCESS or DDI_FAILURE.
1744  */
1745 static int
1746 cmdk_devid_fabricate(struct cmdk *dkp)
1747 {
1748 	ddi_devid_t	devid = NULL;	/* devid made by ddi_devid_init  */
1749 	struct dk_devid	*dkdevidp;	/* devid struct stored on disk */
1750 	diskaddr_t	blk;
1751 	tgdk_iob_handle	handle = NULL;
1752 	uint_t		*ip, chksum;
1753 	int		i;
1754 	int		rc;
1755 
1756 	rc = ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid);
1757 	if (rc != DDI_SUCCESS)
1758 		goto err;
1759 
1760 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0)) {
1761 		/* no device id block address */
1762 		return (DDI_FAILURE);
1763 	}
1764 
1765 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1766 	if (!handle)
1767 		goto err;
1768 
1769 	/* Locate the buffer */
1770 	dkdevidp = (struct dk_devid *)dadk_iob_htoc(DKTP_DATA, handle);
1771 
1772 	/* Fill in the revision */
1773 	bzero(dkdevidp, NBPSCTR);
1774 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
1775 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
1776 
1777 	/* Copy in the device id */
1778 	i = ddi_devid_sizeof(devid);
1779 	if (i > DK_DEVID_SIZE)
1780 		goto err;
1781 	bcopy(devid, dkdevidp->dkd_devid, i);
1782 
1783 	/* Calculate the chksum */
1784 	chksum = 0;
1785 	ip = (uint_t *)dkdevidp;
1786 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1787 		chksum ^= ip[i];
1788 
1789 	/* Fill in the checksum */
1790 	DKD_FORMCHKSUM(chksum, dkdevidp);
1791 
1792 	/* write the devid */
1793 	(void) dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1794 
1795 	dkp->dk_devid = devid;
1796 
1797 	rc = DDI_SUCCESS;
1798 
1799 err:
1800 	if (handle != NULL)
1801 		(void) dadk_iob_free(DKTP_DATA, handle);
1802 
1803 	if (rc != DDI_SUCCESS && devid != NULL)
1804 		ddi_devid_free(devid);
1805 
1806 	return (rc);
1807 }
1808 
1809 static void
1810 cmdk_bbh_free_alts(struct cmdk *dkp)
1811 {
1812 	if (dkp->dk_alts_hdl) {
1813 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1814 		kmem_free(dkp->dk_slc_cnt,
1815 		    NDKMAP * (sizeof (uint32_t) + sizeof (struct alts_ent *)));
1816 		dkp->dk_alts_hdl = NULL;
1817 	}
1818 }
1819 
1820 static void
1821 cmdk_bbh_reopen(struct cmdk *dkp)
1822 {
1823 	tgdk_iob_handle 	handle = NULL;
1824 	diskaddr_t		slcb, slcn, slce;
1825 	struct	alts_parttbl	*ap;
1826 	struct	alts_ent	*enttblp;
1827 	uint32_t		altused;
1828 	uint32_t		altbase;
1829 	uint32_t		altlast;
1830 	int			alts;
1831 	uint16_t		vtoctag;
1832 	int			i, j;
1833 
1834 	/* find slice with V_ALTSCTR tag */
1835 	for (alts = 0; alts < NDKMAP; alts++) {
1836 		if (cmlb_partinfo(
1837 		    dkp->dk_cmlbhandle,
1838 		    alts,
1839 		    &slcn,
1840 		    &slcb,
1841 		    NULL,
1842 		    &vtoctag,
1843 		    0)) {
1844 			goto empty;	/* no partition table exists */
1845 		}
1846 
1847 		if (vtoctag == V_ALTSCTR && slcn > 1)
1848 			break;
1849 	}
1850 	if (alts >= NDKMAP) {
1851 		goto empty;	/* no V_ALTSCTR slice defined */
1852 	}
1853 
1854 	/* read in ALTS label block */
1855 	handle = dadk_iob_alloc(DKTP_DATA, slcb, NBPSCTR, KM_SLEEP);
1856 	if (!handle) {
1857 		goto empty;
1858 	}
1859 
1860 	ap = (struct alts_parttbl *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1861 	if (!ap || (ap->alts_sanity != ALTS_SANITY)) {
1862 		goto empty;
1863 	}
1864 
1865 	altused = ap->alts_ent_used;	/* number of BB entries */
1866 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1867 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1868 	/* ((altused * sizeof (struct alts_ent) + NBPSCTR - 1) & ~NBPSCTR) */
1869 
1870 	if (altused == 0 ||
1871 	    altbase < 1 ||
1872 	    altbase > altlast ||
1873 	    altlast >= slcn) {
1874 		goto empty;
1875 	}
1876 	(void) dadk_iob_free(DKTP_DATA, handle);
1877 
1878 	/* read in ALTS remapping table */
1879 	handle = dadk_iob_alloc(DKTP_DATA,
1880 	    slcb + altbase,
1881 	    (altlast - altbase + 1) << SCTRSHFT, KM_SLEEP);
1882 	if (!handle) {
1883 		goto empty;
1884 	}
1885 
1886 	enttblp = (struct alts_ent *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1887 	if (!enttblp) {
1888 		goto empty;
1889 	}
1890 
1891 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1892 
1893 	/* allocate space for dk_slc_cnt and dk_slc_ent tables */
1894 	if (dkp->dk_slc_cnt == NULL) {
1895 		dkp->dk_slc_cnt = kmem_alloc(NDKMAP *
1896 		    (sizeof (long) + sizeof (struct alts_ent *)), KM_SLEEP);
1897 	}
1898 	dkp->dk_slc_ent = (struct alts_ent **)(dkp->dk_slc_cnt + NDKMAP);
1899 
1900 	/* free previous BB table (if any) */
1901 	if (dkp->dk_alts_hdl) {
1902 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1903 		dkp->dk_alts_hdl = NULL;
1904 		dkp->dk_altused = 0;
1905 	}
1906 
1907 	/* save linkage to new BB table */
1908 	dkp->dk_alts_hdl = handle;
1909 	dkp->dk_altused = altused;
1910 
1911 	/*
1912 	 * build indexes to BB table by slice
1913 	 * effectively we have
1914 	 *	struct alts_ent *enttblp[altused];
1915 	 *
1916 	 *	uint32_t	dk_slc_cnt[NDKMAP];
1917 	 *	struct alts_ent *dk_slc_ent[NDKMAP];
1918 	 */
1919 	for (i = 0; i < NDKMAP; i++) {
1920 		if (cmlb_partinfo(
1921 		    dkp->dk_cmlbhandle,
1922 		    i,
1923 		    &slcn,
1924 		    &slcb,
1925 		    NULL,
1926 		    NULL,
1927 		    0)) {
1928 			goto empty1;
1929 		}
1930 
1931 		dkp->dk_slc_cnt[i] = 0;
1932 		if (slcn == 0)
1933 			continue;	/* slice is not allocated */
1934 
1935 		/* last block in slice */
1936 		slce = slcb + slcn - 1;
1937 
1938 		/* find first remap entry in after beginnning of slice */
1939 		for (j = 0; j < altused; j++) {
1940 			if (enttblp[j].bad_start + enttblp[j].bad_end >= slcb)
1941 				break;
1942 		}
1943 		dkp->dk_slc_ent[i] = enttblp + j;
1944 
1945 		/* count remap entrys until end of slice */
1946 		for (; j < altused && enttblp[j].bad_start <= slce; j++) {
1947 			dkp->dk_slc_cnt[i] += 1;
1948 		}
1949 	}
1950 
1951 	rw_exit(&dkp->dk_bbh_mutex);
1952 	return;
1953 
1954 empty:
1955 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1956 empty1:
1957 	if (handle && handle != dkp->dk_alts_hdl)
1958 		(void) dadk_iob_free(DKTP_DATA, handle);
1959 
1960 	if (dkp->dk_alts_hdl) {
1961 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1962 		dkp->dk_alts_hdl = NULL;
1963 	}
1964 
1965 	rw_exit(&dkp->dk_bbh_mutex);
1966 }
1967 
1968 /*ARGSUSED*/
1969 static bbh_cookie_t
1970 cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle)
1971 {
1972 	struct	bbh_handle *hp;
1973 	bbh_cookie_t ckp;
1974 
1975 	hp = (struct  bbh_handle *)handle;
1976 	ckp = hp->h_cktab + hp->h_idx;
1977 	hp->h_idx++;
1978 	return (ckp);
1979 }
1980 
1981 /*ARGSUSED*/
1982 static void
1983 cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle)
1984 {
1985 	struct	bbh_handle *hp;
1986 
1987 	hp = (struct  bbh_handle *)handle;
1988 	kmem_free(handle, (sizeof (struct bbh_handle) +
1989 	    (hp->h_totck * (sizeof (struct bbh_cookie)))));
1990 }
1991 
1992 
1993 /*
1994  *	cmdk_bbh_gethandle remaps the bad sectors to alternates.
1995  *	There are 7 different cases when the comparison is made
1996  *	between the bad sector cluster and the disk section.
1997  *
1998  *	bad sector cluster	gggggggggggbbbbbbbggggggggggg
1999  *	case 1:			   ddddd
2000  *	case 2:				   -d-----
2001  *	case 3:					     ddddd
2002  *	case 4:			         dddddddddddd
2003  *	case 5:			      ddddddd-----
2004  *	case 6:			           ---ddddddd
2005  *	case 7:			           ddddddd
2006  *
2007  *	where:  g = good sector,	b = bad sector
2008  *		d = sector in disk section
2009  *		- = disk section may be extended to cover those disk area
2010  */
2011 
2012 static opaque_t
2013 cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp)
2014 {
2015 	struct cmdk		*dkp = (struct cmdk *)bbh_data;
2016 	struct bbh_handle	*hp;
2017 	struct bbh_cookie	*ckp;
2018 	struct alts_ent		*altp;
2019 	uint32_t		alts_used;
2020 	uint32_t		part = CMDKPART(bp->b_edev);
2021 	daddr32_t		lastsec;
2022 	long			d_count;
2023 	int			i;
2024 	int			idx;
2025 	int			cnt;
2026 
2027 	if (part >= V_NUMPAR)
2028 		return (NULL);
2029 
2030 	/*
2031 	 * This if statement is atomic and it will succeed
2032 	 * if there are no bad blocks (almost always)
2033 	 *
2034 	 * so this if is performed outside of the rw_enter for speed
2035 	 * and then repeated inside the rw_enter for safety
2036 	 */
2037 	if (!dkp->dk_alts_hdl) {
2038 		return (NULL);
2039 	}
2040 
2041 	rw_enter(&dkp->dk_bbh_mutex, RW_READER);
2042 
2043 	if (dkp->dk_alts_hdl == NULL) {
2044 		rw_exit(&dkp->dk_bbh_mutex);
2045 		return (NULL);
2046 	}
2047 
2048 	alts_used = dkp->dk_slc_cnt[part];
2049 	if (alts_used == 0) {
2050 		rw_exit(&dkp->dk_bbh_mutex);
2051 		return (NULL);
2052 	}
2053 	altp = dkp->dk_slc_ent[part];
2054 
2055 	/*
2056 	 * binary search for the largest bad sector index in the alternate
2057 	 * entry table which overlaps or larger than the starting d_sec
2058 	 */
2059 	i = cmdk_bbh_bsearch(altp, alts_used, GET_BP_SEC(bp));
2060 	/* if starting sector is > the largest bad sector, return */
2061 	if (i == -1) {
2062 		rw_exit(&dkp->dk_bbh_mutex);
2063 		return (NULL);
2064 	}
2065 	/* i is the starting index.  Set altp to the starting entry addr */
2066 	altp += i;
2067 
2068 	d_count = bp->b_bcount >> SCTRSHFT;
2069 	lastsec = GET_BP_SEC(bp) + d_count - 1;
2070 
2071 	/* calculate the number of bad sectors */
2072 	for (idx = i, cnt = 0; idx < alts_used; idx++, altp++, cnt++) {
2073 		if (lastsec < altp->bad_start)
2074 			break;
2075 	}
2076 
2077 	if (!cnt) {
2078 		rw_exit(&dkp->dk_bbh_mutex);
2079 		return (NULL);
2080 	}
2081 
2082 	/* calculate the maximum number of reserved cookies */
2083 	cnt <<= 1;
2084 	cnt++;
2085 
2086 	/* allocate the handle */
2087 	hp = (struct bbh_handle *)kmem_zalloc((sizeof (*hp) +
2088 	    (cnt * sizeof (*ckp))), KM_SLEEP);
2089 
2090 	hp->h_idx = 0;
2091 	hp->h_totck = cnt;
2092 	ckp = hp->h_cktab = (struct bbh_cookie *)(hp + 1);
2093 	ckp[0].ck_sector = GET_BP_SEC(bp);
2094 	ckp[0].ck_seclen = d_count;
2095 
2096 	altp = dkp->dk_slc_ent[part];
2097 	altp += i;
2098 	for (idx = 0; i < alts_used; i++, altp++) {
2099 		/* CASE 1: */
2100 		if (lastsec < altp->bad_start)
2101 			break;
2102 
2103 		/* CASE 3: */
2104 		if (ckp[idx].ck_sector > altp->bad_end)
2105 			continue;
2106 
2107 		/* CASE 2 and 7: */
2108 		if ((ckp[idx].ck_sector >= altp->bad_start) &&
2109 		    (lastsec <= altp->bad_end)) {
2110 			ckp[idx].ck_sector = altp->good_start +
2111 			    ckp[idx].ck_sector - altp->bad_start;
2112 			break;
2113 		}
2114 
2115 		/* at least one bad sector in our section.  break it. */
2116 		/* CASE 5: */
2117 		if ((lastsec >= altp->bad_start) &&
2118 		    (lastsec <= altp->bad_end)) {
2119 			ckp[idx+1].ck_seclen = lastsec - altp->bad_start + 1;
2120 			ckp[idx].ck_seclen -= ckp[idx+1].ck_seclen;
2121 			ckp[idx+1].ck_sector = altp->good_start;
2122 			break;
2123 		}
2124 		/* CASE 6: */
2125 		if ((ckp[idx].ck_sector <= altp->bad_end) &&
2126 		    (ckp[idx].ck_sector >= altp->bad_start)) {
2127 			ckp[idx+1].ck_seclen = ckp[idx].ck_seclen;
2128 			ckp[idx].ck_seclen = altp->bad_end -
2129 			    ckp[idx].ck_sector + 1;
2130 			ckp[idx+1].ck_seclen -= ckp[idx].ck_seclen;
2131 			ckp[idx].ck_sector = altp->good_start +
2132 			    ckp[idx].ck_sector - altp->bad_start;
2133 			idx++;
2134 			ckp[idx].ck_sector = altp->bad_end + 1;
2135 			continue;	/* check rest of section */
2136 		}
2137 
2138 		/* CASE 4: */
2139 		ckp[idx].ck_seclen = altp->bad_start - ckp[idx].ck_sector;
2140 		ckp[idx+1].ck_sector = altp->good_start;
2141 		ckp[idx+1].ck_seclen = altp->bad_end - altp->bad_start + 1;
2142 		idx += 2;
2143 		ckp[idx].ck_sector = altp->bad_end + 1;
2144 		ckp[idx].ck_seclen = lastsec - altp->bad_end;
2145 	}
2146 
2147 	rw_exit(&dkp->dk_bbh_mutex);
2148 	return ((opaque_t)hp);
2149 }
2150 
2151 static int
2152 cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key)
2153 {
2154 	int	i;
2155 	int	ind;
2156 	int	interval;
2157 	int	mystatus = -1;
2158 
2159 	if (!cnt)
2160 		return (mystatus);
2161 
2162 	ind = 1; /* compiler complains about possible uninitialized var	*/
2163 	for (i = 1; i <= cnt; i <<= 1)
2164 		ind = i;
2165 
2166 	for (interval = ind; interval; ) {
2167 		if ((key >= buf[ind-1].bad_start) &&
2168 		    (key <= buf[ind-1].bad_end)) {
2169 			return (ind-1);
2170 		} else {
2171 			interval >>= 1;
2172 			if (key < buf[ind-1].bad_start) {
2173 				/* record the largest bad sector index */
2174 				mystatus = ind-1;
2175 				if (!interval)
2176 					break;
2177 				ind = ind - interval;
2178 			} else {
2179 				/*
2180 				 * if key is larger than the last element
2181 				 * then break
2182 				 */
2183 				if ((ind == cnt) || !interval)
2184 					break;
2185 				if ((ind+interval) <= cnt)
2186 					ind += interval;
2187 			}
2188 		}
2189 	}
2190 	return (mystatus);
2191 }
2192