1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* 27 * Copyright (c) 2009, Intel Corporation. 28 * All rights reserved. 29 */ 30 /* 31 * ACPI CA OSL for Solaris x86 32 */ 33 34 #include <sys/types.h> 35 #include <sys/kmem.h> 36 #include <sys/psm.h> 37 #include <sys/pci_cfgspace.h> 38 #include <sys/apic.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/sunndi.h> 42 #include <sys/pci.h> 43 #include <sys/kobj.h> 44 #include <sys/taskq.h> 45 #include <sys/strlog.h> 46 #include <sys/x86_archext.h> 47 #include <sys/note.h> 48 #include <sys/promif.h> 49 50 #include <sys/acpi/accommon.h> 51 #include <sys/acpica.h> 52 53 #define MAX_DAT_FILE_SIZE (64*1024) 54 55 /* local functions */ 56 static int CompressEisaID(char *np); 57 58 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus); 59 static int acpica_query_bbn_problem(void); 60 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh); 61 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint); 62 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *); 63 static ACPI_STATUS acpica_unset_devinfo(ACPI_HANDLE); 64 static void acpica_devinfo_handler(ACPI_HANDLE, void *); 65 66 /* 67 * Event queue vars 68 */ 69 int acpica_eventq_init = 0; 70 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1]; 71 72 /* 73 * Priorities relative to minclsyspri that each taskq 74 * run at; OSL_NOTIFY_HANDLER needs to run at a higher 75 * priority than OSL_GPE_HANDLER. There's an implicit 76 * assumption that no priority here results in exceeding 77 * maxclsyspri. 78 * Note: these initializations need to match the order of 79 * ACPI_EXECUTE_TYPE. 80 */ 81 int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = { 82 0, /* OSL_GLOBAL_LOCK_HANDLER */ 83 2, /* OSL_NOTIFY_HANDLER */ 84 0, /* OSL_GPE_HANDLER */ 85 0, /* OSL_DEBUGGER_THREAD */ 86 0, /* OSL_EC_POLL_HANDLER */ 87 0 /* OSL_EC_BURST_HANDLER */ 88 }; 89 90 /* 91 * Note, if you change this path, you need to update 92 * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386 93 */ 94 static char *acpi_table_path = "/boot/acpi/tables/"; 95 96 /* non-zero while scan_d2a_map() is working */ 97 static int scanning_d2a_map = 0; 98 static int d2a_done = 0; 99 100 /* features supported by ACPICA and ACPI device configuration. */ 101 uint64_t acpica_core_features = 0; 102 static uint64_t acpica_devcfg_features = 0; 103 104 /* set by acpi_poweroff() in PSMs and appm_ioctl() in acpippm for S3 */ 105 int acpica_use_safe_delay = 0; 106 107 /* CPU mapping data */ 108 struct cpu_map_item { 109 processorid_t cpu_id; 110 UINT32 proc_id; 111 UINT32 apic_id; 112 ACPI_HANDLE obj; 113 }; 114 115 static kmutex_t cpu_map_lock; 116 static struct cpu_map_item **cpu_map = NULL; 117 static int cpu_map_count_max = 0; 118 static int cpu_map_count = 0; 119 static int cpu_map_built = 0; 120 121 /* 122 * On systems with the uppc PSM only, acpica_map_cpu() won't be called at all. 123 * This flag is used to check for uppc-only systems by detecting whether 124 * acpica_map_cpu() has been called or not. 125 */ 126 static int cpu_map_called = 0; 127 128 static int acpi_has_broken_bbn = -1; 129 130 /* buffer for AcpiOsVprintf() */ 131 #define ACPI_OSL_PR_BUFLEN 1024 132 static char *acpi_osl_pr_buffer = NULL; 133 static int acpi_osl_pr_buflen; 134 135 #define D2A_DEBUG 136 137 /* 138 * 139 */ 140 static void 141 discard_event_queues() 142 { 143 int i; 144 145 /* 146 * destroy event queues 147 */ 148 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 149 if (osl_eventq[i]) 150 ddi_taskq_destroy(osl_eventq[i]); 151 } 152 } 153 154 155 /* 156 * 157 */ 158 static ACPI_STATUS 159 init_event_queues() 160 { 161 char namebuf[32]; 162 int i, error = 0; 163 164 /* 165 * Initialize event queues 166 */ 167 168 /* Always allocate only 1 thread per queue to force FIFO execution */ 169 for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) { 170 snprintf(namebuf, 32, "ACPI%d", i); 171 osl_eventq[i] = ddi_taskq_create(NULL, namebuf, 1, 172 osl_eventq_pri_delta[i] + minclsyspri, 0); 173 if (osl_eventq[i] == NULL) 174 error++; 175 } 176 177 if (error != 0) { 178 discard_event_queues(); 179 #ifdef DEBUG 180 cmn_err(CE_WARN, "!acpica: could not initialize event queues"); 181 #endif 182 return (AE_ERROR); 183 } 184 185 acpica_eventq_init = 1; 186 return (AE_OK); 187 } 188 189 /* 190 * One-time initialization of OSL layer 191 */ 192 ACPI_STATUS 193 AcpiOsInitialize(void) 194 { 195 /* 196 * Allocate buffer for AcpiOsVprintf() here to avoid 197 * kmem_alloc()/kmem_free() at high PIL 198 */ 199 acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP); 200 if (acpi_osl_pr_buffer != NULL) 201 acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN; 202 203 return (AE_OK); 204 } 205 206 /* 207 * One-time shut-down of OSL layer 208 */ 209 ACPI_STATUS 210 AcpiOsTerminate(void) 211 { 212 213 if (acpi_osl_pr_buffer != NULL) 214 kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen); 215 216 discard_event_queues(); 217 return (AE_OK); 218 } 219 220 221 ACPI_PHYSICAL_ADDRESS 222 AcpiOsGetRootPointer() 223 { 224 ACPI_PHYSICAL_ADDRESS Address; 225 226 /* 227 * For EFI firmware, the root pointer is defined in EFI systab. 228 * The boot code process the table and put the physical address 229 * in the acpi-root-tab property. 230 */ 231 Address = ddi_prop_get_int(DDI_DEV_T_ANY, ddi_root_node(), 232 DDI_PROP_DONTPASS, "acpi-root-tab", NULL); 233 234 if ((Address == NULL) && ACPI_FAILURE(AcpiFindRootPointer(&Address))) 235 Address = NULL; 236 237 return (Address); 238 } 239 240 /*ARGSUSED*/ 241 ACPI_STATUS 242 AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal, 243 ACPI_STRING *NewVal) 244 { 245 246 *NewVal = 0; 247 return (AE_OK); 248 } 249 250 static void 251 acpica_strncpy(char *dest, const char *src, int len) 252 { 253 254 /*LINTED*/ 255 while ((*dest++ = *src++) && (--len > 0)) 256 /* copy the string */; 257 *dest = '\0'; 258 } 259 260 ACPI_STATUS 261 AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable, 262 ACPI_TABLE_HEADER **NewTable) 263 { 264 char signature[5]; 265 char oemid[7]; 266 char oemtableid[9]; 267 struct _buf *file; 268 char *buf1, *buf2; 269 int count; 270 char acpi_table_loc[128]; 271 272 acpica_strncpy(signature, ExistingTable->Signature, 4); 273 acpica_strncpy(oemid, ExistingTable->OemId, 6); 274 acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8); 275 276 #ifdef DEBUG 277 cmn_err(CE_NOTE, "!acpica: table [%s] v%d OEM ID [%s]" 278 " OEM TABLE ID [%s] OEM rev %x", 279 signature, ExistingTable->Revision, oemid, oemtableid, 280 ExistingTable->OemRevision); 281 #endif 282 283 /* File name format is "signature_oemid_oemtableid.dat" */ 284 (void) strcpy(acpi_table_loc, acpi_table_path); 285 (void) strcat(acpi_table_loc, signature); /* for example, DSDT */ 286 (void) strcat(acpi_table_loc, "_"); 287 (void) strcat(acpi_table_loc, oemid); /* for example, IntelR */ 288 (void) strcat(acpi_table_loc, "_"); 289 (void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */ 290 (void) strcat(acpi_table_loc, ".dat"); 291 292 file = kobj_open_file(acpi_table_loc); 293 if (file == (struct _buf *)-1) { 294 *NewTable = 0; 295 return (AE_OK); 296 } else { 297 buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP); 298 count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0); 299 if (count >= MAX_DAT_FILE_SIZE) { 300 cmn_err(CE_WARN, "!acpica: table %s file size too big", 301 acpi_table_loc); 302 *NewTable = 0; 303 } else { 304 buf2 = (char *)kmem_alloc(count, KM_SLEEP); 305 (void) memcpy(buf2, buf1, count); 306 *NewTable = (ACPI_TABLE_HEADER *)buf2; 307 cmn_err(CE_NOTE, "!acpica: replacing table: %s", 308 acpi_table_loc); 309 } 310 } 311 kobj_close_file(file); 312 kmem_free(buf1, MAX_DAT_FILE_SIZE); 313 314 return (AE_OK); 315 } 316 317 318 /* 319 * ACPI semaphore implementation 320 */ 321 typedef struct { 322 kmutex_t mutex; 323 kcondvar_t cv; 324 uint32_t available; 325 uint32_t initial; 326 uint32_t maximum; 327 } acpi_sema_t; 328 329 /* 330 * 331 */ 332 void 333 acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count) 334 { 335 mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL); 336 cv_init(&sp->cv, NULL, CV_DRIVER, NULL); 337 /* no need to enter mutex here at creation */ 338 sp->available = count; 339 sp->initial = count; 340 sp->maximum = max; 341 } 342 343 /* 344 * 345 */ 346 void 347 acpi_sema_destroy(acpi_sema_t *sp) 348 { 349 350 cv_destroy(&sp->cv); 351 mutex_destroy(&sp->mutex); 352 } 353 354 /* 355 * 356 */ 357 ACPI_STATUS 358 acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time) 359 { 360 ACPI_STATUS rv = AE_OK; 361 clock_t deadline; 362 363 mutex_enter(&sp->mutex); 364 365 if (sp->available >= count) { 366 /* 367 * Enough units available, no blocking 368 */ 369 sp->available -= count; 370 mutex_exit(&sp->mutex); 371 return (rv); 372 } else if (wait_time == 0) { 373 /* 374 * Not enough units available and timeout 375 * specifies no blocking 376 */ 377 rv = AE_TIME; 378 mutex_exit(&sp->mutex); 379 return (rv); 380 } 381 382 /* 383 * Not enough units available and timeout specifies waiting 384 */ 385 if (wait_time != ACPI_WAIT_FOREVER) 386 deadline = ddi_get_lbolt() + 387 (clock_t)drv_usectohz(wait_time * 1000); 388 389 do { 390 if (wait_time == ACPI_WAIT_FOREVER) 391 cv_wait(&sp->cv, &sp->mutex); 392 else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) { 393 rv = AE_TIME; 394 break; 395 } 396 } while (sp->available < count); 397 398 /* if we dropped out of the wait with AE_OK, we got the units */ 399 if (rv == AE_OK) 400 sp->available -= count; 401 402 mutex_exit(&sp->mutex); 403 return (rv); 404 } 405 406 /* 407 * 408 */ 409 void 410 acpi_sema_v(acpi_sema_t *sp, unsigned count) 411 { 412 mutex_enter(&sp->mutex); 413 sp->available += count; 414 cv_broadcast(&sp->cv); 415 mutex_exit(&sp->mutex); 416 } 417 418 419 ACPI_STATUS 420 AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits, 421 ACPI_HANDLE *OutHandle) 422 { 423 acpi_sema_t *sp; 424 425 if ((OutHandle == NULL) || (InitialUnits > MaxUnits)) 426 return (AE_BAD_PARAMETER); 427 428 sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP); 429 acpi_sema_init(sp, MaxUnits, InitialUnits); 430 *OutHandle = (ACPI_HANDLE)sp; 431 return (AE_OK); 432 } 433 434 435 ACPI_STATUS 436 AcpiOsDeleteSemaphore(ACPI_HANDLE Handle) 437 { 438 439 if (Handle == NULL) 440 return (AE_BAD_PARAMETER); 441 442 acpi_sema_destroy((acpi_sema_t *)Handle); 443 kmem_free((void *)Handle, sizeof (acpi_sema_t)); 444 return (AE_OK); 445 } 446 447 ACPI_STATUS 448 AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout) 449 { 450 451 if ((Handle == NULL) || (Units < 1)) 452 return (AE_BAD_PARAMETER); 453 454 return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout)); 455 } 456 457 ACPI_STATUS 458 AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units) 459 { 460 461 if ((Handle == NULL) || (Units < 1)) 462 return (AE_BAD_PARAMETER); 463 464 acpi_sema_v((acpi_sema_t *)Handle, Units); 465 return (AE_OK); 466 } 467 468 ACPI_STATUS 469 AcpiOsCreateLock(ACPI_HANDLE *OutHandle) 470 { 471 kmutex_t *mp; 472 473 if (OutHandle == NULL) 474 return (AE_BAD_PARAMETER); 475 476 mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP); 477 mutex_init(mp, NULL, MUTEX_DRIVER, NULL); 478 *OutHandle = (ACPI_HANDLE)mp; 479 return (AE_OK); 480 } 481 482 void 483 AcpiOsDeleteLock(ACPI_HANDLE Handle) 484 { 485 486 if (Handle == NULL) 487 return; 488 489 mutex_destroy((kmutex_t *)Handle); 490 kmem_free((void *)Handle, sizeof (kmutex_t)); 491 } 492 493 ACPI_CPU_FLAGS 494 AcpiOsAcquireLock(ACPI_HANDLE Handle) 495 { 496 497 498 if (Handle == NULL) 499 return (AE_BAD_PARAMETER); 500 501 if (curthread == CPU->cpu_idle_thread) { 502 while (!mutex_tryenter((kmutex_t *)Handle)) 503 /* spin */; 504 } else 505 mutex_enter((kmutex_t *)Handle); 506 return (AE_OK); 507 } 508 509 void 510 AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_CPU_FLAGS Flags) 511 { 512 _NOTE(ARGUNUSED(Flags)) 513 514 mutex_exit((kmutex_t *)Handle); 515 } 516 517 518 void * 519 AcpiOsAllocate(ACPI_SIZE Size) 520 { 521 ACPI_SIZE *tmp_ptr; 522 523 Size += sizeof (Size); 524 tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP); 525 *tmp_ptr++ = Size; 526 return (tmp_ptr); 527 } 528 529 void 530 AcpiOsFree(void *Memory) 531 { 532 ACPI_SIZE size, *tmp_ptr; 533 534 tmp_ptr = (ACPI_SIZE *)Memory; 535 tmp_ptr -= 1; 536 size = *tmp_ptr; 537 kmem_free(tmp_ptr, size); 538 } 539 540 static int napics_found; /* number of ioapic addresses in array */ 541 static ACPI_PHYSICAL_ADDRESS ioapic_paddr[MAX_IO_APIC]; 542 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL; 543 static void *dummy_ioapicadr; 544 545 void 546 acpica_find_ioapics(void) 547 { 548 int madt_seen, madt_size; 549 ACPI_SUBTABLE_HEADER *ap; 550 ACPI_MADT_IO_APIC *mia; 551 552 if (acpi_mapic_dtp != NULL) 553 return; /* already parsed table */ 554 if (AcpiGetTable(ACPI_SIG_MADT, 1, 555 (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK) 556 return; 557 558 napics_found = 0; 559 560 /* 561 * Search the MADT for ioapics 562 */ 563 ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1); 564 madt_size = acpi_mapic_dtp->Header.Length; 565 madt_seen = sizeof (*acpi_mapic_dtp); 566 567 while (madt_seen < madt_size) { 568 569 switch (ap->Type) { 570 case ACPI_MADT_TYPE_IO_APIC: 571 mia = (ACPI_MADT_IO_APIC *) ap; 572 if (napics_found < MAX_IO_APIC) { 573 ioapic_paddr[napics_found++] = 574 (ACPI_PHYSICAL_ADDRESS) 575 (mia->Address & PAGEMASK); 576 } 577 break; 578 579 default: 580 break; 581 } 582 583 /* advance to next entry */ 584 madt_seen += ap->Length; 585 ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length); 586 } 587 if (dummy_ioapicadr == NULL) 588 dummy_ioapicadr = kmem_zalloc(PAGESIZE, KM_SLEEP); 589 } 590 591 592 void * 593 AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_SIZE Size) 594 { 595 int i; 596 597 /* 598 * If the iopaic address table is populated, check if trying 599 * to access an ioapic. Instead, return a pointer to a dummy ioapic. 600 */ 601 for (i = 0; i < napics_found; i++) { 602 if ((PhysicalAddress & PAGEMASK) == ioapic_paddr[i]) 603 return (dummy_ioapicadr); 604 } 605 /* FUTUREWORK: test PhysicalAddress for > 32 bits */ 606 return (psm_map_new((paddr_t)PhysicalAddress, 607 (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ)); 608 } 609 610 void 611 AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size) 612 { 613 /* 614 * Check if trying to unmap dummy ioapic address. 615 */ 616 if (LogicalAddress == dummy_ioapicadr) 617 return; 618 619 psm_unmap((caddr_t)LogicalAddress, (size_t)Size); 620 } 621 622 /*ARGSUSED*/ 623 ACPI_STATUS 624 AcpiOsGetPhysicalAddress(void *LogicalAddress, 625 ACPI_PHYSICAL_ADDRESS *PhysicalAddress) 626 { 627 628 /* UNIMPLEMENTED: not invoked by ACPI CA code */ 629 return (AE_NOT_IMPLEMENTED); 630 } 631 632 633 ACPI_OSD_HANDLER acpi_isr; 634 void *acpi_isr_context; 635 636 uint_t 637 acpi_wrapper_isr(char *arg) 638 { 639 _NOTE(ARGUNUSED(arg)) 640 641 int status; 642 643 status = (*acpi_isr)(acpi_isr_context); 644 645 if (status == ACPI_INTERRUPT_HANDLED) { 646 return (DDI_INTR_CLAIMED); 647 } else { 648 return (DDI_INTR_UNCLAIMED); 649 } 650 } 651 652 static int acpi_intr_hooked = 0; 653 654 ACPI_STATUS 655 AcpiOsInstallInterruptHandler(UINT32 InterruptNumber, 656 ACPI_OSD_HANDLER ServiceRoutine, 657 void *Context) 658 { 659 _NOTE(ARGUNUSED(InterruptNumber)) 660 661 int retval; 662 int sci_vect; 663 iflag_t sci_flags; 664 665 acpi_isr = ServiceRoutine; 666 acpi_isr_context = Context; 667 668 /* 669 * Get SCI (adjusted for PIC/APIC mode if necessary) 670 */ 671 if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) { 672 return (AE_ERROR); 673 } 674 675 #ifdef DEBUG 676 cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect); 677 #endif 678 679 retval = add_avintr(NULL, SCI_IPL, (avfunc)acpi_wrapper_isr, 680 "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL); 681 if (retval) { 682 acpi_intr_hooked = 1; 683 return (AE_OK); 684 } else 685 return (AE_BAD_PARAMETER); 686 } 687 688 ACPI_STATUS 689 AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber, 690 ACPI_OSD_HANDLER ServiceRoutine) 691 { 692 _NOTE(ARGUNUSED(ServiceRoutine)) 693 694 #ifdef DEBUG 695 cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber); 696 #endif 697 if (acpi_intr_hooked) { 698 rem_avintr(NULL, LOCK_LEVEL - 1, (avfunc)acpi_wrapper_isr, 699 InterruptNumber); 700 acpi_intr_hooked = 0; 701 } 702 return (AE_OK); 703 } 704 705 706 ACPI_THREAD_ID 707 AcpiOsGetThreadId(void) 708 { 709 /* 710 * ACPI CA doesn't care what actual value is returned as long 711 * as it is non-zero and unique to each existing thread. 712 * ACPI CA assumes that thread ID is castable to a pointer, 713 * so we use the current thread pointer. 714 */ 715 return (curthread); 716 } 717 718 /* 719 * 720 */ 721 ACPI_STATUS 722 AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK Function, 723 void *Context) 724 { 725 726 if (!acpica_eventq_init) { 727 /* 728 * Create taskqs for event handling 729 */ 730 if (init_event_queues() != AE_OK) 731 return (AE_ERROR); 732 } 733 734 if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context, 735 DDI_NOSLEEP) == DDI_FAILURE) { 736 #ifdef DEBUG 737 cmn_err(CE_WARN, "!acpica: unable to dispatch event"); 738 #endif 739 return (AE_ERROR); 740 } 741 return (AE_OK); 742 743 } 744 745 void 746 AcpiOsSleep(ACPI_INTEGER Milliseconds) 747 { 748 /* 749 * During kernel startup, before the first tick interrupt 750 * has taken place, we can't call delay; very late in 751 * kernel shutdown or suspend/resume, clock interrupts 752 * are blocked, so delay doesn't work then either. 753 * So we busy wait if lbolt == 0 (kernel startup) 754 * or if acpica_use_safe_delay has been set to a 755 * non-zero value. 756 */ 757 if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay) 758 drv_usecwait(Milliseconds * 1000); 759 else 760 delay(drv_usectohz(Milliseconds * 1000)); 761 } 762 763 void 764 AcpiOsStall(UINT32 Microseconds) 765 { 766 drv_usecwait(Microseconds); 767 } 768 769 770 /* 771 * Implementation of "Windows 2001" compatible I/O permission map 772 * 773 */ 774 #define OSL_IO_NONE (0) 775 #define OSL_IO_READ (1<<0) 776 #define OSL_IO_WRITE (1<<1) 777 #define OSL_IO_RW (OSL_IO_READ | OSL_IO_WRITE) 778 #define OSL_IO_TERM (1<<2) 779 #define OSL_IO_DEFAULT OSL_IO_RW 780 781 static struct io_perm { 782 ACPI_IO_ADDRESS low; 783 ACPI_IO_ADDRESS high; 784 uint8_t perm; 785 } osl_io_perm[] = { 786 { 0xcf8, 0xd00, OSL_IO_TERM | OSL_IO_RW} 787 }; 788 789 790 /* 791 * 792 */ 793 static struct io_perm * 794 osl_io_find_perm(ACPI_IO_ADDRESS addr) 795 { 796 struct io_perm *p; 797 798 p = osl_io_perm; 799 while (p != NULL) { 800 if ((p->low <= addr) && (addr <= p->high)) 801 break; 802 p = (p->perm & OSL_IO_TERM) ? NULL : p+1; 803 } 804 805 return (p); 806 } 807 808 /* 809 * 810 */ 811 ACPI_STATUS 812 AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width) 813 { 814 struct io_perm *p; 815 816 /* verify permission */ 817 p = osl_io_find_perm(Address); 818 if (p && (p->perm & OSL_IO_READ) == 0) { 819 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted", 820 (long)Address, Width); 821 *Value = 0xffffffff; 822 return (AE_ERROR); 823 } 824 825 switch (Width) { 826 case 8: 827 *Value = inb(Address); 828 break; 829 case 16: 830 *Value = inw(Address); 831 break; 832 case 32: 833 *Value = inl(Address); 834 break; 835 default: 836 cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed", 837 (long)Address, Width); 838 return (AE_BAD_PARAMETER); 839 } 840 return (AE_OK); 841 } 842 843 ACPI_STATUS 844 AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width) 845 { 846 struct io_perm *p; 847 848 /* verify permission */ 849 p = osl_io_find_perm(Address); 850 if (p && (p->perm & OSL_IO_WRITE) == 0) { 851 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted", 852 (long)Address, Width); 853 return (AE_ERROR); 854 } 855 856 switch (Width) { 857 case 8: 858 outb(Address, Value); 859 break; 860 case 16: 861 outw(Address, Value); 862 break; 863 case 32: 864 outl(Address, Value); 865 break; 866 default: 867 cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed", 868 (long)Address, Width); 869 return (AE_BAD_PARAMETER); 870 } 871 return (AE_OK); 872 } 873 874 875 /* 876 * 877 */ 878 879 #define OSL_RW(ptr, val, type, rw) \ 880 { if (rw) *((type *)(ptr)) = *((type *) val); \ 881 else *((type *) val) = *((type *)(ptr)); } 882 883 884 static void 885 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT32 *Value, 886 UINT32 Width, int write) 887 { 888 size_t maplen = Width / 8; 889 caddr_t ptr; 890 891 ptr = psm_map_new((paddr_t)Address, maplen, 892 PSM_PROT_WRITE | PSM_PROT_READ); 893 894 switch (maplen) { 895 case 1: 896 OSL_RW(ptr, Value, uint8_t, write); 897 break; 898 case 2: 899 OSL_RW(ptr, Value, uint16_t, write); 900 break; 901 case 4: 902 OSL_RW(ptr, Value, uint32_t, write); 903 break; 904 default: 905 cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d", 906 Width); 907 break; 908 } 909 910 psm_unmap(ptr, maplen); 911 } 912 913 ACPI_STATUS 914 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address, 915 UINT32 *Value, UINT32 Width) 916 { 917 osl_rw_memory(Address, Value, Width, 0); 918 return (AE_OK); 919 } 920 921 ACPI_STATUS 922 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address, 923 UINT32 Value, UINT32 Width) 924 { 925 osl_rw_memory(Address, &Value, Width, 1); 926 return (AE_OK); 927 } 928 929 930 ACPI_STATUS 931 AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 932 void *Value, UINT32 Width) 933 { 934 935 switch (Width) { 936 case 8: 937 *((UINT64 *)Value) = (UINT64)(*pci_getb_func) 938 (PciId->Bus, PciId->Device, PciId->Function, Register); 939 break; 940 case 16: 941 *((UINT64 *)Value) = (UINT64)(*pci_getw_func) 942 (PciId->Bus, PciId->Device, PciId->Function, Register); 943 break; 944 case 32: 945 *((UINT64 *)Value) = (UINT64)(*pci_getl_func) 946 (PciId->Bus, PciId->Device, PciId->Function, Register); 947 break; 948 case 64: 949 default: 950 cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed", 951 Register, Width); 952 return (AE_BAD_PARAMETER); 953 } 954 return (AE_OK); 955 } 956 957 /* 958 * 959 */ 960 int acpica_write_pci_config_ok = 1; 961 962 ACPI_STATUS 963 AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Register, 964 ACPI_INTEGER Value, UINT32 Width) 965 { 966 967 if (!acpica_write_pci_config_ok) { 968 cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x" 969 " %lx %d not permitted", PciId->Bus, PciId->Device, 970 PciId->Function, Register, (long)Value, Width); 971 return (AE_OK); 972 } 973 974 switch (Width) { 975 case 8: 976 (*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function, 977 Register, (uint8_t)Value); 978 break; 979 case 16: 980 (*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function, 981 Register, (uint16_t)Value); 982 break; 983 case 32: 984 (*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function, 985 Register, (uint32_t)Value); 986 break; 987 case 64: 988 default: 989 cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed", 990 Register, Width); 991 return (AE_BAD_PARAMETER); 992 } 993 return (AE_OK); 994 } 995 996 /* 997 * Called with ACPI_HANDLEs for both a PCI Config Space 998 * OpRegion and (what ACPI CA thinks is) the PCI device 999 * to which this ConfigSpace OpRegion belongs. Since 1000 * ACPI CA depends on a valid _BBN object being present 1001 * and this is not always true (one old x86 had broken _BBN), 1002 * we go ahead and get the correct PCI bus number using the 1003 * devinfo mapping (which compensates for broken _BBN). 1004 * 1005 * Default values for bus, segment, device and function are 1006 * all 0 when ACPI CA can't figure them out. 1007 * 1008 * Some BIOSes implement _BBN() by reading PCI config space 1009 * on bus #0 - which means that we'll recurse when we attempt 1010 * to create the devinfo-to-ACPI map. If Derive is called during 1011 * scan_d2a_map, we don't translate the bus # and return. 1012 * 1013 * We get the parent of the OpRegion, which must be a PCI 1014 * node, fetch the associated devinfo node and snag the 1015 * b/d/f from it. 1016 */ 1017 void 1018 AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle, 1019 ACPI_PCI_ID **PciId) 1020 { 1021 ACPI_HANDLE handle; 1022 dev_info_t *dip; 1023 int bus, device, func, devfn; 1024 1025 1026 /* 1027 * See above - avoid recursing during scanning_d2a_map. 1028 */ 1029 if (scanning_d2a_map) 1030 return; 1031 1032 /* 1033 * Get the OpRegion's parent 1034 */ 1035 if (AcpiGetParent(chandle, &handle) != AE_OK) 1036 return; 1037 1038 /* 1039 * If we've mapped the ACPI node to the devinfo 1040 * tree, use the devinfo reg property 1041 */ 1042 if (acpica_get_devinfo(handle, &dip) == AE_OK) { 1043 (void) acpica_get_bdf(dip, &bus, &device, &func); 1044 (*PciId)->Bus = bus; 1045 (*PciId)->Device = device; 1046 (*PciId)->Function = func; 1047 } else if (acpica_eval_int(handle, "_ADR", &devfn) == AE_OK) { 1048 /* no devinfo node - just confirm the d/f */ 1049 (*PciId)->Device = (devfn >> 16) & 0xFFFF; 1050 (*PciId)->Function = devfn & 0xFFFF; 1051 } 1052 } 1053 1054 1055 /*ARGSUSED*/ 1056 BOOLEAN 1057 AcpiOsReadable(void *Pointer, ACPI_SIZE Length) 1058 { 1059 1060 /* Always says yes; all mapped memory assumed readable */ 1061 return (1); 1062 } 1063 1064 /*ARGSUSED*/ 1065 BOOLEAN 1066 AcpiOsWritable(void *Pointer, ACPI_SIZE Length) 1067 { 1068 1069 /* Always says yes; all mapped memory assumed writable */ 1070 return (1); 1071 } 1072 1073 UINT64 1074 AcpiOsGetTimer(void) 1075 { 1076 /* gethrtime() returns 1nS resolution; convert to 100nS granules */ 1077 return ((gethrtime() + 50) / 100); 1078 } 1079 1080 static struct AcpiOSIFeature_s { 1081 uint64_t control_flag; 1082 const char *feature_name; 1083 } AcpiOSIFeatures[] = { 1084 { ACPI_FEATURE_OSI_MODULE, "Module Device" }, 1085 { 0, "Processor Device" } 1086 }; 1087 1088 /*ARGSUSED*/ 1089 ACPI_STATUS 1090 AcpiOsValidateInterface(char *feature) 1091 { 1092 int i; 1093 1094 ASSERT(feature != NULL); 1095 for (i = 0; i < sizeof (AcpiOSIFeatures) / sizeof (AcpiOSIFeatures[0]); 1096 i++) { 1097 if (strcmp(feature, AcpiOSIFeatures[i].feature_name) != 0) { 1098 continue; 1099 } 1100 /* Check whether required core features are available. */ 1101 if (AcpiOSIFeatures[i].control_flag != 0 && 1102 acpica_get_core_feature(AcpiOSIFeatures[i].control_flag) != 1103 AcpiOSIFeatures[i].control_flag) { 1104 break; 1105 } 1106 /* Feature supported. */ 1107 return (AE_OK); 1108 } 1109 1110 return (AE_SUPPORT); 1111 } 1112 1113 /*ARGSUSED*/ 1114 ACPI_STATUS 1115 AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr, 1116 ACPI_SIZE length) 1117 { 1118 return (AE_OK); 1119 } 1120 1121 ACPI_STATUS 1122 AcpiOsSignal(UINT32 Function, void *Info) 1123 { 1124 _NOTE(ARGUNUSED(Function, Info)) 1125 1126 /* FUTUREWORK: debugger support */ 1127 1128 cmn_err(CE_NOTE, "!OsSignal unimplemented"); 1129 return (AE_OK); 1130 } 1131 1132 void ACPI_INTERNAL_VAR_XFACE 1133 AcpiOsPrintf(const char *Format, ...) 1134 { 1135 va_list ap; 1136 1137 va_start(ap, Format); 1138 AcpiOsVprintf(Format, ap); 1139 va_end(ap); 1140 } 1141 1142 /* 1143 * When != 0, sends output to console 1144 * Patchable with kmdb or /etc/system. 1145 */ 1146 int acpica_console_out = 0; 1147 1148 #define ACPICA_OUTBUF_LEN 160 1149 char acpica_outbuf[ACPICA_OUTBUF_LEN]; 1150 int acpica_outbuf_offset; 1151 1152 /* 1153 * 1154 */ 1155 static void 1156 acpica_pr_buf(char *buf) 1157 { 1158 char c, *bufp, *outp; 1159 int out_remaining; 1160 1161 /* 1162 * copy the supplied buffer into the output buffer 1163 * when we hit a '\n' or overflow the output buffer, 1164 * output and reset the output buffer 1165 */ 1166 bufp = buf; 1167 outp = acpica_outbuf + acpica_outbuf_offset; 1168 out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1; 1169 while (c = *bufp++) { 1170 *outp++ = c; 1171 if (c == '\n' || --out_remaining == 0) { 1172 *outp = '\0'; 1173 switch (acpica_console_out) { 1174 case 1: 1175 printf(acpica_outbuf); 1176 break; 1177 case 2: 1178 prom_printf(acpica_outbuf); 1179 break; 1180 case 0: 1181 default: 1182 (void) strlog(0, 0, 0, 1183 SL_CONSOLE | SL_NOTE | SL_LOGONLY, 1184 acpica_outbuf); 1185 break; 1186 } 1187 acpica_outbuf_offset = 0; 1188 outp = acpica_outbuf; 1189 out_remaining = ACPICA_OUTBUF_LEN - 1; 1190 } 1191 } 1192 1193 acpica_outbuf_offset = outp - acpica_outbuf; 1194 } 1195 1196 void 1197 AcpiOsVprintf(const char *Format, va_list Args) 1198 { 1199 1200 /* 1201 * If AcpiOsInitialize() failed to allocate a string buffer, 1202 * resort to vprintf(). 1203 */ 1204 if (acpi_osl_pr_buffer == NULL) { 1205 vprintf(Format, Args); 1206 return; 1207 } 1208 1209 /* 1210 * It is possible that a very long debug output statement will 1211 * be truncated; this is silently ignored. 1212 */ 1213 (void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args); 1214 acpica_pr_buf(acpi_osl_pr_buffer); 1215 } 1216 1217 void 1218 AcpiOsRedirectOutput(void *Destination) 1219 { 1220 _NOTE(ARGUNUSED(Destination)) 1221 1222 /* FUTUREWORK: debugger support */ 1223 1224 #ifdef DEBUG 1225 cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called"); 1226 #endif 1227 } 1228 1229 1230 UINT32 1231 AcpiOsGetLine(char *Buffer) 1232 { 1233 _NOTE(ARGUNUSED(Buffer)) 1234 1235 /* FUTUREWORK: debugger support */ 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * Device tree binding 1242 */ 1243 static ACPI_STATUS 1244 acpica_find_pcibus_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1245 { 1246 _NOTE(ARGUNUSED(lvl)); 1247 1248 int sta, hid, bbn; 1249 int busno = (intptr_t)ctxp; 1250 ACPI_HANDLE *hdlp = (ACPI_HANDLE *)rvpp; 1251 1252 /* Check whether device exists. */ 1253 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1254 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1255 /* 1256 * Skip object if device doesn't exist. 1257 * According to ACPI Spec, 1258 * 1) setting either bit 0 or bit 3 means that device exists. 1259 * 2) Absence of _STA method means all status bits set. 1260 */ 1261 return (AE_CTRL_DEPTH); 1262 } 1263 1264 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1265 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1266 /* Non PCI/PCIe host bridge. */ 1267 return (AE_OK); 1268 } 1269 1270 if (acpi_has_broken_bbn) { 1271 ACPI_BUFFER rb; 1272 rb.Pointer = NULL; 1273 rb.Length = ACPI_ALLOCATE_BUFFER; 1274 1275 /* Decree _BBN == n from PCI<n> */ 1276 if (AcpiGetName(hdl, ACPI_SINGLE_NAME, &rb) != AE_OK) { 1277 return (AE_CTRL_TERMINATE); 1278 } 1279 bbn = ((char *)rb.Pointer)[3] - '0'; 1280 AcpiOsFree(rb.Pointer); 1281 if (bbn == busno || busno == 0) { 1282 *hdlp = hdl; 1283 return (AE_CTRL_TERMINATE); 1284 } 1285 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn))) { 1286 if (bbn == busno) { 1287 *hdlp = hdl; 1288 return (AE_CTRL_TERMINATE); 1289 } 1290 } else if (busno == 0) { 1291 *hdlp = hdl; 1292 return (AE_CTRL_TERMINATE); 1293 } 1294 1295 return (AE_CTRL_DEPTH); 1296 } 1297 1298 static int 1299 acpica_find_pcibus(int busno, ACPI_HANDLE *rh) 1300 { 1301 ACPI_HANDLE sbobj, busobj; 1302 1303 /* initialize static flag by querying ACPI namespace for bug */ 1304 if (acpi_has_broken_bbn == -1) 1305 acpi_has_broken_bbn = acpica_query_bbn_problem(); 1306 1307 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1308 busobj = NULL; 1309 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1310 acpica_find_pcibus_walker, NULL, (void *)(intptr_t)busno, 1311 (void **)&busobj); 1312 if (busobj != NULL) { 1313 *rh = busobj; 1314 return (AE_OK); 1315 } 1316 } 1317 1318 return (AE_ERROR); 1319 } 1320 1321 static ACPI_STATUS 1322 acpica_query_bbn_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp) 1323 { 1324 _NOTE(ARGUNUSED(lvl)); 1325 _NOTE(ARGUNUSED(rvpp)); 1326 1327 int sta, hid, bbn; 1328 int *cntp = (int *)ctxp; 1329 1330 /* Check whether device exists. */ 1331 if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) && 1332 !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) { 1333 /* 1334 * Skip object if device doesn't exist. 1335 * According to ACPI Spec, 1336 * 1) setting either bit 0 or bit 3 means that device exists. 1337 * 2) Absence of _STA method means all status bits set. 1338 */ 1339 return (AE_CTRL_DEPTH); 1340 } 1341 1342 if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) || 1343 (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) { 1344 /* Non PCI/PCIe host bridge. */ 1345 return (AE_OK); 1346 } else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn)) && 1347 bbn == 0 && ++(*cntp) > 1) { 1348 /* 1349 * If we find more than one bus with a 0 _BBN 1350 * we have the problem that BigBear's BIOS shows 1351 */ 1352 return (AE_CTRL_TERMINATE); 1353 } else { 1354 /* 1355 * Skip children of PCI/PCIe host bridge. 1356 */ 1357 return (AE_CTRL_DEPTH); 1358 } 1359 } 1360 1361 /* 1362 * Look for ACPI problem where _BBN is zero for multiple PCI buses 1363 * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus() 1364 * below if it exists. 1365 */ 1366 static int 1367 acpica_query_bbn_problem(void) 1368 { 1369 ACPI_HANDLE sbobj; 1370 int zerobbncnt; 1371 void *rv; 1372 1373 zerobbncnt = 0; 1374 if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) { 1375 (void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX, 1376 acpica_query_bbn_walker, NULL, &zerobbncnt, &rv); 1377 } 1378 1379 return (zerobbncnt > 1 ? 1 : 0); 1380 } 1381 1382 static const char hextab[] = "0123456789ABCDEF"; 1383 1384 static int 1385 hexdig(int c) 1386 { 1387 /* 1388 * Get hex digit: 1389 * 1390 * Returns the 4-bit hex digit named by the input character. Returns 1391 * zero if the input character is not valid hex! 1392 */ 1393 1394 int x = ((c < 'a') || (c > 'z')) ? c : (c - ' '); 1395 int j = sizeof (hextab); 1396 1397 while (--j && (x != hextab[j])) { 1398 } 1399 return (j); 1400 } 1401 1402 static int 1403 CompressEisaID(char *np) 1404 { 1405 /* 1406 * Compress an EISA device name: 1407 * 1408 * This routine converts a 7-byte ASCII device name into the 4-byte 1409 * compressed form used by EISA (50 bytes of ROM to save 1 byte of 1410 * NV-RAM!) 1411 */ 1412 1413 union { char octets[4]; int retval; } myu; 1414 1415 myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03); 1416 myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F); 1417 myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]); 1418 myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]); 1419 1420 return (myu.retval); 1421 } 1422 1423 ACPI_STATUS 1424 acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint) 1425 { 1426 ACPI_STATUS status; 1427 ACPI_BUFFER rb; 1428 ACPI_OBJECT ro; 1429 1430 rb.Pointer = &ro; 1431 rb.Length = sizeof (ro); 1432 if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb, 1433 ACPI_TYPE_INTEGER)) == AE_OK) 1434 *rint = ro.Integer.Value; 1435 1436 return (status); 1437 } 1438 1439 static int 1440 acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint) 1441 { 1442 ACPI_BUFFER rb; 1443 ACPI_OBJECT *rv; 1444 1445 rb.Pointer = NULL; 1446 rb.Length = ACPI_ALLOCATE_BUFFER; 1447 if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK && 1448 rb.Length != 0) { 1449 rv = rb.Pointer; 1450 if (rv->Type == ACPI_TYPE_INTEGER) { 1451 *rint = rv->Integer.Value; 1452 AcpiOsFree(rv); 1453 return (AE_OK); 1454 } else if (rv->Type == ACPI_TYPE_STRING) { 1455 char *stringData; 1456 1457 /* Convert the string into an EISA ID */ 1458 if (rv->String.Pointer == NULL) { 1459 AcpiOsFree(rv); 1460 return (AE_ERROR); 1461 } 1462 1463 stringData = rv->String.Pointer; 1464 1465 /* 1466 * If the string is an EisaID, it must be 7 1467 * characters; if it's an ACPI ID, it will be 8 1468 * (and we don't care about ACPI ids here). 1469 */ 1470 if (strlen(stringData) != 7) { 1471 AcpiOsFree(rv); 1472 return (AE_ERROR); 1473 } 1474 1475 *rint = CompressEisaID(stringData); 1476 AcpiOsFree(rv); 1477 return (AE_OK); 1478 } else 1479 AcpiOsFree(rv); 1480 } 1481 return (AE_ERROR); 1482 } 1483 1484 /* 1485 * Create linkage between devinfo nodes and ACPI nodes 1486 */ 1487 ACPI_STATUS 1488 acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1489 { 1490 ACPI_STATUS status; 1491 ACPI_BUFFER rb; 1492 1493 /* 1494 * Tag the devinfo node with the ACPI name 1495 */ 1496 rb.Pointer = NULL; 1497 rb.Length = ACPI_ALLOCATE_BUFFER; 1498 status = AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb); 1499 if (ACPI_FAILURE(status)) { 1500 cmn_err(CE_WARN, "acpica: could not get ACPI path!"); 1501 } else { 1502 (void) ndi_prop_update_string(DDI_DEV_T_NONE, dip, 1503 "acpi-namespace", (char *)rb.Pointer); 1504 AcpiOsFree(rb.Pointer); 1505 1506 /* 1507 * Tag the ACPI node with the dip 1508 */ 1509 status = acpica_set_devinfo(acpiobj, dip); 1510 ASSERT(ACPI_SUCCESS(status)); 1511 } 1512 1513 return (status); 1514 } 1515 1516 /* 1517 * Destroy linkage between devinfo nodes and ACPI nodes 1518 */ 1519 ACPI_STATUS 1520 acpica_untag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj) 1521 { 1522 (void) acpica_unset_devinfo(acpiobj); 1523 (void) ndi_prop_remove(DDI_DEV_T_NONE, dip, "acpi-namespace"); 1524 1525 return (AE_OK); 1526 } 1527 1528 /* 1529 * Return the ACPI device node matching the CPU dev_info node. 1530 */ 1531 ACPI_STATUS 1532 acpica_get_handle_cpu(int cpu_id, ACPI_HANDLE *rh) 1533 { 1534 int i; 1535 1536 /* 1537 * if cpu_map itself is NULL, we're a uppc system and 1538 * acpica_build_processor_map() hasn't been called yet. 1539 * So call it here 1540 */ 1541 if (cpu_map == NULL) { 1542 (void) acpica_build_processor_map(); 1543 if (cpu_map == NULL) 1544 return (AE_ERROR); 1545 } 1546 1547 if (cpu_id < 0) { 1548 return (AE_ERROR); 1549 } 1550 1551 /* 1552 * search object with cpuid in cpu_map 1553 */ 1554 mutex_enter(&cpu_map_lock); 1555 for (i = 0; i < cpu_map_count; i++) { 1556 if (cpu_map[i]->cpu_id == cpu_id) { 1557 break; 1558 } 1559 } 1560 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1561 *rh = cpu_map[cpu_id]->obj; 1562 mutex_exit(&cpu_map_lock); 1563 return (AE_OK); 1564 } 1565 1566 /* Handle special case for uppc-only systems. */ 1567 if (cpu_map_called == 0) { 1568 uint32_t apicid = cpuid_get_apicid(CPU); 1569 if (apicid != UINT32_MAX) { 1570 for (i = 0; i < cpu_map_count; i++) { 1571 if (cpu_map[i]->apic_id == apicid) { 1572 break; 1573 } 1574 } 1575 if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) { 1576 *rh = cpu_map[cpu_id]->obj; 1577 mutex_exit(&cpu_map_lock); 1578 return (AE_OK); 1579 } 1580 } 1581 } 1582 mutex_exit(&cpu_map_lock); 1583 1584 return (AE_ERROR); 1585 } 1586 1587 /* 1588 * Determine if this object is a processor 1589 */ 1590 static ACPI_STATUS 1591 acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv) 1592 { 1593 ACPI_STATUS status; 1594 ACPI_OBJECT_TYPE objtype; 1595 unsigned long acpi_id; 1596 ACPI_BUFFER rb; 1597 ACPI_DEVICE_INFO *di; 1598 1599 if (AcpiGetType(obj, &objtype) != AE_OK) 1600 return (AE_OK); 1601 1602 if (objtype == ACPI_TYPE_PROCESSOR) { 1603 /* process a Processor */ 1604 rb.Pointer = NULL; 1605 rb.Length = ACPI_ALLOCATE_BUFFER; 1606 status = AcpiEvaluateObjectTyped(obj, NULL, NULL, &rb, 1607 ACPI_TYPE_PROCESSOR); 1608 if (status != AE_OK) { 1609 cmn_err(CE_WARN, "!acpica: error probing Processor"); 1610 return (status); 1611 } 1612 acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId; 1613 AcpiOsFree(rb.Pointer); 1614 } else if (objtype == ACPI_TYPE_DEVICE) { 1615 /* process a processor Device */ 1616 status = AcpiGetObjectInfo(obj, &di); 1617 if (status != AE_OK) { 1618 cmn_err(CE_WARN, 1619 "!acpica: error probing Processor Device\n"); 1620 return (status); 1621 } 1622 1623 if (!(di->Valid & ACPI_VALID_UID) || 1624 ddi_strtoul(di->UniqueId.String, NULL, 10, &acpi_id) != 0) { 1625 ACPI_FREE(di); 1626 cmn_err(CE_WARN, 1627 "!acpica: error probing Processor Device _UID\n"); 1628 return (AE_ERROR); 1629 } 1630 ACPI_FREE(di); 1631 } 1632 (void) acpica_add_processor_to_map(acpi_id, obj, UINT32_MAX); 1633 1634 return (AE_OK); 1635 } 1636 1637 void 1638 scan_d2a_map(void) 1639 { 1640 dev_info_t *dip, *cdip; 1641 ACPI_HANDLE acpiobj; 1642 char *device_type_prop; 1643 int bus; 1644 static int map_error = 0; 1645 1646 if (map_error || (d2a_done != 0)) 1647 return; 1648 1649 scanning_d2a_map = 1; 1650 1651 /* 1652 * Find all child-of-root PCI buses, and find their corresponding 1653 * ACPI child-of-root PCI nodes. For each one, add to the 1654 * d2a table. 1655 */ 1656 1657 for (dip = ddi_get_child(ddi_root_node()); 1658 dip != NULL; 1659 dip = ddi_get_next_sibling(dip)) { 1660 1661 /* prune non-PCI nodes */ 1662 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, 1663 DDI_PROP_DONTPASS, 1664 "device_type", &device_type_prop) != DDI_PROP_SUCCESS) 1665 continue; 1666 1667 if ((strcmp("pci", device_type_prop) != 0) && 1668 (strcmp("pciex", device_type_prop) != 0)) { 1669 ddi_prop_free(device_type_prop); 1670 continue; 1671 } 1672 1673 ddi_prop_free(device_type_prop); 1674 1675 /* 1676 * To get bus number of dip, get first child and get its 1677 * bus number. If NULL, just continue, because we don't 1678 * care about bus nodes with no children anyway. 1679 */ 1680 if ((cdip = ddi_get_child(dip)) == NULL) 1681 continue; 1682 1683 if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) { 1684 #ifdef D2ADEBUG 1685 cmn_err(CE_WARN, "Can't get bus number of PCI child?"); 1686 #endif 1687 map_error = 1; 1688 scanning_d2a_map = 0; 1689 d2a_done = 1; 1690 return; 1691 } 1692 1693 if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) { 1694 #ifdef D2ADEBUG 1695 cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus); 1696 #endif 1697 map_error = 1; 1698 continue; 1699 } 1700 1701 acpica_tag_devinfo(dip, acpiobj); 1702 1703 /* call recursively to enumerate subtrees */ 1704 scan_d2a_subtree(dip, acpiobj, bus); 1705 } 1706 1707 scanning_d2a_map = 0; 1708 d2a_done = 1; 1709 } 1710 1711 /* 1712 * For all acpi child devices of acpiobj, find their matching 1713 * dip under "dip" argument. (matching means "matches dev/fn"). 1714 * bus is assumed to already be a match from caller, and is 1715 * used here only to record in the d2a entry. Recurse if necessary. 1716 */ 1717 static void 1718 scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus) 1719 { 1720 int acpi_devfn, hid; 1721 ACPI_HANDLE acld; 1722 dev_info_t *dcld; 1723 int dcld_b, dcld_d, dcld_f; 1724 int dev, func; 1725 char *device_type_prop; 1726 1727 acld = NULL; 1728 while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld) 1729 == AE_OK) { 1730 /* get the dev/func we're looking for in the devinfo tree */ 1731 if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK) 1732 continue; 1733 dev = (acpi_devfn >> 16) & 0xFFFF; 1734 func = acpi_devfn & 0xFFFF; 1735 1736 /* look through all the immediate children of dip */ 1737 for (dcld = ddi_get_child(dip); dcld != NULL; 1738 dcld = ddi_get_next_sibling(dcld)) { 1739 if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0) 1740 continue; 1741 1742 /* dev must match; function must match or wildcard */ 1743 if (dcld_d != dev || 1744 (func != 0xFFFF && func != dcld_f)) 1745 continue; 1746 bus = dcld_b; 1747 1748 /* found a match, record it */ 1749 acpica_tag_devinfo(dcld, acld); 1750 1751 /* if we find a bridge, recurse from here */ 1752 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld, 1753 DDI_PROP_DONTPASS, "device_type", 1754 &device_type_prop) == DDI_PROP_SUCCESS) { 1755 if ((strcmp("pci", device_type_prop) == 0) || 1756 (strcmp("pciex", device_type_prop) == 0)) 1757 scan_d2a_subtree(dcld, acld, bus); 1758 ddi_prop_free(device_type_prop); 1759 } 1760 1761 /* done finding a match, so break now */ 1762 break; 1763 } 1764 } 1765 } 1766 1767 /* 1768 * Return bus/dev/fn for PCI dip (note: not the parent "pci" node). 1769 */ 1770 int 1771 acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func) 1772 { 1773 pci_regspec_t *pci_rp; 1774 int len; 1775 1776 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1777 "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS) 1778 return (-1); 1779 1780 if (len < (sizeof (pci_regspec_t) / sizeof (int))) { 1781 ddi_prop_free(pci_rp); 1782 return (-1); 1783 } 1784 if (bus != NULL) 1785 *bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi); 1786 if (device != NULL) 1787 *device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi); 1788 if (func != NULL) 1789 *func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi); 1790 ddi_prop_free(pci_rp); 1791 return (0); 1792 } 1793 1794 /* 1795 * Return the ACPI device node matching this dev_info node, if it 1796 * exists in the ACPI tree. 1797 */ 1798 ACPI_STATUS 1799 acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh) 1800 { 1801 ACPI_STATUS status; 1802 char *acpiname; 1803 1804 ASSERT(d2a_done != 0); 1805 1806 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 1807 "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) { 1808 return (AE_ERROR); 1809 } 1810 1811 status = AcpiGetHandle(NULL, acpiname, rh); 1812 ddi_prop_free((void *)acpiname); 1813 return (status); 1814 } 1815 1816 1817 1818 /* 1819 * Manage OS data attachment to ACPI nodes 1820 */ 1821 1822 /* 1823 * Return the (dev_info_t *) associated with the ACPI node. 1824 */ 1825 ACPI_STATUS 1826 acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp) 1827 { 1828 ACPI_STATUS status; 1829 void *ptr; 1830 1831 status = AcpiGetData(obj, acpica_devinfo_handler, &ptr); 1832 if (status == AE_OK) 1833 *dipp = (dev_info_t *)ptr; 1834 1835 return (status); 1836 } 1837 1838 /* 1839 * Set the dev_info_t associated with the ACPI node. 1840 */ 1841 static ACPI_STATUS 1842 acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip) 1843 { 1844 ACPI_STATUS status; 1845 1846 status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip); 1847 return (status); 1848 } 1849 1850 /* 1851 * Unset the dev_info_t associated with the ACPI node. 1852 */ 1853 static ACPI_STATUS 1854 acpica_unset_devinfo(ACPI_HANDLE obj) 1855 { 1856 return (AcpiDetachData(obj, acpica_devinfo_handler)); 1857 } 1858 1859 /* 1860 * 1861 */ 1862 void 1863 acpica_devinfo_handler(ACPI_HANDLE obj, void *data) 1864 { 1865 /* no-op */ 1866 } 1867 1868 ACPI_STATUS 1869 acpica_build_processor_map(void) 1870 { 1871 ACPI_STATUS status; 1872 void *rv; 1873 1874 /* 1875 * shouldn't be called more than once anyway 1876 */ 1877 if (cpu_map_built) 1878 return (AE_OK); 1879 1880 /* 1881 * ACPI device configuration driver has built mapping information 1882 * among processor id and object handle, no need to probe again. 1883 */ 1884 if (acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1885 cpu_map_built = 1; 1886 return (AE_OK); 1887 } 1888 1889 /* 1890 * Look for Processor objects 1891 */ 1892 status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR, 1893 ACPI_ROOT_OBJECT, 1894 4, 1895 acpica_probe_processor, 1896 NULL, 1897 NULL, 1898 &rv); 1899 ASSERT(status == AE_OK); 1900 1901 /* 1902 * Look for processor Device objects 1903 */ 1904 status = AcpiGetDevices("ACPI0007", 1905 acpica_probe_processor, 1906 NULL, 1907 &rv); 1908 ASSERT(status == AE_OK); 1909 cpu_map_built = 1; 1910 1911 return (status); 1912 } 1913 1914 /* 1915 * Grow cpu map table on demand. 1916 */ 1917 static void 1918 acpica_grow_cpu_map(void) 1919 { 1920 if (cpu_map_count == cpu_map_count_max) { 1921 size_t sz; 1922 struct cpu_map_item **new_map; 1923 1924 ASSERT(cpu_map_count_max < INT_MAX / 2); 1925 cpu_map_count_max += max_ncpus; 1926 new_map = kmem_zalloc(sizeof (cpu_map[0]) * cpu_map_count_max, 1927 KM_SLEEP); 1928 if (cpu_map_count != 0) { 1929 ASSERT(cpu_map != NULL); 1930 sz = sizeof (cpu_map[0]) * cpu_map_count; 1931 kcopy(cpu_map, new_map, sz); 1932 kmem_free(cpu_map, sz); 1933 } 1934 cpu_map = new_map; 1935 } 1936 } 1937 1938 /* 1939 * Maintain mapping information among (cpu id, ACPI processor id, APIC id, 1940 * ACPI handle). The mapping table will be setup in two steps: 1941 * 1) acpica_add_processor_to_map() builds mapping among APIC id, ACPI 1942 * processor id and ACPI object handle. 1943 * 2) acpica_map_cpu() builds mapping among cpu id and ACPI processor id. 1944 * On systems with which have ACPI device configuration for CPUs enabled, 1945 * acpica_map_cpu() will be called after acpica_add_processor_to_map(), 1946 * otherwise acpica_map_cpu() will be called before 1947 * acpica_add_processor_to_map(). 1948 */ 1949 ACPI_STATUS 1950 acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj, UINT32 apic_id) 1951 { 1952 int i; 1953 ACPI_STATUS rc = AE_OK; 1954 struct cpu_map_item *item = NULL; 1955 1956 ASSERT(obj != NULL); 1957 if (obj == NULL) { 1958 return (AE_ERROR); 1959 } 1960 1961 mutex_enter(&cpu_map_lock); 1962 1963 /* 1964 * Special case for uppc 1965 * If we're a uppc system and ACPI device configuration for CPU has 1966 * been disabled, there won't be a CPU map yet because uppc psm doesn't 1967 * call acpica_map_cpu(). So create one and use the passed-in processor 1968 * as CPU 0 1969 * Assumption: the first CPU returned by 1970 * AcpiGetDevices/AcpiWalkNamespace will be the BSP. 1971 * Unfortunately there appears to be no good way to ASSERT this. 1972 */ 1973 if (cpu_map == NULL && 1974 !acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) { 1975 acpica_grow_cpu_map(); 1976 ASSERT(cpu_map != NULL); 1977 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 1978 item->cpu_id = 0; 1979 item->proc_id = acpi_id; 1980 item->apic_id = apic_id; 1981 item->obj = obj; 1982 cpu_map[0] = item; 1983 cpu_map_count = 1; 1984 mutex_exit(&cpu_map_lock); 1985 return (AE_OK); 1986 } 1987 1988 for (i = 0; i < cpu_map_count; i++) { 1989 if (cpu_map[i]->obj == obj) { 1990 rc = AE_ALREADY_EXISTS; 1991 break; 1992 } else if (cpu_map[i]->proc_id == acpi_id) { 1993 ASSERT(item == NULL); 1994 item = cpu_map[i]; 1995 } 1996 } 1997 1998 if (rc == AE_OK) { 1999 if (item != NULL) { 2000 /* 2001 * ACPI alias objects may cause more than one objects 2002 * with the same ACPI processor id, only remember the 2003 * the first object encountered. 2004 */ 2005 if (item->obj == NULL) { 2006 item->obj = obj; 2007 item->apic_id = apic_id; 2008 } else { 2009 rc = AE_ALREADY_EXISTS; 2010 } 2011 } else if (cpu_map_count >= INT_MAX / 2) { 2012 rc = AE_NO_MEMORY; 2013 } else { 2014 acpica_grow_cpu_map(); 2015 ASSERT(cpu_map != NULL); 2016 ASSERT(cpu_map_count < cpu_map_count_max); 2017 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2018 item->cpu_id = -1; 2019 item->proc_id = acpi_id; 2020 item->apic_id = apic_id; 2021 item->obj = obj; 2022 cpu_map[cpu_map_count] = item; 2023 cpu_map_count++; 2024 } 2025 } 2026 2027 mutex_exit(&cpu_map_lock); 2028 2029 return (rc); 2030 } 2031 2032 ACPI_STATUS 2033 acpica_remove_processor_from_map(UINT32 acpi_id) 2034 { 2035 int i; 2036 ACPI_STATUS rc = AE_NOT_EXIST; 2037 2038 mutex_enter(&cpu_map_lock); 2039 for (i = 0; i < cpu_map_count; i++) { 2040 if (cpu_map[i]->proc_id != acpi_id) { 2041 continue; 2042 } 2043 cpu_map[i]->obj = NULL; 2044 /* Free item if no more reference to it. */ 2045 if (cpu_map[i]->cpu_id == -1) { 2046 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2047 cpu_map[i] = NULL; 2048 cpu_map_count--; 2049 if (i != cpu_map_count) { 2050 cpu_map[i] = cpu_map[cpu_map_count]; 2051 cpu_map[cpu_map_count] = NULL; 2052 } 2053 } 2054 rc = AE_OK; 2055 break; 2056 } 2057 mutex_exit(&cpu_map_lock); 2058 2059 return (rc); 2060 } 2061 2062 ACPI_STATUS 2063 acpica_map_cpu(processorid_t cpuid, UINT32 acpi_id) 2064 { 2065 int i; 2066 ACPI_STATUS rc = AE_OK; 2067 struct cpu_map_item *item = NULL; 2068 2069 ASSERT(cpuid != -1); 2070 if (cpuid == -1) { 2071 return (AE_ERROR); 2072 } 2073 2074 mutex_enter(&cpu_map_lock); 2075 cpu_map_called = 1; 2076 for (i = 0; i < cpu_map_count; i++) { 2077 if (cpu_map[i]->cpu_id == cpuid) { 2078 rc = AE_ALREADY_EXISTS; 2079 break; 2080 } else if (cpu_map[i]->proc_id == acpi_id) { 2081 ASSERT(item == NULL); 2082 item = cpu_map[i]; 2083 } 2084 } 2085 if (rc == AE_OK) { 2086 if (item != NULL) { 2087 if (item->cpu_id == -1) { 2088 item->cpu_id = cpuid; 2089 } else { 2090 rc = AE_ALREADY_EXISTS; 2091 } 2092 } else if (cpu_map_count >= INT_MAX / 2) { 2093 rc = AE_NO_MEMORY; 2094 } else { 2095 acpica_grow_cpu_map(); 2096 ASSERT(cpu_map != NULL); 2097 ASSERT(cpu_map_count < cpu_map_count_max); 2098 item = kmem_zalloc(sizeof (*item), KM_SLEEP); 2099 item->cpu_id = cpuid; 2100 item->proc_id = acpi_id; 2101 item->apic_id = UINT32_MAX; 2102 item->obj = NULL; 2103 cpu_map[cpu_map_count] = item; 2104 cpu_map_count++; 2105 } 2106 } 2107 mutex_exit(&cpu_map_lock); 2108 2109 return (rc); 2110 } 2111 2112 ACPI_STATUS 2113 acpica_unmap_cpu(processorid_t cpuid) 2114 { 2115 int i; 2116 ACPI_STATUS rc = AE_NOT_EXIST; 2117 2118 ASSERT(cpuid != -1); 2119 if (cpuid == -1) { 2120 return (rc); 2121 } 2122 2123 mutex_enter(&cpu_map_lock); 2124 for (i = 0; i < cpu_map_count; i++) { 2125 if (cpu_map[i]->cpu_id != cpuid) { 2126 continue; 2127 } 2128 cpu_map[i]->cpu_id = -1; 2129 /* Free item if no more reference. */ 2130 if (cpu_map[i]->obj == NULL) { 2131 kmem_free(cpu_map[i], sizeof (struct cpu_map_item)); 2132 cpu_map[i] = NULL; 2133 cpu_map_count--; 2134 if (i != cpu_map_count) { 2135 cpu_map[i] = cpu_map[cpu_map_count]; 2136 cpu_map[cpu_map_count] = NULL; 2137 } 2138 } 2139 rc = AE_OK; 2140 break; 2141 } 2142 mutex_exit(&cpu_map_lock); 2143 2144 return (rc); 2145 } 2146 2147 ACPI_STATUS 2148 acpica_get_cpu_object_by_cpuid(processorid_t cpuid, ACPI_HANDLE *hdlp) 2149 { 2150 int i; 2151 ACPI_STATUS rc = AE_NOT_EXIST; 2152 2153 ASSERT(cpuid != -1); 2154 if (cpuid == -1) { 2155 return (rc); 2156 } 2157 2158 mutex_enter(&cpu_map_lock); 2159 for (i = 0; i < cpu_map_count; i++) { 2160 if (cpu_map[i]->cpu_id == cpuid && cpu_map[i]->obj != NULL) { 2161 *hdlp = cpu_map[i]->obj; 2162 rc = AE_OK; 2163 break; 2164 } 2165 } 2166 mutex_exit(&cpu_map_lock); 2167 2168 return (rc); 2169 } 2170 2171 ACPI_STATUS 2172 acpica_get_cpu_object_by_procid(UINT32 procid, ACPI_HANDLE *hdlp) 2173 { 2174 int i; 2175 ACPI_STATUS rc = AE_NOT_EXIST; 2176 2177 mutex_enter(&cpu_map_lock); 2178 for (i = 0; i < cpu_map_count; i++) { 2179 if (cpu_map[i]->proc_id == procid && cpu_map[i]->obj != NULL) { 2180 *hdlp = cpu_map[i]->obj; 2181 rc = AE_OK; 2182 break; 2183 } 2184 } 2185 mutex_exit(&cpu_map_lock); 2186 2187 return (rc); 2188 } 2189 2190 ACPI_STATUS 2191 acpica_get_cpu_object_by_apicid(UINT32 apicid, ACPI_HANDLE *hdlp) 2192 { 2193 int i; 2194 ACPI_STATUS rc = AE_NOT_EXIST; 2195 2196 ASSERT(apicid != UINT32_MAX); 2197 if (apicid == UINT32_MAX) { 2198 return (rc); 2199 } 2200 2201 mutex_enter(&cpu_map_lock); 2202 for (i = 0; i < cpu_map_count; i++) { 2203 if (cpu_map[i]->apic_id == apicid && cpu_map[i]->obj != NULL) { 2204 *hdlp = cpu_map[i]->obj; 2205 rc = AE_OK; 2206 break; 2207 } 2208 } 2209 mutex_exit(&cpu_map_lock); 2210 2211 return (rc); 2212 } 2213 2214 void 2215 acpica_set_core_feature(uint64_t features) 2216 { 2217 atomic_or_64(&acpica_core_features, features); 2218 } 2219 2220 void 2221 acpica_clear_core_feature(uint64_t features) 2222 { 2223 atomic_and_64(&acpica_core_features, ~features); 2224 } 2225 2226 uint64_t 2227 acpica_get_core_feature(uint64_t features) 2228 { 2229 return (acpica_core_features & features); 2230 } 2231 2232 void 2233 acpica_set_devcfg_feature(uint64_t features) 2234 { 2235 atomic_or_64(&acpica_devcfg_features, features); 2236 } 2237 2238 void 2239 acpica_clear_devcfg_feature(uint64_t features) 2240 { 2241 atomic_and_64(&acpica_devcfg_features, ~features); 2242 } 2243 2244 uint64_t 2245 acpica_get_devcfg_feature(uint64_t features) 2246 { 2247 return (acpica_devcfg_features & features); 2248 } 2249 2250 void 2251 acpica_get_global_FADT(ACPI_TABLE_FADT **gbl_FADT) 2252 { 2253 *gbl_FADT = &AcpiGbl_FADT; 2254 } 2255 2256 void 2257 acpica_write_cpupm_capabilities(boolean_t pstates, boolean_t cstates) 2258 { 2259 if (pstates && AcpiGbl_FADT.PstateControl != 0) 2260 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2261 AcpiGbl_FADT.PstateControl); 2262 2263 if (cstates && AcpiGbl_FADT.CstControl != 0) 2264 (void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK, 2265 AcpiGbl_FADT.CstControl); 2266 } 2267