xref: /titanic_52/usr/src/uts/intel/ia32/os/archdep.c (revision a6f561b4aee75d0d028e7b36b151c8ed8a86bc76)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 /*
28  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
29  */
30 
31 #include <sys/param.h>
32 #include <sys/types.h>
33 #include <sys/vmparam.h>
34 #include <sys/systm.h>
35 #include <sys/signal.h>
36 #include <sys/stack.h>
37 #include <sys/regset.h>
38 #include <sys/privregs.h>
39 #include <sys/frame.h>
40 #include <sys/proc.h>
41 #include <sys/psw.h>
42 #include <sys/siginfo.h>
43 #include <sys/cpuvar.h>
44 #include <sys/asm_linkage.h>
45 #include <sys/kmem.h>
46 #include <sys/errno.h>
47 #include <sys/bootconf.h>
48 #include <sys/archsystm.h>
49 #include <sys/debug.h>
50 #include <sys/elf.h>
51 #include <sys/spl.h>
52 #include <sys/time.h>
53 #include <sys/atomic.h>
54 #include <sys/sysmacros.h>
55 #include <sys/cmn_err.h>
56 #include <sys/modctl.h>
57 #include <sys/kobj.h>
58 #include <sys/panic.h>
59 #include <sys/reboot.h>
60 #include <sys/time.h>
61 #include <sys/fp.h>
62 #include <sys/x86_archext.h>
63 #include <sys/auxv.h>
64 #include <sys/auxv_386.h>
65 #include <sys/dtrace.h>
66 #include <sys/brand.h>
67 #include <sys/machbrand.h>
68 #include <sys/cmn_err.h>
69 
70 extern const struct fnsave_state x87_initial;
71 extern const struct fxsave_state sse_initial;
72 
73 /*
74  * Map an fnsave-formatted save area into an fxsave-formatted save area.
75  *
76  * Most fields are the same width, content and semantics.  However
77  * the tag word is compressed.
78  */
79 static void
80 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
81 {
82 	uint_t i, tagbits;
83 
84 	fx->fx_fcw = fn->f_fcw;
85 	fx->fx_fsw = fn->f_fsw;
86 
87 	/*
88 	 * copy element by element (because of holes)
89 	 */
90 	for (i = 0; i < 8; i++)
91 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
92 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
93 
94 	/*
95 	 * synthesize compressed tag bits
96 	 */
97 	fx->fx_fctw = 0;
98 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
99 		if ((tagbits & 3) != 3)
100 			fx->fx_fctw |= (1 << i);
101 
102 	fx->fx_fop = fn->f_fop;
103 
104 #if defined(__amd64)
105 	fx->fx_rip = (uint64_t)fn->f_eip;
106 	fx->fx_rdp = (uint64_t)fn->f_dp;
107 #else
108 	fx->fx_eip = fn->f_eip;
109 	fx->fx_cs = fn->f_cs;
110 	fx->__fx_ign0 = 0;
111 	fx->fx_dp = fn->f_dp;
112 	fx->fx_ds = fn->f_ds;
113 	fx->__fx_ign1 = 0;
114 #endif
115 }
116 
117 /*
118  * Map from an fxsave-format save area to an fnsave-format save area.
119  */
120 static void
121 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
122 {
123 	uint_t i, top, tagbits;
124 
125 	fn->f_fcw = fx->fx_fcw;
126 	fn->__f_ign0 = 0;
127 	fn->f_fsw = fx->fx_fsw;
128 	fn->__f_ign1 = 0;
129 
130 	top = (fx->fx_fsw & FPS_TOP) >> 11;
131 
132 	/*
133 	 * copy element by element (because of holes)
134 	 */
135 	for (i = 0; i < 8; i++)
136 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
137 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
138 
139 	/*
140 	 * synthesize uncompressed tag bits
141 	 */
142 	fn->f_ftw = 0;
143 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
144 		uint_t ibit, expo;
145 		const uint16_t *fpp;
146 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
147 
148 		if ((tagbits & 1) == 0) {
149 			fn->f_ftw |= 3 << (i << 1);	/* empty */
150 			continue;
151 		}
152 
153 		/*
154 		 * (tags refer to *physical* registers)
155 		 */
156 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
157 		ibit = fpp[3] >> 15;
158 		expo = fpp[4] & 0x7fff;
159 
160 		if (ibit && expo != 0 && expo != 0x7fff)
161 			continue;			/* valid fp number */
162 
163 		if (bcmp(fpp, &zero, sizeof (zero)))
164 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
165 		else
166 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
167 	}
168 
169 	fn->f_fop = fx->fx_fop;
170 
171 	fn->__f_ign2 = 0;
172 #if defined(__amd64)
173 	fn->f_eip = (uint32_t)fx->fx_rip;
174 	fn->f_cs = U32CS_SEL;
175 	fn->f_dp = (uint32_t)fx->fx_rdp;
176 	fn->f_ds = UDS_SEL;
177 #else
178 	fn->f_eip = fx->fx_eip;
179 	fn->f_cs = fx->fx_cs;
180 	fn->f_dp = fx->fx_dp;
181 	fn->f_ds = fx->fx_ds;
182 #endif
183 	fn->__f_ign3 = 0;
184 }
185 
186 /*
187  * Map from an fpregset_t into an fxsave-format save area
188  */
189 static void
190 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
191 {
192 #if defined(__amd64)
193 	bcopy(fp, fx, sizeof (*fx));
194 #else
195 	const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
196 
197 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
198 	fx->fx_mxcsr = fc->mxcsr;
199 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
200 #endif
201 	/*
202 	 * avoid useless #gp exceptions - mask reserved bits
203 	 */
204 	fx->fx_mxcsr &= sse_mxcsr_mask;
205 }
206 
207 /*
208  * Map from an fxsave-format save area into a fpregset_t
209  */
210 static void
211 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
212 {
213 #if defined(__amd64)
214 	bcopy(fx, fp, sizeof (*fx));
215 #else
216 	struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
217 
218 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
219 	fc->mxcsr = fx->fx_mxcsr;
220 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
221 #endif
222 }
223 
224 #if defined(_SYSCALL32_IMPL)
225 static void
226 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
227 {
228 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
229 
230 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
231 	/*
232 	 * avoid useless #gp exceptions - mask reserved bits
233 	 */
234 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
235 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
236 }
237 
238 static void
239 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
240 {
241 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
242 
243 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
244 	fc->mxcsr = fx->fx_mxcsr;
245 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
246 }
247 
248 static void
249 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
250 {
251 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
252 	dst->fp_reg_set.fpchip_state.status =
253 	    src->fp_reg_set.fpchip_state.status;
254 	dst->fp_reg_set.fpchip_state.xstatus =
255 	    src->fp_reg_set.fpchip_state.xstatus;
256 }
257 
258 static void
259 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
260 {
261 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
262 	dst->fp_reg_set.fpchip_state.status =
263 	    src->fp_reg_set.fpchip_state.status;
264 	dst->fp_reg_set.fpchip_state.xstatus =
265 	    src->fp_reg_set.fpchip_state.xstatus;
266 }
267 #endif
268 
269 /*
270  * Set floating-point registers from a native fpregset_t.
271  */
272 void
273 setfpregs(klwp_t *lwp, fpregset_t *fp)
274 {
275 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
276 
277 	if (fpu->fpu_flags & FPU_EN) {
278 		if (!(fpu->fpu_flags & FPU_VALID)) {
279 			/*
280 			 * FPU context is still active, release the
281 			 * ownership.
282 			 */
283 			fp_free(fpu, 0);
284 		}
285 	}
286 	/*
287 	 * Else: if we are trying to change the FPU state of a thread which
288 	 * hasn't yet initialized floating point, store the state in
289 	 * the pcb and indicate that the state is valid.  When the
290 	 * thread enables floating point, it will use this state instead
291 	 * of the default state.
292 	 */
293 
294 	switch (fp_save_mech) {
295 #if defined(__i386)
296 	case FP_FNSAVE:
297 		bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
298 		    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
299 		break;
300 #endif
301 	case FP_FXSAVE:
302 		fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
303 		fpu->fpu_regs.kfpu_xstatus =
304 		    fp->fp_reg_set.fpchip_state.xstatus;
305 		break;
306 
307 	case FP_XSAVE:
308 		fpregset_to_fxsave(fp,
309 		    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
310 		fpu->fpu_regs.kfpu_xstatus =
311 		    fp->fp_reg_set.fpchip_state.xstatus;
312 		fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
313 		    (XFEATURE_LEGACY_FP | XFEATURE_SSE);
314 		break;
315 	default:
316 		panic("Invalid fp_save_mech");
317 		/*NOTREACHED*/
318 	}
319 
320 	fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
321 	fpu->fpu_flags |= FPU_VALID;
322 }
323 
324 /*
325  * Get floating-point registers into a native fpregset_t.
326  */
327 void
328 getfpregs(klwp_t *lwp, fpregset_t *fp)
329 {
330 	struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
331 
332 	kpreempt_disable();
333 	if (fpu->fpu_flags & FPU_EN) {
334 		/*
335 		 * If we have FPU hw and the thread's pcb doesn't have
336 		 * a valid FPU state then get the state from the hw.
337 		 */
338 		if (fpu_exists && ttolwp(curthread) == lwp &&
339 		    !(fpu->fpu_flags & FPU_VALID))
340 			fp_save(fpu); /* get the current FPU state */
341 	}
342 
343 	/*
344 	 * There are 3 possible cases we have to be aware of here:
345 	 *
346 	 * 1. FPU is enabled.  FPU state is stored in the current LWP.
347 	 *
348 	 * 2. FPU is not enabled, and there have been no intervening /proc
349 	 *    modifications.  Return initial FPU state.
350 	 *
351 	 * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
352 	 *    FPU state is stored in the current LWP.
353 	 */
354 	if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
355 		/*
356 		 * Cases 1 and 3.
357 		 */
358 		switch (fp_save_mech) {
359 #if defined(__i386)
360 		case FP_FNSAVE:
361 			bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
362 			    sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
363 			break;
364 #endif
365 		case FP_FXSAVE:
366 			fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
367 			fp->fp_reg_set.fpchip_state.xstatus =
368 			    fpu->fpu_regs.kfpu_xstatus;
369 			break;
370 		case FP_XSAVE:
371 			fxsave_to_fpregset(
372 			    &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
373 			fp->fp_reg_set.fpchip_state.xstatus =
374 			    fpu->fpu_regs.kfpu_xstatus;
375 			break;
376 		default:
377 			panic("Invalid fp_save_mech");
378 			/*NOTREACHED*/
379 		}
380 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
381 	} else {
382 		/*
383 		 * Case 2.
384 		 */
385 		switch (fp_save_mech) {
386 #if defined(__i386)
387 		case FP_FNSAVE:
388 			bcopy(&x87_initial, fp, sizeof (x87_initial));
389 			break;
390 #endif
391 		case FP_FXSAVE:
392 		case FP_XSAVE:
393 			/*
394 			 * For now, we don't have any AVX specific field in ABI.
395 			 * If we add any in the future, we need to initial them
396 			 * as well.
397 			 */
398 			fxsave_to_fpregset(&sse_initial, fp);
399 			fp->fp_reg_set.fpchip_state.xstatus =
400 			    fpu->fpu_regs.kfpu_xstatus;
401 			break;
402 		default:
403 			panic("Invalid fp_save_mech");
404 			/*NOTREACHED*/
405 		}
406 		fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
407 	}
408 	kpreempt_enable();
409 }
410 
411 #if defined(_SYSCALL32_IMPL)
412 
413 /*
414  * Set floating-point registers from an fpregset32_t.
415  */
416 void
417 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
418 {
419 	fpregset_t fpregs;
420 
421 	fpregset_32ton(fp, &fpregs);
422 	setfpregs(lwp, &fpregs);
423 }
424 
425 /*
426  * Get floating-point registers into an fpregset32_t.
427  */
428 void
429 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
430 {
431 	fpregset_t fpregs;
432 
433 	getfpregs(lwp, &fpregs);
434 	fpregset_nto32(&fpregs, fp);
435 }
436 
437 #endif	/* _SYSCALL32_IMPL */
438 
439 /*
440  * Return the general registers
441  */
442 void
443 getgregs(klwp_t *lwp, gregset_t grp)
444 {
445 	struct regs *rp = lwptoregs(lwp);
446 #if defined(__amd64)
447 	struct pcb *pcb = &lwp->lwp_pcb;
448 	int thisthread = lwptot(lwp) == curthread;
449 
450 	grp[REG_RDI] = rp->r_rdi;
451 	grp[REG_RSI] = rp->r_rsi;
452 	grp[REG_RDX] = rp->r_rdx;
453 	grp[REG_RCX] = rp->r_rcx;
454 	grp[REG_R8] = rp->r_r8;
455 	grp[REG_R9] = rp->r_r9;
456 	grp[REG_RAX] = rp->r_rax;
457 	grp[REG_RBX] = rp->r_rbx;
458 	grp[REG_RBP] = rp->r_rbp;
459 	grp[REG_R10] = rp->r_r10;
460 	grp[REG_R11] = rp->r_r11;
461 	grp[REG_R12] = rp->r_r12;
462 	grp[REG_R13] = rp->r_r13;
463 	grp[REG_R14] = rp->r_r14;
464 	grp[REG_R15] = rp->r_r15;
465 	grp[REG_FSBASE] = pcb->pcb_fsbase;
466 	grp[REG_GSBASE] = pcb->pcb_gsbase;
467 	if (thisthread)
468 		kpreempt_disable();
469 	if (pcb->pcb_rupdate == 1) {
470 		grp[REG_DS] = pcb->pcb_ds;
471 		grp[REG_ES] = pcb->pcb_es;
472 		grp[REG_FS] = pcb->pcb_fs;
473 		grp[REG_GS] = pcb->pcb_gs;
474 	} else {
475 		grp[REG_DS] = rp->r_ds;
476 		grp[REG_ES] = rp->r_es;
477 		grp[REG_FS] = rp->r_fs;
478 		grp[REG_GS] = rp->r_gs;
479 	}
480 	if (thisthread)
481 		kpreempt_enable();
482 	grp[REG_TRAPNO] = rp->r_trapno;
483 	grp[REG_ERR] = rp->r_err;
484 	grp[REG_RIP] = rp->r_rip;
485 	grp[REG_CS] = rp->r_cs;
486 	grp[REG_SS] = rp->r_ss;
487 	grp[REG_RFL] = rp->r_rfl;
488 	grp[REG_RSP] = rp->r_rsp;
489 #else
490 	bcopy(&rp->r_gs, grp, sizeof (gregset_t));
491 #endif
492 }
493 
494 #if defined(_SYSCALL32_IMPL)
495 
496 void
497 getgregs32(klwp_t *lwp, gregset32_t grp)
498 {
499 	struct regs *rp = lwptoregs(lwp);
500 	struct pcb *pcb = &lwp->lwp_pcb;
501 	int thisthread = lwptot(lwp) == curthread;
502 
503 	if (thisthread)
504 		kpreempt_disable();
505 	if (pcb->pcb_rupdate == 1) {
506 		grp[GS] = (uint16_t)pcb->pcb_gs;
507 		grp[FS] = (uint16_t)pcb->pcb_fs;
508 		grp[DS] = (uint16_t)pcb->pcb_ds;
509 		grp[ES] = (uint16_t)pcb->pcb_es;
510 	} else {
511 		grp[GS] = (uint16_t)rp->r_gs;
512 		grp[FS] = (uint16_t)rp->r_fs;
513 		grp[DS] = (uint16_t)rp->r_ds;
514 		grp[ES] = (uint16_t)rp->r_es;
515 	}
516 	if (thisthread)
517 		kpreempt_enable();
518 	grp[EDI] = (greg32_t)rp->r_rdi;
519 	grp[ESI] = (greg32_t)rp->r_rsi;
520 	grp[EBP] = (greg32_t)rp->r_rbp;
521 	grp[ESP] = 0;
522 	grp[EBX] = (greg32_t)rp->r_rbx;
523 	grp[EDX] = (greg32_t)rp->r_rdx;
524 	grp[ECX] = (greg32_t)rp->r_rcx;
525 	grp[EAX] = (greg32_t)rp->r_rax;
526 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
527 	grp[ERR] = (greg32_t)rp->r_err;
528 	grp[EIP] = (greg32_t)rp->r_rip;
529 	grp[CS] = (uint16_t)rp->r_cs;
530 	grp[EFL] = (greg32_t)rp->r_rfl;
531 	grp[UESP] = (greg32_t)rp->r_rsp;
532 	grp[SS] = (uint16_t)rp->r_ss;
533 }
534 
535 void
536 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
537 {
538 	mcontext_t *dmc = &dst->uc_mcontext;
539 	const mcontext32_t *smc = &src->uc_mcontext;
540 
541 	bzero(dst, sizeof (*dst));
542 	dst->uc_flags = src->uc_flags;
543 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
544 
545 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
546 
547 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
548 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
549 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
550 
551 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
552 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
553 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
554 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
555 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
556 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
557 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
558 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
559 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
560 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
561 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
562 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
563 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
564 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
565 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
566 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
567 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
568 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
569 
570 	/*
571 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
572 	 * otherwise there is no guarantee that anything in fpregs is valid.
573 	 */
574 	if (src->uc_flags & UC_FPU)
575 		fpregset_32ton(&src->uc_mcontext.fpregs,
576 		    &dst->uc_mcontext.fpregs);
577 }
578 
579 #endif	/* _SYSCALL32_IMPL */
580 
581 /*
582  * Return the user-level PC.
583  * If in a system call, return the address of the syscall trap.
584  */
585 greg_t
586 getuserpc()
587 {
588 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
589 	uint32_t insn;
590 
591 	if (curthread->t_sysnum == 0)
592 		return (upc);
593 
594 	/*
595 	 * We might've gotten here from sysenter (0xf 0x34),
596 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
597 	 *
598 	 * Go peek at the binary to figure it out..
599 	 */
600 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
601 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
602 		return (upc - 2);
603 	return (upc - 7);
604 }
605 
606 /*
607  * Protect segment registers from non-user privilege levels and GDT selectors
608  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
609  * selector is non-null and not USER_CS/USER_DS, we make sure that the
610  * TI bit is set to point into the LDT and that the RPL is set to 3.
611  *
612  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
613  * also explicitly zero the top 16 bits since they may be coming from the
614  * user's address space via setcontext(2) or /proc.
615  *
616  * Note about null selector. When running on the hypervisor if we allow a
617  * process to set its %cs to null selector with RPL of 0 the hypervisor will
618  * crash the domain. If running on bare metal we would get a #gp fault and
619  * be able to kill the process and continue on. Therefore we make sure to
620  * force RPL to SEL_UPL even for null selector when setting %cs.
621  */
622 
623 #if defined(IS_CS) || defined(IS_NOT_CS)
624 #error	"IS_CS and IS_NOT_CS already defined"
625 #endif
626 
627 #define	IS_CS		1
628 #define	IS_NOT_CS	0
629 
630 /*ARGSUSED*/
631 static greg_t
632 fix_segreg(greg_t sr, int iscs, model_t datamodel)
633 {
634 	switch (sr &= 0xffff) {
635 
636 	case 0:
637 		if (iscs == IS_CS)
638 			return (0 | SEL_UPL);
639 		else
640 			return (0);
641 
642 #if defined(__amd64)
643 	/*
644 	 * If lwp attempts to switch data model then force their
645 	 * code selector to be null selector.
646 	 */
647 	case U32CS_SEL:
648 		if (datamodel == DATAMODEL_NATIVE)
649 			return (0 | SEL_UPL);
650 		else
651 			return (sr);
652 
653 	case UCS_SEL:
654 		if (datamodel == DATAMODEL_ILP32)
655 			return (0 | SEL_UPL);
656 #elif defined(__i386)
657 	case UCS_SEL:
658 #endif
659 	/*FALLTHROUGH*/
660 	case UDS_SEL:
661 	case LWPFS_SEL:
662 	case LWPGS_SEL:
663 	case SEL_UPL:
664 		return (sr);
665 	default:
666 		break;
667 	}
668 
669 	/*
670 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
671 	 * default do not have an LDT, so that any attempt to use an invalid
672 	 * selector will reference the (non-existant) LDT, and cause a #gp
673 	 * fault for the process.
674 	 *
675 	 * 64-bit processes get the null gdt selector since they
676 	 * are not allowed to have a private LDT.
677 	 */
678 #if defined(__amd64)
679 	if (datamodel == DATAMODEL_ILP32) {
680 		return (sr | SEL_TI_LDT | SEL_UPL);
681 	} else {
682 		if (iscs == IS_CS)
683 			return (0 | SEL_UPL);
684 		else
685 			return (0);
686 	}
687 
688 #elif defined(__i386)
689 	return (sr | SEL_TI_LDT | SEL_UPL);
690 #endif
691 }
692 
693 /*
694  * Set general registers.
695  */
696 void
697 setgregs(klwp_t *lwp, gregset_t grp)
698 {
699 	struct regs *rp = lwptoregs(lwp);
700 	model_t	datamodel = lwp_getdatamodel(lwp);
701 
702 #if defined(__amd64)
703 	struct pcb *pcb = &lwp->lwp_pcb;
704 	int thisthread = lwptot(lwp) == curthread;
705 
706 	if (datamodel == DATAMODEL_NATIVE) {
707 
708 		if (thisthread)
709 			(void) save_syscall_args();	/* copy the args */
710 
711 		rp->r_rdi = grp[REG_RDI];
712 		rp->r_rsi = grp[REG_RSI];
713 		rp->r_rdx = grp[REG_RDX];
714 		rp->r_rcx = grp[REG_RCX];
715 		rp->r_r8 = grp[REG_R8];
716 		rp->r_r9 = grp[REG_R9];
717 		rp->r_rax = grp[REG_RAX];
718 		rp->r_rbx = grp[REG_RBX];
719 		rp->r_rbp = grp[REG_RBP];
720 		rp->r_r10 = grp[REG_R10];
721 		rp->r_r11 = grp[REG_R11];
722 		rp->r_r12 = grp[REG_R12];
723 		rp->r_r13 = grp[REG_R13];
724 		rp->r_r14 = grp[REG_R14];
725 		rp->r_r15 = grp[REG_R15];
726 		rp->r_trapno = grp[REG_TRAPNO];
727 		rp->r_err = grp[REG_ERR];
728 		rp->r_rip = grp[REG_RIP];
729 		/*
730 		 * Setting %cs or %ss to anything else is quietly but
731 		 * quite definitely forbidden!
732 		 */
733 		rp->r_cs = UCS_SEL;
734 		rp->r_ss = UDS_SEL;
735 		rp->r_rsp = grp[REG_RSP];
736 
737 		if (thisthread)
738 			kpreempt_disable();
739 
740 		pcb->pcb_ds = UDS_SEL;
741 		pcb->pcb_es = UDS_SEL;
742 
743 		/*
744 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
745 		 * values directly, but only if they're using the segment
746 		 * selectors that allow that semantic.
747 		 *
748 		 * (32-bit processes must use lwp_set_private().)
749 		 */
750 		pcb->pcb_fsbase = grp[REG_FSBASE];
751 		pcb->pcb_gsbase = grp[REG_GSBASE];
752 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
753 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
754 
755 		/*
756 		 * Ensure that we go out via update_sregs
757 		 */
758 		pcb->pcb_rupdate = 1;
759 		lwptot(lwp)->t_post_sys = 1;
760 		if (thisthread)
761 			kpreempt_enable();
762 #if defined(_SYSCALL32_IMPL)
763 	} else {
764 		rp->r_rdi = (uint32_t)grp[REG_RDI];
765 		rp->r_rsi = (uint32_t)grp[REG_RSI];
766 		rp->r_rdx = (uint32_t)grp[REG_RDX];
767 		rp->r_rcx = (uint32_t)grp[REG_RCX];
768 		rp->r_rax = (uint32_t)grp[REG_RAX];
769 		rp->r_rbx = (uint32_t)grp[REG_RBX];
770 		rp->r_rbp = (uint32_t)grp[REG_RBP];
771 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
772 		rp->r_err = (uint32_t)grp[REG_ERR];
773 		rp->r_rip = (uint32_t)grp[REG_RIP];
774 
775 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
776 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
777 
778 		rp->r_rsp = (uint32_t)grp[REG_RSP];
779 
780 		if (thisthread)
781 			kpreempt_disable();
782 
783 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
784 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
785 
786 		/*
787 		 * (See fsbase/gsbase commentary above)
788 		 */
789 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
790 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
791 
792 		/*
793 		 * Ensure that we go out via update_sregs
794 		 */
795 		pcb->pcb_rupdate = 1;
796 		lwptot(lwp)->t_post_sys = 1;
797 		if (thisthread)
798 			kpreempt_enable();
799 #endif
800 	}
801 
802 	/*
803 	 * Only certain bits of the flags register can be modified.
804 	 */
805 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
806 	    (grp[REG_RFL] & PSL_USERMASK);
807 
808 #elif defined(__i386)
809 
810 	/*
811 	 * Only certain bits of the flags register can be modified.
812 	 */
813 	grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
814 
815 	/*
816 	 * Copy saved registers from user stack.
817 	 */
818 	bcopy(grp, &rp->r_gs, sizeof (gregset_t));
819 
820 	rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
821 	rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
822 	rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
823 	rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
824 	rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
825 	rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
826 
827 #endif	/* __i386 */
828 }
829 
830 /*
831  * Determine whether eip is likely to have an interrupt frame
832  * on the stack.  We do this by comparing the address to the
833  * range of addresses spanned by several well-known routines.
834  */
835 extern void _interrupt();
836 extern void _allsyscalls();
837 extern void _cmntrap();
838 extern void fakesoftint();
839 
840 extern size_t _interrupt_size;
841 extern size_t _allsyscalls_size;
842 extern size_t _cmntrap_size;
843 extern size_t _fakesoftint_size;
844 
845 /*
846  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
847  * Returns MIN(current stack depth, pcstack_limit).
848  */
849 int
850 getpcstack(pc_t *pcstack, int pcstack_limit)
851 {
852 	struct frame *fp = (struct frame *)getfp();
853 	struct frame *nextfp, *minfp, *stacktop;
854 	int depth = 0;
855 	int on_intr;
856 	uintptr_t pc;
857 
858 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
859 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
860 	else
861 		stacktop = (struct frame *)curthread->t_stk;
862 	minfp = fp;
863 
864 	pc = ((struct regs *)fp)->r_pc;
865 
866 	while (depth < pcstack_limit) {
867 		nextfp = (struct frame *)fp->fr_savfp;
868 		pc = fp->fr_savpc;
869 		if (nextfp <= minfp || nextfp >= stacktop) {
870 			if (on_intr) {
871 				/*
872 				 * Hop from interrupt stack to thread stack.
873 				 */
874 				stacktop = (struct frame *)curthread->t_stk;
875 				minfp = (struct frame *)curthread->t_stkbase;
876 				on_intr = 0;
877 				continue;
878 			}
879 			break;
880 		}
881 		pcstack[depth++] = (pc_t)pc;
882 		fp = nextfp;
883 		minfp = fp;
884 	}
885 	return (depth);
886 }
887 
888 /*
889  * The following ELF header fields are defined as processor-specific
890  * in the V8 ABI:
891  *
892  *	e_ident[EI_DATA]	encoding of the processor-specific
893  *				data in the object file
894  *	e_machine		processor identification
895  *	e_flags			processor-specific flags associated
896  *				with the file
897  */
898 
899 /*
900  * The value of at_flags reflects a platform's cpu module support.
901  * at_flags is used to check for allowing a binary to execute and
902  * is passed as the value of the AT_FLAGS auxiliary vector.
903  */
904 int at_flags = 0;
905 
906 /*
907  * Check the processor-specific fields of an ELF header.
908  *
909  * returns 1 if the fields are valid, 0 otherwise
910  */
911 /*ARGSUSED2*/
912 int
913 elfheadcheck(
914 	unsigned char e_data,
915 	Elf32_Half e_machine,
916 	Elf32_Word e_flags)
917 {
918 	if (e_data != ELFDATA2LSB)
919 		return (0);
920 #if defined(__amd64)
921 	if (e_machine == EM_AMD64)
922 		return (1);
923 #endif
924 	return (e_machine == EM_386);
925 }
926 
927 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
928 uint_t auxv_hwcap_include_2 = 0;	/* second word */
929 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
930 uint_t auxv_hwcap_exclude_2 = 0;	/* second word */
931 #if defined(_SYSCALL32_IMPL)
932 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
933 uint_t auxv_hwcap32_include_2 = 0;	/* ditto for 32-bit apps */
934 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
935 uint_t auxv_hwcap32_exclude_2 = 0;	/* ditto for 32-bit apps */
936 #endif
937 
938 /*
939  * Gather information about the processor and place it into auxv_hwcap
940  * so that it can be exported to the linker via the aux vector.
941  *
942  * We use this seemingly complicated mechanism so that we can ensure
943  * that /etc/system can be used to override what the system can or
944  * cannot discover for itself.
945  */
946 void
947 bind_hwcap(void)
948 {
949 	uint_t cpu_hwcap_flags[2];
950 	cpuid_pass4(NULL, cpu_hwcap_flags);
951 
952 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
953 	    ~auxv_hwcap_exclude;
954 	auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
955 	    ~auxv_hwcap_exclude_2;
956 
957 #if defined(__amd64)
958 	/*
959 	 * On AMD processors, sysenter just doesn't work at all
960 	 * when the kernel is in long mode.  On IA-32e processors
961 	 * it does, but there's no real point in all the alternate
962 	 * mechanism when syscall works on both.
963 	 *
964 	 * Besides, the kernel's sysenter handler is expecting a
965 	 * 32-bit lwp ...
966 	 */
967 	auxv_hwcap &= ~AV_386_SEP;
968 #else
969 	/*
970 	 * 32-bit processes can -always- use the lahf/sahf instructions
971 	 */
972 	auxv_hwcap |= AV_386_AHF;
973 #endif
974 
975 	if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
976 	    auxv_hwcap_exclude_2) {
977 		/*
978 		 * The below assignment is regrettably required to get lint
979 		 * to accept the validity of our format string.  The format
980 		 * string is in fact valid, but whatever intelligence in lint
981 		 * understands the cmn_err()-specific %b appears to have an
982 		 * off-by-one error:  it (mistakenly) complains about bit
983 		 * number 32 (even though this is explicitly permitted).
984 		 * Normally, one would will away such warnings with a "LINTED"
985 		 * directive, but for reasons unclear and unknown, lint
986 		 * refuses to be assuaged in this case.  Fortunately, lint
987 		 * doesn't pretend to have solved the Halting Problem --
988 		 * and as soon as the format string is programmatic, it
989 		 * knows enough to shut up.
990 		 */
991 		char *fmt = "?user ABI extensions: %b\n";
992 		cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
993 		fmt = "?user ABI extensions (word 2): %b\n";
994 		cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
995 	}
996 
997 #if defined(_SYSCALL32_IMPL)
998 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
999 	    ~auxv_hwcap32_exclude;
1000 	auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
1001 	    ~auxv_hwcap32_exclude_2;
1002 
1003 #if defined(__amd64)
1004 	/*
1005 	 * If this is an amd64 architecture machine from Intel, then
1006 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
1007 	 *
1008 	 * Sigh.
1009 	 */
1010 	if (!cpuid_syscall32_insn(NULL))
1011 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
1012 
1013 	/*
1014 	 * 32-bit processes can -always- use the lahf/sahf instructions
1015 	 */
1016 	auxv_hwcap32 |= AV_386_AHF;
1017 #endif
1018 
1019 	if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
1020 	    auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
1021 		/*
1022 		 * See the block comment in the cmn_err() of auxv_hwcap, above.
1023 		 */
1024 		char *fmt = "?32-bit user ABI extensions: %b\n";
1025 		cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
1026 		fmt = "?32-bit user ABI extensions (word 2): %b\n";
1027 		cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
1028 	}
1029 #endif
1030 }
1031 
1032 /*
1033  *	sync_icache() - this is called
1034  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
1035  *	this is a nop.
1036  */
1037 /* ARGSUSED */
1038 void
1039 sync_icache(caddr_t addr, uint_t len)
1040 {
1041 	/* Do nothing for now */
1042 }
1043 
1044 /*ARGSUSED*/
1045 void
1046 sync_data_memory(caddr_t va, size_t len)
1047 {
1048 	/* Not implemented for this platform */
1049 }
1050 
1051 int
1052 __ipltospl(int ipl)
1053 {
1054 	return (ipltospl(ipl));
1055 }
1056 
1057 /*
1058  * The panic code invokes panic_saveregs() to record the contents of a
1059  * regs structure into the specified panic_data structure for debuggers.
1060  */
1061 void
1062 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1063 {
1064 	panic_nv_t *pnv = PANICNVGET(pdp);
1065 
1066 	struct cregs	creg;
1067 
1068 	getcregs(&creg);
1069 
1070 #if defined(__amd64)
1071 	PANICNVADD(pnv, "rdi", rp->r_rdi);
1072 	PANICNVADD(pnv, "rsi", rp->r_rsi);
1073 	PANICNVADD(pnv, "rdx", rp->r_rdx);
1074 	PANICNVADD(pnv, "rcx", rp->r_rcx);
1075 	PANICNVADD(pnv, "r8", rp->r_r8);
1076 	PANICNVADD(pnv, "r9", rp->r_r9);
1077 	PANICNVADD(pnv, "rax", rp->r_rax);
1078 	PANICNVADD(pnv, "rbx", rp->r_rbx);
1079 	PANICNVADD(pnv, "rbp", rp->r_rbp);
1080 	PANICNVADD(pnv, "r10", rp->r_r10);
1081 	PANICNVADD(pnv, "r10", rp->r_r10);
1082 	PANICNVADD(pnv, "r11", rp->r_r11);
1083 	PANICNVADD(pnv, "r12", rp->r_r12);
1084 	PANICNVADD(pnv, "r13", rp->r_r13);
1085 	PANICNVADD(pnv, "r14", rp->r_r14);
1086 	PANICNVADD(pnv, "r15", rp->r_r15);
1087 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1088 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1089 	PANICNVADD(pnv, "ds", rp->r_ds);
1090 	PANICNVADD(pnv, "es", rp->r_es);
1091 	PANICNVADD(pnv, "fs", rp->r_fs);
1092 	PANICNVADD(pnv, "gs", rp->r_gs);
1093 	PANICNVADD(pnv, "trapno", rp->r_trapno);
1094 	PANICNVADD(pnv, "err", rp->r_err);
1095 	PANICNVADD(pnv, "rip", rp->r_rip);
1096 	PANICNVADD(pnv, "cs", rp->r_cs);
1097 	PANICNVADD(pnv, "rflags", rp->r_rfl);
1098 	PANICNVADD(pnv, "rsp", rp->r_rsp);
1099 	PANICNVADD(pnv, "ss", rp->r_ss);
1100 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1101 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1102 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1103 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1104 #elif defined(__i386)
1105 	PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1106 	PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1107 	PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1108 	PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1109 	PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1110 	PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1111 	PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1112 	PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1113 	PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1114 	PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1115 	PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1116 	PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1117 	PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1118 	PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1119 	PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1120 	PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1121 	PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1122 	PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1123 	PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1124 	PANICNVADD(pnv, "gdt", creg.cr_gdt);
1125 	PANICNVADD(pnv, "idt", creg.cr_idt);
1126 #endif	/* __i386 */
1127 
1128 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
1129 	PANICNVADD(pnv, "task", creg.cr_task);
1130 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
1131 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
1132 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
1133 	if (creg.cr_cr4)
1134 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
1135 
1136 	PANICNVSET(pdp, pnv);
1137 }
1138 
1139 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
1140 
1141 #if !defined(__amd64)
1142 
1143 /*
1144  * Given a return address (%eip), determine the likely number of arguments
1145  * that were pushed on the stack prior to its execution.  We do this by
1146  * expecting that a typical call sequence consists of pushing arguments on
1147  * the stack, executing a call instruction, and then performing an add
1148  * on %esp to restore it to the value prior to pushing the arguments for
1149  * the call.  We attempt to detect such an add, and divide the addend
1150  * by the size of a word to determine the number of pushed arguments.
1151  *
1152  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1153  * possible to reliably determine if a function took no arguments (i.e. was
1154  * void) because assembler routines do not reliably perform an add on %esp
1155  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1156  * safer than returning 0.
1157  */
1158 static ulong_t
1159 argcount(uintptr_t eip)
1160 {
1161 	const uint8_t *ins = (const uint8_t *)eip;
1162 	ulong_t n;
1163 
1164 	enum {
1165 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
1166 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
1167 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
1168 	};
1169 
1170 	if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1171 		return (TR_ARG_MAX);
1172 
1173 	switch (ins[0]) {
1174 	case M_ADD_IMM32:
1175 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1176 		break;
1177 
1178 	case M_ADD_IMM8:
1179 		n = ins[2];
1180 		break;
1181 
1182 	default:
1183 		return (TR_ARG_MAX);
1184 	}
1185 
1186 	n /= sizeof (long);
1187 	return (MIN(n, TR_ARG_MAX));
1188 }
1189 
1190 #endif	/* !__amd64 */
1191 
1192 /*
1193  * Print a stack backtrace using the specified frame pointer.  We delay two
1194  * seconds before continuing, unless this is the panic traceback.
1195  * If we are in the process of panicking, we also attempt to write the
1196  * stack backtrace to a staticly assigned buffer, to allow the panic
1197  * code to find it and write it in to uncompressed pages within the
1198  * system crash dump.
1199  * Note that the frame for the starting stack pointer value is omitted because
1200  * the corresponding %eip is not known.
1201  */
1202 
1203 extern char *dump_stack_scratch;
1204 
1205 #if defined(__amd64)
1206 
1207 void
1208 traceback(caddr_t fpreg)
1209 {
1210 	struct frame	*fp = (struct frame *)fpreg;
1211 	struct frame	*nextfp;
1212 	uintptr_t	pc, nextpc;
1213 	ulong_t		off;
1214 	char		args[TR_ARG_MAX * 2 + 16], *sym;
1215 	uint_t	  offset = 0;
1216 	uint_t	  next_offset = 0;
1217 	char	    stack_buffer[1024];
1218 
1219 	if (!panicstr)
1220 		printf("traceback: %%fp = %p\n", (void *)fp);
1221 
1222 	if (panicstr && !dump_stack_scratch) {
1223 		printf("Warning - stack not written to the dump buffer\n");
1224 	}
1225 
1226 	fp = (struct frame *)plat_traceback(fpreg);
1227 	if ((uintptr_t)fp < KERNELBASE)
1228 		goto out;
1229 
1230 	pc = fp->fr_savpc;
1231 	fp = (struct frame *)fp->fr_savfp;
1232 
1233 	while ((uintptr_t)fp >= KERNELBASE) {
1234 		/*
1235 		 * XX64 Until port is complete tolerate 8-byte aligned
1236 		 * frame pointers but flag with a warning so they can
1237 		 * be fixed.
1238 		 */
1239 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1240 			if (((uintptr_t)fp & (8 - 1)) == 0) {
1241 				printf("  >> warning! 8-byte"
1242 				    " aligned %%fp = %p\n", (void *)fp);
1243 			} else {
1244 				printf(
1245 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
1246 				break;
1247 			}
1248 		}
1249 
1250 		args[0] = '\0';
1251 		nextpc = (uintptr_t)fp->fr_savpc;
1252 		nextfp = (struct frame *)fp->fr_savfp;
1253 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1254 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1255 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1256 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1257 			    "%s:%s+%lx (%s) | ",
1258 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1259 		} else {
1260 			printf("%016lx %lx (%s)\n",
1261 			    (uintptr_t)fp, pc, args);
1262 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1263 			    "%lx (%s) | ", pc, args);
1264 		}
1265 
1266 		if (panicstr && dump_stack_scratch) {
1267 			next_offset = offset + strlen(stack_buffer);
1268 			if (next_offset < STACK_BUF_SIZE) {
1269 				bcopy(stack_buffer, dump_stack_scratch + offset,
1270 				    strlen(stack_buffer));
1271 				offset = next_offset;
1272 			} else {
1273 				/*
1274 				 * In attempting to save the panic stack
1275 				 * to the dumpbuf we have overflowed that area.
1276 				 * Print a warning and continue to printf the
1277 				 * stack to the msgbuf
1278 				 */
1279 				printf("Warning: stack in the dump buffer"
1280 				    " may be incomplete\n");
1281 				offset = next_offset;
1282 			}
1283 		}
1284 
1285 		pc = nextpc;
1286 		fp = nextfp;
1287 	}
1288 out:
1289 	if (!panicstr) {
1290 		printf("end of traceback\n");
1291 		DELAY(2 * MICROSEC);
1292 	} else if (dump_stack_scratch) {
1293 		dump_stack_scratch[offset] = '\0';
1294 	}
1295 }
1296 
1297 #elif defined(__i386)
1298 
1299 void
1300 traceback(caddr_t fpreg)
1301 {
1302 	struct frame *fp = (struct frame *)fpreg;
1303 	struct frame *nextfp, *minfp, *stacktop;
1304 	uintptr_t pc, nextpc;
1305 	uint_t	  offset = 0;
1306 	uint_t	  next_offset = 0;
1307 	char	    stack_buffer[1024];
1308 
1309 	cpu_t *cpu;
1310 
1311 	/*
1312 	 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1313 	 */
1314 	char args[TR_ARG_MAX * 2 + 8], *p;
1315 
1316 	int on_intr;
1317 	ulong_t off;
1318 	char *sym;
1319 
1320 	if (!panicstr)
1321 		printf("traceback: %%fp = %p\n", (void *)fp);
1322 
1323 	if (panicstr && !dump_stack_scratch) {
1324 		printf("Warning - stack not written to the dumpbuf\n");
1325 	}
1326 
1327 	/*
1328 	 * If we are panicking, all high-level interrupt information in
1329 	 * CPU was overwritten.  panic_cpu has the correct values.
1330 	 */
1331 	kpreempt_disable();			/* prevent migration */
1332 
1333 	cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1334 
1335 	if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1336 		stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1337 	else
1338 		stacktop = (struct frame *)curthread->t_stk;
1339 
1340 	kpreempt_enable();
1341 
1342 	fp = (struct frame *)plat_traceback(fpreg);
1343 	if ((uintptr_t)fp < KERNELBASE)
1344 		goto out;
1345 
1346 	minfp = fp;	/* Baseline minimum frame pointer */
1347 	pc = fp->fr_savpc;
1348 	fp = (struct frame *)fp->fr_savfp;
1349 
1350 	while ((uintptr_t)fp >= KERNELBASE) {
1351 		ulong_t argc;
1352 		long *argv;
1353 
1354 		if (fp <= minfp || fp >= stacktop) {
1355 			if (on_intr) {
1356 				/*
1357 				 * Hop from interrupt stack to thread stack.
1358 				 */
1359 				stacktop = (struct frame *)curthread->t_stk;
1360 				minfp = (struct frame *)curthread->t_stkbase;
1361 				on_intr = 0;
1362 				continue;
1363 			}
1364 			break; /* we're outside of the expected range */
1365 		}
1366 
1367 		if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1368 			printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1369 			break;
1370 		}
1371 
1372 		nextpc = fp->fr_savpc;
1373 		nextfp = (struct frame *)fp->fr_savfp;
1374 		argc = argcount(nextpc);
1375 		argv = (long *)((char *)fp + sizeof (struct frame));
1376 
1377 		args[0] = '\0';
1378 		p = args;
1379 		while (argc-- > 0 && argv < (long *)stacktop) {
1380 			p += snprintf(p, args + sizeof (args) - p,
1381 			    "%s%lx", (p == args) ? "" : ", ", *argv++);
1382 		}
1383 
1384 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1385 			printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1386 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1387 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1388 			    "%s:%s+%lx (%s) | ",
1389 			    mod_containing_pc((caddr_t)pc), sym, off, args);
1390 
1391 		} else {
1392 			printf("%08lx %lx (%s)\n",
1393 			    (uintptr_t)fp, pc, args);
1394 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1395 			    "%lx (%s) | ", pc, args);
1396 
1397 		}
1398 
1399 		if (panicstr && dump_stack_scratch) {
1400 			next_offset = offset + strlen(stack_buffer);
1401 			if (next_offset < STACK_BUF_SIZE) {
1402 				bcopy(stack_buffer, dump_stack_scratch + offset,
1403 				    strlen(stack_buffer));
1404 				offset = next_offset;
1405 			} else {
1406 				/*
1407 				 * In attempting to save the panic stack
1408 				 * to the dumpbuf we have overflowed that area.
1409 				 * Print a warning and continue to printf the
1410 				 * stack to the msgbuf
1411 				 */
1412 				printf("Warning: stack in the dumpbuf"
1413 				    " may be incomplete\n");
1414 				offset = next_offset;
1415 			}
1416 		}
1417 
1418 		minfp = fp;
1419 		pc = nextpc;
1420 		fp = nextfp;
1421 	}
1422 out:
1423 	if (!panicstr) {
1424 		printf("end of traceback\n");
1425 		DELAY(2 * MICROSEC);
1426 	} else if (dump_stack_scratch) {
1427 		dump_stack_scratch[offset] = '\0';
1428 	}
1429 
1430 }
1431 
1432 #endif	/* __i386 */
1433 
1434 /*
1435  * Generate a stack backtrace from a saved register set.
1436  */
1437 void
1438 traceregs(struct regs *rp)
1439 {
1440 	traceback((caddr_t)rp->r_fp);
1441 }
1442 
1443 void
1444 exec_set_sp(size_t stksize)
1445 {
1446 	klwp_t *lwp = ttolwp(curthread);
1447 
1448 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1449 }
1450 
1451 hrtime_t
1452 gethrtime_waitfree(void)
1453 {
1454 	return (dtrace_gethrtime());
1455 }
1456 
1457 hrtime_t
1458 gethrtime(void)
1459 {
1460 	return (gethrtimef());
1461 }
1462 
1463 hrtime_t
1464 gethrtime_unscaled(void)
1465 {
1466 	return (gethrtimeunscaledf());
1467 }
1468 
1469 void
1470 scalehrtime(hrtime_t *hrt)
1471 {
1472 	scalehrtimef(hrt);
1473 }
1474 
1475 uint64_t
1476 unscalehrtime(hrtime_t nsecs)
1477 {
1478 	return (unscalehrtimef(nsecs));
1479 }
1480 
1481 void
1482 gethrestime(timespec_t *tp)
1483 {
1484 	gethrestimef(tp);
1485 }
1486 
1487 #if defined(__amd64)
1488 /*
1489  * Part of the implementation of hres_tick(); this routine is
1490  * easier in C than assembler .. called with the hres_lock held.
1491  *
1492  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1493  */
1494 
1495 #include <sys/time.h>
1496 #include <sys/machlock.h>
1497 
1498 extern int one_sec;
1499 extern int max_hres_adj;
1500 
1501 void
1502 __adj_hrestime(void)
1503 {
1504 	long long adj;
1505 
1506 	if (hrestime_adj == 0)
1507 		adj = 0;
1508 	else if (hrestime_adj > 0) {
1509 		if (hrestime_adj < max_hres_adj)
1510 			adj = hrestime_adj;
1511 		else
1512 			adj = max_hres_adj;
1513 	} else {
1514 		if (hrestime_adj < -max_hres_adj)
1515 			adj = -max_hres_adj;
1516 		else
1517 			adj = hrestime_adj;
1518 	}
1519 
1520 	timedelta -= adj;
1521 	hrestime_adj = timedelta;
1522 	hrestime.tv_nsec += adj;
1523 
1524 	while (hrestime.tv_nsec >= NANOSEC) {
1525 		one_sec++;
1526 		hrestime.tv_sec++;
1527 		hrestime.tv_nsec -= NANOSEC;
1528 	}
1529 }
1530 #endif
1531 
1532 /*
1533  * Wrapper functions to maintain backwards compability
1534  */
1535 int
1536 xcopyin(const void *uaddr, void *kaddr, size_t count)
1537 {
1538 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1539 }
1540 
1541 int
1542 xcopyout(const void *kaddr, void *uaddr, size_t count)
1543 {
1544 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1545 }
1546