xref: /titanic_52/usr/src/uts/intel/ia32/ml/i86_subr.s (revision 1a48003f96d5bf304ca739198913e42e5adb9bcf)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22/*
23 * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 *  Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.
29 *  Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T
30 *    All Rights Reserved
31 */
32
33#pragma ident	"%Z%%M%	%I%	%E% SMI"
34
35/*
36 * General assembly language routines.
37 * It is the intent of this file to contain routines that are
38 * independent of the specific kernel architecture, and those that are
39 * common across kernel architectures.
40 * As architectures diverge, and implementations of specific
41 * architecture-dependent routines change, the routines should be moved
42 * from this file into the respective ../`arch -k`/subr.s file.
43 */
44
45#include <sys/asm_linkage.h>
46#include <sys/asm_misc.h>
47#include <sys/panic.h>
48#include <sys/ontrap.h>
49#include <sys/regset.h>
50#include <sys/privregs.h>
51#include <sys/reboot.h>
52#include <sys/psw.h>
53#include <sys/x86_archext.h>
54
55#if defined(__lint)
56#include <sys/types.h>
57#include <sys/systm.h>
58#include <sys/thread.h>
59#include <sys/archsystm.h>
60#include <sys/byteorder.h>
61#include <sys/dtrace.h>
62#else	/* __lint */
63#include "assym.h"
64#endif	/* __lint */
65#include <sys/dditypes.h>
66
67/*
68 * on_fault()
69 * Catch lofault faults. Like setjmp except it returns one
70 * if code following causes uncorrectable fault. Turned off
71 * by calling no_fault().
72 */
73
74#if defined(__lint)
75
76/* ARGSUSED */
77int
78on_fault(label_t *ljb)
79{ return (0); }
80
81void
82no_fault(void)
83{}
84
85#else	/* __lint */
86
87#if defined(__amd64)
88
89	ENTRY(on_fault)
90	movq	%gs:CPU_THREAD, %rsi
91	leaq	catch_fault(%rip), %rdx
92	movq	%rdi, T_ONFAULT(%rsi)		/* jumpbuf in t_onfault */
93	movq	%rdx, T_LOFAULT(%rsi)		/* catch_fault in t_lofault */
94	jmp	setjmp				/* let setjmp do the rest */
95
96catch_fault:
97	movq	%gs:CPU_THREAD, %rsi
98	movq	T_ONFAULT(%rsi), %rdi		/* address of save area */
99	xorl	%eax, %eax
100	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
101	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
102	jmp	longjmp				/* let longjmp do the rest */
103	SET_SIZE(on_fault)
104
105	ENTRY(no_fault)
106	movq	%gs:CPU_THREAD, %rsi
107	xorl	%eax, %eax
108	movq	%rax, T_ONFAULT(%rsi)		/* turn off onfault */
109	movq	%rax, T_LOFAULT(%rsi)		/* turn off lofault */
110	ret
111	SET_SIZE(no_fault)
112
113#elif defined(__i386)
114
115	ENTRY(on_fault)
116	movl	%gs:CPU_THREAD, %edx
117	movl	4(%esp), %eax			/* jumpbuf address */
118	leal	catch_fault, %ecx
119	movl	%eax, T_ONFAULT(%edx)		/* jumpbuf in t_onfault */
120	movl	%ecx, T_LOFAULT(%edx)		/* catch_fault in t_lofault */
121	jmp	setjmp				/* let setjmp do the rest */
122
123catch_fault:
124	movl	%gs:CPU_THREAD, %edx
125	xorl	%eax, %eax
126	movl	T_ONFAULT(%edx), %ecx		/* address of save area */
127	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
128	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
129	pushl	%ecx
130	call	longjmp				/* let longjmp do the rest */
131	SET_SIZE(on_fault)
132
133	ENTRY(no_fault)
134	movl	%gs:CPU_THREAD, %edx
135	xorl	%eax, %eax
136	movl	%eax, T_ONFAULT(%edx)		/* turn off onfault */
137	movl	%eax, T_LOFAULT(%edx)		/* turn off lofault */
138	ret
139	SET_SIZE(no_fault)
140
141#endif	/* __i386 */
142#endif	/* __lint */
143
144/*
145 * Default trampoline code for on_trap() (see <sys/ontrap.h>).  We just
146 * do a longjmp(&curthread->t_ontrap->ot_jmpbuf) if this is ever called.
147 */
148
149#if defined(lint)
150
151void
152on_trap_trampoline(void)
153{}
154
155#else	/* __lint */
156
157#if defined(__amd64)
158
159	ENTRY(on_trap_trampoline)
160	movq	%gs:CPU_THREAD, %rsi
161	movq	T_ONTRAP(%rsi), %rdi
162	addq	$OT_JMPBUF, %rdi
163	jmp	longjmp
164	SET_SIZE(on_trap_trampoline)
165
166#elif defined(__i386)
167
168	ENTRY(on_trap_trampoline)
169	movl	%gs:CPU_THREAD, %eax
170	movl	T_ONTRAP(%eax), %eax
171	addl	$OT_JMPBUF, %eax
172	pushl	%eax
173	call	longjmp
174	SET_SIZE(on_trap_trampoline)
175
176#endif	/* __i386 */
177#endif	/* __lint */
178
179/*
180 * Push a new element on to the t_ontrap stack.  Refer to <sys/ontrap.h> for
181 * more information about the on_trap() mechanism.  If the on_trap_data is the
182 * same as the topmost stack element, we just modify that element.
183 */
184#if defined(lint)
185
186/*ARGSUSED*/
187int
188on_trap(on_trap_data_t *otp, uint_t prot)
189{ return (0); }
190
191#else	/* __lint */
192
193#if defined(__amd64)
194
195	ENTRY(on_trap)
196	movw	%si, OT_PROT(%rdi)		/* ot_prot = prot */
197	movw	$0, OT_TRAP(%rdi)		/* ot_trap = 0 */
198	leaq	on_trap_trampoline(%rip), %rdx	/* rdx = &on_trap_trampoline */
199	movq	%rdx, OT_TRAMPOLINE(%rdi)	/* ot_trampoline = rdx */
200	xorl	%ecx, %ecx
201	movq	%rcx, OT_HANDLE(%rdi)		/* ot_handle = NULL */
202	movq	%rcx, OT_PAD1(%rdi)		/* ot_pad1 = NULL */
203	movq	%gs:CPU_THREAD, %rdx		/* rdx = curthread */
204	movq	T_ONTRAP(%rdx), %rcx		/* rcx = curthread->t_ontrap */
205	cmpq	%rdi, %rcx			/* if (otp == %rcx)	*/
206	je	0f				/*	don't modify t_ontrap */
207
208	movq	%rcx, OT_PREV(%rdi)		/* ot_prev = t_ontrap */
209	movq	%rdi, T_ONTRAP(%rdx)		/* curthread->t_ontrap = otp */
210
2110:	addq	$OT_JMPBUF, %rdi		/* &ot_jmpbuf */
212	jmp	setjmp
213	SET_SIZE(on_trap)
214
215#elif defined(__i386)
216
217	ENTRY(on_trap)
218	movl	4(%esp), %eax			/* %eax = otp */
219	movl	8(%esp), %edx			/* %edx = prot */
220
221	movw	%dx, OT_PROT(%eax)		/* ot_prot = prot */
222	movw	$0, OT_TRAP(%eax)		/* ot_trap = 0 */
223	leal	on_trap_trampoline, %edx	/* %edx = &on_trap_trampoline */
224	movl	%edx, OT_TRAMPOLINE(%eax)	/* ot_trampoline = %edx */
225	movl	$0, OT_HANDLE(%eax)		/* ot_handle = NULL */
226	movl	$0, OT_PAD1(%eax)		/* ot_pad1 = NULL */
227	movl	%gs:CPU_THREAD, %edx		/* %edx = curthread */
228	movl	T_ONTRAP(%edx), %ecx		/* %ecx = curthread->t_ontrap */
229	cmpl	%eax, %ecx			/* if (otp == %ecx) */
230	je	0f				/*    don't modify t_ontrap */
231
232	movl	%ecx, OT_PREV(%eax)		/* ot_prev = t_ontrap */
233	movl	%eax, T_ONTRAP(%edx)		/* curthread->t_ontrap = otp */
234
2350:	addl	$OT_JMPBUF, %eax		/* %eax = &ot_jmpbuf */
236	movl	%eax, 4(%esp)			/* put %eax back on the stack */
237	jmp	setjmp				/* let setjmp do the rest */
238	SET_SIZE(on_trap)
239
240#endif	/* __i386 */
241#endif	/* __lint */
242
243/*
244 * Setjmp and longjmp implement non-local gotos using state vectors
245 * type label_t.
246 */
247
248#if defined(__lint)
249
250/* ARGSUSED */
251int
252setjmp(label_t *lp)
253{ return (0); }
254
255/* ARGSUSED */
256void
257longjmp(label_t *lp)
258{}
259
260#else	/* __lint */
261
262#if LABEL_PC != 0
263#error LABEL_PC MUST be defined as 0 for setjmp/longjmp to work as coded
264#endif	/* LABEL_PC != 0 */
265
266#if defined(__amd64)
267
268	ENTRY(setjmp)
269	movq	%rsp, LABEL_SP(%rdi)
270	movq	%rbp, LABEL_RBP(%rdi)
271	movq	%rbx, LABEL_RBX(%rdi)
272	movq	%r12, LABEL_R12(%rdi)
273	movq	%r13, LABEL_R13(%rdi)
274	movq	%r14, LABEL_R14(%rdi)
275	movq	%r15, LABEL_R15(%rdi)
276	movq	(%rsp), %rdx		/* return address */
277	movq	%rdx, (%rdi)		/* LABEL_PC is 0 */
278	xorl	%eax, %eax		/* return 0 */
279	ret
280	SET_SIZE(setjmp)
281
282	ENTRY(longjmp)
283	movq	LABEL_SP(%rdi), %rsp
284	movq	LABEL_RBP(%rdi), %rbp
285	movq	LABEL_RBX(%rdi), %rbx
286	movq	LABEL_R12(%rdi), %r12
287	movq	LABEL_R13(%rdi), %r13
288	movq	LABEL_R14(%rdi), %r14
289	movq	LABEL_R15(%rdi), %r15
290	movq	(%rdi), %rdx		/* return address; LABEL_PC is 0 */
291	movq	%rdx, (%rsp)
292	xorl	%eax, %eax
293	incl	%eax			/* return 1 */
294	ret
295	SET_SIZE(longjmp)
296
297#elif defined(__i386)
298
299	ENTRY(setjmp)
300	movl	4(%esp), %edx		/* address of save area */
301	movl	%ebp, LABEL_EBP(%edx)
302	movl	%ebx, LABEL_EBX(%edx)
303	movl	%esi, LABEL_ESI(%edx)
304	movl	%edi, LABEL_EDI(%edx)
305	movl	%esp, 4(%edx)
306	movl	(%esp), %ecx		/* %eip (return address) */
307	movl	%ecx, (%edx)		/* LABEL_PC is 0 */
308	subl	%eax, %eax		/* return 0 */
309	ret
310	SET_SIZE(setjmp)
311
312	ENTRY(longjmp)
313	movl	4(%esp), %edx		/* address of save area */
314	movl	LABEL_EBP(%edx), %ebp
315	movl	LABEL_EBX(%edx), %ebx
316	movl	LABEL_ESI(%edx), %esi
317	movl	LABEL_EDI(%edx), %edi
318	movl	4(%edx), %esp
319	movl	(%edx), %ecx		/* %eip (return addr); LABEL_PC is 0 */
320	movl	$1, %eax
321	addl	$4, %esp		/* pop ret adr */
322	jmp	*%ecx			/* indirect */
323	SET_SIZE(longjmp)
324
325#endif	/* __i386 */
326#endif	/* __lint */
327
328/*
329 * if a() calls b() calls caller(),
330 * caller() returns return address in a().
331 * (Note: We assume a() and b() are C routines which do the normal entry/exit
332 *  sequence.)
333 */
334
335#if defined(__lint)
336
337caddr_t
338caller(void)
339{ return (0); }
340
341#else	/* __lint */
342
343#if defined(__amd64)
344
345	ENTRY(caller)
346	movq	8(%rbp), %rax		/* b()'s return pc, in a() */
347	ret
348	SET_SIZE(caller)
349
350#elif defined(__i386)
351
352	ENTRY(caller)
353	movl	4(%ebp), %eax		/* b()'s return pc, in a() */
354	ret
355	SET_SIZE(caller)
356
357#endif	/* __i386 */
358#endif	/* __lint */
359
360/*
361 * if a() calls callee(), callee() returns the
362 * return address in a();
363 */
364
365#if defined(__lint)
366
367caddr_t
368callee(void)
369{ return (0); }
370
371#else	/* __lint */
372
373#if defined(__amd64)
374
375	ENTRY(callee)
376	movq	(%rsp), %rax		/* callee()'s return pc, in a() */
377	ret
378	SET_SIZE(callee)
379
380#elif defined(__i386)
381
382	ENTRY(callee)
383	movl	(%esp), %eax		/* callee()'s return pc, in a() */
384	ret
385	SET_SIZE(callee)
386
387#endif	/* __i386 */
388#endif	/* __lint */
389
390/*
391 * return the current frame pointer
392 */
393
394#if defined(__lint)
395
396greg_t
397getfp(void)
398{ return (0); }
399
400#else	/* __lint */
401
402#if defined(__amd64)
403
404	ENTRY(getfp)
405	movq	%rbp, %rax
406	ret
407	SET_SIZE(getfp)
408
409#elif defined(__i386)
410
411	ENTRY(getfp)
412	movl	%ebp, %eax
413	ret
414	SET_SIZE(getfp)
415
416#endif	/* __i386 */
417#endif	/* __lint */
418
419/*
420 * Invalidate a single page table entry in the TLB
421 */
422
423#if defined(__lint)
424
425/* ARGSUSED */
426void
427mmu_tlbflush_entry(caddr_t m)
428{}
429
430#else	/* __lint */
431
432#if defined(__amd64)
433
434	ENTRY(mmu_tlbflush_entry)
435	invlpg	(%rdi)
436	ret
437	SET_SIZE(mmu_tlbflush_entry)
438
439#elif defined(__i386)
440
441	ENTRY(mmu_tlbflush_entry)
442	movl	4(%esp), %eax
443	invlpg	(%eax)
444	ret
445	SET_SIZE(mmu_tlbflush_entry)
446
447#endif	/* __i386 */
448#endif	/* __lint */
449
450
451/*
452 * Get/Set the value of various control registers
453 */
454
455#if defined(__lint)
456
457ulong_t
458getcr0(void)
459{ return (0); }
460
461/* ARGSUSED */
462void
463setcr0(ulong_t value)
464{}
465
466ulong_t
467getcr2(void)
468{ return (0); }
469
470ulong_t
471getcr3(void)
472{ return (0); }
473
474/* ARGSUSED */
475void
476setcr3(ulong_t val)
477{}
478
479void
480reload_cr3(void)
481{}
482
483ulong_t
484getcr4(void)
485{ return (0); }
486
487/* ARGSUSED */
488void
489setcr4(ulong_t val)
490{}
491
492#if defined(__amd64)
493
494ulong_t
495getcr8(void)
496{ return (0); }
497
498/* ARGSUSED */
499void
500setcr8(ulong_t val)
501{}
502
503#endif	/* __amd64 */
504
505#else	/* __lint */
506
507#if defined(__amd64)
508
509	ENTRY(getcr0)
510	movq	%cr0, %rax
511	ret
512	SET_SIZE(getcr0)
513
514	ENTRY(setcr0)
515	movq	%rdi, %cr0
516	ret
517	SET_SIZE(setcr0)
518
519	ENTRY(getcr2)
520	movq	%cr2, %rax
521	ret
522	SET_SIZE(getcr2)
523
524	ENTRY(getcr3)
525	movq	%cr3, %rax
526	ret
527	SET_SIZE(getcr3)
528
529	ENTRY(setcr3)
530	movq	%rdi, %cr3
531	ret
532	SET_SIZE(setcr3)
533
534	ENTRY(reload_cr3)
535	movq	%cr3, %rdi
536	movq	%rdi, %cr3
537	ret
538	SET_SIZE(reload_cr3)
539
540	ENTRY(getcr4)
541	movq	%cr4, %rax
542	ret
543	SET_SIZE(getcr4)
544
545	ENTRY(setcr4)
546	movq	%rdi, %cr4
547	ret
548	SET_SIZE(setcr4)
549
550	ENTRY(getcr8)
551	movq	%cr8, %rax
552	ret
553	SET_SIZE(getcr8)
554
555	ENTRY(setcr8)
556	movq	%rdi, %cr8
557	ret
558	SET_SIZE(setcr8)
559
560#elif defined(__i386)
561
562        ENTRY(getcr0)
563        movl    %cr0, %eax
564        ret
565	SET_SIZE(getcr0)
566
567        ENTRY(setcr0)
568        movl    4(%esp), %eax
569        movl    %eax, %cr0
570        ret
571	SET_SIZE(setcr0)
572
573        ENTRY(getcr2)
574        movl    %cr2, %eax
575        ret
576	SET_SIZE(getcr2)
577
578	ENTRY(getcr3)
579	movl    %cr3, %eax
580	ret
581	SET_SIZE(getcr3)
582
583        ENTRY(setcr3)
584        movl    4(%esp), %eax
585        movl    %eax, %cr3
586        ret
587	SET_SIZE(setcr3)
588
589	ENTRY(reload_cr3)
590	movl    %cr3, %eax
591	movl    %eax, %cr3
592	ret
593	SET_SIZE(reload_cr3)
594
595	ENTRY(getcr4)
596	movl    %cr4, %eax
597	ret
598	SET_SIZE(getcr4)
599
600        ENTRY(setcr4)
601        movl    4(%esp), %eax
602        movl    %eax, %cr4
603        ret
604	SET_SIZE(setcr4)
605
606#endif	/* __i386 */
607#endif	/* __lint */
608
609#if defined(__lint)
610
611/*ARGSUSED*/
612uint32_t
613__cpuid_insn(uint32_t eax, uint32_t *ebxp, uint32_t *ecxp, uint32_t *edxp)
614{ return (0); }
615
616#else	/* __lint */
617
618#if defined(__amd64)
619
620	ENTRY(__cpuid_insn)
621	movq	%rbx, %r11
622	movq	%rdx, %r8	/* r8 = ecxp */
623	movq	%rcx, %r9	/* r9 = edxp */
624	movl	%edi, %eax
625	cpuid
626	movl	%ebx, (%rsi)
627	movl	%ecx, (%r8)
628	movl	%edx, (%r9)
629	movq	%r11, %rbx
630	ret
631	SET_SIZE(__cpuid_insn)
632
633#elif defined(__i386)
634
635        ENTRY(__cpuid_insn)
636	pushl	%ebp
637	movl	%esp, %ebp
638	pushl	%ebx
639	movl	8(%ebp), %eax
640	cpuid
641	pushl	%eax
642	movl	0x0c(%ebp), %eax
643	movl	%ebx, (%eax)
644	movl	0x10(%ebp), %eax
645	movl	%ecx, (%eax)
646	movl	0x14(%ebp), %eax
647	movl	%edx, (%eax)
648	popl	%eax
649	popl	%ebx
650	popl	%ebp
651	ret
652	SET_SIZE(__cpuid_insn)
653
654#endif	/* __i386 */
655#endif	/* __lint */
656
657/*
658 * Insert entryp after predp in a doubly linked list.
659 */
660
661#if defined(__lint)
662
663/*ARGSUSED*/
664void
665_insque(caddr_t entryp, caddr_t predp)
666{}
667
668#else	/* __lint */
669
670#if defined(__amd64)
671
672	ENTRY(_insque)
673	movq	(%rsi), %rax		/* predp->forw 			*/
674	movq	%rsi, CPTRSIZE(%rdi)	/* entryp->back = predp		*/
675	movq	%rax, (%rdi)		/* entryp->forw = predp->forw	*/
676	movq	%rdi, (%rsi)		/* predp->forw = entryp		*/
677	movq	%rdi, CPTRSIZE(%rax)	/* predp->forw->back = entryp	*/
678	ret
679	SET_SIZE(_insque)
680
681#elif defined(__i386)
682
683	ENTRY(_insque)
684	movl	8(%esp), %edx
685	movl	4(%esp), %ecx
686	movl	(%edx), %eax		/* predp->forw			*/
687	movl	%edx, CPTRSIZE(%ecx)	/* entryp->back = predp		*/
688	movl	%eax, (%ecx)		/* entryp->forw = predp->forw	*/
689	movl	%ecx, (%edx)		/* predp->forw = entryp		*/
690	movl	%ecx, CPTRSIZE(%eax)	/* predp->forw->back = entryp	*/
691	ret
692	SET_SIZE(_insque)
693
694#endif	/* __i386 */
695#endif	/* __lint */
696
697/*
698 * Remove entryp from a doubly linked list
699 */
700
701#if defined(__lint)
702
703/*ARGSUSED*/
704void
705_remque(caddr_t entryp)
706{}
707
708#else	/* __lint */
709
710#if defined(__amd64)
711
712	ENTRY(_remque)
713	movq	(%rdi), %rax		/* entry->forw */
714	movq	CPTRSIZE(%rdi), %rdx	/* entry->back */
715	movq	%rax, (%rdx)		/* entry->back->forw = entry->forw */
716	movq	%rdx, CPTRSIZE(%rax)	/* entry->forw->back = entry->back */
717	ret
718	SET_SIZE(_remque)
719
720#elif defined(__i386)
721
722	ENTRY(_remque)
723	movl	4(%esp), %ecx
724	movl	(%ecx), %eax		/* entry->forw */
725	movl	CPTRSIZE(%ecx), %edx	/* entry->back */
726	movl	%eax, (%edx)		/* entry->back->forw = entry->forw */
727	movl	%edx, CPTRSIZE(%eax)	/* entry->forw->back = entry->back */
728	ret
729	SET_SIZE(_remque)
730
731#endif	/* __i386 */
732#endif	/* __lint */
733
734/*
735 * Returns the number of
736 * non-NULL bytes in string argument.
737 */
738
739#if defined(__lint)
740
741/* ARGSUSED */
742size_t
743strlen(const char *str)
744{ return (0); }
745
746#else	/* __lint */
747
748#if defined(__amd64)
749
750/*
751 * This is close to a simple transliteration of a C version of this
752 * routine.  We should either just -make- this be a C version, or
753 * justify having it in assembler by making it significantly faster.
754 *
755 * size_t
756 * strlen(const char *s)
757 * {
758 *	const char *s0;
759 * #if defined(DEBUG)
760 *	if ((uintptr_t)s < KERNELBASE)
761 *		panic(.str_panic_msg);
762 * #endif
763 *	for (s0 = s; *s; s++)
764 *		;
765 *	return (s - s0);
766 * }
767 */
768
769	ENTRY(strlen)
770#ifdef DEBUG
771	movq	kernelbase(%rip), %rax
772	cmpq	%rax, %rdi
773	jae	str_valid
774	pushq	%rbp
775	movq	%rsp, %rbp
776	leaq	.str_panic_msg(%rip), %rdi
777	xorl	%eax, %eax
778	call	panic
779#endif	/* DEBUG */
780str_valid:
781	cmpb	$0, (%rdi)
782	movq	%rdi, %rax
783	je	.null_found
784	.align	4
785.strlen_loop:
786	incq	%rdi
787	cmpb	$0, (%rdi)
788	jne	.strlen_loop
789.null_found:
790	subq	%rax, %rdi
791	movq	%rdi, %rax
792	ret
793	SET_SIZE(strlen)
794
795#elif defined(__i386)
796
797	ENTRY(strlen)
798#ifdef DEBUG
799	movl	kernelbase, %eax
800	cmpl	%eax, 4(%esp)
801	jae	str_valid
802	pushl	%ebp
803	movl	%esp, %ebp
804	pushl	$.str_panic_msg
805	call	panic
806#endif /* DEBUG */
807
808str_valid:
809	movl	4(%esp), %eax		/* %eax = string address */
810	testl	$3, %eax		/* if %eax not word aligned */
811	jnz	.not_word_aligned	/* goto .not_word_aligned */
812	.align	4
813.word_aligned:
814	movl	(%eax), %edx		/* move 1 word from (%eax) to %edx */
815	movl	$0x7f7f7f7f, %ecx
816	andl	%edx, %ecx		/* %ecx = %edx & 0x7f7f7f7f */
817	addl	$4, %eax		/* next word */
818	addl	$0x7f7f7f7f, %ecx	/* %ecx += 0x7f7f7f7f */
819	orl	%edx, %ecx		/* %ecx |= %edx */
820	andl	$0x80808080, %ecx	/* %ecx &= 0x80808080 */
821	cmpl	$0x80808080, %ecx	/* if no null byte in this word */
822	je	.word_aligned		/* goto .word_aligned */
823	subl	$4, %eax		/* post-incremented */
824.not_word_aligned:
825	cmpb	$0, (%eax)		/* if a byte in (%eax) is null */
826	je	.null_found		/* goto .null_found */
827	incl	%eax			/* next byte */
828	testl	$3, %eax		/* if %eax not word aligned */
829	jnz	.not_word_aligned	/* goto .not_word_aligned */
830	jmp	.word_aligned		/* goto .word_aligned */
831	.align	4
832.null_found:
833	subl	4(%esp), %eax		/* %eax -= string address */
834	ret
835	SET_SIZE(strlen)
836
837#endif	/* __i386 */
838
839#ifdef DEBUG
840	.text
841.str_panic_msg:
842	.string "strlen: argument below kernelbase"
843#endif /* DEBUG */
844
845#endif	/* __lint */
846
847	/*
848	 * Berkley 4.3 introduced symbolically named interrupt levels
849	 * as a way deal with priority in a machine independent fashion.
850	 * Numbered priorities are machine specific, and should be
851	 * discouraged where possible.
852	 *
853	 * Note, for the machine specific priorities there are
854	 * examples listed for devices that use a particular priority.
855	 * It should not be construed that all devices of that
856	 * type should be at that priority.  It is currently were
857	 * the current devices fit into the priority scheme based
858	 * upon time criticalness.
859	 *
860	 * The underlying assumption of these assignments is that
861	 * IPL 10 is the highest level from which a device
862	 * routine can call wakeup.  Devices that interrupt from higher
863	 * levels are restricted in what they can do.  If they need
864	 * kernels services they should schedule a routine at a lower
865	 * level (via software interrupt) to do the required
866	 * processing.
867	 *
868	 * Examples of this higher usage:
869	 *	Level	Usage
870	 *	14	Profiling clock (and PROM uart polling clock)
871	 *	12	Serial ports
872	 *
873	 * The serial ports request lower level processing on level 6.
874	 *
875	 * Also, almost all splN routines (where N is a number or a
876	 * mnemonic) will do a RAISE(), on the assumption that they are
877	 * never used to lower our priority.
878	 * The exceptions are:
879	 *	spl8()		Because you can't be above 15 to begin with!
880	 *	splzs()		Because this is used at boot time to lower our
881	 *			priority, to allow the PROM to poll the uart.
882	 *	spl0()		Used to lower priority to 0.
883	 */
884
885#if defined(__lint)
886
887int spl0(void)		{ return (0); }
888int spl6(void)		{ return (0); }
889int spl7(void)		{ return (0); }
890int spl8(void)		{ return (0); }
891int splhigh(void)	{ return (0); }
892int splhi(void)		{ return (0); }
893int splzs(void)		{ return (0); }
894
895#else	/* __lint */
896
897/* reg = cpu->cpu_m.cpu_pri; */
898#define	GETIPL_NOGS(reg, cpup)	\
899	movl	CPU_PRI(cpup), reg;
900
901/* cpu->cpu_m.cpu_pri; */
902#define	SETIPL_NOGS(val, cpup)	\
903	movl	val, CPU_PRI(cpup);
904
905/* reg = cpu->cpu_m.cpu_pri; */
906#define	GETIPL(reg)	\
907	movl	%gs:CPU_PRI, reg;
908
909/* cpu->cpu_m.cpu_pri; */
910#define	SETIPL(val)	\
911	movl	val, %gs:CPU_PRI;
912
913/*
914 * Macro to raise processor priority level.
915 * Avoid dropping processor priority if already at high level.
916 * Also avoid going below CPU->cpu_base_spl, which could've just been set by
917 * a higher-level interrupt thread that just blocked.
918 */
919#if defined(__amd64)
920
921#define	RAISE(level) \
922	cli;			\
923	LOADCPU(%rcx);		\
924	movl	$/**/level, %edi;\
925	GETIPL_NOGS(%eax, %rcx);\
926	cmpl 	%eax, %edi;	\
927	jg	spl;		\
928	jmp	setsplhisti
929
930#elif defined(__i386)
931
932#define	RAISE(level) \
933	cli;			\
934	LOADCPU(%ecx);		\
935	movl	$/**/level, %edx;\
936	GETIPL_NOGS(%eax, %ecx);\
937	cmpl 	%eax, %edx;	\
938	jg	spl;		\
939	jmp	setsplhisti
940
941#endif	/* __i386 */
942
943/*
944 * Macro to set the priority to a specified level.
945 * Avoid dropping the priority below CPU->cpu_base_spl.
946 */
947#if defined(__amd64)
948
949#define	SETPRI(level) \
950	cli;				\
951	LOADCPU(%rcx);			\
952	movl	$/**/level, %edi;	\
953	jmp	spl
954
955#elif defined(__i386)
956
957#define SETPRI(level) \
958	cli;				\
959	LOADCPU(%ecx);			\
960	movl	$/**/level, %edx;	\
961	jmp	spl
962
963#endif	/* __i386 */
964
965	/* locks out all interrupts, including memory errors */
966	ENTRY(spl8)
967	SETPRI(15)
968	SET_SIZE(spl8)
969
970	/* just below the level that profiling runs */
971	ENTRY(spl7)
972	RAISE(13)
973	SET_SIZE(spl7)
974
975	/* sun specific - highest priority onboard serial i/o asy ports */
976	ENTRY(splzs)
977	SETPRI(12)	/* Can't be a RAISE, as it's used to lower us */
978	SET_SIZE(splzs)
979
980	/*
981	 * should lock out clocks and all interrupts,
982	 * as you can see, there are exceptions
983	 */
984
985#if defined(__amd64)
986
987	.align	16
988	ENTRY(splhi)
989	ALTENTRY(splhigh)
990	ALTENTRY(spl6)
991	ALTENTRY(i_ddi_splhigh)
992	cli
993	LOADCPU(%rcx)
994	movl	$DISP_LEVEL, %edi
995	movl	CPU_PRI(%rcx), %eax
996	cmpl	%eax, %edi
997	jle	setsplhisti
998	SETIPL_NOGS(%edi, %rcx)
999	/*
1000	 * If we aren't using cr8 to control ipl then we patch this
1001	 * with a jump to slow_setsplhi
1002	 */
1003	ALTENTRY(setsplhi_patch)
1004	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1005	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1006	movq	%rdx, %cr8		/* set new apic priority */
1007	/*
1008	 * enable interrupts
1009	 */
1010setsplhisti:
1011	nop	/* patch this to a sti when a proper setspl routine appears */
1012	ret
1013
1014	ALTENTRY(slow_setsplhi)
1015	pushq	%rbp
1016	movq	%rsp, %rbp
1017	subq	$16, %rsp
1018	movl	%eax, -4(%rbp)		/* save old ipl */
1019	call	*setspl(%rip)
1020	movl	-4(%rbp), %eax		/* return old ipl */
1021	leave
1022	jmp	setsplhisti
1023
1024	SET_SIZE(i_ddi_splhigh)
1025	SET_SIZE(spl6)
1026	SET_SIZE(splhigh)
1027	SET_SIZE(splhi)
1028
1029#elif defined(__i386)
1030
1031	.align	16
1032	ENTRY(splhi)
1033	ALTENTRY(splhigh)
1034	ALTENTRY(spl6)
1035	ALTENTRY(i_ddi_splhigh)
1036	cli
1037	LOADCPU(%ecx)
1038	movl	$DISP_LEVEL, %edx
1039	movl	CPU_PRI(%ecx), %eax
1040	cmpl	%eax, %edx
1041	jle	setsplhisti
1042	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1043
1044	pushl   %eax                    /* save old ipl */
1045	pushl	%edx			/* pass new ipl */
1046	call	*setspl
1047	popl	%ecx			/* dummy pop */
1048	popl    %eax                    /* return old ipl */
1049	/*
1050	 * enable interrupts
1051	 *
1052	 * (we patch this to an sti once a proper setspl routine
1053	 * is installed)
1054	 */
1055setsplhisti:
1056	nop	/* patch this to a sti when a proper setspl routine appears */
1057	ret
1058	SET_SIZE(i_ddi_splhigh)
1059	SET_SIZE(spl6)
1060	SET_SIZE(splhigh)
1061	SET_SIZE(splhi)
1062
1063#endif	/* __i386 */
1064
1065	/* allow all interrupts */
1066	ENTRY(spl0)
1067	SETPRI(0)
1068	SET_SIZE(spl0)
1069
1070#endif	/* __lint */
1071
1072/*
1073 * splr is like splx but will only raise the priority and never drop it
1074 */
1075#if defined(__lint)
1076
1077/* ARGSUSED */
1078int
1079splr(int level)
1080{ return (0); }
1081
1082#else	/* __lint */
1083
1084#if defined(__amd64)
1085
1086	ENTRY(splr)
1087	cli
1088	LOADCPU(%rcx)
1089	GETIPL_NOGS(%eax, %rcx)
1090	cmpl	%eax, %edi		/* if new level > current level */
1091	jg	spl			/* then set ipl to new level */
1092splr_setsti:
1093	nop	/* patch this to a sti when a proper setspl routine appears */
1094	ret				/* else return the current level */
1095	SET_SIZE(splr)
1096
1097#elif defined(__i386)
1098
1099	ENTRY(splr)
1100	cli
1101	LOADCPU(%ecx)
1102	movl	4(%esp), %edx		/* get new spl level */
1103	GETIPL_NOGS(%eax, %ecx)
1104	cmpl 	%eax, %edx		/* if new level > current level */
1105	jg	spl			/* then set ipl to new level */
1106splr_setsti:
1107	nop	/* patch this to a sti when a proper setspl routine appears */
1108	ret				/* else return the current level */
1109	SET_SIZE(splr)
1110
1111#endif	/* __i386 */
1112#endif	/* __lint */
1113
1114
1115
1116/*
1117 * splx - set PIL back to that indicated by the level passed as an argument,
1118 * or to the CPU's base priority, whichever is higher.
1119 * Needs to be fall through to spl to save cycles.
1120 * Algorithm for spl:
1121 *
1122 *      turn off interrupts
1123 *
1124 *	if (CPU->cpu_base_spl > newipl)
1125 *		newipl = CPU->cpu_base_spl;
1126 *      oldipl = CPU->cpu_pridata->c_ipl;
1127 *      CPU->cpu_pridata->c_ipl = newipl;
1128 *
1129 *	/indirectly call function to set spl values (usually setpicmasks)
1130 *      setspl();  // load new masks into pics
1131 *
1132 * Be careful not to set priority lower than CPU->cpu_base_pri,
1133 * even though it seems we're raising the priority, it could be set
1134 * higher at any time by an interrupt routine, so we must block interrupts
1135 * and look at CPU->cpu_base_pri
1136 */
1137#if defined(__lint)
1138
1139/* ARGSUSED */
1140void
1141splx(int level)
1142{}
1143
1144#else	/* __lint */
1145
1146#if defined(__amd64)
1147
1148	ENTRY(splx)
1149	ALTENTRY(i_ddi_splx)
1150	cli				/* disable interrupts */
1151	LOADCPU(%rcx)
1152	/*FALLTHRU*/
1153	.align	4
1154spl:
1155	/*
1156	 * New priority level is in %edi, cpu struct pointer is in %rcx
1157	 */
1158	GETIPL_NOGS(%eax, %rcx)		/* get current ipl */
1159	cmpl   %edi, CPU_BASE_SPL(%rcx) /* if (base spl > new ipl) */
1160	ja     set_to_base_spl		/* then use base_spl */
1161
1162setprilev:
1163	SETIPL_NOGS(%edi, %rcx)		/* set new ipl */
1164	/*
1165	 * If we aren't using cr8 to control ipl then we patch this
1166	 * with a jump to slow_spl
1167	 */
1168	ALTENTRY(spl_patch)
1169	movq	CPU_PRI_DATA(%rcx), %r11 /* get pri data ptr */
1170	movzb	(%r11, %rdi, 1), %rdx	/* get apic mask for this ipl */
1171	movq	%rdx, %cr8		/* set new apic priority */
1172	xorl	%edx, %edx
1173	bsrl	CPU_SOFTINFO(%rcx), %edx /* fls(cpu->cpu_softinfo.st_pending) */
1174	cmpl	%edi, %edx		/* new ipl vs. st_pending */
1175	jle	setsplsti
1176
1177	pushq	%rbp
1178	movq	%rsp, %rbp
1179	/* stack now 16-byte aligned */
1180	pushq	%rax			/* save old spl */
1181	pushq	%rdi			/* save new ipl too */
1182	jmp	fakesoftint
1183
1184setsplsti:
1185	nop	/* patch this to a sti when a proper setspl routine appears */
1186	ret
1187
1188	ALTENTRY(slow_spl)
1189	pushq	%rbp
1190	movq	%rsp, %rbp
1191	/* stack now 16-byte aligned */
1192
1193	pushq	%rax			/* save old spl */
1194	pushq	%rdi			/* save new ipl too */
1195
1196	call	*setspl(%rip)
1197
1198	LOADCPU(%rcx)
1199	movl	CPU_SOFTINFO(%rcx), %eax
1200	orl	%eax, %eax
1201	jz	slow_setsplsti
1202
1203	bsrl	%eax, %edx		/* fls(cpu->cpu_softinfo.st_pending) */
1204	cmpl	0(%rsp), %edx		/* new ipl vs. st_pending */
1205	jg	fakesoftint
1206
1207	ALTENTRY(fakesoftint_return)
1208	/*
1209	 * enable interrupts
1210	 */
1211slow_setsplsti:
1212	nop	/* patch this to a sti when a proper setspl routine appears */
1213	popq	%rdi
1214	popq	%rax			/* return old ipl */
1215	leave
1216	ret
1217	SET_SIZE(fakesoftint_return)
1218
1219set_to_base_spl:
1220	movl	CPU_BASE_SPL(%rcx), %edi
1221	jmp	setprilev
1222	SET_SIZE(spl)
1223	SET_SIZE(i_ddi_splx)
1224	SET_SIZE(splx)
1225
1226#elif defined(__i386)
1227
1228	ENTRY(splx)
1229	ALTENTRY(i_ddi_splx)
1230	cli                             /* disable interrupts */
1231	LOADCPU(%ecx)
1232	movl	4(%esp), %edx		/* get new spl level */
1233	/*FALLTHRU*/
1234
1235	.align	4
1236	ALTENTRY(spl)
1237	/*
1238	 * New priority level is in %edx
1239	 * (doing this early to avoid an AGI in the next instruction)
1240	 */
1241	GETIPL_NOGS(%eax, %ecx)		/* get current ipl */
1242	cmpl	%edx, CPU_BASE_SPL(%ecx) /* if ( base spl > new ipl) */
1243	ja	set_to_base_spl		/* then use base_spl */
1244
1245setprilev:
1246	SETIPL_NOGS(%edx, %ecx)		/* set new ipl */
1247
1248	pushl   %eax                    /* save old ipl */
1249	pushl	%edx			/* pass new ipl */
1250	call	*setspl
1251
1252	LOADCPU(%ecx)
1253	movl	CPU_SOFTINFO(%ecx), %eax
1254	orl	%eax, %eax
1255	jz	setsplsti
1256
1257	/*
1258	 * Before dashing off, check that setsplsti has been patched.
1259	 */
1260	cmpl	$NOP_INSTR, setsplsti
1261	je	setsplsti
1262
1263	bsrl	%eax, %edx
1264	cmpl	0(%esp), %edx
1265	jg	fakesoftint
1266
1267	ALTENTRY(fakesoftint_return)
1268	/*
1269	 * enable interrupts
1270	 */
1271setsplsti:
1272	nop	/* patch this to a sti when a proper setspl routine appears */
1273	popl	%eax
1274	popl    %eax			/ return old ipl
1275	ret
1276	SET_SIZE(fakesoftint_return)
1277
1278set_to_base_spl:
1279	movl	CPU_BASE_SPL(%ecx), %edx
1280	jmp	setprilev
1281	SET_SIZE(spl)
1282	SET_SIZE(i_ddi_splx)
1283	SET_SIZE(splx)
1284
1285#endif	/* __i386 */
1286#endif	/* __lint */
1287
1288#if defined(__lint)
1289
1290void
1291install_spl(void)
1292{}
1293
1294#else	/* __lint */
1295
1296#if defined(__amd64)
1297
1298	ENTRY_NP(install_spl)
1299	movq	%cr0, %rax
1300	movq	%rax, %rdx
1301	movl	$_BITNOT(CR0_WP), %ecx
1302	movslq	%ecx, %rcx
1303	andq	%rcx, %rax		/* we don't want to take a fault */
1304	movq	%rax, %cr0
1305	jmp	1f
13061:	movb	$STI_INSTR, setsplsti(%rip)
1307	movb	$STI_INSTR, slow_setsplsti(%rip)
1308	movb	$STI_INSTR, setsplhisti(%rip)
1309	movb	$STI_INSTR, splr_setsti(%rip)
1310	testl	$1, intpri_use_cr8(%rip)	/* are using %cr8 ? */
1311	jz	2f				/* no, go patch more */
1312	movq	%rdx, %cr0
1313	ret
13142:
1315	/*
1316	 * Patch spl functions to use slow spl method
1317	 */
1318	leaq	setsplhi_patch(%rip), %rdi	/* get patch point addr */
1319	leaq	slow_setsplhi(%rip), %rax	/* jmp target */
1320	subq	%rdi, %rax			/* calculate jmp distance */
1321	subq	$2, %rax			/* minus size of jmp instr */
1322	shlq	$8, %rax			/* construct jmp instr */
1323	addq	$JMP_INSTR, %rax
1324	movw	%ax, setsplhi_patch(%rip)	/* patch in the jmp */
1325	leaq	spl_patch(%rip), %rdi		/* get patch point addr */
1326	leaq	slow_spl(%rip), %rax		/* jmp target */
1327	subq	%rdi, %rax			/* calculate jmp distance */
1328	subq	$2, %rax			/* minus size of jmp instr */
1329	shlq	$8, %rax			/* construct jmp instr */
1330	addq	$JMP_INSTR, %rax
1331	movw	%ax, spl_patch(%rip)		/* patch in the jmp */
1332	/*
1333	 * Ensure %cr8 is zero since we aren't using it
1334	 */
1335	xorl	%eax, %eax
1336	movq	%rax, %cr8
1337	movq	%rdx, %cr0
1338	ret
1339	SET_SIZE(install_spl)
1340
1341#elif defined(__i386)
1342
1343	ENTRY_NP(install_spl)
1344	movl	%cr0, %eax
1345	movl	%eax, %edx
1346	andl	$_BITNOT(CR0_WP), %eax	/* we don't want to take a fault */
1347	movl	%eax, %cr0
1348	jmp	1f
13491:	movb	$STI_INSTR, setsplsti
1350	movb	$STI_INSTR, setsplhisti
1351	movb	$STI_INSTR, splr_setsti
1352	movl	%edx, %cr0
1353	ret
1354	SET_SIZE(install_spl)
1355
1356#endif	/* __i386 */
1357#endif	/* __lint */
1358
1359
1360/*
1361 * Get current processor interrupt level
1362 */
1363
1364#if defined(__lint)
1365
1366int
1367getpil(void)
1368{ return (0); }
1369
1370#else	/* __lint */
1371
1372#if defined(__amd64)
1373
1374	ENTRY(getpil)
1375	GETIPL(%eax)			/* priority level into %eax */
1376	ret
1377	SET_SIZE(getpil)
1378
1379#elif defined(__i386)
1380
1381	ENTRY(getpil)
1382	GETIPL(%eax)			/* priority level into %eax */
1383	ret
1384	SET_SIZE(getpil)
1385
1386#endif	/* __i386 */
1387#endif	/* __lint */
1388
1389#if defined(__i386)
1390
1391/*
1392 * Read and write the %gs register
1393 */
1394
1395#if defined(__lint)
1396
1397/*ARGSUSED*/
1398uint16_t
1399getgs(void)
1400{ return (0); }
1401
1402/*ARGSUSED*/
1403void
1404setgs(uint16_t sel)
1405{}
1406
1407#else	/* __lint */
1408
1409	ENTRY(getgs)
1410	clr	%eax
1411	movw	%gs, %ax
1412	ret
1413	SET_SIZE(getgs)
1414
1415	ENTRY(setgs)
1416	movw	4(%esp), %gs
1417	ret
1418	SET_SIZE(setgs)
1419
1420#endif	/* __lint */
1421#endif	/* __i386 */
1422
1423#if defined(__lint)
1424
1425void
1426pc_reset(void)
1427{}
1428
1429#else	/* __lint */
1430
1431	ENTRY(pc_reset)
1432	/
1433	/ Try the classic keyboard controller-triggered reset.
1434	/
1435	movw	$0x64, %dx
1436	movb	$0xfe, %al
1437	outb	(%dx)
1438
1439	/
1440	/ Try port 0x92 fast reset
1441	/
1442	movw	$0x92, %dx
1443	inb	(%dx)
1444	cmpb	$0xff, %al	/ If port's not there, we should get back 0xFF
1445	je	1f
1446	testb	$1, %al		/ If bit 0
1447	jz	2f		/ is clear, jump to perform the reset
1448	andb	$0xfe, %al	/ otherwise,
1449	outb	(%dx)		/ clear bit 0 first, then
14502:
1451	orb	$1, %al		/ Set bit 0
1452	outb	(%dx)		/ and reset the system
14531:
1454
1455	/ Try the PCI (soft) reset vector (should work on all modern systems,
1456	/ but has been shown to cause problems on 450NX systems, and some newer
1457	/ systems (e.g. ATI IXP400-equipped systems))
1458	/ When resetting via this method, 2 writes are required.  The first
1459	/ targets bit 1 (0=hard reset without power cycle, 1=hard reset with
1460	/ power cycle).
1461	/ The reset occurs on the second write, during bit 2's transition from
1462	/ 0->1.
1463	movw	$0xcf9, %dx
1464	movb	$0x2, %al	/ Reset mode = hard, no power cycle
1465	outb	(%dx)
1466	movb	$0x6, %al
1467	outb	(%dx)
1468
1469	/
1470	/ port 0xcf9 failed also.  Last-ditch effort is to
1471	/ triple-fault the CPU.
1472	/
1473#if defined(__amd64)
1474	pushq	$0x0
1475	pushq	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1476	lidt	(%rsp)
1477#elif defined(__i386)
1478	pushl	$0x0
1479	pushl	$0x0		/ IDT base of 0, limit of 0 + 2 unused bytes
1480	lidt	(%esp)
1481#endif
1482	int	$0x0		/ Trigger interrupt, generate triple-fault
1483	hlt
1484	/*NOTREACHED*/
1485	SET_SIZE(pc_reset)
1486
1487#endif	/* __lint */
1488
1489/*
1490 * C callable in and out routines
1491 */
1492
1493#if defined(__lint)
1494
1495/* ARGSUSED */
1496void
1497outl(int port_address, uint32_t val)
1498{}
1499
1500#else	/* __lint */
1501
1502#if defined(__amd64)
1503
1504	ENTRY(outl)
1505	movw	%di, %dx
1506	movl	%esi, %eax
1507	outl	(%dx)
1508	ret
1509	SET_SIZE(outl)
1510
1511#elif defined(__i386)
1512
1513	.set	PORT, 4
1514	.set	VAL, 8
1515
1516	ENTRY(outl)
1517	movw	PORT(%esp), %dx
1518	movl	VAL(%esp), %eax
1519	outl	(%dx)
1520	ret
1521	SET_SIZE(outl)
1522
1523#endif	/* __i386 */
1524#endif	/* __lint */
1525
1526#if defined(__lint)
1527
1528/* ARGSUSED */
1529void
1530outw(int port_address, uint16_t val)
1531{}
1532
1533#else	/* __lint */
1534
1535#if defined(__amd64)
1536
1537	ENTRY(outw)
1538	movw	%di, %dx
1539	movw	%si, %ax
1540	D16 outl (%dx)		/* XX64 why not outw? */
1541	ret
1542	SET_SIZE(outw)
1543
1544#elif defined(__i386)
1545
1546	ENTRY(outw)
1547	movw	PORT(%esp), %dx
1548	movw	VAL(%esp), %ax
1549	D16 outl (%dx)
1550	ret
1551	SET_SIZE(outw)
1552
1553#endif	/* __i386 */
1554#endif	/* __lint */
1555
1556#if defined(__lint)
1557
1558/* ARGSUSED */
1559void
1560outb(int port_address, uint8_t val)
1561{}
1562
1563#else	/* __lint */
1564
1565#if defined(__amd64)
1566
1567	ENTRY(outb)
1568	movw	%di, %dx
1569	movb	%sil, %al
1570	outb	(%dx)
1571	ret
1572	SET_SIZE(outb)
1573
1574#elif defined(__i386)
1575
1576	ENTRY(outb)
1577	movw	PORT(%esp), %dx
1578	movb	VAL(%esp), %al
1579	outb	(%dx)
1580	ret
1581	SET_SIZE(outb)
1582
1583#endif	/* __i386 */
1584#endif	/* __lint */
1585
1586#if defined(__lint)
1587
1588/* ARGSUSED */
1589uint32_t
1590inl(int port_address)
1591{ return (0); }
1592
1593#else	/* __lint */
1594
1595#if defined(__amd64)
1596
1597	ENTRY(inl)
1598	xorl	%eax, %eax
1599	movw	%di, %dx
1600	inl	(%dx)
1601	ret
1602	SET_SIZE(inl)
1603
1604#elif defined(__i386)
1605
1606	ENTRY(inl)
1607	movw	PORT(%esp), %dx
1608	inl	(%dx)
1609	ret
1610	SET_SIZE(inl)
1611
1612#endif	/* __i386 */
1613#endif	/* __lint */
1614
1615#if defined(__lint)
1616
1617/* ARGSUSED */
1618uint16_t
1619inw(int port_address)
1620{ return (0); }
1621
1622#else	/* __lint */
1623
1624#if defined(__amd64)
1625
1626	ENTRY(inw)
1627	xorl	%eax, %eax
1628	movw	%di, %dx
1629	D16 inl	(%dx)
1630	ret
1631	SET_SIZE(inw)
1632
1633#elif defined(__i386)
1634
1635	ENTRY(inw)
1636	subl	%eax, %eax
1637	movw	PORT(%esp), %dx
1638	D16 inl	(%dx)
1639	ret
1640	SET_SIZE(inw)
1641
1642#endif	/* __i386 */
1643#endif	/* __lint */
1644
1645
1646#if defined(__lint)
1647
1648/* ARGSUSED */
1649uint8_t
1650inb(int port_address)
1651{ return (0); }
1652
1653#else	/* __lint */
1654
1655#if defined(__amd64)
1656
1657	ENTRY(inb)
1658	xorl	%eax, %eax
1659	movw	%di, %dx
1660	inb	(%dx)
1661	ret
1662	SET_SIZE(inb)
1663
1664#elif defined(__i386)
1665
1666	ENTRY(inb)
1667	subl    %eax, %eax
1668	movw	PORT(%esp), %dx
1669	inb	(%dx)
1670	ret
1671	SET_SIZE(inb)
1672
1673#endif	/* __i386 */
1674#endif	/* __lint */
1675
1676
1677#if defined(__lint)
1678
1679/* ARGSUSED */
1680void
1681repoutsw(int port, uint16_t *addr, int cnt)
1682{}
1683
1684#else	/* __lint */
1685
1686#if defined(__amd64)
1687
1688	ENTRY(repoutsw)
1689	movl	%edx, %ecx
1690	movw	%di, %dx
1691	rep
1692	  D16 outsl
1693	ret
1694	SET_SIZE(repoutsw)
1695
1696#elif defined(__i386)
1697
1698	/*
1699	 * The arguments and saved registers are on the stack in the
1700	 *  following order:
1701	 *      |  cnt  |  +16
1702	 *      | *addr |  +12
1703	 *      | port  |  +8
1704	 *      |  eip  |  +4
1705	 *      |  esi  |  <-- %esp
1706	 * If additional values are pushed onto the stack, make sure
1707	 * to adjust the following constants accordingly.
1708	 */
1709	.set	PORT, 8
1710	.set	ADDR, 12
1711	.set	COUNT, 16
1712
1713	ENTRY(repoutsw)
1714	pushl	%esi
1715	movl	PORT(%esp), %edx
1716	movl	ADDR(%esp), %esi
1717	movl	COUNT(%esp), %ecx
1718	rep
1719	  D16 outsl
1720	popl	%esi
1721	ret
1722	SET_SIZE(repoutsw)
1723
1724#endif	/* __i386 */
1725#endif	/* __lint */
1726
1727
1728#if defined(__lint)
1729
1730/* ARGSUSED */
1731void
1732repinsw(int port_addr, uint16_t *addr, int cnt)
1733{}
1734
1735#else	/* __lint */
1736
1737#if defined(__amd64)
1738
1739	ENTRY(repinsw)
1740	movl	%edx, %ecx
1741	movw	%di, %dx
1742	rep
1743	  D16 insl
1744	ret
1745	SET_SIZE(repinsw)
1746
1747#elif defined(__i386)
1748
1749	ENTRY(repinsw)
1750	pushl	%edi
1751	movl	PORT(%esp), %edx
1752	movl	ADDR(%esp), %edi
1753	movl	COUNT(%esp), %ecx
1754	rep
1755	  D16 insl
1756	popl	%edi
1757	ret
1758	SET_SIZE(repinsw)
1759
1760#endif	/* __i386 */
1761#endif	/* __lint */
1762
1763
1764#if defined(__lint)
1765
1766/* ARGSUSED */
1767void
1768repinsb(int port, uint8_t *addr, int count)
1769{}
1770
1771#else	/* __lint */
1772
1773#if defined(__amd64)
1774
1775	ENTRY(repinsb)
1776	movl	%edx, %ecx
1777	movw	%di, %dx
1778	movq	%rsi, %rdi
1779	rep
1780	  insb
1781	ret
1782	SET_SIZE(repinsb)
1783
1784#elif defined(__i386)
1785
1786	/*
1787	 * The arguments and saved registers are on the stack in the
1788	 *  following order:
1789	 *      |  cnt  |  +16
1790	 *      | *addr |  +12
1791	 *      | port  |  +8
1792	 *      |  eip  |  +4
1793	 *      |  esi  |  <-- %esp
1794	 * If additional values are pushed onto the stack, make sure
1795	 * to adjust the following constants accordingly.
1796	 */
1797	.set	IO_PORT, 8
1798	.set	IO_ADDR, 12
1799	.set	IO_COUNT, 16
1800
1801	ENTRY(repinsb)
1802	pushl	%edi
1803	movl	IO_ADDR(%esp), %edi
1804	movl	IO_COUNT(%esp), %ecx
1805	movl	IO_PORT(%esp), %edx
1806	rep
1807	  insb
1808	popl	%edi
1809	ret
1810	SET_SIZE(repinsb)
1811
1812#endif	/* __i386 */
1813#endif	/* __lint */
1814
1815
1816/*
1817 * Input a stream of 32-bit words.
1818 * NOTE: count is a DWORD count.
1819 */
1820#if defined(__lint)
1821
1822/* ARGSUSED */
1823void
1824repinsd(int port, uint32_t *addr, int count)
1825{}
1826
1827#else	/* __lint */
1828
1829#if defined(__amd64)
1830
1831	ENTRY(repinsd)
1832	movl	%edx, %ecx
1833	movw	%di, %dx
1834	movq	%rsi, %rdi
1835	rep
1836	  insl
1837	ret
1838	SET_SIZE(repinsd)
1839
1840#elif defined(__i386)
1841
1842	ENTRY(repinsd)
1843	pushl	%edi
1844	movl	IO_ADDR(%esp), %edi
1845	movl	IO_COUNT(%esp), %ecx
1846	movl	IO_PORT(%esp), %edx
1847	rep
1848	  insl
1849	popl	%edi
1850	ret
1851	SET_SIZE(repinsd)
1852
1853#endif	/* __i386 */
1854#endif	/* __lint */
1855
1856/*
1857 * Output a stream of bytes
1858 * NOTE: count is a byte count
1859 */
1860#if defined(__lint)
1861
1862/* ARGSUSED */
1863void
1864repoutsb(int port, uint8_t *addr, int count)
1865{}
1866
1867#else	/* __lint */
1868
1869#if defined(__amd64)
1870
1871	ENTRY(repoutsb)
1872	movl	%edx, %ecx
1873	movw	%di, %dx
1874	rep
1875	  outsb
1876	ret
1877	SET_SIZE(repoutsb)
1878
1879#elif defined(__i386)
1880
1881	ENTRY(repoutsb)
1882	pushl	%esi
1883	movl	IO_ADDR(%esp), %esi
1884	movl	IO_COUNT(%esp), %ecx
1885	movl	IO_PORT(%esp), %edx
1886	rep
1887	  outsb
1888	popl	%esi
1889	ret
1890	SET_SIZE(repoutsb)
1891
1892#endif	/* __i386 */
1893#endif	/* __lint */
1894
1895/*
1896 * Output a stream of 32-bit words
1897 * NOTE: count is a DWORD count
1898 */
1899#if defined(__lint)
1900
1901/* ARGSUSED */
1902void
1903repoutsd(int port, uint32_t *addr, int count)
1904{}
1905
1906#else	/* __lint */
1907
1908#if defined(__amd64)
1909
1910	ENTRY(repoutsd)
1911	movl	%edx, %ecx
1912	movw	%di, %dx
1913	rep
1914	  outsl
1915	ret
1916	SET_SIZE(repoutsd)
1917
1918#elif defined(__i386)
1919
1920	ENTRY(repoutsd)
1921	pushl	%esi
1922	movl	IO_ADDR(%esp), %esi
1923	movl	IO_COUNT(%esp), %ecx
1924	movl	IO_PORT(%esp), %edx
1925	rep
1926	  outsl
1927	popl	%esi
1928	ret
1929	SET_SIZE(repoutsd)
1930
1931#endif	/* __i386 */
1932#endif	/* __lint */
1933
1934/*
1935 * void int20(void)
1936 */
1937
1938#if defined(__lint)
1939
1940void
1941int20(void)
1942{}
1943
1944#else	/* __lint */
1945
1946	ENTRY(int20)
1947	movl	boothowto, %eax
1948	andl	$RB_DEBUG, %eax
1949	jz	1f
1950
1951	int	$20
19521:
1953	rep;	ret	/* use 2 byte return instruction when branch target */
1954			/* AMD Software Optimization Guide - Section 6.2 */
1955	SET_SIZE(int20)
1956
1957#endif	/* __lint */
1958
1959#if defined(__lint)
1960
1961/* ARGSUSED */
1962int
1963scanc(size_t size, uchar_t *cp, uchar_t *table, uchar_t mask)
1964{ return (0); }
1965
1966#else	/* __lint */
1967
1968#if defined(__amd64)
1969
1970	ENTRY(scanc)
1971					/* rdi == size */
1972					/* rsi == cp */
1973					/* rdx == table */
1974					/* rcx == mask */
1975	addq	%rsi, %rdi		/* end = &cp[size] */
1976.scanloop:
1977	cmpq	%rdi, %rsi		/* while (cp < end */
1978	jnb	.scandone
1979	movzbq	(%rsi), %r8		/* %r8 = *cp */
1980	incq	%rsi			/* cp++ */
1981	testb	%cl, (%r8, %rdx)
1982	jz	.scanloop		/*  && (table[*cp] & mask) == 0) */
1983	decq	%rsi			/* (fix post-increment) */
1984.scandone:
1985	movl	%edi, %eax
1986	subl	%esi, %eax		/* return (end - cp) */
1987	ret
1988	SET_SIZE(scanc)
1989
1990#elif defined(__i386)
1991
1992	ENTRY(scanc)
1993	pushl	%edi
1994	pushl	%esi
1995	movb	24(%esp), %cl		/* mask = %cl */
1996	movl	16(%esp), %esi		/* cp = %esi */
1997	movl	20(%esp), %edx		/* table = %edx */
1998	movl	%esi, %edi
1999	addl	12(%esp), %edi		/* end = &cp[size]; */
2000.scanloop:
2001	cmpl	%edi, %esi		/* while (cp < end */
2002	jnb	.scandone
2003	movzbl	(%esi),  %eax		/* %al = *cp */
2004	incl	%esi			/* cp++ */
2005	movb	(%edx,  %eax), %al	/* %al = table[*cp] */
2006	testb	%al, %cl
2007	jz	.scanloop		/*   && (table[*cp] & mask) == 0) */
2008	dec	%esi			/* post-incremented */
2009.scandone:
2010	movl	%edi, %eax
2011	subl	%esi, %eax		/* return (end - cp) */
2012	popl	%esi
2013	popl	%edi
2014	ret
2015	SET_SIZE(scanc)
2016
2017#endif	/* __i386 */
2018#endif	/* __lint */
2019
2020/*
2021 * Replacement functions for ones that are normally inlined.
2022 * In addition to the copy in i86.il, they are defined here just in case.
2023 */
2024
2025#if defined(__lint)
2026
2027int
2028intr_clear(void)
2029{ return 0; }
2030
2031int
2032clear_int_flag(void)
2033{ return 0; }
2034
2035#else	/* __lint */
2036
2037#if defined(__amd64)
2038
2039	ENTRY(intr_clear)
2040	ENTRY(clear_int_flag)
2041	pushfq
2042	cli
2043	popq	%rax
2044	ret
2045	SET_SIZE(clear_int_flag)
2046	SET_SIZE(intr_clear)
2047
2048#elif defined(__i386)
2049
2050	ENTRY(intr_clear)
2051	ENTRY(clear_int_flag)
2052	pushfl
2053	cli
2054	popl	%eax
2055	ret
2056	SET_SIZE(clear_int_flag)
2057	SET_SIZE(intr_clear)
2058
2059#endif	/* __i386 */
2060#endif	/* __lint */
2061
2062#if defined(__lint)
2063
2064struct cpu *
2065curcpup(void)
2066{ return 0; }
2067
2068#else	/* __lint */
2069
2070#if defined(__amd64)
2071
2072	ENTRY(curcpup)
2073	movq	%gs:CPU_SELF, %rax
2074	ret
2075	SET_SIZE(curcpup)
2076
2077#elif defined(__i386)
2078
2079	ENTRY(curcpup)
2080	movl	%gs:CPU_SELF, %eax
2081	ret
2082	SET_SIZE(curcpup)
2083
2084#endif	/* __i386 */
2085#endif	/* __lint */
2086
2087#if defined(__lint)
2088
2089/* ARGSUSED */
2090uint32_t
2091htonl(uint32_t i)
2092{ return (0); }
2093
2094/* ARGSUSED */
2095uint32_t
2096ntohl(uint32_t i)
2097{ return (0); }
2098
2099#else	/* __lint */
2100
2101#if defined(__amd64)
2102
2103	/* XX64 there must be shorter sequences for this */
2104	ENTRY(htonl)
2105	ALTENTRY(ntohl)
2106	movl	%edi, %eax
2107	bswap	%eax
2108	ret
2109	SET_SIZE(ntohl)
2110	SET_SIZE(htonl)
2111
2112#elif defined(__i386)
2113
2114	ENTRY(htonl)
2115	ALTENTRY(ntohl)
2116	movl	4(%esp), %eax
2117	bswap	%eax
2118	ret
2119	SET_SIZE(ntohl)
2120	SET_SIZE(htonl)
2121
2122#endif	/* __i386 */
2123#endif	/* __lint */
2124
2125#if defined(__lint)
2126
2127/* ARGSUSED */
2128uint16_t
2129htons(uint16_t i)
2130{ return (0); }
2131
2132/* ARGSUSED */
2133uint16_t
2134ntohs(uint16_t i)
2135{ return (0); }
2136
2137
2138#else	/* __lint */
2139
2140#if defined(__amd64)
2141
2142	/* XX64 there must be better sequences for this */
2143	ENTRY(htons)
2144	ALTENTRY(ntohs)
2145	movl	%edi, %eax
2146	bswap	%eax
2147	shrl	$16, %eax
2148	ret
2149	SET_SIZE(ntohs)
2150	SET_SIZE(htons)
2151
2152#elif defined(__i386)
2153
2154	ENTRY(htons)
2155	ALTENTRY(ntohs)
2156	movl	4(%esp), %eax
2157	bswap	%eax
2158	shrl	$16, %eax
2159	ret
2160	SET_SIZE(ntohs)
2161	SET_SIZE(htons)
2162
2163#endif	/* __i386 */
2164#endif	/* __lint */
2165
2166
2167#if defined(__lint)
2168
2169/* ARGSUSED */
2170void
2171intr_restore(uint_t i)
2172{ return; }
2173
2174/* ARGSUSED */
2175void
2176restore_int_flag(int i)
2177{ return; }
2178
2179#else	/* __lint */
2180
2181#if defined(__amd64)
2182
2183	ENTRY(intr_restore)
2184	ENTRY(restore_int_flag)
2185	pushq	%rdi
2186	popfq
2187	ret
2188	SET_SIZE(restore_int_flag)
2189	SET_SIZE(intr_restore)
2190
2191#elif defined(__i386)
2192
2193	ENTRY(intr_restore)
2194	ENTRY(restore_int_flag)
2195	pushl	4(%esp)
2196	popfl
2197	ret
2198	SET_SIZE(restore_int_flag)
2199	SET_SIZE(intr_restore)
2200
2201#endif	/* __i386 */
2202#endif	/* __lint */
2203
2204#if defined(__lint)
2205
2206void
2207sti(void)
2208{}
2209
2210#else	/* __lint */
2211
2212	ENTRY(sti)
2213	sti
2214	ret
2215	SET_SIZE(sti)
2216
2217#endif	/* __lint */
2218
2219#if defined(__lint)
2220
2221dtrace_icookie_t
2222dtrace_interrupt_disable(void)
2223{ return (0); }
2224
2225#else   /* __lint */
2226
2227#if defined(__amd64)
2228
2229	ENTRY(dtrace_interrupt_disable)
2230	pushfq
2231	popq	%rax
2232	cli
2233	ret
2234	SET_SIZE(dtrace_interrupt_disable)
2235
2236#elif defined(__i386)
2237
2238	ENTRY(dtrace_interrupt_disable)
2239	pushfl
2240	popl	%eax
2241	cli
2242	ret
2243	SET_SIZE(dtrace_interrupt_disable)
2244
2245#endif	/* __i386 */
2246#endif	/* __lint */
2247
2248#if defined(__lint)
2249
2250/*ARGSUSED*/
2251void
2252dtrace_interrupt_enable(dtrace_icookie_t cookie)
2253{}
2254
2255#else	/* __lint */
2256
2257#if defined(__amd64)
2258
2259	ENTRY(dtrace_interrupt_enable)
2260	pushq	%rdi
2261	popfq
2262	ret
2263	SET_SIZE(dtrace_interrupt_enable)
2264
2265#elif defined(__i386)
2266
2267	ENTRY(dtrace_interrupt_enable)
2268	movl	4(%esp), %eax
2269	pushl	%eax
2270	popfl
2271	ret
2272	SET_SIZE(dtrace_interrupt_enable)
2273
2274#endif	/* __i386 */
2275#endif	/* __lint */
2276
2277
2278#if defined(lint)
2279
2280void
2281dtrace_membar_producer(void)
2282{}
2283
2284void
2285dtrace_membar_consumer(void)
2286{}
2287
2288#else	/* __lint */
2289
2290	ENTRY(dtrace_membar_producer)
2291	rep;	ret	/* use 2 byte return instruction when branch target */
2292			/* AMD Software Optimization Guide - Section 6.2 */
2293	SET_SIZE(dtrace_membar_producer)
2294
2295	ENTRY(dtrace_membar_consumer)
2296	rep;	ret	/* use 2 byte return instruction when branch target */
2297			/* AMD Software Optimization Guide - Section 6.2 */
2298	SET_SIZE(dtrace_membar_consumer)
2299
2300#endif	/* __lint */
2301
2302#if defined(__lint)
2303
2304kthread_id_t
2305threadp(void)
2306{ return ((kthread_id_t)0); }
2307
2308#else	/* __lint */
2309
2310#if defined(__amd64)
2311
2312	ENTRY(threadp)
2313	movq	%gs:CPU_THREAD, %rax
2314	ret
2315	SET_SIZE(threadp)
2316
2317#elif defined(__i386)
2318
2319	ENTRY(threadp)
2320	movl	%gs:CPU_THREAD, %eax
2321	ret
2322	SET_SIZE(threadp)
2323
2324#endif	/* __i386 */
2325#endif	/* __lint */
2326
2327/*
2328 *   Checksum routine for Internet Protocol Headers
2329 */
2330
2331#if defined(__lint)
2332
2333/* ARGSUSED */
2334unsigned int
2335ip_ocsum(
2336	ushort_t *address,	/* ptr to 1st message buffer */
2337	int halfword_count,	/* length of data */
2338	unsigned int sum)	/* partial checksum */
2339{
2340	int		i;
2341	unsigned int	psum = 0;	/* partial sum */
2342
2343	for (i = 0; i < halfword_count; i++, address++) {
2344		psum += *address;
2345	}
2346
2347	while ((psum >> 16) != 0) {
2348		psum = (psum & 0xffff) + (psum >> 16);
2349	}
2350
2351	psum += sum;
2352
2353	while ((psum >> 16) != 0) {
2354		psum = (psum & 0xffff) + (psum >> 16);
2355	}
2356
2357	return (psum);
2358}
2359
2360#else	/* __lint */
2361
2362#if defined(__amd64)
2363
2364	ENTRY(ip_ocsum)
2365	pushq	%rbp
2366	movq	%rsp, %rbp
2367#ifdef DEBUG
2368	movq	kernelbase(%rip), %rax
2369	cmpq	%rax, %rdi
2370	jnb	1f
2371	xorl	%eax, %eax
2372	movq	%rdi, %rsi
2373	leaq	.ip_ocsum_panic_msg(%rip), %rdi
2374	call	panic
2375	/*NOTREACHED*/
2376.ip_ocsum_panic_msg:
2377	.string	"ip_ocsum: address 0x%p below kernelbase\n"
23781:
2379#endif
2380	movl	%esi, %ecx	/* halfword_count */
2381	movq	%rdi, %rsi	/* address */
2382				/* partial sum in %edx */
2383	xorl	%eax, %eax
2384	testl	%ecx, %ecx
2385	jz	.ip_ocsum_done
2386	testq	$3, %rsi
2387	jnz	.ip_csum_notaligned
2388.ip_csum_aligned:	/* XX64 opportunities for 8-byte operations? */
2389.next_iter:
2390	/* XX64 opportunities for prefetch? */
2391	/* XX64 compute csum with 64 bit quantities? */
2392	subl	$32, %ecx
2393	jl	.less_than_32
2394
2395	addl	0(%rsi), %edx
2396.only60:
2397	adcl	4(%rsi), %eax
2398.only56:
2399	adcl	8(%rsi), %edx
2400.only52:
2401	adcl	12(%rsi), %eax
2402.only48:
2403	adcl	16(%rsi), %edx
2404.only44:
2405	adcl	20(%rsi), %eax
2406.only40:
2407	adcl	24(%rsi), %edx
2408.only36:
2409	adcl	28(%rsi), %eax
2410.only32:
2411	adcl	32(%rsi), %edx
2412.only28:
2413	adcl	36(%rsi), %eax
2414.only24:
2415	adcl	40(%rsi), %edx
2416.only20:
2417	adcl	44(%rsi), %eax
2418.only16:
2419	adcl	48(%rsi), %edx
2420.only12:
2421	adcl	52(%rsi), %eax
2422.only8:
2423	adcl	56(%rsi), %edx
2424.only4:
2425	adcl	60(%rsi), %eax	/* could be adding -1 and -1 with a carry */
2426.only0:
2427	adcl	$0, %eax	/* could be adding -1 in eax with a carry */
2428	adcl	$0, %eax
2429
2430	addq	$64, %rsi
2431	testl	%ecx, %ecx
2432	jnz	.next_iter
2433
2434.ip_ocsum_done:
2435	addl	%eax, %edx
2436	adcl	$0, %edx
2437	movl	%edx, %eax	/* form a 16 bit checksum by */
2438	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2439	addw	%dx, %ax
2440	adcw	$0, %ax
2441	andl	$0xffff, %eax
2442	leave
2443	ret
2444
2445.ip_csum_notaligned:
2446	xorl	%edi, %edi
2447	movw	(%rsi), %di
2448	addl	%edi, %edx
2449	adcl	$0, %edx
2450	addq	$2, %rsi
2451	decl	%ecx
2452	jmp	.ip_csum_aligned
2453
2454.less_than_32:
2455	addl	$32, %ecx
2456	testl	$1, %ecx
2457	jz	.size_aligned
2458	andl	$0xfe, %ecx
2459	movzwl	(%rsi, %rcx, 2), %edi
2460	addl	%edi, %edx
2461	adcl	$0, %edx
2462.size_aligned:
2463	movl	%ecx, %edi
2464	shrl	$1, %ecx
2465	shl	$1, %edi
2466	subq	$64, %rdi
2467	addq	%rdi, %rsi
2468	leaq    .ip_ocsum_jmptbl(%rip), %rdi
2469	leaq	(%rdi, %rcx, 8), %rdi
2470	xorl	%ecx, %ecx
2471	clc
2472	jmp 	*(%rdi)
2473
2474	.align	8
2475.ip_ocsum_jmptbl:
2476	.quad	.only0, .only4, .only8, .only12, .only16, .only20
2477	.quad	.only24, .only28, .only32, .only36, .only40, .only44
2478	.quad	.only48, .only52, .only56, .only60
2479	SET_SIZE(ip_ocsum)
2480
2481#elif defined(__i386)
2482
2483	ENTRY(ip_ocsum)
2484	pushl	%ebp
2485	movl	%esp, %ebp
2486	pushl	%ebx
2487	pushl	%esi
2488	pushl	%edi
2489	movl	12(%ebp), %ecx	/* count of half words */
2490	movl	16(%ebp), %edx	/* partial checksum */
2491	movl	8(%ebp), %esi
2492	xorl	%eax, %eax
2493	testl	%ecx, %ecx
2494	jz	.ip_ocsum_done
2495
2496	testl	$3, %esi
2497	jnz	.ip_csum_notaligned
2498.ip_csum_aligned:
2499.next_iter:
2500	subl	$32, %ecx
2501	jl	.less_than_32
2502
2503	addl	0(%esi), %edx
2504.only60:
2505	adcl	4(%esi), %eax
2506.only56:
2507	adcl	8(%esi), %edx
2508.only52:
2509	adcl	12(%esi), %eax
2510.only48:
2511	adcl	16(%esi), %edx
2512.only44:
2513	adcl	20(%esi), %eax
2514.only40:
2515	adcl	24(%esi), %edx
2516.only36:
2517	adcl	28(%esi), %eax
2518.only32:
2519	adcl	32(%esi), %edx
2520.only28:
2521	adcl	36(%esi), %eax
2522.only24:
2523	adcl	40(%esi), %edx
2524.only20:
2525	adcl	44(%esi), %eax
2526.only16:
2527	adcl	48(%esi), %edx
2528.only12:
2529	adcl	52(%esi), %eax
2530.only8:
2531	adcl	56(%esi), %edx
2532.only4:
2533	adcl	60(%esi), %eax	/* We could be adding -1 and -1 with a carry */
2534.only0:
2535	adcl	$0, %eax	/* we could be adding -1 in eax with a carry */
2536	adcl	$0, %eax
2537
2538	addl	$64, %esi
2539	andl	%ecx, %ecx
2540	jnz	.next_iter
2541
2542.ip_ocsum_done:
2543	addl	%eax, %edx
2544	adcl	$0, %edx
2545	movl	%edx, %eax	/* form a 16 bit checksum by */
2546	shrl	$16, %eax	/* adding two halves of 32 bit checksum */
2547	addw	%dx, %ax
2548	adcw	$0, %ax
2549	andl	$0xffff, %eax
2550	popl	%edi		/* restore registers */
2551	popl	%esi
2552	popl	%ebx
2553	leave
2554	ret
2555
2556.ip_csum_notaligned:
2557	xorl	%edi, %edi
2558	movw	(%esi), %di
2559	addl	%edi, %edx
2560	adcl	$0, %edx
2561	addl	$2, %esi
2562	decl	%ecx
2563	jmp	.ip_csum_aligned
2564
2565.less_than_32:
2566	addl	$32, %ecx
2567	testl	$1, %ecx
2568	jz	.size_aligned
2569	andl	$0xfe, %ecx
2570	movzwl	(%esi, %ecx, 2), %edi
2571	addl	%edi, %edx
2572	adcl	$0, %edx
2573.size_aligned:
2574	movl	%ecx, %edi
2575	shrl	$1, %ecx
2576	shl	$1, %edi
2577	subl	$64, %edi
2578	addl	%edi, %esi
2579	movl	$.ip_ocsum_jmptbl, %edi
2580	lea	(%edi, %ecx, 4), %edi
2581	xorl	%ecx, %ecx
2582	clc
2583	jmp 	*(%edi)
2584	SET_SIZE(ip_ocsum)
2585
2586	.data
2587	.align	4
2588
2589.ip_ocsum_jmptbl:
2590	.long	.only0, .only4, .only8, .only12, .only16, .only20
2591	.long	.only24, .only28, .only32, .only36, .only40, .only44
2592	.long	.only48, .only52, .only56, .only60
2593
2594
2595#endif	/* __i386 */
2596#endif	/* __lint */
2597
2598/*
2599 * multiply two long numbers and yield a u_longlong_t result, callable from C.
2600 * Provided to manipulate hrtime_t values.
2601 */
2602#if defined(__lint)
2603
2604/* result = a * b; */
2605
2606/* ARGSUSED */
2607unsigned long long
2608mul32(uint_t a, uint_t b)
2609{ return (0); }
2610
2611#else	/* __lint */
2612
2613#if defined(__amd64)
2614
2615	ENTRY(mul32)
2616	xorl	%edx, %edx	/* XX64 joe, paranoia? */
2617	movl	%edi, %eax
2618	mull	%esi
2619	shlq	$32, %rdx
2620	orq	%rdx, %rax
2621	ret
2622	SET_SIZE(mul32)
2623
2624#elif defined(__i386)
2625
2626	ENTRY(mul32)
2627	movl	8(%esp), %eax
2628	movl	4(%esp), %ecx
2629	mull	%ecx
2630	ret
2631	SET_SIZE(mul32)
2632
2633#endif	/* __i386 */
2634#endif	/* __lint */
2635
2636#if defined(notused)
2637#if defined(__lint)
2638/* ARGSUSED */
2639void
2640load_pte64(uint64_t *pte, uint64_t pte_value)
2641{}
2642#else	/* __lint */
2643	.globl load_pte64
2644load_pte64:
2645	movl	4(%esp), %eax
2646	movl	8(%esp), %ecx
2647	movl	12(%esp), %edx
2648	movl	%edx, 4(%eax)
2649	movl	%ecx, (%eax)
2650	ret
2651#endif	/* __lint */
2652#endif	/* notused */
2653
2654#if defined(__lint)
2655
2656/*ARGSUSED*/
2657void
2658scan_memory(caddr_t addr, size_t size)
2659{}
2660
2661#else	/* __lint */
2662
2663#if defined(__amd64)
2664
2665	ENTRY(scan_memory)
2666	shrq	$3, %rsi	/* convert %rsi from byte to quadword count */
2667	jz	.scanm_done
2668	movq	%rsi, %rcx	/* move count into rep control register */
2669	movq	%rdi, %rsi	/* move addr into lodsq control reg. */
2670	rep lodsq		/* scan the memory range */
2671.scanm_done:
2672	rep;	ret	/* use 2 byte return instruction when branch target */
2673			/* AMD Software Optimization Guide - Section 6.2 */
2674	SET_SIZE(scan_memory)
2675
2676#elif defined(__i386)
2677
2678	ENTRY(scan_memory)
2679	pushl	%ecx
2680	pushl	%esi
2681	movl	16(%esp), %ecx	/* move 2nd arg into rep control register */
2682	shrl	$2, %ecx	/* convert from byte count to word count */
2683	jz	.scanm_done
2684	movl	12(%esp), %esi	/* move 1st arg into lodsw control register */
2685	.byte	0xf3		/* rep prefix.  lame assembler.  sigh. */
2686	lodsl
2687.scanm_done:
2688	popl	%esi
2689	popl	%ecx
2690	ret
2691	SET_SIZE(scan_memory)
2692
2693#endif	/* __i386 */
2694#endif	/* __lint */
2695
2696
2697#if defined(__lint)
2698
2699/*ARGSUSED */
2700int
2701lowbit(ulong_t i)
2702{ return (0); }
2703
2704#else	/* __lint */
2705
2706#if defined(__amd64)
2707
2708	ENTRY(lowbit)
2709	movl	$-1, %eax
2710	bsfq	%rdi, %rax
2711	incl	%eax
2712	ret
2713	SET_SIZE(lowbit)
2714
2715#elif defined(__i386)
2716
2717	ENTRY(lowbit)
2718	movl	$-1, %eax
2719	bsfl	4(%esp), %eax
2720	incl	%eax
2721	ret
2722	SET_SIZE(lowbit)
2723
2724#endif	/* __i386 */
2725#endif	/* __lint */
2726
2727#if defined(__lint)
2728
2729/*ARGSUSED*/
2730int
2731highbit(ulong_t i)
2732{ return (0); }
2733
2734#else	/* __lint */
2735
2736#if defined(__amd64)
2737
2738	ENTRY(highbit)
2739	movl	$-1, %eax
2740	bsrq	%rdi, %rax
2741	incl	%eax
2742	ret
2743	SET_SIZE(highbit)
2744
2745#elif defined(__i386)
2746
2747	ENTRY(highbit)
2748	movl	$-1, %eax
2749	bsrl	4(%esp), %eax
2750	incl	%eax
2751	ret
2752	SET_SIZE(highbit)
2753
2754#endif	/* __i386 */
2755#endif	/* __lint */
2756
2757#if defined(__lint)
2758
2759/*ARGSUSED*/
2760uint64_t
2761rdmsr(uint_t r)
2762{ return (0); }
2763
2764/*ARGSUSED*/
2765void
2766wrmsr(uint_t r, const uint64_t val)
2767{}
2768
2769void
2770invalidate_cache(void)
2771{}
2772
2773#else  /* __lint */
2774
2775#if defined(__amd64)
2776
2777	ENTRY(rdmsr)
2778	movl	%edi, %ecx
2779	rdmsr
2780	shlq	$32, %rdx
2781	orq	%rdx, %rax
2782	ret
2783	SET_SIZE(rdmsr)
2784
2785	ENTRY(wrmsr)
2786	movq	%rsi, %rdx
2787	shrq	$32, %rdx
2788	movl	%esi, %eax
2789	movl	%edi, %ecx
2790	wrmsr
2791	ret
2792	SET_SIZE(wrmsr)
2793
2794#elif defined(__i386)
2795
2796	ENTRY(rdmsr)
2797	movl	4(%esp), %ecx
2798	rdmsr
2799	ret
2800	SET_SIZE(rdmsr)
2801
2802	ENTRY(wrmsr)
2803	movl	4(%esp), %ecx
2804	movl	8(%esp), %eax
2805	movl	12(%esp), %edx
2806	wrmsr
2807	ret
2808	SET_SIZE(wrmsr)
2809
2810#endif	/* __i386 */
2811
2812	ENTRY(invalidate_cache)
2813	wbinvd
2814	ret
2815	SET_SIZE(invalidate_cache)
2816
2817#endif	/* __lint */
2818
2819#if defined(__lint)
2820
2821/*ARGSUSED*/
2822void getcregs(struct cregs *crp)
2823{}
2824
2825#else	/* __lint */
2826
2827#if defined(__amd64)
2828
2829#define	GETMSR(r, off, d)	\
2830	movl	$r, %ecx;	\
2831	rdmsr;			\
2832	movl	%eax, off(d);	\
2833	movl	%edx, off+4(d)
2834
2835	ENTRY_NP(getcregs)
2836	xorl	%eax, %eax
2837	movq	%rax, CREG_GDT+8(%rdi)
2838	sgdt	CREG_GDT(%rdi)		/* 10 bytes */
2839	movq	%rax, CREG_IDT+8(%rdi)
2840	sidt	CREG_IDT(%rdi)		/* 10 bytes */
2841	movq	%rax, CREG_LDT(%rdi)
2842	sldt	CREG_LDT(%rdi)		/* 2 bytes */
2843	movq	%rax, CREG_TASKR(%rdi)
2844	str	CREG_TASKR(%rdi)	/* 2 bytes */
2845	movq	%cr0, %rax
2846	movq	%rax, CREG_CR0(%rdi)	/* cr0 */
2847	movq	%cr2, %rax
2848	movq	%rax, CREG_CR2(%rdi)	/* cr2 */
2849	movq	%cr3, %rax
2850	movq	%rax, CREG_CR3(%rdi)	/* cr3 */
2851	movq	%cr4, %rax
2852	movq	%rax, CREG_CR8(%rdi)	/* cr4 */
2853	movq	%cr8, %rax
2854	movq	%rax, CREG_CR8(%rdi)	/* cr8 */
2855	GETMSR(MSR_AMD_KGSBASE, CREG_KGSBASE, %rdi)
2856	GETMSR(MSR_AMD_EFER, CREG_EFER, %rdi)
2857	SET_SIZE(getcregs)
2858
2859#undef GETMSR
2860
2861#elif defined(__i386)
2862
2863	ENTRY_NP(getcregs)
2864	movl	4(%esp), %edx
2865	movw	$0, CREG_GDT+6(%edx)
2866	movw	$0, CREG_IDT+6(%edx)
2867	sgdt	CREG_GDT(%edx)		/* gdt */
2868	sidt	CREG_IDT(%edx)		/* idt */
2869	sldt	CREG_LDT(%edx)		/* ldt */
2870	str	CREG_TASKR(%edx)	/* task */
2871	movl	%cr0, %eax
2872	movl	%eax, CREG_CR0(%edx)	/* cr0 */
2873	movl	%cr2, %eax
2874	movl	%eax, CREG_CR2(%edx)	/* cr2 */
2875	movl	%cr3, %eax
2876	movl	%eax, CREG_CR3(%edx)	/* cr3 */
2877	testl	$X86_LARGEPAGE, x86_feature
2878	jz	.nocr4
2879	movl	%cr4, %eax
2880	movl	%eax, CREG_CR4(%edx)	/* cr4 */
2881	jmp	.skip
2882.nocr4:
2883	movl	$0, CREG_CR4(%edx)
2884.skip:
2885	rep;	ret	/* use 2 byte return instruction when branch target */
2886			/* AMD Software Optimization Guide - Section 6.2 */
2887	SET_SIZE(getcregs)
2888
2889#endif	/* __i386 */
2890#endif	/* __lint */
2891
2892
2893/*
2894 * A panic trigger is a word which is updated atomically and can only be set
2895 * once.  We atomically store 0xDEFACEDD and load the old value.  If the
2896 * previous value was 0, we succeed and return 1; otherwise return 0.
2897 * This allows a partially corrupt trigger to still trigger correctly.  DTrace
2898 * has its own version of this function to allow it to panic correctly from
2899 * probe context.
2900 */
2901#if defined(__lint)
2902
2903/*ARGSUSED*/
2904int
2905panic_trigger(int *tp)
2906{ return (0); }
2907
2908/*ARGSUSED*/
2909int
2910dtrace_panic_trigger(int *tp)
2911{ return (0); }
2912
2913#else	/* __lint */
2914
2915#if defined(__amd64)
2916
2917	ENTRY_NP(panic_trigger)
2918	xorl	%eax, %eax
2919	movl	$0xdefacedd, %edx
2920	lock
2921	  xchgl	%edx, (%rdi)
2922	cmpl	$0, %edx
2923	je	0f
2924	movl	$0, %eax
2925	ret
29260:	movl	$1, %eax
2927	ret
2928	SET_SIZE(panic_trigger)
2929
2930	ENTRY_NP(dtrace_panic_trigger)
2931	xorl	%eax, %eax
2932	movl	$0xdefacedd, %edx
2933	lock
2934	  xchgl	%edx, (%rdi)
2935	cmpl	$0, %edx
2936	je	0f
2937	movl	$0, %eax
2938	ret
29390:	movl	$1, %eax
2940	ret
2941	SET_SIZE(dtrace_panic_trigger)
2942
2943#elif defined(__i386)
2944
2945	ENTRY_NP(panic_trigger)
2946	movl	4(%esp), %edx		/ %edx = address of trigger
2947	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2948	lock				/ assert lock
2949	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2950	cmpl	$0, %eax		/ if (%eax == 0x0)
2951	je	0f			/   return (1);
2952	movl	$0, %eax		/ else
2953	ret				/   return (0);
29540:	movl	$1, %eax
2955	ret
2956	SET_SIZE(panic_trigger)
2957
2958	ENTRY_NP(dtrace_panic_trigger)
2959	movl	4(%esp), %edx		/ %edx = address of trigger
2960	movl	$0xdefacedd, %eax	/ %eax = 0xdefacedd
2961	lock				/ assert lock
2962	xchgl %eax, (%edx)		/ exchange %eax and the trigger
2963	cmpl	$0, %eax		/ if (%eax == 0x0)
2964	je	0f			/   return (1);
2965	movl	$0, %eax		/ else
2966	ret				/   return (0);
29670:	movl	$1, %eax
2968	ret
2969	SET_SIZE(dtrace_panic_trigger)
2970
2971#endif	/* __i386 */
2972#endif	/* __lint */
2973
2974/*
2975 * The panic() and cmn_err() functions invoke vpanic() as a common entry point
2976 * into the panic code implemented in panicsys().  vpanic() is responsible
2977 * for passing through the format string and arguments, and constructing a
2978 * regs structure on the stack into which it saves the current register
2979 * values.  If we are not dying due to a fatal trap, these registers will
2980 * then be preserved in panicbuf as the current processor state.  Before
2981 * invoking panicsys(), vpanic() activates the first panic trigger (see
2982 * common/os/panic.c) and switches to the panic_stack if successful.  Note that
2983 * DTrace takes a slightly different panic path if it must panic from probe
2984 * context.  Instead of calling panic, it calls into dtrace_vpanic(), which
2985 * sets up the initial stack as vpanic does, calls dtrace_panic_trigger(), and
2986 * branches back into vpanic().
2987 */
2988#if defined(__lint)
2989
2990/*ARGSUSED*/
2991void
2992vpanic(const char *format, va_list alist)
2993{}
2994
2995/*ARGSUSED*/
2996void
2997dtrace_vpanic(const char *format, va_list alist)
2998{}
2999
3000#else	/* __lint */
3001
3002#if defined(__amd64)
3003
3004	ENTRY_NP(vpanic)			/* Initial stack layout: */
3005
3006	pushq	%rbp				/* | %rip | 	0x60	*/
3007	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3008	pushfq					/* | rfl  |	0x50	*/
3009	pushq	%r11				/* | %r11 |	0x48	*/
3010	pushq	%r10				/* | %r10 |	0x40	*/
3011	pushq	%rbx				/* | %rbx |	0x38	*/
3012	pushq	%rax				/* | %rax |	0x30	*/
3013	pushq	%r9				/* | %r9  |	0x28	*/
3014	pushq	%r8				/* | %r8  |	0x20	*/
3015	pushq	%rcx				/* | %rcx |	0x18	*/
3016	pushq	%rdx				/* | %rdx |	0x10	*/
3017	pushq	%rsi				/* | %rsi |	0x8 alist */
3018	pushq	%rdi				/* | %rdi |	0x0 format */
3019
3020	movq	%rsp, %rbx			/* %rbx = current %rsp */
3021
3022	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3023	call	panic_trigger			/* %eax = panic_trigger() */
3024
3025vpanic_common:
3026	cmpl	$0, %eax
3027	je	0f
3028
3029	/*
3030	 * If panic_trigger() was successful, we are the first to initiate a
3031	 * panic: we now switch to the reserved panic_stack before continuing.
3032	 */
3033	leaq	panic_stack(%rip), %rsp
3034	addq	$PANICSTKSIZE, %rsp
30350:	subq	$REGSIZE, %rsp
3036	/*
3037	 * Now that we've got everything set up, store the register values as
3038	 * they were when we entered vpanic() to the designated location in
3039	 * the regs structure we allocated on the stack.
3040	 */
3041	movq	0x0(%rbx), %rcx
3042	movq	%rcx, REGOFF_RDI(%rsp)
3043	movq	0x8(%rbx), %rcx
3044	movq	%rcx, REGOFF_RSI(%rsp)
3045	movq	0x10(%rbx), %rcx
3046	movq	%rcx, REGOFF_RDX(%rsp)
3047	movq	0x18(%rbx), %rcx
3048	movq	%rcx, REGOFF_RCX(%rsp)
3049	movq	0x20(%rbx), %rcx
3050
3051	movq	%rcx, REGOFF_R8(%rsp)
3052	movq	0x28(%rbx), %rcx
3053	movq	%rcx, REGOFF_R9(%rsp)
3054	movq	0x30(%rbx), %rcx
3055	movq	%rcx, REGOFF_RAX(%rsp)
3056	movq	0x38(%rbx), %rcx
3057	movq	%rbx, REGOFF_RBX(%rsp)
3058	movq	0x58(%rbx), %rcx
3059
3060	movq	%rcx, REGOFF_RBP(%rsp)
3061	movq	0x40(%rbx), %rcx
3062	movq	%rcx, REGOFF_R10(%rsp)
3063	movq	0x48(%rbx), %rcx
3064	movq	%rcx, REGOFF_R11(%rsp)
3065	movq	%r12, REGOFF_R12(%rsp)
3066
3067	movq	%r13, REGOFF_R13(%rsp)
3068	movq	%r14, REGOFF_R14(%rsp)
3069	movq	%r15, REGOFF_R15(%rsp)
3070
3071	movl	$MSR_AMD_FSBASE, %ecx
3072	rdmsr
3073	movl	%eax, REGOFF_FSBASE(%rsp)
3074	movl	%edx, REGOFF_FSBASE+4(%rsp)
3075
3076	movl	$MSR_AMD_GSBASE, %ecx
3077	rdmsr
3078	movl	%eax, REGOFF_GSBASE(%rsp)
3079	movl	%edx, REGOFF_GSBASE+4(%rsp)
3080
3081	xorl	%ecx, %ecx
3082	movw	%ds, %cx
3083	movq	%rcx, REGOFF_DS(%rsp)
3084	movw	%es, %cx
3085	movq	%rcx, REGOFF_ES(%rsp)
3086	movw	%fs, %cx
3087	movq	%rcx, REGOFF_FS(%rsp)
3088	movw	%gs, %cx
3089	movq	%rcx, REGOFF_GS(%rsp)
3090
3091	movq	$0, REGOFF_TRAPNO(%rsp)
3092
3093	movq	$0, REGOFF_ERR(%rsp)
3094	leaq	vpanic(%rip), %rcx
3095	movq	%rcx, REGOFF_RIP(%rsp)
3096	movw	%cs, %cx
3097	movzwq	%cx, %rcx
3098	movq	%rcx, REGOFF_CS(%rsp)
3099	movq	0x50(%rbx), %rcx
3100	movq	%rcx, REGOFF_RFL(%rsp)
3101	movq	%rbx, %rcx
3102	addq	$0x60, %rcx
3103	movq	%rcx, REGOFF_RSP(%rsp)
3104	movw	%ss, %cx
3105	movzwq	%cx, %rcx
3106	movq	%rcx, REGOFF_SS(%rsp)
3107
3108	/*
3109	 * panicsys(format, alist, rp, on_panic_stack)
3110	 */
3111	movq	REGOFF_RDI(%rsp), %rdi		/* format */
3112	movq	REGOFF_RSI(%rsp), %rsi		/* alist */
3113	movq	%rsp, %rdx			/* struct regs */
3114	movl	%eax, %ecx			/* on_panic_stack */
3115	call	panicsys
3116	addq	$REGSIZE, %rsp
3117	popq	%rdi
3118	popq	%rsi
3119	popq	%rdx
3120	popq	%rcx
3121	popq	%r8
3122	popq	%r9
3123	popq	%rax
3124	popq	%rbx
3125	popq	%r10
3126	popq	%r11
3127	popfq
3128	leave
3129	ret
3130	SET_SIZE(vpanic)
3131
3132	ENTRY_NP(dtrace_vpanic)			/* Initial stack layout: */
3133
3134	pushq	%rbp				/* | %rip | 	0x60	*/
3135	movq	%rsp, %rbp			/* | %rbp |	0x58	*/
3136	pushfq					/* | rfl  |	0x50	*/
3137	pushq	%r11				/* | %r11 |	0x48	*/
3138	pushq	%r10				/* | %r10 |	0x40	*/
3139	pushq	%rbx				/* | %rbx |	0x38	*/
3140	pushq	%rax				/* | %rax |	0x30	*/
3141	pushq	%r9				/* | %r9  |	0x28	*/
3142	pushq	%r8				/* | %r8  |	0x20	*/
3143	pushq	%rcx				/* | %rcx |	0x18	*/
3144	pushq	%rdx				/* | %rdx |	0x10	*/
3145	pushq	%rsi				/* | %rsi |	0x8 alist */
3146	pushq	%rdi				/* | %rdi |	0x0 format */
3147
3148	movq	%rsp, %rbx			/* %rbx = current %rsp */
3149
3150	leaq	panic_quiesce(%rip), %rdi	/* %rdi = &panic_quiesce */
3151	call	dtrace_panic_trigger	/* %eax = dtrace_panic_trigger() */
3152	jmp	vpanic_common
3153
3154	SET_SIZE(dtrace_vpanic)
3155
3156#elif defined(__i386)
3157
3158	ENTRY_NP(vpanic)			/ Initial stack layout:
3159
3160	pushl	%ebp				/ | %eip | 20
3161	movl	%esp, %ebp			/ | %ebp | 16
3162	pushl	%eax				/ | %eax | 12
3163	pushl	%ebx				/ | %ebx |  8
3164	pushl	%ecx				/ | %ecx |  4
3165	pushl	%edx				/ | %edx |  0
3166
3167	movl	%esp, %ebx			/ %ebx = current stack pointer
3168
3169	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3170	pushl	%eax				/ push &panic_quiesce
3171	call	panic_trigger			/ %eax = panic_trigger()
3172	addl	$4, %esp			/ reset stack pointer
3173
3174vpanic_common:
3175	cmpl	$0, %eax			/ if (%eax == 0)
3176	je	0f				/   goto 0f;
3177
3178	/*
3179	 * If panic_trigger() was successful, we are the first to initiate a
3180	 * panic: we now switch to the reserved panic_stack before continuing.
3181	 */
3182	lea	panic_stack, %esp		/ %esp  = panic_stack
3183	addl	$PANICSTKSIZE, %esp		/ %esp += PANICSTKSIZE
3184
31850:	subl	$REGSIZE, %esp			/ allocate struct regs
3186
3187	/*
3188	 * Now that we've got everything set up, store the register values as
3189	 * they were when we entered vpanic() to the designated location in
3190	 * the regs structure we allocated on the stack.
3191	 */
3192#if !defined(__GNUC_AS__)
3193	movw	%gs, %edx
3194	movl	%edx, REGOFF_GS(%esp)
3195	movw	%fs, %edx
3196	movl	%edx, REGOFF_FS(%esp)
3197	movw	%es, %edx
3198	movl	%edx, REGOFF_ES(%esp)
3199	movw	%ds, %edx
3200	movl	%edx, REGOFF_DS(%esp)
3201#else	/* __GNUC_AS__ */
3202	mov	%gs, %edx
3203	mov	%edx, REGOFF_GS(%esp)
3204	mov	%fs, %edx
3205	mov	%edx, REGOFF_FS(%esp)
3206	mov	%es, %edx
3207	mov	%edx, REGOFF_ES(%esp)
3208	mov	%ds, %edx
3209	mov	%edx, REGOFF_DS(%esp)
3210#endif	/* __GNUC_AS__ */
3211	movl	%edi, REGOFF_EDI(%esp)
3212	movl	%esi, REGOFF_ESI(%esp)
3213	movl	16(%ebx), %ecx
3214	movl	%ecx, REGOFF_EBP(%esp)
3215	movl	%ebx, %ecx
3216	addl	$20, %ecx
3217	movl	%ecx, REGOFF_ESP(%esp)
3218	movl	8(%ebx), %ecx
3219	movl	%ecx, REGOFF_EBX(%esp)
3220	movl	0(%ebx), %ecx
3221	movl	%ecx, REGOFF_EDX(%esp)
3222	movl	4(%ebx), %ecx
3223	movl	%ecx, REGOFF_ECX(%esp)
3224	movl	12(%ebx), %ecx
3225	movl	%ecx, REGOFF_EAX(%esp)
3226	movl	$0, REGOFF_TRAPNO(%esp)
3227	movl	$0, REGOFF_ERR(%esp)
3228	lea	vpanic, %ecx
3229	movl	%ecx, REGOFF_EIP(%esp)
3230#if !defined(__GNUC_AS__)
3231	movw	%cs, %edx
3232#else	/* __GNUC_AS__ */
3233	mov	%cs, %edx
3234#endif	/* __GNUC_AS__ */
3235	movl	%edx, REGOFF_CS(%esp)
3236	pushfl
3237	popl	%ecx
3238	movl	%ecx, REGOFF_EFL(%esp)
3239	movl	$0, REGOFF_UESP(%esp)
3240#if !defined(__GNUC_AS__)
3241	movw	%ss, %edx
3242#else	/* __GNUC_AS__ */
3243	mov	%ss, %edx
3244#endif	/* __GNUC_AS__ */
3245	movl	%edx, REGOFF_SS(%esp)
3246
3247	movl	%esp, %ecx			/ %ecx = &regs
3248	pushl	%eax				/ push on_panic_stack
3249	pushl	%ecx				/ push &regs
3250	movl	12(%ebp), %ecx			/ %ecx = alist
3251	pushl	%ecx				/ push alist
3252	movl	8(%ebp), %ecx			/ %ecx = format
3253	pushl	%ecx				/ push format
3254	call	panicsys			/ panicsys();
3255	addl	$16, %esp			/ pop arguments
3256
3257	addl	$REGSIZE, %esp
3258	popl	%edx
3259	popl	%ecx
3260	popl	%ebx
3261	popl	%eax
3262	leave
3263	ret
3264	SET_SIZE(vpanic)
3265
3266	ENTRY_NP(dtrace_vpanic)			/ Initial stack layout:
3267
3268	pushl	%ebp				/ | %eip | 20
3269	movl	%esp, %ebp			/ | %ebp | 16
3270	pushl	%eax				/ | %eax | 12
3271	pushl	%ebx				/ | %ebx |  8
3272	pushl	%ecx				/ | %ecx |  4
3273	pushl	%edx				/ | %edx |  0
3274
3275	movl	%esp, %ebx			/ %ebx = current stack pointer
3276
3277	lea	panic_quiesce, %eax		/ %eax = &panic_quiesce
3278	pushl	%eax				/ push &panic_quiesce
3279	call	dtrace_panic_trigger		/ %eax = dtrace_panic_trigger()
3280	addl	$4, %esp			/ reset stack pointer
3281	jmp	vpanic_common			/ jump back to common code
3282
3283	SET_SIZE(dtrace_vpanic)
3284
3285#endif	/* __i386 */
3286#endif	/* __lint */
3287
3288#if defined(__lint)
3289
3290void
3291hres_tick(void)
3292{}
3293
3294int64_t timedelta;
3295hrtime_t hres_last_tick;
3296timestruc_t hrestime;
3297int64_t hrestime_adj;
3298volatile int hres_lock;
3299uint_t nsec_scale;
3300hrtime_t hrtime_base;
3301
3302#else	/* __lint */
3303
3304	DGDEF3(hrestime, _MUL(2, CLONGSIZE), 8)
3305	.NWORD	0, 0
3306
3307	DGDEF3(hrestime_adj, 8, 8)
3308	.long	0, 0
3309
3310	DGDEF3(hres_last_tick, 8, 8)
3311	.long	0, 0
3312
3313	DGDEF3(timedelta, 8, 8)
3314	.long	0, 0
3315
3316	DGDEF3(hres_lock, 4, 8)
3317	.long	0
3318
3319	/*
3320	 * initialized to a non zero value to make pc_gethrtime()
3321	 * work correctly even before clock is initialized
3322	 */
3323	DGDEF3(hrtime_base, 8, 8)
3324	.long	_MUL(NSEC_PER_CLOCK_TICK, 6), 0
3325
3326	DGDEF3(adj_shift, 4, 4)
3327	.long	ADJ_SHIFT
3328
3329#if defined(__amd64)
3330
3331	ENTRY_NP(hres_tick)
3332	pushq	%rbp
3333	movq	%rsp, %rbp
3334
3335	/*
3336	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3337	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3338	 * At worst, performing this now instead of under CLOCK_LOCK may
3339	 * introduce some jitter in pc_gethrestime().
3340	 */
3341	call	*gethrtimef(%rip)
3342	movq	%rax, %r8
3343
3344	leaq	hres_lock(%rip), %rax
3345	movb	$-1, %dl
3346.CL1:
3347	xchgb	%dl, (%rax)
3348	testb	%dl, %dl
3349	jz	.CL3			/* got it */
3350.CL2:
3351	cmpb	$0, (%rax)		/* possible to get lock? */
3352	pause
3353	jne	.CL2
3354	jmp	.CL1			/* yes, try again */
3355.CL3:
3356	/*
3357	 * compute the interval since last time hres_tick was called
3358	 * and adjust hrtime_base and hrestime accordingly
3359	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3360	 * a timestruc_t (sec, nsec)
3361	 */
3362	leaq	hres_last_tick(%rip), %rax
3363	movq	%r8, %r11
3364	subq	(%rax), %r8
3365	addq	%r8, hrtime_base(%rip)	/* add interval to hrtime_base */
3366	addq	%r8, hrestime+8(%rip)	/* add interval to hrestime.tv_nsec */
3367	/*
3368	 * Now that we have CLOCK_LOCK, we can update hres_last_tick
3369	 */
3370	movq	%r11, (%rax)
3371
3372	call	__adj_hrestime
3373
3374	/*
3375	 * release the hres_lock
3376	 */
3377	incl	hres_lock(%rip)
3378	leave
3379	ret
3380	SET_SIZE(hres_tick)
3381
3382#elif defined(__i386)
3383
3384	ENTRY_NP(hres_tick)
3385	pushl	%ebp
3386	movl	%esp, %ebp
3387	pushl	%esi
3388	pushl	%ebx
3389
3390	/*
3391	 * We need to call *gethrtimef before picking up CLOCK_LOCK (obviously,
3392	 * hres_last_tick can only be modified while holding CLOCK_LOCK).
3393	 * At worst, performing this now instead of under CLOCK_LOCK may
3394	 * introduce some jitter in pc_gethrestime().
3395	 */
3396	call	*gethrtimef
3397	movl	%eax, %ebx
3398	movl	%edx, %esi
3399
3400	movl	$hres_lock, %eax
3401	movl	$-1, %edx
3402.CL1:
3403	xchgb	%dl, (%eax)
3404	testb	%dl, %dl
3405	jz	.CL3			/ got it
3406.CL2:
3407	cmpb	$0, (%eax)		/ possible to get lock?
3408	pause
3409	jne	.CL2
3410	jmp	.CL1			/ yes, try again
3411.CL3:
3412	/*
3413	 * compute the interval since last time hres_tick was called
3414	 * and adjust hrtime_base and hrestime accordingly
3415	 * hrtime_base is an 8 byte value (in nsec), hrestime is
3416	 * timestruc_t (sec, nsec)
3417	 */
3418
3419	lea	hres_last_tick, %eax
3420
3421	movl	%ebx, %edx
3422	movl	%esi, %ecx
3423
3424	subl 	(%eax), %edx
3425	sbbl 	4(%eax), %ecx
3426
3427	addl	%edx, hrtime_base	/ add interval to hrtime_base
3428	adcl	%ecx, hrtime_base+4
3429
3430	addl 	%edx, hrestime+4	/ add interval to hrestime.tv_nsec
3431
3432	/
3433	/ Now that we have CLOCK_LOCK, we can update hres_last_tick.
3434	/
3435	movl	%ebx, (%eax)
3436	movl	%esi,  4(%eax)
3437
3438	/ get hrestime at this moment. used as base for pc_gethrestime
3439	/
3440	/ Apply adjustment, if any
3441	/
3442	/ #define HRES_ADJ	(NSEC_PER_CLOCK_TICK >> ADJ_SHIFT)
3443	/ (max_hres_adj)
3444	/
3445	/ void
3446	/ adj_hrestime()
3447	/ {
3448	/	long long adj;
3449	/
3450	/	if (hrestime_adj == 0)
3451	/		adj = 0;
3452	/	else if (hrestime_adj > 0) {
3453	/		if (hrestime_adj < HRES_ADJ)
3454	/			adj = hrestime_adj;
3455	/		else
3456	/			adj = HRES_ADJ;
3457	/	}
3458	/	else {
3459	/		if (hrestime_adj < -(HRES_ADJ))
3460	/			adj = -(HRES_ADJ);
3461	/		else
3462	/			adj = hrestime_adj;
3463	/	}
3464	/
3465	/	timedelta -= adj;
3466	/	hrestime_adj = timedelta;
3467	/	hrestime.tv_nsec += adj;
3468	/
3469	/	while (hrestime.tv_nsec >= NANOSEC) {
3470	/		one_sec++;
3471	/		hrestime.tv_sec++;
3472	/		hrestime.tv_nsec -= NANOSEC;
3473	/	}
3474	/ }
3475__adj_hrestime:
3476	movl	hrestime_adj, %esi	/ if (hrestime_adj == 0)
3477	movl	hrestime_adj+4, %edx
3478	andl	%esi, %esi
3479	jne	.CL4			/ no
3480	andl	%edx, %edx
3481	jne	.CL4			/ no
3482	subl	%ecx, %ecx		/ yes, adj = 0;
3483	subl	%edx, %edx
3484	jmp	.CL5
3485.CL4:
3486	subl	%ecx, %ecx
3487	subl	%eax, %eax
3488	subl	%esi, %ecx
3489	sbbl	%edx, %eax
3490	andl	%eax, %eax		/ if (hrestime_adj > 0)
3491	jge	.CL6
3492
3493	/ In the following comments, HRES_ADJ is used, while in the code
3494	/ max_hres_adj is used.
3495	/
3496	/ The test for "hrestime_adj < HRES_ADJ" is complicated because
3497	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3498	/ on the logical equivalence of:
3499	/
3500	/	!(hrestime_adj < HRES_ADJ)
3501	/
3502	/ and the two step sequence:
3503	/
3504	/	(HRES_ADJ - lsw(hrestime_adj)) generates a Borrow/Carry
3505	/
3506	/ which computes whether or not the least significant 32-bits
3507	/ of hrestime_adj is greater than HRES_ADJ, followed by:
3508	/
3509	/	Previous Borrow/Carry + -1 + msw(hrestime_adj) generates a Carry
3510	/
3511	/ which generates a carry whenever step 1 is true or the most
3512	/ significant long of the longlong hrestime_adj is non-zero.
3513
3514	movl	max_hres_adj, %ecx	/ hrestime_adj is positive
3515	subl	%esi, %ecx
3516	movl	%edx, %eax
3517	adcl	$-1, %eax
3518	jnc	.CL7
3519	movl	max_hres_adj, %ecx	/ adj = HRES_ADJ;
3520	subl	%edx, %edx
3521	jmp	.CL5
3522
3523	/ The following computation is similar to the one above.
3524	/
3525	/ The test for "hrestime_adj < -(HRES_ADJ)" is complicated because
3526	/ hrestime_adj is 64-bits, while HRES_ADJ is 32-bits.  We rely
3527	/ on the logical equivalence of:
3528	/
3529	/	(hrestime_adj > -HRES_ADJ)
3530	/
3531	/ and the two step sequence:
3532	/
3533	/	(HRES_ADJ + lsw(hrestime_adj)) generates a Carry
3534	/
3535	/ which means the least significant 32-bits of hrestime_adj is
3536	/ greater than -HRES_ADJ, followed by:
3537	/
3538	/	Previous Carry + 0 + msw(hrestime_adj) generates a Carry
3539	/
3540	/ which generates a carry only when step 1 is true and the most
3541	/ significant long of the longlong hrestime_adj is -1.
3542
3543.CL6:					/ hrestime_adj is negative
3544	movl	%esi, %ecx
3545	addl	max_hres_adj, %ecx
3546	movl	%edx, %eax
3547	adcl	$0, %eax
3548	jc	.CL7
3549	xor	%ecx, %ecx
3550	subl	max_hres_adj, %ecx	/ adj = -(HRES_ADJ);
3551	movl	$-1, %edx
3552	jmp	.CL5
3553.CL7:
3554	movl	%esi, %ecx		/ adj = hrestime_adj;
3555.CL5:
3556	movl	timedelta, %esi
3557	subl	%ecx, %esi
3558	movl	timedelta+4, %eax
3559	sbbl	%edx, %eax
3560	movl	%esi, timedelta
3561	movl	%eax, timedelta+4	/ timedelta -= adj;
3562	movl	%esi, hrestime_adj
3563	movl	%eax, hrestime_adj+4	/ hrestime_adj = timedelta;
3564	addl	hrestime+4, %ecx
3565
3566	movl	%ecx, %eax		/ eax = tv_nsec
35671:
3568	cmpl	$NANOSEC, %eax		/ if ((unsigned long)tv_nsec >= NANOSEC)
3569	jb	.CL8			/ no
3570	incl	one_sec			/ yes,  one_sec++;
3571	incl	hrestime		/ hrestime.tv_sec++;
3572	addl	$-NANOSEC, %eax		/ tv_nsec -= NANOSEC
3573	jmp	1b			/ check for more seconds
3574
3575.CL8:
3576	movl	%eax, hrestime+4	/ store final into hrestime.tv_nsec
3577	incl	hres_lock		/ release the hres_lock
3578
3579	popl	%ebx
3580	popl	%esi
3581	leave
3582	ret
3583	SET_SIZE(hres_tick)
3584
3585#endif	/* __i386 */
3586#endif	/* __lint */
3587
3588/*
3589 * void prefetch_smap_w(void *)
3590 *
3591 * Prefetch ahead within a linear list of smap structures.
3592 * Not implemented for ia32.  Stub for compatibility.
3593 */
3594
3595#if defined(__lint)
3596
3597/*ARGSUSED*/
3598void prefetch_smap_w(void *smp)
3599{}
3600
3601#else	/* __lint */
3602
3603	ENTRY(prefetch_smap_w)
3604	rep;	ret	/* use 2 byte return instruction when branch target */
3605			/* AMD Software Optimization Guide - Section 6.2 */
3606	SET_SIZE(prefetch_smap_w)
3607
3608#endif	/* __lint */
3609
3610/*
3611 * prefetch_page_r(page_t *)
3612 * issue prefetch instructions for a page_t
3613 */
3614#if defined(__lint)
3615
3616/*ARGSUSED*/
3617void
3618prefetch_page_r(void *pp)
3619{}
3620
3621#else	/* __lint */
3622
3623	ENTRY(prefetch_page_r)
3624	rep;	ret	/* use 2 byte return instruction when branch target */
3625			/* AMD Software Optimization Guide - Section 6.2 */
3626	SET_SIZE(prefetch_page_r)
3627
3628#endif	/* __lint */
3629
3630#if defined(__lint)
3631
3632/*ARGSUSED*/
3633int
3634bcmp(const void *s1, const void *s2, size_t count)
3635{ return (0); }
3636
3637#else   /* __lint */
3638
3639#if defined(__amd64)
3640
3641	ENTRY(bcmp)
3642	pushq	%rbp
3643	movq	%rsp, %rbp
3644#ifdef DEBUG
3645	movq	kernelbase(%rip), %r11
3646	cmpq	%r11, %rdi
3647	jb	0f
3648	cmpq	%r11, %rsi
3649	jnb	1f
36500:	leaq	.bcmp_panic_msg(%rip), %rdi
3651	xorl	%eax, %eax
3652	call	panic
36531:
3654#endif	/* DEBUG */
3655	call	memcmp
3656	testl	%eax, %eax
3657	setne	%dl
3658	leave
3659	movzbl	%dl, %eax
3660	ret
3661	SET_SIZE(bcmp)
3662
3663#elif defined(__i386)
3664
3665#define	ARG_S1		8
3666#define	ARG_S2		12
3667#define	ARG_LENGTH	16
3668
3669	ENTRY(bcmp)
3670#ifdef DEBUG
3671	pushl   %ebp
3672	movl    %esp, %ebp
3673	movl    kernelbase, %eax
3674	cmpl    %eax, ARG_S1(%ebp)
3675	jb	0f
3676	cmpl    %eax, ARG_S2(%ebp)
3677	jnb	1f
36780:	pushl   $.bcmp_panic_msg
3679	call    panic
36801:	popl    %ebp
3681#endif	/* DEBUG */
3682
3683	pushl	%edi		/ save register variable
3684	movl	ARG_S1(%esp), %eax	/ %eax = address of string 1
3685	movl	ARG_S2(%esp), %ecx	/ %ecx = address of string 2
3686	cmpl	%eax, %ecx	/ if the same string
3687	je	.equal		/ goto .equal
3688	movl	ARG_LENGTH(%esp), %edi	/ %edi = length in bytes
3689	cmpl	$4, %edi	/ if %edi < 4
3690	jb	.byte_check	/ goto .byte_check
3691	.align	4
3692.word_loop:
3693	movl	(%ecx), %edx	/ move 1 word from (%ecx) to %edx
3694	leal	-4(%edi), %edi	/ %edi -= 4
3695	cmpl	(%eax), %edx	/ compare 1 word from (%eax) with %edx
3696	jne	.word_not_equal	/ if not equal, goto .word_not_equal
3697	leal	4(%ecx), %ecx	/ %ecx += 4 (next word)
3698	leal	4(%eax), %eax	/ %eax += 4 (next word)
3699	cmpl	$4, %edi	/ if %edi >= 4
3700	jae	.word_loop	/ goto .word_loop
3701.byte_check:
3702	cmpl	$0, %edi	/ if %edi == 0
3703	je	.equal		/ goto .equal
3704	jmp	.byte_loop	/ goto .byte_loop (checks in bytes)
3705.word_not_equal:
3706	leal	4(%edi), %edi	/ %edi += 4 (post-decremented)
3707	.align	4
3708.byte_loop:
3709	movb	(%ecx),	%dl	/ move 1 byte from (%ecx) to %dl
3710	cmpb	%dl, (%eax)	/ compare %dl with 1 byte from (%eax)
3711	jne	.not_equal	/ if not equal, goto .not_equal
3712	incl	%ecx		/ %ecx++ (next byte)
3713	incl	%eax		/ %eax++ (next byte)
3714	decl	%edi		/ %edi--
3715	jnz	.byte_loop	/ if not zero, goto .byte_loop
3716.equal:
3717	xorl	%eax, %eax	/ %eax = 0
3718	popl	%edi		/ restore register variable
3719	ret			/ return (NULL)
3720	.align	4
3721.not_equal:
3722	movl	$1, %eax	/ return 1
3723	popl	%edi		/ restore register variable
3724	ret			/ return (NULL)
3725	SET_SIZE(bcmp)
3726
3727#endif	/* __i386 */
3728
3729#ifdef DEBUG
3730	.text
3731.bcmp_panic_msg:
3732	.string "bcmp: arguments below kernelbase"
3733#endif	/* DEBUG */
3734
3735#endif	/* __lint */
3736