xref: /titanic_52/usr/src/uts/intel/dtrace/fasttrap_isa.c (revision d92a527c473246e5c750ae6c33ecd2f242a5bf1f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/fasttrap_isa.h>
30 #include <sys/fasttrap_impl.h>
31 #include <sys/dtrace.h>
32 #include <sys/dtrace_impl.h>
33 #include <sys/cmn_err.h>
34 #include <sys/regset.h>
35 #include <sys/privregs.h>
36 #include <sys/segments.h>
37 #include <sys/x86_archext.h>
38 #include <sys/sysmacros.h>
39 #include <sys/trap.h>
40 #include <sys/archsystm.h>
41 
42 /*
43  * Lossless User-Land Tracing on x86
44  * ---------------------------------
45  *
46  * The execution of most instructions is not dependent on the address; for
47  * these instructions it is sufficient to copy them into the user process's
48  * address space and execute them. To effectively single-step an instruction
49  * in user-land, we copy out the following sequence of instructions to scratch
50  * space in the user thread's ulwp_t structure.
51  *
52  * We then set the program counter (%eip or %rip) to point to this scratch
53  * space. Once execution resumes, the original instruction is executed and
54  * then control flow is redirected to what was originally the subsequent
55  * instruction. If the kernel attemps to deliver a signal while single-
56  * stepping, the signal is deferred and the program counter is moved into the
57  * second sequence of instructions. The second sequence ends in a trap into
58  * the kernel where the deferred signal is then properly handled and delivered.
59  *
60  * For instructions whose execute is position dependent, we perform simple
61  * emulation. These instructions are limited to control transfer
62  * instructions in 32-bit mode, but in 64-bit mode there's the added wrinkle
63  * of %rip-relative addressing that means that almost any instruction can be
64  * position dependent. For all the details on how we emulate generic
65  * instructions included %rip-relative instructions, see the code in
66  * fasttrap_pid_probe() below where we handle instructions of type
67  * FASTTRAP_T_COMMON (under the header: Generic Instruction Tracing).
68  */
69 
70 #define	FASTTRAP_MODRM_MOD(modrm)	(((modrm) >> 6) & 0x3)
71 #define	FASTTRAP_MODRM_REG(modrm)	(((modrm) >> 3) & 0x7)
72 #define	FASTTRAP_MODRM_RM(modrm)	((modrm) & 0x7)
73 #define	FASTTRAP_MODRM(mod, reg, rm)	(((mod) << 6) | ((reg) << 3) | (rm))
74 
75 #define	FASTTRAP_SIB_SCALE(sib)		(((sib) >> 6) & 0x3)
76 #define	FASTTRAP_SIB_INDEX(sib)		(((sib) >> 3) & 0x7)
77 #define	FASTTRAP_SIB_BASE(sib)		((sib) & 0x7)
78 
79 #define	FASTTRAP_REX_W(rex)		(((rex) >> 3) & 1)
80 #define	FASTTRAP_REX_R(rex)		(((rex) >> 2) & 1)
81 #define	FASTTRAP_REX_X(rex)		(((rex) >> 1) & 1)
82 #define	FASTTRAP_REX_B(rex)		((rex) & 1)
83 #define	FASTTRAP_REX(w, r, x, b)	\
84 	(0x40 | ((w) << 3) | ((r) << 2) | ((x) << 1) | (b))
85 
86 /*
87  * Single-byte op-codes.
88  */
89 #define	FASTTRAP_PUSHL_EBP	0x55
90 
91 #define	FASTTRAP_JO		0x70
92 #define	FASTTRAP_JNO		0x71
93 #define	FASTTRAP_JB		0x72
94 #define	FASTTRAP_JAE		0x73
95 #define	FASTTRAP_JE		0x74
96 #define	FASTTRAP_JNE		0x75
97 #define	FASTTRAP_JBE		0x76
98 #define	FASTTRAP_JA		0x77
99 #define	FASTTRAP_JS		0x78
100 #define	FASTTRAP_JNS		0x79
101 #define	FASTTRAP_JP		0x7a
102 #define	FASTTRAP_JNP		0x7b
103 #define	FASTTRAP_JL		0x7c
104 #define	FASTTRAP_JGE		0x7d
105 #define	FASTTRAP_JLE		0x7e
106 #define	FASTTRAP_JG		0x7f
107 
108 #define	FASTTRAP_NOP		0x90
109 
110 #define	FASTTRAP_MOV_EAX	0xb8
111 #define	FASTTRAP_MOV_ECX	0xb9
112 
113 #define	FASTTRAP_RET16		0xc2
114 #define	FASTTRAP_RET		0xc3
115 
116 #define	FASTTRAP_LOOPNZ		0xe0
117 #define	FASTTRAP_LOOPZ		0xe1
118 #define	FASTTRAP_LOOP		0xe2
119 #define	FASTTRAP_JCXZ		0xe3
120 
121 #define	FASTTRAP_CALL		0xe8
122 #define	FASTTRAP_JMP32		0xe9
123 #define	FASTTRAP_JMP8		0xeb
124 
125 #define	FASTTRAP_INT3		0xcc
126 #define	FASTTRAP_INT		0xcd
127 
128 #define	FASTTRAP_2_BYTE_OP	0x0f
129 #define	FASTTRAP_GROUP5_OP	0xff
130 
131 /*
132  * Two-byte op-codes (second byte only).
133  */
134 #define	FASTTRAP_0F_JO		0x80
135 #define	FASTTRAP_0F_JNO		0x81
136 #define	FASTTRAP_0F_JB		0x82
137 #define	FASTTRAP_0F_JAE		0x83
138 #define	FASTTRAP_0F_JE		0x84
139 #define	FASTTRAP_0F_JNE		0x85
140 #define	FASTTRAP_0F_JBE		0x86
141 #define	FASTTRAP_0F_JA		0x87
142 #define	FASTTRAP_0F_JS		0x88
143 #define	FASTTRAP_0F_JNS		0x89
144 #define	FASTTRAP_0F_JP		0x8a
145 #define	FASTTRAP_0F_JNP		0x8b
146 #define	FASTTRAP_0F_JL		0x8c
147 #define	FASTTRAP_0F_JGE		0x8d
148 #define	FASTTRAP_0F_JLE		0x8e
149 #define	FASTTRAP_0F_JG		0x8f
150 
151 #define	FASTTRAP_EFLAGS_OF	0x800
152 #define	FASTTRAP_EFLAGS_DF	0x400
153 #define	FASTTRAP_EFLAGS_SF	0x080
154 #define	FASTTRAP_EFLAGS_ZF	0x040
155 #define	FASTTRAP_EFLAGS_AF	0x010
156 #define	FASTTRAP_EFLAGS_PF	0x004
157 #define	FASTTRAP_EFLAGS_CF	0x001
158 
159 /*
160  * Instruction prefixes.
161  */
162 #define	FASTTRAP_PREFIX_OPERAND	0x66
163 #define	FASTTRAP_PREFIX_ADDRESS	0x67
164 #define	FASTTRAP_PREFIX_CS	0x2E
165 #define	FASTTRAP_PREFIX_DS	0x3E
166 #define	FASTTRAP_PREFIX_ES	0x26
167 #define	FASTTRAP_PREFIX_FS	0x64
168 #define	FASTTRAP_PREFIX_GS	0x65
169 #define	FASTTRAP_PREFIX_SS	0x36
170 #define	FASTTRAP_PREFIX_LOCK	0xF0
171 #define	FASTTRAP_PREFIX_REP	0xF3
172 #define	FASTTRAP_PREFIX_REPNE	0xF2
173 
174 #define	FASTTRAP_NOREG	0xff
175 
176 /*
177  * Map between instruction register encodings and the kernel constants which
178  * correspond to indicies into struct regs.
179  */
180 #ifdef __amd64
181 static const uint8_t regmap[16] = {
182 	REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
183 	REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15,
184 };
185 #else
186 static const uint8_t regmap[8] = {
187 	EAX, ECX, EDX, EBX, UESP, EBP, ESI, EDI
188 };
189 #endif
190 
191 static ulong_t fasttrap_getreg(struct regs *, uint_t);
192 
193 static uint64_t
194 fasttrap_anarg(struct regs *rp, int function_entry, int argno)
195 {
196 	uint64_t value;
197 	int shift = function_entry ? 1 : 0;
198 
199 #ifdef __amd64
200 	if (curproc->p_model == DATAMODEL_LP64) {
201 		uintptr_t *stack;
202 
203 		/*
204 		 * In 64-bit mode, the first six arguments are stored in
205 		 * registers.
206 		 */
207 		if (argno < 6)
208 			return ((&rp->r_rdi)[argno]);
209 
210 		stack = (uintptr_t *)rp->r_sp;
211 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
212 		value = dtrace_fulword(&stack[argno - 6 + shift]);
213 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
214 	} else {
215 #endif
216 		uint32_t *stack = (uint32_t *)rp->r_sp;
217 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
218 		value = dtrace_fuword32(&stack[argno + shift]);
219 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | CPU_DTRACE_BADADDR);
220 #ifdef __amd64
221 	}
222 #endif
223 
224 	return (value);
225 }
226 
227 /*ARGSUSED*/
228 int
229 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, uintptr_t pc,
230     fasttrap_probe_type_t type)
231 {
232 	uint8_t instr[FASTTRAP_MAX_INSTR_SIZE + 10];
233 	size_t len = FASTTRAP_MAX_INSTR_SIZE;
234 	size_t first = MIN(len, PAGESIZE - (pc & PAGEOFFSET));
235 	uint_t start = 0;
236 	int rmindex, size;
237 	uint8_t seg, rex = 0;
238 
239 	/*
240 	 * Read the instruction at the given address out of the process's
241 	 * address space. We don't have to worry about a debugger
242 	 * changing this instruction before we overwrite it with our trap
243 	 * instruction since P_PR_LOCK is set. Since instructions can span
244 	 * pages, we potentially read the instruction in two parts. If the
245 	 * second part fails, we just zero out that part of the instruction.
246 	 */
247 	if (uread(p, &instr[0], first, pc) != 0)
248 		return (-1);
249 	if (len > first &&
250 	    uread(p, &instr[first], len - first, pc + first) != 0) {
251 		bzero(&instr[first], len - first);
252 		len = first;
253 	}
254 
255 	/*
256 	 * If the disassembly fails, then we have a malformed instruction.
257 	 */
258 	if ((size = dtrace_instr_size_isa(instr, p->p_model, &rmindex)) <= 0)
259 		return (-1);
260 
261 	/*
262 	 * Make sure the disassembler isn't completely broken.
263 	 */
264 	ASSERT(-1 <= rmindex && rmindex < size);
265 
266 	/*
267 	 * If the computed size is greater than the number of bytes read,
268 	 * then it was a malformed instruction possibly because it fell on a
269 	 * page boundary and the subsequent page was missing or because of
270 	 * some malicious user.
271 	 */
272 	if (size > len)
273 		return (-1);
274 
275 	tp->ftt_size = (uint8_t)size;
276 	tp->ftt_segment = FASTTRAP_SEG_NONE;
277 
278 	/*
279 	 * Find the start of the instruction's opcode by processing any
280 	 * legacy prefixes.
281 	 */
282 	for (;;) {
283 		seg = 0;
284 		switch (instr[start]) {
285 		case FASTTRAP_PREFIX_SS:
286 			seg++;
287 			/*FALLTHRU*/
288 		case FASTTRAP_PREFIX_GS:
289 			seg++;
290 			/*FALLTHRU*/
291 		case FASTTRAP_PREFIX_FS:
292 			seg++;
293 			/*FALLTHRU*/
294 		case FASTTRAP_PREFIX_ES:
295 			seg++;
296 			/*FALLTHRU*/
297 		case FASTTRAP_PREFIX_DS:
298 			seg++;
299 			/*FALLTHRU*/
300 		case FASTTRAP_PREFIX_CS:
301 			seg++;
302 			/*FALLTHRU*/
303 		case FASTTRAP_PREFIX_OPERAND:
304 		case FASTTRAP_PREFIX_ADDRESS:
305 		case FASTTRAP_PREFIX_LOCK:
306 		case FASTTRAP_PREFIX_REP:
307 		case FASTTRAP_PREFIX_REPNE:
308 			if (seg != 0) {
309 				/*
310 				 * It's illegal for an instruction to specify
311 				 * two segment prefixes -- give up on this
312 				 * illegal instruction.
313 				 */
314 				if (tp->ftt_segment != FASTTRAP_SEG_NONE)
315 					return (-1);
316 
317 				tp->ftt_segment = seg;
318 			}
319 			start++;
320 			continue;
321 		}
322 		break;
323 	}
324 
325 #ifdef __amd64
326 	/*
327 	 * Identify the REX prefix on 64-bit processes.
328 	 */
329 	if (p->p_model == DATAMODEL_LP64 && (instr[start] & 0xf0) == 0x40)
330 		rex = instr[start++];
331 #endif
332 
333 	/*
334 	 * Now that we're pretty sure that the instruction is okay, copy the
335 	 * valid part to the tracepoint.
336 	 */
337 	bcopy(instr, tp->ftt_instr, FASTTRAP_MAX_INSTR_SIZE);
338 
339 	tp->ftt_type = FASTTRAP_T_COMMON;
340 	if (instr[start] == FASTTRAP_2_BYTE_OP) {
341 		switch (instr[start + 1]) {
342 		case FASTTRAP_0F_JO:
343 		case FASTTRAP_0F_JNO:
344 		case FASTTRAP_0F_JB:
345 		case FASTTRAP_0F_JAE:
346 		case FASTTRAP_0F_JE:
347 		case FASTTRAP_0F_JNE:
348 		case FASTTRAP_0F_JBE:
349 		case FASTTRAP_0F_JA:
350 		case FASTTRAP_0F_JS:
351 		case FASTTRAP_0F_JNS:
352 		case FASTTRAP_0F_JP:
353 		case FASTTRAP_0F_JNP:
354 		case FASTTRAP_0F_JL:
355 		case FASTTRAP_0F_JGE:
356 		case FASTTRAP_0F_JLE:
357 		case FASTTRAP_0F_JG:
358 			tp->ftt_type = FASTTRAP_T_JCC;
359 			tp->ftt_code = (instr[start + 1] & 0x0f) | FASTTRAP_JO;
360 			tp->ftt_dest = pc + tp->ftt_size +
361 			    /* LINTED - alignment */
362 			    *(int32_t *)&instr[start + 2];
363 			break;
364 		}
365 	} else if (instr[start] == FASTTRAP_GROUP5_OP) {
366 		uint_t mod = FASTTRAP_MODRM_MOD(instr[start + 1]);
367 		uint_t reg = FASTTRAP_MODRM_REG(instr[start + 1]);
368 		uint_t rm = FASTTRAP_MODRM_RM(instr[start + 1]);
369 
370 		if (reg == 2 || reg == 4) {
371 			uint_t i, sz;
372 
373 			if (reg == 2)
374 				tp->ftt_type = FASTTRAP_T_CALL;
375 			else
376 				tp->ftt_type = FASTTRAP_T_JMP;
377 
378 			if (mod == 3)
379 				tp->ftt_code = 2;
380 			else
381 				tp->ftt_code = 1;
382 
383 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
384 
385 			/*
386 			 * See AMD x86-64 Architecture Programmer's Manual
387 			 * Volume 3, Section 1.2.7, Table 1-12, and
388 			 * Appendix A.3.1, Table A-15.
389 			 */
390 			if (mod != 3 && rm == 4) {
391 				uint8_t sib = instr[start + 2];
392 				uint_t index = FASTTRAP_SIB_INDEX(sib);
393 				uint_t base = FASTTRAP_SIB_BASE(sib);
394 
395 				tp->ftt_scale = FASTTRAP_SIB_SCALE(sib);
396 
397 				tp->ftt_index = (index == 4) ?
398 				    FASTTRAP_NOREG :
399 				    regmap[index | (FASTTRAP_REX_X(rex) << 3)];
400 				tp->ftt_base = (mod == 0 && base == 5) ?
401 				    FASTTRAP_NOREG :
402 				    regmap[base | (FASTTRAP_REX_B(rex) << 3)];
403 
404 				i = 3;
405 				sz = mod == 1 ? 1 : 4;
406 			} else {
407 				/*
408 				 * In 64-bit mode, mod == 0 and r/m == 5
409 				 * denotes %rip-relative addressing; in 32-bit
410 				 * mode, the base register isn't used. In both
411 				 * modes, there is a 32-bit operand.
412 				 */
413 				if (mod == 0 && rm == 5) {
414 #ifdef __amd64
415 					if (p->p_model == DATAMODEL_LP64)
416 						tp->ftt_base = REG_RIP;
417 					else
418 #endif
419 						tp->ftt_base = FASTTRAP_NOREG;
420 					sz = 4;
421 				} else  {
422 					uint8_t base = rm |
423 					    (FASTTRAP_REX_B(rex) << 3);
424 
425 					tp->ftt_base = regmap[base];
426 					sz = mod == 1 ? 1 : mod == 2 ? 4 : 0;
427 				}
428 				tp->ftt_index = FASTTRAP_NOREG;
429 				i = 2;
430 			}
431 
432 			if (sz == 1) {
433 				tp->ftt_dest = *(int8_t *)&instr[start + i];
434 			} else if (sz == 4) {
435 				/* LINTED - alignment */
436 				tp->ftt_dest = *(int32_t *)&instr[start + i];
437 			} else {
438 				tp->ftt_dest = 0;
439 			}
440 		}
441 	} else {
442 		switch (instr[start]) {
443 		case FASTTRAP_RET:
444 			tp->ftt_type = FASTTRAP_T_RET;
445 			break;
446 
447 		case FASTTRAP_RET16:
448 			tp->ftt_type = FASTTRAP_T_RET16;
449 			/* LINTED - alignment */
450 			tp->ftt_dest = *(uint16_t *)&instr[start + 1];
451 			break;
452 
453 		case FASTTRAP_JO:
454 		case FASTTRAP_JNO:
455 		case FASTTRAP_JB:
456 		case FASTTRAP_JAE:
457 		case FASTTRAP_JE:
458 		case FASTTRAP_JNE:
459 		case FASTTRAP_JBE:
460 		case FASTTRAP_JA:
461 		case FASTTRAP_JS:
462 		case FASTTRAP_JNS:
463 		case FASTTRAP_JP:
464 		case FASTTRAP_JNP:
465 		case FASTTRAP_JL:
466 		case FASTTRAP_JGE:
467 		case FASTTRAP_JLE:
468 		case FASTTRAP_JG:
469 			tp->ftt_type = FASTTRAP_T_JCC;
470 			tp->ftt_code = instr[start];
471 			tp->ftt_dest = pc + tp->ftt_size +
472 			    (int8_t)instr[start + 1];
473 			break;
474 
475 		case FASTTRAP_LOOPNZ:
476 		case FASTTRAP_LOOPZ:
477 		case FASTTRAP_LOOP:
478 			tp->ftt_type = FASTTRAP_T_LOOP;
479 			tp->ftt_code = instr[start];
480 			tp->ftt_dest = pc + tp->ftt_size +
481 			    (int8_t)instr[start + 1];
482 			break;
483 
484 		case FASTTRAP_JCXZ:
485 			tp->ftt_type = FASTTRAP_T_JCXZ;
486 			tp->ftt_dest = pc + tp->ftt_size +
487 			    (int8_t)instr[start + 1];
488 			break;
489 
490 		case FASTTRAP_CALL:
491 			tp->ftt_type = FASTTRAP_T_CALL;
492 			tp->ftt_dest = pc + tp->ftt_size +
493 			    /* LINTED - alignment */
494 			    *(int32_t *)&instr[start + 1];
495 			tp->ftt_code = 0;
496 			break;
497 
498 		case FASTTRAP_JMP32:
499 			tp->ftt_type = FASTTRAP_T_JMP;
500 			tp->ftt_dest = pc + tp->ftt_size +
501 			    /* LINTED - alignment */
502 			    *(int32_t *)&instr[start + 1];
503 			break;
504 		case FASTTRAP_JMP8:
505 			tp->ftt_type = FASTTRAP_T_JMP;
506 			tp->ftt_dest = pc + tp->ftt_size +
507 			    (int8_t)instr[start + 1];
508 			break;
509 
510 		case FASTTRAP_PUSHL_EBP:
511 			if (start == 0)
512 				tp->ftt_type = FASTTRAP_T_PUSHL_EBP;
513 			break;
514 
515 		case FASTTRAP_NOP:
516 #ifdef __amd64
517 			ASSERT(p->p_model == DATAMODEL_LP64 || rex == 0);
518 
519 			/*
520 			 * On amd64 we have to be careful not to confuse a nop
521 			 * (actually xchgl %eax, %eax) with an instruction using
522 			 * the same opcode, but that does something different
523 			 * (e.g. xchgl %r8d, %eax or xcghq %r8, %rax).
524 			 */
525 			if (FASTTRAP_REX_B(rex) == 0)
526 #endif
527 				tp->ftt_type = FASTTRAP_T_NOP;
528 			break;
529 
530 		case FASTTRAP_INT3:
531 			/*
532 			 * The pid provider shares the int3 trap with debugger
533 			 * breakpoints so we can't instrument them.
534 			 */
535 			ASSERT(instr[start] == FASTTRAP_INSTR);
536 			return (-1);
537 
538 		case FASTTRAP_INT:
539 			/*
540 			 * Interrupts seem like they could be traced with
541 			 * no negative implications, but it's possible that
542 			 * a thread could be redirected by the trap handling
543 			 * code which would eventually return to the
544 			 * instruction after the interrupt. If the interrupt
545 			 * were in our scratch space, the subsequent
546 			 * instruction might be overwritten before we return.
547 			 * Accordingly we refuse to instrument any interrupt.
548 			 */
549 			return (-1);
550 		}
551 	}
552 
553 #ifdef __amd64
554 	if (p->p_model == DATAMODEL_LP64 && tp->ftt_type == FASTTRAP_T_COMMON) {
555 		/*
556 		 * If the process is 64-bit and the instruction type is still
557 		 * FASTTRAP_T_COMMON -- meaning we're going to copy it out an
558 		 * execute it -- we need to watch for %rip-relative
559 		 * addressing mode. See the portion of fasttrap_pid_probe()
560 		 * below where we handle tracepoints with type
561 		 * FASTTRAP_T_COMMON for how we emulate instructions that
562 		 * employ %rip-relative addressing.
563 		 */
564 		if (rmindex != -1) {
565 			uint_t mod = FASTTRAP_MODRM_MOD(instr[rmindex]);
566 			uint_t reg = FASTTRAP_MODRM_REG(instr[rmindex]);
567 			uint_t rm = FASTTRAP_MODRM_RM(instr[rmindex]);
568 
569 			ASSERT(rmindex > start);
570 
571 			if (mod == 0 && rm == 5) {
572 				/*
573 				 * We need to be sure to avoid other
574 				 * registers used by this instruction. While
575 				 * the reg field may determine the op code
576 				 * rather than denoting a register, assuming
577 				 * that it denotes a register is always safe.
578 				 * We leave the REX field intact and use
579 				 * whatever value's there for simplicity.
580 				 */
581 				if (reg != 0) {
582 					tp->ftt_ripmode = FASTTRAP_RIP_1 |
583 					    (FASTTRAP_RIP_X *
584 					    FASTTRAP_REX_B(rex));
585 					rm = 0;
586 				} else {
587 					tp->ftt_ripmode = FASTTRAP_RIP_2 |
588 					    (FASTTRAP_RIP_X *
589 					    FASTTRAP_REX_B(rex));
590 					rm = 1;
591 				}
592 
593 				tp->ftt_modrm = tp->ftt_instr[rmindex];
594 				tp->ftt_instr[rmindex] =
595 				    FASTTRAP_MODRM(2, reg, rm);
596 			}
597 		}
598 	}
599 #endif
600 
601 	return (0);
602 }
603 
604 int
605 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
606 {
607 	fasttrap_instr_t instr = FASTTRAP_INSTR;
608 
609 	if (uwrite(p, &instr, 1, tp->ftt_pc) != 0)
610 		return (-1);
611 
612 	return (0);
613 }
614 
615 int
616 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
617 {
618 	uint8_t instr;
619 
620 	/*
621 	 * Distinguish between read or write failures and a changed
622 	 * instruction.
623 	 */
624 	if (uread(p, &instr, 1, tp->ftt_pc) != 0)
625 		return (0);
626 	if (instr != FASTTRAP_INSTR)
627 		return (0);
628 	if (uwrite(p, &tp->ftt_instr[0], 1, tp->ftt_pc) != 0)
629 		return (-1);
630 
631 	return (0);
632 }
633 
634 #ifdef __amd64
635 static uintptr_t
636 fasttrap_fulword_noerr(const void *uaddr)
637 {
638 	uintptr_t ret;
639 
640 	if (fasttrap_fulword(uaddr, &ret) == 0)
641 		return (ret);
642 
643 	return (0);
644 }
645 #endif
646 
647 static uint32_t
648 fasttrap_fuword32_noerr(const void *uaddr)
649 {
650 	uint32_t ret;
651 
652 	if (fasttrap_fuword32(uaddr, &ret) == 0)
653 		return (ret);
654 
655 	return (0);
656 }
657 
658 static void
659 fasttrap_return_common(struct regs *rp, uintptr_t pc, pid_t pid,
660     uintptr_t new_pc)
661 {
662 	fasttrap_tracepoint_t *tp;
663 	fasttrap_bucket_t *bucket;
664 	fasttrap_id_t *id;
665 	kmutex_t *pid_mtx;
666 
667 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
668 	mutex_enter(pid_mtx);
669 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
670 
671 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
672 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
673 		    tp->ftt_proc->ftpc_acount != 0)
674 			break;
675 	}
676 
677 	/*
678 	 * Don't sweat it if we can't find the tracepoint again; unlike
679 	 * when we're in fasttrap_pid_probe(), finding the tracepoint here
680 	 * is not essential to the correct execution of the process.
681 	 */
682 	if (tp == NULL) {
683 		mutex_exit(pid_mtx);
684 		return;
685 	}
686 
687 	for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
688 		/*
689 		 * If there's a branch that could act as a return site, we
690 		 * need to trace it, and check here if the program counter is
691 		 * external to the function.
692 		 */
693 		if (tp->ftt_type != FASTTRAP_T_RET &&
694 		    tp->ftt_type != FASTTRAP_T_RET16 &&
695 		    new_pc - id->fti_probe->ftp_faddr <
696 		    id->fti_probe->ftp_fsize)
697 			continue;
698 
699 		dtrace_probe(id->fti_probe->ftp_id,
700 		    pc - id->fti_probe->ftp_faddr,
701 		    rp->r_r0, rp->r_r1, 0, 0);
702 	}
703 
704 	mutex_exit(pid_mtx);
705 }
706 
707 static void
708 fasttrap_sigsegv(proc_t *p, kthread_t *t, uintptr_t addr)
709 {
710 	sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
711 
712 	sqp->sq_info.si_signo = SIGSEGV;
713 	sqp->sq_info.si_code = SEGV_MAPERR;
714 	sqp->sq_info.si_addr = (caddr_t)addr;
715 
716 	mutex_enter(&p->p_lock);
717 	sigaddqa(p, t, sqp);
718 	mutex_exit(&p->p_lock);
719 
720 	if (t != NULL)
721 		aston(t);
722 }
723 
724 #ifdef __amd64
725 static void
726 fasttrap_usdt_args64(fasttrap_probe_t *probe, struct regs *rp, int argc,
727     uintptr_t *argv)
728 {
729 	int i, x, cap = MIN(argc, probe->ftp_nargs);
730 	uintptr_t *stack = (uintptr_t *)rp->r_sp;
731 
732 	for (i = 0; i < cap; i++) {
733 		x = probe->ftp_argmap[i];
734 
735 		if (x < 6)
736 			argv[i] = (&rp->r_rdi)[x];
737 		else
738 			argv[i] = fasttrap_fulword_noerr(&stack[x]);
739 	}
740 
741 	for (; i < argc; i++) {
742 		argv[i] = 0;
743 	}
744 }
745 #endif
746 
747 static void
748 fasttrap_usdt_args32(fasttrap_probe_t *probe, struct regs *rp, int argc,
749     uint32_t *argv)
750 {
751 	int i, x, cap = MIN(argc, probe->ftp_nargs);
752 	uint32_t *stack = (uint32_t *)rp->r_sp;
753 
754 	for (i = 0; i < cap; i++) {
755 		x = probe->ftp_argmap[i];
756 
757 		argv[i] = fasttrap_fuword32_noerr(&stack[x]);
758 	}
759 
760 	for (; i < argc; i++) {
761 		argv[i] = 0;
762 	}
763 }
764 
765 static int
766 fasttrap_do_seg(fasttrap_tracepoint_t *tp, struct regs *rp, uintptr_t *addr)
767 {
768 	proc_t *p = curproc;
769 	user_desc_t *desc;
770 	uint16_t sel, ndx, type;
771 	uintptr_t limit;
772 
773 	switch (tp->ftt_segment) {
774 	case FASTTRAP_SEG_CS:
775 		sel = rp->r_cs;
776 		break;
777 	case FASTTRAP_SEG_DS:
778 		sel = rp->r_ds;
779 		break;
780 	case FASTTRAP_SEG_ES:
781 		sel = rp->r_es;
782 		break;
783 	case FASTTRAP_SEG_FS:
784 		sel = rp->r_fs;
785 		break;
786 	case FASTTRAP_SEG_GS:
787 		sel = rp->r_gs;
788 		break;
789 	case FASTTRAP_SEG_SS:
790 		sel = rp->r_ss;
791 		break;
792 	}
793 
794 	/*
795 	 * Make sure the given segment register specifies a user priority
796 	 * selector rather than a kernel selector.
797 	 */
798 	if (!SELISUPL(sel))
799 		return (-1);
800 
801 	ndx = SELTOIDX(sel);
802 
803 	/*
804 	 * Check the bounds and grab the descriptor out of the specified
805 	 * descriptor table.
806 	 */
807 	if (SELISLDT(sel)) {
808 		if (ndx > p->p_ldtlimit)
809 			return (-1);
810 
811 		desc = p->p_ldt + ndx;
812 
813 	} else {
814 		if (ndx >= NGDT)
815 			return (-1);
816 
817 		desc = cpu_get_gdt() + ndx;
818 	}
819 
820 	/*
821 	 * The descriptor must have user privilege level and it must be
822 	 * present in memory.
823 	 */
824 	if (desc->usd_dpl != SEL_UPL || desc->usd_p != 1)
825 		return (-1);
826 
827 	type = desc->usd_type;
828 
829 	/*
830 	 * If the S bit in the type field is not set, this descriptor can
831 	 * only be used in system context.
832 	 */
833 	if ((type & 0x10) != 0x10)
834 		return (-1);
835 
836 	limit = USEGD_GETLIMIT(desc) * (desc->usd_gran ? PAGESIZE : 1);
837 
838 	if (tp->ftt_segment == FASTTRAP_SEG_CS) {
839 		/*
840 		 * The code/data bit and readable bit must both be set.
841 		 */
842 		if ((type & 0xa) != 0xa)
843 			return (-1);
844 
845 		if (*addr > limit)
846 			return (-1);
847 	} else {
848 		/*
849 		 * The code/data bit must be clear.
850 		 */
851 		if ((type & 0x8) != 0)
852 			return (-1);
853 
854 		/*
855 		 * If the expand-down bit is clear, we just check the limit as
856 		 * it would naturally be applied. Otherwise, we need to check
857 		 * that the address is the range [limit + 1 .. 0xffff] or
858 		 * [limit + 1 ... 0xffffffff] depending on if the default
859 		 * operand size bit is set.
860 		 */
861 		if ((type & 0x4) == 0) {
862 			if (*addr > limit)
863 				return (-1);
864 		} else if (desc->usd_def32) {
865 			if (*addr < limit + 1 || 0xffff < *addr)
866 				return (-1);
867 		} else {
868 			if (*addr < limit + 1 || 0xffffffff < *addr)
869 				return (-1);
870 		}
871 	}
872 
873 	*addr += USEGD_GETBASE(desc);
874 
875 	return (0);
876 }
877 
878 int
879 fasttrap_pid_probe(struct regs *rp)
880 {
881 	proc_t *p = curproc;
882 	uintptr_t pc = rp->r_pc - 1, new_pc = 0;
883 	fasttrap_bucket_t *bucket;
884 	kmutex_t *pid_mtx;
885 	fasttrap_tracepoint_t *tp, tp_local;
886 	pid_t pid;
887 	dtrace_icookie_t cookie;
888 	uint_t is_enabled = 0;
889 
890 	/*
891 	 * It's possible that a user (in a veritable orgy of bad planning)
892 	 * could redirect this thread's flow of control before it reached the
893 	 * return probe fasttrap. In this case we need to kill the process
894 	 * since it's in a unrecoverable state.
895 	 */
896 	if (curthread->t_dtrace_step) {
897 		ASSERT(curthread->t_dtrace_on);
898 		fasttrap_sigtrap(p, curthread, pc);
899 		return (0);
900 	}
901 
902 	/*
903 	 * Clear all user tracing flags.
904 	 */
905 	curthread->t_dtrace_ft = 0;
906 	curthread->t_dtrace_pc = 0;
907 	curthread->t_dtrace_npc = 0;
908 	curthread->t_dtrace_scrpc = 0;
909 	curthread->t_dtrace_astpc = 0;
910 #ifdef __amd64
911 	curthread->t_dtrace_regv = 0;
912 #endif
913 
914 	/*
915 	 * Treat a child created by a call to vfork(2) as if it were its
916 	 * parent. We know that there's only one thread of control in such a
917 	 * process: this one.
918 	 */
919 	while (p->p_flag & SVFORK) {
920 		p = p->p_parent;
921 	}
922 
923 	pid = p->p_pid;
924 	pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
925 	mutex_enter(pid_mtx);
926 	bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
927 
928 	/*
929 	 * Lookup the tracepoint that the process just hit.
930 	 */
931 	for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
932 		if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
933 		    tp->ftt_proc->ftpc_acount != 0)
934 			break;
935 	}
936 
937 	/*
938 	 * If we couldn't find a matching tracepoint, either a tracepoint has
939 	 * been inserted without using the pid<pid> ioctl interface (see
940 	 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
941 	 */
942 	if (tp == NULL) {
943 		mutex_exit(pid_mtx);
944 		return (-1);
945 	}
946 
947 	/*
948 	 * Set the program counter to the address of the traced instruction
949 	 * so that it looks right in ustack() output.
950 	 */
951 	rp->r_pc = pc;
952 
953 	if (tp->ftt_ids != NULL) {
954 		fasttrap_id_t *id;
955 
956 #ifdef __amd64
957 		if (p->p_model == DATAMODEL_LP64) {
958 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
959 				fasttrap_probe_t *probe = id->fti_probe;
960 
961 				if (id->fti_ptype == DTFTP_ENTRY) {
962 					/*
963 					 * We note that this was an entry
964 					 * probe to help ustack() find the
965 					 * first caller.
966 					 */
967 					cookie = dtrace_interrupt_disable();
968 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
969 					dtrace_probe(probe->ftp_id, rp->r_rdi,
970 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
971 					    rp->r_r8);
972 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
973 					dtrace_interrupt_enable(cookie);
974 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
975 					/*
976 					 * Note that in this case, we don't
977 					 * call dtrace_probe() since it's only
978 					 * an artificial probe meant to change
979 					 * the flow of control so that it
980 					 * encounters the true probe.
981 					 */
982 					is_enabled = 1;
983 				} else if (probe->ftp_argmap == NULL) {
984 					dtrace_probe(probe->ftp_id, rp->r_rdi,
985 					    rp->r_rsi, rp->r_rdx, rp->r_rcx,
986 					    rp->r_r8);
987 				} else {
988 					uintptr_t t[5];
989 
990 					fasttrap_usdt_args64(probe, rp,
991 					    sizeof (t) / sizeof (t[0]), t);
992 
993 					dtrace_probe(probe->ftp_id, t[0], t[1],
994 					    t[2], t[3], t[4]);
995 				}
996 			}
997 		} else {
998 #endif
999 			uintptr_t s0, s1, s2, s3, s4, s5;
1000 			uint32_t *stack = (uint32_t *)rp->r_sp;
1001 
1002 			/*
1003 			 * In 32-bit mode, all arguments are passed on the
1004 			 * stack. If this is a function entry probe, we need
1005 			 * to skip the first entry on the stack as it
1006 			 * represents the return address rather than a
1007 			 * parameter to the function.
1008 			 */
1009 			s0 = fasttrap_fuword32_noerr(&stack[0]);
1010 			s1 = fasttrap_fuword32_noerr(&stack[1]);
1011 			s2 = fasttrap_fuword32_noerr(&stack[2]);
1012 			s3 = fasttrap_fuword32_noerr(&stack[3]);
1013 			s4 = fasttrap_fuword32_noerr(&stack[4]);
1014 			s5 = fasttrap_fuword32_noerr(&stack[5]);
1015 
1016 			for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
1017 				fasttrap_probe_t *probe = id->fti_probe;
1018 
1019 				if (id->fti_ptype == DTFTP_ENTRY) {
1020 					/*
1021 					 * We note that this was an entry
1022 					 * probe to help ustack() find the
1023 					 * first caller.
1024 					 */
1025 					cookie = dtrace_interrupt_disable();
1026 					DTRACE_CPUFLAG_SET(CPU_DTRACE_ENTRY);
1027 					dtrace_probe(probe->ftp_id, s1, s2,
1028 					    s3, s4, s5);
1029 					DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_ENTRY);
1030 					dtrace_interrupt_enable(cookie);
1031 				} else if (id->fti_ptype == DTFTP_IS_ENABLED) {
1032 					/*
1033 					 * Note that in this case, we don't
1034 					 * call dtrace_probe() since it's only
1035 					 * an artificial probe meant to change
1036 					 * the flow of control so that it
1037 					 * encounters the true probe.
1038 					 */
1039 					is_enabled = 1;
1040 				} else if (probe->ftp_argmap == NULL) {
1041 					dtrace_probe(probe->ftp_id, s0, s1,
1042 					    s2, s3, s4);
1043 				} else {
1044 					uint32_t t[5];
1045 
1046 					fasttrap_usdt_args32(probe, rp,
1047 					    sizeof (t) / sizeof (t[0]), t);
1048 
1049 					dtrace_probe(probe->ftp_id, t[0], t[1],
1050 					    t[2], t[3], t[4]);
1051 				}
1052 			}
1053 #ifdef __amd64
1054 		}
1055 #endif
1056 	}
1057 
1058 	/*
1059 	 * We're about to do a bunch of work so we cache a local copy of
1060 	 * the tracepoint to emulate the instruction, and then find the
1061 	 * tracepoint again later if we need to light up any return probes.
1062 	 */
1063 	tp_local = *tp;
1064 	mutex_exit(pid_mtx);
1065 	tp = &tp_local;
1066 
1067 	/*
1068 	 * Set the program counter to appear as though the traced instruction
1069 	 * had completely executed. This ensures that fasttrap_getreg() will
1070 	 * report the expected value for REG_RIP.
1071 	 */
1072 	rp->r_pc = pc + tp->ftt_size;
1073 
1074 	/*
1075 	 * If there's an is-enabled probe connected to this tracepoint it
1076 	 * means that there was a 'xorl %eax, %eax' or 'xorq %rax, %rax'
1077 	 * instruction that was placed there by DTrace when the binary was
1078 	 * linked. As this probe is, in fact, enabled, we need to stuff 1
1079 	 * into %eax or %rax. Accordingly, we can bypass all the instruction
1080 	 * emulation logic since we know the inevitable result. It's possible
1081 	 * that a user could construct a scenario where the 'is-enabled'
1082 	 * probe was on some other instruction, but that would be a rather
1083 	 * exotic way to shoot oneself in the foot.
1084 	 */
1085 	if (is_enabled) {
1086 		rp->r_r0 = 1;
1087 		new_pc = rp->r_pc;
1088 		goto done;
1089 	}
1090 
1091 	/*
1092 	 * We emulate certain types of instructions to ensure correctness
1093 	 * (in the case of position dependent instructions) or optimize
1094 	 * common cases. The rest we have the thread execute back in user-
1095 	 * land.
1096 	 */
1097 	switch (tp->ftt_type) {
1098 	case FASTTRAP_T_RET:
1099 	case FASTTRAP_T_RET16:
1100 	{
1101 		uintptr_t dst;
1102 		uintptr_t addr;
1103 		int ret;
1104 
1105 		/*
1106 		 * We have to emulate _every_ facet of the behavior of a ret
1107 		 * instruction including what happens if the load from %esp
1108 		 * fails; in that case, we send a SIGSEGV.
1109 		 */
1110 #ifdef __amd64
1111 		if (p->p_model == DATAMODEL_NATIVE) {
1112 #endif
1113 			ret = fasttrap_fulword((void *)rp->r_sp, &dst);
1114 			addr = rp->r_sp + sizeof (uintptr_t);
1115 #ifdef __amd64
1116 		} else {
1117 			uint32_t dst32;
1118 			ret = fasttrap_fuword32((void *)rp->r_sp, &dst32);
1119 			dst = dst32;
1120 			addr = rp->r_sp + sizeof (uint32_t);
1121 		}
1122 #endif
1123 
1124 		if (ret == -1) {
1125 			fasttrap_sigsegv(p, curthread, rp->r_sp);
1126 			new_pc = pc;
1127 			break;
1128 		}
1129 
1130 		if (tp->ftt_type == FASTTRAP_T_RET16)
1131 			addr += tp->ftt_dest;
1132 
1133 		rp->r_sp = addr;
1134 		new_pc = dst;
1135 		break;
1136 	}
1137 
1138 	case FASTTRAP_T_JCC:
1139 	{
1140 		uint_t taken;
1141 
1142 		switch (tp->ftt_code) {
1143 		case FASTTRAP_JO:
1144 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) != 0;
1145 			break;
1146 		case FASTTRAP_JNO:
1147 			taken = (rp->r_ps & FASTTRAP_EFLAGS_OF) == 0;
1148 			break;
1149 		case FASTTRAP_JB:
1150 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0;
1151 			break;
1152 		case FASTTRAP_JAE:
1153 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0;
1154 			break;
1155 		case FASTTRAP_JE:
1156 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1157 			break;
1158 		case FASTTRAP_JNE:
1159 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1160 			break;
1161 		case FASTTRAP_JBE:
1162 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) != 0 ||
1163 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0;
1164 			break;
1165 		case FASTTRAP_JA:
1166 			taken = (rp->r_ps & FASTTRAP_EFLAGS_CF) == 0 &&
1167 			    (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0;
1168 			break;
1169 		case FASTTRAP_JS:
1170 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) != 0;
1171 			break;
1172 		case FASTTRAP_JNS:
1173 			taken = (rp->r_ps & FASTTRAP_EFLAGS_SF) == 0;
1174 			break;
1175 		case FASTTRAP_JP:
1176 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) != 0;
1177 			break;
1178 		case FASTTRAP_JNP:
1179 			taken = (rp->r_ps & FASTTRAP_EFLAGS_PF) == 0;
1180 			break;
1181 		case FASTTRAP_JL:
1182 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1183 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1184 			break;
1185 		case FASTTRAP_JGE:
1186 			taken = ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1187 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1188 			break;
1189 		case FASTTRAP_JLE:
1190 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 ||
1191 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) !=
1192 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1193 			break;
1194 		case FASTTRAP_JG:
1195 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1196 			    ((rp->r_ps & FASTTRAP_EFLAGS_SF) == 0) ==
1197 			    ((rp->r_ps & FASTTRAP_EFLAGS_OF) == 0);
1198 			break;
1199 
1200 		}
1201 
1202 		if (taken)
1203 			new_pc = tp->ftt_dest;
1204 		else
1205 			new_pc = pc + tp->ftt_size;
1206 		break;
1207 	}
1208 
1209 	case FASTTRAP_T_LOOP:
1210 	{
1211 		uint_t taken;
1212 #ifdef __amd64
1213 		greg_t cx = rp->r_rcx--;
1214 #else
1215 		greg_t cx = rp->r_ecx--;
1216 #endif
1217 
1218 		switch (tp->ftt_code) {
1219 		case FASTTRAP_LOOPNZ:
1220 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) == 0 &&
1221 			    cx != 0;
1222 			break;
1223 		case FASTTRAP_LOOPZ:
1224 			taken = (rp->r_ps & FASTTRAP_EFLAGS_ZF) != 0 &&
1225 			    cx != 0;
1226 			break;
1227 		case FASTTRAP_LOOP:
1228 			taken = (cx != 0);
1229 			break;
1230 		}
1231 
1232 		if (taken)
1233 			new_pc = tp->ftt_dest;
1234 		else
1235 			new_pc = pc + tp->ftt_size;
1236 		break;
1237 	}
1238 
1239 	case FASTTRAP_T_JCXZ:
1240 	{
1241 #ifdef __amd64
1242 		greg_t cx = rp->r_rcx;
1243 #else
1244 		greg_t cx = rp->r_ecx;
1245 #endif
1246 
1247 		if (cx == 0)
1248 			new_pc = tp->ftt_dest;
1249 		else
1250 			new_pc = pc + tp->ftt_size;
1251 		break;
1252 	}
1253 
1254 	case FASTTRAP_T_PUSHL_EBP:
1255 	{
1256 		int ret;
1257 		uintptr_t addr;
1258 #ifdef __amd64
1259 		if (p->p_model == DATAMODEL_NATIVE) {
1260 #endif
1261 			addr = rp->r_sp - sizeof (uintptr_t);
1262 			ret = fasttrap_sulword((void *)addr, rp->r_fp);
1263 #ifdef __amd64
1264 		} else {
1265 			addr = rp->r_sp - sizeof (uint32_t);
1266 			ret = fasttrap_suword32((void *)addr,
1267 			    (uint32_t)rp->r_fp);
1268 		}
1269 #endif
1270 
1271 		if (ret == -1) {
1272 			fasttrap_sigsegv(p, curthread, addr);
1273 			new_pc = pc;
1274 			break;
1275 		}
1276 
1277 		rp->r_sp = addr;
1278 		new_pc = pc + tp->ftt_size;
1279 		break;
1280 	}
1281 
1282 	case FASTTRAP_T_NOP:
1283 		new_pc = pc + tp->ftt_size;
1284 		break;
1285 
1286 	case FASTTRAP_T_JMP:
1287 	case FASTTRAP_T_CALL:
1288 		if (tp->ftt_code == 0) {
1289 			new_pc = tp->ftt_dest;
1290 		} else {
1291 			uintptr_t value, addr = tp->ftt_dest;
1292 
1293 			if (tp->ftt_base != FASTTRAP_NOREG)
1294 				addr += fasttrap_getreg(rp, tp->ftt_base);
1295 			if (tp->ftt_index != FASTTRAP_NOREG)
1296 				addr += fasttrap_getreg(rp, tp->ftt_index) <<
1297 				    tp->ftt_scale;
1298 
1299 			if (tp->ftt_code == 1) {
1300 				/*
1301 				 * If there's a segment prefix for this
1302 				 * instruction, we'll need to check permissions
1303 				 * and bounds on the given selector, and adjust
1304 				 * the address accordingly.
1305 				 */
1306 				if (tp->ftt_segment != FASTTRAP_SEG_NONE &&
1307 				    fasttrap_do_seg(tp, rp, &addr) != 0) {
1308 					fasttrap_sigsegv(p, curthread, addr);
1309 					new_pc = pc;
1310 					break;
1311 				}
1312 
1313 #ifdef __amd64
1314 				if (p->p_model == DATAMODEL_NATIVE) {
1315 #endif
1316 					if (fasttrap_fulword((void *)addr,
1317 					    &value) == -1) {
1318 						fasttrap_sigsegv(p, curthread,
1319 						    addr);
1320 						new_pc = pc;
1321 						break;
1322 					}
1323 					new_pc = value;
1324 #ifdef __amd64
1325 				} else {
1326 					uint32_t value32;
1327 					addr = (uintptr_t)(uint32_t)addr;
1328 					if (fasttrap_fuword32((void *)addr,
1329 					    &value32) == -1) {
1330 						fasttrap_sigsegv(p, curthread,
1331 						    addr);
1332 						new_pc = pc;
1333 						break;
1334 					}
1335 					new_pc = value32;
1336 				}
1337 #endif
1338 			} else {
1339 				new_pc = addr;
1340 			}
1341 		}
1342 
1343 		/*
1344 		 * If this is a call instruction, we need to push the return
1345 		 * address onto the stack. If this fails, we send the process
1346 		 * a SIGSEGV and reset the pc to emulate what would happen if
1347 		 * this instruction weren't traced.
1348 		 */
1349 		if (tp->ftt_type == FASTTRAP_T_CALL) {
1350 			int ret;
1351 			uintptr_t addr;
1352 #ifdef __amd64
1353 			if (p->p_model == DATAMODEL_NATIVE) {
1354 				addr = rp->r_sp - sizeof (uintptr_t);
1355 				ret = fasttrap_sulword((void *)addr,
1356 				    pc + tp->ftt_size);
1357 			} else {
1358 #endif
1359 				addr = rp->r_sp - sizeof (uint32_t);
1360 				ret = fasttrap_suword32((void *)addr,
1361 				    (uint32_t)(pc + tp->ftt_size));
1362 #ifdef __amd64
1363 			}
1364 #endif
1365 
1366 			if (ret == -1) {
1367 				fasttrap_sigsegv(p, curthread, addr);
1368 				new_pc = pc;
1369 				break;
1370 			}
1371 
1372 			rp->r_sp = addr;
1373 		}
1374 
1375 		break;
1376 
1377 	case FASTTRAP_T_COMMON:
1378 	{
1379 		uintptr_t addr;
1380 #if defined(__amd64)
1381 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 22];
1382 #else
1383 		uint8_t scratch[2 * FASTTRAP_MAX_INSTR_SIZE + 7];
1384 #endif
1385 		uint_t i = 0;
1386 		klwp_t *lwp = ttolwp(curthread);
1387 
1388 		/*
1389 		 * Compute the address of the ulwp_t and step over the
1390 		 * ul_self pointer. The method used to store the user-land
1391 		 * thread pointer is very different on 32- and 64-bit
1392 		 * kernels.
1393 		 */
1394 #if defined(__amd64)
1395 		if (p->p_model == DATAMODEL_LP64) {
1396 			addr = lwp->lwp_pcb.pcb_fsbase;
1397 			addr += sizeof (void *);
1398 		} else {
1399 			addr = lwp->lwp_pcb.pcb_gsbase;
1400 			addr += sizeof (caddr32_t);
1401 		}
1402 #else
1403 		addr = USEGD_GETBASE(&lwp->lwp_pcb.pcb_gsdesc);
1404 		addr += sizeof (void *);
1405 #endif
1406 
1407 		/*
1408 		 * Generic Instruction Tracing
1409 		 * ---------------------------
1410 		 *
1411 		 * This is the layout of the scratch space in the user-land
1412 		 * thread structure for our generated instructions.
1413 		 *
1414 		 *	32-bit mode			bytes
1415 		 *	------------------------	-----
1416 		 * a:	<original instruction>		<= 15
1417 		 *	jmp	<pc + tp->ftt_size>	    5
1418 		 * b:	<original instrction>		<= 15
1419 		 *	int	T_DTRACE_RET		    2
1420 		 *					-----
1421 		 *					<= 37
1422 		 *
1423 		 *	64-bit mode			bytes
1424 		 *	------------------------	-----
1425 		 * a:	<original instruction>		<= 15
1426 		 *	jmp	0(%rip)			    6
1427 		 *	<pc + tp->ftt_size>		    8
1428 		 * b:	<original instruction>		<= 15
1429 		 * 	int	T_DTRACE_RET		    2
1430 		 * 					-----
1431 		 * 					<= 46
1432 		 *
1433 		 * The %pc is set to a, and curthread->t_dtrace_astpc is set
1434 		 * to b. If we encounter a signal on the way out of the
1435 		 * kernel, trap() will set %pc to curthread->t_dtrace_astpc
1436 		 * so that we execute the original instruction and re-enter
1437 		 * the kernel rather than redirecting to the next instruction.
1438 		 *
1439 		 * If there are return probes (so we know that we're going to
1440 		 * need to reenter the kernel after executing the original
1441 		 * instruction), the scratch space will just contain the
1442 		 * original instruction followed by an interrupt -- the same
1443 		 * data as at b.
1444 		 *
1445 		 * %rip-relative Addressing
1446 		 * ------------------------
1447 		 *
1448 		 * There's a further complication in 64-bit mode due to %rip-
1449 		 * relative addressing. While this is clearly a beneficial
1450 		 * architectural decision for position independent code, it's
1451 		 * hard not to see it as a personal attack against the pid
1452 		 * provider since before there was a relatively small set of
1453 		 * instructions to emulate; with %rip-relative addressing,
1454 		 * almost every instruction can potentially depend on the
1455 		 * address at which it's executed. Rather than emulating
1456 		 * the broad spectrum of instructions that can now be
1457 		 * position dependent, we emulate jumps and others as in
1458 		 * 32-bit mode, and take a different tack for instructions
1459 		 * using %rip-relative addressing.
1460 		 *
1461 		 * For every instruction that uses the ModRM byte, the
1462 		 * in-kernel disassembler reports its location. We use the
1463 		 * ModRM byte to identify that an instruction uses
1464 		 * %rip-relative addressing and to see what other registers
1465 		 * the instruction uses. To emulate those instructions,
1466 		 * we modify the instruction to be %rax-relative rather than
1467 		 * %rip-relative (or %rcx-relative if the instruction uses
1468 		 * %rax; or %r8- or %r9-relative if the REX.B is present so
1469 		 * we don't have to rewrite the REX prefix). We then load
1470 		 * the value that %rip would have been into the scratch
1471 		 * register and generate an instruction to reset the scratch
1472 		 * register back to its original value. The instruction
1473 		 * sequence looks like this:
1474 		 *
1475 		 *	64-mode %rip-relative		bytes
1476 		 *	------------------------	-----
1477 		 * a:	<modified instruction>		<= 15
1478 		 *	movq	$<value>, %<scratch>	    6
1479 		 *	jmp	0(%rip)			    6
1480 		 *	<pc + tp->ftt_size>		    8
1481 		 * b:	<modified instruction>  	<= 15
1482 		 * 	int	T_DTRACE_RET		    2
1483 		 * 					-----
1484 		 *					   52
1485 		 *
1486 		 * We set curthread->t_dtrace_regv so that upon receiving
1487 		 * a signal we can reset the value of the scratch register.
1488 		 */
1489 
1490 		ASSERT(tp->ftt_size < FASTTRAP_MAX_INSTR_SIZE);
1491 
1492 		curthread->t_dtrace_scrpc = addr;
1493 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1494 		i += tp->ftt_size;
1495 
1496 #ifdef __amd64
1497 		if (tp->ftt_ripmode != 0) {
1498 			greg_t *reg;
1499 
1500 			ASSERT(p->p_model == DATAMODEL_LP64);
1501 			ASSERT(tp->ftt_ripmode &
1502 			    (FASTTRAP_RIP_1 | FASTTRAP_RIP_2));
1503 
1504 			/*
1505 			 * If this was a %rip-relative instruction, we change
1506 			 * it to be either a %rax- or %rcx-relative
1507 			 * instruction (depending on whether those registers
1508 			 * are used as another operand; or %r8- or %r9-
1509 			 * relative depending on the value of REX.B). We then
1510 			 * set that register and generate a movq instruction
1511 			 * to reset the value.
1512 			 */
1513 			if (tp->ftt_ripmode & FASTTRAP_RIP_X)
1514 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 1);
1515 			else
1516 				scratch[i++] = FASTTRAP_REX(1, 0, 0, 0);
1517 
1518 			if (tp->ftt_ripmode & FASTTRAP_RIP_1)
1519 				scratch[i++] = FASTTRAP_MOV_EAX;
1520 			else
1521 				scratch[i++] = FASTTRAP_MOV_ECX;
1522 
1523 			switch (tp->ftt_ripmode) {
1524 			case FASTTRAP_RIP_1:
1525 				reg = &rp->r_rax;
1526 				curthread->t_dtrace_reg = REG_RAX;
1527 				break;
1528 			case FASTTRAP_RIP_2:
1529 				reg = &rp->r_rcx;
1530 				curthread->t_dtrace_reg = REG_RCX;
1531 				break;
1532 			case FASTTRAP_RIP_1 | FASTTRAP_RIP_X:
1533 				reg = &rp->r_r8;
1534 				curthread->t_dtrace_reg = REG_R8;
1535 				break;
1536 			case FASTTRAP_RIP_2 | FASTTRAP_RIP_X:
1537 				reg = &rp->r_r9;
1538 				curthread->t_dtrace_reg = REG_R9;
1539 				break;
1540 			}
1541 
1542 			/* LINTED - alignment */
1543 			*(uint64_t *)&scratch[i] = *reg;
1544 			curthread->t_dtrace_regv = *reg;
1545 			*reg = pc + tp->ftt_size;
1546 			i += sizeof (uint64_t);
1547 		}
1548 #endif
1549 
1550 		/*
1551 		 * Generate the branch instruction to what would have
1552 		 * normally been the subsequent instruction. In 32-bit mode,
1553 		 * this is just a relative branch; in 64-bit mode this is a
1554 		 * %rip-relative branch that loads the 64-bit pc value
1555 		 * immediately after the jmp instruction.
1556 		 */
1557 #ifdef __amd64
1558 		if (p->p_model == DATAMODEL_LP64) {
1559 			scratch[i++] = FASTTRAP_GROUP5_OP;
1560 			scratch[i++] = FASTTRAP_MODRM(0, 4, 5);
1561 			/* LINTED - alignment */
1562 			*(uint32_t *)&scratch[i] = 0;
1563 			i += sizeof (uint32_t);
1564 			/* LINTED - alignment */
1565 			*(uint64_t *)&scratch[i] = pc + tp->ftt_size;
1566 			i += sizeof (uint64_t);
1567 		} else {
1568 #endif
1569 			/*
1570 			 * Set up the jmp to the next instruction; note that
1571 			 * the size of the traced instruction cancels out.
1572 			 */
1573 			scratch[i++] = FASTTRAP_JMP32;
1574 			/* LINTED - alignment */
1575 			*(uint32_t *)&scratch[i] = pc - addr - 5;
1576 			i += sizeof (uint32_t);
1577 #ifdef __amd64
1578 		}
1579 #endif
1580 
1581 		curthread->t_dtrace_astpc = addr + i;
1582 		bcopy(tp->ftt_instr, &scratch[i], tp->ftt_size);
1583 		i += tp->ftt_size;
1584 		scratch[i++] = FASTTRAP_INT;
1585 		scratch[i++] = T_DTRACE_RET;
1586 
1587 		ASSERT(i <= sizeof (scratch));
1588 
1589 		if (fasttrap_copyout(scratch, (char *)addr, i)) {
1590 			fasttrap_sigtrap(p, curthread, pc);
1591 			new_pc = pc;
1592 			break;
1593 		}
1594 
1595 		if (tp->ftt_retids != NULL) {
1596 			curthread->t_dtrace_step = 1;
1597 			curthread->t_dtrace_ret = 1;
1598 			new_pc = curthread->t_dtrace_astpc;
1599 		} else {
1600 			new_pc = curthread->t_dtrace_scrpc;
1601 		}
1602 
1603 		curthread->t_dtrace_pc = pc;
1604 		curthread->t_dtrace_npc = pc + tp->ftt_size;
1605 		curthread->t_dtrace_on = 1;
1606 		break;
1607 	}
1608 
1609 	default:
1610 		panic("fasttrap: mishandled an instruction");
1611 	}
1612 
1613 done:
1614 	/*
1615 	 * If there were no return probes when we first found the tracepoint,
1616 	 * we should feel no obligation to honor any return probes that were
1617 	 * subsequently enabled -- they'll just have to wait until the next
1618 	 * time around.
1619 	 */
1620 	if (tp->ftt_retids != NULL) {
1621 		/*
1622 		 * We need to wait until the results of the instruction are
1623 		 * apparent before invoking any return probes. If this
1624 		 * instruction was emulated we can just call
1625 		 * fasttrap_return_common(); if it needs to be executed, we
1626 		 * need to wait until the user thread returns to the kernel.
1627 		 */
1628 		if (tp->ftt_type != FASTTRAP_T_COMMON) {
1629 			/*
1630 			 * Set the program counter to the address of the traced
1631 			 * instruction so that it looks right in ustack()
1632 			 * output. We had previously set it to the end of the
1633 			 * instruction to simplify %rip-relative addressing.
1634 			 */
1635 			rp->r_pc = pc;
1636 
1637 			fasttrap_return_common(rp, pc, pid, new_pc);
1638 		} else {
1639 			ASSERT(curthread->t_dtrace_ret != 0);
1640 			ASSERT(curthread->t_dtrace_pc == pc);
1641 			ASSERT(curthread->t_dtrace_scrpc != 0);
1642 			ASSERT(new_pc == curthread->t_dtrace_astpc);
1643 		}
1644 	}
1645 
1646 	rp->r_pc = new_pc;
1647 
1648 	return (0);
1649 }
1650 
1651 int
1652 fasttrap_return_probe(struct regs *rp)
1653 {
1654 	proc_t *p = curproc;
1655 	uintptr_t pc = curthread->t_dtrace_pc;
1656 	uintptr_t npc = curthread->t_dtrace_npc;
1657 
1658 	curthread->t_dtrace_pc = 0;
1659 	curthread->t_dtrace_npc = 0;
1660 	curthread->t_dtrace_scrpc = 0;
1661 	curthread->t_dtrace_astpc = 0;
1662 
1663 	/*
1664 	 * Treat a child created by a call to vfork(2) as if it were its
1665 	 * parent. We know that there's only one thread of control in such a
1666 	 * process: this one.
1667 	 */
1668 	while (p->p_flag & SVFORK) {
1669 		p = p->p_parent;
1670 	}
1671 
1672 	/*
1673 	 * We set rp->r_pc to the address of the traced instruction so
1674 	 * that it appears to dtrace_probe() that we're on the original
1675 	 * instruction, and so that the user can't easily detect our
1676 	 * complex web of lies. dtrace_return_probe() (our caller)
1677 	 * will correctly set %pc after we return.
1678 	 */
1679 	rp->r_pc = pc;
1680 
1681 	fasttrap_return_common(rp, pc, p->p_pid, npc);
1682 
1683 	return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 uint64_t
1688 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1689     int aframes)
1690 {
1691 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 1, argno));
1692 }
1693 
1694 /*ARGSUSED*/
1695 uint64_t
1696 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
1697     int aframes)
1698 {
1699 	return (fasttrap_anarg(ttolwp(curthread)->lwp_regs, 0, argno));
1700 }
1701 
1702 static ulong_t
1703 fasttrap_getreg(struct regs *rp, uint_t reg)
1704 {
1705 #ifdef __amd64
1706 	switch (reg) {
1707 	case REG_R15:		return (rp->r_r15);
1708 	case REG_R14:		return (rp->r_r14);
1709 	case REG_R13:		return (rp->r_r13);
1710 	case REG_R12:		return (rp->r_r12);
1711 	case REG_R11:		return (rp->r_r11);
1712 	case REG_R10:		return (rp->r_r10);
1713 	case REG_R9:		return (rp->r_r9);
1714 	case REG_R8:		return (rp->r_r8);
1715 	case REG_RDI:		return (rp->r_rdi);
1716 	case REG_RSI:		return (rp->r_rsi);
1717 	case REG_RBP:		return (rp->r_rbp);
1718 	case REG_RBX:		return (rp->r_rbx);
1719 	case REG_RDX:		return (rp->r_rdx);
1720 	case REG_RCX:		return (rp->r_rcx);
1721 	case REG_RAX:		return (rp->r_rax);
1722 	case REG_TRAPNO:	return (rp->r_trapno);
1723 	case REG_ERR:		return (rp->r_err);
1724 	case REG_RIP:		return (rp->r_rip);
1725 	case REG_CS:		return (rp->r_cs);
1726 	case REG_RFL:		return (rp->r_rfl);
1727 	case REG_RSP:		return (rp->r_rsp);
1728 	case REG_SS:		return (rp->r_ss);
1729 	case REG_FS:		return (rp->r_fs);
1730 	case REG_GS:		return (rp->r_gs);
1731 	case REG_DS:		return (rp->r_ds);
1732 	case REG_ES:		return (rp->r_es);
1733 	case REG_FSBASE:	return (rdmsr(MSR_AMD_FSBASE));
1734 	case REG_GSBASE:	return (rdmsr(MSR_AMD_GSBASE));
1735 	}
1736 
1737 	panic("dtrace: illegal register constant");
1738 	/*NOTREACHED*/
1739 #else
1740 	if (reg >= _NGREG)
1741 		panic("dtrace: illegal register constant");
1742 
1743 	return (((greg_t *)&rp->r_gs)[reg]);
1744 #endif
1745 }
1746