1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 /* 37 * UNIX machine dependent virtual memory support. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/user.h> 44 #include <sys/proc.h> 45 #include <sys/kmem.h> 46 #include <sys/vmem.h> 47 #include <sys/buf.h> 48 #include <sys/cpuvar.h> 49 #include <sys/lgrp.h> 50 #include <sys/disp.h> 51 #include <sys/vm.h> 52 #include <sys/mman.h> 53 #include <sys/vnode.h> 54 #include <sys/cred.h> 55 #include <sys/exec.h> 56 #include <sys/exechdr.h> 57 #include <sys/debug.h> 58 #include <sys/vmsystm.h> 59 60 #include <vm/hat.h> 61 #include <vm/as.h> 62 #include <vm/seg.h> 63 #include <vm/seg_kp.h> 64 #include <vm/seg_vn.h> 65 #include <vm/page.h> 66 #include <vm/seg_kmem.h> 67 #include <vm/seg_kpm.h> 68 #include <vm/vm_dep.h> 69 70 #include <sys/cpu.h> 71 #include <sys/vm_machparam.h> 72 #include <sys/memlist.h> 73 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 74 #include <vm/hat_i86.h> 75 #include <sys/x86_archext.h> 76 #include <sys/elf_386.h> 77 #include <sys/cmn_err.h> 78 #include <sys/archsystm.h> 79 #include <sys/machsystm.h> 80 81 #include <sys/vtrace.h> 82 #include <sys/ddidmareq.h> 83 #include <sys/promif.h> 84 #include <sys/memnode.h> 85 #include <sys/stack.h> 86 #include <util/qsort.h> 87 #include <sys/taskq.h> 88 89 #ifdef __xpv 90 91 #include <sys/hypervisor.h> 92 #include <sys/xen_mmu.h> 93 #include <sys/balloon_impl.h> 94 95 /* 96 * domain 0 pages usable for DMA are kept pre-allocated and kept in 97 * distinct lists, ordered by increasing mfn. 98 */ 99 static kmutex_t io_pool_lock; 100 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 101 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 102 static long io_pool_cnt; 103 static long io_pool_cnt_max = 0; 104 #define DEFAULT_IO_POOL_MIN 128 105 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 106 static long io_pool_cnt_lowater = 0; 107 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 108 static long io_pool_shrinks; /* how many times did we really shrink */ 109 static long io_pool_grows; /* how many times did we grow */ 110 static mfn_t start_mfn = 1; 111 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 112 113 static int create_contig_pfnlist(uint_t); 114 115 /* 116 * percentage of phys mem to hold in the i/o pool 117 */ 118 #define DEFAULT_IO_POOL_PCT 2 119 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 120 static void page_io_pool_sub(page_t **, page_t *, page_t *); 121 122 #endif /* __xpv */ 123 124 uint_t vac_colors = 1; 125 126 int largepagesupport = 0; 127 extern uint_t page_create_new; 128 extern uint_t page_create_exists; 129 extern uint_t page_create_putbacks; 130 extern uint_t page_create_putbacks; 131 /* 132 * Allow users to disable the kernel's use of SSE. 133 */ 134 extern int use_sse_pagecopy, use_sse_pagezero; 135 136 /* 137 * combined memory ranges from mnode and memranges[] to manage single 138 * mnode/mtype dimension in the page lists. 139 */ 140 typedef struct { 141 pfn_t mnr_pfnlo; 142 pfn_t mnr_pfnhi; 143 int mnr_mnode; 144 int mnr_memrange; /* index into memranges[] */ 145 /* maintain page list stats */ 146 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 147 pgcnt_t mnr_mt_flpgcnt; /* free list cnt - small pages */ 148 pgcnt_t mnr_mt_lgpgcnt; /* free list cnt - large pages */ 149 #ifdef DEBUG 150 struct mnr_mts { /* mnode/mtype szc stats */ 151 pgcnt_t mnr_mts_pgcnt; 152 int mnr_mts_colors; 153 pgcnt_t *mnr_mtsc_pgcnt; 154 } *mnr_mts; 155 #endif 156 } mnoderange_t; 157 158 #define MEMRANGEHI(mtype) \ 159 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 160 #define MEMRANGELO(mtype) (memranges[mtype]) 161 162 #define MTYPE_FREEMEM(mt) \ 163 (mnoderanges[mt].mnr_mt_clpgcnt + \ 164 mnoderanges[mt].mnr_mt_flpgcnt + \ 165 mnoderanges[mt].mnr_mt_lgpgcnt) 166 167 /* 168 * As the PC architecture evolved memory up was clumped into several 169 * ranges for various historical I/O devices to do DMA. 170 * < 16Meg - ISA bus 171 * < 2Gig - ??? 172 * < 4Gig - PCI bus or drivers that don't understand PAE mode 173 * 174 * These are listed in reverse order, so that we can skip over unused 175 * ranges on machines with small memories. 176 * 177 * For now under the Hypervisor, we'll only ever have one memrange. 178 */ 179 #define PFN_4GIG 0x100000 180 #define PFN_16MEG 0x1000 181 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 182 PFN_4GIG, /* pfn range for 4G and above */ 183 0x80000, /* pfn range for 2G-4G */ 184 PFN_16MEG, /* pfn range for 16M-2G */ 185 0x00000, /* pfn range for 0-16M */ 186 }; 187 pfn_t *memranges = &arch_memranges[0]; 188 int nranges = NUM_MEM_RANGES; 189 190 /* 191 * This combines mem_node_config and memranges into one data 192 * structure to be used for page list management. 193 */ 194 mnoderange_t *mnoderanges; 195 int mnoderangecnt; 196 int mtype4g; 197 198 /* 199 * 4g memory management variables for systems with more than 4g of memory: 200 * 201 * physical memory below 4g is required for 32bit dma devices and, currently, 202 * for kmem memory. On systems with more than 4g of memory, the pool of memory 203 * below 4g can be depleted without any paging activity given that there is 204 * likely to be sufficient memory above 4g. 205 * 206 * physmax4g is set true if the largest pfn is over 4g. The rest of the 207 * 4g memory management code is enabled only when physmax4g is true. 208 * 209 * maxmem4g is the count of the maximum number of pages on the page lists 210 * with physical addresses below 4g. It can be a lot less then 4g given that 211 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 212 * agp aperture etc. 213 * 214 * freemem4g maintains the count of the number of available pages on the 215 * page lists with physical addresses below 4g. 216 * 217 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 218 * 6% (desfree4gshift = 4) of maxmem4g. 219 * 220 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 221 * and the amount of physical memory above 4g is greater than freemem4g. 222 * In this case, page_get_* routines will restrict below 4g allocations 223 * for requests that don't specifically require it. 224 */ 225 226 #define LOTSFREE4G (maxmem4g >> lotsfree4gshift) 227 #define DESFREE4G (maxmem4g >> desfree4gshift) 228 229 #define RESTRICT4G_ALLOC \ 230 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 231 232 static pgcnt_t maxmem4g; 233 static pgcnt_t freemem4g; 234 static int physmax4g; 235 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 236 static int lotsfree4gshift = 3; 237 238 /* 239 * 16m memory management: 240 * 241 * reserve some amount of physical memory below 16m for legacy devices. 242 * 243 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 244 * 16m or if the 16m pool drops below DESFREE16M. 245 * 246 * In this case, general page allocations via page_get_{free,cache}list 247 * routines will be restricted from allocating from the 16m pool. Allocations 248 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 249 * are not restricted. 250 */ 251 252 #define FREEMEM16M MTYPE_FREEMEM(0) 253 #define DESFREE16M desfree16m 254 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 255 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 256 ((freemem >= (FREEMEM16M)) || \ 257 (FREEMEM16M < (DESFREE16M + pgcnt)))) 258 259 static pgcnt_t desfree16m = 0x380; 260 261 /* 262 * This can be patched via /etc/system to allow old non-PAE aware device 263 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 264 */ 265 int restricted_kmemalloc = 0; 266 267 #ifdef VM_STATS 268 struct { 269 ulong_t pga_alloc; 270 ulong_t pga_notfullrange; 271 ulong_t pga_nulldmaattr; 272 ulong_t pga_allocok; 273 ulong_t pga_allocfailed; 274 ulong_t pgma_alloc; 275 ulong_t pgma_allocok; 276 ulong_t pgma_allocfailed; 277 ulong_t pgma_allocempty; 278 } pga_vmstats; 279 #endif 280 281 uint_t mmu_page_sizes; 282 283 /* How many page sizes the users can see */ 284 uint_t mmu_exported_page_sizes; 285 286 /* page sizes that legacy applications can see */ 287 uint_t mmu_legacy_page_sizes; 288 289 /* 290 * Number of pages in 1 GB. Don't enable automatic large pages if we have 291 * fewer than this many pages. 292 */ 293 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 294 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 295 296 /* 297 * Maximum and default segment size tunables for user private 298 * and shared anon memory, and user text and initialized data. 299 * These can be patched via /etc/system to allow large pages 300 * to be used for mapping application private and shared anon memory. 301 */ 302 size_t mcntl0_lpsize = MMU_PAGESIZE; 303 size_t max_uheap_lpsize = MMU_PAGESIZE; 304 size_t default_uheap_lpsize = MMU_PAGESIZE; 305 size_t max_ustack_lpsize = MMU_PAGESIZE; 306 size_t default_ustack_lpsize = MMU_PAGESIZE; 307 size_t max_privmap_lpsize = MMU_PAGESIZE; 308 size_t max_uidata_lpsize = MMU_PAGESIZE; 309 size_t max_utext_lpsize = MMU_PAGESIZE; 310 size_t max_shm_lpsize = MMU_PAGESIZE; 311 312 313 /* 314 * initialized by page_coloring_init(). 315 */ 316 uint_t page_colors; 317 uint_t page_colors_mask; 318 uint_t page_coloring_shift; 319 int cpu_page_colors; 320 static uint_t l2_colors; 321 322 /* 323 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 324 * and page_colors are calculated from the l2 cache n-way set size. Within a 325 * mnode range, the page freelist and cachelist are hashed into bins based on 326 * color. This makes it easier to search for a page within a specific memory 327 * range. 328 */ 329 #define PAGE_COLORS_MIN 16 330 331 page_t ****page_freelists; 332 page_t ***page_cachelists; 333 334 335 /* 336 * Used by page layer to know about page sizes 337 */ 338 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 339 340 kmutex_t *fpc_mutex[NPC_MUTEX]; 341 kmutex_t *cpc_mutex[NPC_MUTEX]; 342 343 /* 344 * Only let one thread at a time try to coalesce large pages, to 345 * prevent them from working against each other. 346 */ 347 static kmutex_t contig_lock; 348 #define CONTIG_LOCK() mutex_enter(&contig_lock); 349 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 350 351 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 352 353 /* 354 * Return the optimum page size for a given mapping 355 */ 356 /*ARGSUSED*/ 357 size_t 358 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 359 { 360 level_t l = 0; 361 size_t pgsz = MMU_PAGESIZE; 362 size_t max_lpsize; 363 uint_t mszc; 364 365 ASSERT(maptype != MAPPGSZ_VA); 366 367 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 368 return (MMU_PAGESIZE); 369 } 370 371 switch (maptype) { 372 case MAPPGSZ_HEAP: 373 case MAPPGSZ_STK: 374 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 375 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 376 if (max_lpsize == MMU_PAGESIZE) { 377 return (MMU_PAGESIZE); 378 } 379 if (len == 0) { 380 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 381 p->p_brksize - p->p_bssbase : p->p_stksize; 382 } 383 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 384 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 385 386 /* 387 * use the pages size that best fits len 388 */ 389 for (l = mmu.umax_page_level; l > 0; --l) { 390 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 391 continue; 392 } else { 393 pgsz = LEVEL_SIZE(l); 394 } 395 break; 396 } 397 398 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 399 p->p_stkpageszc); 400 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 401 pgsz = hw_page_array[mszc].hp_size; 402 } 403 return (pgsz); 404 405 case MAPPGSZ_ISM: 406 for (l = mmu.umax_page_level; l > 0; --l) { 407 if (len >= LEVEL_SIZE(l)) 408 return (LEVEL_SIZE(l)); 409 } 410 return (LEVEL_SIZE(0)); 411 } 412 return (pgsz); 413 } 414 415 static uint_t 416 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 417 size_t min_physmem) 418 { 419 caddr_t eaddr = addr + size; 420 uint_t szcvec = 0; 421 caddr_t raddr; 422 caddr_t readdr; 423 size_t pgsz; 424 int i; 425 426 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 427 return (0); 428 } 429 430 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 431 pgsz = page_get_pagesize(i); 432 if (pgsz > max_lpsize) { 433 continue; 434 } 435 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 436 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 437 if (raddr < addr || raddr >= readdr) { 438 continue; 439 } 440 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 441 continue; 442 } 443 /* 444 * Set szcvec to the remaining page sizes. 445 */ 446 szcvec = ((1 << (i + 1)) - 1) & ~1; 447 break; 448 } 449 return (szcvec); 450 } 451 452 /* 453 * Return a bit vector of large page size codes that 454 * can be used to map [addr, addr + len) region. 455 */ 456 /*ARGSUSED*/ 457 uint_t 458 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 459 int memcntl) 460 { 461 size_t max_lpsize = mcntl0_lpsize; 462 463 if (mmu.max_page_level == 0) 464 return (0); 465 466 if (flags & MAP_TEXT) { 467 if (!memcntl) 468 max_lpsize = max_utext_lpsize; 469 return (map_szcvec(addr, size, off, max_lpsize, 470 shm_lpg_min_physmem)); 471 472 } else if (flags & MAP_INITDATA) { 473 if (!memcntl) 474 max_lpsize = max_uidata_lpsize; 475 return (map_szcvec(addr, size, off, max_lpsize, 476 privm_lpg_min_physmem)); 477 478 } else if (type == MAPPGSZC_SHM) { 479 if (!memcntl) 480 max_lpsize = max_shm_lpsize; 481 return (map_szcvec(addr, size, off, max_lpsize, 482 shm_lpg_min_physmem)); 483 484 } else if (type == MAPPGSZC_HEAP) { 485 if (!memcntl) 486 max_lpsize = max_uheap_lpsize; 487 return (map_szcvec(addr, size, off, max_lpsize, 488 privm_lpg_min_physmem)); 489 490 } else if (type == MAPPGSZC_STACK) { 491 if (!memcntl) 492 max_lpsize = max_ustack_lpsize; 493 return (map_szcvec(addr, size, off, max_lpsize, 494 privm_lpg_min_physmem)); 495 496 } else { 497 if (!memcntl) 498 max_lpsize = max_privmap_lpsize; 499 return (map_szcvec(addr, size, off, max_lpsize, 500 privm_lpg_min_physmem)); 501 } 502 } 503 504 /* 505 * Handle a pagefault. 506 */ 507 faultcode_t 508 pagefault( 509 caddr_t addr, 510 enum fault_type type, 511 enum seg_rw rw, 512 int iskernel) 513 { 514 struct as *as; 515 struct hat *hat; 516 struct proc *p; 517 kthread_t *t; 518 faultcode_t res; 519 caddr_t base; 520 size_t len; 521 int err; 522 int mapped_red; 523 uintptr_t ea; 524 525 ASSERT_STACK_ALIGNED(); 526 527 if (INVALID_VADDR(addr)) 528 return (FC_NOMAP); 529 530 mapped_red = segkp_map_red(); 531 532 if (iskernel) { 533 as = &kas; 534 hat = as->a_hat; 535 } else { 536 t = curthread; 537 p = ttoproc(t); 538 as = p->p_as; 539 hat = as->a_hat; 540 } 541 542 /* 543 * Dispatch pagefault. 544 */ 545 res = as_fault(hat, as, addr, 1, type, rw); 546 547 /* 548 * If this isn't a potential unmapped hole in the user's 549 * UNIX data or stack segments, just return status info. 550 */ 551 if (res != FC_NOMAP || iskernel) 552 goto out; 553 554 /* 555 * Check to see if we happened to faulted on a currently unmapped 556 * part of the UNIX data or stack segments. If so, create a zfod 557 * mapping there and then try calling the fault routine again. 558 */ 559 base = p->p_brkbase; 560 len = p->p_brksize; 561 562 if (addr < base || addr >= base + len) { /* data seg? */ 563 base = (caddr_t)p->p_usrstack - p->p_stksize; 564 len = p->p_stksize; 565 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 566 /* not in either UNIX data or stack segments */ 567 res = FC_NOMAP; 568 goto out; 569 } 570 } 571 572 /* 573 * the rest of this function implements a 3.X 4.X 5.X compatibility 574 * This code is probably not needed anymore 575 */ 576 if (p->p_model == DATAMODEL_ILP32) { 577 578 /* expand the gap to the page boundaries on each side */ 579 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 580 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 581 len = ea - (uintptr_t)base; 582 583 as_rangelock(as); 584 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 585 0) { 586 err = as_map(as, base, len, segvn_create, zfod_argsp); 587 as_rangeunlock(as); 588 if (err) { 589 res = FC_MAKE_ERR(err); 590 goto out; 591 } 592 } else { 593 /* 594 * This page is already mapped by another thread after 595 * we returned from as_fault() above. We just fall 596 * through as_fault() below. 597 */ 598 as_rangeunlock(as); 599 } 600 601 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 602 } 603 604 out: 605 if (mapped_red) 606 segkp_unmap_red(); 607 608 return (res); 609 } 610 611 void 612 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 613 { 614 struct proc *p = curproc; 615 caddr_t userlimit = (flags & _MAP_LOW32) ? 616 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 617 618 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 619 } 620 621 /*ARGSUSED*/ 622 int 623 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 624 { 625 return (0); 626 } 627 628 /* 629 * map_addr_proc() is the routine called when the system is to 630 * choose an address for the user. We will pick an address 631 * range which is the highest available below userlimit. 632 * 633 * addrp is a value/result parameter. 634 * On input it is a hint from the user to be used in a completely 635 * machine dependent fashion. We decide to completely ignore this hint. 636 * 637 * On output it is NULL if no address can be found in the current 638 * processes address space or else an address that is currently 639 * not mapped for len bytes with a page of red zone on either side. 640 * 641 * align is not needed on x86 (it's for viturally addressed caches) 642 */ 643 /*ARGSUSED*/ 644 void 645 map_addr_proc( 646 caddr_t *addrp, 647 size_t len, 648 offset_t off, 649 int vacalign, 650 caddr_t userlimit, 651 struct proc *p, 652 uint_t flags) 653 { 654 struct as *as = p->p_as; 655 caddr_t addr; 656 caddr_t base; 657 size_t slen; 658 size_t align_amount; 659 660 ASSERT32(userlimit == as->a_userlimit); 661 662 base = p->p_brkbase; 663 #if defined(__amd64) 664 /* 665 * XX64 Yes, this needs more work. 666 */ 667 if (p->p_model == DATAMODEL_NATIVE) { 668 if (userlimit < as->a_userlimit) { 669 /* 670 * This happens when a program wants to map 671 * something in a range that's accessible to a 672 * program in a smaller address space. For example, 673 * a 64-bit program calling mmap32(2) to guarantee 674 * that the returned address is below 4Gbytes. 675 */ 676 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 677 678 if (userlimit > base) 679 slen = userlimit - base; 680 else { 681 *addrp = NULL; 682 return; 683 } 684 } else { 685 /* 686 * XX64 This layout is probably wrong .. but in 687 * the event we make the amd64 address space look 688 * like sparcv9 i.e. with the stack -above- the 689 * heap, this bit of code might even be correct. 690 */ 691 slen = p->p_usrstack - base - 692 (((size_t)rctl_enforced_value( 693 rctlproc_legacy[RLIMIT_STACK], 694 p->p_rctls, p) + PAGEOFFSET) & PAGEMASK); 695 } 696 } else 697 #endif 698 slen = userlimit - base; 699 700 len = (len + PAGEOFFSET) & PAGEMASK; 701 702 /* 703 * Redzone for each side of the request. This is done to leave 704 * one page unmapped between segments. This is not required, but 705 * it's useful for the user because if their program strays across 706 * a segment boundary, it will catch a fault immediately making 707 * debugging a little easier. 708 */ 709 len += 2 * MMU_PAGESIZE; 710 711 /* 712 * figure out what the alignment should be 713 * 714 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 715 */ 716 if (len <= ELF_386_MAXPGSZ) { 717 /* 718 * Align virtual addresses to ensure that ELF shared libraries 719 * are mapped with the appropriate alignment constraints by 720 * the run-time linker. 721 */ 722 align_amount = ELF_386_MAXPGSZ; 723 } else { 724 int l = mmu.umax_page_level; 725 726 while (l && len < LEVEL_SIZE(l)) 727 --l; 728 729 align_amount = LEVEL_SIZE(l); 730 } 731 732 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 733 align_amount = (uintptr_t)*addrp; 734 735 len += align_amount; 736 737 /* 738 * Look for a large enough hole starting below userlimit. 739 * After finding it, use the upper part. Addition of PAGESIZE 740 * is for the redzone as described above. 741 */ 742 if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) { 743 caddr_t as_addr; 744 745 addr = base + slen - len + MMU_PAGESIZE; 746 as_addr = addr; 747 /* 748 * Round address DOWN to the alignment amount, 749 * add the offset, and if this address is less 750 * than the original address, add alignment amount. 751 */ 752 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 753 addr += (uintptr_t)(off & (align_amount - 1)); 754 if (addr < as_addr) 755 addr += align_amount; 756 757 ASSERT(addr <= (as_addr + align_amount)); 758 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 759 ((uintptr_t)(off & (align_amount - 1)))); 760 *addrp = addr; 761 } else { 762 *addrp = NULL; /* no more virtual space */ 763 } 764 } 765 766 /* 767 * Determine whether [base, base+len] contains a valid range of 768 * addresses at least minlen long. base and len are adjusted if 769 * required to provide a valid range. 770 */ 771 /*ARGSUSED3*/ 772 int 773 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 774 { 775 uintptr_t hi, lo; 776 777 lo = (uintptr_t)*basep; 778 hi = lo + *lenp; 779 780 /* 781 * If hi rolled over the top, try cutting back. 782 */ 783 if (hi < lo) { 784 if (0 - lo + hi < minlen) 785 return (0); 786 if (0 - lo < minlen) 787 return (0); 788 *lenp = 0 - lo; 789 } else if (hi - lo < minlen) { 790 return (0); 791 } 792 #if defined(__amd64) 793 /* 794 * Deal with a possible hole in the address range between 795 * hole_start and hole_end that should never be mapped. 796 */ 797 if (lo < hole_start) { 798 if (hi > hole_start) { 799 if (hi < hole_end) { 800 hi = hole_start; 801 } else { 802 /* lo < hole_start && hi >= hole_end */ 803 if (dir == AH_LO) { 804 /* 805 * prefer lowest range 806 */ 807 if (hole_start - lo >= minlen) 808 hi = hole_start; 809 else if (hi - hole_end >= minlen) 810 lo = hole_end; 811 else 812 return (0); 813 } else { 814 /* 815 * prefer highest range 816 */ 817 if (hi - hole_end >= minlen) 818 lo = hole_end; 819 else if (hole_start - lo >= minlen) 820 hi = hole_start; 821 else 822 return (0); 823 } 824 } 825 } 826 } else { 827 /* lo >= hole_start */ 828 if (hi < hole_end) 829 return (0); 830 if (lo < hole_end) 831 lo = hole_end; 832 } 833 834 if (hi - lo < minlen) 835 return (0); 836 837 *basep = (caddr_t)lo; 838 *lenp = hi - lo; 839 #endif 840 return (1); 841 } 842 843 /* 844 * Determine whether [addr, addr+len] are valid user addresses. 845 */ 846 /*ARGSUSED*/ 847 int 848 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 849 caddr_t userlimit) 850 { 851 caddr_t eaddr = addr + len; 852 853 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 854 return (RANGE_BADADDR); 855 856 #if defined(__amd64) 857 /* 858 * Check for the VA hole 859 */ 860 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 861 return (RANGE_BADADDR); 862 #endif 863 864 return (RANGE_OKAY); 865 } 866 867 /* 868 * Return 1 if the page frame is onboard memory, else 0. 869 */ 870 int 871 pf_is_memory(pfn_t pf) 872 { 873 if (pfn_is_foreign(pf)) 874 return (0); 875 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 876 } 877 878 /* 879 * return the memrange containing pfn 880 */ 881 int 882 memrange_num(pfn_t pfn) 883 { 884 int n; 885 886 for (n = 0; n < nranges - 1; ++n) { 887 if (pfn >= memranges[n]) 888 break; 889 } 890 return (n); 891 } 892 893 /* 894 * return the mnoderange containing pfn 895 */ 896 /*ARGSUSED*/ 897 int 898 pfn_2_mtype(pfn_t pfn) 899 { 900 #if defined(__xpv) 901 return (0); 902 #else 903 int n; 904 905 for (n = mnoderangecnt - 1; n >= 0; n--) { 906 if (pfn >= mnoderanges[n].mnr_pfnlo) { 907 break; 908 } 909 } 910 return (n); 911 #endif 912 } 913 914 #if !defined(__xpv) 915 /* 916 * is_contigpage_free: 917 * returns a page list of contiguous pages. It minimally has to return 918 * minctg pages. Caller determines minctg based on the scatter-gather 919 * list length. 920 * 921 * pfnp is set to the next page frame to search on return. 922 */ 923 static page_t * 924 is_contigpage_free( 925 pfn_t *pfnp, 926 pgcnt_t *pgcnt, 927 pgcnt_t minctg, 928 uint64_t pfnseg, 929 int iolock) 930 { 931 int i = 0; 932 pfn_t pfn = *pfnp; 933 page_t *pp; 934 page_t *plist = NULL; 935 936 /* 937 * fail if pfn + minctg crosses a segment boundary. 938 * Adjust for next starting pfn to begin at segment boundary. 939 */ 940 941 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 942 *pfnp = roundup(*pfnp, pfnseg + 1); 943 return (NULL); 944 } 945 946 do { 947 retry: 948 pp = page_numtopp_nolock(pfn + i); 949 if ((pp == NULL) || 950 (page_trylock(pp, SE_EXCL) == 0)) { 951 (*pfnp)++; 952 break; 953 } 954 if (page_pptonum(pp) != pfn + i) { 955 page_unlock(pp); 956 goto retry; 957 } 958 959 if (!(PP_ISFREE(pp))) { 960 page_unlock(pp); 961 (*pfnp)++; 962 break; 963 } 964 965 if (!PP_ISAGED(pp)) { 966 page_list_sub(pp, PG_CACHE_LIST); 967 page_hashout(pp, (kmutex_t *)NULL); 968 } else { 969 page_list_sub(pp, PG_FREE_LIST); 970 } 971 972 if (iolock) 973 page_io_lock(pp); 974 page_list_concat(&plist, &pp); 975 976 /* 977 * exit loop when pgcnt satisfied or segment boundary reached. 978 */ 979 980 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 981 982 *pfnp += i; /* set to next pfn to search */ 983 984 if (i >= minctg) { 985 *pgcnt -= i; 986 return (plist); 987 } 988 989 /* 990 * failure: minctg not satisfied. 991 * 992 * if next request crosses segment boundary, set next pfn 993 * to search from the segment boundary. 994 */ 995 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 996 *pfnp = roundup(*pfnp, pfnseg + 1); 997 998 /* clean up any pages already allocated */ 999 1000 while (plist) { 1001 pp = plist; 1002 page_sub(&plist, pp); 1003 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1004 if (iolock) 1005 page_io_unlock(pp); 1006 page_unlock(pp); 1007 } 1008 1009 return (NULL); 1010 } 1011 #endif /* !__xpv */ 1012 1013 /* 1014 * verify that pages being returned from allocator have correct DMA attribute 1015 */ 1016 #ifndef DEBUG 1017 #define check_dma(a, b, c) (0) 1018 #else 1019 static void 1020 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1021 { 1022 if (dma_attr == NULL) 1023 return; 1024 1025 while (cnt-- > 0) { 1026 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1027 dma_attr->dma_attr_addr_lo) 1028 panic("PFN (pp=%p) below dma_attr_addr_lo", pp); 1029 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1030 dma_attr->dma_attr_addr_hi) 1031 panic("PFN (pp=%p) above dma_attr_addr_hi", pp); 1032 pp = pp->p_next; 1033 } 1034 } 1035 #endif 1036 1037 #if !defined(__xpv) 1038 static page_t * 1039 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1040 { 1041 pfn_t pfn; 1042 int sgllen; 1043 uint64_t pfnseg; 1044 pgcnt_t minctg; 1045 page_t *pplist = NULL, *plist; 1046 uint64_t lo, hi; 1047 pgcnt_t pfnalign = 0; 1048 static pfn_t startpfn; 1049 static pgcnt_t lastctgcnt; 1050 uintptr_t align; 1051 1052 CONTIG_LOCK(); 1053 1054 if (mattr) { 1055 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1056 hi = mmu_btop(mattr->dma_attr_addr_hi); 1057 if (hi >= physmax) 1058 hi = physmax - 1; 1059 sgllen = mattr->dma_attr_sgllen; 1060 pfnseg = mmu_btop(mattr->dma_attr_seg); 1061 1062 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1063 if (align > MMU_PAGESIZE) 1064 pfnalign = mmu_btop(align); 1065 1066 /* 1067 * in order to satisfy the request, must minimally 1068 * acquire minctg contiguous pages 1069 */ 1070 minctg = howmany(*pgcnt, sgllen); 1071 1072 ASSERT(hi >= lo); 1073 1074 /* 1075 * start from where last searched if the minctg >= lastctgcnt 1076 */ 1077 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1078 startpfn = lo; 1079 } else { 1080 hi = physmax - 1; 1081 lo = 0; 1082 sgllen = 1; 1083 pfnseg = mmu.highest_pfn; 1084 minctg = *pgcnt; 1085 1086 if (minctg < lastctgcnt) 1087 startpfn = lo; 1088 } 1089 lastctgcnt = minctg; 1090 1091 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1092 1093 /* conserve 16m memory - start search above 16m when possible */ 1094 if (hi > PFN_16M && startpfn < PFN_16M) 1095 startpfn = PFN_16M; 1096 1097 pfn = startpfn; 1098 if (pfnalign) 1099 pfn = P2ROUNDUP(pfn, pfnalign); 1100 1101 while (pfn + minctg - 1 <= hi) { 1102 1103 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1104 if (plist) { 1105 page_list_concat(&pplist, &plist); 1106 sgllen--; 1107 /* 1108 * return when contig pages no longer needed 1109 */ 1110 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1111 startpfn = pfn; 1112 CONTIG_UNLOCK(); 1113 check_dma(mattr, pplist, *pgcnt); 1114 return (pplist); 1115 } 1116 minctg = howmany(*pgcnt, sgllen); 1117 } 1118 if (pfnalign) 1119 pfn = P2ROUNDUP(pfn, pfnalign); 1120 } 1121 1122 /* cannot find contig pages in specified range */ 1123 if (startpfn == lo) { 1124 CONTIG_UNLOCK(); 1125 return (NULL); 1126 } 1127 1128 /* did not start with lo previously */ 1129 pfn = lo; 1130 if (pfnalign) 1131 pfn = P2ROUNDUP(pfn, pfnalign); 1132 1133 /* allow search to go above startpfn */ 1134 while (pfn < startpfn) { 1135 1136 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1137 if (plist != NULL) { 1138 1139 page_list_concat(&pplist, &plist); 1140 sgllen--; 1141 1142 /* 1143 * return when contig pages no longer needed 1144 */ 1145 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1146 startpfn = pfn; 1147 CONTIG_UNLOCK(); 1148 check_dma(mattr, pplist, *pgcnt); 1149 return (pplist); 1150 } 1151 minctg = howmany(*pgcnt, sgllen); 1152 } 1153 if (pfnalign) 1154 pfn = P2ROUNDUP(pfn, pfnalign); 1155 } 1156 CONTIG_UNLOCK(); 1157 return (NULL); 1158 } 1159 #endif /* !__xpv */ 1160 1161 /* 1162 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1163 * memranges[]. Used to determine the size of page lists and mnoderanges. 1164 */ 1165 int 1166 mnode_range_cnt(int mnode) 1167 { 1168 #if defined(__xpv) 1169 ASSERT(mnode == 0); 1170 return (1); 1171 #else /* __xpv */ 1172 int mri; 1173 int mnrcnt = 0; 1174 1175 if (mem_node_config[mnode].exists != 0) { 1176 mri = nranges - 1; 1177 1178 /* find the memranges index below contained in mnode range */ 1179 1180 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1181 mri--; 1182 1183 /* 1184 * increment mnode range counter when memranges or mnode 1185 * boundary is reached. 1186 */ 1187 while (mri >= 0 && 1188 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1189 mnrcnt++; 1190 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1191 mri--; 1192 else 1193 break; 1194 } 1195 } 1196 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1197 return (mnrcnt); 1198 #endif /* __xpv */ 1199 } 1200 1201 /* 1202 * mnode_range_setup() initializes mnoderanges. 1203 */ 1204 void 1205 mnode_range_setup(mnoderange_t *mnoderanges) 1206 { 1207 int mnode, mri; 1208 1209 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1210 if (mem_node_config[mnode].exists == 0) 1211 continue; 1212 1213 mri = nranges - 1; 1214 1215 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1216 mri--; 1217 1218 while (mri >= 0 && mem_node_config[mnode].physmax >= 1219 MEMRANGELO(mri)) { 1220 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1221 mem_node_config[mnode].physbase); 1222 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1223 mem_node_config[mnode].physmax); 1224 mnoderanges->mnr_mnode = mnode; 1225 mnoderanges->mnr_memrange = mri; 1226 mnoderanges++; 1227 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1228 mri--; 1229 else 1230 break; 1231 } 1232 } 1233 } 1234 1235 /*ARGSUSED*/ 1236 int 1237 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1238 { 1239 int mtype = mnoderangecnt - 1; 1240 1241 #if !defined(__xpv) 1242 #if defined(__i386) 1243 /* 1244 * set the mtype range 1245 * - kmem requests needs to be below 4g if restricted_kmemalloc is set. 1246 * - for non kmem requests, set range to above 4g if memory below 4g 1247 * runs low. 1248 */ 1249 if (restricted_kmemalloc && VN_ISKAS(vp) && 1250 (caddr_t)(vaddr) >= kernelheap && 1251 (caddr_t)(vaddr) < ekernelheap) { 1252 ASSERT(physmax4g); 1253 mtype = mtype4g; 1254 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1255 btop(pgsz), *flags)) { 1256 *flags |= PGI_MT_RANGE16M; 1257 } else { 1258 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1259 VM_STAT_COND_ADD((*flags & PG_PANIC), 1260 vmm_vmstats.pgpanicalloc); 1261 *flags |= PGI_MT_RANGE0; 1262 } 1263 return (mtype); 1264 } 1265 #endif /* __i386 */ 1266 1267 if (RESTRICT4G_ALLOC) { 1268 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1269 /* here only for > 4g systems */ 1270 *flags |= PGI_MT_RANGE4G; 1271 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1272 *flags |= PGI_MT_RANGE16M; 1273 } else { 1274 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1275 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1276 *flags |= PGI_MT_RANGE0; 1277 } 1278 #endif /* !__xpv */ 1279 return (mtype); 1280 } 1281 1282 1283 /* mtype init for page_get_replacement_page */ 1284 /*ARGSUSED*/ 1285 int 1286 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1287 { 1288 int mtype = mnoderangecnt - 1; 1289 #if !defined(__ixpv) 1290 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1291 *flags |= PGI_MT_RANGE16M; 1292 } else { 1293 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1294 *flags |= PGI_MT_RANGE0; 1295 } 1296 #endif 1297 return (mtype); 1298 } 1299 1300 /* 1301 * Determine if the mnode range specified in mtype contains memory belonging 1302 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1303 * the range of indices from high pfn to 0, 16m or 4g. 1304 * 1305 * Return first mnode range type index found otherwise return -1 if none found. 1306 */ 1307 int 1308 mtype_func(int mnode, int mtype, uint_t flags) 1309 { 1310 if (flags & PGI_MT_RANGE) { 1311 int mtlim = 0; 1312 1313 if (flags & PGI_MT_NEXT) 1314 mtype--; 1315 if (flags & PGI_MT_RANGE4G) 1316 mtlim = mtype4g + 1; /* exclude 0-4g range */ 1317 else if (flags & PGI_MT_RANGE16M) 1318 mtlim = 1; /* exclude 0-16m range */ 1319 while (mtype >= mtlim) { 1320 if (mnoderanges[mtype].mnr_mnode == mnode) 1321 return (mtype); 1322 mtype--; 1323 } 1324 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1325 return (mtype); 1326 } 1327 return (-1); 1328 } 1329 1330 /* 1331 * Update the page list max counts with the pfn range specified by the 1332 * input parameters. Called from add_physmem() when physical memory with 1333 * page_t's are initially added to the page lists. 1334 */ 1335 void 1336 mtype_modify_max(pfn_t startpfn, long cnt) 1337 { 1338 int mtype = 0; 1339 pfn_t endpfn = startpfn + cnt, pfn; 1340 pgcnt_t inc; 1341 1342 ASSERT(cnt > 0); 1343 1344 if (!physmax4g) 1345 return; 1346 1347 for (pfn = startpfn; pfn < endpfn; ) { 1348 if (pfn <= mnoderanges[mtype].mnr_pfnhi) { 1349 if (endpfn < mnoderanges[mtype].mnr_pfnhi) { 1350 inc = endpfn - pfn; 1351 } else { 1352 inc = mnoderanges[mtype].mnr_pfnhi - pfn + 1; 1353 } 1354 if (mtype <= mtype4g) 1355 maxmem4g += inc; 1356 pfn += inc; 1357 } 1358 mtype++; 1359 ASSERT(mtype < mnoderangecnt || pfn >= endpfn); 1360 } 1361 } 1362 1363 int 1364 mtype_2_mrange(int mtype) 1365 { 1366 return (mnoderanges[mtype].mnr_memrange); 1367 } 1368 1369 void 1370 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1371 { 1372 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1373 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1374 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1375 } 1376 1377 size_t 1378 plcnt_sz(size_t ctrs_sz) 1379 { 1380 #ifdef DEBUG 1381 int szc, colors; 1382 1383 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1384 for (szc = 0; szc < mmu_page_sizes; szc++) { 1385 colors = page_get_pagecolors(szc); 1386 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1387 } 1388 #endif 1389 return (ctrs_sz); 1390 } 1391 1392 caddr_t 1393 plcnt_init(caddr_t addr) 1394 { 1395 #ifdef DEBUG 1396 int mt, szc, colors; 1397 1398 for (mt = 0; mt < mnoderangecnt; mt++) { 1399 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1400 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1401 for (szc = 0; szc < mmu_page_sizes; szc++) { 1402 colors = page_get_pagecolors(szc); 1403 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1404 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1405 (pgcnt_t *)addr; 1406 addr += (sizeof (pgcnt_t) * colors); 1407 } 1408 } 1409 #endif 1410 return (addr); 1411 } 1412 1413 void 1414 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1415 { 1416 #ifdef DEBUG 1417 int bin = PP_2_BIN(pp); 1418 1419 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1420 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1421 cnt); 1422 #endif 1423 ASSERT(mtype == PP_2_MTYPE(pp)); 1424 if (physmax4g && mtype <= mtype4g) 1425 atomic_add_long(&freemem4g, cnt); 1426 if (flags & PG_CACHE_LIST) 1427 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1428 else if (szc) 1429 atomic_add_long(&mnoderanges[mtype].mnr_mt_lgpgcnt, cnt); 1430 else 1431 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt, cnt); 1432 } 1433 1434 /* 1435 * Returns the free page count for mnode 1436 */ 1437 int 1438 mnode_pgcnt(int mnode) 1439 { 1440 int mtype = mnoderangecnt - 1; 1441 int flags = PGI_MT_RANGE0; 1442 pgcnt_t pgcnt = 0; 1443 1444 mtype = mtype_func(mnode, mtype, flags); 1445 1446 while (mtype != -1) { 1447 pgcnt += MTYPE_FREEMEM(mtype); 1448 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1449 } 1450 return (pgcnt); 1451 } 1452 1453 /* 1454 * Initialize page coloring variables based on the l2 cache parameters. 1455 * Calculate and return memory needed for page coloring data structures. 1456 */ 1457 size_t 1458 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1459 { 1460 size_t colorsz = 0; 1461 int i; 1462 int colors; 1463 1464 #if defined(__xpv) 1465 /* 1466 * Hypervisor domains currently don't have any concept of NUMA. 1467 * Hence we'll act like there is only 1 memrange. 1468 */ 1469 i = memrange_num(1); 1470 #else /* !__xpv */ 1471 /* 1472 * Reduce the memory ranges lists if we don't have large amounts 1473 * of memory. This avoids searching known empty free lists. 1474 */ 1475 i = memrange_num(physmax); 1476 #if defined(__i386) 1477 if (i > 0) 1478 restricted_kmemalloc = 0; 1479 #endif 1480 /* physmax greater than 4g */ 1481 if (i == 0) 1482 physmax4g = 1; 1483 #endif /* !__xpv */ 1484 memranges += i; 1485 nranges -= i; 1486 1487 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1488 1489 ASSERT(ISP2(l2_sz)); 1490 ASSERT(ISP2(l2_linesz)); 1491 ASSERT(l2_sz > MMU_PAGESIZE); 1492 1493 /* l2_assoc is 0 for fully associative l2 cache */ 1494 if (l2_assoc) 1495 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1496 else 1497 l2_colors = 1; 1498 1499 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1500 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1501 1502 /* 1503 * cpu_page_colors is non-zero when a page color may be spread across 1504 * multiple bins. 1505 */ 1506 if (l2_colors < page_colors) 1507 cpu_page_colors = l2_colors; 1508 1509 ASSERT(ISP2(page_colors)); 1510 1511 page_colors_mask = page_colors - 1; 1512 1513 ASSERT(ISP2(CPUSETSIZE())); 1514 page_coloring_shift = lowbit(CPUSETSIZE()); 1515 1516 /* initialize number of colors per page size */ 1517 for (i = 0; i <= mmu.max_page_level; i++) { 1518 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1519 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1520 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1521 hw_page_array[i].hp_colors = (page_colors_mask >> 1522 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1523 + 1; 1524 colorequivszc[i] = 0; 1525 } 1526 1527 /* 1528 * The value of cpu_page_colors determines if additional color bins 1529 * need to be checked for a particular color in the page_get routines. 1530 */ 1531 if (cpu_page_colors != 0) { 1532 1533 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1534 ASSERT(a > 0); 1535 ASSERT(a < 16); 1536 1537 for (i = 0; i <= mmu.max_page_level; i++) { 1538 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1539 colorequivszc[i] = 0; 1540 continue; 1541 } 1542 while ((colors >> a) == 0) 1543 a--; 1544 ASSERT(a >= 0); 1545 1546 /* higher 4 bits encodes color equiv mask */ 1547 colorequivszc[i] = (a << 4); 1548 } 1549 } 1550 1551 /* factor in colorequiv to check additional 'equivalent' bins. */ 1552 if (colorequiv > 1) { 1553 1554 int a = lowbit(colorequiv) - 1; 1555 if (a > 15) 1556 a = 15; 1557 1558 for (i = 0; i <= mmu.max_page_level; i++) { 1559 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1560 continue; 1561 } 1562 while ((colors >> a) == 0) 1563 a--; 1564 if ((a << 4) > colorequivszc[i]) { 1565 colorequivszc[i] = (a << 4); 1566 } 1567 } 1568 } 1569 1570 /* size for mnoderanges */ 1571 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1572 mnoderangecnt += mnode_range_cnt(i); 1573 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1574 1575 /* size for fpc_mutex and cpc_mutex */ 1576 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1577 1578 /* size of page_freelists */ 1579 colorsz += mnoderangecnt * sizeof (page_t ***); 1580 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1581 1582 for (i = 0; i < mmu_page_sizes; i++) { 1583 colors = page_get_pagecolors(i); 1584 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1585 } 1586 1587 /* size of page_cachelists */ 1588 colorsz += mnoderangecnt * sizeof (page_t **); 1589 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1590 1591 return (colorsz); 1592 } 1593 1594 /* 1595 * Called once at startup to configure page_coloring data structures and 1596 * does the 1st page_free()/page_freelist_add(). 1597 */ 1598 void 1599 page_coloring_setup(caddr_t pcmemaddr) 1600 { 1601 int i; 1602 int j; 1603 int k; 1604 caddr_t addr; 1605 int colors; 1606 1607 /* 1608 * do page coloring setup 1609 */ 1610 addr = pcmemaddr; 1611 1612 mnoderanges = (mnoderange_t *)addr; 1613 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1614 1615 mnode_range_setup(mnoderanges); 1616 1617 if (physmax4g) 1618 mtype4g = pfn_2_mtype(0xfffff); 1619 1620 for (k = 0; k < NPC_MUTEX; k++) { 1621 fpc_mutex[k] = (kmutex_t *)addr; 1622 addr += (max_mem_nodes * sizeof (kmutex_t)); 1623 } 1624 for (k = 0; k < NPC_MUTEX; k++) { 1625 cpc_mutex[k] = (kmutex_t *)addr; 1626 addr += (max_mem_nodes * sizeof (kmutex_t)); 1627 } 1628 page_freelists = (page_t ****)addr; 1629 addr += (mnoderangecnt * sizeof (page_t ***)); 1630 1631 page_cachelists = (page_t ***)addr; 1632 addr += (mnoderangecnt * sizeof (page_t **)); 1633 1634 for (i = 0; i < mnoderangecnt; i++) { 1635 page_freelists[i] = (page_t ***)addr; 1636 addr += (mmu_page_sizes * sizeof (page_t **)); 1637 1638 for (j = 0; j < mmu_page_sizes; j++) { 1639 colors = page_get_pagecolors(j); 1640 page_freelists[i][j] = (page_t **)addr; 1641 addr += (colors * sizeof (page_t *)); 1642 } 1643 page_cachelists[i] = (page_t **)addr; 1644 addr += (page_colors * sizeof (page_t *)); 1645 } 1646 } 1647 1648 #if defined(__xpv) 1649 /* 1650 * Give back 10% of the io_pool pages to the free list. 1651 * Don't shrink the pool below some absolute minimum. 1652 */ 1653 static void 1654 page_io_pool_shrink() 1655 { 1656 int retcnt; 1657 page_t *pp, *pp_first, *pp_last, **curpool; 1658 mfn_t mfn; 1659 int bothpools = 0; 1660 1661 mutex_enter(&io_pool_lock); 1662 io_pool_shrink_attempts++; /* should be a kstat? */ 1663 retcnt = io_pool_cnt / 10; 1664 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1665 retcnt = io_pool_cnt - io_pool_cnt_min; 1666 if (retcnt <= 0) 1667 goto done; 1668 io_pool_shrinks++; /* should be a kstat? */ 1669 curpool = &io_pool_4g; 1670 domore: 1671 /* 1672 * Loop through taking pages from the end of the list 1673 * (highest mfns) till amount to return reached. 1674 */ 1675 for (pp = *curpool; pp && retcnt > 0; ) { 1676 pp_first = pp_last = pp->p_prev; 1677 if (pp_first == *curpool) 1678 break; 1679 retcnt--; 1680 io_pool_cnt--; 1681 page_io_pool_sub(curpool, pp_first, pp_last); 1682 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1683 start_mfn = mfn; 1684 page_free(pp_first, 1); 1685 pp = *curpool; 1686 } 1687 if (retcnt != 0 && !bothpools) { 1688 /* 1689 * If not enough found in less constrained pool try the 1690 * more constrained one. 1691 */ 1692 curpool = &io_pool_16m; 1693 bothpools = 1; 1694 goto domore; 1695 } 1696 done: 1697 mutex_exit(&io_pool_lock); 1698 } 1699 1700 #endif /* __xpv */ 1701 1702 uint_t 1703 page_create_update_flags_x86(uint_t flags) 1704 { 1705 #if defined(__xpv) 1706 /* 1707 * Check this is an urgent allocation and free pages are depleted. 1708 */ 1709 if (!(flags & PG_WAIT) && freemem < desfree) 1710 page_io_pool_shrink(); 1711 #else /* !__xpv */ 1712 /* 1713 * page_create_get_something may call this because 4g memory may be 1714 * depleted. Set flags to allow for relocation of base page below 1715 * 4g if necessary. 1716 */ 1717 if (physmax4g) 1718 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1719 #endif /* __xpv */ 1720 return (flags); 1721 } 1722 1723 /*ARGSUSED*/ 1724 int 1725 bp_color(struct buf *bp) 1726 { 1727 return (0); 1728 } 1729 1730 #if defined(__xpv) 1731 1732 /* 1733 * Take pages out of an io_pool 1734 */ 1735 static void 1736 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 1737 { 1738 if (*poolp == pp_first) { 1739 *poolp = pp_last->p_next; 1740 if (*poolp == pp_first) 1741 *poolp = NULL; 1742 } 1743 pp_first->p_prev->p_next = pp_last->p_next; 1744 pp_last->p_next->p_prev = pp_first->p_prev; 1745 pp_first->p_prev = pp_last; 1746 pp_last->p_next = pp_first; 1747 } 1748 1749 /* 1750 * Put a page on the io_pool list. The list is ordered by increasing MFN. 1751 */ 1752 static void 1753 page_io_pool_add(page_t **poolp, page_t *pp) 1754 { 1755 page_t *look; 1756 mfn_t mfn = mfn_list[pp->p_pagenum]; 1757 1758 if (*poolp == NULL) { 1759 *poolp = pp; 1760 pp->p_next = pp; 1761 pp->p_prev = pp; 1762 return; 1763 } 1764 1765 /* 1766 * Since we try to take pages from the high end of the pool 1767 * chances are good that the pages to be put on the list will 1768 * go at or near the end of the list. so start at the end and 1769 * work backwards. 1770 */ 1771 look = (*poolp)->p_prev; 1772 while (mfn < mfn_list[look->p_pagenum]) { 1773 look = look->p_prev; 1774 if (look == (*poolp)->p_prev) 1775 break; /* backed all the way to front of list */ 1776 } 1777 1778 /* insert after look */ 1779 pp->p_prev = look; 1780 pp->p_next = look->p_next; 1781 pp->p_next->p_prev = pp; 1782 look->p_next = pp; 1783 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 1784 /* 1785 * we inserted a new first list element 1786 * adjust pool pointer to newly inserted element 1787 */ 1788 *poolp = pp; 1789 } 1790 } 1791 1792 /* 1793 * Add a page to the io_pool. Setting the force flag will force the page 1794 * into the io_pool no matter what. 1795 */ 1796 static void 1797 add_page_to_pool(page_t *pp, int force) 1798 { 1799 page_t *highest; 1800 page_t *freep = NULL; 1801 1802 mutex_enter(&io_pool_lock); 1803 /* 1804 * Always keep the scarce low memory pages 1805 */ 1806 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 1807 ++io_pool_cnt; 1808 page_io_pool_add(&io_pool_16m, pp); 1809 goto done; 1810 } 1811 if (io_pool_cnt < io_pool_cnt_max || force) { 1812 ++io_pool_cnt; 1813 page_io_pool_add(&io_pool_4g, pp); 1814 } else { 1815 highest = io_pool_4g->p_prev; 1816 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 1817 page_io_pool_sub(&io_pool_4g, highest, highest); 1818 page_io_pool_add(&io_pool_4g, pp); 1819 freep = highest; 1820 } else { 1821 freep = pp; 1822 } 1823 } 1824 done: 1825 mutex_exit(&io_pool_lock); 1826 if (freep) 1827 page_free(freep, 1); 1828 } 1829 1830 1831 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 1832 int contig_pfn_max; /* capacity of the contig pfn list */ 1833 int next_alloc_pfn; /* next position in list to start a contig search */ 1834 int contig_pfnlist_updates; /* pfn list update count */ 1835 int contig_pfnlist_locked; /* contig pfn list locked against use */ 1836 int contig_pfnlist_builds; /* how many times have we (re)built list */ 1837 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 1838 int create_contig_pending; /* nonzero means taskq creating contig list */ 1839 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 1840 1841 /* 1842 * Function to use in sorting a list of pfns by their underlying mfns. 1843 */ 1844 static int 1845 mfn_compare(const void *pfnp1, const void *pfnp2) 1846 { 1847 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 1848 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 1849 1850 if (mfn1 > mfn2) 1851 return (1); 1852 if (mfn1 < mfn2) 1853 return (-1); 1854 return (0); 1855 } 1856 1857 /* 1858 * Compact the contig_pfn_list by tossing all the non-contiguous 1859 * elements from the list. 1860 */ 1861 static void 1862 compact_contig_pfn_list(void) 1863 { 1864 pfn_t pfn, lapfn, prev_lapfn; 1865 mfn_t mfn; 1866 int i, newcnt = 0; 1867 1868 prev_lapfn = 0; 1869 for (i = 0; i < contig_pfn_cnt - 1; i++) { 1870 pfn = contig_pfn_list[i]; 1871 lapfn = contig_pfn_list[i + 1]; 1872 mfn = mfn_list[pfn]; 1873 /* 1874 * See if next pfn is for a contig mfn 1875 */ 1876 if (mfn_list[lapfn] != mfn + 1) 1877 continue; 1878 /* 1879 * pfn and lookahead are both put in list 1880 * unless pfn is the previous lookahead. 1881 */ 1882 if (pfn != prev_lapfn) 1883 contig_pfn_list[newcnt++] = pfn; 1884 contig_pfn_list[newcnt++] = lapfn; 1885 prev_lapfn = lapfn; 1886 } 1887 for (i = newcnt; i < contig_pfn_cnt; i++) 1888 contig_pfn_list[i] = 0; 1889 contig_pfn_cnt = newcnt; 1890 } 1891 1892 /*ARGSUSED*/ 1893 static void 1894 call_create_contiglist(void *arg) 1895 { 1896 mutex_enter(&io_pool_lock); 1897 (void) create_contig_pfnlist(PG_WAIT); 1898 create_contig_pending = 0; 1899 mutex_exit(&io_pool_lock); 1900 } 1901 1902 /* 1903 * Create list of freelist pfns that have underlying 1904 * contiguous mfns. The list is kept in ascending mfn order. 1905 * returns 1 if list created else 0. 1906 */ 1907 static int 1908 create_contig_pfnlist(uint_t flags) 1909 { 1910 pfn_t pfn; 1911 page_t *pp; 1912 1913 if (contig_pfn_list != NULL) 1914 return (1); 1915 ASSERT(!contig_pfnlist_locked); 1916 contig_pfn_max = freemem + (freemem / 10); 1917 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 1918 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 1919 if (contig_pfn_list == NULL) { 1920 /* 1921 * If we could not create the contig list (because 1922 * we could not sleep for memory). Dispatch a taskq that can 1923 * sleep to get the memory. 1924 */ 1925 if (!create_contig_pending) { 1926 if (taskq_dispatch(system_taskq, call_create_contiglist, 1927 NULL, TQ_NOSLEEP) != NULL) 1928 create_contig_pending = 1; 1929 } 1930 contig_pfnlist_buildfailed++; /* count list build failures */ 1931 return (0); 1932 } 1933 ASSERT(contig_pfn_cnt == 0); 1934 for (pfn = 0; pfn < mfn_count; pfn++) { 1935 pp = page_numtopp_nolock(pfn); 1936 if (pp == NULL || !PP_ISFREE(pp)) 1937 continue; 1938 contig_pfn_list[contig_pfn_cnt] = pfn; 1939 if (++contig_pfn_cnt == contig_pfn_max) 1940 break; 1941 } 1942 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 1943 compact_contig_pfn_list(); 1944 /* 1945 * Make sure next search of the newly created contiguous pfn 1946 * list starts at the beginning of the list. 1947 */ 1948 next_alloc_pfn = 0; 1949 contig_pfnlist_builds++; /* count list builds */ 1950 return (1); 1951 } 1952 1953 1954 /* 1955 * Toss the current contig pfnlist. Someone is about to do a massive 1956 * update to pfn<->mfn mappings. So we have them destroy the list and lock 1957 * it till they are done with their update. 1958 */ 1959 void 1960 clear_and_lock_contig_pfnlist() 1961 { 1962 pfn_t *listp = NULL; 1963 size_t listsize; 1964 1965 mutex_enter(&io_pool_lock); 1966 ASSERT(!contig_pfnlist_locked); 1967 if (contig_pfn_list != NULL) { 1968 listp = contig_pfn_list; 1969 listsize = contig_pfn_max * sizeof (pfn_t); 1970 contig_pfn_list = NULL; 1971 contig_pfn_max = contig_pfn_cnt = 0; 1972 } 1973 contig_pfnlist_locked = 1; 1974 mutex_exit(&io_pool_lock); 1975 if (listp != NULL) 1976 kmem_free(listp, listsize); 1977 } 1978 1979 /* 1980 * Unlock the contig_pfn_list. The next attempted use of it will cause 1981 * it to be re-created. 1982 */ 1983 void 1984 unlock_contig_pfnlist() 1985 { 1986 mutex_enter(&io_pool_lock); 1987 ASSERT(contig_pfnlist_locked); 1988 contig_pfnlist_locked = 0; 1989 mutex_exit(&io_pool_lock); 1990 } 1991 1992 /* 1993 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 1994 */ 1995 void 1996 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 1997 { 1998 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 1999 pfn_t probe_pfn; 2000 mfn_t probe_mfn; 2001 2002 if (contig_pfn_list == NULL) 2003 return; 2004 mutex_enter(&io_pool_lock); 2005 contig_pfnlist_updates++; 2006 /* 2007 * Find the pfn in the current list. Use a binary chop to locate it. 2008 */ 2009 probe_hi = contig_pfn_cnt - 1; 2010 probe_lo = 0; 2011 probe_pos = (probe_hi + probe_lo) / 2; 2012 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2013 if (probe_pos == probe_lo) { /* pfn not in list */ 2014 probe_pos = -1; 2015 break; 2016 } 2017 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2018 probe_lo = probe_pos; 2019 else 2020 probe_hi = probe_pos; 2021 probe_pos = (probe_hi + probe_lo) / 2; 2022 } 2023 if (probe_pos >= 0) { /* remove pfn fom list */ 2024 contig_pfn_cnt--; 2025 ovbcopy(&contig_pfn_list[probe_pos + 1], 2026 &contig_pfn_list[probe_pos], 2027 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2028 } 2029 if (newmfn == MFN_INVALID) 2030 goto done; 2031 /* 2032 * Check if new mfn has adjacent mfns in the list 2033 */ 2034 probe_hi = contig_pfn_cnt - 1; 2035 probe_lo = 0; 2036 insert_after = -2; 2037 do { 2038 probe_pos = (probe_hi + probe_lo) / 2; 2039 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2040 if (newmfn == probe_mfn + 1) 2041 insert_after = probe_pos; 2042 else if (newmfn == probe_mfn - 1) 2043 insert_after = probe_pos - 1; 2044 if (probe_pos == probe_lo) 2045 break; 2046 if (probe_mfn <= newmfn) 2047 probe_lo = probe_pos; 2048 else 2049 probe_hi = probe_pos; 2050 } while (insert_after == -2); 2051 /* 2052 * If there is space in the list and there are adjacent mfns 2053 * insert the pfn in to its proper place in the list. 2054 */ 2055 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2056 insert_point = insert_after + 1; 2057 ovbcopy(&contig_pfn_list[insert_point], 2058 &contig_pfn_list[insert_point + 1], 2059 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2060 contig_pfn_list[insert_point] = pfn; 2061 contig_pfn_cnt++; 2062 } 2063 done: 2064 mutex_exit(&io_pool_lock); 2065 } 2066 2067 /* 2068 * Called to (re-)populate the io_pool from the free page lists. 2069 */ 2070 long 2071 populate_io_pool(void) 2072 { 2073 pfn_t pfn; 2074 mfn_t mfn, max_mfn; 2075 page_t *pp; 2076 2077 /* 2078 * Figure out the bounds of the pool on first invocation. 2079 * We use a percentage of memory for the io pool size. 2080 * we allow that to shrink, but not to less than a fixed minimum 2081 */ 2082 if (io_pool_cnt_max == 0) { 2083 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2084 io_pool_cnt_lowater = io_pool_cnt_max; 2085 /* 2086 * This is the first time in populate_io_pool, grab a va to use 2087 * when we need to allocate pages. 2088 */ 2089 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2090 } 2091 /* 2092 * If we are out of pages in the pool, then grow the size of the pool 2093 */ 2094 if (io_pool_cnt == 0) 2095 io_pool_cnt_max += io_pool_cnt_max / 20; /* grow by 5% */ 2096 io_pool_grows++; /* should be a kstat? */ 2097 2098 /* 2099 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2100 */ 2101 (void) mfn_to_pfn(start_mfn); 2102 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2103 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2104 pfn = mfn_to_pfn(mfn); 2105 if (pfn & PFN_IS_FOREIGN_MFN) 2106 continue; 2107 /* 2108 * try to allocate it from free pages 2109 */ 2110 pp = page_numtopp_alloc(pfn); 2111 if (pp == NULL) 2112 continue; 2113 PP_CLRFREE(pp); 2114 add_page_to_pool(pp, 1); 2115 if (io_pool_cnt >= io_pool_cnt_max) 2116 break; 2117 } 2118 2119 return (io_pool_cnt); 2120 } 2121 2122 /* 2123 * Destroy a page that was being used for DMA I/O. It may or 2124 * may not actually go back to the io_pool. 2125 */ 2126 void 2127 page_destroy_io(page_t *pp) 2128 { 2129 mfn_t mfn = mfn_list[pp->p_pagenum]; 2130 2131 /* 2132 * When the page was alloc'd a reservation was made, release it now 2133 */ 2134 page_unresv(1); 2135 /* 2136 * Unload translations, if any, then hash out the 2137 * page to erase its identity. 2138 */ 2139 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2140 page_hashout(pp, NULL); 2141 2142 /* 2143 * If the page came from the free lists, just put it back to them. 2144 * DomU pages always go on the free lists as well. 2145 */ 2146 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2147 page_free(pp, 1); 2148 return; 2149 } 2150 2151 add_page_to_pool(pp, 0); 2152 } 2153 2154 2155 long contig_searches; /* count of times contig pages requested */ 2156 long contig_search_restarts; /* count of contig ranges tried */ 2157 long contig_search_failed; /* count of contig alloc failures */ 2158 2159 /* 2160 * Look thru the contiguous pfns that are not part of the io_pool for 2161 * contiguous free pages. Return a list of the found pages or NULL. 2162 */ 2163 page_t * 2164 find_contig_free(uint_t bytes, uint_t flags) 2165 { 2166 page_t *pp, *plist = NULL; 2167 mfn_t mfn, prev_mfn; 2168 pfn_t pfn; 2169 int pages_needed, pages_requested; 2170 int search_start; 2171 2172 /* 2173 * create the contig pfn list if not already done 2174 */ 2175 if (contig_pfn_list == NULL) { 2176 if (contig_pfnlist_locked) { 2177 return (NULL); 2178 } else { 2179 if (!create_contig_pfnlist(flags)) 2180 return (NULL); 2181 } 2182 } 2183 contig_searches++; 2184 /* 2185 * Search contiguous pfn list for physically contiguous pages not in 2186 * the io_pool. Start the search where the last search left off. 2187 */ 2188 pages_requested = pages_needed = mmu_btop(bytes); 2189 search_start = next_alloc_pfn; 2190 prev_mfn = 0; 2191 while (pages_needed) { 2192 pfn = contig_pfn_list[next_alloc_pfn]; 2193 mfn = pfn_to_mfn(pfn); 2194 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2195 (pp = page_numtopp_alloc(pfn)) != NULL) { 2196 PP_CLRFREE(pp); 2197 page_io_pool_add(&plist, pp); 2198 pages_needed--; 2199 prev_mfn = mfn; 2200 } else { 2201 contig_search_restarts++; 2202 /* 2203 * free partial page list 2204 */ 2205 while (plist != NULL) { 2206 pp = plist; 2207 page_io_pool_sub(&plist, pp, pp); 2208 page_free(pp, 1); 2209 } 2210 pages_needed = pages_requested; 2211 prev_mfn = 0; 2212 } 2213 if (++next_alloc_pfn == contig_pfn_cnt) 2214 next_alloc_pfn = 0; 2215 if (next_alloc_pfn == search_start) 2216 break; /* all pfns searched */ 2217 } 2218 if (pages_needed) { 2219 contig_search_failed++; 2220 /* 2221 * Failed to find enough contig pages. 2222 * free partial page list 2223 */ 2224 while (plist != NULL) { 2225 pp = plist; 2226 page_io_pool_sub(&plist, pp, pp); 2227 page_free(pp, 1); 2228 } 2229 } 2230 return (plist); 2231 } 2232 2233 /* 2234 * Allocator for domain 0 I/O pages. We match the required 2235 * DMA attributes and contiguity constraints. 2236 */ 2237 /*ARGSUSED*/ 2238 page_t * 2239 page_create_io( 2240 struct vnode *vp, 2241 u_offset_t off, 2242 uint_t bytes, 2243 uint_t flags, 2244 struct as *as, 2245 caddr_t vaddr, 2246 ddi_dma_attr_t *mattr) 2247 { 2248 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2249 page_t *pp_first; /* list to return */ 2250 page_t *pp_last; /* last in list to return */ 2251 page_t *pp, **poolp, **pplist = NULL, *expp; 2252 int i, extpages = 0, npages = 0, contig, anyaddr, extra; 2253 mfn_t lo_mfn; 2254 mfn_t hi_mfn; 2255 mfn_t mfn, tmfn; 2256 mfn_t *mfnlist = 0; 2257 pgcnt_t pfnalign = 0; 2258 int align, order, nbits, extents; 2259 uint64_t pfnseg; 2260 int attempt = 0, is_domu = 0; 2261 int asked_hypervisor = 0; 2262 uint_t kflags; 2263 2264 ASSERT(mattr != NULL); 2265 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2266 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2267 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2268 if (align > MMU_PAGESIZE) 2269 pfnalign = mmu_btop(align); 2270 pfnseg = mmu_btop(mattr->dma_attr_seg); 2271 2272 /* 2273 * Clear the contig flag if only one page is needed. 2274 */ 2275 contig = (flags & PG_PHYSCONTIG); 2276 flags &= ~PG_PHYSCONTIG; 2277 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2278 if (bytes == MMU_PAGESIZE) 2279 contig = 0; 2280 2281 /* 2282 * Check if any old page in the system is fine. 2283 * DomU should always go down this path. 2284 */ 2285 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 2286 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 2287 if ((!contig && anyaddr) || is_domu) { 2288 pp = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 2289 if (pp) 2290 return (pp); 2291 else if (is_domu) 2292 return (NULL); /* no memory available */ 2293 } 2294 /* 2295 * DomU should never reach here 2296 */ 2297 try_again: 2298 /* 2299 * We could just want unconstrained but contig pages. 2300 */ 2301 if (anyaddr && contig && pfnseg >= max_mfn) { 2302 /* 2303 * Look for free contig pages to satisfy the request. 2304 */ 2305 mutex_enter(&io_pool_lock); 2306 pp_first = find_contig_free(bytes, flags); 2307 mutex_exit(&io_pool_lock); 2308 if (pp_first != NULL) 2309 goto done; 2310 } 2311 /* 2312 * See if we want pages for a legacy device 2313 */ 2314 if (hi_mfn < PFN_16MEG) 2315 poolp = &io_pool_16m; 2316 else 2317 poolp = &io_pool_4g; 2318 try_smaller: 2319 /* 2320 * Take pages from I/O pool. We'll use pages from the highest MFN 2321 * range possible. 2322 */ 2323 pp_first = pp_last = NULL; 2324 npages = mmu_btop(bytes); 2325 mutex_enter(&io_pool_lock); 2326 for (pp = *poolp; pp && npages > 0; ) { 2327 pp = pp->p_prev; 2328 2329 /* 2330 * skip pages above allowable range 2331 */ 2332 mfn = mfn_list[pp->p_pagenum]; 2333 if (hi_mfn < mfn) 2334 goto skip; 2335 2336 /* 2337 * stop at pages below allowable range 2338 */ 2339 if (lo_mfn > mfn) 2340 break; 2341 restart: 2342 if (pp_last == NULL) { 2343 /* 2344 * Check alignment 2345 */ 2346 tmfn = mfn - (npages - 1); 2347 if (pfnalign) { 2348 if (tmfn != P2ROUNDUP(tmfn, pfnalign)) 2349 goto skip; /* not properly aligned */ 2350 } 2351 /* 2352 * Check segment 2353 */ 2354 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2355 goto skip; /* crosses segment boundary */ 2356 /* 2357 * Start building page list 2358 */ 2359 pp_first = pp_last = pp; 2360 npages--; 2361 } else { 2362 /* 2363 * check physical contiguity if required 2364 */ 2365 if (contig && 2366 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2367 /* 2368 * not a contiguous page, restart list. 2369 */ 2370 pp_last = NULL; 2371 npages = mmu_btop(bytes); 2372 goto restart; 2373 } else { /* add page to list */ 2374 pp_first = pp; 2375 --npages; 2376 } 2377 } 2378 skip: 2379 if (pp == *poolp) 2380 break; 2381 } 2382 2383 /* 2384 * If we didn't find memory. Try the more constrained pool, then 2385 * sweep free pages into the DMA pool and try again. If we fail 2386 * repeatedly, ask the Hypervisor for help. 2387 */ 2388 if (npages != 0) { 2389 mutex_exit(&io_pool_lock); 2390 /* 2391 * If we were looking in the less constrained pool and didn't 2392 * find pages, try the more constrained pool. 2393 */ 2394 if (poolp == &io_pool_4g) { 2395 poolp = &io_pool_16m; 2396 goto try_smaller; 2397 } 2398 kmem_reap(); 2399 if (++attempt < 4) { 2400 /* 2401 * Grab some more io_pool pages 2402 */ 2403 (void) populate_io_pool(); 2404 goto try_again; 2405 } 2406 2407 if (asked_hypervisor++) 2408 return (NULL); /* really out of luck */ 2409 /* 2410 * Hypervisor exchange doesn't handle segment or alignment 2411 * constraints 2412 */ 2413 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || pfnalign) 2414 return (NULL); 2415 /* 2416 * Try exchanging pages with the hypervisor. 2417 */ 2418 npages = mmu_btop(bytes); 2419 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2420 /* 2421 * Hypervisor will allocate extents, if we want contig pages 2422 * extent must be >= npages 2423 */ 2424 if (contig) { 2425 order = highbit(npages) - 1; 2426 if (npages & ((1 << order) - 1)) 2427 order++; 2428 extpages = 1 << order; 2429 } else { 2430 order = 0; 2431 extpages = npages; 2432 } 2433 if (extpages > npages) { 2434 extra = extpages - npages; 2435 if (!page_resv(extra, kflags)) 2436 return (NULL); 2437 } 2438 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2439 if (pplist == NULL) 2440 goto fail; 2441 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2442 if (mfnlist == NULL) 2443 goto fail; 2444 pp = page_create_va(vp, off, npages * PAGESIZE, flags, 2445 &kvseg, vaddr); 2446 if (pp == NULL) 2447 goto fail; 2448 pp_first = pp; 2449 if (extpages > npages) { 2450 /* 2451 * fill out the rest of extent pages to swap with the 2452 * hypervisor 2453 */ 2454 for (i = 0; i < extra; i++) { 2455 expp = page_create_va(vp, 2456 (u_offset_t)(uintptr_t)io_pool_kva, 2457 PAGESIZE, flags, &kvseg, io_pool_kva); 2458 if (expp == NULL) 2459 goto balloon_fail; 2460 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2461 page_io_unlock(expp); 2462 page_hashout(expp, NULL); 2463 page_io_lock(expp); 2464 /* 2465 * add page to end of list 2466 */ 2467 expp->p_prev = pp_first->p_prev; 2468 expp->p_next = pp_first; 2469 expp->p_prev->p_next = expp; 2470 pp_first->p_prev = expp; 2471 } 2472 2473 } 2474 for (i = 0; i < extpages; i++) { 2475 pplist[i] = pp; 2476 pp = pp->p_next; 2477 } 2478 nbits = highbit(mattr->dma_attr_addr_hi); 2479 extents = contig ? 1 : npages; 2480 if (balloon_replace_pages(extents, pplist, nbits, order, 2481 mfnlist) != extents) 2482 goto balloon_fail; 2483 2484 kmem_free(pplist, extpages * sizeof (page_t *)); 2485 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2486 /* 2487 * Return any excess pages to free list 2488 */ 2489 if (extpages > npages) { 2490 for (i = 0; i < extra; i++) { 2491 pp = pp_first->p_prev; 2492 page_sub(&pp_first, pp); 2493 page_io_unlock(pp); 2494 page_unresv(1); 2495 page_free(pp, 1); 2496 } 2497 } 2498 check_dma(mattr, pp_first, mmu_btop(bytes)); 2499 return (pp_first); 2500 } 2501 2502 /* 2503 * Found the pages, now snip them from the list 2504 */ 2505 page_io_pool_sub(poolp, pp_first, pp_last); 2506 io_pool_cnt -= mmu_btop(bytes); 2507 if (io_pool_cnt < io_pool_cnt_lowater) 2508 io_pool_cnt_lowater = io_pool_cnt; /* io pool low water mark */ 2509 mutex_exit(&io_pool_lock); 2510 done: 2511 check_dma(mattr, pp_first, mmu_btop(bytes)); 2512 pp = pp_first; 2513 do { 2514 if (!page_hashin(pp, vp, off, NULL)) { 2515 panic("pg_create_io: hashin failed pp %p, vp %p," 2516 " off %llx", 2517 (void *)pp, (void *)vp, off); 2518 } 2519 off += MMU_PAGESIZE; 2520 PP_CLRFREE(pp); 2521 PP_CLRAGED(pp); 2522 page_set_props(pp, P_REF); 2523 page_io_lock(pp); 2524 pp = pp->p_next; 2525 } while (pp != pp_first); 2526 return (pp_first); 2527 balloon_fail: 2528 /* 2529 * Return pages to free list and return failure 2530 */ 2531 while (pp_first != NULL) { 2532 pp = pp_first; 2533 page_sub(&pp_first, pp); 2534 page_io_unlock(pp); 2535 if (pp->p_vnode != NULL) 2536 page_hashout(pp, NULL); 2537 page_free(pp, 1); 2538 } 2539 fail: 2540 if (pplist) 2541 kmem_free(pplist, extpages * sizeof (page_t *)); 2542 if (mfnlist) 2543 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2544 page_unresv(extpages - npages); 2545 return (NULL); 2546 } 2547 2548 /* 2549 * Lock and return the page with the highest mfn that we can find. last_mfn 2550 * holds the last one found, so the next search can start from there. We 2551 * also keep a counter so that we don't loop forever if the machine has no 2552 * free pages. 2553 * 2554 * This is called from the balloon thread to find pages to give away. new_high 2555 * is used when new mfn's have been added to the system - we will reset our 2556 * search if the new mfn's are higher than our current search position. 2557 */ 2558 page_t * 2559 page_get_high_mfn(mfn_t new_high) 2560 { 2561 static mfn_t last_mfn = 0; 2562 pfn_t pfn; 2563 page_t *pp; 2564 ulong_t loop_count = 0; 2565 2566 if (new_high > last_mfn) 2567 last_mfn = new_high; 2568 2569 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 2570 if (last_mfn == 0) { 2571 last_mfn = cached_max_mfn; 2572 } 2573 2574 pfn = mfn_to_pfn(last_mfn); 2575 if (pfn & PFN_IS_FOREIGN_MFN) 2576 continue; 2577 2578 /* See if the page is free. If so, lock it. */ 2579 pp = page_numtopp_alloc(pfn); 2580 if (pp == NULL) 2581 continue; 2582 PP_CLRFREE(pp); 2583 2584 ASSERT(PAGE_EXCL(pp)); 2585 ASSERT(pp->p_vnode == NULL); 2586 ASSERT(!hat_page_is_mapped(pp)); 2587 last_mfn--; 2588 return (pp); 2589 } 2590 return (NULL); 2591 } 2592 2593 #else /* !__xpv */ 2594 2595 /* 2596 * get a page from any list with the given mnode 2597 */ 2598 static page_t * 2599 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 2600 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 2601 { 2602 kmutex_t *pcm; 2603 int i; 2604 page_t *pp; 2605 page_t *first_pp; 2606 uint64_t pgaddr; 2607 ulong_t bin; 2608 int mtypestart; 2609 int plw_initialized; 2610 page_list_walker_t plw; 2611 2612 VM_STAT_ADD(pga_vmstats.pgma_alloc); 2613 2614 ASSERT((flags & PG_MATCH_COLOR) == 0); 2615 ASSERT(szc == 0); 2616 ASSERT(dma_attr != NULL); 2617 2618 MTYPE_START(mnode, mtype, flags); 2619 if (mtype < 0) { 2620 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 2621 return (NULL); 2622 } 2623 2624 mtypestart = mtype; 2625 2626 bin = origbin; 2627 2628 /* 2629 * check up to page_colors + 1 bins - origbin may be checked twice 2630 * because of BIN_STEP skip 2631 */ 2632 do { 2633 plw_initialized = 0; 2634 2635 for (plw.plw_count = 0; 2636 plw.plw_count < page_colors; plw.plw_count++) { 2637 2638 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 2639 goto nextfreebin; 2640 2641 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 2642 mutex_enter(pcm); 2643 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 2644 first_pp = pp; 2645 while (pp != NULL) { 2646 if (page_trylock(pp, SE_EXCL) == 0) { 2647 pp = pp->p_next; 2648 if (pp == first_pp) { 2649 pp = NULL; 2650 } 2651 continue; 2652 } 2653 2654 ASSERT(PP_ISFREE(pp)); 2655 ASSERT(PP_ISAGED(pp)); 2656 ASSERT(pp->p_vnode == NULL); 2657 ASSERT(pp->p_hash == NULL); 2658 ASSERT(pp->p_offset == (u_offset_t)-1); 2659 ASSERT(pp->p_szc == szc); 2660 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 2661 /* check if page within DMA attributes */ 2662 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 2663 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 2664 (pgaddr + MMU_PAGESIZE - 1 <= 2665 dma_attr->dma_attr_addr_hi)) { 2666 break; 2667 } 2668 2669 /* continue looking */ 2670 page_unlock(pp); 2671 pp = pp->p_next; 2672 if (pp == first_pp) 2673 pp = NULL; 2674 2675 } 2676 if (pp != NULL) { 2677 ASSERT(mtype == PP_2_MTYPE(pp)); 2678 ASSERT(pp->p_szc == 0); 2679 2680 /* found a page with specified DMA attributes */ 2681 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 2682 mtype), pp); 2683 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 2684 2685 if ((PP_ISFREE(pp) == 0) || 2686 (PP_ISAGED(pp) == 0)) { 2687 cmn_err(CE_PANIC, "page %p is not free", 2688 (void *)pp); 2689 } 2690 2691 mutex_exit(pcm); 2692 check_dma(dma_attr, pp, 1); 2693 VM_STAT_ADD(pga_vmstats.pgma_allocok); 2694 return (pp); 2695 } 2696 mutex_exit(pcm); 2697 nextfreebin: 2698 if (plw_initialized == 0) { 2699 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 2700 ASSERT(plw.plw_ceq_dif == page_colors); 2701 plw_initialized = 1; 2702 } 2703 2704 if (plw.plw_do_split) { 2705 pp = page_freelist_split(szc, bin, mnode, 2706 mtype, 2707 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 2708 &plw); 2709 if (pp != NULL) 2710 return (pp); 2711 } 2712 2713 bin = page_list_walk_next_bin(szc, bin, &plw); 2714 } 2715 2716 MTYPE_NEXT(mnode, mtype, flags); 2717 } while (mtype >= 0); 2718 2719 /* failed to find a page in the freelist; try it in the cachelist */ 2720 2721 /* reset mtype start for cachelist search */ 2722 mtype = mtypestart; 2723 ASSERT(mtype >= 0); 2724 2725 /* start with the bin of matching color */ 2726 bin = origbin; 2727 2728 do { 2729 for (i = 0; i <= page_colors; i++) { 2730 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 2731 goto nextcachebin; 2732 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 2733 mutex_enter(pcm); 2734 pp = PAGE_CACHELISTS(mnode, bin, mtype); 2735 first_pp = pp; 2736 while (pp != NULL) { 2737 if (page_trylock(pp, SE_EXCL) == 0) { 2738 pp = pp->p_next; 2739 if (pp == first_pp) 2740 break; 2741 continue; 2742 } 2743 ASSERT(pp->p_vnode); 2744 ASSERT(PP_ISAGED(pp) == 0); 2745 ASSERT(pp->p_szc == 0); 2746 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 2747 2748 /* check if page within DMA attributes */ 2749 2750 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 2751 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 2752 (pgaddr + MMU_PAGESIZE - 1 <= 2753 dma_attr->dma_attr_addr_hi)) { 2754 break; 2755 } 2756 2757 /* continue looking */ 2758 page_unlock(pp); 2759 pp = pp->p_next; 2760 if (pp == first_pp) 2761 pp = NULL; 2762 } 2763 2764 if (pp != NULL) { 2765 ASSERT(mtype == PP_2_MTYPE(pp)); 2766 ASSERT(pp->p_szc == 0); 2767 2768 /* found a page with specified DMA attributes */ 2769 page_sub(&PAGE_CACHELISTS(mnode, bin, 2770 mtype), pp); 2771 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 2772 2773 mutex_exit(pcm); 2774 ASSERT(pp->p_vnode); 2775 ASSERT(PP_ISAGED(pp) == 0); 2776 check_dma(dma_attr, pp, 1); 2777 VM_STAT_ADD(pga_vmstats.pgma_allocok); 2778 return (pp); 2779 } 2780 mutex_exit(pcm); 2781 nextcachebin: 2782 bin += (i == 0) ? BIN_STEP : 1; 2783 bin &= page_colors_mask; 2784 } 2785 MTYPE_NEXT(mnode, mtype, flags); 2786 } while (mtype >= 0); 2787 2788 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 2789 return (NULL); 2790 } 2791 2792 /* 2793 * This function is similar to page_get_freelist()/page_get_cachelist() 2794 * but it searches both the lists to find a page with the specified 2795 * color (or no color) and DMA attributes. The search is done in the 2796 * freelist first and then in the cache list within the highest memory 2797 * range (based on DMA attributes) before searching in the lower 2798 * memory ranges. 2799 * 2800 * Note: This function is called only by page_create_io(). 2801 */ 2802 /*ARGSUSED*/ 2803 static page_t * 2804 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 2805 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 2806 { 2807 uint_t bin; 2808 int mtype; 2809 page_t *pp; 2810 int n; 2811 int m; 2812 int szc; 2813 int fullrange; 2814 int mnode; 2815 int local_failed_stat = 0; 2816 lgrp_mnode_cookie_t lgrp_cookie; 2817 2818 VM_STAT_ADD(pga_vmstats.pga_alloc); 2819 2820 /* only base pagesize currently supported */ 2821 if (size != MMU_PAGESIZE) 2822 return (NULL); 2823 2824 /* 2825 * If we're passed a specific lgroup, we use it. Otherwise, 2826 * assume first-touch placement is desired. 2827 */ 2828 if (!LGRP_EXISTS(lgrp)) 2829 lgrp = lgrp_home_lgrp(); 2830 2831 /* LINTED */ 2832 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 2833 2834 /* 2835 * Only hold one freelist or cachelist lock at a time, that way we 2836 * can start anywhere and not have to worry about lock 2837 * ordering. 2838 */ 2839 if (dma_attr == NULL) { 2840 n = 0; 2841 m = mnoderangecnt - 1; 2842 fullrange = 1; 2843 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 2844 } else { 2845 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 2846 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 2847 2848 /* 2849 * We can guarantee alignment only for page boundary. 2850 */ 2851 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 2852 return (NULL); 2853 2854 n = pfn_2_mtype(pfnlo); 2855 m = pfn_2_mtype(pfnhi); 2856 2857 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 2858 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 2859 } 2860 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 2861 2862 if (n > m) 2863 return (NULL); 2864 2865 szc = 0; 2866 2867 /* cylcing thru mtype handled by RANGE0 if n == 0 */ 2868 if (n == 0) { 2869 flags |= PGI_MT_RANGE0; 2870 n = m; 2871 } 2872 2873 /* 2874 * Try local memory node first, but try remote if we can't 2875 * get a page of the right color. 2876 */ 2877 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 2878 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 2879 /* 2880 * allocate pages from high pfn to low. 2881 */ 2882 for (mtype = m; mtype >= n; mtype--) { 2883 if (fullrange != 0) { 2884 pp = page_get_mnode_freelist(mnode, 2885 bin, mtype, szc, flags); 2886 if (pp == NULL) { 2887 pp = page_get_mnode_cachelist( 2888 bin, flags, mnode, mtype); 2889 } 2890 } else { 2891 pp = page_get_mnode_anylist(bin, szc, 2892 flags, mnode, mtype, dma_attr); 2893 } 2894 if (pp != NULL) { 2895 VM_STAT_ADD(pga_vmstats.pga_allocok); 2896 check_dma(dma_attr, pp, 1); 2897 return (pp); 2898 } 2899 } 2900 if (!local_failed_stat) { 2901 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 2902 local_failed_stat = 1; 2903 } 2904 } 2905 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 2906 2907 return (NULL); 2908 } 2909 2910 /* 2911 * page_create_io() 2912 * 2913 * This function is a copy of page_create_va() with an additional 2914 * argument 'mattr' that specifies DMA memory requirements to 2915 * the page list functions. This function is used by the segkmem 2916 * allocator so it is only to create new pages (i.e PG_EXCL is 2917 * set). 2918 * 2919 * Note: This interface is currently used by x86 PSM only and is 2920 * not fully specified so the commitment level is only for 2921 * private interface specific to x86. This interface uses PSM 2922 * specific page_get_anylist() interface. 2923 */ 2924 2925 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 2926 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 2927 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 2928 break; \ 2929 } \ 2930 } 2931 2932 2933 page_t * 2934 page_create_io( 2935 struct vnode *vp, 2936 u_offset_t off, 2937 uint_t bytes, 2938 uint_t flags, 2939 struct as *as, 2940 caddr_t vaddr, 2941 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 2942 { 2943 page_t *plist = NULL; 2944 uint_t plist_len = 0; 2945 pgcnt_t npages; 2946 page_t *npp = NULL; 2947 uint_t pages_req; 2948 page_t *pp; 2949 kmutex_t *phm = NULL; 2950 uint_t index; 2951 2952 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2953 "page_create_start:vp %p off %llx bytes %u flags %x", 2954 vp, off, bytes, flags); 2955 2956 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 2957 2958 pages_req = npages = mmu_btopr(bytes); 2959 2960 /* 2961 * Do the freemem and pcf accounting. 2962 */ 2963 if (!page_create_wait(npages, flags)) { 2964 return (NULL); 2965 } 2966 2967 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2968 "page_create_success:vp %p off %llx", vp, off); 2969 2970 /* 2971 * If satisfying this request has left us with too little 2972 * memory, start the wheels turning to get some back. The 2973 * first clause of the test prevents waking up the pageout 2974 * daemon in situations where it would decide that there's 2975 * nothing to do. 2976 */ 2977 if (nscan < desscan && freemem < minfree) { 2978 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2979 "pageout_cv_signal:freemem %ld", freemem); 2980 cv_signal(&proc_pageout->p_cv); 2981 } 2982 2983 if (flags & PG_PHYSCONTIG) { 2984 2985 plist = page_get_contigpage(&npages, mattr, 1); 2986 if (plist == NULL) { 2987 page_create_putback(npages); 2988 return (NULL); 2989 } 2990 2991 pp = plist; 2992 2993 do { 2994 if (!page_hashin(pp, vp, off, NULL)) { 2995 panic("pg_creat_io: hashin failed %p %p %llx", 2996 (void *)pp, (void *)vp, off); 2997 } 2998 VM_STAT_ADD(page_create_new); 2999 off += MMU_PAGESIZE; 3000 PP_CLRFREE(pp); 3001 PP_CLRAGED(pp); 3002 page_set_props(pp, P_REF); 3003 pp = pp->p_next; 3004 } while (pp != plist); 3005 3006 if (!npages) { 3007 check_dma(mattr, plist, pages_req); 3008 return (plist); 3009 } else { 3010 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3011 } 3012 3013 /* 3014 * fall-thru: 3015 * 3016 * page_get_contigpage returns when npages <= sgllen. 3017 * Grab the rest of the non-contig pages below from anylist. 3018 */ 3019 } 3020 3021 /* 3022 * Loop around collecting the requested number of pages. 3023 * Most of the time, we have to `create' a new page. With 3024 * this in mind, pull the page off the free list before 3025 * getting the hash lock. This will minimize the hash 3026 * lock hold time, nesting, and the like. If it turns 3027 * out we don't need the page, we put it back at the end. 3028 */ 3029 while (npages--) { 3030 phm = NULL; 3031 3032 index = PAGE_HASH_FUNC(vp, off); 3033 top: 3034 ASSERT(phm == NULL); 3035 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3036 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3037 3038 if (npp == NULL) { 3039 /* 3040 * Try to get the page of any color either from 3041 * the freelist or from the cache list. 3042 */ 3043 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3044 flags & ~PG_MATCH_COLOR, mattr, NULL); 3045 if (npp == NULL) { 3046 if (mattr == NULL) { 3047 /* 3048 * Not looking for a special page; 3049 * panic! 3050 */ 3051 panic("no page found %d", (int)npages); 3052 } 3053 /* 3054 * No page found! This can happen 3055 * if we are looking for a page 3056 * within a specific memory range 3057 * for DMA purposes. If PG_WAIT is 3058 * specified then we wait for a 3059 * while and then try again. The 3060 * wait could be forever if we 3061 * don't get the page(s) we need. 3062 * 3063 * Note: XXX We really need a mechanism 3064 * to wait for pages in the desired 3065 * range. For now, we wait for any 3066 * pages and see if we can use it. 3067 */ 3068 3069 if ((mattr != NULL) && (flags & PG_WAIT)) { 3070 delay(10); 3071 goto top; 3072 } 3073 goto fail; /* undo accounting stuff */ 3074 } 3075 3076 if (PP_ISAGED(npp) == 0) { 3077 /* 3078 * Since this page came from the 3079 * cachelist, we must destroy the 3080 * old vnode association. 3081 */ 3082 page_hashout(npp, (kmutex_t *)NULL); 3083 } 3084 } 3085 3086 /* 3087 * We own this page! 3088 */ 3089 ASSERT(PAGE_EXCL(npp)); 3090 ASSERT(npp->p_vnode == NULL); 3091 ASSERT(!hat_page_is_mapped(npp)); 3092 PP_CLRFREE(npp); 3093 PP_CLRAGED(npp); 3094 3095 /* 3096 * Here we have a page in our hot little mits and are 3097 * just waiting to stuff it on the appropriate lists. 3098 * Get the mutex and check to see if it really does 3099 * not exist. 3100 */ 3101 phm = PAGE_HASH_MUTEX(index); 3102 mutex_enter(phm); 3103 PAGE_HASH_SEARCH(index, pp, vp, off); 3104 if (pp == NULL) { 3105 VM_STAT_ADD(page_create_new); 3106 pp = npp; 3107 npp = NULL; 3108 if (!page_hashin(pp, vp, off, phm)) { 3109 /* 3110 * Since we hold the page hash mutex and 3111 * just searched for this page, page_hashin 3112 * had better not fail. If it does, that 3113 * means somethread did not follow the 3114 * page hash mutex rules. Panic now and 3115 * get it over with. As usual, go down 3116 * holding all the locks. 3117 */ 3118 ASSERT(MUTEX_HELD(phm)); 3119 panic("page_create: hashin fail %p %p %llx %p", 3120 (void *)pp, (void *)vp, off, (void *)phm); 3121 3122 } 3123 ASSERT(MUTEX_HELD(phm)); 3124 mutex_exit(phm); 3125 phm = NULL; 3126 3127 /* 3128 * Hat layer locking need not be done to set 3129 * the following bits since the page is not hashed 3130 * and was on the free list (i.e., had no mappings). 3131 * 3132 * Set the reference bit to protect 3133 * against immediate pageout 3134 * 3135 * XXXmh modify freelist code to set reference 3136 * bit so we don't have to do it here. 3137 */ 3138 page_set_props(pp, P_REF); 3139 } else { 3140 ASSERT(MUTEX_HELD(phm)); 3141 mutex_exit(phm); 3142 phm = NULL; 3143 /* 3144 * NOTE: This should not happen for pages associated 3145 * with kernel vnode 'kvp'. 3146 */ 3147 /* XX64 - to debug why this happens! */ 3148 ASSERT(!VN_ISKAS(vp)); 3149 if (VN_ISKAS(vp)) 3150 cmn_err(CE_NOTE, 3151 "page_create: page not expected " 3152 "in hash list for kernel vnode - pp 0x%p", 3153 (void *)pp); 3154 VM_STAT_ADD(page_create_exists); 3155 goto fail; 3156 } 3157 3158 /* 3159 * Got a page! It is locked. Acquire the i/o 3160 * lock since we are going to use the p_next and 3161 * p_prev fields to link the requested pages together. 3162 */ 3163 page_io_lock(pp); 3164 page_add(&plist, pp); 3165 plist = plist->p_next; 3166 off += MMU_PAGESIZE; 3167 vaddr += MMU_PAGESIZE; 3168 } 3169 3170 check_dma(mattr, plist, pages_req); 3171 return (plist); 3172 3173 fail: 3174 if (npp != NULL) { 3175 /* 3176 * Did not need this page after all. 3177 * Put it back on the free list. 3178 */ 3179 VM_STAT_ADD(page_create_putbacks); 3180 PP_SETFREE(npp); 3181 PP_SETAGED(npp); 3182 npp->p_offset = (u_offset_t)-1; 3183 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3184 page_unlock(npp); 3185 } 3186 3187 /* 3188 * Give up the pages we already got. 3189 */ 3190 while (plist != NULL) { 3191 pp = plist; 3192 page_sub(&plist, pp); 3193 page_io_unlock(pp); 3194 plist_len++; 3195 /*LINTED: constant in conditional ctx*/ 3196 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3197 } 3198 3199 /* 3200 * VN_DISPOSE does freemem accounting for the pages in plist 3201 * by calling page_free. So, we need to undo the pcf accounting 3202 * for only the remaining pages. 3203 */ 3204 VM_STAT_ADD(page_create_putbacks); 3205 page_create_putback(pages_req - plist_len); 3206 3207 return (NULL); 3208 } 3209 #endif /* !__xpv */ 3210 3211 3212 /* 3213 * Copy the data from the physical page represented by "frompp" to 3214 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3215 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3216 * level and no one sleeps with an active mapping there. 3217 * 3218 * Note that the ref/mod bits in the page_t's are not affected by 3219 * this operation, hence it is up to the caller to update them appropriately. 3220 */ 3221 int 3222 ppcopy(page_t *frompp, page_t *topp) 3223 { 3224 caddr_t pp_addr1; 3225 caddr_t pp_addr2; 3226 hat_mempte_t pte1; 3227 hat_mempte_t pte2; 3228 kmutex_t *ppaddr_mutex; 3229 label_t ljb; 3230 int ret = 1; 3231 3232 ASSERT_STACK_ALIGNED(); 3233 ASSERT(PAGE_LOCKED(frompp)); 3234 ASSERT(PAGE_LOCKED(topp)); 3235 3236 if (kpm_enable) { 3237 pp_addr1 = hat_kpm_page2va(frompp, 0); 3238 pp_addr2 = hat_kpm_page2va(topp, 0); 3239 kpreempt_disable(); 3240 } else { 3241 /* 3242 * disable pre-emption so that CPU can't change 3243 */ 3244 kpreempt_disable(); 3245 3246 pp_addr1 = CPU->cpu_caddr1; 3247 pp_addr2 = CPU->cpu_caddr2; 3248 pte1 = CPU->cpu_caddr1pte; 3249 pte2 = CPU->cpu_caddr2pte; 3250 3251 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3252 mutex_enter(ppaddr_mutex); 3253 3254 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3255 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3256 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3257 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3258 HAT_LOAD_NOCONSIST); 3259 } 3260 3261 if (on_fault(&ljb)) { 3262 ret = 0; 3263 goto faulted; 3264 } 3265 if (use_sse_pagecopy) 3266 #ifdef __xpv 3267 page_copy_no_xmm(pp_addr2, pp_addr1); 3268 #else 3269 hwblkpagecopy(pp_addr1, pp_addr2); 3270 #endif 3271 else 3272 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3273 3274 no_fault(); 3275 faulted: 3276 if (!kpm_enable) { 3277 #ifdef __xpv 3278 /* 3279 * We can't leave unused mappings laying about under the 3280 * hypervisor, so blow them away. 3281 */ 3282 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3283 UVMF_INVLPG | UVMF_LOCAL) < 0) 3284 panic("HYPERVISOR_update_va_mapping() failed"); 3285 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3286 UVMF_INVLPG | UVMF_LOCAL) < 0) 3287 panic("HYPERVISOR_update_va_mapping() failed"); 3288 #endif 3289 mutex_exit(ppaddr_mutex); 3290 } 3291 kpreempt_enable(); 3292 return (ret); 3293 } 3294 3295 void 3296 pagezero(page_t *pp, uint_t off, uint_t len) 3297 { 3298 ASSERT(PAGE_LOCKED(pp)); 3299 pfnzero(page_pptonum(pp), off, len); 3300 } 3301 3302 /* 3303 * Zero the physical page from off to off + len given by pfn 3304 * without changing the reference and modified bits of page. 3305 * 3306 * We use this using CPU private page address #2, see ppcopy() for more info. 3307 * pfnzero() must not be called at interrupt level. 3308 */ 3309 void 3310 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3311 { 3312 caddr_t pp_addr2; 3313 hat_mempte_t pte2; 3314 kmutex_t *ppaddr_mutex = NULL; 3315 3316 ASSERT_STACK_ALIGNED(); 3317 ASSERT(len <= MMU_PAGESIZE); 3318 ASSERT(off <= MMU_PAGESIZE); 3319 ASSERT(off + len <= MMU_PAGESIZE); 3320 3321 if (kpm_enable && !pfn_is_foreign(pfn)) { 3322 pp_addr2 = hat_kpm_pfn2va(pfn); 3323 kpreempt_disable(); 3324 } else { 3325 kpreempt_disable(); 3326 3327 pp_addr2 = CPU->cpu_caddr2; 3328 pte2 = CPU->cpu_caddr2pte; 3329 3330 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3331 mutex_enter(ppaddr_mutex); 3332 3333 hat_mempte_remap(pfn, pp_addr2, pte2, 3334 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3335 HAT_LOAD_NOCONSIST); 3336 } 3337 3338 if (use_sse_pagezero) { 3339 #ifdef __xpv 3340 uint_t rem; 3341 3342 /* 3343 * zero a byte at a time until properly aligned for 3344 * block_zero_no_xmm(). 3345 */ 3346 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3347 pp_addr2[off++] = 0; 3348 3349 /* 3350 * Now use faster block_zero_no_xmm() for any range 3351 * that is properly aligned and sized. 3352 */ 3353 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3354 len -= rem; 3355 if (len != 0) { 3356 block_zero_no_xmm(pp_addr2 + off, len); 3357 off += len; 3358 } 3359 3360 /* 3361 * zero remainder with byte stores. 3362 */ 3363 while (rem-- > 0) 3364 pp_addr2[off++] = 0; 3365 #else 3366 hwblkclr(pp_addr2 + off, len); 3367 #endif 3368 } else { 3369 bzero(pp_addr2 + off, len); 3370 } 3371 3372 if (!kpm_enable || pfn_is_foreign(pfn)) { 3373 #ifdef __xpv 3374 /* 3375 * On the hypervisor this page might get used for a page 3376 * table before any intervening change to this mapping, 3377 * so blow it away. 3378 */ 3379 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3380 UVMF_INVLPG) < 0) 3381 panic("HYPERVISOR_update_va_mapping() failed"); 3382 #endif 3383 mutex_exit(ppaddr_mutex); 3384 } 3385 3386 kpreempt_enable(); 3387 } 3388 3389 /* 3390 * Platform-dependent page scrub call. 3391 */ 3392 void 3393 pagescrub(page_t *pp, uint_t off, uint_t len) 3394 { 3395 /* 3396 * For now, we rely on the fact that pagezero() will 3397 * always clear UEs. 3398 */ 3399 pagezero(pp, off, len); 3400 } 3401 3402 /* 3403 * set up two private addresses for use on a given CPU for use in ppcopy() 3404 */ 3405 void 3406 setup_vaddr_for_ppcopy(struct cpu *cpup) 3407 { 3408 void *addr; 3409 hat_mempte_t pte_pa; 3410 3411 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3412 pte_pa = hat_mempte_setup(addr); 3413 cpup->cpu_caddr1 = addr; 3414 cpup->cpu_caddr1pte = pte_pa; 3415 3416 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3417 pte_pa = hat_mempte_setup(addr); 3418 cpup->cpu_caddr2 = addr; 3419 cpup->cpu_caddr2pte = pte_pa; 3420 3421 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3422 } 3423 3424 /* 3425 * Undo setup_vaddr_for_ppcopy 3426 */ 3427 void 3428 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3429 { 3430 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3431 3432 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3433 cpup->cpu_caddr2pte = 0; 3434 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3435 cpup->cpu_caddr2 = 0; 3436 3437 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3438 cpup->cpu_caddr1pte = 0; 3439 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3440 cpup->cpu_caddr1 = 0; 3441 } 3442 3443 /* 3444 * Create the pageout scanner thread. The thread has to 3445 * start at procedure with process pp and priority pri. 3446 */ 3447 void 3448 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri) 3449 { 3450 (void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri); 3451 } 3452 3453 /* 3454 * Function for flushing D-cache when performing module relocations 3455 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3456 */ 3457 void 3458 dcache_flushall() 3459 {} 3460 3461 size_t 3462 exec_get_spslew(void) 3463 { 3464 return (0); 3465 } 3466 3467 /* 3468 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3469 * number to vary where the pages come from. This is quite a hacked up 3470 * method -- it works for now, but really needs to be fixed up a bit. 3471 * 3472 * We currently use page_create_va() on the kvp with fake offsets, 3473 * segments and virt address. This is pretty bogus, but was copied from the 3474 * old hat_i86.c code. A better approach would be to specify either mnode 3475 * random or mnode local and takes a page from whatever color has the MOST 3476 * available - this would have a minimal impact on page coloring. 3477 */ 3478 page_t * 3479 page_get_physical(uintptr_t seed) 3480 { 3481 page_t *pp; 3482 u_offset_t offset; 3483 static struct seg tmpseg; 3484 static uintptr_t ctr = 0; 3485 3486 /* 3487 * This code is gross, we really need a simpler page allocator. 3488 * 3489 * We need assign an offset for the page to call page_create_va(). 3490 * To avoid conflicts with other pages, we get creative with the offset. 3491 * For 32 bits, we pick an offset > 4Gig 3492 * For 64 bits, pick an offset somewhere in the VA hole. 3493 */ 3494 offset = seed; 3495 if (offset > kernelbase) 3496 offset -= kernelbase; 3497 offset <<= MMU_PAGESHIFT; 3498 #if defined(__amd64) 3499 offset += mmu.hole_start; /* something in VA hole */ 3500 #else 3501 offset += 1ULL << 40; /* something > 4 Gig */ 3502 #endif 3503 3504 if (page_resv(1, KM_NOSLEEP) == 0) 3505 return (NULL); 3506 3507 #ifdef DEBUG 3508 pp = page_exists(&kvp, offset); 3509 if (pp != NULL) 3510 panic("page already exists %p", pp); 3511 #endif 3512 3513 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 3514 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 3515 if (pp == NULL) 3516 return (NULL); 3517 page_io_unlock(pp); 3518 page_hashout(pp, NULL); 3519 return (pp); 3520 } 3521