xref: /titanic_52/usr/src/uts/i86pc/vm/vm_machdep.c (revision 47911a7d5f24c2fc37e7b5bcc696fe32e750c16c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /*	All Rights Reserved   */
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 /*
37  * UNIX machine dependent virtual memory support.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/kmem.h>
46 #include <sys/vmem.h>
47 #include <sys/buf.h>
48 #include <sys/cpuvar.h>
49 #include <sys/lgrp.h>
50 #include <sys/disp.h>
51 #include <sys/vm.h>
52 #include <sys/mman.h>
53 #include <sys/vnode.h>
54 #include <sys/cred.h>
55 #include <sys/exec.h>
56 #include <sys/exechdr.h>
57 #include <sys/debug.h>
58 #include <sys/vmsystm.h>
59 
60 #include <vm/hat.h>
61 #include <vm/as.h>
62 #include <vm/seg.h>
63 #include <vm/seg_kp.h>
64 #include <vm/seg_vn.h>
65 #include <vm/page.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_kpm.h>
68 #include <vm/vm_dep.h>
69 
70 #include <sys/cpu.h>
71 #include <sys/vm_machparam.h>
72 #include <sys/memlist.h>
73 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
74 #include <vm/hat_i86.h>
75 #include <sys/x86_archext.h>
76 #include <sys/elf_386.h>
77 #include <sys/cmn_err.h>
78 #include <sys/archsystm.h>
79 #include <sys/machsystm.h>
80 
81 #include <sys/vtrace.h>
82 #include <sys/ddidmareq.h>
83 #include <sys/promif.h>
84 #include <sys/memnode.h>
85 #include <sys/stack.h>
86 #include <util/qsort.h>
87 #include <sys/taskq.h>
88 
89 #ifdef __xpv
90 
91 #include <sys/hypervisor.h>
92 #include <sys/xen_mmu.h>
93 #include <sys/balloon_impl.h>
94 
95 /*
96  * domain 0 pages usable for DMA are kept pre-allocated and kept in
97  * distinct lists, ordered by increasing mfn.
98  */
99 static kmutex_t io_pool_lock;
100 static kmutex_t contig_list_lock;
101 static page_t *io_pool_4g;	/* pool for 32 bit dma limited devices */
102 static page_t *io_pool_16m;	/* pool for 24 bit dma limited legacy devices */
103 static long io_pool_cnt;
104 static long io_pool_cnt_max = 0;
105 #define	DEFAULT_IO_POOL_MIN	128
106 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
107 static long io_pool_cnt_lowater = 0;
108 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
109 static long io_pool_shrinks;	/* how many times did we really shrink */
110 static long io_pool_grows;	/* how many times did we grow */
111 static mfn_t start_mfn = 1;
112 static caddr_t io_pool_kva;	/* use to alloc pages when needed */
113 
114 static int create_contig_pfnlist(uint_t);
115 
116 /*
117  * percentage of phys mem to hold in the i/o pool
118  */
119 #define	DEFAULT_IO_POOL_PCT	2
120 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
121 static void page_io_pool_sub(page_t **, page_t *, page_t *);
122 int ioalloc_dbg = 0;
123 
124 #endif /* __xpv */
125 
126 uint_t vac_colors = 1;
127 
128 int largepagesupport = 0;
129 extern uint_t page_create_new;
130 extern uint_t page_create_exists;
131 extern uint_t page_create_putbacks;
132 extern uint_t page_create_putbacks;
133 /*
134  * Allow users to disable the kernel's use of SSE.
135  */
136 extern int use_sse_pagecopy, use_sse_pagezero;
137 
138 /*
139  * combined memory ranges from mnode and memranges[] to manage single
140  * mnode/mtype dimension in the page lists.
141  */
142 typedef struct {
143 	pfn_t	mnr_pfnlo;
144 	pfn_t	mnr_pfnhi;
145 	int	mnr_mnode;
146 	int	mnr_memrange;		/* index into memranges[] */
147 	/* maintain page list stats */
148 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
149 	pgcnt_t	mnr_mt_flpgcnt[MMU_PAGE_SIZES];	/* free list cnt per szc */
150 	pgcnt_t	mnr_mt_totcnt;		/* sum of cache and free lists */
151 #ifdef DEBUG
152 	struct mnr_mts {		/* mnode/mtype szc stats */
153 		pgcnt_t	mnr_mts_pgcnt;
154 		int	mnr_mts_colors;
155 		pgcnt_t *mnr_mtsc_pgcnt;
156 	} 	*mnr_mts;
157 #endif
158 } mnoderange_t;
159 
160 #define	MEMRANGEHI(mtype)						\
161 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
162 #define	MEMRANGELO(mtype)	(memranges[mtype])
163 
164 #define	MTYPE_FREEMEM(mt)	(mnoderanges[mt].mnr_mt_totcnt)
165 
166 /*
167  * As the PC architecture evolved memory up was clumped into several
168  * ranges for various historical I/O devices to do DMA.
169  * < 16Meg - ISA bus
170  * < 2Gig - ???
171  * < 4Gig - PCI bus or drivers that don't understand PAE mode
172  *
173  * These are listed in reverse order, so that we can skip over unused
174  * ranges on machines with small memories.
175  *
176  * For now under the Hypervisor, we'll only ever have one memrange.
177  */
178 #define	PFN_4GIG	0x100000
179 #define	PFN_16MEG	0x1000
180 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
181     PFN_4GIG,	/* pfn range for 4G and above */
182     0x80000,	/* pfn range for 2G-4G */
183     PFN_16MEG,	/* pfn range for 16M-2G */
184     0x00000,	/* pfn range for 0-16M */
185 };
186 pfn_t *memranges = &arch_memranges[0];
187 int nranges = NUM_MEM_RANGES;
188 
189 /*
190  * This combines mem_node_config and memranges into one data
191  * structure to be used for page list management.
192  */
193 mnoderange_t	*mnoderanges;
194 int		mnoderangecnt;
195 int		mtype4g;
196 
197 /*
198  * 4g memory management variables for systems with more than 4g of memory:
199  *
200  * physical memory below 4g is required for 32bit dma devices and, currently,
201  * for kmem memory. On systems with more than 4g of memory, the pool of memory
202  * below 4g can be depleted without any paging activity given that there is
203  * likely to be sufficient memory above 4g.
204  *
205  * physmax4g is set true if the largest pfn is over 4g. The rest of the
206  * 4g memory management code is enabled only when physmax4g is true.
207  *
208  * maxmem4g is the count of the maximum number of pages on the page lists
209  * with physical addresses below 4g. It can be a lot less then 4g given that
210  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
211  * agp aperture etc.
212  *
213  * freemem4g maintains the count of the number of available pages on the
214  * page lists with physical addresses below 4g.
215  *
216  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
217  * 6% (desfree4gshift = 4) of maxmem4g.
218  *
219  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
220  * and the amount of physical memory above 4g is greater than freemem4g.
221  * In this case, page_get_* routines will restrict below 4g allocations
222  * for requests that don't specifically require it.
223  */
224 
225 #define	LOTSFREE4G	(maxmem4g >> lotsfree4gshift)
226 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
227 
228 #define	RESTRICT4G_ALLOC					\
229 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
230 
231 static pgcnt_t	maxmem4g;
232 static pgcnt_t	freemem4g;
233 static int	physmax4g;
234 static int	desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
235 static int	lotsfree4gshift = 3;
236 
237 /*
238  * 16m memory management:
239  *
240  * reserve some amount of physical memory below 16m for legacy devices.
241  *
242  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
243  * 16m or if the 16m pool drops below DESFREE16M.
244  *
245  * In this case, general page allocations via page_get_{free,cache}list
246  * routines will be restricted from allocating from the 16m pool. Allocations
247  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
248  * are not restricted.
249  */
250 
251 #define	FREEMEM16M	MTYPE_FREEMEM(0)
252 #define	DESFREE16M	desfree16m
253 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags)		\
254 	((freemem != 0) && ((flags & PG_PANIC) == 0) &&		\
255 	    ((freemem >= (FREEMEM16M)) ||			\
256 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
257 
258 static pgcnt_t	desfree16m = 0x380;
259 
260 /*
261  * This can be patched via /etc/system to allow old non-PAE aware device
262  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
263  */
264 int restricted_kmemalloc = 0;
265 
266 #ifdef VM_STATS
267 struct {
268 	ulong_t	pga_alloc;
269 	ulong_t	pga_notfullrange;
270 	ulong_t	pga_nulldmaattr;
271 	ulong_t	pga_allocok;
272 	ulong_t	pga_allocfailed;
273 	ulong_t	pgma_alloc;
274 	ulong_t	pgma_allocok;
275 	ulong_t	pgma_allocfailed;
276 	ulong_t	pgma_allocempty;
277 } pga_vmstats;
278 #endif
279 
280 uint_t mmu_page_sizes;
281 
282 /* How many page sizes the users can see */
283 uint_t mmu_exported_page_sizes;
284 
285 /* page sizes that legacy applications can see */
286 uint_t mmu_legacy_page_sizes;
287 
288 /*
289  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
290  * fewer than this many pages.
291  */
292 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
293 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
294 
295 /*
296  * Maximum and default segment size tunables for user private
297  * and shared anon memory, and user text and initialized data.
298  * These can be patched via /etc/system to allow large pages
299  * to be used for mapping application private and shared anon memory.
300  */
301 size_t mcntl0_lpsize = MMU_PAGESIZE;
302 size_t max_uheap_lpsize = MMU_PAGESIZE;
303 size_t default_uheap_lpsize = MMU_PAGESIZE;
304 size_t max_ustack_lpsize = MMU_PAGESIZE;
305 size_t default_ustack_lpsize = MMU_PAGESIZE;
306 size_t max_privmap_lpsize = MMU_PAGESIZE;
307 size_t max_uidata_lpsize = MMU_PAGESIZE;
308 size_t max_utext_lpsize = MMU_PAGESIZE;
309 size_t max_shm_lpsize = MMU_PAGESIZE;
310 
311 
312 /*
313  * initialized by page_coloring_init().
314  */
315 uint_t	page_colors;
316 uint_t	page_colors_mask;
317 uint_t	page_coloring_shift;
318 int	cpu_page_colors;
319 static uint_t	l2_colors;
320 
321 /*
322  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
323  * and page_colors are calculated from the l2 cache n-way set size.  Within a
324  * mnode range, the page freelist and cachelist are hashed into bins based on
325  * color. This makes it easier to search for a page within a specific memory
326  * range.
327  */
328 #define	PAGE_COLORS_MIN	16
329 
330 page_t ****page_freelists;
331 page_t ***page_cachelists;
332 
333 
334 /*
335  * Used by page layer to know about page sizes
336  */
337 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
338 
339 kmutex_t	*fpc_mutex[NPC_MUTEX];
340 kmutex_t	*cpc_mutex[NPC_MUTEX];
341 
342 /*
343  * Only let one thread at a time try to coalesce large pages, to
344  * prevent them from working against each other.
345  */
346 static kmutex_t	contig_lock;
347 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
348 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
349 
350 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
351 
352 /*
353  * Return the optimum page size for a given mapping
354  */
355 /*ARGSUSED*/
356 size_t
357 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
358 {
359 	level_t l = 0;
360 	size_t pgsz = MMU_PAGESIZE;
361 	size_t max_lpsize;
362 	uint_t mszc;
363 
364 	ASSERT(maptype != MAPPGSZ_VA);
365 
366 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
367 		return (MMU_PAGESIZE);
368 	}
369 
370 	switch (maptype) {
371 	case MAPPGSZ_HEAP:
372 	case MAPPGSZ_STK:
373 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
374 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
375 		if (max_lpsize == MMU_PAGESIZE) {
376 			return (MMU_PAGESIZE);
377 		}
378 		if (len == 0) {
379 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
380 			    p->p_brksize - p->p_bssbase : p->p_stksize;
381 		}
382 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
383 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
384 
385 		/*
386 		 * use the pages size that best fits len
387 		 */
388 		for (l = mmu.umax_page_level; l > 0; --l) {
389 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
390 				continue;
391 			} else {
392 				pgsz = LEVEL_SIZE(l);
393 			}
394 			break;
395 		}
396 
397 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
398 		    p->p_stkpageszc);
399 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
400 			pgsz = hw_page_array[mszc].hp_size;
401 		}
402 		return (pgsz);
403 
404 	case MAPPGSZ_ISM:
405 		for (l = mmu.umax_page_level; l > 0; --l) {
406 			if (len >= LEVEL_SIZE(l))
407 				return (LEVEL_SIZE(l));
408 		}
409 		return (LEVEL_SIZE(0));
410 	}
411 	return (pgsz);
412 }
413 
414 static uint_t
415 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
416     size_t min_physmem)
417 {
418 	caddr_t eaddr = addr + size;
419 	uint_t szcvec = 0;
420 	caddr_t raddr;
421 	caddr_t readdr;
422 	size_t	pgsz;
423 	int i;
424 
425 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
426 		return (0);
427 	}
428 
429 	for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
430 		pgsz = page_get_pagesize(i);
431 		if (pgsz > max_lpsize) {
432 			continue;
433 		}
434 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
435 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
436 		if (raddr < addr || raddr >= readdr) {
437 			continue;
438 		}
439 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
440 			continue;
441 		}
442 		/*
443 		 * Set szcvec to the remaining page sizes.
444 		 */
445 		szcvec = ((1 << (i + 1)) - 1) & ~1;
446 		break;
447 	}
448 	return (szcvec);
449 }
450 
451 /*
452  * Return a bit vector of large page size codes that
453  * can be used to map [addr, addr + len) region.
454  */
455 /*ARGSUSED*/
456 uint_t
457 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
458     int memcntl)
459 {
460 	size_t max_lpsize = mcntl0_lpsize;
461 
462 	if (mmu.max_page_level == 0)
463 		return (0);
464 
465 	if (flags & MAP_TEXT) {
466 		if (!memcntl)
467 			max_lpsize = max_utext_lpsize;
468 		return (map_szcvec(addr, size, off, max_lpsize,
469 		    shm_lpg_min_physmem));
470 
471 	} else if (flags & MAP_INITDATA) {
472 		if (!memcntl)
473 			max_lpsize = max_uidata_lpsize;
474 		return (map_szcvec(addr, size, off, max_lpsize,
475 		    privm_lpg_min_physmem));
476 
477 	} else if (type == MAPPGSZC_SHM) {
478 		if (!memcntl)
479 			max_lpsize = max_shm_lpsize;
480 		return (map_szcvec(addr, size, off, max_lpsize,
481 		    shm_lpg_min_physmem));
482 
483 	} else if (type == MAPPGSZC_HEAP) {
484 		if (!memcntl)
485 			max_lpsize = max_uheap_lpsize;
486 		return (map_szcvec(addr, size, off, max_lpsize,
487 		    privm_lpg_min_physmem));
488 
489 	} else if (type == MAPPGSZC_STACK) {
490 		if (!memcntl)
491 			max_lpsize = max_ustack_lpsize;
492 		return (map_szcvec(addr, size, off, max_lpsize,
493 		    privm_lpg_min_physmem));
494 
495 	} else {
496 		if (!memcntl)
497 			max_lpsize = max_privmap_lpsize;
498 		return (map_szcvec(addr, size, off, max_lpsize,
499 		    privm_lpg_min_physmem));
500 	}
501 }
502 
503 /*
504  * Handle a pagefault.
505  */
506 faultcode_t
507 pagefault(
508 	caddr_t addr,
509 	enum fault_type type,
510 	enum seg_rw rw,
511 	int iskernel)
512 {
513 	struct as *as;
514 	struct hat *hat;
515 	struct proc *p;
516 	kthread_t *t;
517 	faultcode_t res;
518 	caddr_t base;
519 	size_t len;
520 	int err;
521 	int mapped_red;
522 	uintptr_t ea;
523 
524 	ASSERT_STACK_ALIGNED();
525 
526 	if (INVALID_VADDR(addr))
527 		return (FC_NOMAP);
528 
529 	mapped_red = segkp_map_red();
530 
531 	if (iskernel) {
532 		as = &kas;
533 		hat = as->a_hat;
534 	} else {
535 		t = curthread;
536 		p = ttoproc(t);
537 		as = p->p_as;
538 		hat = as->a_hat;
539 	}
540 
541 	/*
542 	 * Dispatch pagefault.
543 	 */
544 	res = as_fault(hat, as, addr, 1, type, rw);
545 
546 	/*
547 	 * If this isn't a potential unmapped hole in the user's
548 	 * UNIX data or stack segments, just return status info.
549 	 */
550 	if (res != FC_NOMAP || iskernel)
551 		goto out;
552 
553 	/*
554 	 * Check to see if we happened to faulted on a currently unmapped
555 	 * part of the UNIX data or stack segments.  If so, create a zfod
556 	 * mapping there and then try calling the fault routine again.
557 	 */
558 	base = p->p_brkbase;
559 	len = p->p_brksize;
560 
561 	if (addr < base || addr >= base + len) {		/* data seg? */
562 		base = (caddr_t)p->p_usrstack - p->p_stksize;
563 		len = p->p_stksize;
564 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
565 			/* not in either UNIX data or stack segments */
566 			res = FC_NOMAP;
567 			goto out;
568 		}
569 	}
570 
571 	/*
572 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
573 	 * This code is probably not needed anymore
574 	 */
575 	if (p->p_model == DATAMODEL_ILP32) {
576 
577 		/* expand the gap to the page boundaries on each side */
578 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
579 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
580 		len = ea - (uintptr_t)base;
581 
582 		as_rangelock(as);
583 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
584 		    0) {
585 			err = as_map(as, base, len, segvn_create, zfod_argsp);
586 			as_rangeunlock(as);
587 			if (err) {
588 				res = FC_MAKE_ERR(err);
589 				goto out;
590 			}
591 		} else {
592 			/*
593 			 * This page is already mapped by another thread after
594 			 * we returned from as_fault() above.  We just fall
595 			 * through as_fault() below.
596 			 */
597 			as_rangeunlock(as);
598 		}
599 
600 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
601 	}
602 
603 out:
604 	if (mapped_red)
605 		segkp_unmap_red();
606 
607 	return (res);
608 }
609 
610 void
611 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
612 {
613 	struct proc *p = curproc;
614 	caddr_t userlimit = (flags & _MAP_LOW32) ?
615 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
616 
617 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
618 }
619 
620 /*ARGSUSED*/
621 int
622 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
623 {
624 	return (0);
625 }
626 
627 /*
628  * map_addr_proc() is the routine called when the system is to
629  * choose an address for the user.  We will pick an address
630  * range which is the highest available below userlimit.
631  *
632  * addrp is a value/result parameter.
633  *	On input it is a hint from the user to be used in a completely
634  *	machine dependent fashion.  We decide to completely ignore this hint.
635  *
636  *	On output it is NULL if no address can be found in the current
637  *	processes address space or else an address that is currently
638  *	not mapped for len bytes with a page of red zone on either side.
639  *
640  *	align is not needed on x86 (it's for viturally addressed caches)
641  */
642 /*ARGSUSED*/
643 void
644 map_addr_proc(
645 	caddr_t *addrp,
646 	size_t len,
647 	offset_t off,
648 	int vacalign,
649 	caddr_t userlimit,
650 	struct proc *p,
651 	uint_t flags)
652 {
653 	struct as *as = p->p_as;
654 	caddr_t addr;
655 	caddr_t base;
656 	size_t slen;
657 	size_t align_amount;
658 
659 	ASSERT32(userlimit == as->a_userlimit);
660 
661 	base = p->p_brkbase;
662 #if defined(__amd64)
663 	/*
664 	 * XX64 Yes, this needs more work.
665 	 */
666 	if (p->p_model == DATAMODEL_NATIVE) {
667 		if (userlimit < as->a_userlimit) {
668 			/*
669 			 * This happens when a program wants to map
670 			 * something in a range that's accessible to a
671 			 * program in a smaller address space.  For example,
672 			 * a 64-bit program calling mmap32(2) to guarantee
673 			 * that the returned address is below 4Gbytes.
674 			 */
675 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
676 
677 			if (userlimit > base)
678 				slen = userlimit - base;
679 			else {
680 				*addrp = NULL;
681 				return;
682 			}
683 		} else {
684 			/*
685 			 * XX64 This layout is probably wrong .. but in
686 			 * the event we make the amd64 address space look
687 			 * like sparcv9 i.e. with the stack -above- the
688 			 * heap, this bit of code might even be correct.
689 			 */
690 			slen = p->p_usrstack - base -
691 			    (((size_t)rctl_enforced_value(
692 			    rctlproc_legacy[RLIMIT_STACK],
693 			    p->p_rctls, p) + PAGEOFFSET) & PAGEMASK);
694 		}
695 	} else
696 #endif
697 		slen = userlimit - base;
698 
699 	len = (len + PAGEOFFSET) & PAGEMASK;
700 
701 	/*
702 	 * Redzone for each side of the request. This is done to leave
703 	 * one page unmapped between segments. This is not required, but
704 	 * it's useful for the user because if their program strays across
705 	 * a segment boundary, it will catch a fault immediately making
706 	 * debugging a little easier.
707 	 */
708 	len += 2 * MMU_PAGESIZE;
709 
710 	/*
711 	 * figure out what the alignment should be
712 	 *
713 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
714 	 */
715 	if (len <= ELF_386_MAXPGSZ) {
716 		/*
717 		 * Align virtual addresses to ensure that ELF shared libraries
718 		 * are mapped with the appropriate alignment constraints by
719 		 * the run-time linker.
720 		 */
721 		align_amount = ELF_386_MAXPGSZ;
722 	} else {
723 		int l = mmu.umax_page_level;
724 
725 		while (l && len < LEVEL_SIZE(l))
726 			--l;
727 
728 		align_amount = LEVEL_SIZE(l);
729 	}
730 
731 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
732 		align_amount = (uintptr_t)*addrp;
733 
734 	len += align_amount;
735 
736 	/*
737 	 * Look for a large enough hole starting below userlimit.
738 	 * After finding it, use the upper part.  Addition of PAGESIZE
739 	 * is for the redzone as described above.
740 	 */
741 	if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
742 		caddr_t as_addr;
743 
744 		addr = base + slen - len + MMU_PAGESIZE;
745 		as_addr = addr;
746 		/*
747 		 * Round address DOWN to the alignment amount,
748 		 * add the offset, and if this address is less
749 		 * than the original address, add alignment amount.
750 		 */
751 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
752 		addr += (uintptr_t)(off & (align_amount - 1));
753 		if (addr < as_addr)
754 			addr += align_amount;
755 
756 		ASSERT(addr <= (as_addr + align_amount));
757 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
758 		    ((uintptr_t)(off & (align_amount - 1))));
759 		*addrp = addr;
760 	} else {
761 		*addrp = NULL;	/* no more virtual space */
762 	}
763 }
764 
765 /*
766  * Determine whether [base, base+len] contains a valid range of
767  * addresses at least minlen long. base and len are adjusted if
768  * required to provide a valid range.
769  */
770 /*ARGSUSED3*/
771 int
772 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
773 {
774 	uintptr_t hi, lo;
775 
776 	lo = (uintptr_t)*basep;
777 	hi = lo + *lenp;
778 
779 	/*
780 	 * If hi rolled over the top, try cutting back.
781 	 */
782 	if (hi < lo) {
783 		if (0 - lo + hi < minlen)
784 			return (0);
785 		if (0 - lo < minlen)
786 			return (0);
787 		*lenp = 0 - lo;
788 	} else if (hi - lo < minlen) {
789 		return (0);
790 	}
791 #if defined(__amd64)
792 	/*
793 	 * Deal with a possible hole in the address range between
794 	 * hole_start and hole_end that should never be mapped.
795 	 */
796 	if (lo < hole_start) {
797 		if (hi > hole_start) {
798 			if (hi < hole_end) {
799 				hi = hole_start;
800 			} else {
801 				/* lo < hole_start && hi >= hole_end */
802 				if (dir == AH_LO) {
803 					/*
804 					 * prefer lowest range
805 					 */
806 					if (hole_start - lo >= minlen)
807 						hi = hole_start;
808 					else if (hi - hole_end >= minlen)
809 						lo = hole_end;
810 					else
811 						return (0);
812 				} else {
813 					/*
814 					 * prefer highest range
815 					 */
816 					if (hi - hole_end >= minlen)
817 						lo = hole_end;
818 					else if (hole_start - lo >= minlen)
819 						hi = hole_start;
820 					else
821 						return (0);
822 				}
823 			}
824 		}
825 	} else {
826 		/* lo >= hole_start */
827 		if (hi < hole_end)
828 			return (0);
829 		if (lo < hole_end)
830 			lo = hole_end;
831 	}
832 
833 	if (hi - lo < minlen)
834 		return (0);
835 
836 	*basep = (caddr_t)lo;
837 	*lenp = hi - lo;
838 #endif
839 	return (1);
840 }
841 
842 /*
843  * Determine whether [addr, addr+len] are valid user addresses.
844  */
845 /*ARGSUSED*/
846 int
847 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
848     caddr_t userlimit)
849 {
850 	caddr_t eaddr = addr + len;
851 
852 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
853 		return (RANGE_BADADDR);
854 
855 #if defined(__amd64)
856 	/*
857 	 * Check for the VA hole
858 	 */
859 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
860 		return (RANGE_BADADDR);
861 #endif
862 
863 	return (RANGE_OKAY);
864 }
865 
866 /*
867  * Return 1 if the page frame is onboard memory, else 0.
868  */
869 int
870 pf_is_memory(pfn_t pf)
871 {
872 	if (pfn_is_foreign(pf))
873 		return (0);
874 	return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
875 }
876 
877 /*
878  * return the memrange containing pfn
879  */
880 int
881 memrange_num(pfn_t pfn)
882 {
883 	int n;
884 
885 	for (n = 0; n < nranges - 1; ++n) {
886 		if (pfn >= memranges[n])
887 			break;
888 	}
889 	return (n);
890 }
891 
892 /*
893  * return the mnoderange containing pfn
894  */
895 /*ARGSUSED*/
896 int
897 pfn_2_mtype(pfn_t pfn)
898 {
899 #if defined(__xpv)
900 	return (0);
901 #else
902 	int	n;
903 
904 	for (n = mnoderangecnt - 1; n >= 0; n--) {
905 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
906 			break;
907 		}
908 	}
909 	return (n);
910 #endif
911 }
912 
913 #if !defined(__xpv)
914 /*
915  * is_contigpage_free:
916  *	returns a page list of contiguous pages. It minimally has to return
917  *	minctg pages. Caller determines minctg based on the scatter-gather
918  *	list length.
919  *
920  *	pfnp is set to the next page frame to search on return.
921  */
922 static page_t *
923 is_contigpage_free(
924 	pfn_t *pfnp,
925 	pgcnt_t *pgcnt,
926 	pgcnt_t minctg,
927 	uint64_t pfnseg,
928 	int iolock)
929 {
930 	int	i = 0;
931 	pfn_t	pfn = *pfnp;
932 	page_t	*pp;
933 	page_t	*plist = NULL;
934 
935 	/*
936 	 * fail if pfn + minctg crosses a segment boundary.
937 	 * Adjust for next starting pfn to begin at segment boundary.
938 	 */
939 
940 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
941 		*pfnp = roundup(*pfnp, pfnseg + 1);
942 		return (NULL);
943 	}
944 
945 	do {
946 retry:
947 		pp = page_numtopp_nolock(pfn + i);
948 		if ((pp == NULL) ||
949 		    (page_trylock(pp, SE_EXCL) == 0)) {
950 			(*pfnp)++;
951 			break;
952 		}
953 		if (page_pptonum(pp) != pfn + i) {
954 			page_unlock(pp);
955 			goto retry;
956 		}
957 
958 		if (!(PP_ISFREE(pp))) {
959 			page_unlock(pp);
960 			(*pfnp)++;
961 			break;
962 		}
963 
964 		if (!PP_ISAGED(pp)) {
965 			page_list_sub(pp, PG_CACHE_LIST);
966 			page_hashout(pp, (kmutex_t *)NULL);
967 		} else {
968 			page_list_sub(pp, PG_FREE_LIST);
969 		}
970 
971 		if (iolock)
972 			page_io_lock(pp);
973 		page_list_concat(&plist, &pp);
974 
975 		/*
976 		 * exit loop when pgcnt satisfied or segment boundary reached.
977 		 */
978 
979 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
980 
981 	*pfnp += i;		/* set to next pfn to search */
982 
983 	if (i >= minctg) {
984 		*pgcnt -= i;
985 		return (plist);
986 	}
987 
988 	/*
989 	 * failure: minctg not satisfied.
990 	 *
991 	 * if next request crosses segment boundary, set next pfn
992 	 * to search from the segment boundary.
993 	 */
994 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
995 		*pfnp = roundup(*pfnp, pfnseg + 1);
996 
997 	/* clean up any pages already allocated */
998 
999 	while (plist) {
1000 		pp = plist;
1001 		page_sub(&plist, pp);
1002 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1003 		if (iolock)
1004 			page_io_unlock(pp);
1005 		page_unlock(pp);
1006 	}
1007 
1008 	return (NULL);
1009 }
1010 #endif	/* !__xpv */
1011 
1012 /*
1013  * verify that pages being returned from allocator have correct DMA attribute
1014  */
1015 #ifndef DEBUG
1016 #define	check_dma(a, b, c) (0)
1017 #else
1018 static void
1019 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1020 {
1021 	if (dma_attr == NULL)
1022 		return;
1023 
1024 	while (cnt-- > 0) {
1025 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1026 		    dma_attr->dma_attr_addr_lo)
1027 			panic("PFN (pp=%p) below dma_attr_addr_lo", pp);
1028 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1029 		    dma_attr->dma_attr_addr_hi)
1030 			panic("PFN (pp=%p) above dma_attr_addr_hi", pp);
1031 		pp = pp->p_next;
1032 	}
1033 }
1034 #endif
1035 
1036 #if !defined(__xpv)
1037 static page_t *
1038 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1039 {
1040 	pfn_t		pfn;
1041 	int		sgllen;
1042 	uint64_t	pfnseg;
1043 	pgcnt_t		minctg;
1044 	page_t		*pplist = NULL, *plist;
1045 	uint64_t	lo, hi;
1046 	pgcnt_t		pfnalign = 0;
1047 	static pfn_t	startpfn;
1048 	static pgcnt_t	lastctgcnt;
1049 	uintptr_t	align;
1050 
1051 	CONTIG_LOCK();
1052 
1053 	if (mattr) {
1054 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1055 		hi = mmu_btop(mattr->dma_attr_addr_hi);
1056 		if (hi >= physmax)
1057 			hi = physmax - 1;
1058 		sgllen = mattr->dma_attr_sgllen;
1059 		pfnseg = mmu_btop(mattr->dma_attr_seg);
1060 
1061 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1062 		if (align > MMU_PAGESIZE)
1063 			pfnalign = mmu_btop(align);
1064 
1065 		/*
1066 		 * in order to satisfy the request, must minimally
1067 		 * acquire minctg contiguous pages
1068 		 */
1069 		minctg = howmany(*pgcnt, sgllen);
1070 
1071 		ASSERT(hi >= lo);
1072 
1073 		/*
1074 		 * start from where last searched if the minctg >= lastctgcnt
1075 		 */
1076 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1077 			startpfn = lo;
1078 	} else {
1079 		hi = physmax - 1;
1080 		lo = 0;
1081 		sgllen = 1;
1082 		pfnseg = mmu.highest_pfn;
1083 		minctg = *pgcnt;
1084 
1085 		if (minctg < lastctgcnt)
1086 			startpfn = lo;
1087 	}
1088 	lastctgcnt = minctg;
1089 
1090 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1091 
1092 	/* conserve 16m memory - start search above 16m when possible */
1093 	if (hi > PFN_16M && startpfn < PFN_16M)
1094 		startpfn = PFN_16M;
1095 
1096 	pfn = startpfn;
1097 	if (pfnalign)
1098 		pfn = P2ROUNDUP(pfn, pfnalign);
1099 
1100 	while (pfn + minctg - 1 <= hi) {
1101 
1102 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1103 		if (plist) {
1104 			page_list_concat(&pplist, &plist);
1105 			sgllen--;
1106 			/*
1107 			 * return when contig pages no longer needed
1108 			 */
1109 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1110 				startpfn = pfn;
1111 				CONTIG_UNLOCK();
1112 				check_dma(mattr, pplist, *pgcnt);
1113 				return (pplist);
1114 			}
1115 			minctg = howmany(*pgcnt, sgllen);
1116 		}
1117 		if (pfnalign)
1118 			pfn = P2ROUNDUP(pfn, pfnalign);
1119 	}
1120 
1121 	/* cannot find contig pages in specified range */
1122 	if (startpfn == lo) {
1123 		CONTIG_UNLOCK();
1124 		return (NULL);
1125 	}
1126 
1127 	/* did not start with lo previously */
1128 	pfn = lo;
1129 	if (pfnalign)
1130 		pfn = P2ROUNDUP(pfn, pfnalign);
1131 
1132 	/* allow search to go above startpfn */
1133 	while (pfn < startpfn) {
1134 
1135 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1136 		if (plist != NULL) {
1137 
1138 			page_list_concat(&pplist, &plist);
1139 			sgllen--;
1140 
1141 			/*
1142 			 * return when contig pages no longer needed
1143 			 */
1144 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1145 				startpfn = pfn;
1146 				CONTIG_UNLOCK();
1147 				check_dma(mattr, pplist, *pgcnt);
1148 				return (pplist);
1149 			}
1150 			minctg = howmany(*pgcnt, sgllen);
1151 		}
1152 		if (pfnalign)
1153 			pfn = P2ROUNDUP(pfn, pfnalign);
1154 	}
1155 	CONTIG_UNLOCK();
1156 	return (NULL);
1157 }
1158 #endif	/* !__xpv */
1159 
1160 /*
1161  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1162  * memranges[]. Used to determine the size of page lists and mnoderanges.
1163  */
1164 int
1165 mnode_range_cnt(int mnode)
1166 {
1167 #if defined(__xpv)
1168 	ASSERT(mnode == 0);
1169 	return (1);
1170 #else	/* __xpv */
1171 	int	mri;
1172 	int	mnrcnt = 0;
1173 
1174 	if (mem_node_config[mnode].exists != 0) {
1175 		mri = nranges - 1;
1176 
1177 		/* find the memranges index below contained in mnode range */
1178 
1179 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1180 			mri--;
1181 
1182 		/*
1183 		 * increment mnode range counter when memranges or mnode
1184 		 * boundary is reached.
1185 		 */
1186 		while (mri >= 0 &&
1187 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1188 			mnrcnt++;
1189 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1190 				mri--;
1191 			else
1192 				break;
1193 		}
1194 	}
1195 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1196 	return (mnrcnt);
1197 #endif	/* __xpv */
1198 }
1199 
1200 /*
1201  * mnode_range_setup() initializes mnoderanges.
1202  */
1203 void
1204 mnode_range_setup(mnoderange_t *mnoderanges)
1205 {
1206 	int	mnode, mri;
1207 
1208 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1209 		if (mem_node_config[mnode].exists == 0)
1210 			continue;
1211 
1212 		mri = nranges - 1;
1213 
1214 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1215 			mri--;
1216 
1217 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1218 		    MEMRANGELO(mri)) {
1219 			mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri),
1220 			    mem_node_config[mnode].physbase);
1221 			mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1222 			    mem_node_config[mnode].physmax);
1223 			mnoderanges->mnr_mnode = mnode;
1224 			mnoderanges->mnr_memrange = mri;
1225 			mnoderanges++;
1226 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1227 				mri--;
1228 			else
1229 				break;
1230 		}
1231 	}
1232 }
1233 
1234 /*ARGSUSED*/
1235 int
1236 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1237 {
1238 	int mtype = mnoderangecnt - 1;
1239 
1240 #if !defined(__xpv)
1241 #if defined(__i386)
1242 	/*
1243 	 * set the mtype range
1244 	 * - kmem requests needs to be below 4g if restricted_kmemalloc is set.
1245 	 * - for non kmem requests, set range to above 4g if memory below 4g
1246 	 * runs low.
1247 	 */
1248 	if (restricted_kmemalloc && VN_ISKAS(vp) &&
1249 	    (caddr_t)(vaddr) >= kernelheap &&
1250 	    (caddr_t)(vaddr) < ekernelheap) {
1251 		ASSERT(physmax4g);
1252 		mtype = mtype4g;
1253 		if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),
1254 		    btop(pgsz), *flags)) {
1255 			*flags |= PGI_MT_RANGE16M;
1256 		} else {
1257 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1258 			VM_STAT_COND_ADD((*flags & PG_PANIC),
1259 			    vmm_vmstats.pgpanicalloc);
1260 			*flags |= PGI_MT_RANGE0;
1261 		}
1262 		return (mtype);
1263 	}
1264 #endif	/* __i386 */
1265 
1266 	if (RESTRICT4G_ALLOC) {
1267 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1268 		/* here only for > 4g systems */
1269 		*flags |= PGI_MT_RANGE4G;
1270 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1271 		*flags |= PGI_MT_RANGE16M;
1272 	} else {
1273 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1274 		VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1275 		*flags |= PGI_MT_RANGE0;
1276 	}
1277 #endif /* !__xpv */
1278 	return (mtype);
1279 }
1280 
1281 
1282 /* mtype init for page_get_replacement_page */
1283 /*ARGSUSED*/
1284 int
1285 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt)
1286 {
1287 	int mtype = mnoderangecnt - 1;
1288 #if !defined(__ixpv)
1289 	if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1290 		*flags |= PGI_MT_RANGE16M;
1291 	} else {
1292 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1293 		*flags |= PGI_MT_RANGE0;
1294 	}
1295 #endif
1296 	return (mtype);
1297 }
1298 
1299 /*
1300  * Determine if the mnode range specified in mtype contains memory belonging
1301  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1302  * the range of indices from high pfn to 0, 16m or 4g.
1303  *
1304  * Return first mnode range type index found otherwise return -1 if none found.
1305  */
1306 int
1307 mtype_func(int mnode, int mtype, uint_t flags)
1308 {
1309 	if (flags & PGI_MT_RANGE) {
1310 		int	mtlim = 0;
1311 
1312 		if (flags & PGI_MT_NEXT)
1313 			mtype--;
1314 		if (flags & PGI_MT_RANGE4G)
1315 			mtlim = mtype4g + 1;	/* exclude 0-4g range */
1316 		else if (flags & PGI_MT_RANGE16M)
1317 			mtlim = 1;		/* exclude 0-16m range */
1318 		while (mtype >= mtlim) {
1319 			if (mnoderanges[mtype].mnr_mnode == mnode)
1320 				return (mtype);
1321 			mtype--;
1322 		}
1323 	} else if (mnoderanges[mtype].mnr_mnode == mnode) {
1324 		return (mtype);
1325 	}
1326 	return (-1);
1327 }
1328 
1329 /*
1330  * Update the page list max counts with the pfn range specified by the
1331  * input parameters.  Called from add_physmem() when physical memory with
1332  * page_t's are initially added to the page lists.
1333  */
1334 void
1335 mtype_modify_max(pfn_t startpfn, long cnt)
1336 {
1337 	int	mtype = 0;
1338 	pfn_t	endpfn = startpfn + cnt, pfn;
1339 	pgcnt_t	inc;
1340 
1341 	ASSERT(cnt > 0);
1342 
1343 	if (!physmax4g)
1344 		return;
1345 
1346 	for (pfn = startpfn; pfn < endpfn; ) {
1347 		if (pfn <= mnoderanges[mtype].mnr_pfnhi) {
1348 			if (endpfn < mnoderanges[mtype].mnr_pfnhi) {
1349 				inc = endpfn - pfn;
1350 			} else {
1351 				inc = mnoderanges[mtype].mnr_pfnhi - pfn + 1;
1352 			}
1353 			if (mtype <= mtype4g)
1354 				maxmem4g += inc;
1355 			pfn += inc;
1356 		}
1357 		mtype++;
1358 		ASSERT(mtype < mnoderangecnt || pfn >= endpfn);
1359 	}
1360 }
1361 
1362 int
1363 mtype_2_mrange(int mtype)
1364 {
1365 	return (mnoderanges[mtype].mnr_memrange);
1366 }
1367 
1368 void
1369 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1370 {
1371 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1372 	*pfnlo = mnoderanges[mtype].mnr_pfnlo;
1373 	*pfnhi = mnoderanges[mtype].mnr_pfnhi;
1374 }
1375 
1376 size_t
1377 plcnt_sz(size_t ctrs_sz)
1378 {
1379 #ifdef DEBUG
1380 	int	szc, colors;
1381 
1382 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1383 	for (szc = 0; szc < mmu_page_sizes; szc++) {
1384 		colors = page_get_pagecolors(szc);
1385 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1386 	}
1387 #endif
1388 	return (ctrs_sz);
1389 }
1390 
1391 caddr_t
1392 plcnt_init(caddr_t addr)
1393 {
1394 #ifdef DEBUG
1395 	int	mt, szc, colors;
1396 
1397 	for (mt = 0; mt < mnoderangecnt; mt++) {
1398 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1399 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1400 		for (szc = 0; szc < mmu_page_sizes; szc++) {
1401 			colors = page_get_pagecolors(szc);
1402 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1403 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1404 			    (pgcnt_t *)addr;
1405 			addr += (sizeof (pgcnt_t) * colors);
1406 		}
1407 	}
1408 #endif
1409 	return (addr);
1410 }
1411 
1412 void
1413 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1414 {
1415 #ifdef DEBUG
1416 	int	bin = PP_2_BIN(pp);
1417 
1418 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1419 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1420 	    cnt);
1421 #endif
1422 	ASSERT(mtype == PP_2_MTYPE(pp));
1423 	if (physmax4g && mtype <= mtype4g)
1424 		atomic_add_long(&freemem4g, cnt);
1425 	if (flags & PG_CACHE_LIST)
1426 		atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1427 	else
1428 		atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1429 	atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1430 }
1431 
1432 /*
1433  * Returns the free page count for mnode
1434  */
1435 int
1436 mnode_pgcnt(int mnode)
1437 {
1438 	int	mtype = mnoderangecnt - 1;
1439 	int	flags = PGI_MT_RANGE0;
1440 	pgcnt_t	pgcnt = 0;
1441 
1442 	mtype = mtype_func(mnode, mtype, flags);
1443 
1444 	while (mtype != -1) {
1445 		pgcnt += MTYPE_FREEMEM(mtype);
1446 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1447 	}
1448 	return (pgcnt);
1449 }
1450 
1451 /*
1452  * Initialize page coloring variables based on the l2 cache parameters.
1453  * Calculate and return memory needed for page coloring data structures.
1454  */
1455 size_t
1456 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1457 {
1458 	size_t	colorsz = 0;
1459 	int	i;
1460 	int	colors;
1461 
1462 #if defined(__xpv)
1463 	/*
1464 	 * Hypervisor domains currently don't have any concept of NUMA.
1465 	 * Hence we'll act like there is only 1 memrange.
1466 	 */
1467 	i = memrange_num(1);
1468 #else /* !__xpv */
1469 	/*
1470 	 * Reduce the memory ranges lists if we don't have large amounts
1471 	 * of memory. This avoids searching known empty free lists.
1472 	 */
1473 	i = memrange_num(physmax);
1474 #if defined(__i386)
1475 	if (i > 0)
1476 		restricted_kmemalloc = 0;
1477 #endif
1478 	/* physmax greater than 4g */
1479 	if (i == 0)
1480 		physmax4g = 1;
1481 #endif /* !__xpv */
1482 	memranges += i;
1483 	nranges -= i;
1484 
1485 	ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1486 
1487 	ASSERT(ISP2(l2_sz));
1488 	ASSERT(ISP2(l2_linesz));
1489 	ASSERT(l2_sz > MMU_PAGESIZE);
1490 
1491 	/* l2_assoc is 0 for fully associative l2 cache */
1492 	if (l2_assoc)
1493 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1494 	else
1495 		l2_colors = 1;
1496 
1497 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1498 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1499 
1500 	/*
1501 	 * cpu_page_colors is non-zero when a page color may be spread across
1502 	 * multiple bins.
1503 	 */
1504 	if (l2_colors < page_colors)
1505 		cpu_page_colors = l2_colors;
1506 
1507 	ASSERT(ISP2(page_colors));
1508 
1509 	page_colors_mask = page_colors - 1;
1510 
1511 	ASSERT(ISP2(CPUSETSIZE()));
1512 	page_coloring_shift = lowbit(CPUSETSIZE());
1513 
1514 	/* initialize number of colors per page size */
1515 	for (i = 0; i <= mmu.max_page_level; i++) {
1516 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1517 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1518 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1519 		hw_page_array[i].hp_colors = (page_colors_mask >>
1520 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1521 		    + 1;
1522 		colorequivszc[i] = 0;
1523 	}
1524 
1525 	/*
1526 	 * The value of cpu_page_colors determines if additional color bins
1527 	 * need to be checked for a particular color in the page_get routines.
1528 	 */
1529 	if (cpu_page_colors != 0) {
1530 
1531 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1532 		ASSERT(a > 0);
1533 		ASSERT(a < 16);
1534 
1535 		for (i = 0; i <= mmu.max_page_level; i++) {
1536 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1537 				colorequivszc[i] = 0;
1538 				continue;
1539 			}
1540 			while ((colors >> a) == 0)
1541 				a--;
1542 			ASSERT(a >= 0);
1543 
1544 			/* higher 4 bits encodes color equiv mask */
1545 			colorequivszc[i] = (a << 4);
1546 		}
1547 	}
1548 
1549 	/* factor in colorequiv to check additional 'equivalent' bins. */
1550 	if (colorequiv > 1) {
1551 
1552 		int a = lowbit(colorequiv) - 1;
1553 		if (a > 15)
1554 			a = 15;
1555 
1556 		for (i = 0; i <= mmu.max_page_level; i++) {
1557 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1558 				continue;
1559 			}
1560 			while ((colors >> a) == 0)
1561 				a--;
1562 			if ((a << 4) > colorequivszc[i]) {
1563 				colorequivszc[i] = (a << 4);
1564 			}
1565 		}
1566 	}
1567 
1568 	/* size for mnoderanges */
1569 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1570 		mnoderangecnt += mnode_range_cnt(i);
1571 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1572 
1573 	/* size for fpc_mutex and cpc_mutex */
1574 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1575 
1576 	/* size of page_freelists */
1577 	colorsz += mnoderangecnt * sizeof (page_t ***);
1578 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1579 
1580 	for (i = 0; i < mmu_page_sizes; i++) {
1581 		colors = page_get_pagecolors(i);
1582 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1583 	}
1584 
1585 	/* size of page_cachelists */
1586 	colorsz += mnoderangecnt * sizeof (page_t **);
1587 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1588 
1589 	return (colorsz);
1590 }
1591 
1592 /*
1593  * Called once at startup to configure page_coloring data structures and
1594  * does the 1st page_free()/page_freelist_add().
1595  */
1596 void
1597 page_coloring_setup(caddr_t pcmemaddr)
1598 {
1599 	int	i;
1600 	int	j;
1601 	int	k;
1602 	caddr_t	addr;
1603 	int	colors;
1604 
1605 	/*
1606 	 * do page coloring setup
1607 	 */
1608 	addr = pcmemaddr;
1609 
1610 	mnoderanges = (mnoderange_t *)addr;
1611 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1612 
1613 	mnode_range_setup(mnoderanges);
1614 
1615 	if (physmax4g)
1616 		mtype4g = pfn_2_mtype(0xfffff);
1617 
1618 	for (k = 0; k < NPC_MUTEX; k++) {
1619 		fpc_mutex[k] = (kmutex_t *)addr;
1620 		addr += (max_mem_nodes * sizeof (kmutex_t));
1621 	}
1622 	for (k = 0; k < NPC_MUTEX; k++) {
1623 		cpc_mutex[k] = (kmutex_t *)addr;
1624 		addr += (max_mem_nodes * sizeof (kmutex_t));
1625 	}
1626 	page_freelists = (page_t ****)addr;
1627 	addr += (mnoderangecnt * sizeof (page_t ***));
1628 
1629 	page_cachelists = (page_t ***)addr;
1630 	addr += (mnoderangecnt * sizeof (page_t **));
1631 
1632 	for (i = 0; i < mnoderangecnt; i++) {
1633 		page_freelists[i] = (page_t ***)addr;
1634 		addr += (mmu_page_sizes * sizeof (page_t **));
1635 
1636 		for (j = 0; j < mmu_page_sizes; j++) {
1637 			colors = page_get_pagecolors(j);
1638 			page_freelists[i][j] = (page_t **)addr;
1639 			addr += (colors * sizeof (page_t *));
1640 		}
1641 		page_cachelists[i] = (page_t **)addr;
1642 		addr += (page_colors * sizeof (page_t *));
1643 	}
1644 }
1645 
1646 #if defined(__xpv)
1647 /*
1648  * Give back 10% of the io_pool pages to the free list.
1649  * Don't shrink the pool below some absolute minimum.
1650  */
1651 static void
1652 page_io_pool_shrink()
1653 {
1654 	int retcnt;
1655 	page_t *pp, *pp_first, *pp_last, **curpool;
1656 	mfn_t mfn;
1657 	int bothpools = 0;
1658 
1659 	mutex_enter(&io_pool_lock);
1660 	io_pool_shrink_attempts++;	/* should be a kstat? */
1661 	retcnt = io_pool_cnt / 10;
1662 	if (io_pool_cnt - retcnt < io_pool_cnt_min)
1663 		retcnt = io_pool_cnt - io_pool_cnt_min;
1664 	if (retcnt <= 0)
1665 		goto done;
1666 	io_pool_shrinks++;	/* should be a kstat? */
1667 	curpool = &io_pool_4g;
1668 domore:
1669 	/*
1670 	 * Loop through taking pages from the end of the list
1671 	 * (highest mfns) till amount to return reached.
1672 	 */
1673 	for (pp = *curpool; pp && retcnt > 0; ) {
1674 		pp_first = pp_last = pp->p_prev;
1675 		if (pp_first == *curpool)
1676 			break;
1677 		retcnt--;
1678 		io_pool_cnt--;
1679 		page_io_pool_sub(curpool, pp_first, pp_last);
1680 		if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
1681 			start_mfn = mfn;
1682 		page_free(pp_first, 1);
1683 		pp = *curpool;
1684 	}
1685 	if (retcnt != 0 && !bothpools) {
1686 		/*
1687 		 * If not enough found in less constrained pool try the
1688 		 * more constrained one.
1689 		 */
1690 		curpool = &io_pool_16m;
1691 		bothpools = 1;
1692 		goto domore;
1693 	}
1694 done:
1695 	mutex_exit(&io_pool_lock);
1696 }
1697 
1698 #endif	/* __xpv */
1699 
1700 uint_t
1701 page_create_update_flags_x86(uint_t flags)
1702 {
1703 #if defined(__xpv)
1704 	/*
1705 	 * Check this is an urgent allocation and free pages are depleted.
1706 	 */
1707 	if (!(flags & PG_WAIT) && freemem < desfree)
1708 		page_io_pool_shrink();
1709 #else /* !__xpv */
1710 	/*
1711 	 * page_create_get_something may call this because 4g memory may be
1712 	 * depleted. Set flags to allow for relocation of base page below
1713 	 * 4g if necessary.
1714 	 */
1715 	if (physmax4g)
1716 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1717 #endif /* __xpv */
1718 	return (flags);
1719 }
1720 
1721 /*ARGSUSED*/
1722 int
1723 bp_color(struct buf *bp)
1724 {
1725 	return (0);
1726 }
1727 
1728 #if defined(__xpv)
1729 
1730 /*
1731  * Take pages out of an io_pool
1732  */
1733 static void
1734 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
1735 {
1736 	if (*poolp == pp_first) {
1737 		*poolp = pp_last->p_next;
1738 		if (*poolp == pp_first)
1739 			*poolp = NULL;
1740 	}
1741 	pp_first->p_prev->p_next = pp_last->p_next;
1742 	pp_last->p_next->p_prev = pp_first->p_prev;
1743 	pp_first->p_prev = pp_last;
1744 	pp_last->p_next = pp_first;
1745 }
1746 
1747 /*
1748  * Put a page on the io_pool list. The list is ordered by increasing MFN.
1749  */
1750 static void
1751 page_io_pool_add(page_t **poolp, page_t *pp)
1752 {
1753 	page_t	*look;
1754 	mfn_t	mfn = mfn_list[pp->p_pagenum];
1755 
1756 	if (*poolp == NULL) {
1757 		*poolp = pp;
1758 		pp->p_next = pp;
1759 		pp->p_prev = pp;
1760 		return;
1761 	}
1762 
1763 	/*
1764 	 * Since we try to take pages from the high end of the pool
1765 	 * chances are good that the pages to be put on the list will
1766 	 * go at or near the end of the list. so start at the end and
1767 	 * work backwards.
1768 	 */
1769 	look = (*poolp)->p_prev;
1770 	while (mfn < mfn_list[look->p_pagenum]) {
1771 		look = look->p_prev;
1772 		if (look == (*poolp)->p_prev)
1773 			break; /* backed all the way to front of list */
1774 	}
1775 
1776 	/* insert after look */
1777 	pp->p_prev = look;
1778 	pp->p_next = look->p_next;
1779 	pp->p_next->p_prev = pp;
1780 	look->p_next = pp;
1781 	if (mfn < mfn_list[(*poolp)->p_pagenum]) {
1782 		/*
1783 		 * we inserted a new first list element
1784 		 * adjust pool pointer to newly inserted element
1785 		 */
1786 		*poolp = pp;
1787 	}
1788 }
1789 
1790 /*
1791  * Add a page to the io_pool.  Setting the force flag will force the page
1792  * into the io_pool no matter what.
1793  */
1794 static void
1795 add_page_to_pool(page_t *pp, int force)
1796 {
1797 	page_t *highest;
1798 	page_t *freep = NULL;
1799 
1800 	mutex_enter(&io_pool_lock);
1801 	/*
1802 	 * Always keep the scarce low memory pages
1803 	 */
1804 	if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
1805 		++io_pool_cnt;
1806 		page_io_pool_add(&io_pool_16m, pp);
1807 		goto done;
1808 	}
1809 	if (io_pool_cnt < io_pool_cnt_max || force) {
1810 		++io_pool_cnt;
1811 		page_io_pool_add(&io_pool_4g, pp);
1812 	} else {
1813 		highest = io_pool_4g->p_prev;
1814 		if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
1815 			page_io_pool_sub(&io_pool_4g, highest, highest);
1816 			page_io_pool_add(&io_pool_4g, pp);
1817 			freep = highest;
1818 		} else {
1819 			freep = pp;
1820 		}
1821 	}
1822 done:
1823 	mutex_exit(&io_pool_lock);
1824 	if (freep)
1825 		page_free(freep, 1);
1826 }
1827 
1828 
1829 int contig_pfn_cnt;	/* no of pfns in the contig pfn list */
1830 int contig_pfn_max;	/* capacity of the contig pfn list */
1831 int next_alloc_pfn;	/* next position in list to start a contig search */
1832 int contig_pfnlist_updates;	/* pfn list update count */
1833 int contig_pfnlist_builds;	/* how many times have we (re)built list */
1834 int contig_pfnlist_buildfailed;	/* how many times has list build failed */
1835 int create_contig_pending;	/* nonzero means taskq creating contig list */
1836 pfn_t *contig_pfn_list = NULL;	/* list of contig pfns in ascending mfn order */
1837 
1838 /*
1839  * Function to use in sorting a list of pfns by their underlying mfns.
1840  */
1841 static int
1842 mfn_compare(const void *pfnp1, const void *pfnp2)
1843 {
1844 	mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
1845 	mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
1846 
1847 	if (mfn1 > mfn2)
1848 		return (1);
1849 	if (mfn1 < mfn2)
1850 		return (-1);
1851 	return (0);
1852 }
1853 
1854 /*
1855  * Compact the contig_pfn_list by tossing all the non-contiguous
1856  * elements from the list.
1857  */
1858 static void
1859 compact_contig_pfn_list(void)
1860 {
1861 	pfn_t pfn, lapfn, prev_lapfn;
1862 	mfn_t mfn;
1863 	int i, newcnt = 0;
1864 
1865 	prev_lapfn = 0;
1866 	for (i = 0; i < contig_pfn_cnt - 1; i++) {
1867 		pfn = contig_pfn_list[i];
1868 		lapfn = contig_pfn_list[i + 1];
1869 		mfn = mfn_list[pfn];
1870 		/*
1871 		 * See if next pfn is for a contig mfn
1872 		 */
1873 		if (mfn_list[lapfn] != mfn + 1)
1874 			continue;
1875 		/*
1876 		 * pfn and lookahead are both put in list
1877 		 * unless pfn is the previous lookahead.
1878 		 */
1879 		if (pfn != prev_lapfn)
1880 			contig_pfn_list[newcnt++] = pfn;
1881 		contig_pfn_list[newcnt++] = lapfn;
1882 		prev_lapfn = lapfn;
1883 	}
1884 	for (i = newcnt; i < contig_pfn_cnt; i++)
1885 		contig_pfn_list[i] = 0;
1886 	contig_pfn_cnt = newcnt;
1887 }
1888 
1889 /*ARGSUSED*/
1890 static void
1891 call_create_contiglist(void *arg)
1892 {
1893 	(void) create_contig_pfnlist(PG_WAIT);
1894 }
1895 
1896 /*
1897  * Create list of freelist pfns that have underlying
1898  * contiguous mfns.  The list is kept in ascending mfn order.
1899  * returns 1 if list created else 0.
1900  */
1901 static int
1902 create_contig_pfnlist(uint_t flags)
1903 {
1904 	pfn_t pfn;
1905 	page_t *pp;
1906 	int ret = 1;
1907 
1908 	mutex_enter(&contig_list_lock);
1909 	if (contig_pfn_list != NULL)
1910 		goto out;
1911 	contig_pfn_max = freemem + (freemem / 10);
1912 	contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
1913 	    (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
1914 	if (contig_pfn_list == NULL) {
1915 		/*
1916 		 * If we could not create the contig list (because
1917 		 * we could not sleep for memory).  Dispatch a taskq that can
1918 		 * sleep to get the memory.
1919 		 */
1920 		if (!create_contig_pending) {
1921 			if (taskq_dispatch(system_taskq, call_create_contiglist,
1922 			    NULL, TQ_NOSLEEP) != NULL)
1923 				create_contig_pending = 1;
1924 		}
1925 		contig_pfnlist_buildfailed++;	/* count list build failures */
1926 		ret = 0;
1927 		goto out;
1928 	}
1929 	create_contig_pending = 0;
1930 	ASSERT(contig_pfn_cnt == 0);
1931 	for (pfn = 0; pfn < mfn_count; pfn++) {
1932 		pp = page_numtopp_nolock(pfn);
1933 		if (pp == NULL || !PP_ISFREE(pp))
1934 			continue;
1935 		contig_pfn_list[contig_pfn_cnt] = pfn;
1936 		if (++contig_pfn_cnt == contig_pfn_max)
1937 			break;
1938 	}
1939 	qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
1940 	compact_contig_pfn_list();
1941 	/*
1942 	 * Make sure next search of the newly created contiguous pfn
1943 	 * list starts at the beginning of the list.
1944 	 */
1945 	next_alloc_pfn = 0;
1946 	contig_pfnlist_builds++;	/* count list builds */
1947 out:
1948 	mutex_exit(&contig_list_lock);
1949 	return (ret);
1950 }
1951 
1952 
1953 /*
1954  * Toss the current contig pfnlist.  Someone is about to do a massive
1955  * update to pfn<->mfn mappings.  So we have them destroy the list and lock
1956  * it till they are done with their update.
1957  */
1958 void
1959 clear_and_lock_contig_pfnlist()
1960 {
1961 	pfn_t *listp = NULL;
1962 	size_t listsize;
1963 
1964 	mutex_enter(&contig_list_lock);
1965 	if (contig_pfn_list != NULL) {
1966 		listp = contig_pfn_list;
1967 		listsize = contig_pfn_max * sizeof (pfn_t);
1968 		contig_pfn_list = NULL;
1969 		contig_pfn_max = contig_pfn_cnt = 0;
1970 	}
1971 	if (listp != NULL)
1972 		kmem_free(listp, listsize);
1973 }
1974 
1975 /*
1976  * Unlock the contig_pfn_list.  The next attempted use of it will cause
1977  * it to be re-created.
1978  */
1979 void
1980 unlock_contig_pfnlist()
1981 {
1982 	mutex_exit(&contig_list_lock);
1983 }
1984 
1985 /*
1986  * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
1987  */
1988 void
1989 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
1990 {
1991 	int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
1992 	pfn_t probe_pfn;
1993 	mfn_t probe_mfn;
1994 	int drop_lock = 0;
1995 
1996 	if (mutex_owner(&contig_list_lock) != curthread) {
1997 		drop_lock = 1;
1998 		mutex_enter(&contig_list_lock);
1999 	}
2000 	if (contig_pfn_list == NULL)
2001 		goto done;
2002 	contig_pfnlist_updates++;
2003 	/*
2004 	 * Find the pfn in the current list.  Use a binary chop to locate it.
2005 	 */
2006 	probe_hi = contig_pfn_cnt - 1;
2007 	probe_lo = 0;
2008 	probe_pos = (probe_hi + probe_lo) / 2;
2009 	while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2010 		if (probe_pos == probe_lo) { /* pfn not in list */
2011 			probe_pos = -1;
2012 			break;
2013 		}
2014 		if (pfn_to_mfn(probe_pfn) <= oldmfn)
2015 			probe_lo = probe_pos;
2016 		else
2017 			probe_hi = probe_pos;
2018 		probe_pos = (probe_hi + probe_lo) / 2;
2019 	}
2020 	if (probe_pos >= 0)  { /* remove pfn fom list */
2021 		contig_pfn_cnt--;
2022 		ovbcopy(&contig_pfn_list[probe_pos + 1],
2023 		    &contig_pfn_list[probe_pos],
2024 		    (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2025 	}
2026 	if (newmfn == MFN_INVALID)
2027 		goto done;
2028 	/*
2029 	 * Check if new mfn has adjacent mfns in the list
2030 	 */
2031 	probe_hi = contig_pfn_cnt - 1;
2032 	probe_lo = 0;
2033 	insert_after = -2;
2034 	do {
2035 		probe_pos = (probe_hi + probe_lo) / 2;
2036 		probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2037 		if (newmfn == probe_mfn + 1)
2038 			insert_after = probe_pos;
2039 		else if (newmfn == probe_mfn - 1)
2040 			insert_after = probe_pos - 1;
2041 		if (probe_pos == probe_lo)
2042 			break;
2043 		if (probe_mfn <= newmfn)
2044 			probe_lo = probe_pos;
2045 		else
2046 			probe_hi = probe_pos;
2047 	} while (insert_after == -2);
2048 	/*
2049 	 * If there is space in the list and there are adjacent mfns
2050 	 * insert the pfn in to its proper place in the list.
2051 	 */
2052 	if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2053 		insert_point = insert_after + 1;
2054 		ovbcopy(&contig_pfn_list[insert_point],
2055 		    &contig_pfn_list[insert_point + 1],
2056 		    (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2057 		contig_pfn_list[insert_point] = pfn;
2058 		contig_pfn_cnt++;
2059 	}
2060 done:
2061 	if (drop_lock)
2062 		mutex_exit(&contig_list_lock);
2063 }
2064 
2065 /*
2066  * Called to (re-)populate the io_pool from the free page lists.
2067  */
2068 long
2069 populate_io_pool(void)
2070 {
2071 	pfn_t pfn;
2072 	mfn_t mfn, max_mfn;
2073 	page_t *pp;
2074 
2075 	/*
2076 	 * Figure out the bounds of the pool on first invocation.
2077 	 * We use a percentage of memory for the io pool size.
2078 	 * we allow that to shrink, but not to less than a fixed minimum
2079 	 */
2080 	if (io_pool_cnt_max == 0) {
2081 		io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2082 		io_pool_cnt_lowater = io_pool_cnt_max;
2083 		/*
2084 		 * This is the first time in populate_io_pool, grab a va to use
2085 		 * when we need to allocate pages.
2086 		 */
2087 		io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2088 	}
2089 	/*
2090 	 * If we are out of pages in the pool, then grow the size of the pool
2091 	 */
2092 	if (io_pool_cnt == 0)
2093 		io_pool_cnt_max += io_pool_cnt_max / 20; /* grow by 5% */
2094 	io_pool_grows++;	/* should be a kstat? */
2095 
2096 	/*
2097 	 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2098 	 */
2099 	(void) mfn_to_pfn(start_mfn);
2100 	max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2101 	for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2102 		pfn = mfn_to_pfn(mfn);
2103 		if (pfn & PFN_IS_FOREIGN_MFN)
2104 			continue;
2105 		/*
2106 		 * try to allocate it from free pages
2107 		 */
2108 		pp = page_numtopp_alloc(pfn);
2109 		if (pp == NULL)
2110 			continue;
2111 		PP_CLRFREE(pp);
2112 		add_page_to_pool(pp, 1);
2113 		if (io_pool_cnt >= io_pool_cnt_max)
2114 			break;
2115 	}
2116 
2117 	return (io_pool_cnt);
2118 }
2119 
2120 /*
2121  * Destroy a page that was being used for DMA I/O. It may or
2122  * may not actually go back to the io_pool.
2123  */
2124 void
2125 page_destroy_io(page_t *pp)
2126 {
2127 	mfn_t mfn = mfn_list[pp->p_pagenum];
2128 
2129 	/*
2130 	 * When the page was alloc'd a reservation was made, release it now
2131 	 */
2132 	page_unresv(1);
2133 	/*
2134 	 * Unload translations, if any, then hash out the
2135 	 * page to erase its identity.
2136 	 */
2137 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2138 	page_hashout(pp, NULL);
2139 
2140 	/*
2141 	 * If the page came from the free lists, just put it back to them.
2142 	 * DomU pages always go on the free lists as well.
2143 	 */
2144 	if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2145 		page_free(pp, 1);
2146 		return;
2147 	}
2148 
2149 	add_page_to_pool(pp, 0);
2150 }
2151 
2152 
2153 long contig_searches;		/* count of times contig pages requested */
2154 long contig_search_restarts;	/* count of contig ranges tried */
2155 long contig_search_failed;	/* count of contig alloc failures */
2156 
2157 /*
2158  * Look thru the contiguous pfns that are not part of the io_pool for
2159  * contiguous free pages.  Return a list of the found pages or NULL.
2160  */
2161 page_t *
2162 find_contig_free(uint_t bytes, uint_t flags)
2163 {
2164 	page_t *pp, *plist = NULL;
2165 	mfn_t mfn, prev_mfn;
2166 	pfn_t pfn;
2167 	int pages_needed, pages_requested;
2168 	int search_start;
2169 
2170 	/*
2171 	 * create the contig pfn list if not already done
2172 	 */
2173 retry:
2174 	mutex_enter(&contig_list_lock);
2175 	if (contig_pfn_list == NULL) {
2176 		mutex_exit(&contig_list_lock);
2177 		if (!create_contig_pfnlist(flags)) {
2178 			return (NULL);
2179 		}
2180 		goto retry;
2181 	}
2182 	contig_searches++;
2183 	/*
2184 	 * Search contiguous pfn list for physically contiguous pages not in
2185 	 * the io_pool.  Start the search where the last search left off.
2186 	 */
2187 	pages_requested = pages_needed = mmu_btop(bytes);
2188 	search_start = next_alloc_pfn;
2189 	prev_mfn = 0;
2190 	while (pages_needed) {
2191 		pfn = contig_pfn_list[next_alloc_pfn];
2192 		mfn = pfn_to_mfn(pfn);
2193 		if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2194 		    (pp = page_numtopp_alloc(pfn)) != NULL) {
2195 			PP_CLRFREE(pp);
2196 			page_io_pool_add(&plist, pp);
2197 			pages_needed--;
2198 			prev_mfn = mfn;
2199 		} else {
2200 			contig_search_restarts++;
2201 			/*
2202 			 * free partial page list
2203 			 */
2204 			while (plist != NULL) {
2205 				pp = plist;
2206 				page_io_pool_sub(&plist, pp, pp);
2207 				page_free(pp, 1);
2208 			}
2209 			pages_needed = pages_requested;
2210 			prev_mfn = 0;
2211 		}
2212 		if (++next_alloc_pfn == contig_pfn_cnt)
2213 			next_alloc_pfn = 0;
2214 		if (next_alloc_pfn == search_start)
2215 			break; /* all pfns searched */
2216 	}
2217 	mutex_exit(&contig_list_lock);
2218 	if (pages_needed) {
2219 		contig_search_failed++;
2220 		/*
2221 		 * Failed to find enough contig pages.
2222 		 * free partial page list
2223 		 */
2224 		while (plist != NULL) {
2225 			pp = plist;
2226 			page_io_pool_sub(&plist, pp, pp);
2227 			page_free(pp, 1);
2228 		}
2229 	}
2230 	return (plist);
2231 }
2232 
2233 /*
2234  * Allocator for domain 0 I/O pages. We match the required
2235  * DMA attributes and contiguity constraints.
2236  */
2237 /*ARGSUSED*/
2238 page_t *
2239 page_create_io(
2240 	struct vnode	*vp,
2241 	u_offset_t	off,
2242 	uint_t		bytes,
2243 	uint_t		flags,
2244 	struct as	*as,
2245 	caddr_t		vaddr,
2246 	ddi_dma_attr_t	*mattr)
2247 {
2248 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2249 	page_t	*pp_first;	/* list to return */
2250 	page_t	*pp_last;	/* last in list to return */
2251 	page_t	*pp, **poolp, **pplist = NULL, *expp;
2252 	int	i, extpages = 0, npages = 0, contig, anyaddr, extra;
2253 	mfn_t	lo_mfn;
2254 	mfn_t	hi_mfn;
2255 	mfn_t	mfn, tmfn;
2256 	mfn_t	*mfnlist = 0;
2257 	pgcnt_t	pfnalign = 0;
2258 	int	align, order, nbits, extents;
2259 	uint64_t pfnseg;
2260 	int	attempt = 0, is_domu = 0;
2261 	int	asked_hypervisor = 0;
2262 	uint_t	kflags;
2263 
2264 	ASSERT(mattr != NULL);
2265 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2266 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2267 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2268 	if (align > MMU_PAGESIZE)
2269 		pfnalign = mmu_btop(align);
2270 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2271 
2272 	/*
2273 	 * Clear the contig flag if only one page is needed.
2274 	 */
2275 	contig = (flags & PG_PHYSCONTIG);
2276 	flags &= ~PG_PHYSCONTIG;
2277 	bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
2278 	if (bytes == MMU_PAGESIZE)
2279 		contig = 0;
2280 
2281 	/*
2282 	 * Check if any old page in the system is fine.
2283 	 * DomU should always go down this path.
2284 	 */
2285 	is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
2286 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
2287 	if ((!contig && anyaddr) || is_domu) {
2288 		pp = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
2289 		if (pp)
2290 			return (pp);
2291 		else if (is_domu)
2292 			return (NULL); /* no memory available */
2293 	}
2294 	/*
2295 	 * DomU should never reach here
2296 	 */
2297 try_again:
2298 	/*
2299 	 * We could just want unconstrained but contig pages.
2300 	 */
2301 	if (anyaddr && contig && pfnseg >= max_mfn) {
2302 		/*
2303 		 * Look for free contig pages to satisfy the request.
2304 		 */
2305 		pp_first = find_contig_free(bytes, flags);
2306 		if (pp_first != NULL)
2307 			goto done;
2308 	}
2309 	/*
2310 	 * See if we want pages for a legacy device
2311 	 */
2312 	if (hi_mfn < PFN_16MEG)
2313 		poolp = &io_pool_16m;
2314 	else
2315 		poolp = &io_pool_4g;
2316 try_smaller:
2317 	/*
2318 	 * Take pages from I/O pool. We'll use pages from the highest MFN
2319 	 * range possible.
2320 	 */
2321 	pp_first = pp_last = NULL;
2322 	npages = mmu_btop(bytes);
2323 	mutex_enter(&io_pool_lock);
2324 	for (pp = *poolp; pp && npages > 0; ) {
2325 		pp = pp->p_prev;
2326 
2327 		/*
2328 		 * skip pages above allowable range
2329 		 */
2330 		mfn = mfn_list[pp->p_pagenum];
2331 		if (hi_mfn < mfn)
2332 			goto skip;
2333 
2334 		/*
2335 		 * stop at pages below allowable range
2336 		 */
2337 		if (lo_mfn > mfn)
2338 			break;
2339 restart:
2340 		if (pp_last == NULL) {
2341 			/*
2342 			 * Check alignment
2343 			 */
2344 			tmfn = mfn - (npages - 1);
2345 			if (pfnalign) {
2346 				if (tmfn != P2ROUNDUP(tmfn, pfnalign))
2347 					goto skip; /* not properly aligned */
2348 			}
2349 			/*
2350 			 * Check segment
2351 			 */
2352 			if ((mfn & pfnseg) < (tmfn & pfnseg))
2353 				goto skip; /* crosses segment boundary */
2354 			/*
2355 			 * Start building page list
2356 			 */
2357 			pp_first = pp_last = pp;
2358 			npages--;
2359 		} else {
2360 			/*
2361 			 * check physical contiguity if required
2362 			 */
2363 			if (contig &&
2364 			    mfn_list[pp_first->p_pagenum] != mfn + 1) {
2365 				/*
2366 				 * not a contiguous page, restart list.
2367 				 */
2368 				pp_last = NULL;
2369 				npages = mmu_btop(bytes);
2370 				goto restart;
2371 			} else { /* add page to list */
2372 				pp_first = pp;
2373 				--npages;
2374 			}
2375 		}
2376 skip:
2377 		if (pp == *poolp)
2378 			break;
2379 	}
2380 
2381 	/*
2382 	 * If we didn't find memory. Try the more constrained pool, then
2383 	 * sweep free pages into the DMA pool and try again. If we fail
2384 	 * repeatedly, ask the Hypervisor for help.
2385 	 */
2386 	if (npages != 0) {
2387 		mutex_exit(&io_pool_lock);
2388 		/*
2389 		 * If we were looking in the less constrained pool and didn't
2390 		 * find pages, try the more constrained pool.
2391 		 */
2392 		if (poolp == &io_pool_4g) {
2393 			poolp = &io_pool_16m;
2394 			goto try_smaller;
2395 		}
2396 		kmem_reap();
2397 		if (++attempt < 4) {
2398 			/*
2399 			 * Grab some more io_pool pages
2400 			 */
2401 			(void) populate_io_pool();
2402 			goto try_again;
2403 		}
2404 
2405 		if (asked_hypervisor++)
2406 			return (NULL);	/* really out of luck */
2407 		/*
2408 		 * Hypervisor exchange doesn't handle segment or alignment
2409 		 * constraints
2410 		 */
2411 		if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || pfnalign)
2412 			return (NULL);
2413 		/*
2414 		 * Try exchanging pages with the hypervisor.
2415 		 */
2416 		npages = mmu_btop(bytes);
2417 		kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2418 		/*
2419 		 * Hypervisor will allocate extents, if we want contig pages
2420 		 * extent must be >= npages
2421 		 */
2422 		if (contig) {
2423 			order = highbit(npages) - 1;
2424 			if (npages & ((1 << order) - 1))
2425 				order++;
2426 			extpages = 1 << order;
2427 		} else {
2428 			order = 0;
2429 			extpages = npages;
2430 		}
2431 		if (extpages > npages) {
2432 			extra = extpages - npages;
2433 			if (!page_resv(extra, kflags))
2434 				return (NULL);
2435 		}
2436 		pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2437 		if (pplist == NULL)
2438 			goto fail;
2439 		mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2440 		if (mfnlist == NULL)
2441 			goto fail;
2442 		pp = page_create_va(vp, off, npages * PAGESIZE, flags,
2443 		    &kvseg, vaddr);
2444 		if (pp == NULL)
2445 			goto fail;
2446 		pp_first = pp;
2447 		if (extpages > npages) {
2448 			/*
2449 			 * fill out the rest of extent pages to swap with the
2450 			 * hypervisor
2451 			 */
2452 			for (i = 0; i < extra; i++) {
2453 				expp = page_create_va(vp,
2454 				    (u_offset_t)(uintptr_t)io_pool_kva,
2455 				    PAGESIZE, flags, &kvseg, io_pool_kva);
2456 				if (expp == NULL)
2457 					goto balloon_fail;
2458 				(void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2459 				page_io_unlock(expp);
2460 				page_hashout(expp, NULL);
2461 				page_io_lock(expp);
2462 				/*
2463 				 * add page to end of list
2464 				 */
2465 				expp->p_prev = pp_first->p_prev;
2466 				expp->p_next = pp_first;
2467 				expp->p_prev->p_next = expp;
2468 				pp_first->p_prev = expp;
2469 			}
2470 
2471 		}
2472 		for (i = 0; i < extpages; i++) {
2473 			pplist[i] = pp;
2474 			pp = pp->p_next;
2475 		}
2476 		nbits = highbit(mattr->dma_attr_addr_hi);
2477 		extents = contig ? 1 : npages;
2478 		if (balloon_replace_pages(extents, pplist, nbits, order,
2479 		    mfnlist) != extents) {
2480 			if (ioalloc_dbg)
2481 				cmn_err(CE_NOTE, "request to hypervisor for"
2482 				    " %d pages, maxaddr %" PRIx64 " failed",
2483 				    extpages, mattr->dma_attr_addr_hi);
2484 			goto balloon_fail;
2485 		}
2486 
2487 		kmem_free(pplist, extpages * sizeof (page_t *));
2488 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2489 		/*
2490 		 * Return any excess pages to free list
2491 		 */
2492 		if (extpages > npages) {
2493 			for (i = 0; i < extra; i++) {
2494 				pp = pp_first->p_prev;
2495 				page_sub(&pp_first, pp);
2496 				page_io_unlock(pp);
2497 				page_unresv(1);
2498 				page_free(pp, 1);
2499 			}
2500 		}
2501 		check_dma(mattr, pp_first, mmu_btop(bytes));
2502 		return (pp_first);
2503 	}
2504 
2505 	/*
2506 	 * Found the pages, now snip them from the list
2507 	 */
2508 	page_io_pool_sub(poolp, pp_first, pp_last);
2509 	io_pool_cnt -= mmu_btop(bytes);
2510 	if (io_pool_cnt < io_pool_cnt_lowater)
2511 		io_pool_cnt_lowater = io_pool_cnt; /* io pool low water mark */
2512 	mutex_exit(&io_pool_lock);
2513 done:
2514 	check_dma(mattr, pp_first, mmu_btop(bytes));
2515 	pp = pp_first;
2516 	do {
2517 		if (!page_hashin(pp, vp, off, NULL)) {
2518 			panic("pg_create_io: hashin failed pp %p, vp %p,"
2519 			    " off %llx",
2520 			    (void *)pp, (void *)vp, off);
2521 		}
2522 		off += MMU_PAGESIZE;
2523 		PP_CLRFREE(pp);
2524 		PP_CLRAGED(pp);
2525 		page_set_props(pp, P_REF);
2526 		page_io_lock(pp);
2527 		pp = pp->p_next;
2528 	} while (pp != pp_first);
2529 	return (pp_first);
2530 balloon_fail:
2531 	/*
2532 	 * Return pages to free list and return failure
2533 	 */
2534 	while (pp_first != NULL) {
2535 		pp = pp_first;
2536 		page_sub(&pp_first, pp);
2537 		page_io_unlock(pp);
2538 		if (pp->p_vnode != NULL)
2539 			page_hashout(pp, NULL);
2540 		page_free(pp, 1);
2541 	}
2542 fail:
2543 	if (pplist)
2544 		kmem_free(pplist, extpages * sizeof (page_t *));
2545 	if (mfnlist)
2546 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2547 	page_unresv(extpages - npages);
2548 	return (NULL);
2549 }
2550 
2551 /*
2552  * Lock and return the page with the highest mfn that we can find.  last_mfn
2553  * holds the last one found, so the next search can start from there.  We
2554  * also keep a counter so that we don't loop forever if the machine has no
2555  * free pages.
2556  *
2557  * This is called from the balloon thread to find pages to give away.  new_high
2558  * is used when new mfn's have been added to the system - we will reset our
2559  * search if the new mfn's are higher than our current search position.
2560  */
2561 page_t *
2562 page_get_high_mfn(mfn_t new_high)
2563 {
2564 	static mfn_t last_mfn = 0;
2565 	pfn_t pfn;
2566 	page_t *pp;
2567 	ulong_t loop_count = 0;
2568 
2569 	if (new_high > last_mfn)
2570 		last_mfn = new_high;
2571 
2572 	for (; loop_count < mfn_count; loop_count++, last_mfn--) {
2573 		if (last_mfn == 0) {
2574 			last_mfn = cached_max_mfn;
2575 		}
2576 
2577 		pfn = mfn_to_pfn(last_mfn);
2578 		if (pfn & PFN_IS_FOREIGN_MFN)
2579 			continue;
2580 
2581 		/* See if the page is free.  If so, lock it. */
2582 		pp = page_numtopp_alloc(pfn);
2583 		if (pp == NULL)
2584 			continue;
2585 		PP_CLRFREE(pp);
2586 
2587 		ASSERT(PAGE_EXCL(pp));
2588 		ASSERT(pp->p_vnode == NULL);
2589 		ASSERT(!hat_page_is_mapped(pp));
2590 		last_mfn--;
2591 		return (pp);
2592 	}
2593 	return (NULL);
2594 }
2595 
2596 #else /* !__xpv */
2597 
2598 /*
2599  * get a page from any list with the given mnode
2600  */
2601 static page_t *
2602 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
2603     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
2604 {
2605 	kmutex_t		*pcm;
2606 	int			i;
2607 	page_t			*pp;
2608 	page_t			*first_pp;
2609 	uint64_t		pgaddr;
2610 	ulong_t			bin;
2611 	int			mtypestart;
2612 	int			plw_initialized;
2613 	page_list_walker_t	plw;
2614 
2615 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
2616 
2617 	ASSERT((flags & PG_MATCH_COLOR) == 0);
2618 	ASSERT(szc == 0);
2619 	ASSERT(dma_attr != NULL);
2620 
2621 	MTYPE_START(mnode, mtype, flags);
2622 	if (mtype < 0) {
2623 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
2624 		return (NULL);
2625 	}
2626 
2627 	mtypestart = mtype;
2628 
2629 	bin = origbin;
2630 
2631 	/*
2632 	 * check up to page_colors + 1 bins - origbin may be checked twice
2633 	 * because of BIN_STEP skip
2634 	 */
2635 	do {
2636 		plw_initialized = 0;
2637 
2638 		for (plw.plw_count = 0;
2639 		    plw.plw_count < page_colors; plw.plw_count++) {
2640 
2641 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
2642 				goto nextfreebin;
2643 
2644 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
2645 			mutex_enter(pcm);
2646 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
2647 			first_pp = pp;
2648 			while (pp != NULL) {
2649 				if (page_trylock(pp, SE_EXCL) == 0) {
2650 					pp = pp->p_next;
2651 					if (pp == first_pp) {
2652 						pp = NULL;
2653 					}
2654 					continue;
2655 				}
2656 
2657 				ASSERT(PP_ISFREE(pp));
2658 				ASSERT(PP_ISAGED(pp));
2659 				ASSERT(pp->p_vnode == NULL);
2660 				ASSERT(pp->p_hash == NULL);
2661 				ASSERT(pp->p_offset == (u_offset_t)-1);
2662 				ASSERT(pp->p_szc == szc);
2663 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
2664 				/* check if page within DMA attributes */
2665 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
2666 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
2667 				    (pgaddr + MMU_PAGESIZE - 1 <=
2668 				    dma_attr->dma_attr_addr_hi)) {
2669 					break;
2670 				}
2671 
2672 				/* continue looking */
2673 				page_unlock(pp);
2674 				pp = pp->p_next;
2675 				if (pp == first_pp)
2676 					pp = NULL;
2677 
2678 			}
2679 			if (pp != NULL) {
2680 				ASSERT(mtype == PP_2_MTYPE(pp));
2681 				ASSERT(pp->p_szc == 0);
2682 
2683 				/* found a page with specified DMA attributes */
2684 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
2685 				    mtype), pp);
2686 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
2687 
2688 				if ((PP_ISFREE(pp) == 0) ||
2689 				    (PP_ISAGED(pp) == 0)) {
2690 					cmn_err(CE_PANIC, "page %p is not free",
2691 					    (void *)pp);
2692 				}
2693 
2694 				mutex_exit(pcm);
2695 				check_dma(dma_attr, pp, 1);
2696 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
2697 				return (pp);
2698 			}
2699 			mutex_exit(pcm);
2700 nextfreebin:
2701 			if (plw_initialized == 0) {
2702 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
2703 				ASSERT(plw.plw_ceq_dif == page_colors);
2704 				plw_initialized = 1;
2705 			}
2706 
2707 			if (plw.plw_do_split) {
2708 				pp = page_freelist_split(szc, bin, mnode,
2709 				    mtype,
2710 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
2711 				    &plw);
2712 				if (pp != NULL)
2713 					return (pp);
2714 			}
2715 
2716 			bin = page_list_walk_next_bin(szc, bin, &plw);
2717 		}
2718 
2719 		MTYPE_NEXT(mnode, mtype, flags);
2720 	} while (mtype >= 0);
2721 
2722 	/* failed to find a page in the freelist; try it in the cachelist */
2723 
2724 	/* reset mtype start for cachelist search */
2725 	mtype = mtypestart;
2726 	ASSERT(mtype >= 0);
2727 
2728 	/* start with the bin of matching color */
2729 	bin = origbin;
2730 
2731 	do {
2732 		for (i = 0; i <= page_colors; i++) {
2733 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
2734 				goto nextcachebin;
2735 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
2736 			mutex_enter(pcm);
2737 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
2738 			first_pp = pp;
2739 			while (pp != NULL) {
2740 				if (page_trylock(pp, SE_EXCL) == 0) {
2741 					pp = pp->p_next;
2742 					if (pp == first_pp)
2743 						break;
2744 					continue;
2745 				}
2746 				ASSERT(pp->p_vnode);
2747 				ASSERT(PP_ISAGED(pp) == 0);
2748 				ASSERT(pp->p_szc == 0);
2749 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
2750 
2751 				/* check if page within DMA attributes */
2752 
2753 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
2754 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
2755 				    (pgaddr + MMU_PAGESIZE - 1 <=
2756 				    dma_attr->dma_attr_addr_hi)) {
2757 					break;
2758 				}
2759 
2760 				/* continue looking */
2761 				page_unlock(pp);
2762 				pp = pp->p_next;
2763 				if (pp == first_pp)
2764 					pp = NULL;
2765 			}
2766 
2767 			if (pp != NULL) {
2768 				ASSERT(mtype == PP_2_MTYPE(pp));
2769 				ASSERT(pp->p_szc == 0);
2770 
2771 				/* found a page with specified DMA attributes */
2772 				page_sub(&PAGE_CACHELISTS(mnode, bin,
2773 				    mtype), pp);
2774 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
2775 
2776 				mutex_exit(pcm);
2777 				ASSERT(pp->p_vnode);
2778 				ASSERT(PP_ISAGED(pp) == 0);
2779 				check_dma(dma_attr, pp, 1);
2780 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
2781 				return (pp);
2782 			}
2783 			mutex_exit(pcm);
2784 nextcachebin:
2785 			bin += (i == 0) ? BIN_STEP : 1;
2786 			bin &= page_colors_mask;
2787 		}
2788 		MTYPE_NEXT(mnode, mtype, flags);
2789 	} while (mtype >= 0);
2790 
2791 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
2792 	return (NULL);
2793 }
2794 
2795 /*
2796  * This function is similar to page_get_freelist()/page_get_cachelist()
2797  * but it searches both the lists to find a page with the specified
2798  * color (or no color) and DMA attributes. The search is done in the
2799  * freelist first and then in the cache list within the highest memory
2800  * range (based on DMA attributes) before searching in the lower
2801  * memory ranges.
2802  *
2803  * Note: This function is called only by page_create_io().
2804  */
2805 /*ARGSUSED*/
2806 static page_t *
2807 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
2808     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
2809 {
2810 	uint_t		bin;
2811 	int		mtype;
2812 	page_t		*pp;
2813 	int		n;
2814 	int		m;
2815 	int		szc;
2816 	int		fullrange;
2817 	int		mnode;
2818 	int		local_failed_stat = 0;
2819 	lgrp_mnode_cookie_t	lgrp_cookie;
2820 
2821 	VM_STAT_ADD(pga_vmstats.pga_alloc);
2822 
2823 	/* only base pagesize currently supported */
2824 	if (size != MMU_PAGESIZE)
2825 		return (NULL);
2826 
2827 	/*
2828 	 * If we're passed a specific lgroup, we use it.  Otherwise,
2829 	 * assume first-touch placement is desired.
2830 	 */
2831 	if (!LGRP_EXISTS(lgrp))
2832 		lgrp = lgrp_home_lgrp();
2833 
2834 	/* LINTED */
2835 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
2836 
2837 	/*
2838 	 * Only hold one freelist or cachelist lock at a time, that way we
2839 	 * can start anywhere and not have to worry about lock
2840 	 * ordering.
2841 	 */
2842 	if (dma_attr == NULL) {
2843 		n = 0;
2844 		m = mnoderangecnt - 1;
2845 		fullrange = 1;
2846 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
2847 	} else {
2848 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
2849 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
2850 
2851 		/*
2852 		 * We can guarantee alignment only for page boundary.
2853 		 */
2854 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
2855 			return (NULL);
2856 
2857 		n = pfn_2_mtype(pfnlo);
2858 		m = pfn_2_mtype(pfnhi);
2859 
2860 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
2861 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
2862 	}
2863 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
2864 
2865 	if (n > m)
2866 		return (NULL);
2867 
2868 	szc = 0;
2869 
2870 	/* cylcing thru mtype handled by RANGE0 if n == 0 */
2871 	if (n == 0) {
2872 		flags |= PGI_MT_RANGE0;
2873 		n = m;
2874 	}
2875 
2876 	/*
2877 	 * Try local memory node first, but try remote if we can't
2878 	 * get a page of the right color.
2879 	 */
2880 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
2881 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
2882 		/*
2883 		 * allocate pages from high pfn to low.
2884 		 */
2885 		for (mtype = m; mtype >= n; mtype--) {
2886 			if (fullrange != 0) {
2887 				pp = page_get_mnode_freelist(mnode,
2888 				    bin, mtype, szc, flags);
2889 				if (pp == NULL) {
2890 					pp = page_get_mnode_cachelist(
2891 					    bin, flags, mnode, mtype);
2892 				}
2893 			} else {
2894 				pp = page_get_mnode_anylist(bin, szc,
2895 				    flags, mnode, mtype, dma_attr);
2896 			}
2897 			if (pp != NULL) {
2898 				VM_STAT_ADD(pga_vmstats.pga_allocok);
2899 				check_dma(dma_attr, pp, 1);
2900 				return (pp);
2901 			}
2902 		}
2903 		if (!local_failed_stat) {
2904 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
2905 			local_failed_stat = 1;
2906 		}
2907 	}
2908 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
2909 
2910 	return (NULL);
2911 }
2912 
2913 /*
2914  * page_create_io()
2915  *
2916  * This function is a copy of page_create_va() with an additional
2917  * argument 'mattr' that specifies DMA memory requirements to
2918  * the page list functions. This function is used by the segkmem
2919  * allocator so it is only to create new pages (i.e PG_EXCL is
2920  * set).
2921  *
2922  * Note: This interface is currently used by x86 PSM only and is
2923  *	 not fully specified so the commitment level is only for
2924  *	 private interface specific to x86. This interface uses PSM
2925  *	 specific page_get_anylist() interface.
2926  */
2927 
2928 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
2929 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
2930 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
2931 			break; \
2932 	} \
2933 }
2934 
2935 
2936 page_t *
2937 page_create_io(
2938 	struct vnode	*vp,
2939 	u_offset_t	off,
2940 	uint_t		bytes,
2941 	uint_t		flags,
2942 	struct as	*as,
2943 	caddr_t		vaddr,
2944 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
2945 {
2946 	page_t		*plist = NULL;
2947 	uint_t		plist_len = 0;
2948 	pgcnt_t		npages;
2949 	page_t		*npp = NULL;
2950 	uint_t		pages_req;
2951 	page_t		*pp;
2952 	kmutex_t	*phm = NULL;
2953 	uint_t		index;
2954 
2955 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
2956 	    "page_create_start:vp %p off %llx bytes %u flags %x",
2957 	    vp, off, bytes, flags);
2958 
2959 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
2960 
2961 	pages_req = npages = mmu_btopr(bytes);
2962 
2963 	/*
2964 	 * Do the freemem and pcf accounting.
2965 	 */
2966 	if (!page_create_wait(npages, flags)) {
2967 		return (NULL);
2968 	}
2969 
2970 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
2971 	    "page_create_success:vp %p off %llx", vp, off);
2972 
2973 	/*
2974 	 * If satisfying this request has left us with too little
2975 	 * memory, start the wheels turning to get some back.  The
2976 	 * first clause of the test prevents waking up the pageout
2977 	 * daemon in situations where it would decide that there's
2978 	 * nothing to do.
2979 	 */
2980 	if (nscan < desscan && freemem < minfree) {
2981 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
2982 		    "pageout_cv_signal:freemem %ld", freemem);
2983 		cv_signal(&proc_pageout->p_cv);
2984 	}
2985 
2986 	if (flags & PG_PHYSCONTIG) {
2987 
2988 		plist = page_get_contigpage(&npages, mattr, 1);
2989 		if (plist == NULL) {
2990 			page_create_putback(npages);
2991 			return (NULL);
2992 		}
2993 
2994 		pp = plist;
2995 
2996 		do {
2997 			if (!page_hashin(pp, vp, off, NULL)) {
2998 				panic("pg_creat_io: hashin failed %p %p %llx",
2999 				    (void *)pp, (void *)vp, off);
3000 			}
3001 			VM_STAT_ADD(page_create_new);
3002 			off += MMU_PAGESIZE;
3003 			PP_CLRFREE(pp);
3004 			PP_CLRAGED(pp);
3005 			page_set_props(pp, P_REF);
3006 			pp = pp->p_next;
3007 		} while (pp != plist);
3008 
3009 		if (!npages) {
3010 			check_dma(mattr, plist, pages_req);
3011 			return (plist);
3012 		} else {
3013 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3014 		}
3015 
3016 		/*
3017 		 * fall-thru:
3018 		 *
3019 		 * page_get_contigpage returns when npages <= sgllen.
3020 		 * Grab the rest of the non-contig pages below from anylist.
3021 		 */
3022 	}
3023 
3024 	/*
3025 	 * Loop around collecting the requested number of pages.
3026 	 * Most of the time, we have to `create' a new page. With
3027 	 * this in mind, pull the page off the free list before
3028 	 * getting the hash lock.  This will minimize the hash
3029 	 * lock hold time, nesting, and the like.  If it turns
3030 	 * out we don't need the page, we put it back at the end.
3031 	 */
3032 	while (npages--) {
3033 		phm = NULL;
3034 
3035 		index = PAGE_HASH_FUNC(vp, off);
3036 top:
3037 		ASSERT(phm == NULL);
3038 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
3039 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3040 
3041 		if (npp == NULL) {
3042 			/*
3043 			 * Try to get the page of any color either from
3044 			 * the freelist or from the cache list.
3045 			 */
3046 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3047 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
3048 			if (npp == NULL) {
3049 				if (mattr == NULL) {
3050 					/*
3051 					 * Not looking for a special page;
3052 					 * panic!
3053 					 */
3054 					panic("no page found %d", (int)npages);
3055 				}
3056 				/*
3057 				 * No page found! This can happen
3058 				 * if we are looking for a page
3059 				 * within a specific memory range
3060 				 * for DMA purposes. If PG_WAIT is
3061 				 * specified then we wait for a
3062 				 * while and then try again. The
3063 				 * wait could be forever if we
3064 				 * don't get the page(s) we need.
3065 				 *
3066 				 * Note: XXX We really need a mechanism
3067 				 * to wait for pages in the desired
3068 				 * range. For now, we wait for any
3069 				 * pages and see if we can use it.
3070 				 */
3071 
3072 				if ((mattr != NULL) && (flags & PG_WAIT)) {
3073 					delay(10);
3074 					goto top;
3075 				}
3076 				goto fail; /* undo accounting stuff */
3077 			}
3078 
3079 			if (PP_ISAGED(npp) == 0) {
3080 				/*
3081 				 * Since this page came from the
3082 				 * cachelist, we must destroy the
3083 				 * old vnode association.
3084 				 */
3085 				page_hashout(npp, (kmutex_t *)NULL);
3086 			}
3087 		}
3088 
3089 		/*
3090 		 * We own this page!
3091 		 */
3092 		ASSERT(PAGE_EXCL(npp));
3093 		ASSERT(npp->p_vnode == NULL);
3094 		ASSERT(!hat_page_is_mapped(npp));
3095 		PP_CLRFREE(npp);
3096 		PP_CLRAGED(npp);
3097 
3098 		/*
3099 		 * Here we have a page in our hot little mits and are
3100 		 * just waiting to stuff it on the appropriate lists.
3101 		 * Get the mutex and check to see if it really does
3102 		 * not exist.
3103 		 */
3104 		phm = PAGE_HASH_MUTEX(index);
3105 		mutex_enter(phm);
3106 		PAGE_HASH_SEARCH(index, pp, vp, off);
3107 		if (pp == NULL) {
3108 			VM_STAT_ADD(page_create_new);
3109 			pp = npp;
3110 			npp = NULL;
3111 			if (!page_hashin(pp, vp, off, phm)) {
3112 				/*
3113 				 * Since we hold the page hash mutex and
3114 				 * just searched for this page, page_hashin
3115 				 * had better not fail.  If it does, that
3116 				 * means somethread did not follow the
3117 				 * page hash mutex rules.  Panic now and
3118 				 * get it over with.  As usual, go down
3119 				 * holding all the locks.
3120 				 */
3121 				ASSERT(MUTEX_HELD(phm));
3122 				panic("page_create: hashin fail %p %p %llx %p",
3123 				    (void *)pp, (void *)vp, off, (void *)phm);
3124 
3125 			}
3126 			ASSERT(MUTEX_HELD(phm));
3127 			mutex_exit(phm);
3128 			phm = NULL;
3129 
3130 			/*
3131 			 * Hat layer locking need not be done to set
3132 			 * the following bits since the page is not hashed
3133 			 * and was on the free list (i.e., had no mappings).
3134 			 *
3135 			 * Set the reference bit to protect
3136 			 * against immediate pageout
3137 			 *
3138 			 * XXXmh modify freelist code to set reference
3139 			 * bit so we don't have to do it here.
3140 			 */
3141 			page_set_props(pp, P_REF);
3142 		} else {
3143 			ASSERT(MUTEX_HELD(phm));
3144 			mutex_exit(phm);
3145 			phm = NULL;
3146 			/*
3147 			 * NOTE: This should not happen for pages associated
3148 			 *	 with kernel vnode 'kvp'.
3149 			 */
3150 			/* XX64 - to debug why this happens! */
3151 			ASSERT(!VN_ISKAS(vp));
3152 			if (VN_ISKAS(vp))
3153 				cmn_err(CE_NOTE,
3154 				    "page_create: page not expected "
3155 				    "in hash list for kernel vnode - pp 0x%p",
3156 				    (void *)pp);
3157 			VM_STAT_ADD(page_create_exists);
3158 			goto fail;
3159 		}
3160 
3161 		/*
3162 		 * Got a page!  It is locked.  Acquire the i/o
3163 		 * lock since we are going to use the p_next and
3164 		 * p_prev fields to link the requested pages together.
3165 		 */
3166 		page_io_lock(pp);
3167 		page_add(&plist, pp);
3168 		plist = plist->p_next;
3169 		off += MMU_PAGESIZE;
3170 		vaddr += MMU_PAGESIZE;
3171 	}
3172 
3173 	check_dma(mattr, plist, pages_req);
3174 	return (plist);
3175 
3176 fail:
3177 	if (npp != NULL) {
3178 		/*
3179 		 * Did not need this page after all.
3180 		 * Put it back on the free list.
3181 		 */
3182 		VM_STAT_ADD(page_create_putbacks);
3183 		PP_SETFREE(npp);
3184 		PP_SETAGED(npp);
3185 		npp->p_offset = (u_offset_t)-1;
3186 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3187 		page_unlock(npp);
3188 	}
3189 
3190 	/*
3191 	 * Give up the pages we already got.
3192 	 */
3193 	while (plist != NULL) {
3194 		pp = plist;
3195 		page_sub(&plist, pp);
3196 		page_io_unlock(pp);
3197 		plist_len++;
3198 		/*LINTED: constant in conditional ctx*/
3199 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
3200 	}
3201 
3202 	/*
3203 	 * VN_DISPOSE does freemem accounting for the pages in plist
3204 	 * by calling page_free. So, we need to undo the pcf accounting
3205 	 * for only the remaining pages.
3206 	 */
3207 	VM_STAT_ADD(page_create_putbacks);
3208 	page_create_putback(pages_req - plist_len);
3209 
3210 	return (NULL);
3211 }
3212 #endif /* !__xpv */
3213 
3214 
3215 /*
3216  * Copy the data from the physical page represented by "frompp" to
3217  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3218  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
3219  * level and no one sleeps with an active mapping there.
3220  *
3221  * Note that the ref/mod bits in the page_t's are not affected by
3222  * this operation, hence it is up to the caller to update them appropriately.
3223  */
3224 int
3225 ppcopy(page_t *frompp, page_t *topp)
3226 {
3227 	caddr_t		pp_addr1;
3228 	caddr_t		pp_addr2;
3229 	hat_mempte_t	pte1;
3230 	hat_mempte_t	pte2;
3231 	kmutex_t	*ppaddr_mutex;
3232 	label_t		ljb;
3233 	int		ret = 1;
3234 
3235 	ASSERT_STACK_ALIGNED();
3236 	ASSERT(PAGE_LOCKED(frompp));
3237 	ASSERT(PAGE_LOCKED(topp));
3238 
3239 	if (kpm_enable) {
3240 		pp_addr1 = hat_kpm_page2va(frompp, 0);
3241 		pp_addr2 = hat_kpm_page2va(topp, 0);
3242 		kpreempt_disable();
3243 	} else {
3244 		/*
3245 		 * disable pre-emption so that CPU can't change
3246 		 */
3247 		kpreempt_disable();
3248 
3249 		pp_addr1 = CPU->cpu_caddr1;
3250 		pp_addr2 = CPU->cpu_caddr2;
3251 		pte1 = CPU->cpu_caddr1pte;
3252 		pte2 = CPU->cpu_caddr2pte;
3253 
3254 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3255 		mutex_enter(ppaddr_mutex);
3256 
3257 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3258 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3259 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3260 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3261 		    HAT_LOAD_NOCONSIST);
3262 	}
3263 
3264 	if (on_fault(&ljb)) {
3265 		ret = 0;
3266 		goto faulted;
3267 	}
3268 	if (use_sse_pagecopy)
3269 #ifdef __xpv
3270 		page_copy_no_xmm(pp_addr2, pp_addr1);
3271 #else
3272 		hwblkpagecopy(pp_addr1, pp_addr2);
3273 #endif
3274 	else
3275 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
3276 
3277 	no_fault();
3278 faulted:
3279 	if (!kpm_enable) {
3280 #ifdef __xpv
3281 		/*
3282 		 * We can't leave unused mappings laying about under the
3283 		 * hypervisor, so blow them away.
3284 		 */
3285 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3286 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3287 			panic("HYPERVISOR_update_va_mapping() failed");
3288 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3289 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3290 			panic("HYPERVISOR_update_va_mapping() failed");
3291 #endif
3292 		mutex_exit(ppaddr_mutex);
3293 	}
3294 	kpreempt_enable();
3295 	return (ret);
3296 }
3297 
3298 void
3299 pagezero(page_t *pp, uint_t off, uint_t len)
3300 {
3301 	ASSERT(PAGE_LOCKED(pp));
3302 	pfnzero(page_pptonum(pp), off, len);
3303 }
3304 
3305 /*
3306  * Zero the physical page from off to off + len given by pfn
3307  * without changing the reference and modified bits of page.
3308  *
3309  * We use this using CPU private page address #2, see ppcopy() for more info.
3310  * pfnzero() must not be called at interrupt level.
3311  */
3312 void
3313 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3314 {
3315 	caddr_t		pp_addr2;
3316 	hat_mempte_t	pte2;
3317 	kmutex_t	*ppaddr_mutex = NULL;
3318 
3319 	ASSERT_STACK_ALIGNED();
3320 	ASSERT(len <= MMU_PAGESIZE);
3321 	ASSERT(off <= MMU_PAGESIZE);
3322 	ASSERT(off + len <= MMU_PAGESIZE);
3323 
3324 	if (kpm_enable && !pfn_is_foreign(pfn)) {
3325 		pp_addr2 = hat_kpm_pfn2va(pfn);
3326 		kpreempt_disable();
3327 	} else {
3328 		kpreempt_disable();
3329 
3330 		pp_addr2 = CPU->cpu_caddr2;
3331 		pte2 = CPU->cpu_caddr2pte;
3332 
3333 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3334 		mutex_enter(ppaddr_mutex);
3335 
3336 		hat_mempte_remap(pfn, pp_addr2, pte2,
3337 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3338 		    HAT_LOAD_NOCONSIST);
3339 	}
3340 
3341 	if (use_sse_pagezero) {
3342 #ifdef __xpv
3343 		uint_t rem;
3344 
3345 		/*
3346 		 * zero a byte at a time until properly aligned for
3347 		 * block_zero_no_xmm().
3348 		 */
3349 		while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3350 			pp_addr2[off++] = 0;
3351 
3352 		/*
3353 		 * Now use faster block_zero_no_xmm() for any range
3354 		 * that is properly aligned and sized.
3355 		 */
3356 		rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3357 		len -= rem;
3358 		if (len != 0) {
3359 			block_zero_no_xmm(pp_addr2 + off, len);
3360 			off += len;
3361 		}
3362 
3363 		/*
3364 		 * zero remainder with byte stores.
3365 		 */
3366 		while (rem-- > 0)
3367 			pp_addr2[off++] = 0;
3368 #else
3369 		hwblkclr(pp_addr2 + off, len);
3370 #endif
3371 	} else {
3372 		bzero(pp_addr2 + off, len);
3373 	}
3374 
3375 	if (!kpm_enable || pfn_is_foreign(pfn)) {
3376 #ifdef __xpv
3377 		/*
3378 		 * On the hypervisor this page might get used for a page
3379 		 * table before any intervening change to this mapping,
3380 		 * so blow it away.
3381 		 */
3382 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3383 		    UVMF_INVLPG) < 0)
3384 			panic("HYPERVISOR_update_va_mapping() failed");
3385 #endif
3386 		mutex_exit(ppaddr_mutex);
3387 	}
3388 
3389 	kpreempt_enable();
3390 }
3391 
3392 /*
3393  * Platform-dependent page scrub call.
3394  */
3395 void
3396 pagescrub(page_t *pp, uint_t off, uint_t len)
3397 {
3398 	/*
3399 	 * For now, we rely on the fact that pagezero() will
3400 	 * always clear UEs.
3401 	 */
3402 	pagezero(pp, off, len);
3403 }
3404 
3405 /*
3406  * set up two private addresses for use on a given CPU for use in ppcopy()
3407  */
3408 void
3409 setup_vaddr_for_ppcopy(struct cpu *cpup)
3410 {
3411 	void *addr;
3412 	hat_mempte_t pte_pa;
3413 
3414 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3415 	pte_pa = hat_mempte_setup(addr);
3416 	cpup->cpu_caddr1 = addr;
3417 	cpup->cpu_caddr1pte = pte_pa;
3418 
3419 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3420 	pte_pa = hat_mempte_setup(addr);
3421 	cpup->cpu_caddr2 = addr;
3422 	cpup->cpu_caddr2pte = pte_pa;
3423 
3424 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3425 }
3426 
3427 /*
3428  * Undo setup_vaddr_for_ppcopy
3429  */
3430 void
3431 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3432 {
3433 	mutex_destroy(&cpup->cpu_ppaddr_mutex);
3434 
3435 	hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
3436 	cpup->cpu_caddr2pte = 0;
3437 	vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
3438 	cpup->cpu_caddr2 = 0;
3439 
3440 	hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
3441 	cpup->cpu_caddr1pte = 0;
3442 	vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
3443 	cpup->cpu_caddr1 = 0;
3444 }
3445 
3446 /*
3447  * Create the pageout scanner thread. The thread has to
3448  * start at procedure with process pp and priority pri.
3449  */
3450 void
3451 pageout_init(void (*procedure)(), proc_t *pp, pri_t pri)
3452 {
3453 	(void) thread_create(NULL, 0, procedure, NULL, 0, pp, TS_RUN, pri);
3454 }
3455 
3456 /*
3457  * Function for flushing D-cache when performing module relocations
3458  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
3459  */
3460 void
3461 dcache_flushall()
3462 {}
3463 
3464 size_t
3465 exec_get_spslew(void)
3466 {
3467 	return (0);
3468 }
3469 
3470 /*
3471  * Allocate a memory page.  The argument 'seed' can be any pseudo-random
3472  * number to vary where the pages come from.  This is quite a hacked up
3473  * method -- it works for now, but really needs to be fixed up a bit.
3474  *
3475  * We currently use page_create_va() on the kvp with fake offsets,
3476  * segments and virt address.  This is pretty bogus, but was copied from the
3477  * old hat_i86.c code.  A better approach would be to specify either mnode
3478  * random or mnode local and takes a page from whatever color has the MOST
3479  * available - this would have a minimal impact on page coloring.
3480  */
3481 page_t *
3482 page_get_physical(uintptr_t seed)
3483 {
3484 	page_t *pp;
3485 	u_offset_t offset;
3486 	static struct seg tmpseg;
3487 	static uintptr_t ctr = 0;
3488 
3489 	/*
3490 	 * This code is gross, we really need a simpler page allocator.
3491 	 *
3492 	 * We need assign an offset for the page to call page_create_va().
3493 	 * To avoid conflicts with other pages, we get creative with the offset.
3494 	 * For 32 bits, we pick an offset > 4Gig
3495 	 * For 64 bits, pick an offset somewhere in the VA hole.
3496 	 */
3497 	offset = seed;
3498 	if (offset > kernelbase)
3499 		offset -= kernelbase;
3500 	offset <<= MMU_PAGESHIFT;
3501 #if defined(__amd64)
3502 	offset += mmu.hole_start;	/* something in VA hole */
3503 #else
3504 	offset += 1ULL << 40;		/* something > 4 Gig */
3505 #endif
3506 
3507 	if (page_resv(1, KM_NOSLEEP) == 0)
3508 		return (NULL);
3509 
3510 #ifdef	DEBUG
3511 	pp = page_exists(&kvp, offset);
3512 	if (pp != NULL)
3513 		panic("page already exists %p", pp);
3514 #endif
3515 
3516 	pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
3517 	    &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE));	/* changing VA usage */
3518 	if (pp == NULL)
3519 		return (NULL);
3520 	page_io_unlock(pp);
3521 	page_hashout(pp, NULL);
3522 	return (pp);
3523 }
3524