1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014 by Delphix. All rights reserved. 25 * Copyright 2015 Joyent, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/atomic.h> 32 #include <sys/bitmap.h> 33 #include <sys/machparam.h> 34 #include <sys/machsystm.h> 35 #include <sys/mman.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/thread.h> 39 #include <sys/proc.h> 40 #include <sys/cpu.h> 41 #include <sys/kmem.h> 42 #include <sys/disp.h> 43 #include <sys/vmem.h> 44 #include <sys/vmsystm.h> 45 #include <sys/promif.h> 46 #include <sys/var.h> 47 #include <sys/x86_archext.h> 48 #include <sys/archsystm.h> 49 #include <sys/bootconf.h> 50 #include <sys/dumphdr.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kpm.h> 53 #include <vm/hat.h> 54 #include <vm/hat_i86.h> 55 #include <sys/cmn_err.h> 56 #include <sys/panic.h> 57 58 #ifdef __xpv 59 #include <sys/hypervisor.h> 60 #include <sys/xpv_panic.h> 61 #endif 62 63 #include <sys/bootinfo.h> 64 #include <vm/kboot_mmu.h> 65 66 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 67 68 kmem_cache_t *htable_cache; 69 70 /* 71 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 72 * is used in order to facilitate testing of the htable_steal() code. 73 * By resetting htable_reserve_amount to a lower value, we can force 74 * stealing to occur. The reserve amount is a guess to get us through boot. 75 */ 76 #define HTABLE_RESERVE_AMOUNT (200) 77 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 78 kmutex_t htable_reserve_mutex; 79 uint_t htable_reserve_cnt; 80 htable_t *htable_reserve_pool; 81 82 /* 83 * Used to hand test htable_steal(). 84 */ 85 #ifdef DEBUG 86 ulong_t force_steal = 0; 87 ulong_t ptable_cnt = 0; 88 #endif 89 90 /* 91 * This variable is so that we can tune this via /etc/system 92 * Any value works, but a power of two <= mmu.ptes_per_table is best. 93 */ 94 uint_t htable_steal_passes = 8; 95 96 /* 97 * mutex stuff for access to htable hash 98 */ 99 #define NUM_HTABLE_MUTEX 128 100 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 101 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 102 103 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 104 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 105 106 /* 107 * forward declarations 108 */ 109 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 110 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 111 static void htable_free(htable_t *ht); 112 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 113 static void x86pte_release_pagetable(htable_t *ht); 114 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 115 x86pte_t new); 116 117 /* 118 * A counter to track if we are stealing or reaping htables. When non-zero 119 * htable_free() will directly free htables (either to the reserve or kmem) 120 * instead of putting them in a hat's htable cache. 121 */ 122 uint32_t htable_dont_cache = 0; 123 124 /* 125 * Track the number of active pagetables, so we can know how many to reap 126 */ 127 static uint32_t active_ptables = 0; 128 129 #ifdef __xpv 130 /* 131 * Deal with hypervisor complications. 132 */ 133 void 134 xen_flush_va(caddr_t va) 135 { 136 struct mmuext_op t; 137 uint_t count; 138 139 if (IN_XPV_PANIC()) { 140 mmu_tlbflush_entry((caddr_t)va); 141 } else { 142 t.cmd = MMUEXT_INVLPG_LOCAL; 143 t.arg1.linear_addr = (uintptr_t)va; 144 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 145 panic("HYPERVISOR_mmuext_op() failed"); 146 ASSERT(count == 1); 147 } 148 } 149 150 void 151 xen_gflush_va(caddr_t va, cpuset_t cpus) 152 { 153 struct mmuext_op t; 154 uint_t count; 155 156 if (IN_XPV_PANIC()) { 157 mmu_tlbflush_entry((caddr_t)va); 158 return; 159 } 160 161 t.cmd = MMUEXT_INVLPG_MULTI; 162 t.arg1.linear_addr = (uintptr_t)va; 163 /*LINTED: constant in conditional context*/ 164 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 165 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 166 panic("HYPERVISOR_mmuext_op() failed"); 167 ASSERT(count == 1); 168 } 169 170 void 171 xen_flush_tlb() 172 { 173 struct mmuext_op t; 174 uint_t count; 175 176 if (IN_XPV_PANIC()) { 177 xpv_panic_reload_cr3(); 178 } else { 179 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 180 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 181 panic("HYPERVISOR_mmuext_op() failed"); 182 ASSERT(count == 1); 183 } 184 } 185 186 void 187 xen_gflush_tlb(cpuset_t cpus) 188 { 189 struct mmuext_op t; 190 uint_t count; 191 192 ASSERT(!IN_XPV_PANIC()); 193 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 194 /*LINTED: constant in conditional context*/ 195 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 196 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 197 panic("HYPERVISOR_mmuext_op() failed"); 198 ASSERT(count == 1); 199 } 200 201 /* 202 * Install/Adjust a kpm mapping under the hypervisor. 203 * Value of "how" should be: 204 * PT_WRITABLE | PT_VALID - regular kpm mapping 205 * PT_VALID - make mapping read-only 206 * 0 - remove mapping 207 * 208 * returns 0 on success. non-zero for failure. 209 */ 210 int 211 xen_kpm_page(pfn_t pfn, uint_t how) 212 { 213 paddr_t pa = mmu_ptob((paddr_t)pfn); 214 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 215 216 if (kpm_vbase == NULL) 217 return (0); 218 219 if (how) 220 pte |= pa_to_ma(pa) | how; 221 else 222 pte = 0; 223 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 224 pte, UVMF_INVLPG | UVMF_ALL)); 225 } 226 227 void 228 xen_pin(pfn_t pfn, level_t lvl) 229 { 230 struct mmuext_op t; 231 uint_t count; 232 233 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 234 t.arg1.mfn = pfn_to_mfn(pfn); 235 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 236 panic("HYPERVISOR_mmuext_op() failed"); 237 ASSERT(count == 1); 238 } 239 240 void 241 xen_unpin(pfn_t pfn) 242 { 243 struct mmuext_op t; 244 uint_t count; 245 246 t.cmd = MMUEXT_UNPIN_TABLE; 247 t.arg1.mfn = pfn_to_mfn(pfn); 248 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 249 panic("HYPERVISOR_mmuext_op() failed"); 250 ASSERT(count == 1); 251 } 252 253 static void 254 xen_map(uint64_t pte, caddr_t va) 255 { 256 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 257 UVMF_INVLPG | UVMF_LOCAL)) 258 panic("HYPERVISOR_update_va_mapping() failed"); 259 } 260 #endif /* __xpv */ 261 262 /* 263 * Allocate a memory page for a hardware page table. 264 * 265 * A wrapper around page_get_physical(), with some extra checks. 266 */ 267 static pfn_t 268 ptable_alloc(uintptr_t seed) 269 { 270 pfn_t pfn; 271 page_t *pp; 272 273 pfn = PFN_INVALID; 274 275 /* 276 * The first check is to see if there is memory in the system. If we 277 * drop to throttlefree, then fail the ptable_alloc() and let the 278 * stealing code kick in. Note that we have to do this test here, 279 * since the test in page_create_throttle() would let the NOSLEEP 280 * allocation go through and deplete the page reserves. 281 * 282 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 283 */ 284 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 285 return (PFN_INVALID); 286 287 #ifdef DEBUG 288 /* 289 * This code makes htable_steal() easier to test. By setting 290 * force_steal we force pagetable allocations to fall 291 * into the stealing code. Roughly 1 in ever "force_steal" 292 * page table allocations will fail. 293 */ 294 if (proc_pageout != NULL && force_steal > 1 && 295 ++ptable_cnt > force_steal) { 296 ptable_cnt = 0; 297 return (PFN_INVALID); 298 } 299 #endif /* DEBUG */ 300 301 pp = page_get_physical(seed); 302 if (pp == NULL) 303 return (PFN_INVALID); 304 ASSERT(PAGE_SHARED(pp)); 305 pfn = pp->p_pagenum; 306 if (pfn == PFN_INVALID) 307 panic("ptable_alloc(): Invalid PFN!!"); 308 atomic_inc_32(&active_ptables); 309 HATSTAT_INC(hs_ptable_allocs); 310 return (pfn); 311 } 312 313 /* 314 * Free an htable's associated page table page. See the comments 315 * for ptable_alloc(). 316 */ 317 static void 318 ptable_free(pfn_t pfn) 319 { 320 page_t *pp = page_numtopp_nolock(pfn); 321 322 /* 323 * need to destroy the page used for the pagetable 324 */ 325 ASSERT(pfn != PFN_INVALID); 326 HATSTAT_INC(hs_ptable_frees); 327 atomic_dec_32(&active_ptables); 328 if (pp == NULL) 329 panic("ptable_free(): no page for pfn!"); 330 ASSERT(PAGE_SHARED(pp)); 331 ASSERT(pfn == pp->p_pagenum); 332 ASSERT(!IN_XPV_PANIC()); 333 334 /* 335 * Get an exclusive lock, might have to wait for a kmem reader. 336 */ 337 if (!page_tryupgrade(pp)) { 338 u_offset_t off = pp->p_offset; 339 page_unlock(pp); 340 pp = page_lookup(&kvp, off, SE_EXCL); 341 if (pp == NULL) 342 panic("page not found"); 343 } 344 #ifdef __xpv 345 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 346 panic("failure making kpm r/w pfn=0x%lx", pfn); 347 #endif 348 page_hashout(pp, NULL); 349 page_free(pp, 1); 350 page_unresv(1); 351 } 352 353 /* 354 * Put one htable on the reserve list. 355 */ 356 static void 357 htable_put_reserve(htable_t *ht) 358 { 359 ht->ht_hat = NULL; /* no longer tied to a hat */ 360 ASSERT(ht->ht_pfn == PFN_INVALID); 361 HATSTAT_INC(hs_htable_rputs); 362 mutex_enter(&htable_reserve_mutex); 363 ht->ht_next = htable_reserve_pool; 364 htable_reserve_pool = ht; 365 ++htable_reserve_cnt; 366 mutex_exit(&htable_reserve_mutex); 367 } 368 369 /* 370 * Take one htable from the reserve. 371 */ 372 static htable_t * 373 htable_get_reserve(void) 374 { 375 htable_t *ht = NULL; 376 377 mutex_enter(&htable_reserve_mutex); 378 if (htable_reserve_cnt != 0) { 379 ht = htable_reserve_pool; 380 ASSERT(ht != NULL); 381 ASSERT(ht->ht_pfn == PFN_INVALID); 382 htable_reserve_pool = ht->ht_next; 383 --htable_reserve_cnt; 384 HATSTAT_INC(hs_htable_rgets); 385 } 386 mutex_exit(&htable_reserve_mutex); 387 return (ht); 388 } 389 390 /* 391 * Allocate initial htables and put them on the reserve list 392 */ 393 void 394 htable_initial_reserve(uint_t count) 395 { 396 htable_t *ht; 397 398 count += HTABLE_RESERVE_AMOUNT; 399 while (count > 0) { 400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 401 ASSERT(ht != NULL); 402 403 ASSERT(use_boot_reserve); 404 ht->ht_pfn = PFN_INVALID; 405 htable_put_reserve(ht); 406 --count; 407 } 408 } 409 410 /* 411 * Readjust the reserves after a thread finishes using them. 412 */ 413 void 414 htable_adjust_reserve() 415 { 416 htable_t *ht; 417 418 /* 419 * Free any excess htables in the reserve list 420 */ 421 while (htable_reserve_cnt > htable_reserve_amount && 422 !USE_HAT_RESERVES()) { 423 ht = htable_get_reserve(); 424 if (ht == NULL) 425 return; 426 ASSERT(ht->ht_pfn == PFN_INVALID); 427 kmem_cache_free(htable_cache, ht); 428 } 429 } 430 431 /* 432 * Search the active htables for one to steal. Start at a different hash 433 * bucket every time to help spread the pain of stealing 434 */ 435 static void 436 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold, 437 uint_t *stolen, htable_t **list) 438 { 439 static uint_t h_seed = 0; 440 htable_t *higher, *ht; 441 uint_t h, e, h_start; 442 uintptr_t va; 443 x86pte_t pte; 444 445 h = h_start = h_seed++ % hat->hat_num_hash; 446 do { 447 higher = NULL; 448 HTABLE_ENTER(h); 449 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 450 451 /* 452 * Can we rule out reaping? 453 */ 454 if (ht->ht_busy != 0 || 455 (ht->ht_flags & HTABLE_SHARED_PFN) || 456 ht->ht_level > 0 || ht->ht_valid_cnt > threshold || 457 ht->ht_lock_cnt != 0) 458 continue; 459 460 /* 461 * Increment busy so the htable can't disappear. We 462 * drop the htable mutex to avoid deadlocks with 463 * hat_pageunload() and the hment mutex while we 464 * call hat_pte_unmap() 465 */ 466 ++ht->ht_busy; 467 HTABLE_EXIT(h); 468 469 /* 470 * Try stealing. 471 * - unload and invalidate all PTEs 472 */ 473 for (e = 0, va = ht->ht_vaddr; 474 e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 && 475 ht->ht_busy == 1 && ht->ht_lock_cnt == 0; 476 ++e, va += MMU_PAGESIZE) { 477 pte = x86pte_get(ht, e); 478 if (!PTE_ISVALID(pte)) 479 continue; 480 hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL, 481 B_TRUE); 482 } 483 484 /* 485 * Reacquire htable lock. If we didn't remove all 486 * mappings in the table, or another thread added a new 487 * mapping behind us, give up on this table. 488 */ 489 HTABLE_ENTER(h); 490 if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 || 491 ht->ht_lock_cnt != 0) { 492 --ht->ht_busy; 493 continue; 494 } 495 496 /* 497 * Steal it and unlink the page table. 498 */ 499 higher = ht->ht_parent; 500 unlink_ptp(higher, ht, ht->ht_vaddr); 501 502 /* 503 * remove from the hash list 504 */ 505 if (ht->ht_next) 506 ht->ht_next->ht_prev = ht->ht_prev; 507 508 if (ht->ht_prev) { 509 ht->ht_prev->ht_next = ht->ht_next; 510 } else { 511 ASSERT(hat->hat_ht_hash[h] == ht); 512 hat->hat_ht_hash[h] = ht->ht_next; 513 } 514 515 /* 516 * Break to outer loop to release the 517 * higher (ht_parent) pagetable. This 518 * spreads out the pain caused by 519 * pagefaults. 520 */ 521 ht->ht_next = *list; 522 *list = ht; 523 ++*stolen; 524 break; 525 } 526 HTABLE_EXIT(h); 527 if (higher != NULL) 528 htable_release(higher); 529 if (++h == hat->hat_num_hash) 530 h = 0; 531 } while (*stolen < cnt && h != h_start); 532 } 533 534 /* 535 * Move hat to the end of the kas list 536 */ 537 static void 538 move_victim(hat_t *hat) 539 { 540 ASSERT(MUTEX_HELD(&hat_list_lock)); 541 542 /* unlink victim hat */ 543 if (hat->hat_prev) 544 hat->hat_prev->hat_next = hat->hat_next; 545 else 546 kas.a_hat->hat_next = hat->hat_next; 547 548 if (hat->hat_next) 549 hat->hat_next->hat_prev = hat->hat_prev; 550 else 551 kas.a_hat->hat_prev = hat->hat_prev; 552 /* relink at end of hat list */ 553 hat->hat_next = NULL; 554 hat->hat_prev = kas.a_hat->hat_prev; 555 if (hat->hat_prev) 556 hat->hat_prev->hat_next = hat; 557 else 558 kas.a_hat->hat_next = hat; 559 560 kas.a_hat->hat_prev = hat; 561 } 562 563 /* 564 * This routine steals htables from user processes. Called by htable_reap 565 * (reap=TRUE) or htable_alloc (reap=FALSE). 566 */ 567 static htable_t * 568 htable_steal(uint_t cnt, boolean_t reap) 569 { 570 hat_t *hat = kas.a_hat; /* list starts with khat */ 571 htable_t *list = NULL; 572 htable_t *ht; 573 uint_t stolen = 0; 574 uint_t pass; 575 uint_t threshold; 576 577 /* 578 * Limit htable_steal_passes to something reasonable 579 */ 580 if (htable_steal_passes == 0) 581 htable_steal_passes = 1; 582 if (htable_steal_passes > mmu.ptes_per_table) 583 htable_steal_passes = mmu.ptes_per_table; 584 585 /* 586 * Loop through all user hats. The 1st pass takes cached htables that 587 * aren't in use. The later passes steal by removing mappings, too. 588 */ 589 atomic_inc_32(&htable_dont_cache); 590 for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) { 591 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 592 593 mutex_enter(&hat_list_lock); 594 595 /* skip the first hat (kernel) */ 596 hat = kas.a_hat->hat_next; 597 for (;;) { 598 /* 599 * Skip any hat that is already being stolen from. 600 * 601 * We skip SHARED hats, as these are dummy 602 * hats that host ISM shared page tables. 603 * 604 * We also skip if HAT_FREEING because hat_pte_unmap() 605 * won't zero out the PTE's. That would lead to hitting 606 * stale PTEs either here or under hat_unload() when we 607 * steal and unload the same page table in competing 608 * threads. 609 */ 610 while (hat != NULL && 611 (hat->hat_flags & 612 (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0) 613 hat = hat->hat_next; 614 615 if (hat == NULL) 616 break; 617 618 /* 619 * Mark the HAT as a stealing victim so that it is 620 * not freed from under us, e.g. in as_free() 621 */ 622 hat->hat_flags |= HAT_VICTIM; 623 mutex_exit(&hat_list_lock); 624 625 /* 626 * Take any htables from the hat's cached "free" list. 627 */ 628 hat_enter(hat); 629 while ((ht = hat->hat_ht_cached) != NULL && 630 stolen < cnt) { 631 hat->hat_ht_cached = ht->ht_next; 632 ht->ht_next = list; 633 list = ht; 634 ++stolen; 635 } 636 hat_exit(hat); 637 638 /* 639 * Don't steal active htables on first pass. 640 */ 641 if (pass != 0 && (stolen < cnt)) 642 htable_steal_active(hat, cnt, threshold, 643 &stolen, &list); 644 645 /* 646 * do synchronous teardown for the reap case so that 647 * we can forget hat; at this time, hat is 648 * guaranteed to be around because HAT_VICTIM is set 649 * (see htable_free() for similar code) 650 */ 651 for (ht = list; (ht) && (reap); ht = ht->ht_next) { 652 if (ht->ht_hat == NULL) 653 continue; 654 ASSERT(ht->ht_hat == hat); 655 #if defined(__xpv) && defined(__amd64) 656 if (!(ht->ht_flags & HTABLE_VLP) && 657 ht->ht_level == mmu.max_level) { 658 ptable_free(hat->hat_user_ptable); 659 hat->hat_user_ptable = PFN_INVALID; 660 } 661 #endif 662 /* 663 * forget the hat 664 */ 665 ht->ht_hat = NULL; 666 } 667 668 mutex_enter(&hat_list_lock); 669 670 /* 671 * Are we finished? 672 */ 673 if (stolen == cnt) { 674 /* 675 * Try to spread the pain of stealing, 676 * move victim HAT to the end of the HAT list. 677 */ 678 if (pass >= 1 && cnt == 1 && 679 kas.a_hat->hat_prev != hat) 680 move_victim(hat); 681 /* 682 * We are finished 683 */ 684 } 685 686 /* 687 * Clear the victim flag, hat can go away now (once 688 * the lock is dropped) 689 */ 690 if (hat->hat_flags & HAT_VICTIM) { 691 ASSERT(hat != kas.a_hat); 692 hat->hat_flags &= ~HAT_VICTIM; 693 cv_broadcast(&hat_list_cv); 694 } 695 696 /* move on to the next hat */ 697 hat = hat->hat_next; 698 } 699 700 mutex_exit(&hat_list_lock); 701 702 } 703 ASSERT(!MUTEX_HELD(&hat_list_lock)); 704 705 atomic_dec_32(&htable_dont_cache); 706 return (list); 707 } 708 709 /* 710 * This is invoked from kmem when the system is low on memory. We try 711 * to free hments, htables, and ptables to improve the memory situation. 712 */ 713 /*ARGSUSED*/ 714 static void 715 htable_reap(void *handle) 716 { 717 uint_t reap_cnt; 718 htable_t *list; 719 htable_t *ht; 720 721 HATSTAT_INC(hs_reap_attempts); 722 if (!can_steal_post_boot) 723 return; 724 725 /* 726 * Try to reap 5% of the page tables bounded by a maximum of 727 * 5% of physmem and a minimum of 10. 728 */ 729 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 730 731 /* 732 * Note: htable_dont_cache should be set at the time of 733 * invoking htable_free() 734 */ 735 atomic_inc_32(&htable_dont_cache); 736 /* 737 * Let htable_steal() do the work, we just call htable_free() 738 */ 739 XPV_DISALLOW_MIGRATE(); 740 list = htable_steal(reap_cnt, B_TRUE); 741 XPV_ALLOW_MIGRATE(); 742 while ((ht = list) != NULL) { 743 list = ht->ht_next; 744 HATSTAT_INC(hs_reaped); 745 htable_free(ht); 746 } 747 atomic_dec_32(&htable_dont_cache); 748 749 /* 750 * Free up excess reserves 751 */ 752 htable_adjust_reserve(); 753 hment_adjust_reserve(); 754 } 755 756 /* 757 * Allocate an htable, stealing one or using the reserve if necessary 758 */ 759 static htable_t * 760 htable_alloc( 761 hat_t *hat, 762 uintptr_t vaddr, 763 level_t level, 764 htable_t *shared) 765 { 766 htable_t *ht = NULL; 767 uint_t is_vlp; 768 uint_t is_bare = 0; 769 uint_t need_to_zero = 1; 770 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 771 772 if (level < 0 || level > TOP_LEVEL(hat)) 773 panic("htable_alloc(): level %d out of range\n", level); 774 775 is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL; 776 if (is_vlp || shared != NULL) 777 is_bare = 1; 778 779 /* 780 * First reuse a cached htable from the hat_ht_cached field, this 781 * avoids unnecessary trips through kmem/page allocators. 782 */ 783 if (hat->hat_ht_cached != NULL && !is_bare) { 784 hat_enter(hat); 785 ht = hat->hat_ht_cached; 786 if (ht != NULL) { 787 hat->hat_ht_cached = ht->ht_next; 788 need_to_zero = 0; 789 /* XX64 ASSERT() they're all zero somehow */ 790 ASSERT(ht->ht_pfn != PFN_INVALID); 791 } 792 hat_exit(hat); 793 } 794 795 if (ht == NULL) { 796 /* 797 * Allocate an htable, possibly refilling the reserves. 798 */ 799 if (USE_HAT_RESERVES()) { 800 ht = htable_get_reserve(); 801 } else { 802 /* 803 * Donate successful htable allocations to the reserve. 804 */ 805 for (;;) { 806 ht = kmem_cache_alloc(htable_cache, kmflags); 807 if (ht == NULL) 808 break; 809 ht->ht_pfn = PFN_INVALID; 810 if (USE_HAT_RESERVES() || 811 htable_reserve_cnt >= htable_reserve_amount) 812 break; 813 htable_put_reserve(ht); 814 } 815 } 816 817 /* 818 * allocate a page for the hardware page table if needed 819 */ 820 if (ht != NULL && !is_bare) { 821 ht->ht_hat = hat; 822 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 823 if (ht->ht_pfn == PFN_INVALID) { 824 if (USE_HAT_RESERVES()) 825 htable_put_reserve(ht); 826 else 827 kmem_cache_free(htable_cache, ht); 828 ht = NULL; 829 } 830 } 831 } 832 833 /* 834 * If allocations failed, kick off a kmem_reap() and resort to 835 * htable steal(). We may spin here if the system is very low on 836 * memory. If the kernel itself has consumed all memory and kmem_reap() 837 * can't free up anything, then we'll really get stuck here. 838 * That should only happen in a system where the administrator has 839 * misconfigured VM parameters via /etc/system. 840 */ 841 while (ht == NULL && can_steal_post_boot) { 842 kmem_reap(); 843 ht = htable_steal(1, B_FALSE); 844 HATSTAT_INC(hs_steals); 845 846 /* 847 * If we stole for a bare htable, release the pagetable page. 848 */ 849 if (ht != NULL) { 850 if (is_bare) { 851 ptable_free(ht->ht_pfn); 852 ht->ht_pfn = PFN_INVALID; 853 #if defined(__xpv) && defined(__amd64) 854 /* 855 * make stolen page table writable again in kpm 856 */ 857 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 858 PT_VALID | PT_WRITABLE) < 0) { 859 panic("failure making kpm r/w pfn=0x%lx", 860 ht->ht_pfn); 861 #endif 862 } 863 } 864 } 865 866 /* 867 * All attempts to allocate or steal failed. This should only happen 868 * if we run out of memory during boot, due perhaps to a huge 869 * boot_archive. At this point there's no way to continue. 870 */ 871 if (ht == NULL) 872 panic("htable_alloc(): couldn't steal\n"); 873 874 #if defined(__amd64) && defined(__xpv) 875 /* 876 * Under the 64-bit hypervisor, we have 2 top level page tables. 877 * If this allocation fails, we'll resort to stealing. 878 * We use the stolen page indirectly, by freeing the 879 * stolen htable first. 880 */ 881 if (level == mmu.max_level) { 882 for (;;) { 883 htable_t *stolen; 884 885 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 886 if (hat->hat_user_ptable != PFN_INVALID) 887 break; 888 stolen = htable_steal(1, B_FALSE); 889 if (stolen == NULL) 890 panic("2nd steal ptable failed\n"); 891 htable_free(stolen); 892 } 893 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 894 MMU_PAGESIZE); 895 } 896 #endif 897 898 /* 899 * Shared page tables have all entries locked and entries may not 900 * be added or deleted. 901 */ 902 ht->ht_flags = 0; 903 if (shared != NULL) { 904 ASSERT(shared->ht_valid_cnt > 0); 905 ht->ht_flags |= HTABLE_SHARED_PFN; 906 ht->ht_pfn = shared->ht_pfn; 907 ht->ht_lock_cnt = 0; 908 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 909 ht->ht_shares = shared; 910 need_to_zero = 0; 911 } else { 912 ht->ht_shares = NULL; 913 ht->ht_lock_cnt = 0; 914 ht->ht_valid_cnt = 0; 915 } 916 917 /* 918 * setup flags, etc. for VLP htables 919 */ 920 if (is_vlp) { 921 ht->ht_flags |= HTABLE_VLP; 922 ASSERT(ht->ht_pfn == PFN_INVALID); 923 need_to_zero = 0; 924 } 925 926 /* 927 * fill in the htable 928 */ 929 ht->ht_hat = hat; 930 ht->ht_parent = NULL; 931 ht->ht_vaddr = vaddr; 932 ht->ht_level = level; 933 ht->ht_busy = 1; 934 ht->ht_next = NULL; 935 ht->ht_prev = NULL; 936 937 /* 938 * Zero out any freshly allocated page table 939 */ 940 if (need_to_zero) 941 x86pte_zero(ht, 0, mmu.ptes_per_table); 942 943 #if defined(__amd64) && defined(__xpv) 944 if (!is_bare && kpm_vbase) { 945 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 946 if (level == mmu.max_level) 947 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 948 } 949 #endif 950 951 return (ht); 952 } 953 954 /* 955 * Free up an htable, either to a hat's cached list, the reserves or 956 * back to kmem. 957 */ 958 static void 959 htable_free(htable_t *ht) 960 { 961 hat_t *hat = ht->ht_hat; 962 963 /* 964 * If the process isn't exiting, cache the free htable in the hat 965 * structure. We always do this for the boot time reserve. We don't 966 * do this if the hat is exiting or we are stealing/reaping htables. 967 */ 968 if (hat != NULL && 969 !(ht->ht_flags & HTABLE_SHARED_PFN) && 970 (use_boot_reserve || 971 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 972 ASSERT((ht->ht_flags & HTABLE_VLP) == 0); 973 ASSERT(ht->ht_pfn != PFN_INVALID); 974 hat_enter(hat); 975 ht->ht_next = hat->hat_ht_cached; 976 hat->hat_ht_cached = ht; 977 hat_exit(hat); 978 return; 979 } 980 981 /* 982 * If we have a hardware page table, free it. 983 * We don't free page tables that are accessed by sharing. 984 */ 985 if (ht->ht_flags & HTABLE_SHARED_PFN) { 986 ASSERT(ht->ht_pfn != PFN_INVALID); 987 } else if (!(ht->ht_flags & HTABLE_VLP)) { 988 ptable_free(ht->ht_pfn); 989 #if defined(__amd64) && defined(__xpv) 990 if (ht->ht_level == mmu.max_level && hat != NULL) { 991 ptable_free(hat->hat_user_ptable); 992 hat->hat_user_ptable = PFN_INVALID; 993 } 994 #endif 995 } 996 ht->ht_pfn = PFN_INVALID; 997 998 /* 999 * Free it or put into reserves. 1000 */ 1001 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 1002 htable_put_reserve(ht); 1003 } else { 1004 kmem_cache_free(htable_cache, ht); 1005 htable_adjust_reserve(); 1006 } 1007 } 1008 1009 1010 /* 1011 * This is called when a hat is being destroyed or swapped out. We reap all 1012 * the remaining htables in the hat cache. If destroying all left over 1013 * htables are also destroyed. 1014 * 1015 * We also don't need to invalidate any of the PTPs nor do any demapping. 1016 */ 1017 void 1018 htable_purge_hat(hat_t *hat) 1019 { 1020 htable_t *ht; 1021 int h; 1022 1023 /* 1024 * Purge the htable cache if just reaping. 1025 */ 1026 if (!(hat->hat_flags & HAT_FREEING)) { 1027 atomic_inc_32(&htable_dont_cache); 1028 for (;;) { 1029 hat_enter(hat); 1030 ht = hat->hat_ht_cached; 1031 if (ht == NULL) { 1032 hat_exit(hat); 1033 break; 1034 } 1035 hat->hat_ht_cached = ht->ht_next; 1036 hat_exit(hat); 1037 htable_free(ht); 1038 } 1039 atomic_dec_32(&htable_dont_cache); 1040 return; 1041 } 1042 1043 /* 1044 * if freeing, no locking is needed 1045 */ 1046 while ((ht = hat->hat_ht_cached) != NULL) { 1047 hat->hat_ht_cached = ht->ht_next; 1048 htable_free(ht); 1049 } 1050 1051 /* 1052 * walk thru the htable hash table and free all the htables in it. 1053 */ 1054 for (h = 0; h < hat->hat_num_hash; ++h) { 1055 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1056 if (ht->ht_next) 1057 ht->ht_next->ht_prev = ht->ht_prev; 1058 1059 if (ht->ht_prev) { 1060 ht->ht_prev->ht_next = ht->ht_next; 1061 } else { 1062 ASSERT(hat->hat_ht_hash[h] == ht); 1063 hat->hat_ht_hash[h] = ht->ht_next; 1064 } 1065 htable_free(ht); 1066 } 1067 } 1068 } 1069 1070 /* 1071 * Unlink an entry for a table at vaddr and level out of the existing table 1072 * one level higher. We are always holding the HASH_ENTER() when doing this. 1073 */ 1074 static void 1075 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1076 { 1077 uint_t entry = htable_va2entry(vaddr, higher); 1078 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1079 x86pte_t found; 1080 hat_t *hat = old->ht_hat; 1081 1082 ASSERT(higher->ht_busy > 0); 1083 ASSERT(higher->ht_valid_cnt > 0); 1084 ASSERT(old->ht_valid_cnt == 0); 1085 found = x86pte_cas(higher, entry, expect, 0); 1086 #ifdef __xpv 1087 /* 1088 * This is weird, but Xen apparently automatically unlinks empty 1089 * pagetables from the upper page table. So allow PTP to be 0 already. 1090 */ 1091 if (found != expect && found != 0) 1092 #else 1093 if (found != expect) 1094 #endif 1095 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1096 found, expect); 1097 1098 /* 1099 * When a top level VLP page table entry changes, we must issue 1100 * a reload of cr3 on all processors. 1101 * 1102 * If we don't need do do that, then we still have to INVLPG against 1103 * an address covered by the inner page table, as the latest processors 1104 * have TLB-like caches for non-leaf page table entries. 1105 */ 1106 if (!(hat->hat_flags & HAT_FREEING)) { 1107 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ? 1108 DEMAP_ALL_ADDR : old->ht_vaddr); 1109 } 1110 1111 HTABLE_DEC(higher->ht_valid_cnt); 1112 } 1113 1114 /* 1115 * Link an entry for a new table at vaddr and level into the existing table 1116 * one level higher. We are always holding the HASH_ENTER() when doing this. 1117 */ 1118 static void 1119 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1120 { 1121 uint_t entry = htable_va2entry(vaddr, higher); 1122 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1123 x86pte_t found; 1124 1125 ASSERT(higher->ht_busy > 0); 1126 1127 ASSERT(new->ht_level != mmu.max_level); 1128 1129 HTABLE_INC(higher->ht_valid_cnt); 1130 1131 found = x86pte_cas(higher, entry, 0, newptp); 1132 if ((found & ~PT_REF) != 0) 1133 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1134 1135 /* 1136 * When any top level VLP page table entry changes, we must issue 1137 * a reload of cr3 on all processors using it. 1138 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1139 */ 1140 if ( 1141 #ifdef __i386 1142 (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) || 1143 #endif 1144 (higher->ht_flags & HTABLE_VLP)) 1145 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1146 } 1147 1148 /* 1149 * Release of hold on an htable. If this is the last use and the pagetable 1150 * is empty we may want to free it, then recursively look at the pagetable 1151 * above it. The recursion is handled by the outer while() loop. 1152 * 1153 * On the metal, during process exit, we don't bother unlinking the tables from 1154 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1155 * We can't do this on the hypervisor as we need the page table to be 1156 * implicitly unpinnned before it goes to the free page lists. This can't 1157 * happen unless we fully unlink it from the page table hierarchy. 1158 */ 1159 void 1160 htable_release(htable_t *ht) 1161 { 1162 uint_t hashval; 1163 htable_t *shared; 1164 htable_t *higher; 1165 hat_t *hat; 1166 uintptr_t va; 1167 level_t level; 1168 1169 while (ht != NULL) { 1170 shared = NULL; 1171 for (;;) { 1172 hat = ht->ht_hat; 1173 va = ht->ht_vaddr; 1174 level = ht->ht_level; 1175 hashval = HTABLE_HASH(hat, va, level); 1176 1177 /* 1178 * The common case is that this isn't the last use of 1179 * an htable so we don't want to free the htable. 1180 */ 1181 HTABLE_ENTER(hashval); 1182 ASSERT(ht->ht_valid_cnt >= 0); 1183 ASSERT(ht->ht_busy > 0); 1184 if (ht->ht_valid_cnt > 0) 1185 break; 1186 if (ht->ht_busy > 1) 1187 break; 1188 ASSERT(ht->ht_lock_cnt == 0); 1189 1190 #if !defined(__xpv) 1191 /* 1192 * we always release empty shared htables 1193 */ 1194 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1195 1196 /* 1197 * don't release if in address space tear down 1198 */ 1199 if (hat->hat_flags & HAT_FREEING) 1200 break; 1201 1202 /* 1203 * At and above max_page_level, free if it's for 1204 * a boot-time kernel mapping below kernelbase. 1205 */ 1206 if (level >= mmu.max_page_level && 1207 (hat != kas.a_hat || va >= kernelbase)) 1208 break; 1209 } 1210 #endif /* __xpv */ 1211 1212 /* 1213 * Remember if we destroy an htable that shares its PFN 1214 * from elsewhere. 1215 */ 1216 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1217 ASSERT(shared == NULL); 1218 shared = ht->ht_shares; 1219 HATSTAT_INC(hs_htable_unshared); 1220 } 1221 1222 /* 1223 * Handle release of a table and freeing the htable_t. 1224 * Unlink it from the table higher (ie. ht_parent). 1225 */ 1226 higher = ht->ht_parent; 1227 ASSERT(higher != NULL); 1228 1229 /* 1230 * Unlink the pagetable. 1231 */ 1232 unlink_ptp(higher, ht, va); 1233 1234 /* 1235 * remove this htable from its hash list 1236 */ 1237 if (ht->ht_next) 1238 ht->ht_next->ht_prev = ht->ht_prev; 1239 1240 if (ht->ht_prev) { 1241 ht->ht_prev->ht_next = ht->ht_next; 1242 } else { 1243 ASSERT(hat->hat_ht_hash[hashval] == ht); 1244 hat->hat_ht_hash[hashval] = ht->ht_next; 1245 } 1246 HTABLE_EXIT(hashval); 1247 htable_free(ht); 1248 ht = higher; 1249 } 1250 1251 ASSERT(ht->ht_busy >= 1); 1252 --ht->ht_busy; 1253 HTABLE_EXIT(hashval); 1254 1255 /* 1256 * If we released a shared htable, do a release on the htable 1257 * from which it shared 1258 */ 1259 ht = shared; 1260 } 1261 } 1262 1263 /* 1264 * Find the htable for the pagetable at the given level for the given address. 1265 * If found acquires a hold that eventually needs to be htable_release()d 1266 */ 1267 htable_t * 1268 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1269 { 1270 uintptr_t base; 1271 uint_t hashval; 1272 htable_t *ht = NULL; 1273 1274 ASSERT(level >= 0); 1275 ASSERT(level <= TOP_LEVEL(hat)); 1276 1277 if (level == TOP_LEVEL(hat)) { 1278 #if defined(__amd64) 1279 /* 1280 * 32 bit address spaces on 64 bit kernels need to check 1281 * for overflow of the 32 bit address space 1282 */ 1283 if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32)) 1284 return (NULL); 1285 #endif 1286 base = 0; 1287 } else { 1288 base = vaddr & LEVEL_MASK(level + 1); 1289 } 1290 1291 hashval = HTABLE_HASH(hat, base, level); 1292 HTABLE_ENTER(hashval); 1293 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1294 if (ht->ht_hat == hat && 1295 ht->ht_vaddr == base && 1296 ht->ht_level == level) 1297 break; 1298 } 1299 if (ht) 1300 ++ht->ht_busy; 1301 1302 HTABLE_EXIT(hashval); 1303 return (ht); 1304 } 1305 1306 /* 1307 * Acquires a hold on a known htable (from a locked hment entry). 1308 */ 1309 void 1310 htable_acquire(htable_t *ht) 1311 { 1312 hat_t *hat = ht->ht_hat; 1313 level_t level = ht->ht_level; 1314 uintptr_t base = ht->ht_vaddr; 1315 uint_t hashval = HTABLE_HASH(hat, base, level); 1316 1317 HTABLE_ENTER(hashval); 1318 #ifdef DEBUG 1319 /* 1320 * make sure the htable is there 1321 */ 1322 { 1323 htable_t *h; 1324 1325 for (h = hat->hat_ht_hash[hashval]; 1326 h && h != ht; 1327 h = h->ht_next) 1328 ; 1329 ASSERT(h == ht); 1330 } 1331 #endif /* DEBUG */ 1332 ++ht->ht_busy; 1333 HTABLE_EXIT(hashval); 1334 } 1335 1336 /* 1337 * Find the htable for the pagetable at the given level for the given address. 1338 * If found acquires a hold that eventually needs to be htable_release()d 1339 * If not found the table is created. 1340 * 1341 * Since we can't hold a hash table mutex during allocation, we have to 1342 * drop it and redo the search on a create. Then we may have to free the newly 1343 * allocated htable if another thread raced in and created it ahead of us. 1344 */ 1345 htable_t * 1346 htable_create( 1347 hat_t *hat, 1348 uintptr_t vaddr, 1349 level_t level, 1350 htable_t *shared) 1351 { 1352 uint_t h; 1353 level_t l; 1354 uintptr_t base; 1355 htable_t *ht; 1356 htable_t *higher = NULL; 1357 htable_t *new = NULL; 1358 1359 if (level < 0 || level > TOP_LEVEL(hat)) 1360 panic("htable_create(): level %d out of range\n", level); 1361 1362 /* 1363 * Create the page tables in top down order. 1364 */ 1365 for (l = TOP_LEVEL(hat); l >= level; --l) { 1366 new = NULL; 1367 if (l == TOP_LEVEL(hat)) 1368 base = 0; 1369 else 1370 base = vaddr & LEVEL_MASK(l + 1); 1371 1372 h = HTABLE_HASH(hat, base, l); 1373 try_again: 1374 /* 1375 * look up the htable at this level 1376 */ 1377 HTABLE_ENTER(h); 1378 if (l == TOP_LEVEL(hat)) { 1379 ht = hat->hat_htable; 1380 } else { 1381 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1382 ASSERT(ht->ht_hat == hat); 1383 if (ht->ht_vaddr == base && 1384 ht->ht_level == l) 1385 break; 1386 } 1387 } 1388 1389 /* 1390 * if we found the htable, increment its busy cnt 1391 * and if we had allocated a new htable, free it. 1392 */ 1393 if (ht != NULL) { 1394 /* 1395 * If we find a pre-existing shared table, it must 1396 * share from the same place. 1397 */ 1398 if (l == level && shared && ht->ht_shares && 1399 ht->ht_shares != shared) { 1400 panic("htable shared from wrong place " 1401 "found htable=%p shared=%p", 1402 (void *)ht, (void *)shared); 1403 } 1404 ++ht->ht_busy; 1405 HTABLE_EXIT(h); 1406 if (new) 1407 htable_free(new); 1408 if (higher != NULL) 1409 htable_release(higher); 1410 higher = ht; 1411 1412 /* 1413 * if we didn't find it on the first search 1414 * allocate a new one and search again 1415 */ 1416 } else if (new == NULL) { 1417 HTABLE_EXIT(h); 1418 new = htable_alloc(hat, base, l, 1419 l == level ? shared : NULL); 1420 goto try_again; 1421 1422 /* 1423 * 2nd search and still not there, use "new" table 1424 * Link new table into higher, when not at top level. 1425 */ 1426 } else { 1427 ht = new; 1428 if (higher != NULL) { 1429 link_ptp(higher, ht, base); 1430 ht->ht_parent = higher; 1431 } 1432 ht->ht_next = hat->hat_ht_hash[h]; 1433 ASSERT(ht->ht_prev == NULL); 1434 if (hat->hat_ht_hash[h]) 1435 hat->hat_ht_hash[h]->ht_prev = ht; 1436 hat->hat_ht_hash[h] = ht; 1437 HTABLE_EXIT(h); 1438 1439 /* 1440 * Note we don't do htable_release(higher). 1441 * That happens recursively when "new" is removed by 1442 * htable_release() or htable_steal(). 1443 */ 1444 higher = ht; 1445 1446 /* 1447 * If we just created a new shared page table we 1448 * increment the shared htable's busy count, so that 1449 * it can't be the victim of a steal even if it's empty. 1450 */ 1451 if (l == level && shared) { 1452 (void) htable_lookup(shared->ht_hat, 1453 shared->ht_vaddr, shared->ht_level); 1454 HATSTAT_INC(hs_htable_shared); 1455 } 1456 } 1457 } 1458 1459 return (ht); 1460 } 1461 1462 /* 1463 * Inherit initial pagetables from the boot program. On the 64-bit 1464 * hypervisor we also temporarily mark the p_index field of page table 1465 * pages, so we know not to try making them writable in seg_kpm. 1466 */ 1467 void 1468 htable_attach( 1469 hat_t *hat, 1470 uintptr_t base, 1471 level_t level, 1472 htable_t *parent, 1473 pfn_t pfn) 1474 { 1475 htable_t *ht; 1476 uint_t h; 1477 uint_t i; 1478 x86pte_t pte; 1479 x86pte_t *ptep; 1480 page_t *pp; 1481 extern page_t *boot_claim_page(pfn_t); 1482 1483 ht = htable_get_reserve(); 1484 if (level == mmu.max_level) 1485 kas.a_hat->hat_htable = ht; 1486 ht->ht_hat = hat; 1487 ht->ht_parent = parent; 1488 ht->ht_vaddr = base; 1489 ht->ht_level = level; 1490 ht->ht_busy = 1; 1491 ht->ht_next = NULL; 1492 ht->ht_prev = NULL; 1493 ht->ht_flags = 0; 1494 ht->ht_pfn = pfn; 1495 ht->ht_lock_cnt = 0; 1496 ht->ht_valid_cnt = 0; 1497 if (parent != NULL) 1498 ++parent->ht_busy; 1499 1500 h = HTABLE_HASH(hat, base, level); 1501 HTABLE_ENTER(h); 1502 ht->ht_next = hat->hat_ht_hash[h]; 1503 ASSERT(ht->ht_prev == NULL); 1504 if (hat->hat_ht_hash[h]) 1505 hat->hat_ht_hash[h]->ht_prev = ht; 1506 hat->hat_ht_hash[h] = ht; 1507 HTABLE_EXIT(h); 1508 1509 /* 1510 * make sure the page table physical page is not FREE 1511 */ 1512 if (page_resv(1, KM_NOSLEEP) == 0) 1513 panic("page_resv() failed in ptable alloc"); 1514 1515 pp = boot_claim_page(pfn); 1516 ASSERT(pp != NULL); 1517 1518 /* 1519 * Page table pages that were allocated by dboot or 1520 * in very early startup didn't go through boot_mapin() 1521 * and so won't have vnode/offsets. Fix that here. 1522 */ 1523 if (pp->p_vnode == NULL) { 1524 /* match offset calculation in page_get_physical() */ 1525 u_offset_t offset = (uintptr_t)ht; 1526 if (offset > kernelbase) 1527 offset -= kernelbase; 1528 offset <<= MMU_PAGESHIFT; 1529 #if defined(__amd64) 1530 offset += mmu.hole_start; /* something in VA hole */ 1531 #else 1532 offset += 1ULL << 40; /* something > 4 Gig */ 1533 #endif 1534 ASSERT(page_exists(&kvp, offset) == NULL); 1535 (void) page_hashin(pp, &kvp, offset, NULL); 1536 } 1537 page_downgrade(pp); 1538 #if defined(__xpv) && defined(__amd64) 1539 /* 1540 * Record in the page_t that is a pagetable for segkpm setup. 1541 */ 1542 if (kpm_vbase) 1543 pp->p_index = 1; 1544 #endif 1545 1546 /* 1547 * Count valid mappings and recursively attach lower level pagetables. 1548 */ 1549 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1550 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1551 if (mmu.pae_hat) 1552 pte = ptep[i]; 1553 else 1554 pte = ((x86pte32_t *)ptep)[i]; 1555 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1556 ++ht->ht_valid_cnt; 1557 if (!PTE_ISPAGE(pte, level)) { 1558 htable_attach(hat, base, level - 1, 1559 ht, PTE2PFN(pte, level)); 1560 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1561 } 1562 } 1563 base += LEVEL_SIZE(level); 1564 if (base == mmu.hole_start) 1565 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1566 } 1567 1568 /* 1569 * As long as all the mappings we had were below kernel base 1570 * we can release the htable. 1571 */ 1572 if (base < kernelbase) 1573 htable_release(ht); 1574 } 1575 1576 /* 1577 * Walk through a given htable looking for the first valid entry. This 1578 * routine takes both a starting and ending address. The starting address 1579 * is required to be within the htable provided by the caller, but there is 1580 * no such restriction on the ending address. 1581 * 1582 * If the routine finds a valid entry in the htable (at or beyond the 1583 * starting address), the PTE (and its address) will be returned. 1584 * This PTE may correspond to either a page or a pagetable - it is the 1585 * caller's responsibility to determine which. If no valid entry is 1586 * found, 0 (and invalid PTE) and the next unexamined address will be 1587 * returned. 1588 * 1589 * The loop has been carefully coded for optimization. 1590 */ 1591 static x86pte_t 1592 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1593 { 1594 uint_t e; 1595 x86pte_t found_pte = (x86pte_t)0; 1596 caddr_t pte_ptr; 1597 caddr_t end_pte_ptr; 1598 int l = ht->ht_level; 1599 uintptr_t va = *vap & LEVEL_MASK(l); 1600 size_t pgsize = LEVEL_SIZE(l); 1601 1602 ASSERT(va >= ht->ht_vaddr); 1603 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1604 1605 /* 1606 * Compute the starting index and ending virtual address 1607 */ 1608 e = htable_va2entry(va, ht); 1609 1610 /* 1611 * The following page table scan code knows that the valid 1612 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1613 */ 1614 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1615 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1616 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1617 while (!PTE_ISVALID(*pte_ptr)) { 1618 va += pgsize; 1619 if (va >= eaddr) 1620 break; 1621 pte_ptr += mmu.pte_size; 1622 ASSERT(pte_ptr <= end_pte_ptr); 1623 if (pte_ptr == end_pte_ptr) 1624 break; 1625 } 1626 1627 /* 1628 * if we found a valid PTE, load the entire PTE 1629 */ 1630 if (va < eaddr && pte_ptr != end_pte_ptr) 1631 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1632 x86pte_release_pagetable(ht); 1633 1634 #if defined(__amd64) 1635 /* 1636 * deal with VA hole on amd64 1637 */ 1638 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1639 va = mmu.hole_end + va - mmu.hole_start; 1640 #endif /* __amd64 */ 1641 1642 *vap = va; 1643 return (found_pte); 1644 } 1645 1646 /* 1647 * Find the address and htable for the first populated translation at or 1648 * above the given virtual address. The caller may also specify an upper 1649 * limit to the address range to search. Uses level information to quickly 1650 * skip unpopulated sections of virtual address spaces. 1651 * 1652 * If not found returns NULL. When found, returns the htable and virt addr 1653 * and has a hold on the htable. 1654 */ 1655 x86pte_t 1656 htable_walk( 1657 struct hat *hat, 1658 htable_t **htp, 1659 uintptr_t *vaddr, 1660 uintptr_t eaddr) 1661 { 1662 uintptr_t va = *vaddr; 1663 htable_t *ht; 1664 htable_t *prev = *htp; 1665 level_t l; 1666 level_t max_mapped_level; 1667 x86pte_t pte; 1668 1669 ASSERT(eaddr > va); 1670 1671 /* 1672 * If this is a user address, then we know we need not look beyond 1673 * kernelbase. 1674 */ 1675 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1676 eaddr == HTABLE_WALK_TO_END); 1677 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1678 eaddr = kernelbase; 1679 1680 /* 1681 * If we're coming in with a previous page table, search it first 1682 * without doing an htable_lookup(), this should be frequent. 1683 */ 1684 if (prev) { 1685 ASSERT(prev->ht_busy > 0); 1686 ASSERT(prev->ht_vaddr <= va); 1687 l = prev->ht_level; 1688 if (va <= HTABLE_LAST_PAGE(prev)) { 1689 pte = htable_scan(prev, &va, eaddr); 1690 1691 if (PTE_ISPAGE(pte, l)) { 1692 *vaddr = va; 1693 *htp = prev; 1694 return (pte); 1695 } 1696 } 1697 1698 /* 1699 * We found nothing in the htable provided by the caller, 1700 * so fall through and do the full search 1701 */ 1702 htable_release(prev); 1703 } 1704 1705 /* 1706 * Find the level of the largest pagesize used by this HAT. 1707 */ 1708 if (hat->hat_ism_pgcnt > 0) { 1709 max_mapped_level = mmu.umax_page_level; 1710 } else { 1711 max_mapped_level = 0; 1712 for (l = 1; l <= mmu.max_page_level; ++l) 1713 if (hat->hat_pages_mapped[l] != 0) 1714 max_mapped_level = l; 1715 } 1716 1717 while (va < eaddr && va >= *vaddr) { 1718 /* 1719 * Find lowest table with any entry for given address. 1720 */ 1721 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1722 ht = htable_lookup(hat, va, l); 1723 if (ht != NULL) { 1724 pte = htable_scan(ht, &va, eaddr); 1725 if (PTE_ISPAGE(pte, l)) { 1726 VERIFY(!IN_VA_HOLE(va)); 1727 *vaddr = va; 1728 *htp = ht; 1729 return (pte); 1730 } 1731 htable_release(ht); 1732 break; 1733 } 1734 1735 /* 1736 * No htable at this level for the address. If there 1737 * is no larger page size that could cover it, we can 1738 * skip right to the start of the next page table. 1739 */ 1740 ASSERT(l < TOP_LEVEL(hat)); 1741 if (l >= max_mapped_level) { 1742 va = NEXT_ENTRY_VA(va, l + 1); 1743 if (va >= eaddr) 1744 break; 1745 } 1746 } 1747 } 1748 1749 *vaddr = 0; 1750 *htp = NULL; 1751 return (0); 1752 } 1753 1754 /* 1755 * Find the htable and page table entry index of the given virtual address 1756 * with pagesize at or below given level. 1757 * If not found returns NULL. When found, returns the htable, sets 1758 * entry, and has a hold on the htable. 1759 */ 1760 htable_t * 1761 htable_getpte( 1762 struct hat *hat, 1763 uintptr_t vaddr, 1764 uint_t *entry, 1765 x86pte_t *pte, 1766 level_t level) 1767 { 1768 htable_t *ht; 1769 level_t l; 1770 uint_t e; 1771 1772 ASSERT(level <= mmu.max_page_level); 1773 1774 for (l = 0; l <= level; ++l) { 1775 ht = htable_lookup(hat, vaddr, l); 1776 if (ht == NULL) 1777 continue; 1778 e = htable_va2entry(vaddr, ht); 1779 if (entry != NULL) 1780 *entry = e; 1781 if (pte != NULL) 1782 *pte = x86pte_get(ht, e); 1783 return (ht); 1784 } 1785 return (NULL); 1786 } 1787 1788 /* 1789 * Find the htable and page table entry index of the given virtual address. 1790 * There must be a valid page mapped at the given address. 1791 * If not found returns NULL. When found, returns the htable, sets 1792 * entry, and has a hold on the htable. 1793 */ 1794 htable_t * 1795 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1796 { 1797 htable_t *ht; 1798 uint_t e; 1799 x86pte_t pte; 1800 1801 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1802 if (ht == NULL) 1803 return (NULL); 1804 1805 if (entry) 1806 *entry = e; 1807 1808 if (PTE_ISPAGE(pte, ht->ht_level)) 1809 return (ht); 1810 htable_release(ht); 1811 return (NULL); 1812 } 1813 1814 1815 void 1816 htable_init() 1817 { 1818 /* 1819 * To save on kernel VA usage, we avoid debug information in 32 bit 1820 * kernels. 1821 */ 1822 #if defined(__amd64) 1823 int kmem_flags = KMC_NOHASH; 1824 #elif defined(__i386) 1825 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1826 #endif 1827 1828 /* 1829 * initialize kmem caches 1830 */ 1831 htable_cache = kmem_cache_create("htable_t", 1832 sizeof (htable_t), 0, NULL, NULL, 1833 htable_reap, NULL, hat_memload_arena, kmem_flags); 1834 } 1835 1836 /* 1837 * get the pte index for the virtual address in the given htable's pagetable 1838 */ 1839 uint_t 1840 htable_va2entry(uintptr_t va, htable_t *ht) 1841 { 1842 level_t l = ht->ht_level; 1843 1844 ASSERT(va >= ht->ht_vaddr); 1845 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1846 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1847 } 1848 1849 /* 1850 * Given an htable and the index of a pte in it, return the virtual address 1851 * of the page. 1852 */ 1853 uintptr_t 1854 htable_e2va(htable_t *ht, uint_t entry) 1855 { 1856 level_t l = ht->ht_level; 1857 uintptr_t va; 1858 1859 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1860 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1861 1862 /* 1863 * Need to skip over any VA hole in top level table 1864 */ 1865 #if defined(__amd64) 1866 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1867 va += ((mmu.hole_end - mmu.hole_start) + 1); 1868 #endif 1869 1870 return (va); 1871 } 1872 1873 /* 1874 * The code uses compare and swap instructions to read/write PTE's to 1875 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1876 * will naturally be atomic. 1877 * 1878 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1879 * are used to ensure that an interrupt won't overwrite a temporary mapping 1880 * while it's in use. If an interrupt thread tries to access a PTE, it will 1881 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1882 */ 1883 void 1884 x86pte_cpu_init(cpu_t *cpu) 1885 { 1886 struct hat_cpu_info *hci; 1887 1888 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1889 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1890 cpu->cpu_hat_info = hci; 1891 } 1892 1893 void 1894 x86pte_cpu_fini(cpu_t *cpu) 1895 { 1896 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1897 1898 kmem_free(hci, sizeof (*hci)); 1899 cpu->cpu_hat_info = NULL; 1900 } 1901 1902 #ifdef __i386 1903 /* 1904 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1905 */ 1906 x86pte_t 1907 get_pte64(x86pte_t *ptr) 1908 { 1909 volatile uint32_t *p = (uint32_t *)ptr; 1910 x86pte_t t; 1911 1912 ASSERT(mmu.pae_hat != 0); 1913 for (;;) { 1914 t = p[0]; 1915 t |= (uint64_t)p[1] << 32; 1916 if ((t & 0xffffffff) == p[0]) 1917 return (t); 1918 } 1919 } 1920 #endif /* __i386 */ 1921 1922 /* 1923 * Disable preemption and establish a mapping to the pagetable with the 1924 * given pfn. This is optimized for there case where it's the same 1925 * pfn as we last used referenced from this CPU. 1926 */ 1927 static x86pte_t * 1928 x86pte_access_pagetable(htable_t *ht, uint_t index) 1929 { 1930 /* 1931 * VLP pagetables are contained in the hat_t 1932 */ 1933 if (ht->ht_flags & HTABLE_VLP) 1934 return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index)); 1935 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1936 } 1937 1938 /* 1939 * map the given pfn into the page table window. 1940 */ 1941 /*ARGSUSED*/ 1942 x86pte_t * 1943 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1944 { 1945 x86pte_t *pteptr; 1946 x86pte_t pte = 0; 1947 x86pte_t newpte; 1948 int x; 1949 1950 ASSERT(pfn != PFN_INVALID); 1951 1952 if (!khat_running) { 1953 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1954 return (PT_INDEX_PTR(va, index)); 1955 } 1956 1957 /* 1958 * If kpm is available, use it. 1959 */ 1960 if (kpm_vbase) 1961 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1962 1963 /* 1964 * Disable preemption and grab the CPU's hci_mutex 1965 */ 1966 kpreempt_disable(); 1967 ASSERT(CPU->cpu_hat_info != NULL); 1968 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1969 x = PWIN_TABLE(CPU->cpu_id); 1970 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1971 #ifndef __xpv 1972 if (mmu.pae_hat) 1973 pte = *pteptr; 1974 else 1975 pte = *(x86pte32_t *)pteptr; 1976 #endif 1977 1978 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1979 1980 /* 1981 * For hardware we can use a writable mapping. 1982 */ 1983 #ifdef __xpv 1984 if (IN_XPV_PANIC()) 1985 #endif 1986 newpte |= PT_WRITABLE; 1987 1988 if (!PTE_EQUIV(newpte, pte)) { 1989 1990 #ifdef __xpv 1991 if (!IN_XPV_PANIC()) { 1992 xen_map(newpte, PWIN_VA(x)); 1993 } else 1994 #endif 1995 { 1996 XPV_ALLOW_PAGETABLE_UPDATES(); 1997 if (mmu.pae_hat) 1998 *pteptr = newpte; 1999 else 2000 *(x86pte32_t *)pteptr = newpte; 2001 XPV_DISALLOW_PAGETABLE_UPDATES(); 2002 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2003 } 2004 } 2005 return (PT_INDEX_PTR(PWIN_VA(x), index)); 2006 } 2007 2008 /* 2009 * Release access to a page table. 2010 */ 2011 static void 2012 x86pte_release_pagetable(htable_t *ht) 2013 { 2014 /* 2015 * nothing to do for VLP htables 2016 */ 2017 if (ht->ht_flags & HTABLE_VLP) 2018 return; 2019 2020 x86pte_mapout(); 2021 } 2022 2023 void 2024 x86pte_mapout(void) 2025 { 2026 if (kpm_vbase != NULL || !khat_running) 2027 return; 2028 2029 /* 2030 * Drop the CPU's hci_mutex and restore preemption. 2031 */ 2032 #ifdef __xpv 2033 if (!IN_XPV_PANIC()) { 2034 uintptr_t va; 2035 2036 /* 2037 * We need to always clear the mapping in case a page 2038 * that was once a page table page is ballooned out. 2039 */ 2040 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 2041 (void) HYPERVISOR_update_va_mapping(va, 0, 2042 UVMF_INVLPG | UVMF_LOCAL); 2043 } 2044 #endif 2045 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2046 kpreempt_enable(); 2047 } 2048 2049 /* 2050 * Atomic retrieval of a pagetable entry 2051 */ 2052 x86pte_t 2053 x86pte_get(htable_t *ht, uint_t entry) 2054 { 2055 x86pte_t pte; 2056 x86pte_t *ptep; 2057 2058 /* 2059 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2060 */ 2061 ASSERT(entry < mmu.ptes_per_table); 2062 ptep = x86pte_access_pagetable(ht, entry); 2063 pte = GET_PTE(ptep); 2064 x86pte_release_pagetable(ht); 2065 return (pte); 2066 } 2067 2068 /* 2069 * Atomic unconditional set of a page table entry, it returns the previous 2070 * value. For pre-existing mappings if the PFN changes, then we don't care 2071 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2072 * the MOD/REF bits unchanged. 2073 * 2074 * If asked to overwrite a link to a lower page table with a large page 2075 * mapping, this routine returns the special value of LPAGE_ERROR. This 2076 * allows the upper HAT layers to retry with a smaller mapping size. 2077 */ 2078 x86pte_t 2079 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2080 { 2081 x86pte_t old; 2082 x86pte_t prev; 2083 x86pte_t *ptep; 2084 level_t l = ht->ht_level; 2085 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2086 x86pte_t n; 2087 uintptr_t addr = htable_e2va(ht, entry); 2088 hat_t *hat = ht->ht_hat; 2089 2090 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2091 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2092 if (ptr == NULL) 2093 ptep = x86pte_access_pagetable(ht, entry); 2094 else 2095 ptep = ptr; 2096 2097 /* 2098 * Install the new PTE. If remapping the same PFN, then 2099 * copy existing REF/MOD bits to new mapping. 2100 */ 2101 do { 2102 prev = GET_PTE(ptep); 2103 n = new; 2104 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2105 n |= prev & (PT_REF | PT_MOD); 2106 2107 /* 2108 * Another thread may have installed this mapping already, 2109 * flush the local TLB and be done. 2110 */ 2111 if (prev == n) { 2112 old = new; 2113 #ifdef __xpv 2114 if (!IN_XPV_PANIC()) 2115 xen_flush_va((caddr_t)addr); 2116 else 2117 #endif 2118 mmu_tlbflush_entry((caddr_t)addr); 2119 goto done; 2120 } 2121 2122 /* 2123 * Detect if we have a collision of installing a large 2124 * page mapping where there already is a lower page table. 2125 */ 2126 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2127 old = LPAGE_ERROR; 2128 goto done; 2129 } 2130 2131 XPV_ALLOW_PAGETABLE_UPDATES(); 2132 old = CAS_PTE(ptep, prev, n); 2133 XPV_DISALLOW_PAGETABLE_UPDATES(); 2134 } while (old != prev); 2135 2136 /* 2137 * Do a TLB demap if needed, ie. the old pte was valid. 2138 * 2139 * Note that a stale TLB writeback to the PTE here either can't happen 2140 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2141 * mappings, but they were created with REF and MOD already set, so 2142 * no stale writeback will happen. 2143 * 2144 * Segmap is the only place where remaps happen on the same pfn and for 2145 * that we want to preserve the stale REF/MOD bits. 2146 */ 2147 if (old & PT_REF) 2148 hat_tlb_inval(hat, addr); 2149 2150 done: 2151 if (ptr == NULL) 2152 x86pte_release_pagetable(ht); 2153 return (old); 2154 } 2155 2156 /* 2157 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2158 * This is used for links between pagetables of different levels. 2159 * Note we always create these links with dirty/access set, so they should 2160 * never change. 2161 */ 2162 x86pte_t 2163 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2164 { 2165 x86pte_t pte; 2166 x86pte_t *ptep; 2167 #ifdef __xpv 2168 /* 2169 * We can't use writable pagetables for upper level tables, so fake it. 2170 */ 2171 mmu_update_t t[2]; 2172 int cnt = 1; 2173 int count; 2174 maddr_t ma; 2175 2176 if (!IN_XPV_PANIC()) { 2177 ASSERT(!(ht->ht_flags & HTABLE_VLP)); /* no VLP yet */ 2178 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2179 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2180 t[0].val = new; 2181 2182 #if defined(__amd64) 2183 /* 2184 * On the 64-bit hypervisor we need to maintain the user mode 2185 * top page table too. 2186 */ 2187 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2188 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2189 ht->ht_hat->hat_user_ptable), entry)); 2190 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2191 t[1].val = new; 2192 ++cnt; 2193 } 2194 #endif /* __amd64 */ 2195 2196 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2197 panic("HYPERVISOR_mmu_update() failed"); 2198 ASSERT(count == cnt); 2199 return (old); 2200 } 2201 #endif 2202 ptep = x86pte_access_pagetable(ht, entry); 2203 XPV_ALLOW_PAGETABLE_UPDATES(); 2204 pte = CAS_PTE(ptep, old, new); 2205 XPV_DISALLOW_PAGETABLE_UPDATES(); 2206 x86pte_release_pagetable(ht); 2207 return (pte); 2208 } 2209 2210 /* 2211 * Invalidate a page table entry as long as it currently maps something that 2212 * matches the value determined by expect. 2213 * 2214 * If tlb is set, also invalidates any TLB entries. 2215 * 2216 * Returns the previous value of the PTE. 2217 */ 2218 x86pte_t 2219 x86pte_inval( 2220 htable_t *ht, 2221 uint_t entry, 2222 x86pte_t expect, 2223 x86pte_t *pte_ptr, 2224 boolean_t tlb) 2225 { 2226 x86pte_t *ptep; 2227 x86pte_t oldpte; 2228 x86pte_t found; 2229 2230 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2231 ASSERT(ht->ht_level <= mmu.max_page_level); 2232 2233 if (pte_ptr != NULL) 2234 ptep = pte_ptr; 2235 else 2236 ptep = x86pte_access_pagetable(ht, entry); 2237 2238 #if defined(__xpv) 2239 /* 2240 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2241 * with anything else. 2242 */ 2243 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2244 int count; 2245 mmu_update_t t[1]; 2246 maddr_t ma; 2247 2248 oldpte = GET_PTE(ptep); 2249 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2250 goto done; 2251 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2252 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2253 t[0].val = 0; 2254 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2255 panic("HYPERVISOR_mmu_update() failed"); 2256 ASSERT(count == 1); 2257 goto done; 2258 } 2259 #endif /* __xpv */ 2260 2261 /* 2262 * Note that the loop is needed to handle changes due to h/w updating 2263 * of PT_MOD/PT_REF. 2264 */ 2265 do { 2266 oldpte = GET_PTE(ptep); 2267 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2268 goto done; 2269 XPV_ALLOW_PAGETABLE_UPDATES(); 2270 found = CAS_PTE(ptep, oldpte, 0); 2271 XPV_DISALLOW_PAGETABLE_UPDATES(); 2272 } while (found != oldpte); 2273 if (tlb && (oldpte & (PT_REF | PT_MOD))) 2274 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2275 2276 done: 2277 if (pte_ptr == NULL) 2278 x86pte_release_pagetable(ht); 2279 return (oldpte); 2280 } 2281 2282 /* 2283 * Change a page table entry af it currently matches the value in expect. 2284 */ 2285 x86pte_t 2286 x86pte_update( 2287 htable_t *ht, 2288 uint_t entry, 2289 x86pte_t expect, 2290 x86pte_t new) 2291 { 2292 x86pte_t *ptep; 2293 x86pte_t found; 2294 2295 ASSERT(new != 0); 2296 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2297 ASSERT(ht->ht_level <= mmu.max_page_level); 2298 2299 ptep = x86pte_access_pagetable(ht, entry); 2300 XPV_ALLOW_PAGETABLE_UPDATES(); 2301 found = CAS_PTE(ptep, expect, new); 2302 XPV_DISALLOW_PAGETABLE_UPDATES(); 2303 if (found == expect) { 2304 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2305 2306 /* 2307 * When removing write permission *and* clearing the 2308 * MOD bit, check if a write happened via a stale 2309 * TLB entry before the TLB shootdown finished. 2310 * 2311 * If it did happen, simply re-enable write permission and 2312 * act like the original CAS failed. 2313 */ 2314 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2315 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2316 (GET_PTE(ptep) & PT_MOD) != 0) { 2317 do { 2318 found = GET_PTE(ptep); 2319 XPV_ALLOW_PAGETABLE_UPDATES(); 2320 found = 2321 CAS_PTE(ptep, found, found | PT_WRITABLE); 2322 XPV_DISALLOW_PAGETABLE_UPDATES(); 2323 } while ((found & PT_WRITABLE) == 0); 2324 } 2325 } 2326 x86pte_release_pagetable(ht); 2327 return (found); 2328 } 2329 2330 #ifndef __xpv 2331 /* 2332 * Copy page tables - this is just a little more complicated than the 2333 * previous routines. Note that it's also not atomic! It also is never 2334 * used for VLP pagetables. 2335 */ 2336 void 2337 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2338 { 2339 caddr_t src_va; 2340 caddr_t dst_va; 2341 size_t size; 2342 x86pte_t *pteptr; 2343 x86pte_t pte; 2344 2345 ASSERT(khat_running); 2346 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2347 ASSERT(!(src->ht_flags & HTABLE_VLP)); 2348 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2349 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2350 2351 /* 2352 * Acquire access to the CPU pagetable windows for the dest and source. 2353 */ 2354 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2355 if (kpm_vbase) { 2356 src_va = (caddr_t) 2357 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2358 } else { 2359 uint_t x = PWIN_SRC(CPU->cpu_id); 2360 2361 /* 2362 * Finish defining the src pagetable mapping 2363 */ 2364 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2365 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2366 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2367 if (mmu.pae_hat) 2368 *pteptr = pte; 2369 else 2370 *(x86pte32_t *)pteptr = pte; 2371 mmu_tlbflush_entry((caddr_t)(PWIN_VA(x))); 2372 } 2373 2374 /* 2375 * now do the copy 2376 */ 2377 size = count << mmu.pte_size_shift; 2378 bcopy(src_va, dst_va, size); 2379 2380 x86pte_release_pagetable(dest); 2381 } 2382 2383 #else /* __xpv */ 2384 2385 /* 2386 * The hypervisor only supports writable pagetables at level 0, so we have 2387 * to install these 1 by 1 the slow way. 2388 */ 2389 void 2390 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2391 { 2392 caddr_t src_va; 2393 x86pte_t pte; 2394 2395 ASSERT(!IN_XPV_PANIC()); 2396 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2397 while (count) { 2398 if (mmu.pae_hat) 2399 pte = *(x86pte_t *)src_va; 2400 else 2401 pte = *(x86pte32_t *)src_va; 2402 if (pte != 0) { 2403 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2404 dest->ht_level, pte); 2405 #ifdef __amd64 2406 if (dest->ht_level == mmu.max_level && 2407 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2408 set_pteval( 2409 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2410 entry, dest->ht_level, pte); 2411 #endif 2412 } 2413 --count; 2414 ++entry; 2415 src_va += mmu.pte_size; 2416 } 2417 x86pte_release_pagetable(src); 2418 } 2419 #endif /* __xpv */ 2420 2421 /* 2422 * Zero page table entries - Note this doesn't use atomic stores! 2423 */ 2424 static void 2425 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2426 { 2427 caddr_t dst_va; 2428 size_t size; 2429 #ifdef __xpv 2430 int x; 2431 x86pte_t newpte; 2432 #endif 2433 2434 /* 2435 * Map in the page table to be zeroed. 2436 */ 2437 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2438 ASSERT(!(dest->ht_flags & HTABLE_VLP)); 2439 2440 /* 2441 * On the hypervisor we don't use x86pte_access_pagetable() since 2442 * in this case the page is not pinned yet. 2443 */ 2444 #ifdef __xpv 2445 if (kpm_vbase == NULL) { 2446 kpreempt_disable(); 2447 ASSERT(CPU->cpu_hat_info != NULL); 2448 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2449 x = PWIN_TABLE(CPU->cpu_id); 2450 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2451 xen_map(newpte, PWIN_VA(x)); 2452 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2453 } else 2454 #endif 2455 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2456 2457 size = count << mmu.pte_size_shift; 2458 ASSERT(size > BLOCKZEROALIGN); 2459 #ifdef __i386 2460 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 2461 bzero(dst_va, size); 2462 else 2463 #endif 2464 block_zero_no_xmm(dst_va, size); 2465 2466 #ifdef __xpv 2467 if (kpm_vbase == NULL) { 2468 xen_map(0, PWIN_VA(x)); 2469 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2470 kpreempt_enable(); 2471 } else 2472 #endif 2473 x86pte_release_pagetable(dest); 2474 } 2475 2476 /* 2477 * Called to ensure that all pagetables are in the system dump 2478 */ 2479 void 2480 hat_dump(void) 2481 { 2482 hat_t *hat; 2483 uint_t h; 2484 htable_t *ht; 2485 2486 /* 2487 * Dump all page tables 2488 */ 2489 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2490 for (h = 0; h < hat->hat_num_hash; ++h) { 2491 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2492 if ((ht->ht_flags & HTABLE_VLP) == 0) 2493 dump_page(ht->ht_pfn); 2494 } 2495 } 2496 } 2497 } 2498