xref: /titanic_52/usr/src/uts/i86pc/vm/htable.c (revision 317fb4ac3931ab67c3f66b6fd0e0f7f8a1727bc9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/atomic.h>
33 #include <sys/bitmap.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/mman.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/thread.h>
40 #include <sys/proc.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/disp.h>
44 #include <sys/vmem.h>
45 #include <sys/vmsystm.h>
46 #include <sys/promif.h>
47 #include <sys/var.h>
48 #include <sys/x86_archext.h>
49 #include <sys/archsystm.h>
50 #include <sys/bootconf.h>
51 #include <sys/dumphdr.h>
52 #include <vm/seg_kmem.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/hat.h>
55 #include <vm/hat_i86.h>
56 #include <sys/cmn_err.h>
57 #include <sys/panic.h>
58 
59 #ifdef __xpv
60 #include <sys/hypervisor.h>
61 #include <sys/xpv_panic.h>
62 #endif
63 
64 #include <sys/bootinfo.h>
65 #include <vm/kboot_mmu.h>
66 
67 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
68 
69 kmem_cache_t *htable_cache;
70 
71 /*
72  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
73  * is used in order to facilitate testing of the htable_steal() code.
74  * By resetting htable_reserve_amount to a lower value, we can force
75  * stealing to occur.  The reserve amount is a guess to get us through boot.
76  */
77 #define	HTABLE_RESERVE_AMOUNT	(200)
78 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
79 kmutex_t htable_reserve_mutex;
80 uint_t htable_reserve_cnt;
81 htable_t *htable_reserve_pool;
82 
83 /*
84  * Used to hand test htable_steal().
85  */
86 #ifdef DEBUG
87 ulong_t force_steal = 0;
88 ulong_t ptable_cnt = 0;
89 #endif
90 
91 /*
92  * This variable is so that we can tune this via /etc/system
93  * Any value works, but a power of two <= mmu.ptes_per_table is best.
94  */
95 uint_t htable_steal_passes = 8;
96 
97 /*
98  * mutex stuff for access to htable hash
99  */
100 #define	NUM_HTABLE_MUTEX 128
101 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
102 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
103 
104 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
105 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
106 
107 /*
108  * forward declarations
109  */
110 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
111 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
112 static void htable_free(htable_t *ht);
113 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
114 static void x86pte_release_pagetable(htable_t *ht);
115 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
116 	x86pte_t new);
117 
118 /*
119  * A counter to track if we are stealing or reaping htables. When non-zero
120  * htable_free() will directly free htables (either to the reserve or kmem)
121  * instead of putting them in a hat's htable cache.
122  */
123 uint32_t htable_dont_cache = 0;
124 
125 /*
126  * Track the number of active pagetables, so we can know how many to reap
127  */
128 static uint32_t active_ptables = 0;
129 
130 #ifdef __xpv
131 /*
132  * Deal with hypervisor complications.
133  */
134 void
135 xen_flush_va(caddr_t va)
136 {
137 	struct mmuext_op t;
138 	uint_t count;
139 
140 	if (IN_XPV_PANIC()) {
141 		mmu_tlbflush_entry((caddr_t)va);
142 	} else {
143 		t.cmd = MMUEXT_INVLPG_LOCAL;
144 		t.arg1.linear_addr = (uintptr_t)va;
145 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
146 			panic("HYPERVISOR_mmuext_op() failed");
147 		ASSERT(count == 1);
148 	}
149 }
150 
151 void
152 xen_gflush_va(caddr_t va, cpuset_t cpus)
153 {
154 	struct mmuext_op t;
155 	uint_t count;
156 
157 	if (IN_XPV_PANIC()) {
158 		mmu_tlbflush_entry((caddr_t)va);
159 		return;
160 	}
161 
162 	t.cmd = MMUEXT_INVLPG_MULTI;
163 	t.arg1.linear_addr = (uintptr_t)va;
164 	/*LINTED: constant in conditional context*/
165 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
166 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
167 		panic("HYPERVISOR_mmuext_op() failed");
168 	ASSERT(count == 1);
169 }
170 
171 void
172 xen_flush_tlb()
173 {
174 	struct mmuext_op t;
175 	uint_t count;
176 
177 	if (IN_XPV_PANIC()) {
178 		xpv_panic_reload_cr3();
179 	} else {
180 		t.cmd = MMUEXT_TLB_FLUSH_LOCAL;
181 		if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
182 			panic("HYPERVISOR_mmuext_op() failed");
183 		ASSERT(count == 1);
184 	}
185 }
186 
187 void
188 xen_gflush_tlb(cpuset_t cpus)
189 {
190 	struct mmuext_op t;
191 	uint_t count;
192 
193 	ASSERT(!IN_XPV_PANIC());
194 	t.cmd = MMUEXT_TLB_FLUSH_MULTI;
195 	/*LINTED: constant in conditional context*/
196 	set_xen_guest_handle(t.arg2.vcpumask, &cpus);
197 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
198 		panic("HYPERVISOR_mmuext_op() failed");
199 	ASSERT(count == 1);
200 }
201 
202 /*
203  * Install/Adjust a kpm mapping under the hypervisor.
204  * Value of "how" should be:
205  *	PT_WRITABLE | PT_VALID - regular kpm mapping
206  *	PT_VALID - make mapping read-only
207  *	0	- remove mapping
208  *
209  * returns 0 on success. non-zero for failure.
210  */
211 int
212 xen_kpm_page(pfn_t pfn, uint_t how)
213 {
214 	paddr_t pa = mmu_ptob((paddr_t)pfn);
215 	x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD;
216 
217 	if (kpm_vbase == NULL)
218 		return (0);
219 
220 	if (how)
221 		pte |= pa_to_ma(pa) | how;
222 	else
223 		pte = 0;
224 	return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa,
225 	    pte, UVMF_INVLPG | UVMF_ALL));
226 }
227 
228 void
229 xen_pin(pfn_t pfn, level_t lvl)
230 {
231 	struct mmuext_op t;
232 	uint_t count;
233 
234 	t.cmd = MMUEXT_PIN_L1_TABLE + lvl;
235 	t.arg1.mfn = pfn_to_mfn(pfn);
236 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
237 		panic("HYPERVISOR_mmuext_op() failed");
238 	ASSERT(count == 1);
239 }
240 
241 void
242 xen_unpin(pfn_t pfn)
243 {
244 	struct mmuext_op t;
245 	uint_t count;
246 
247 	t.cmd = MMUEXT_UNPIN_TABLE;
248 	t.arg1.mfn = pfn_to_mfn(pfn);
249 	if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0)
250 		panic("HYPERVISOR_mmuext_op() failed");
251 	ASSERT(count == 1);
252 }
253 
254 static void
255 xen_map(uint64_t pte, caddr_t va)
256 {
257 	if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte,
258 	    UVMF_INVLPG | UVMF_LOCAL))
259 		panic("HYPERVISOR_update_va_mapping() failed");
260 }
261 #endif /* __xpv */
262 
263 /*
264  * Allocate a memory page for a hardware page table.
265  *
266  * A wrapper around page_get_physical(), with some extra checks.
267  */
268 static pfn_t
269 ptable_alloc(uintptr_t seed)
270 {
271 	pfn_t pfn;
272 	page_t *pp;
273 
274 	pfn = PFN_INVALID;
275 	atomic_add_32(&active_ptables, 1);
276 
277 	/*
278 	 * The first check is to see if there is memory in the system. If we
279 	 * drop to throttlefree, then fail the ptable_alloc() and let the
280 	 * stealing code kick in. Note that we have to do this test here,
281 	 * since the test in page_create_throttle() would let the NOSLEEP
282 	 * allocation go through and deplete the page reserves.
283 	 *
284 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
285 	 */
286 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
287 		return (PFN_INVALID);
288 
289 #ifdef DEBUG
290 	/*
291 	 * This code makes htable_steal() easier to test. By setting
292 	 * force_steal we force pagetable allocations to fall
293 	 * into the stealing code. Roughly 1 in ever "force_steal"
294 	 * page table allocations will fail.
295 	 */
296 	if (proc_pageout != NULL && force_steal > 1 &&
297 	    ++ptable_cnt > force_steal) {
298 		ptable_cnt = 0;
299 		return (PFN_INVALID);
300 	}
301 #endif /* DEBUG */
302 
303 	pp = page_get_physical(seed);
304 	if (pp == NULL)
305 		return (PFN_INVALID);
306 	pfn = pp->p_pagenum;
307 	page_downgrade(pp);
308 	ASSERT(PAGE_SHARED(pp));
309 
310 	if (pfn == PFN_INVALID)
311 		panic("ptable_alloc(): Invalid PFN!!");
312 	HATSTAT_INC(hs_ptable_allocs);
313 	return (pfn);
314 }
315 
316 /*
317  * Free an htable's associated page table page.  See the comments
318  * for ptable_alloc().
319  */
320 static void
321 ptable_free(pfn_t pfn)
322 {
323 	page_t *pp = page_numtopp_nolock(pfn);
324 
325 	/*
326 	 * need to destroy the page used for the pagetable
327 	 */
328 	ASSERT(pfn != PFN_INVALID);
329 	HATSTAT_INC(hs_ptable_frees);
330 	atomic_add_32(&active_ptables, -1);
331 	if (pp == NULL)
332 		panic("ptable_free(): no page for pfn!");
333 	ASSERT(PAGE_SHARED(pp));
334 	ASSERT(pfn == pp->p_pagenum);
335 	ASSERT(!IN_XPV_PANIC());
336 
337 	/*
338 	 * Get an exclusive lock, might have to wait for a kmem reader.
339 	 */
340 	if (!page_tryupgrade(pp)) {
341 		page_unlock(pp);
342 		/*
343 		 * RFE: we could change this to not loop forever
344 		 * George Cameron had some idea on how to do that.
345 		 * For now looping works - it's just like sfmmu.
346 		 */
347 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
348 			continue;
349 	}
350 #ifdef __xpv
351 	if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0)
352 		panic("failure making kpm r/w pfn=0x%lx", pfn);
353 #endif
354 	page_free(pp, 1);
355 	page_unresv(1);
356 }
357 
358 /*
359  * Put one htable on the reserve list.
360  */
361 static void
362 htable_put_reserve(htable_t *ht)
363 {
364 	ht->ht_hat = NULL;		/* no longer tied to a hat */
365 	ASSERT(ht->ht_pfn == PFN_INVALID);
366 	HATSTAT_INC(hs_htable_rputs);
367 	mutex_enter(&htable_reserve_mutex);
368 	ht->ht_next = htable_reserve_pool;
369 	htable_reserve_pool = ht;
370 	++htable_reserve_cnt;
371 	mutex_exit(&htable_reserve_mutex);
372 }
373 
374 /*
375  * Take one htable from the reserve.
376  */
377 static htable_t *
378 htable_get_reserve(void)
379 {
380 	htable_t *ht = NULL;
381 
382 	mutex_enter(&htable_reserve_mutex);
383 	if (htable_reserve_cnt != 0) {
384 		ht = htable_reserve_pool;
385 		ASSERT(ht != NULL);
386 		ASSERT(ht->ht_pfn == PFN_INVALID);
387 		htable_reserve_pool = ht->ht_next;
388 		--htable_reserve_cnt;
389 		HATSTAT_INC(hs_htable_rgets);
390 	}
391 	mutex_exit(&htable_reserve_mutex);
392 	return (ht);
393 }
394 
395 /*
396  * Allocate initial htables and put them on the reserve list
397  */
398 void
399 htable_initial_reserve(uint_t count)
400 {
401 	htable_t *ht;
402 
403 	count += HTABLE_RESERVE_AMOUNT;
404 	while (count > 0) {
405 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
406 		ASSERT(ht != NULL);
407 
408 		ASSERT(use_boot_reserve);
409 		ht->ht_pfn = PFN_INVALID;
410 		htable_put_reserve(ht);
411 		--count;
412 	}
413 }
414 
415 /*
416  * Readjust the reserves after a thread finishes using them.
417  */
418 void
419 htable_adjust_reserve()
420 {
421 	htable_t *ht;
422 
423 	/*
424 	 * Free any excess htables in the reserve list
425 	 */
426 	while (htable_reserve_cnt > htable_reserve_amount &&
427 	    !USE_HAT_RESERVES()) {
428 		ht = htable_get_reserve();
429 		if (ht == NULL)
430 			return;
431 		ASSERT(ht->ht_pfn == PFN_INVALID);
432 		kmem_cache_free(htable_cache, ht);
433 	}
434 }
435 
436 
437 /*
438  * This routine steals htables from user processes for htable_alloc() or
439  * for htable_reap().
440  */
441 static htable_t *
442 htable_steal(uint_t cnt)
443 {
444 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
445 	htable_t	*list = NULL;
446 	htable_t	*ht;
447 	htable_t	*higher;
448 	uint_t		h;
449 	uint_t		h_start;
450 	static uint_t	h_seed = 0;
451 	uint_t		e;
452 	uintptr_t	va;
453 	x86pte_t	pte;
454 	uint_t		stolen = 0;
455 	uint_t		pass;
456 	uint_t		threshold;
457 
458 	/*
459 	 * Limit htable_steal_passes to something reasonable
460 	 */
461 	if (htable_steal_passes == 0)
462 		htable_steal_passes = 1;
463 	if (htable_steal_passes > mmu.ptes_per_table)
464 		htable_steal_passes = mmu.ptes_per_table;
465 
466 	/*
467 	 * Loop through all user hats. The 1st pass takes cached htables that
468 	 * aren't in use. The later passes steal by removing mappings, too.
469 	 */
470 	atomic_add_32(&htable_dont_cache, 1);
471 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
472 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
473 		hat = kas.a_hat;
474 		for (;;) {
475 
476 			/*
477 			 * Clear the victim flag and move to next hat
478 			 */
479 			mutex_enter(&hat_list_lock);
480 			if (hat != kas.a_hat) {
481 				hat->hat_flags &= ~HAT_VICTIM;
482 				cv_broadcast(&hat_list_cv);
483 			}
484 			hat = hat->hat_next;
485 
486 			/*
487 			 * Skip any hat that is already being stolen from.
488 			 *
489 			 * We skip SHARED hats, as these are dummy
490 			 * hats that host ISM shared page tables.
491 			 *
492 			 * We also skip if HAT_FREEING because hat_pte_unmap()
493 			 * won't zero out the PTE's. That would lead to hitting
494 			 * stale PTEs either here or under hat_unload() when we
495 			 * steal and unload the same page table in competing
496 			 * threads.
497 			 */
498 			while (hat != NULL &&
499 			    (hat->hat_flags &
500 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
501 				hat = hat->hat_next;
502 
503 			if (hat == NULL) {
504 				mutex_exit(&hat_list_lock);
505 				break;
506 			}
507 
508 			/*
509 			 * Are we finished?
510 			 */
511 			if (stolen == cnt) {
512 				/*
513 				 * Try to spread the pain of stealing,
514 				 * move victim HAT to the end of the HAT list.
515 				 */
516 				if (pass >= 1 && cnt == 1 &&
517 				    kas.a_hat->hat_prev != hat) {
518 
519 					/* unlink victim hat */
520 					if (hat->hat_prev)
521 						hat->hat_prev->hat_next =
522 						    hat->hat_next;
523 					else
524 						kas.a_hat->hat_next =
525 						    hat->hat_next;
526 					if (hat->hat_next)
527 						hat->hat_next->hat_prev =
528 						    hat->hat_prev;
529 					else
530 						kas.a_hat->hat_prev =
531 						    hat->hat_prev;
532 
533 
534 					/* relink at end of hat list */
535 					hat->hat_next = NULL;
536 					hat->hat_prev = kas.a_hat->hat_prev;
537 					if (hat->hat_prev)
538 						hat->hat_prev->hat_next = hat;
539 					else
540 						kas.a_hat->hat_next = hat;
541 					kas.a_hat->hat_prev = hat;
542 
543 				}
544 
545 				mutex_exit(&hat_list_lock);
546 				break;
547 			}
548 
549 			/*
550 			 * Mark the HAT as a stealing victim.
551 			 */
552 			hat->hat_flags |= HAT_VICTIM;
553 			mutex_exit(&hat_list_lock);
554 
555 			/*
556 			 * Take any htables from the hat's cached "free" list.
557 			 */
558 			hat_enter(hat);
559 			while ((ht = hat->hat_ht_cached) != NULL &&
560 			    stolen < cnt) {
561 				hat->hat_ht_cached = ht->ht_next;
562 				ht->ht_next = list;
563 				list = ht;
564 				++stolen;
565 			}
566 			hat_exit(hat);
567 
568 			/*
569 			 * Don't steal on first pass.
570 			 */
571 			if (pass == 0 || stolen == cnt)
572 				continue;
573 
574 			/*
575 			 * Search the active htables for one to steal.
576 			 * Start at a different hash bucket every time to
577 			 * help spread the pain of stealing.
578 			 */
579 			h = h_start = h_seed++ % hat->hat_num_hash;
580 			do {
581 				higher = NULL;
582 				HTABLE_ENTER(h);
583 				for (ht = hat->hat_ht_hash[h]; ht;
584 				    ht = ht->ht_next) {
585 
586 					/*
587 					 * Can we rule out reaping?
588 					 */
589 					if (ht->ht_busy != 0 ||
590 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
591 					    ht->ht_level > 0 ||
592 					    ht->ht_valid_cnt > threshold ||
593 					    ht->ht_lock_cnt != 0)
594 						continue;
595 
596 					/*
597 					 * Increment busy so the htable can't
598 					 * disappear. We drop the htable mutex
599 					 * to avoid deadlocks with
600 					 * hat_pageunload() and the hment mutex
601 					 * while we call hat_pte_unmap()
602 					 */
603 					++ht->ht_busy;
604 					HTABLE_EXIT(h);
605 
606 					/*
607 					 * Try stealing.
608 					 * - unload and invalidate all PTEs
609 					 */
610 					for (e = 0, va = ht->ht_vaddr;
611 					    e < HTABLE_NUM_PTES(ht) &&
612 					    ht->ht_valid_cnt > 0 &&
613 					    ht->ht_busy == 1 &&
614 					    ht->ht_lock_cnt == 0;
615 					    ++e, va += MMU_PAGESIZE) {
616 						pte = x86pte_get(ht, e);
617 						if (!PTE_ISVALID(pte))
618 							continue;
619 						hat_pte_unmap(ht, e,
620 						    HAT_UNLOAD, pte, NULL);
621 					}
622 
623 					/*
624 					 * Reacquire htable lock. If we didn't
625 					 * remove all mappings in the table,
626 					 * or another thread added a new mapping
627 					 * behind us, give up on this table.
628 					 */
629 					HTABLE_ENTER(h);
630 					if (ht->ht_busy != 1 ||
631 					    ht->ht_valid_cnt != 0 ||
632 					    ht->ht_lock_cnt != 0) {
633 						--ht->ht_busy;
634 						continue;
635 					}
636 
637 					/*
638 					 * Steal it and unlink the page table.
639 					 */
640 					higher = ht->ht_parent;
641 					unlink_ptp(higher, ht, ht->ht_vaddr);
642 
643 					/*
644 					 * remove from the hash list
645 					 */
646 					if (ht->ht_next)
647 						ht->ht_next->ht_prev =
648 						    ht->ht_prev;
649 
650 					if (ht->ht_prev) {
651 						ht->ht_prev->ht_next =
652 						    ht->ht_next;
653 					} else {
654 						ASSERT(hat->hat_ht_hash[h] ==
655 						    ht);
656 						hat->hat_ht_hash[h] =
657 						    ht->ht_next;
658 					}
659 
660 					/*
661 					 * Break to outer loop to release the
662 					 * higher (ht_parent) pagetable. This
663 					 * spreads out the pain caused by
664 					 * pagefaults.
665 					 */
666 					ht->ht_next = list;
667 					list = ht;
668 					++stolen;
669 					break;
670 				}
671 				HTABLE_EXIT(h);
672 				if (higher != NULL)
673 					htable_release(higher);
674 				if (++h == hat->hat_num_hash)
675 					h = 0;
676 			} while (stolen < cnt && h != h_start);
677 		}
678 	}
679 	atomic_add_32(&htable_dont_cache, -1);
680 	return (list);
681 }
682 
683 
684 /*
685  * This is invoked from kmem when the system is low on memory.  We try
686  * to free hments, htables, and ptables to improve the memory situation.
687  */
688 /*ARGSUSED*/
689 static void
690 htable_reap(void *handle)
691 {
692 	uint_t		reap_cnt;
693 	htable_t	*list;
694 	htable_t	*ht;
695 
696 	HATSTAT_INC(hs_reap_attempts);
697 	if (!can_steal_post_boot)
698 		return;
699 
700 	/*
701 	 * Try to reap 5% of the page tables bounded by a maximum of
702 	 * 5% of physmem and a minimum of 10.
703 	 */
704 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
705 
706 	/*
707 	 * Let htable_steal() do the work, we just call htable_free()
708 	 */
709 	XPV_DISALLOW_MIGRATE();
710 	list = htable_steal(reap_cnt);
711 	XPV_ALLOW_MIGRATE();
712 	while ((ht = list) != NULL) {
713 		list = ht->ht_next;
714 		HATSTAT_INC(hs_reaped);
715 		htable_free(ht);
716 	}
717 
718 	/*
719 	 * Free up excess reserves
720 	 */
721 	htable_adjust_reserve();
722 	hment_adjust_reserve();
723 }
724 
725 /*
726  * Allocate an htable, stealing one or using the reserve if necessary
727  */
728 static htable_t *
729 htable_alloc(
730 	hat_t		*hat,
731 	uintptr_t	vaddr,
732 	level_t		level,
733 	htable_t	*shared)
734 {
735 	htable_t	*ht = NULL;
736 	uint_t		is_vlp;
737 	uint_t		is_bare = 0;
738 	uint_t		need_to_zero = 1;
739 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
740 
741 	if (level < 0 || level > TOP_LEVEL(hat))
742 		panic("htable_alloc(): level %d out of range\n", level);
743 
744 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
745 	if (is_vlp || shared != NULL)
746 		is_bare = 1;
747 
748 	/*
749 	 * First reuse a cached htable from the hat_ht_cached field, this
750 	 * avoids unnecessary trips through kmem/page allocators.
751 	 */
752 	if (hat->hat_ht_cached != NULL && !is_bare) {
753 		hat_enter(hat);
754 		ht = hat->hat_ht_cached;
755 		if (ht != NULL) {
756 			hat->hat_ht_cached = ht->ht_next;
757 			need_to_zero = 0;
758 			/* XX64 ASSERT() they're all zero somehow */
759 			ASSERT(ht->ht_pfn != PFN_INVALID);
760 		}
761 		hat_exit(hat);
762 	}
763 
764 	if (ht == NULL) {
765 		/*
766 		 * Allocate an htable, possibly refilling the reserves.
767 		 */
768 		if (USE_HAT_RESERVES()) {
769 			ht = htable_get_reserve();
770 		} else {
771 			/*
772 			 * Donate successful htable allocations to the reserve.
773 			 */
774 			for (;;) {
775 				ht = kmem_cache_alloc(htable_cache, kmflags);
776 				if (ht == NULL)
777 					break;
778 				ht->ht_pfn = PFN_INVALID;
779 				if (USE_HAT_RESERVES() ||
780 				    htable_reserve_cnt >= htable_reserve_amount)
781 					break;
782 				htable_put_reserve(ht);
783 			}
784 		}
785 
786 		/*
787 		 * allocate a page for the hardware page table if needed
788 		 */
789 		if (ht != NULL && !is_bare) {
790 			ht->ht_hat = hat;
791 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
792 			if (ht->ht_pfn == PFN_INVALID) {
793 				if (USE_HAT_RESERVES())
794 					htable_put_reserve(ht);
795 				else
796 					kmem_cache_free(htable_cache, ht);
797 				ht = NULL;
798 			}
799 		}
800 	}
801 
802 	/*
803 	 * If allocations failed, kick off a kmem_reap() and resort to
804 	 * htable steal(). We may spin here if the system is very low on
805 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
806 	 * can't free up anything, then we'll really get stuck here.
807 	 * That should only happen in a system where the administrator has
808 	 * misconfigured VM parameters via /etc/system.
809 	 */
810 	while (ht == NULL && can_steal_post_boot) {
811 		kmem_reap();
812 		ht = htable_steal(1);
813 		HATSTAT_INC(hs_steals);
814 
815 		/*
816 		 * If we stole for a bare htable, release the pagetable page.
817 		 */
818 		if (ht != NULL) {
819 			if (is_bare) {
820 				ptable_free(ht->ht_pfn);
821 				ht->ht_pfn = PFN_INVALID;
822 #if defined(__xpv) && defined(__amd64)
823 			/*
824 			 * make stolen page table writable again in kpm
825 			 */
826 			} else if (kpm_vbase && xen_kpm_page(ht->ht_pfn,
827 			    PT_VALID | PT_WRITABLE) < 0) {
828 				panic("failure making kpm r/w pfn=0x%lx",
829 				    ht->ht_pfn);
830 #endif
831 			}
832 		}
833 	}
834 
835 	/*
836 	 * All attempts to allocate or steal failed. This should only happen
837 	 * if we run out of memory during boot, due perhaps to a huge
838 	 * boot_archive. At this point there's no way to continue.
839 	 */
840 	if (ht == NULL)
841 		panic("htable_alloc(): couldn't steal\n");
842 
843 #if defined(__amd64) && defined(__xpv)
844 	/*
845 	 * Under the 64-bit hypervisor, we have 2 top level page tables.
846 	 * If this allocation fails, we'll resort to stealing.
847 	 * We use the stolen page indirectly, by freeing the
848 	 * stolen htable first.
849 	 */
850 	if (level == mmu.max_level) {
851 		for (;;) {
852 			htable_t *stolen;
853 
854 			hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1);
855 			if (hat->hat_user_ptable != PFN_INVALID)
856 				break;
857 			stolen = htable_steal(1);
858 			if (stolen == NULL)
859 				panic("2nd steal ptable failed\n");
860 			htable_free(stolen);
861 		}
862 		block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable),
863 		    MMU_PAGESIZE);
864 	}
865 #endif
866 
867 	/*
868 	 * Shared page tables have all entries locked and entries may not
869 	 * be added or deleted.
870 	 */
871 	ht->ht_flags = 0;
872 	if (shared != NULL) {
873 		ASSERT(shared->ht_valid_cnt > 0);
874 		ht->ht_flags |= HTABLE_SHARED_PFN;
875 		ht->ht_pfn = shared->ht_pfn;
876 		ht->ht_lock_cnt = 0;
877 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
878 		ht->ht_shares = shared;
879 		need_to_zero = 0;
880 	} else {
881 		ht->ht_shares = NULL;
882 		ht->ht_lock_cnt = 0;
883 		ht->ht_valid_cnt = 0;
884 	}
885 
886 	/*
887 	 * setup flags, etc. for VLP htables
888 	 */
889 	if (is_vlp) {
890 		ht->ht_flags |= HTABLE_VLP;
891 		ASSERT(ht->ht_pfn == PFN_INVALID);
892 		need_to_zero = 0;
893 	}
894 
895 	/*
896 	 * fill in the htable
897 	 */
898 	ht->ht_hat = hat;
899 	ht->ht_parent = NULL;
900 	ht->ht_vaddr = vaddr;
901 	ht->ht_level = level;
902 	ht->ht_busy = 1;
903 	ht->ht_next = NULL;
904 	ht->ht_prev = NULL;
905 
906 	/*
907 	 * Zero out any freshly allocated page table
908 	 */
909 	if (need_to_zero)
910 		x86pte_zero(ht, 0, mmu.ptes_per_table);
911 
912 #if defined(__amd64) && defined(__xpv)
913 	if (!is_bare && kpm_vbase) {
914 		(void) xen_kpm_page(ht->ht_pfn, PT_VALID);
915 		if (level == mmu.max_level)
916 			(void) xen_kpm_page(hat->hat_user_ptable, PT_VALID);
917 	}
918 #endif
919 
920 	return (ht);
921 }
922 
923 /*
924  * Free up an htable, either to a hat's cached list, the reserves or
925  * back to kmem.
926  */
927 static void
928 htable_free(htable_t *ht)
929 {
930 	hat_t *hat = ht->ht_hat;
931 
932 	/*
933 	 * If the process isn't exiting, cache the free htable in the hat
934 	 * structure. We always do this for the boot time reserve. We don't
935 	 * do this if the hat is exiting or we are stealing/reaping htables.
936 	 */
937 	if (hat != NULL &&
938 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
939 	    (use_boot_reserve ||
940 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
941 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
942 		ASSERT(ht->ht_pfn != PFN_INVALID);
943 		hat_enter(hat);
944 		ht->ht_next = hat->hat_ht_cached;
945 		hat->hat_ht_cached = ht;
946 		hat_exit(hat);
947 		return;
948 	}
949 
950 	/*
951 	 * If we have a hardware page table, free it.
952 	 * We don't free page tables that are accessed by sharing.
953 	 */
954 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
955 		ASSERT(ht->ht_pfn != PFN_INVALID);
956 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
957 		ptable_free(ht->ht_pfn);
958 #if defined(__amd64) && defined(__xpv)
959 		if (ht->ht_level == mmu.max_level) {
960 			ptable_free(hat->hat_user_ptable);
961 			hat->hat_user_ptable = PFN_INVALID;
962 		}
963 #endif
964 	}
965 	ht->ht_pfn = PFN_INVALID;
966 
967 	/*
968 	 * Free it or put into reserves.
969 	 */
970 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
971 		htable_put_reserve(ht);
972 	} else {
973 		kmem_cache_free(htable_cache, ht);
974 		htable_adjust_reserve();
975 	}
976 }
977 
978 
979 /*
980  * This is called when a hat is being destroyed or swapped out. We reap all
981  * the remaining htables in the hat cache. If destroying all left over
982  * htables are also destroyed.
983  *
984  * We also don't need to invalidate any of the PTPs nor do any demapping.
985  */
986 void
987 htable_purge_hat(hat_t *hat)
988 {
989 	htable_t *ht;
990 	int h;
991 
992 	/*
993 	 * Purge the htable cache if just reaping.
994 	 */
995 	if (!(hat->hat_flags & HAT_FREEING)) {
996 		atomic_add_32(&htable_dont_cache, 1);
997 		for (;;) {
998 			hat_enter(hat);
999 			ht = hat->hat_ht_cached;
1000 			if (ht == NULL) {
1001 				hat_exit(hat);
1002 				break;
1003 			}
1004 			hat->hat_ht_cached = ht->ht_next;
1005 			hat_exit(hat);
1006 			htable_free(ht);
1007 		}
1008 		atomic_add_32(&htable_dont_cache, -1);
1009 		return;
1010 	}
1011 
1012 	/*
1013 	 * if freeing, no locking is needed
1014 	 */
1015 	while ((ht = hat->hat_ht_cached) != NULL) {
1016 		hat->hat_ht_cached = ht->ht_next;
1017 		htable_free(ht);
1018 	}
1019 
1020 	/*
1021 	 * walk thru the htable hash table and free all the htables in it.
1022 	 */
1023 	for (h = 0; h < hat->hat_num_hash; ++h) {
1024 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
1025 			if (ht->ht_next)
1026 				ht->ht_next->ht_prev = ht->ht_prev;
1027 
1028 			if (ht->ht_prev) {
1029 				ht->ht_prev->ht_next = ht->ht_next;
1030 			} else {
1031 				ASSERT(hat->hat_ht_hash[h] == ht);
1032 				hat->hat_ht_hash[h] = ht->ht_next;
1033 			}
1034 			htable_free(ht);
1035 		}
1036 	}
1037 }
1038 
1039 /*
1040  * Unlink an entry for a table at vaddr and level out of the existing table
1041  * one level higher. We are always holding the HASH_ENTER() when doing this.
1042  */
1043 static void
1044 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
1045 {
1046 	uint_t		entry = htable_va2entry(vaddr, higher);
1047 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
1048 	x86pte_t	found;
1049 	hat_t		*hat = old->ht_hat;
1050 
1051 	ASSERT(higher->ht_busy > 0);
1052 	ASSERT(higher->ht_valid_cnt > 0);
1053 	ASSERT(old->ht_valid_cnt == 0);
1054 	found = x86pte_cas(higher, entry, expect, 0);
1055 #ifdef __xpv
1056 	/*
1057 	 * This is weird, but Xen apparently automatically unlinks empty
1058 	 * pagetables from the upper page table. So allow PTP to be 0 already.
1059 	 */
1060 	if (found != expect && found != 0)
1061 #else
1062 	if (found != expect)
1063 #endif
1064 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
1065 		    found, expect);
1066 
1067 	/*
1068 	 * When a top level VLP page table entry changes, we must issue
1069 	 * a reload of cr3 on all processors.
1070 	 *
1071 	 * If we don't need do do that, then we still have to INVLPG against
1072 	 * an address covered by the inner page table, as the latest processors
1073 	 * have TLB-like caches for non-leaf page table entries.
1074 	 */
1075 	if (!(hat->hat_flags & HAT_FREEING)) {
1076 		hat_tlb_inval(hat, (higher->ht_flags & HTABLE_VLP) ?
1077 		    DEMAP_ALL_ADDR : old->ht_vaddr);
1078 	}
1079 
1080 	HTABLE_DEC(higher->ht_valid_cnt);
1081 }
1082 
1083 /*
1084  * Link an entry for a new table at vaddr and level into the existing table
1085  * one level higher. We are always holding the HASH_ENTER() when doing this.
1086  */
1087 static void
1088 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
1089 {
1090 	uint_t		entry = htable_va2entry(vaddr, higher);
1091 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
1092 	x86pte_t	found;
1093 
1094 	ASSERT(higher->ht_busy > 0);
1095 
1096 	ASSERT(new->ht_level != mmu.max_level);
1097 
1098 	HTABLE_INC(higher->ht_valid_cnt);
1099 
1100 	found = x86pte_cas(higher, entry, 0, newptp);
1101 	if ((found & ~PT_REF) != 0)
1102 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
1103 
1104 	/*
1105 	 * When any top level VLP page table entry changes, we must issue
1106 	 * a reload of cr3 on all processors using it.
1107 	 * We also need to do this for the kernel hat on PAE 32 bit kernel.
1108 	 */
1109 	if (
1110 #ifdef __i386
1111 	    (higher->ht_hat == kas.a_hat && higher->ht_level == VLP_LEVEL) ||
1112 #endif
1113 	    (higher->ht_flags & HTABLE_VLP))
1114 		hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR);
1115 }
1116 
1117 /*
1118  * Release of hold on an htable. If this is the last use and the pagetable
1119  * is empty we may want to free it, then recursively look at the pagetable
1120  * above it. The recursion is handled by the outer while() loop.
1121  *
1122  * On the metal, during process exit, we don't bother unlinking the tables from
1123  * upper level pagetables. They are instead handled in bulk by hat_free_end().
1124  * We can't do this on the hypervisor as we need the page table to be
1125  * implicitly unpinnned before it goes to the free page lists. This can't
1126  * happen unless we fully unlink it from the page table hierarchy.
1127  */
1128 void
1129 htable_release(htable_t *ht)
1130 {
1131 	uint_t		hashval;
1132 	htable_t	*shared;
1133 	htable_t	*higher;
1134 	hat_t		*hat;
1135 	uintptr_t	va;
1136 	level_t		level;
1137 
1138 	while (ht != NULL) {
1139 		shared = NULL;
1140 		for (;;) {
1141 			hat = ht->ht_hat;
1142 			va = ht->ht_vaddr;
1143 			level = ht->ht_level;
1144 			hashval = HTABLE_HASH(hat, va, level);
1145 
1146 			/*
1147 			 * The common case is that this isn't the last use of
1148 			 * an htable so we don't want to free the htable.
1149 			 */
1150 			HTABLE_ENTER(hashval);
1151 			ASSERT(ht->ht_valid_cnt >= 0);
1152 			ASSERT(ht->ht_busy > 0);
1153 			if (ht->ht_valid_cnt > 0)
1154 				break;
1155 			if (ht->ht_busy > 1)
1156 				break;
1157 			ASSERT(ht->ht_lock_cnt == 0);
1158 
1159 #if !defined(__xpv)
1160 			/*
1161 			 * we always release empty shared htables
1162 			 */
1163 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
1164 
1165 				/*
1166 				 * don't release if in address space tear down
1167 				 */
1168 				if (hat->hat_flags & HAT_FREEING)
1169 					break;
1170 
1171 				/*
1172 				 * At and above max_page_level, free if it's for
1173 				 * a boot-time kernel mapping below kernelbase.
1174 				 */
1175 				if (level >= mmu.max_page_level &&
1176 				    (hat != kas.a_hat || va >= kernelbase))
1177 					break;
1178 			}
1179 #endif /* __xpv */
1180 
1181 			/*
1182 			 * Remember if we destroy an htable that shares its PFN
1183 			 * from elsewhere.
1184 			 */
1185 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
1186 				ASSERT(shared == NULL);
1187 				shared = ht->ht_shares;
1188 				HATSTAT_INC(hs_htable_unshared);
1189 			}
1190 
1191 			/*
1192 			 * Handle release of a table and freeing the htable_t.
1193 			 * Unlink it from the table higher (ie. ht_parent).
1194 			 */
1195 			ASSERT(ht->ht_lock_cnt == 0);
1196 			higher = ht->ht_parent;
1197 			ASSERT(higher != NULL);
1198 
1199 			/*
1200 			 * Unlink the pagetable.
1201 			 */
1202 			unlink_ptp(higher, ht, va);
1203 
1204 			/*
1205 			 * remove this htable from its hash list
1206 			 */
1207 			if (ht->ht_next)
1208 				ht->ht_next->ht_prev = ht->ht_prev;
1209 
1210 			if (ht->ht_prev) {
1211 				ht->ht_prev->ht_next = ht->ht_next;
1212 			} else {
1213 				ASSERT(hat->hat_ht_hash[hashval] == ht);
1214 				hat->hat_ht_hash[hashval] = ht->ht_next;
1215 			}
1216 			HTABLE_EXIT(hashval);
1217 			htable_free(ht);
1218 			ht = higher;
1219 		}
1220 
1221 		ASSERT(ht->ht_busy >= 1);
1222 		--ht->ht_busy;
1223 		HTABLE_EXIT(hashval);
1224 
1225 		/*
1226 		 * If we released a shared htable, do a release on the htable
1227 		 * from which it shared
1228 		 */
1229 		ht = shared;
1230 	}
1231 }
1232 
1233 /*
1234  * Find the htable for the pagetable at the given level for the given address.
1235  * If found acquires a hold that eventually needs to be htable_release()d
1236  */
1237 htable_t *
1238 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1239 {
1240 	uintptr_t	base;
1241 	uint_t		hashval;
1242 	htable_t	*ht = NULL;
1243 
1244 	ASSERT(level >= 0);
1245 	ASSERT(level <= TOP_LEVEL(hat));
1246 
1247 	if (level == TOP_LEVEL(hat)) {
1248 #if defined(__amd64)
1249 		/*
1250 		 * 32 bit address spaces on 64 bit kernels need to check
1251 		 * for overflow of the 32 bit address space
1252 		 */
1253 		if ((hat->hat_flags & HAT_VLP) && vaddr >= ((uint64_t)1 << 32))
1254 			return (NULL);
1255 #endif
1256 		base = 0;
1257 	} else {
1258 		base = vaddr & LEVEL_MASK(level + 1);
1259 	}
1260 
1261 	hashval = HTABLE_HASH(hat, base, level);
1262 	HTABLE_ENTER(hashval);
1263 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1264 		if (ht->ht_hat == hat &&
1265 		    ht->ht_vaddr == base &&
1266 		    ht->ht_level == level)
1267 			break;
1268 	}
1269 	if (ht)
1270 		++ht->ht_busy;
1271 
1272 	HTABLE_EXIT(hashval);
1273 	return (ht);
1274 }
1275 
1276 /*
1277  * Acquires a hold on a known htable (from a locked hment entry).
1278  */
1279 void
1280 htable_acquire(htable_t *ht)
1281 {
1282 	hat_t		*hat = ht->ht_hat;
1283 	level_t		level = ht->ht_level;
1284 	uintptr_t	base = ht->ht_vaddr;
1285 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1286 
1287 	HTABLE_ENTER(hashval);
1288 #ifdef DEBUG
1289 	/*
1290 	 * make sure the htable is there
1291 	 */
1292 	{
1293 		htable_t	*h;
1294 
1295 		for (h = hat->hat_ht_hash[hashval];
1296 		    h && h != ht;
1297 		    h = h->ht_next)
1298 			;
1299 		ASSERT(h == ht);
1300 	}
1301 #endif /* DEBUG */
1302 	++ht->ht_busy;
1303 	HTABLE_EXIT(hashval);
1304 }
1305 
1306 /*
1307  * Find the htable for the pagetable at the given level for the given address.
1308  * If found acquires a hold that eventually needs to be htable_release()d
1309  * If not found the table is created.
1310  *
1311  * Since we can't hold a hash table mutex during allocation, we have to
1312  * drop it and redo the search on a create. Then we may have to free the newly
1313  * allocated htable if another thread raced in and created it ahead of us.
1314  */
1315 htable_t *
1316 htable_create(
1317 	hat_t		*hat,
1318 	uintptr_t	vaddr,
1319 	level_t		level,
1320 	htable_t	*shared)
1321 {
1322 	uint_t		h;
1323 	level_t		l;
1324 	uintptr_t	base;
1325 	htable_t	*ht;
1326 	htable_t	*higher = NULL;
1327 	htable_t	*new = NULL;
1328 
1329 	if (level < 0 || level > TOP_LEVEL(hat))
1330 		panic("htable_create(): level %d out of range\n", level);
1331 
1332 	/*
1333 	 * Create the page tables in top down order.
1334 	 */
1335 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1336 		new = NULL;
1337 		if (l == TOP_LEVEL(hat))
1338 			base = 0;
1339 		else
1340 			base = vaddr & LEVEL_MASK(l + 1);
1341 
1342 		h = HTABLE_HASH(hat, base, l);
1343 try_again:
1344 		/*
1345 		 * look up the htable at this level
1346 		 */
1347 		HTABLE_ENTER(h);
1348 		if (l == TOP_LEVEL(hat)) {
1349 			ht = hat->hat_htable;
1350 		} else {
1351 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1352 				ASSERT(ht->ht_hat == hat);
1353 				if (ht->ht_vaddr == base &&
1354 				    ht->ht_level == l)
1355 					break;
1356 			}
1357 		}
1358 
1359 		/*
1360 		 * if we found the htable, increment its busy cnt
1361 		 * and if we had allocated a new htable, free it.
1362 		 */
1363 		if (ht != NULL) {
1364 			/*
1365 			 * If we find a pre-existing shared table, it must
1366 			 * share from the same place.
1367 			 */
1368 			if (l == level && shared && ht->ht_shares &&
1369 			    ht->ht_shares != shared) {
1370 				panic("htable shared from wrong place "
1371 				    "found htable=%p shared=%p",
1372 				    (void *)ht, (void *)shared);
1373 			}
1374 			++ht->ht_busy;
1375 			HTABLE_EXIT(h);
1376 			if (new)
1377 				htable_free(new);
1378 			if (higher != NULL)
1379 				htable_release(higher);
1380 			higher = ht;
1381 
1382 		/*
1383 		 * if we didn't find it on the first search
1384 		 * allocate a new one and search again
1385 		 */
1386 		} else if (new == NULL) {
1387 			HTABLE_EXIT(h);
1388 			new = htable_alloc(hat, base, l,
1389 			    l == level ? shared : NULL);
1390 			goto try_again;
1391 
1392 		/*
1393 		 * 2nd search and still not there, use "new" table
1394 		 * Link new table into higher, when not at top level.
1395 		 */
1396 		} else {
1397 			ht = new;
1398 			if (higher != NULL) {
1399 				link_ptp(higher, ht, base);
1400 				ht->ht_parent = higher;
1401 			}
1402 			ht->ht_next = hat->hat_ht_hash[h];
1403 			ASSERT(ht->ht_prev == NULL);
1404 			if (hat->hat_ht_hash[h])
1405 				hat->hat_ht_hash[h]->ht_prev = ht;
1406 			hat->hat_ht_hash[h] = ht;
1407 			HTABLE_EXIT(h);
1408 
1409 			/*
1410 			 * Note we don't do htable_release(higher).
1411 			 * That happens recursively when "new" is removed by
1412 			 * htable_release() or htable_steal().
1413 			 */
1414 			higher = ht;
1415 
1416 			/*
1417 			 * If we just created a new shared page table we
1418 			 * increment the shared htable's busy count, so that
1419 			 * it can't be the victim of a steal even if it's empty.
1420 			 */
1421 			if (l == level && shared) {
1422 				(void) htable_lookup(shared->ht_hat,
1423 				    shared->ht_vaddr, shared->ht_level);
1424 				HATSTAT_INC(hs_htable_shared);
1425 			}
1426 		}
1427 	}
1428 
1429 	return (ht);
1430 }
1431 
1432 /*
1433  * Inherit initial pagetables from the boot program. On the 64-bit
1434  * hypervisor we also temporarily mark the p_index field of page table
1435  * pages, so we know not to try making them writable in seg_kpm.
1436  */
1437 void
1438 htable_attach(
1439 	hat_t *hat,
1440 	uintptr_t base,
1441 	level_t level,
1442 	htable_t *parent,
1443 	pfn_t pfn)
1444 {
1445 	htable_t	*ht;
1446 	uint_t		h;
1447 	uint_t		i;
1448 	x86pte_t	pte;
1449 	x86pte_t	*ptep;
1450 	page_t		*pp;
1451 	extern page_t	*boot_claim_page(pfn_t);
1452 
1453 	ht = htable_get_reserve();
1454 	if (level == mmu.max_level)
1455 		kas.a_hat->hat_htable = ht;
1456 	ht->ht_hat = hat;
1457 	ht->ht_parent = parent;
1458 	ht->ht_vaddr = base;
1459 	ht->ht_level = level;
1460 	ht->ht_busy = 1;
1461 	ht->ht_next = NULL;
1462 	ht->ht_prev = NULL;
1463 	ht->ht_flags = 0;
1464 	ht->ht_pfn = pfn;
1465 	ht->ht_lock_cnt = 0;
1466 	ht->ht_valid_cnt = 0;
1467 	if (parent != NULL)
1468 		++parent->ht_busy;
1469 
1470 	h = HTABLE_HASH(hat, base, level);
1471 	HTABLE_ENTER(h);
1472 	ht->ht_next = hat->hat_ht_hash[h];
1473 	ASSERT(ht->ht_prev == NULL);
1474 	if (hat->hat_ht_hash[h])
1475 		hat->hat_ht_hash[h]->ht_prev = ht;
1476 	hat->hat_ht_hash[h] = ht;
1477 	HTABLE_EXIT(h);
1478 
1479 	/*
1480 	 * make sure the page table physical page is not FREE
1481 	 */
1482 	if (page_resv(1, KM_NOSLEEP) == 0)
1483 		panic("page_resv() failed in ptable alloc");
1484 
1485 	pp = boot_claim_page(pfn);
1486 	ASSERT(pp != NULL);
1487 	page_downgrade(pp);
1488 #if defined(__xpv) && defined(__amd64)
1489 	/*
1490 	 * Record in the page_t that is a pagetable for segkpm setup.
1491 	 */
1492 	if (kpm_vbase)
1493 		pp->p_index = 1;
1494 #endif
1495 
1496 	/*
1497 	 * Count valid mappings and recursively attach lower level pagetables.
1498 	 */
1499 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1500 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1501 		if (mmu.pae_hat)
1502 			pte = ptep[i];
1503 		else
1504 			pte = ((x86pte32_t *)ptep)[i];
1505 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1506 			++ht->ht_valid_cnt;
1507 			if (!PTE_ISPAGE(pte, level)) {
1508 				htable_attach(hat, base, level - 1,
1509 				    ht, PTE2PFN(pte, level));
1510 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1511 			}
1512 		}
1513 		base += LEVEL_SIZE(level);
1514 		if (base == mmu.hole_start)
1515 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1516 	}
1517 
1518 	/*
1519 	 * As long as all the mappings we had were below kernel base
1520 	 * we can release the htable.
1521 	 */
1522 	if (base < kernelbase)
1523 		htable_release(ht);
1524 }
1525 
1526 /*
1527  * Walk through a given htable looking for the first valid entry.  This
1528  * routine takes both a starting and ending address.  The starting address
1529  * is required to be within the htable provided by the caller, but there is
1530  * no such restriction on the ending address.
1531  *
1532  * If the routine finds a valid entry in the htable (at or beyond the
1533  * starting address), the PTE (and its address) will be returned.
1534  * This PTE may correspond to either a page or a pagetable - it is the
1535  * caller's responsibility to determine which.  If no valid entry is
1536  * found, 0 (and invalid PTE) and the next unexamined address will be
1537  * returned.
1538  *
1539  * The loop has been carefully coded for optimization.
1540  */
1541 static x86pte_t
1542 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1543 {
1544 	uint_t e;
1545 	x86pte_t found_pte = (x86pte_t)0;
1546 	caddr_t pte_ptr;
1547 	caddr_t end_pte_ptr;
1548 	int l = ht->ht_level;
1549 	uintptr_t va = *vap & LEVEL_MASK(l);
1550 	size_t pgsize = LEVEL_SIZE(l);
1551 
1552 	ASSERT(va >= ht->ht_vaddr);
1553 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1554 
1555 	/*
1556 	 * Compute the starting index and ending virtual address
1557 	 */
1558 	e = htable_va2entry(va, ht);
1559 
1560 	/*
1561 	 * The following page table scan code knows that the valid
1562 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1563 	 */
1564 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1565 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1566 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1567 	while (!PTE_ISVALID(*pte_ptr)) {
1568 		va += pgsize;
1569 		if (va >= eaddr)
1570 			break;
1571 		pte_ptr += mmu.pte_size;
1572 		ASSERT(pte_ptr <= end_pte_ptr);
1573 		if (pte_ptr == end_pte_ptr)
1574 			break;
1575 	}
1576 
1577 	/*
1578 	 * if we found a valid PTE, load the entire PTE
1579 	 */
1580 	if (va < eaddr && pte_ptr != end_pte_ptr)
1581 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1582 	x86pte_release_pagetable(ht);
1583 
1584 #if defined(__amd64)
1585 	/*
1586 	 * deal with VA hole on amd64
1587 	 */
1588 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1589 		va = mmu.hole_end + va - mmu.hole_start;
1590 #endif /* __amd64 */
1591 
1592 	*vap = va;
1593 	return (found_pte);
1594 }
1595 
1596 /*
1597  * Find the address and htable for the first populated translation at or
1598  * above the given virtual address.  The caller may also specify an upper
1599  * limit to the address range to search.  Uses level information to quickly
1600  * skip unpopulated sections of virtual address spaces.
1601  *
1602  * If not found returns NULL. When found, returns the htable and virt addr
1603  * and has a hold on the htable.
1604  */
1605 x86pte_t
1606 htable_walk(
1607 	struct hat *hat,
1608 	htable_t **htp,
1609 	uintptr_t *vaddr,
1610 	uintptr_t eaddr)
1611 {
1612 	uintptr_t va = *vaddr;
1613 	htable_t *ht;
1614 	htable_t *prev = *htp;
1615 	level_t l;
1616 	level_t max_mapped_level;
1617 	x86pte_t pte;
1618 
1619 	ASSERT(eaddr > va);
1620 
1621 	/*
1622 	 * If this is a user address, then we know we need not look beyond
1623 	 * kernelbase.
1624 	 */
1625 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1626 	    eaddr == HTABLE_WALK_TO_END);
1627 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1628 		eaddr = kernelbase;
1629 
1630 	/*
1631 	 * If we're coming in with a previous page table, search it first
1632 	 * without doing an htable_lookup(), this should be frequent.
1633 	 */
1634 	if (prev) {
1635 		ASSERT(prev->ht_busy > 0);
1636 		ASSERT(prev->ht_vaddr <= va);
1637 		l = prev->ht_level;
1638 		if (va <= HTABLE_LAST_PAGE(prev)) {
1639 			pte = htable_scan(prev, &va, eaddr);
1640 
1641 			if (PTE_ISPAGE(pte, l)) {
1642 				*vaddr = va;
1643 				*htp = prev;
1644 				return (pte);
1645 			}
1646 		}
1647 
1648 		/*
1649 		 * We found nothing in the htable provided by the caller,
1650 		 * so fall through and do the full search
1651 		 */
1652 		htable_release(prev);
1653 	}
1654 
1655 	/*
1656 	 * Find the level of the largest pagesize used by this HAT.
1657 	 */
1658 	if (hat->hat_ism_pgcnt > 0) {
1659 		max_mapped_level = mmu.umax_page_level;
1660 	} else {
1661 		max_mapped_level = 0;
1662 		for (l = 1; l <= mmu.max_page_level; ++l)
1663 			if (hat->hat_pages_mapped[l] != 0)
1664 				max_mapped_level = l;
1665 	}
1666 
1667 	while (va < eaddr && va >= *vaddr) {
1668 		ASSERT(!IN_VA_HOLE(va));
1669 
1670 		/*
1671 		 *  Find lowest table with any entry for given address.
1672 		 */
1673 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1674 			ht = htable_lookup(hat, va, l);
1675 			if (ht != NULL) {
1676 				pte = htable_scan(ht, &va, eaddr);
1677 				if (PTE_ISPAGE(pte, l)) {
1678 					*vaddr = va;
1679 					*htp = ht;
1680 					return (pte);
1681 				}
1682 				htable_release(ht);
1683 				break;
1684 			}
1685 
1686 			/*
1687 			 * No htable at this level for the address. If there
1688 			 * is no larger page size that could cover it, we can
1689 			 * skip right to the start of the next page table.
1690 			 */
1691 			ASSERT(l < TOP_LEVEL(hat));
1692 			if (l >= max_mapped_level) {
1693 				va = NEXT_ENTRY_VA(va, l + 1);
1694 				if (va >= eaddr)
1695 					break;
1696 			}
1697 		}
1698 	}
1699 
1700 	*vaddr = 0;
1701 	*htp = NULL;
1702 	return (0);
1703 }
1704 
1705 /*
1706  * Find the htable and page table entry index of the given virtual address
1707  * with pagesize at or below given level.
1708  * If not found returns NULL. When found, returns the htable, sets
1709  * entry, and has a hold on the htable.
1710  */
1711 htable_t *
1712 htable_getpte(
1713 	struct hat *hat,
1714 	uintptr_t vaddr,
1715 	uint_t *entry,
1716 	x86pte_t *pte,
1717 	level_t level)
1718 {
1719 	htable_t	*ht;
1720 	level_t		l;
1721 	uint_t		e;
1722 
1723 	ASSERT(level <= mmu.max_page_level);
1724 
1725 	for (l = 0; l <= level; ++l) {
1726 		ht = htable_lookup(hat, vaddr, l);
1727 		if (ht == NULL)
1728 			continue;
1729 		e = htable_va2entry(vaddr, ht);
1730 		if (entry != NULL)
1731 			*entry = e;
1732 		if (pte != NULL)
1733 			*pte = x86pte_get(ht, e);
1734 		return (ht);
1735 	}
1736 	return (NULL);
1737 }
1738 
1739 /*
1740  * Find the htable and page table entry index of the given virtual address.
1741  * There must be a valid page mapped at the given address.
1742  * If not found returns NULL. When found, returns the htable, sets
1743  * entry, and has a hold on the htable.
1744  */
1745 htable_t *
1746 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1747 {
1748 	htable_t	*ht;
1749 	uint_t		e;
1750 	x86pte_t	pte;
1751 
1752 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1753 	if (ht == NULL)
1754 		return (NULL);
1755 
1756 	if (entry)
1757 		*entry = e;
1758 
1759 	if (PTE_ISPAGE(pte, ht->ht_level))
1760 		return (ht);
1761 	htable_release(ht);
1762 	return (NULL);
1763 }
1764 
1765 
1766 void
1767 htable_init()
1768 {
1769 	/*
1770 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1771 	 * kernels.
1772 	 */
1773 #if defined(__amd64)
1774 	int	kmem_flags = KMC_NOHASH;
1775 #elif defined(__i386)
1776 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1777 #endif
1778 
1779 	/*
1780 	 * initialize kmem caches
1781 	 */
1782 	htable_cache = kmem_cache_create("htable_t",
1783 	    sizeof (htable_t), 0, NULL, NULL,
1784 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1785 }
1786 
1787 /*
1788  * get the pte index for the virtual address in the given htable's pagetable
1789  */
1790 uint_t
1791 htable_va2entry(uintptr_t va, htable_t *ht)
1792 {
1793 	level_t	l = ht->ht_level;
1794 
1795 	ASSERT(va >= ht->ht_vaddr);
1796 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1797 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1798 }
1799 
1800 /*
1801  * Given an htable and the index of a pte in it, return the virtual address
1802  * of the page.
1803  */
1804 uintptr_t
1805 htable_e2va(htable_t *ht, uint_t entry)
1806 {
1807 	level_t	l = ht->ht_level;
1808 	uintptr_t va;
1809 
1810 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1811 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1812 
1813 	/*
1814 	 * Need to skip over any VA hole in top level table
1815 	 */
1816 #if defined(__amd64)
1817 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1818 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1819 #endif
1820 
1821 	return (va);
1822 }
1823 
1824 /*
1825  * The code uses compare and swap instructions to read/write PTE's to
1826  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1827  * will naturally be atomic.
1828  *
1829  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1830  * are used to ensure that an interrupt won't overwrite a temporary mapping
1831  * while it's in use. If an interrupt thread tries to access a PTE, it will
1832  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1833  */
1834 void
1835 x86pte_cpu_init(cpu_t *cpu)
1836 {
1837 	struct hat_cpu_info *hci;
1838 
1839 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1840 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1841 	cpu->cpu_hat_info = hci;
1842 }
1843 
1844 void
1845 x86pte_cpu_fini(cpu_t *cpu)
1846 {
1847 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1848 
1849 	kmem_free(hci, sizeof (*hci));
1850 	cpu->cpu_hat_info = NULL;
1851 }
1852 
1853 #ifdef __i386
1854 /*
1855  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1856  */
1857 x86pte_t
1858 get_pte64(x86pte_t *ptr)
1859 {
1860 	volatile uint32_t *p = (uint32_t *)ptr;
1861 	x86pte_t t;
1862 
1863 	ASSERT(mmu.pae_hat != 0);
1864 	for (;;) {
1865 		t = p[0];
1866 		t |= (uint64_t)p[1] << 32;
1867 		if ((t & 0xffffffff) == p[0])
1868 			return (t);
1869 	}
1870 }
1871 #endif /* __i386 */
1872 
1873 /*
1874  * Disable preemption and establish a mapping to the pagetable with the
1875  * given pfn. This is optimized for there case where it's the same
1876  * pfn as we last used referenced from this CPU.
1877  */
1878 static x86pte_t *
1879 x86pte_access_pagetable(htable_t *ht, uint_t index)
1880 {
1881 	/*
1882 	 * VLP pagetables are contained in the hat_t
1883 	 */
1884 	if (ht->ht_flags & HTABLE_VLP)
1885 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1886 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1887 }
1888 
1889 /*
1890  * map the given pfn into the page table window.
1891  */
1892 /*ARGSUSED*/
1893 x86pte_t *
1894 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1895 {
1896 	x86pte_t *pteptr;
1897 	x86pte_t pte = 0;
1898 	x86pte_t newpte;
1899 	int x;
1900 
1901 	ASSERT(pfn != PFN_INVALID);
1902 
1903 	if (!khat_running) {
1904 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1905 		return (PT_INDEX_PTR(va, index));
1906 	}
1907 
1908 	/*
1909 	 * If kpm is available, use it.
1910 	 */
1911 	if (kpm_vbase)
1912 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1913 
1914 	/*
1915 	 * Disable preemption and grab the CPU's hci_mutex
1916 	 */
1917 	kpreempt_disable();
1918 	ASSERT(CPU->cpu_hat_info != NULL);
1919 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1920 	x = PWIN_TABLE(CPU->cpu_id);
1921 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1922 #ifndef __xpv
1923 	if (mmu.pae_hat)
1924 		pte = *pteptr;
1925 	else
1926 		pte = *(x86pte32_t *)pteptr;
1927 #endif
1928 
1929 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1930 
1931 	/*
1932 	 * For hardware we can use a writable mapping.
1933 	 */
1934 #ifdef __xpv
1935 	if (IN_XPV_PANIC())
1936 #endif
1937 		newpte |= PT_WRITABLE;
1938 
1939 	if (!PTE_EQUIV(newpte, pte)) {
1940 
1941 #ifdef __xpv
1942 		if (!IN_XPV_PANIC()) {
1943 			xen_map(newpte, PWIN_VA(x));
1944 		} else
1945 #endif
1946 		{
1947 			XPV_ALLOW_PAGETABLE_UPDATES();
1948 			if (mmu.pae_hat)
1949 				*pteptr = newpte;
1950 			else
1951 				*(x86pte32_t *)pteptr = newpte;
1952 			XPV_DISALLOW_PAGETABLE_UPDATES();
1953 			mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1954 		}
1955 	}
1956 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1957 }
1958 
1959 /*
1960  * Release access to a page table.
1961  */
1962 static void
1963 x86pte_release_pagetable(htable_t *ht)
1964 {
1965 	/*
1966 	 * nothing to do for VLP htables
1967 	 */
1968 	if (ht->ht_flags & HTABLE_VLP)
1969 		return;
1970 
1971 	x86pte_mapout();
1972 }
1973 
1974 void
1975 x86pte_mapout(void)
1976 {
1977 	if (kpm_vbase != NULL || !khat_running)
1978 		return;
1979 
1980 	/*
1981 	 * Drop the CPU's hci_mutex and restore preemption.
1982 	 */
1983 #ifdef __xpv
1984 	if (!IN_XPV_PANIC()) {
1985 		uintptr_t va;
1986 
1987 		/*
1988 		 * We need to always clear the mapping in case a page
1989 		 * that was once a page table page is ballooned out.
1990 		 */
1991 		va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id));
1992 		(void) HYPERVISOR_update_va_mapping(va, 0,
1993 		    UVMF_INVLPG | UVMF_LOCAL);
1994 	}
1995 #endif
1996 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1997 	kpreempt_enable();
1998 }
1999 
2000 /*
2001  * Atomic retrieval of a pagetable entry
2002  */
2003 x86pte_t
2004 x86pte_get(htable_t *ht, uint_t entry)
2005 {
2006 	x86pte_t	pte;
2007 	x86pte_t	*ptep;
2008 
2009 	/*
2010 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
2011 	 */
2012 	ASSERT(entry < mmu.ptes_per_table);
2013 	ptep = x86pte_access_pagetable(ht, entry);
2014 	pte = GET_PTE(ptep);
2015 	x86pte_release_pagetable(ht);
2016 	return (pte);
2017 }
2018 
2019 /*
2020  * Atomic unconditional set of a page table entry, it returns the previous
2021  * value. For pre-existing mappings if the PFN changes, then we don't care
2022  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
2023  * the MOD/REF bits unchanged.
2024  *
2025  * If asked to overwrite a link to a lower page table with a large page
2026  * mapping, this routine returns the special value of LPAGE_ERROR. This
2027  * allows the upper HAT layers to retry with a smaller mapping size.
2028  */
2029 x86pte_t
2030 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
2031 {
2032 	x86pte_t	old;
2033 	x86pte_t	prev;
2034 	x86pte_t	*ptep;
2035 	level_t		l = ht->ht_level;
2036 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
2037 	x86pte_t	n;
2038 	uintptr_t	addr = htable_e2va(ht, entry);
2039 	hat_t		*hat = ht->ht_hat;
2040 
2041 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
2042 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2043 	if (ptr == NULL)
2044 		ptep = x86pte_access_pagetable(ht, entry);
2045 	else
2046 		ptep = ptr;
2047 
2048 	/*
2049 	 * Install the new PTE. If remapping the same PFN, then
2050 	 * copy existing REF/MOD bits to new mapping.
2051 	 */
2052 	do {
2053 		prev = GET_PTE(ptep);
2054 		n = new;
2055 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
2056 			n |= prev & (PT_REF | PT_MOD);
2057 
2058 		/*
2059 		 * Another thread may have installed this mapping already,
2060 		 * flush the local TLB and be done.
2061 		 */
2062 		if (prev == n) {
2063 			old = new;
2064 #ifdef __xpv
2065 			if (!IN_XPV_PANIC())
2066 				xen_flush_va((caddr_t)addr);
2067 			else
2068 #endif
2069 				mmu_tlbflush_entry((caddr_t)addr);
2070 			goto done;
2071 		}
2072 
2073 		/*
2074 		 * Detect if we have a collision of installing a large
2075 		 * page mapping where there already is a lower page table.
2076 		 */
2077 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
2078 			old = LPAGE_ERROR;
2079 			goto done;
2080 		}
2081 
2082 		XPV_ALLOW_PAGETABLE_UPDATES();
2083 		old = CAS_PTE(ptep, prev, n);
2084 		XPV_DISALLOW_PAGETABLE_UPDATES();
2085 	} while (old != prev);
2086 
2087 	/*
2088 	 * Do a TLB demap if needed, ie. the old pte was valid.
2089 	 *
2090 	 * Note that a stale TLB writeback to the PTE here either can't happen
2091 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
2092 	 * mappings, but they were created with REF and MOD already set, so
2093 	 * no stale writeback will happen.
2094 	 *
2095 	 * Segmap is the only place where remaps happen on the same pfn and for
2096 	 * that we want to preserve the stale REF/MOD bits.
2097 	 */
2098 	if (old & PT_REF)
2099 		hat_tlb_inval(hat, addr);
2100 
2101 done:
2102 	if (ptr == NULL)
2103 		x86pte_release_pagetable(ht);
2104 	return (old);
2105 }
2106 
2107 /*
2108  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
2109  * This is used for links between pagetables of different levels.
2110  * Note we always create these links with dirty/access set, so they should
2111  * never change.
2112  */
2113 x86pte_t
2114 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
2115 {
2116 	x86pte_t	pte;
2117 	x86pte_t	*ptep;
2118 #ifdef __xpv
2119 	/*
2120 	 * We can't use writable pagetables for upper level tables, so fake it.
2121 	 */
2122 	mmu_update_t t[2];
2123 	int cnt = 1;
2124 	int count;
2125 	maddr_t ma;
2126 
2127 	if (!IN_XPV_PANIC()) {
2128 		ASSERT(!(ht->ht_flags & HTABLE_VLP));	/* no VLP yet */
2129 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2130 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2131 		t[0].val = new;
2132 
2133 #if defined(__amd64)
2134 		/*
2135 		 * On the 64-bit hypervisor we need to maintain the user mode
2136 		 * top page table too.
2137 		 */
2138 		if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) {
2139 			ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(
2140 			    ht->ht_hat->hat_user_ptable), entry));
2141 			t[1].ptr = ma | MMU_NORMAL_PT_UPDATE;
2142 			t[1].val = new;
2143 			++cnt;
2144 		}
2145 #endif	/* __amd64 */
2146 
2147 		if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF))
2148 			panic("HYPERVISOR_mmu_update() failed");
2149 		ASSERT(count == cnt);
2150 		return (old);
2151 	}
2152 #endif
2153 	ptep = x86pte_access_pagetable(ht, entry);
2154 	XPV_ALLOW_PAGETABLE_UPDATES();
2155 	pte = CAS_PTE(ptep, old, new);
2156 	XPV_DISALLOW_PAGETABLE_UPDATES();
2157 	x86pte_release_pagetable(ht);
2158 	return (pte);
2159 }
2160 
2161 /*
2162  * Invalidate a page table entry as long as it currently maps something that
2163  * matches the value determined by expect.
2164  *
2165  * Also invalidates any TLB entries and returns the previous value of the PTE.
2166  */
2167 x86pte_t
2168 x86pte_inval(
2169 	htable_t *ht,
2170 	uint_t entry,
2171 	x86pte_t expect,
2172 	x86pte_t *pte_ptr)
2173 {
2174 	x86pte_t	*ptep;
2175 	x86pte_t	oldpte;
2176 	x86pte_t	found;
2177 
2178 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2179 	ASSERT(ht->ht_level <= mmu.max_page_level);
2180 
2181 	if (pte_ptr != NULL)
2182 		ptep = pte_ptr;
2183 	else
2184 		ptep = x86pte_access_pagetable(ht, entry);
2185 
2186 #if defined(__xpv)
2187 	/*
2188 	 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing
2189 	 * with anything else.
2190 	 */
2191 	if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) {
2192 		int count;
2193 		mmu_update_t t[1];
2194 		maddr_t ma;
2195 
2196 		oldpte = GET_PTE(ptep);
2197 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2198 			goto done;
2199 		ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry));
2200 		t[0].ptr = ma | MMU_NORMAL_PT_UPDATE;
2201 		t[0].val = 0;
2202 		if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF))
2203 			panic("HYPERVISOR_mmu_update() failed");
2204 		ASSERT(count == 1);
2205 		goto done;
2206 	}
2207 #endif /* __xpv */
2208 
2209 	/*
2210 	 * Note that the loop is needed to handle changes due to h/w updating
2211 	 * of PT_MOD/PT_REF.
2212 	 */
2213 	do {
2214 		oldpte = GET_PTE(ptep);
2215 		if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR))
2216 			goto done;
2217 		XPV_ALLOW_PAGETABLE_UPDATES();
2218 		found = CAS_PTE(ptep, oldpte, 0);
2219 		XPV_DISALLOW_PAGETABLE_UPDATES();
2220 	} while (found != oldpte);
2221 	if (oldpte & (PT_REF | PT_MOD))
2222 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2223 
2224 done:
2225 	if (pte_ptr == NULL)
2226 		x86pte_release_pagetable(ht);
2227 	return (oldpte);
2228 }
2229 
2230 /*
2231  * Change a page table entry af it currently matches the value in expect.
2232  */
2233 x86pte_t
2234 x86pte_update(
2235 	htable_t *ht,
2236 	uint_t entry,
2237 	x86pte_t expect,
2238 	x86pte_t new)
2239 {
2240 	x86pte_t	*ptep;
2241 	x86pte_t	found;
2242 
2243 	ASSERT(new != 0);
2244 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
2245 	ASSERT(ht->ht_level <= mmu.max_page_level);
2246 
2247 	ptep = x86pte_access_pagetable(ht, entry);
2248 	XPV_ALLOW_PAGETABLE_UPDATES();
2249 	found = CAS_PTE(ptep, expect, new);
2250 	XPV_DISALLOW_PAGETABLE_UPDATES();
2251 	if (found == expect) {
2252 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
2253 
2254 		/*
2255 		 * When removing write permission *and* clearing the
2256 		 * MOD bit, check if a write happened via a stale
2257 		 * TLB entry before the TLB shootdown finished.
2258 		 *
2259 		 * If it did happen, simply re-enable write permission and
2260 		 * act like the original CAS failed.
2261 		 */
2262 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
2263 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
2264 		    (GET_PTE(ptep) & PT_MOD) != 0) {
2265 			do {
2266 				found = GET_PTE(ptep);
2267 				XPV_ALLOW_PAGETABLE_UPDATES();
2268 				found =
2269 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
2270 				XPV_DISALLOW_PAGETABLE_UPDATES();
2271 			} while ((found & PT_WRITABLE) == 0);
2272 		}
2273 	}
2274 	x86pte_release_pagetable(ht);
2275 	return (found);
2276 }
2277 
2278 #ifndef __xpv
2279 /*
2280  * Copy page tables - this is just a little more complicated than the
2281  * previous routines. Note that it's also not atomic! It also is never
2282  * used for VLP pagetables.
2283  */
2284 void
2285 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2286 {
2287 	caddr_t	src_va;
2288 	caddr_t dst_va;
2289 	size_t size;
2290 	x86pte_t *pteptr;
2291 	x86pte_t pte;
2292 
2293 	ASSERT(khat_running);
2294 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2295 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2296 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2297 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2298 
2299 	/*
2300 	 * Acquire access to the CPU pagetable windows for the dest and source.
2301 	 */
2302 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2303 	if (kpm_vbase) {
2304 		src_va = (caddr_t)
2305 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2306 	} else {
2307 		uint_t x = PWIN_SRC(CPU->cpu_id);
2308 
2309 		/*
2310 		 * Finish defining the src pagetable mapping
2311 		 */
2312 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2313 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2314 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2315 		if (mmu.pae_hat)
2316 			*pteptr = pte;
2317 		else
2318 			*(x86pte32_t *)pteptr = pte;
2319 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2320 	}
2321 
2322 	/*
2323 	 * now do the copy
2324 	 */
2325 	size = count << mmu.pte_size_shift;
2326 	bcopy(src_va, dst_va, size);
2327 
2328 	x86pte_release_pagetable(dest);
2329 }
2330 
2331 #else /* __xpv */
2332 
2333 /*
2334  * The hypervisor only supports writable pagetables at level 0, so we have
2335  * to install these 1 by 1 the slow way.
2336  */
2337 void
2338 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2339 {
2340 	caddr_t	src_va;
2341 	x86pte_t pte;
2342 
2343 	ASSERT(!IN_XPV_PANIC());
2344 	src_va = (caddr_t)x86pte_access_pagetable(src, entry);
2345 	while (count) {
2346 		if (mmu.pae_hat)
2347 			pte = *(x86pte_t *)src_va;
2348 		else
2349 			pte = *(x86pte32_t *)src_va;
2350 		if (pte != 0) {
2351 			set_pteval(pfn_to_pa(dest->ht_pfn), entry,
2352 			    dest->ht_level, pte);
2353 #ifdef __amd64
2354 			if (dest->ht_level == mmu.max_level &&
2355 			    htable_e2va(dest, entry) < HYPERVISOR_VIRT_END)
2356 				set_pteval(
2357 				    pfn_to_pa(dest->ht_hat->hat_user_ptable),
2358 				    entry, dest->ht_level, pte);
2359 #endif
2360 		}
2361 		--count;
2362 		++entry;
2363 		src_va += mmu.pte_size;
2364 	}
2365 	x86pte_release_pagetable(src);
2366 }
2367 #endif /* __xpv */
2368 
2369 /*
2370  * Zero page table entries - Note this doesn't use atomic stores!
2371  */
2372 static void
2373 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2374 {
2375 	caddr_t dst_va;
2376 	size_t size;
2377 #ifdef __xpv
2378 	int x;
2379 	x86pte_t newpte;
2380 #endif
2381 
2382 	/*
2383 	 * Map in the page table to be zeroed.
2384 	 */
2385 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2386 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2387 
2388 	/*
2389 	 * On the hypervisor we don't use x86pte_access_pagetable() since
2390 	 * in this case the page is not pinned yet.
2391 	 */
2392 #ifdef __xpv
2393 	if (kpm_vbase == NULL) {
2394 		kpreempt_disable();
2395 		ASSERT(CPU->cpu_hat_info != NULL);
2396 		mutex_enter(&CPU->cpu_hat_info->hci_mutex);
2397 		x = PWIN_TABLE(CPU->cpu_id);
2398 		newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE;
2399 		xen_map(newpte, PWIN_VA(x));
2400 		dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2401 	} else
2402 #endif
2403 		dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2404 
2405 	size = count << mmu.pte_size_shift;
2406 	ASSERT(size > BLOCKZEROALIGN);
2407 #ifdef __i386
2408 	if ((x86_feature & X86_SSE2) == 0)
2409 		bzero(dst_va, size);
2410 	else
2411 #endif
2412 		block_zero_no_xmm(dst_va, size);
2413 
2414 #ifdef __xpv
2415 	if (kpm_vbase == NULL) {
2416 		xen_map(0, PWIN_VA(x));
2417 		mutex_exit(&CPU->cpu_hat_info->hci_mutex);
2418 		kpreempt_enable();
2419 	} else
2420 #endif
2421 		x86pte_release_pagetable(dest);
2422 }
2423 
2424 /*
2425  * Called to ensure that all pagetables are in the system dump
2426  */
2427 void
2428 hat_dump(void)
2429 {
2430 	hat_t *hat;
2431 	uint_t h;
2432 	htable_t *ht;
2433 
2434 	/*
2435 	 * Dump all page tables
2436 	 */
2437 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2438 		for (h = 0; h < hat->hat_num_hash; ++h) {
2439 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2440 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2441 					dump_page(ht->ht_pfn);
2442 			}
2443 		}
2444 	}
2445 }
2446