xref: /titanic_52/usr/src/uts/i86pc/vm/hat_i86.c (revision a2b32d33e8dc5630e1b64ff81bbc8db5642253c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * VM - Hardware Address Translation management for i386 and amd64
30  *
31  * Implementation of the interfaces described in <common/vm/hat.h>
32  *
33  * Nearly all the details of how the hardware is managed should not be
34  * visible outside this layer except for misc. machine specific functions
35  * that work in conjunction with this code.
36  *
37  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
38  */
39 
40 #include <sys/machparam.h>
41 #include <sys/machsystm.h>
42 #include <sys/mman.h>
43 #include <sys/types.h>
44 #include <sys/systm.h>
45 #include <sys/cpuvar.h>
46 #include <sys/thread.h>
47 #include <sys/proc.h>
48 #include <sys/cpu.h>
49 #include <sys/kmem.h>
50 #include <sys/disp.h>
51 #include <sys/shm.h>
52 #include <sys/sysmacros.h>
53 #include <sys/machparam.h>
54 #include <sys/vmem.h>
55 #include <sys/vmsystm.h>
56 #include <sys/promif.h>
57 #include <sys/var.h>
58 #include <sys/x86_archext.h>
59 #include <sys/atomic.h>
60 #include <sys/bitmap.h>
61 
62 #include <vm/seg_kmem.h>
63 #include <vm/hat_i86.h>
64 #include <vm/as.h>
65 #include <vm/seg.h>
66 #include <vm/page.h>
67 #include <vm/seg_kp.h>
68 #include <vm/seg_kpm.h>
69 #include <vm/vm_dep.h>
70 
71 #include <sys/cmn_err.h>
72 
73 
74 /*
75  * Basic parameters for hat operation.
76  */
77 struct hat_mmu_info mmu;
78 uint_t force_pae_off = 0;	/* for testing, change with kernel debugger */
79 uint_t force_pae_on = 0;	/* for testing, change with kernel debugger */
80 
81 /*
82  * The page that is the kernel's top level pagetable.
83  *
84  * For 32 bit VLP support, the kernel hat will use the 1st 4 entries
85  * on this 4K page for its top level page table. The remaining groups of
86  * 4 entries are used for per processor copies of user VLP pagetables for
87  * running threads.  See hat_switch() and reload_pae32() for details.
88  *
89  * vlp_page[0] - 0th level==2 PTE for kernel HAT (will be zero)
90  * vlp_page[1] - 1st level==2 PTE for kernel HAT (will be zero)
91  * vlp_page[2] - 2nd level==2 PTE for kernel HAT (zero for small memory)
92  * vlp_page[3] - 3rd level==2 PTE for kernel
93  *
94  * vlp_page[4] - 0th level==2 PTE for user thread on cpu 0
95  * vlp_page[5] - 1st level==2 PTE for user thread on cpu 0
96  * vlp_page[6] - 2nd level==2 PTE for user thread on cpu 0
97  * vlp_page[7] - probably copy of kernel PTE
98  *
99  * vlp_page[8]  - 0th level==2 PTE for user thread on cpu 1
100  * vlp_page[9]  - 1st level==2 PTE for user thread on cpu 1
101  * vlp_page[10] - 2nd level==2 PTE for user thread on cpu 1
102  * vlp_page[11] - probably copy of kernel PTE
103  * ...
104  *
105  * when / where the kernel PTE's are (entry 2 or 3 or none) depends
106  * on kernelbase.
107  */
108 static x86pte_t *vlp_page;
109 
110 /*
111  * forward declaration of internal utility routines
112  */
113 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
114 	x86pte_t new);
115 
116 /*
117  * The kernel address space exists in all HATs. To implement this the
118  * kernel reserves a fixed number of entries in every topmost level page
119  * table. The values are setup in hat_init() and then copied to every hat
120  * created by hat_alloc(). This means that kernelbase must be:
121  *
122  *	  4Meg aligned for 32 bit kernels
123  *	512Gig aligned for x86_64 64 bit kernel
124  *
125  * The PAE 32 bit hat is handled as a special case. Otherwise requiring 1Gig
126  * alignment would use too much VA for the kernel.
127  *
128  */
129 static uint_t	khat_start;	/* index of 1st entry in kernel's top ptable */
130 static uint_t	khat_entries;	/* number of entries in kernel's top ptable */
131 
132 #if defined(__i386)
133 
134 static htable_t	*khat_pae32_htable = NULL;
135 static uint_t	khat_pae32_start;
136 static uint_t	khat_pae32_entries;
137 
138 #endif
139 
140 /*
141  * Locks, etc. to control use of the hat reserves when recursively
142  * allocating pagetables for the hat data structures.
143  */
144 static kmutex_t hat_reserves_lock;
145 static kcondvar_t hat_reserves_cv;
146 kthread_t *hat_reserves_thread;
147 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
148 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
149 
150 /*
151  * A cpuset for all cpus. This is used for kernel address cross calls, since
152  * the kernel addresses apply to all cpus.
153  */
154 cpuset_t khat_cpuset;
155 
156 /*
157  * management stuff for hat structures
158  */
159 kmutex_t	hat_list_lock;
160 kcondvar_t	hat_list_cv;
161 kmem_cache_t	*hat_cache;
162 kmem_cache_t	*hat_hash_cache;
163 kmem_cache_t	*vlp_hash_cache;
164 
165 /*
166  * Simple statistics
167  */
168 struct hatstats hatstat;
169 
170 /*
171  * macros to detect addresses in use by kernel only during boot
172  */
173 #if defined(__amd64)
174 
175 #define	BOOT_VA(va) ((va) < kernelbase ||			\
176 	((va) >= BOOT_DOUBLEMAP_BASE &&				\
177 	(va) < BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE))
178 
179 #elif defined(__i386)
180 
181 #define	BOOT_VA(va) ((va) < kernelbase)
182 
183 #endif	/* __i386 */
184 
185 /*
186  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
187  */
188 extern void atomic_orb(uchar_t *addr, uchar_t val);
189 extern void atomic_andb(uchar_t *addr, uchar_t val);
190 
191 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
192 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
193 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
194 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
195 
196 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
197 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
198 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
199 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
200 
201 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
202 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
203 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
204 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
205 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
206 
207 /*
208  * some useful tracing macros
209  */
210 
211 int hattrace = 0;
212 #ifdef DEBUG
213 
214 #define	HATIN(r, h, a, l)	\
215 	if (hattrace) prom_printf("->%s hat=%p, adr=%p, len=%lx\n", #r, h, a, l)
216 
217 #define	HATOUT(r, h, a)		\
218 	if (hattrace) prom_printf("<-%s hat=%p, adr=%p\n", #r, h, a)
219 #else
220 
221 #define	HATIN(r, h, a, l)
222 #define	HATOUT(r, h, a)
223 
224 #endif
225 
226 
227 /*
228  * kmem cache constructor for struct hat
229  */
230 /*ARGSUSED*/
231 static int
232 hati_constructor(void *buf, void *handle, int kmflags)
233 {
234 	hat_t	*hat = buf;
235 
236 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
237 	bzero(hat->hat_pages_mapped,
238 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
239 	hat->hat_stats = 0;
240 	hat->hat_flags = 0;
241 	mutex_init(&hat->hat_switch_mutex, NULL, MUTEX_DRIVER,
242 	    (void *)ipltospl(DISP_LEVEL));
243 	CPUSET_ZERO(hat->hat_cpus);
244 	hat->hat_htable = NULL;
245 	hat->hat_ht_hash = NULL;
246 	return (0);
247 }
248 
249 /*
250  * Allocate a hat structure for as. We also create the top level
251  * htable and initialize it to contain the kernel hat entries.
252  */
253 hat_t *
254 hat_alloc(struct as *as)
255 {
256 	hat_t		*hat;
257 	htable_t	*ht;	/* top level htable */
258 	uint_t		use_vlp;
259 
260 	/*
261 	 * Once we start creating user process HATs we can enable
262 	 * the htable_steal() code.
263 	 */
264 	if (can_steal_post_boot == 0)
265 		can_steal_post_boot = 1;
266 
267 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
268 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
269 	hat->hat_as = as;
270 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
271 	ASSERT(hat->hat_flags == 0);
272 
273 	/*
274 	 * a 32 bit process uses a VLP style hat when using PAE
275 	 */
276 #if defined(__amd64)
277 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
278 #elif defined(__i386)
279 	use_vlp = mmu.pae_hat;
280 #endif
281 	if (use_vlp) {
282 		hat->hat_flags = HAT_VLP;
283 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
284 	}
285 
286 	/*
287 	 * Allocate the htable hash
288 	 */
289 	if ((hat->hat_flags & HAT_VLP)) {
290 		hat->hat_num_hash = mmu.vlp_hash_cnt;
291 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
292 	} else {
293 		hat->hat_num_hash = mmu.hash_cnt;
294 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
295 	}
296 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
297 
298 	/*
299 	 * Initialize Kernel HAT entries at the top of the top level page
300 	 * table for the new hat.
301 	 *
302 	 * Note that we don't call htable_release() for the top level, that
303 	 * happens when the hat is destroyed in hat_free_end()
304 	 */
305 	hat->hat_htable = NULL;
306 	hat->hat_ht_cached = NULL;
307 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
308 	if (!(hat->hat_flags & HAT_VLP))
309 		x86pte_copy(kas.a_hat->hat_htable, ht, khat_start,
310 		    khat_entries);
311 #if defined(__i386)
312 	else if (khat_entries > 0)
313 		bcopy(vlp_page + khat_start, hat->hat_vlp_ptes + khat_start,
314 		    khat_entries * sizeof (x86pte_t));
315 #endif
316 	hat->hat_htable = ht;
317 
318 #if defined(__i386)
319 	/*
320 	 * PAE32 HAT alignment is less restrictive than the others to keep
321 	 * the kernel from using too much VA. Because of this we may need
322 	 * one layer further down when kernelbase isn't 1Gig aligned.
323 	 * See hat_free_end() for the htable_release() that goes with this
324 	 * htable_create()
325 	 */
326 	if (khat_pae32_htable != NULL) {
327 		ht = htable_create(hat, kernelbase,
328 		    khat_pae32_htable->ht_level, NULL);
329 		x86pte_copy(khat_pae32_htable, ht, khat_pae32_start,
330 		    khat_pae32_entries);
331 		ht->ht_valid_cnt = khat_pae32_entries;
332 	}
333 #endif
334 
335 	/*
336 	 * Put it at the start of the global list of all hats (used by stealing)
337 	 *
338 	 * kas.a_hat is not in the list but is instead used to find the
339 	 * first and last items in the list.
340 	 *
341 	 * - kas.a_hat->hat_next points to the start of the user hats.
342 	 *   The list ends where hat->hat_next == NULL
343 	 *
344 	 * - kas.a_hat->hat_prev points to the last of the user hats.
345 	 *   The list begins where hat->hat_prev == NULL
346 	 */
347 	mutex_enter(&hat_list_lock);
348 	hat->hat_prev = NULL;
349 	hat->hat_next = kas.a_hat->hat_next;
350 	if (hat->hat_next)
351 		hat->hat_next->hat_prev = hat;
352 	else
353 		kas.a_hat->hat_prev = hat;
354 	kas.a_hat->hat_next = hat;
355 	mutex_exit(&hat_list_lock);
356 
357 	return (hat);
358 }
359 
360 /*
361  * process has finished executing but as has not been cleaned up yet.
362  */
363 /*ARGSUSED*/
364 void
365 hat_free_start(hat_t *hat)
366 {
367 	ASSERT(AS_WRITE_HELD(hat->hat_as, &hat->hat_as->a_lock));
368 
369 	/*
370 	 * If the hat is currently a stealing victim, wait for the stealing
371 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
372 	 * won't look at its pagetables anymore.
373 	 */
374 	mutex_enter(&hat_list_lock);
375 	while (hat->hat_flags & HAT_VICTIM)
376 		cv_wait(&hat_list_cv, &hat_list_lock);
377 	hat->hat_flags |= HAT_FREEING;
378 	mutex_exit(&hat_list_lock);
379 }
380 
381 /*
382  * An address space is being destroyed, so we destroy the associated hat.
383  */
384 void
385 hat_free_end(hat_t *hat)
386 {
387 	int i;
388 	kmem_cache_t *cache;
389 
390 #ifdef DEBUG
391 	for (i = 0; i <= mmu.max_page_level; i++)
392 		ASSERT(hat->hat_pages_mapped[i] == 0);
393 #endif
394 	ASSERT(hat->hat_flags & HAT_FREEING);
395 
396 	/*
397 	 * must not be running on the given hat
398 	 */
399 	ASSERT(CPU->cpu_current_hat != hat);
400 
401 	/*
402 	 * Remove it from the list of HATs
403 	 */
404 	mutex_enter(&hat_list_lock);
405 	if (hat->hat_prev)
406 		hat->hat_prev->hat_next = hat->hat_next;
407 	else
408 		kas.a_hat->hat_next = hat->hat_next;
409 	if (hat->hat_next)
410 		hat->hat_next->hat_prev = hat->hat_prev;
411 	else
412 		kas.a_hat->hat_prev = hat->hat_prev;
413 	mutex_exit(&hat_list_lock);
414 	hat->hat_next = hat->hat_prev = NULL;
415 
416 	/*
417 	 * Make a pass through the htables freeing them all up.
418 	 */
419 	htable_purge_hat(hat);
420 
421 	/*
422 	 * Decide which kmem cache the hash table came from, then free it.
423 	 */
424 	if (hat->hat_flags & HAT_VLP)
425 		cache = vlp_hash_cache;
426 	else
427 		cache = hat_hash_cache;
428 	kmem_cache_free(cache, hat->hat_ht_hash);
429 	hat->hat_ht_hash = NULL;
430 
431 	hat->hat_flags = 0;
432 	kmem_cache_free(hat_cache, hat);
433 }
434 
435 /*
436  * round kernelbase down to a supported value to use for _userlimit
437  *
438  * userlimit must be aligned down to an entry in the top level htable.
439  * The one exception is for 32 bit HAT's running PAE.
440  */
441 uintptr_t
442 hat_kernelbase(uintptr_t va)
443 {
444 #if defined(__i386)
445 	va &= LEVEL_MASK(1);
446 #endif
447 	if (IN_VA_HOLE(va))
448 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
449 	return (va);
450 }
451 
452 /*
453  * Initialize hat data structures based on processor MMU information.
454  */
455 void
456 mmu_init(void)
457 {
458 	uint_t max_htables;
459 	uint_t pa_bits;
460 	uint_t va_bits;
461 	int i;
462 
463 	/*
464 	 * if CPU enabled the page table global bit, use it for the kernel
465 	 * This is bit 7 in CR4 (PGE - Page Global Enable)
466 	 */
467 	if ((x86_feature & X86_PGE) != 0 && (getcr4() & 0x80) != 0)
468 		mmu.pt_global = PT_GLOBAL;
469 
470 	/*
471 	 * We use PAE except when we aren't on an AMD64 and this is
472 	 * a 32 bit kernel with all physical addresses less than 4 Gig.
473 	 */
474 	mmu.pae_hat = 1;
475 	if (x86_feature & X86_NX) {
476 		mmu.pt_nx = PT_NX;
477 	} else {
478 		mmu.pt_nx = 0;
479 #if defined(__i386)
480 		if (!PFN_ABOVE4G(physmax))
481 			mmu.pae_hat = 0;
482 #endif
483 	}
484 
485 #if defined(__i386)
486 	/*
487 	 * Setting one of these two lets you force testing of the different
488 	 * hat modes for 32 bit, regardless of the hardware setup.
489 	 */
490 	if (force_pae_on) {
491 		mmu.pae_hat = 1;
492 	} else if (force_pae_off) {
493 		mmu.pae_hat = 0;
494 		mmu.pt_nx = 0;
495 	}
496 #endif
497 
498 	/*
499 	 * Use CPU info to set various MMU parameters
500 	 */
501 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
502 
503 	if (va_bits < sizeof (void *) * NBBY) {
504 		mmu.hole_start = (1ul << (va_bits - 1));
505 		mmu.hole_end = 0ul - mmu.hole_start - 1;
506 	} else {
507 		mmu.hole_end = 0;
508 		mmu.hole_start = mmu.hole_end - 1;
509 	}
510 #if defined(OPTERON_ERRATUM_121)
511 	/*
512 	 * If erratum 121 has already been detected at this time, hole_start
513 	 * contains the value to be subtracted from mmu.hole_start.
514 	 */
515 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
516 	hole_start = mmu.hole_start - hole_start;
517 #else
518 	hole_start = mmu.hole_start;
519 #endif
520 	hole_end = mmu.hole_end;
521 
522 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
523 	if (mmu.pae_hat == 0 && pa_bits > 32)
524 		mmu.highest_pfn = PFN_4G - 1;
525 
526 	if (mmu.pae_hat) {
527 		mmu.pte_size = 8;	/* 8 byte PTEs */
528 		mmu.pte_size_shift = 3;
529 	} else {
530 		mmu.pte_size = 4;	/* 4 byte PTEs */
531 		mmu.pte_size_shift = 2;
532 	}
533 
534 	if (mmu.pae_hat && (x86_feature & X86_PAE) == 0)
535 		panic("Processor does not support PAE");
536 
537 	if ((x86_feature & X86_CX8) == 0)
538 		panic("Processor does not support cmpxchg8b instruction");
539 
540 	/*
541 	 * Initialize parameters based on the 64 or 32 bit kernels and
542 	 * for the 32 bit kernel decide if we should use PAE.
543 	 */
544 	if (x86_feature & X86_LARGEPAGE)
545 		mmu.max_page_level = 1;
546 	else
547 		mmu.max_page_level = 0;
548 	mmu_page_sizes = mmu.max_page_level + 1;
549 	mmu_exported_page_sizes = mmu_page_sizes;
550 
551 #if defined(__amd64)
552 
553 	mmu.num_level = 4;
554 	mmu.max_level = 3;
555 	mmu.ptes_per_table = 512;
556 	mmu.top_level_count = 512;
557 
558 	mmu.level_shift[0] = 12;
559 	mmu.level_shift[1] = 21;
560 	mmu.level_shift[2] = 30;
561 	mmu.level_shift[3] = 39;
562 
563 #elif defined(__i386)
564 
565 	if (mmu.pae_hat) {
566 		mmu.num_level = 3;
567 		mmu.max_level = 2;
568 		mmu.ptes_per_table = 512;
569 		mmu.top_level_count = 4;
570 
571 		mmu.level_shift[0] = 12;
572 		mmu.level_shift[1] = 21;
573 		mmu.level_shift[2] = 30;
574 
575 	} else {
576 		mmu.num_level = 2;
577 		mmu.max_level = 1;
578 		mmu.ptes_per_table = 1024;
579 		mmu.top_level_count = 1024;
580 
581 		mmu.level_shift[0] = 12;
582 		mmu.level_shift[1] = 22;
583 	}
584 
585 #endif	/* __i386 */
586 
587 	for (i = 0; i < mmu.num_level; ++i) {
588 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
589 		mmu.level_offset[i] = mmu.level_size[i] - 1;
590 		mmu.level_mask[i] = ~mmu.level_offset[i];
591 	}
592 
593 	mmu.pte_bits[0] = PT_VALID;
594 	for (i = 1; i <= mmu.max_page_level; ++i)
595 		mmu.pte_bits[i] = PT_VALID | PT_PAGESIZE;
596 
597 	/*
598 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
599 	 */
600 	for (i = 1; i < mmu.num_level; ++i)
601 		mmu.ptp_bits[i] = PT_PTPBITS;
602 #if defined(__i386)
603 	mmu.ptp_bits[2] = PT_VALID;
604 #endif
605 
606 	/*
607 	 * Compute how many hash table entries to have per process for htables.
608 	 * We start with 1 page's worth of entries.
609 	 *
610 	 * If physical memory is small, reduce the amount need to cover it.
611 	 */
612 	max_htables = physmax / mmu.ptes_per_table;
613 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
614 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
615 		mmu.hash_cnt >>= 1;
616 	mmu.vlp_hash_cnt = mmu.hash_cnt;
617 
618 #if defined(__amd64)
619 	/*
620 	 * If running in 64 bits and physical memory is large,
621 	 * increase the size of the cache to cover all of memory for
622 	 * a 64 bit process.
623 	 */
624 #define	HASH_MAX_LENGTH 4
625 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
626 		mmu.hash_cnt <<= 1;
627 #endif
628 
629 	/*
630 	 * This code knows that there are only 2 pagesizes.
631 	 * We ignore 4MB (non-PAE) for now. The value is only used
632 	 * for optimizing demaps across large ranges.
633 	 * These return zero if no information is known.
634 	 */
635 	mmu.tlb_entries[0] = cpuid_get_dtlb_nent(NULL, MMU_PAGESIZE);
636 	mmu.tlb_entries[1] = cpuid_get_dtlb_nent(NULL, 2 * 1024 * 1024);
637 }
638 
639 
640 /*
641  * initialize hat data structures
642  */
643 void
644 hat_init()
645 {
646 #if defined(__i386)
647 	/*
648 	 * _userlimit must be aligned correctly
649 	 */
650 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
651 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
652 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
653 		halt("hat_init(): Unable to continue");
654 	}
655 #endif
656 
657 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
658 
659 	/*
660 	 * initialize kmem caches
661 	 */
662 	htable_init();
663 	hment_init();
664 
665 	hat_cache = kmem_cache_create("hat_t",
666 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
667 	    NULL, 0, 0);
668 
669 	hat_hash_cache = kmem_cache_create("HatHash",
670 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
671 	    NULL, 0, 0);
672 
673 	/*
674 	 * VLP hats can use a smaller hash table size on large memroy machines
675 	 */
676 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
677 		vlp_hash_cache = hat_hash_cache;
678 	} else {
679 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
680 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
681 		    NULL, 0, 0);
682 	}
683 
684 	/*
685 	 * Set up the kernel's hat
686 	 */
687 	AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER);
688 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
689 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
690 	kas.a_hat->hat_as = &kas;
691 	kas.a_hat->hat_flags = 0;
692 	AS_LOCK_EXIT(&kas, &kas.a_lock);
693 
694 	CPUSET_ZERO(khat_cpuset);
695 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
696 
697 	/*
698 	 * The kernel hat's next pointer serves as the head of the hat list .
699 	 * The kernel hat's prev pointer tracks the last hat on the list for
700 	 * htable_steal() to use.
701 	 */
702 	kas.a_hat->hat_next = NULL;
703 	kas.a_hat->hat_prev = NULL;
704 
705 	/*
706 	 * Allocate an htable hash bucket for the kernel
707 	 * XX64 - tune for 64 bit procs
708 	 */
709 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
710 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
711 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
712 
713 	/*
714 	 * zero out the top level and cached htable pointers
715 	 */
716 	kas.a_hat->hat_ht_cached = NULL;
717 	kas.a_hat->hat_htable = NULL;
718 
719 	/*
720 	 * Pre-allocate hrm_hashtab before enabling the collection of
721 	 * refmod statistics.  Allocating on the fly would mean us
722 	 * running the risk of suffering recursive mutex enters or
723 	 * deadlocks.
724 	 */
725 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
726 	    KM_SLEEP);
727 }
728 
729 /*
730  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
731  *
732  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
733  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
734  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
735  */
736 /*ARGSUSED*/
737 static void
738 hat_vlp_setup(struct cpu *cpu)
739 {
740 #if defined(__amd64)
741 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
742 	pfn_t pfn;
743 
744 	/*
745 	 * allocate the level==2 page table for the bottom most
746 	 * 512Gig of address space (this is where 32 bit apps live)
747 	 */
748 	ASSERT(hci != NULL);
749 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
750 
751 	/*
752 	 * Allocate a top level pagetable and copy the kernel's
753 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
754 	 */
755 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
756 	hci->hci_vlp_pfn =
757 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
758 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
759 	bcopy(vlp_page + khat_start, hci->hci_vlp_l3ptes + khat_start,
760 	    khat_entries * sizeof (x86pte_t));
761 
762 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
763 	ASSERT(pfn != PFN_INVALID);
764 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
765 #endif /* __amd64 */
766 }
767 
768 /*
769  * Finish filling in the kernel hat.
770  * Pre fill in all top level kernel page table entries for the kernel's
771  * part of the address range.  From this point on we can't use any new
772  * kernel large pages if they need PTE's at max_level
773  */
774 void
775 hat_init_finish(void)
776 {
777 	htable_t	*top = kas.a_hat->hat_htable;
778 	htable_t	*ht;
779 	uint_t		e;
780 	x86pte_t	pte;
781 	uintptr_t	va = kernelbase;
782 
783 
784 #if defined(__i386)
785 	ASSERT((va & LEVEL_MASK(1)) == va);
786 
787 	/*
788 	 * Deal with kernelbase not 1Gig aligned for 32 bit PAE hats.
789 	 */
790 	if (!mmu.pae_hat || (va & LEVEL_OFFSET(mmu.max_level)) == 0) {
791 		khat_pae32_htable = NULL;
792 	} else {
793 		ASSERT(mmu.max_level == 2);
794 		ASSERT((va & LEVEL_OFFSET(mmu.max_level - 1)) == 0);
795 		khat_pae32_htable =
796 		    htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
797 		khat_pae32_start = htable_va2entry(va, khat_pae32_htable);
798 		khat_pae32_entries = mmu.ptes_per_table - khat_pae32_start;
799 		for (e = khat_pae32_start; e < mmu.ptes_per_table;
800 		    ++e, va += LEVEL_SIZE(mmu.max_level - 1)) {
801 			pte = x86pte_get(khat_pae32_htable, e);
802 			if (PTE_ISVALID(pte))
803 				continue;
804 			ht = htable_create(kas.a_hat, va, mmu.max_level - 2,
805 			    NULL);
806 			ASSERT(ht != NULL);
807 		}
808 	}
809 #endif
810 
811 	/*
812 	 * The kernel hat will need fixed values in the highest level
813 	 * ptable for copying to all other hat's. This implies
814 	 * alignment restrictions on _userlimit.
815 	 *
816 	 * Note we don't htable_release() these htables. This keeps them
817 	 * from ever being stolen or free'd.
818 	 *
819 	 * top_level_count is used instead of ptes_per_table, since
820 	 * on 32-bit PAE we only have 4 usable entries at the top level ptable.
821 	 */
822 	if (va == 0)
823 		khat_start = mmu.top_level_count;
824 	else
825 		khat_start = htable_va2entry(va, kas.a_hat->hat_htable);
826 	khat_entries = mmu.top_level_count - khat_start;
827 	for (e = khat_start; e < mmu.top_level_count;
828 	    ++e, va += LEVEL_SIZE(mmu.max_level)) {
829 		pte = x86pte_get(top, e);
830 		if (PTE_ISVALID(pte))
831 			continue;
832 		ht = htable_create(kas.a_hat, va, mmu.max_level - 1, NULL);
833 		ASSERT(ht != NULL);
834 	}
835 
836 	/*
837 	 * We are now effectively running on the kernel hat.
838 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
839 	 * reserve for all HAT allocations.  From here on, the reserves are
840 	 * only used when mapping in memory for the hat's own allocations.
841 	 */
842 	use_boot_reserve = 0;
843 	htable_adjust_reserve();
844 
845 	/*
846 	 * 32 bit kernels use only 4 of the 512 entries in its top level
847 	 * pagetable. We'll use the remainder for the "per CPU" page tables
848 	 * for VLP processes.
849 	 *
850 	 * We map the top level kernel pagetable into the kernel's AS to make
851 	 * it easy to use bcopy for kernel entry PTEs.
852 	 *
853 	 * We were guaranteed to get a physical address < 4Gig, since the 32 bit
854 	 * boot loader uses non-PAE page tables.
855 	 */
856 	if (mmu.pae_hat) {
857 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
858 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
859 		    kas.a_hat->hat_htable->ht_pfn,
860 		    PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK,
861 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
862 	}
863 	hat_vlp_setup(CPU);
864 }
865 
866 /*
867  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
868  * are 32 bit, so for safety we must use cas64() to install these.
869  */
870 #ifdef __i386
871 static void
872 reload_pae32(hat_t *hat, cpu_t *cpu)
873 {
874 	x86pte_t *src;
875 	x86pte_t *dest;
876 	x86pte_t pte;
877 	int i;
878 
879 	/*
880 	 * Load the 4 entries of the level 2 page table into this
881 	 * cpu's range of the vlp_page and point cr3 at them.
882 	 */
883 	ASSERT(mmu.pae_hat);
884 	src = hat->hat_vlp_ptes;
885 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
886 	for (i = 0; i < VLP_NUM_PTES; ++i) {
887 		for (;;) {
888 			pte = dest[i];
889 			if (pte == src[i])
890 				break;
891 			if (cas64(dest + i, pte, src[i]) != src[i])
892 				break;
893 		}
894 	}
895 }
896 #endif
897 
898 /*
899  * Switch to a new active hat, maintaining bit masks to track active CPUs.
900  */
901 void
902 hat_switch(hat_t *hat)
903 {
904 	uintptr_t	newcr3;
905 	cpu_t		*cpu = CPU;
906 	hat_t		*old = cpu->cpu_current_hat;
907 
908 	/*
909 	 * set up this information first, so we don't miss any cross calls
910 	 */
911 	if (old != NULL) {
912 		if (old == hat)
913 			return;
914 		if (old != kas.a_hat)
915 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
916 	}
917 
918 	/*
919 	 * Wait for any in flight pagetable invalidates on this hat to finish.
920 	 * This is a spin lock at DISP_LEVEL
921 	 */
922 	if (hat != kas.a_hat) {
923 		mutex_enter(&hat->hat_switch_mutex);
924 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
925 		mutex_exit(&hat->hat_switch_mutex);
926 	}
927 	cpu->cpu_current_hat = hat;
928 
929 	/*
930 	 * now go ahead and load cr3
931 	 */
932 	if (hat->hat_flags & HAT_VLP) {
933 #if defined(__amd64)
934 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
935 
936 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
937 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
938 #elif defined(__i386)
939 		reload_pae32(hat, cpu);
940 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
941 		    (cpu->cpu_id + 1) * VLP_SIZE;
942 #endif
943 	} else {
944 		newcr3 = MAKECR3(hat->hat_htable->ht_pfn);
945 	}
946 	setcr3(newcr3);
947 	ASSERT(cpu == CPU);
948 }
949 
950 /*
951  * Utility to return a valid x86pte_t from protections, pfn, and level number
952  */
953 static x86pte_t
954 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
955 {
956 	x86pte_t	pte;
957 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
958 
959 	pte = MAKEPTE(pfn, level);
960 
961 	if (attr & PROT_WRITE)
962 		PTE_SET(pte, PT_WRITABLE);
963 
964 	if (attr & PROT_USER)
965 		PTE_SET(pte, PT_USER);
966 
967 	if (!(attr & PROT_EXEC))
968 		PTE_SET(pte, mmu.pt_nx);
969 
970 	/*
971 	 * set the software bits used track ref/mod sync's and hments
972 	 */
973 	if (attr & HAT_NOSYNC)
974 		PTE_SET(pte, PT_NOSYNC);
975 	if (flags & HAT_LOAD_NOCONSIST)
976 		PTE_SET(pte, PT_NOCONSIST | PT_NOSYNC);
977 
978 	/*
979 	 * Set the caching attributes in the PTE. The combination
980 	 * of attributes are poorly defined, so we pay attention
981 	 * to them in the given order.
982 	 *
983 	 * The test for HAT_STRICTORDER is different because it's defined
984 	 * as "0" - which was a stupid thing to do, but is too late to change!
985 	 */
986 	if (cache_attr == HAT_STRICTORDER) {
987 		PTE_SET(pte, PT_NOCACHE);
988 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
989 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
990 		/* nothing to set */;
991 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
992 		PTE_SET(pte, PT_NOCACHE);
993 		if (x86_feature & X86_PAT)
994 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
995 		else
996 			PTE_SET(pte, PT_WRITETHRU);
997 	} else {
998 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
999 	}
1000 
1001 	return (pte);
1002 }
1003 
1004 /*
1005  * Duplicate address translations of the parent to the child.
1006  * This function really isn't used anymore.
1007  */
1008 /*ARGSUSED*/
1009 int
1010 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1011 {
1012 	ASSERT((uintptr_t)addr < kernelbase);
1013 	ASSERT(new != kas.a_hat);
1014 	ASSERT(old != kas.a_hat);
1015 	return (0);
1016 }
1017 
1018 /*
1019  * Allocate any hat resources required for a process being swapped in.
1020  */
1021 /*ARGSUSED*/
1022 void
1023 hat_swapin(hat_t *hat)
1024 {
1025 	/* do nothing - we let everything fault back in */
1026 }
1027 
1028 /*
1029  * Unload all translations associated with an address space of a process
1030  * that is being swapped out.
1031  */
1032 void
1033 hat_swapout(hat_t *hat)
1034 {
1035 	uintptr_t	vaddr = (uintptr_t)0;
1036 	uintptr_t	eaddr = _userlimit;
1037 	htable_t	*ht = NULL;
1038 	level_t		l;
1039 
1040 	/*
1041 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1042 	 * seg_spt and shared pagetables can't be swapped out.
1043 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1044 	 *
1045 	 * Instead we'll walk through all the address space and unload
1046 	 * any mappings which we are sure are not shared, not locked.
1047 	 */
1048 	ASSERT(IS_PAGEALIGNED(vaddr));
1049 	ASSERT(IS_PAGEALIGNED(eaddr));
1050 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1051 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1052 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1053 
1054 	while (vaddr < eaddr) {
1055 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1056 		if (ht == NULL)
1057 			break;
1058 
1059 		ASSERT(!IN_VA_HOLE(vaddr));
1060 
1061 		/*
1062 		 * If the page table is shared skip its entire range.
1063 		 * This code knows that only level 0 page tables are shared
1064 		 */
1065 		l = ht->ht_level;
1066 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1067 			ASSERT(l == 0);
1068 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1069 			htable_release(ht);
1070 			ht = NULL;
1071 			continue;
1072 		}
1073 
1074 		/*
1075 		 * If the page table has no locked entries, unload this one.
1076 		 */
1077 		if (ht->ht_lock_cnt == 0)
1078 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1079 			    HAT_UNLOAD_UNMAP);
1080 
1081 		/*
1082 		 * If we have a level 0 page table with locked entries,
1083 		 * skip the entire page table, otherwise skip just one entry.
1084 		 */
1085 		if (ht->ht_lock_cnt > 0 && l == 0)
1086 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1087 		else
1088 			vaddr += LEVEL_SIZE(l);
1089 	}
1090 	if (ht)
1091 		htable_release(ht);
1092 
1093 	/*
1094 	 * We're in swapout because the system is low on memory, so
1095 	 * go back and flush all the htables off the cached list.
1096 	 */
1097 	htable_purge_hat(hat);
1098 }
1099 
1100 /*
1101  * returns number of bytes that have valid mappings in hat.
1102  */
1103 size_t
1104 hat_get_mapped_size(hat_t *hat)
1105 {
1106 	size_t total = 0;
1107 	int l;
1108 
1109 	for (l = 0; l <= mmu.max_page_level; l++)
1110 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1111 
1112 	return (total);
1113 }
1114 
1115 /*
1116  * enable/disable collection of stats for hat.
1117  */
1118 int
1119 hat_stats_enable(hat_t *hat)
1120 {
1121 	atomic_add_32(&hat->hat_stats, 1);
1122 	return (1);
1123 }
1124 
1125 void
1126 hat_stats_disable(hat_t *hat)
1127 {
1128 	atomic_add_32(&hat->hat_stats, -1);
1129 }
1130 
1131 /*
1132  * Utility to sync the ref/mod bits from a page table entry to the page_t
1133  * We must be holding the mapping list lock when this is called.
1134  */
1135 static void
1136 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1137 {
1138 	uint_t	rm = 0;
1139 	pgcnt_t	pgcnt;
1140 
1141 	if (PTE_GET(pte, PT_NOSYNC))
1142 		return;
1143 
1144 	if (PTE_GET(pte, PT_REF))
1145 		rm |= P_REF;
1146 
1147 	if (PTE_GET(pte, PT_MOD))
1148 		rm |= P_MOD;
1149 
1150 	if (rm == 0)
1151 		return;
1152 
1153 	/*
1154 	 * sync to all constituent pages of a large page
1155 	 */
1156 	ASSERT(x86_hm_held(pp));
1157 	pgcnt = page_get_pagecnt(level);
1158 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1159 	for (; pgcnt > 0; --pgcnt) {
1160 		/*
1161 		 * hat_page_demote() can't decrease
1162 		 * pszc below this mapping size
1163 		 * since this large mapping existed after we
1164 		 * took mlist lock.
1165 		 */
1166 		ASSERT(pp->p_szc >= level);
1167 		hat_page_setattr(pp, rm);
1168 		++pp;
1169 	}
1170 }
1171 
1172 /*
1173  * This the set of PTE bits for PFN, permissions and caching
1174  * that require a TLB flush (hat_demap) if changed on a HAT_LOAD_REMAP
1175  */
1176 #define	PT_REMAP_BITS							\
1177 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1178 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE)
1179 
1180 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1181 /*
1182  * Do the low-level work to get a mapping entered into a HAT's pagetables
1183  * and in the mapping list of the associated page_t.
1184  */
1185 static void
1186 hati_pte_map(
1187 	htable_t	*ht,
1188 	uint_t		entry,
1189 	page_t		*pp,
1190 	x86pte_t	pte,
1191 	int		flags,
1192 	void		*pte_ptr)
1193 {
1194 	hat_t		*hat = ht->ht_hat;
1195 	x86pte_t	old_pte;
1196 	level_t		l = ht->ht_level;
1197 	hment_t		*hm;
1198 	uint_t		is_consist;
1199 
1200 	/*
1201 	 * Is this a consistant (ie. need mapping list lock) mapping?
1202 	 */
1203 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1204 
1205 	/*
1206 	 * Track locked mapping count in the htable.  Do this first,
1207 	 * as we track locking even if there already is a mapping present.
1208 	 */
1209 	if ((flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat)
1210 		HTABLE_LOCK_INC(ht);
1211 
1212 	/*
1213 	 * Acquire the page's mapping list lock and get an hment to use.
1214 	 * Note that hment_prepare() might return NULL.
1215 	 */
1216 	if (is_consist) {
1217 		x86_hm_enter(pp);
1218 		hm = hment_prepare(ht, entry, pp);
1219 	}
1220 
1221 	/*
1222 	 * Set the new pte, retrieving the old one at the same time.
1223 	 */
1224 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1225 
1226 	/*
1227 	 * If the mapping didn't change there is nothing more to do.
1228 	 */
1229 	if (PTE_EQUIV(pte, old_pte)) {
1230 		if (is_consist) {
1231 			x86_hm_exit(pp);
1232 			if (hm != NULL)
1233 				hment_free(hm);
1234 		}
1235 		return;
1236 	}
1237 
1238 	/*
1239 	 * Install a new mapping in the page's mapping list
1240 	 */
1241 	if (!PTE_ISVALID(old_pte)) {
1242 		if (is_consist) {
1243 			hment_assign(ht, entry, pp, hm);
1244 			x86_hm_exit(pp);
1245 		} else {
1246 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1247 		}
1248 		HTABLE_INC(ht->ht_valid_cnt);
1249 		PGCNT_INC(hat, l);
1250 		return;
1251 	}
1252 
1253 	/*
1254 	 * Remap's are more complicated:
1255 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1256 	 *    We also require that NOCONSIST be specified.
1257 	 *  - Otherwise only permission or caching bits may change.
1258 	 */
1259 	if (!PTE_ISPAGE(old_pte, l))
1260 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1261 
1262 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1263 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1264 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1265 		REMAPASSERT(PTE_GET(old_pte, PT_NOCONSIST));
1266 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1267 		    pf_is_memory(PTE2PFN(pte, l)));
1268 		REMAPASSERT(!is_consist);
1269 	}
1270 
1271 	/*
1272 	 * We only let remaps change the bits for PFNs, permissions
1273 	 * or caching type.
1274 	 */
1275 	ASSERT(PTE_GET(old_pte, ~(PT_REMAP_BITS | PT_REF | PT_MOD)) ==
1276 	    PTE_GET(pte, ~PT_REMAP_BITS));
1277 
1278 	/*
1279 	 * A remap requires invalidating the TLBs, since remapping the
1280 	 * same PFN requires NOCONSIST, we don't have to sync R/M bits.
1281 	 */
1282 	hat_demap(hat, htable_e2va(ht, entry));
1283 
1284 	/*
1285 	 * We don't create any mapping list entries on a remap, so release
1286 	 * any allocated hment after we drop the mapping list lock.
1287 	 */
1288 	if (is_consist) {
1289 		x86_hm_exit(pp);
1290 		if (hm != NULL)
1291 			hment_free(hm);
1292 	}
1293 }
1294 
1295 /*
1296  * The t_hatdepth field is an 8-bit counter.  We use the lower seven bits
1297  * to track exactly how deep we are in the memload->kmem_alloc recursion.
1298  * If the depth is greater than 1, that indicates that we are performing a
1299  * hat operation to satisfy another hat operation.  To prevent infinite
1300  * recursion, we switch over to using pre-allocated "reserves" of htables
1301  * and hments.
1302  *
1303  * The uppermost bit is used to indicate that we are transitioning away
1304  * from being the reserves thread.  See hati_reserves_exit() for the
1305  * details.
1306  */
1307 #define	EXITING_FLAG		(1 << 7)
1308 #define	DEPTH_MASK		(~EXITING_FLAG)
1309 #define	HAT_DEPTH(t)		((t)->t_hatdepth & DEPTH_MASK)
1310 #define	EXITING_RESERVES(t)	((t)->t_hatdepth & EXITING_FLAG)
1311 
1312 /*
1313  * Access to reserves for HAT_NO_KALLOC is single threaded.
1314  * If someone else is in the reserves, we'll politely wait for them
1315  * to finish. This keeps normal hat_memload()s from eating up
1316  * the mappings needed to replenish the reserve.
1317  */
1318 static void
1319 hati_reserves_enter(uint_t kmem_for_hat)
1320 {
1321 	/*
1322 	 * 64 is an arbitrary number to catch serious problems.  I'm not
1323 	 * sure what the absolute maximum depth is, but it should be
1324 	 * substantially less than this.
1325 	 */
1326 	ASSERT(HAT_DEPTH(curthread) < 64);
1327 
1328 	/*
1329 	 * If we are doing a memload to satisfy a kmem operation, we enter
1330 	 * the reserves immediately; we don't wait to recurse to a second
1331 	 * level of memload.
1332 	 */
1333 	ASSERT(kmem_for_hat < 2);
1334 	curthread->t_hatdepth += (1 + kmem_for_hat);
1335 
1336 	if (hat_reserves_thread == curthread || use_boot_reserve)
1337 		return;
1338 
1339 	if (HAT_DEPTH(curthread) > 1 || hat_reserves_thread != NULL) {
1340 		mutex_enter(&hat_reserves_lock);
1341 		while (hat_reserves_thread != NULL)
1342 			cv_wait(&hat_reserves_cv, &hat_reserves_lock);
1343 
1344 		if (HAT_DEPTH(curthread) > 1)
1345 			hat_reserves_thread = curthread;
1346 
1347 		mutex_exit(&hat_reserves_lock);
1348 	}
1349 }
1350 
1351 /*
1352  * If we are the reserves_thread and we've finally finished with all our
1353  * memloads (ie. no longer doing hat slabs), we can release our use of the
1354  * reserve.
1355  */
1356 static void
1357 hati_reserves_exit(uint_t kmem_for_hat)
1358 {
1359 	ASSERT(kmem_for_hat < 2);
1360 	curthread->t_hatdepth -= (1 + kmem_for_hat);
1361 
1362 	/*
1363 	 * Simple case: either we are not the reserves thread, or we are
1364 	 * the reserves thread and we are nested deeply enough that we
1365 	 * should still be the reserves thread.
1366 	 *
1367 	 * Note: we may not become the reserves thread after we recursively
1368 	 * enter our second HAT routine, but we don't stop being the
1369 	 * reserves thread until we exit the toplevel HAT routine.  This is
1370 	 * to work around vmem's inability to determine when an allocation
1371 	 * should be satisfied from the hat_memload arena, which can lead
1372 	 * to an infinite loop of memload->vmem_populate->memload->.
1373 	 */
1374 	if (curthread != hat_reserves_thread || HAT_DEPTH(curthread) > 0 ||
1375 	    use_boot_reserve)
1376 		return;
1377 
1378 	mutex_enter(&hat_reserves_lock);
1379 	ASSERT(hat_reserves_thread == curthread);
1380 	hat_reserves_thread = NULL;
1381 	cv_broadcast(&hat_reserves_cv);
1382 	mutex_exit(&hat_reserves_lock);
1383 
1384 	/*
1385 	 * As we leave the reserves, we want to be sure the reserve lists
1386 	 * aren't overstocked.  Freeing excess reserves requires that we
1387 	 * call kmem_free(), which may require additional allocations,
1388 	 * causing us to re-enter the reserves.  To avoid infinite
1389 	 * recursion, we only try to adjust reserves at the very top level.
1390 	 */
1391 	if (!kmem_for_hat && !EXITING_RESERVES(curthread)) {
1392 		curthread->t_hatdepth |= EXITING_FLAG;
1393 		htable_adjust_reserve();
1394 		hment_adjust_reserve();
1395 		curthread->t_hatdepth &= (~EXITING_FLAG);
1396 	}
1397 
1398 	/*
1399 	 * just in case something went wrong in doing adjust reserves
1400 	 */
1401 	ASSERT(hat_reserves_thread != curthread);
1402 }
1403 
1404 /*
1405  * Internal routine to load a single page table entry.
1406  */
1407 static void
1408 hati_load_common(
1409 	hat_t		*hat,
1410 	uintptr_t	va,
1411 	page_t		*pp,
1412 	uint_t		attr,
1413 	uint_t		flags,
1414 	level_t		level,
1415 	pfn_t		pfn)
1416 {
1417 	htable_t	*ht;
1418 	uint_t		entry;
1419 	x86pte_t	pte;
1420 	uint_t		kmem_for_hat = (flags & HAT_NO_KALLOC) ? 1 : 0;
1421 
1422 	ASSERT(hat == kas.a_hat ||
1423 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1424 
1425 	if (flags & HAT_LOAD_SHARE)
1426 		hat->hat_flags |= HAT_SHARED;
1427 
1428 	/*
1429 	 * Find the page table that maps this page if it already exists.
1430 	 */
1431 	ht = htable_lookup(hat, va, level);
1432 
1433 	/*
1434 	 * All threads go through hati_reserves_enter() to at least wait
1435 	 * for any existing reserves user to finish. This helps reduce
1436 	 * pressure on the reserves. In addition, if this thread needs
1437 	 * to become the new reserve user it will.
1438 	 */
1439 	hati_reserves_enter(kmem_for_hat);
1440 
1441 	ASSERT(HAT_DEPTH(curthread) == 1 || va >= kernelbase);
1442 
1443 	/*
1444 	 * Kernel memloads for HAT data should never use hments!
1445 	 * If it did that would seriously complicate the reserves system, since
1446 	 * hment_alloc() would need to know about HAT_NO_KALLOC.
1447 	 *
1448 	 * We also must have HAT_LOAD_NOCONSIST if page_t is NULL.
1449 	 */
1450 	if (HAT_DEPTH(curthread) > 1 || pp == NULL)
1451 		flags |= HAT_LOAD_NOCONSIST;
1452 
1453 	if (ht == NULL) {
1454 		ht = htable_create(hat, va, level, NULL);
1455 		ASSERT(ht != NULL);
1456 	}
1457 	entry = htable_va2entry(va, ht);
1458 
1459 	/*
1460 	 * a bunch of paranoid error checking
1461 	 */
1462 	ASSERT(ht->ht_busy > 0);
1463 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1464 		panic("hati_load_common: bad htable %p, va %p", ht, (void *)va);
1465 	ASSERT(ht->ht_level == level);
1466 
1467 	/*
1468 	 * construct the new PTE
1469 	 */
1470 	if (hat == kas.a_hat)
1471 		attr &= ~PROT_USER;
1472 	pte = hati_mkpte(pfn, attr, level, flags);
1473 	if (hat == kas.a_hat && va >= kernelbase)
1474 		PTE_SET(pte, mmu.pt_global);
1475 
1476 	/*
1477 	 * establish the mapping
1478 	 */
1479 	hati_pte_map(ht, entry, pp, pte, flags, NULL);
1480 
1481 	/*
1482 	 * release the htable and any reserves
1483 	 */
1484 	htable_release(ht);
1485 	hati_reserves_exit(kmem_for_hat);
1486 }
1487 
1488 /*
1489  * special case of hat_memload to deal with some kernel addrs for performance
1490  */
1491 static void
1492 hat_kmap_load(
1493 	caddr_t		addr,
1494 	page_t		*pp,
1495 	uint_t		attr,
1496 	uint_t		flags)
1497 {
1498 	uintptr_t	va = (uintptr_t)addr;
1499 	x86pte_t	pte;
1500 	pfn_t		pfn = page_pptonum(pp);
1501 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1502 	htable_t	*ht;
1503 	uint_t		entry;
1504 	void		*pte_ptr;
1505 
1506 	/*
1507 	 * construct the requested PTE
1508 	 */
1509 	attr &= ~PROT_USER;
1510 	attr |= HAT_STORECACHING_OK;
1511 	pte = hati_mkpte(pfn, attr, 0, flags);
1512 	PTE_SET(pte, mmu.pt_global);
1513 
1514 	/*
1515 	 * Figure out the pte_ptr and htable and use common code to finish up
1516 	 */
1517 	if (mmu.pae_hat)
1518 		pte_ptr = mmu.kmap_ptes + pg_off;
1519 	else
1520 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1521 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1522 	    LEVEL_SHIFT(1)];
1523 	entry = htable_va2entry(va, ht);
1524 	hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1525 }
1526 
1527 /*
1528  * hat_memload() - load a translation to the given page struct
1529  *
1530  * Flags for hat_memload/hat_devload/hat_*attr.
1531  *
1532  * 	HAT_LOAD	Default flags to load a translation to the page.
1533  *
1534  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1535  *			and hat_devload().
1536  *
1537  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1538  *			sets PT_NOCONSIST (soft bit)
1539  *
1540  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1541  *			that map some user pages (not kas) is shared by more
1542  *			than one process (eg. ISM).
1543  *
1544  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1545  *
1546  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1547  *			point, it's setting up mapping to allocate internal
1548  *			hat layer data structures.  This flag forces hat layer
1549  *			to tap its reserves in order to prevent infinite
1550  *			recursion.
1551  *
1552  * The following is a protection attribute (like PROT_READ, etc.)
1553  *
1554  *	HAT_NOSYNC	set PT_NOSYNC (soft bit) - this mapping's ref/mod bits
1555  *			are never cleared.
1556  *
1557  * Installing new valid PTE's and creation of the mapping list
1558  * entry are controlled under the same lock. It's derived from the
1559  * page_t being mapped.
1560  */
1561 static uint_t supported_memload_flags =
1562 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1563 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1564 
1565 void
1566 hat_memload(
1567 	hat_t		*hat,
1568 	caddr_t		addr,
1569 	page_t		*pp,
1570 	uint_t		attr,
1571 	uint_t		flags)
1572 {
1573 	uintptr_t	va = (uintptr_t)addr;
1574 	level_t		level = 0;
1575 	pfn_t		pfn = page_pptonum(pp);
1576 
1577 	HATIN(hat_memload, hat, addr, (size_t)MMU_PAGESIZE);
1578 	ASSERT(IS_PAGEALIGNED(va));
1579 	ASSERT(hat == kas.a_hat || va <= kernelbase);
1580 	ASSERT(hat == kas.a_hat ||
1581 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1582 	ASSERT((flags & supported_memload_flags) == flags);
1583 
1584 	ASSERT(!IN_VA_HOLE(va));
1585 	ASSERT(!PP_ISFREE(pp));
1586 
1587 	/*
1588 	 * kernel address special case for performance.
1589 	 */
1590 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1591 		ASSERT(hat == kas.a_hat);
1592 		hat_kmap_load(addr, pp, attr, flags);
1593 		return;
1594 	}
1595 
1596 	/*
1597 	 * This is used for memory with normal caching enabled, so
1598 	 * always set HAT_STORECACHING_OK.
1599 	 */
1600 	attr |= HAT_STORECACHING_OK;
1601 	hati_load_common(hat, va, pp, attr, flags, level, pfn);
1602 	HATOUT(hat_memload, hat, addr);
1603 }
1604 
1605 /*
1606  * Load the given array of page structs using large pages when possible
1607  */
1608 void
1609 hat_memload_array(
1610 	hat_t		*hat,
1611 	caddr_t		addr,
1612 	size_t		len,
1613 	page_t		**pages,
1614 	uint_t		attr,
1615 	uint_t		flags)
1616 {
1617 	uintptr_t	va = (uintptr_t)addr;
1618 	uintptr_t	eaddr = va + len;
1619 	level_t		level;
1620 	size_t		pgsize;
1621 	pgcnt_t		pgindx = 0;
1622 	pfn_t		pfn;
1623 	pgcnt_t		i;
1624 
1625 	HATIN(hat_memload_array, hat, addr, len);
1626 	ASSERT(IS_PAGEALIGNED(va));
1627 	ASSERT(hat == kas.a_hat || va + len <= kernelbase);
1628 	ASSERT(hat == kas.a_hat ||
1629 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1630 	ASSERT((flags & supported_memload_flags) == flags);
1631 
1632 	/*
1633 	 * memload is used for memory with full caching enabled, so
1634 	 * set HAT_STORECACHING_OK.
1635 	 */
1636 	attr |= HAT_STORECACHING_OK;
1637 
1638 	/*
1639 	 * handle all pages using largest possible pagesize
1640 	 */
1641 	while (va < eaddr) {
1642 		/*
1643 		 * decide what level mapping to use (ie. pagesize)
1644 		 */
1645 		pfn = page_pptonum(pages[pgindx]);
1646 		for (level = mmu.max_page_level; ; --level) {
1647 			pgsize = LEVEL_SIZE(level);
1648 			if (level == 0)
1649 				break;
1650 			if (!IS_P2ALIGNED(va, pgsize) ||
1651 			    (eaddr - va) < pgsize ||
1652 			    !IS_P2ALIGNED(pfn << MMU_PAGESHIFT, pgsize))
1653 				continue;
1654 
1655 			/*
1656 			 * To use a large mapping of this size, all the
1657 			 * pages we are passed must be sequential subpages
1658 			 * of the large page.
1659 			 * hat_page_demote() can't change p_szc because
1660 			 * all pages are locked.
1661 			 */
1662 			if (pages[pgindx]->p_szc >= level) {
1663 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1664 					if (pfn + i !=
1665 					    page_pptonum(pages[pgindx + i]))
1666 						break;
1667 					ASSERT(pages[pgindx + i]->p_szc >=
1668 					    level);
1669 					ASSERT(pages[pgindx] + i ==
1670 					    pages[pgindx + i]);
1671 				}
1672 				if (i == mmu_btop(pgsize))
1673 					break;
1674 			}
1675 		}
1676 
1677 		/*
1678 		 * Shared page tables for DISM might have a pre-existing
1679 		 * level 0 page table that wasn't unlinked from all the
1680 		 * sharing hats. If we hit this for a large page, back off
1681 		 * to using level 0 pages.
1682 		 *
1683 		 * This can't be made better (ie. use large pages) until we
1684 		 * track all the htable's sharing and rewrite hat_pageunload().
1685 		 * Note that would cost a pointer in htable_t for a rare case.
1686 		 *
1687 		 * Since the 32 bit kernel caches empty page tables, check
1688 		 * the kernel too.
1689 		 */
1690 		if ((hat == kas.a_hat || (hat->hat_flags & HAT_SHARED)) &&
1691 		    level > 0) {
1692 			htable_t *lower;
1693 
1694 			lower = htable_getpte(hat, va, NULL, NULL, level - 1);
1695 			if (lower != NULL) {
1696 				level = 0;
1697 				pgsize = LEVEL_SIZE(0);
1698 				htable_release(lower);
1699 			}
1700 		}
1701 
1702 		/*
1703 		 * load this page mapping
1704 		 */
1705 		ASSERT(!IN_VA_HOLE(va));
1706 		hati_load_common(hat, va, pages[pgindx], attr, flags,
1707 		    level, pfn);
1708 
1709 		/*
1710 		 * move to next page
1711 		 */
1712 		va += pgsize;
1713 		pgindx += mmu_btop(pgsize);
1714 	}
1715 	HATOUT(hat_memload_array, hat, addr);
1716 }
1717 
1718 /*
1719  * void hat_devload(hat, addr, len, pf, attr, flags)
1720  *	load/lock the given page frame number
1721  *
1722  * Advisory ordering attributes. Apply only to device mappings.
1723  *
1724  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1725  *	programmer specified.  This is the default.
1726  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1727  *	of reordering; store or load with store or load).
1728  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1729  *	to consecutive locations (for example, turn two consecutive byte
1730  *	stores into one halfword store), and it may batch individual loads
1731  *	(for example, turn two consecutive byte loads into one halfword load).
1732  *	This also implies re-ordering.
1733  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1734  *	until another store occurs.  The default is to fetch new data
1735  *	on every load.  This also implies merging.
1736  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1737  *	the device (perhaps with other data) at a later time.  The default is
1738  *	to push the data right away.  This also implies load caching.
1739  *
1740  * Equivalent of hat_memload(), but can be used for device memory where
1741  * there are no page_t's and we support additional flags (write merging, etc).
1742  * Note that we can have large page mappings with this interface.
1743  */
1744 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1745 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1746 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1747 
1748 void
1749 hat_devload(
1750 	hat_t		*hat,
1751 	caddr_t		addr,
1752 	size_t		len,
1753 	pfn_t		pfn,
1754 	uint_t		attr,
1755 	int		flags)
1756 {
1757 	uintptr_t	va = ALIGN2PAGE(addr);
1758 	uintptr_t	eva = va + len;
1759 	level_t		level;
1760 	size_t		pgsize;
1761 	page_t		*pp;
1762 	int		f;	/* per PTE copy of flags  - maybe modified */
1763 	uint_t		a;	/* per PTE copy of attr */
1764 
1765 	HATIN(hat_devload, hat, addr, len);
1766 	ASSERT(IS_PAGEALIGNED(va));
1767 	ASSERT(hat == kas.a_hat || eva <= kernelbase);
1768 	ASSERT(hat == kas.a_hat ||
1769 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1770 	ASSERT((flags & supported_devload_flags) == flags);
1771 
1772 	/*
1773 	 * handle all pages
1774 	 */
1775 	while (va < eva) {
1776 
1777 		/*
1778 		 * decide what level mapping to use (ie. pagesize)
1779 		 */
1780 		for (level = mmu.max_page_level; ; --level) {
1781 			pgsize = LEVEL_SIZE(level);
1782 			if (level == 0)
1783 				break;
1784 			if (IS_P2ALIGNED(va, pgsize) &&
1785 			    (eva - va) >= pgsize &&
1786 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize)))
1787 				break;
1788 		}
1789 
1790 		/*
1791 		 * Some kernel addresses have permanently existing page tables,
1792 		 * so be sure to use a compatible pagesize.
1793 		 */
1794 		if (hat == kas.a_hat && level > 0) {
1795 			htable_t *lower;
1796 
1797 			lower = htable_getpte(hat, va, NULL, NULL, level - 1);
1798 			if (lower != NULL) {
1799 				level = 0;
1800 				pgsize = LEVEL_SIZE(0);
1801 				htable_release(lower);
1802 			}
1803 		}
1804 
1805 		/*
1806 		 * If it is memory get page_t and allow caching (this happens
1807 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1808 		 * to override that. If we don't have a page_t, make sure
1809 		 * NOCONSIST is set.
1810 		 */
1811 		a = attr;
1812 		f = flags;
1813 		if (pf_is_memory(pfn)) {
1814 			if (!(a & HAT_PLAT_NOCACHE))
1815 				a |= HAT_STORECACHING_OK;
1816 
1817 			if (f & HAT_LOAD_NOCONSIST)
1818 				pp = NULL;
1819 			else
1820 				pp = page_numtopp_nolock(pfn);
1821 		} else {
1822 			pp = NULL;
1823 			f |= HAT_LOAD_NOCONSIST;
1824 		}
1825 
1826 		/*
1827 		 * load this page mapping
1828 		 */
1829 		ASSERT(!IN_VA_HOLE(va));
1830 		hati_load_common(hat, va, pp, a, f, level, pfn);
1831 
1832 		/*
1833 		 * move to next page
1834 		 */
1835 		va += pgsize;
1836 		pfn += mmu_btop(pgsize);
1837 	}
1838 	HATOUT(hat_devload, hat, addr);
1839 }
1840 
1841 /*
1842  * void hat_unlock(hat, addr, len)
1843  *	unlock the mappings to a given range of addresses
1844  *
1845  * Locks are tracked by ht_lock_cnt in the htable.
1846  */
1847 void
1848 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1849 {
1850 	uintptr_t	vaddr = (uintptr_t)addr;
1851 	uintptr_t	eaddr = vaddr + len;
1852 	htable_t	*ht = NULL;
1853 
1854 	/*
1855 	 * kernel entries are always locked, we don't track lock counts
1856 	 */
1857 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase);
1858 	ASSERT(IS_PAGEALIGNED(vaddr));
1859 	ASSERT(IS_PAGEALIGNED(eaddr));
1860 	if (hat == kas.a_hat)
1861 		return;
1862 	if (eaddr > _userlimit)
1863 		panic("hat_unlock() address out of range - above _userlimit");
1864 
1865 	ASSERT(AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
1866 	while (vaddr < eaddr) {
1867 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1868 		if (ht == NULL)
1869 			break;
1870 
1871 		ASSERT(!IN_VA_HOLE(vaddr));
1872 
1873 		if (ht->ht_lock_cnt < 1)
1874 			panic("hat_unlock(): lock_cnt < 1, "
1875 			    "htable=%p, vaddr=%p\n", ht, (caddr_t)vaddr);
1876 		HTABLE_LOCK_DEC(ht);
1877 
1878 		vaddr += LEVEL_SIZE(ht->ht_level);
1879 	}
1880 	if (ht)
1881 		htable_release(ht);
1882 }
1883 
1884 /*
1885  * Cross call service routine to demap a virtual page on
1886  * the current CPU or flush all mappings in TLB.
1887  */
1888 /*ARGSUSED*/
1889 static int
1890 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1891 {
1892 	hat_t	*hat = (hat_t *)a1;
1893 	caddr_t	addr = (caddr_t)a2;
1894 
1895 	/*
1896 	 * If the target hat isn't the kernel and this CPU isn't operating
1897 	 * in the target hat, we can ignore the cross call.
1898 	 */
1899 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1900 		return (0);
1901 
1902 	/*
1903 	 * For a normal address, we just flush one page mapping
1904 	 */
1905 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1906 		mmu_tlbflush_entry((caddr_t)addr);
1907 		return (0);
1908 	}
1909 
1910 	/*
1911 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1912 	 *
1913 	 * A reload of cr3 on a VLP process also means we must also recopy in
1914 	 * the pte values from the struct hat
1915 	 */
1916 	if (hat->hat_flags & HAT_VLP) {
1917 #if defined(__amd64)
1918 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1919 
1920 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1921 #elif defined(__i386)
1922 		reload_pae32(hat, CPU);
1923 #endif
1924 	}
1925 	reload_cr3();
1926 	return (0);
1927 }
1928 
1929 /*
1930  * Internal routine to do cross calls to invalidate a range of pages on
1931  * all CPUs using a given hat.
1932  */
1933 void
1934 hat_demap(hat_t *hat, uintptr_t va)
1935 {
1936 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
1937 	cpuset_t	justme;
1938 
1939 	/*
1940 	 * If the hat is being destroyed, there are no more users, so
1941 	 * demap need not do anything.
1942 	 */
1943 	if (hat->hat_flags & HAT_FREEING)
1944 		return;
1945 
1946 	/*
1947 	 * If demapping from a shared pagetable, we best demap the
1948 	 * entire set of user TLBs, since we don't know what addresses
1949 	 * these were shared at.
1950 	 */
1951 	if (hat->hat_flags & HAT_SHARED) {
1952 		hat = kas.a_hat;
1953 		va = DEMAP_ALL_ADDR;
1954 	}
1955 
1956 	/*
1957 	 * if not running with multiple CPUs, don't use cross calls
1958 	 */
1959 	if (panicstr || !flushes_require_xcalls) {
1960 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1961 		return;
1962 	}
1963 
1964 
1965 	/*
1966 	 * All CPUs must see kernel hat changes.
1967 	 */
1968 	if (hat == kas.a_hat) {
1969 		kpreempt_disable();
1970 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL,
1971 		    X_CALL_HIPRI, khat_cpuset, hati_demap_func);
1972 		kpreempt_enable();
1973 		return;
1974 	}
1975 
1976 	/*
1977 	 * Otherwise we notify CPUs currently running in this HAT
1978 	 */
1979 	mutex_enter(&hat->hat_switch_mutex);
1980 	kpreempt_disable();
1981 	CPUSET_ONLY(justme, CPU->cpu_id);
1982 	if (CPUSET_ISEQUAL(hat->hat_cpus, justme))
1983 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)va, NULL);
1984 	else
1985 		xc_call((xc_arg_t)hat, (xc_arg_t)va, NULL,
1986 		    X_CALL_HIPRI, hat->hat_cpus, hati_demap_func);
1987 	kpreempt_enable();
1988 	mutex_exit(&hat->hat_switch_mutex);
1989 }
1990 
1991 /*
1992  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
1993  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
1994  * handle releasing of the htables.
1995  */
1996 void
1997 hat_pte_unmap(
1998 	htable_t	*ht,
1999 	uint_t		entry,
2000 	uint_t		flags,
2001 	x86pte_t	old_pte,
2002 	void		*pte_ptr)
2003 {
2004 	hat_t		*hat = ht->ht_hat;
2005 	hment_t		*hm = NULL;
2006 	page_t		*pp = NULL;
2007 	level_t		l = ht->ht_level;
2008 	pfn_t		pfn;
2009 
2010 	/*
2011 	 * We always track the locking counts, even if nothing is unmapped
2012 	 */
2013 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2014 		ASSERT(ht->ht_lock_cnt > 0);
2015 		HTABLE_LOCK_DEC(ht);
2016 	}
2017 
2018 	/*
2019 	 * Figure out which page's mapping list lock to acquire using the PFN
2020 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2021 	 * If another thread, probably a hat_pageunload, has asynchronously
2022 	 * unmapped/remapped this address we'll loop here.
2023 	 */
2024 	ASSERT(ht->ht_busy > 0);
2025 	while (PTE_ISVALID(old_pte)) {
2026 		pfn = PTE2PFN(old_pte, l);
2027 		if (PTE_GET(old_pte, PT_NOCONSIST)) {
2028 			pp = NULL;
2029 		} else {
2030 			pp = page_numtopp_nolock(pfn);
2031 			if (pp == NULL) {
2032 				panic("no page_t, not NOCONSIST: old_pte="
2033 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2034 				    old_pte, (uintptr_t)ht, entry,
2035 				    (uintptr_t)pte_ptr);
2036 			}
2037 			x86_hm_enter(pp);
2038 		}
2039 
2040 		/*
2041 		 * If freeing the address space, check that the PTE
2042 		 * hasn't changed, as the mappings are no longer in use by
2043 		 * any thread, invalidation is unnecessary.
2044 		 * If not freeing, do a full invalidate.
2045 		 */
2046 		if (hat->hat_flags & HAT_FREEING)
2047 			old_pte = x86pte_get(ht, entry);
2048 		else
2049 			old_pte =
2050 			    x86pte_invalidate_pfn(ht, entry, pfn, pte_ptr);
2051 
2052 		/*
2053 		 * If the page hadn't changed we've unmapped it and can proceed
2054 		 */
2055 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2056 			break;
2057 
2058 		/*
2059 		 * Otherwise, we'll have to retry with the current old_pte.
2060 		 * Drop the hment lock, since the pfn may have changed.
2061 		 */
2062 		if (pp != NULL) {
2063 			x86_hm_exit(pp);
2064 			pp = NULL;
2065 		} else {
2066 			ASSERT(PTE_GET(old_pte, PT_NOCONSIST));
2067 		}
2068 	}
2069 
2070 	/*
2071 	 * If the old mapping wasn't valid, there's nothing more to do
2072 	 */
2073 	if (!PTE_ISVALID(old_pte)) {
2074 		if (pp != NULL)
2075 			x86_hm_exit(pp);
2076 		return;
2077 	}
2078 
2079 	/*
2080 	 * Take care of syncing any MOD/REF bits and removing the hment.
2081 	 */
2082 	if (pp != NULL) {
2083 		if (!(flags & HAT_UNLOAD_NOSYNC))
2084 			hati_sync_pte_to_page(pp, old_pte, l);
2085 		hm = hment_remove(pp, ht, entry);
2086 		x86_hm_exit(pp);
2087 		if (hm != NULL)
2088 			hment_free(hm);
2089 	}
2090 
2091 	/*
2092 	 * Handle book keeping in the htable and hat
2093 	 */
2094 	ASSERT(ht->ht_valid_cnt > 0);
2095 	HTABLE_DEC(ht->ht_valid_cnt);
2096 	PGCNT_DEC(hat, l);
2097 }
2098 
2099 /*
2100  * very cheap unload implementation to special case some kernel addresses
2101  */
2102 static void
2103 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2104 {
2105 	uintptr_t	va = (uintptr_t)addr;
2106 	uintptr_t	eva = va + len;
2107 	pgcnt_t		pg_off;
2108 	htable_t	*ht;
2109 	uint_t		entry;
2110 	void		*pte_ptr;
2111 	x86pte_t	old_pte;
2112 
2113 	for (; va < eva; va += MMU_PAGESIZE) {
2114 		/*
2115 		 * Get the PTE
2116 		 */
2117 		pg_off = mmu_btop(va - mmu.kmap_addr);
2118 		if (mmu.pae_hat) {
2119 			pte_ptr = mmu.kmap_ptes + pg_off;
2120 			ATOMIC_LOAD64((x86pte_t *)pte_ptr, old_pte);
2121 		} else {
2122 			pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
2123 			old_pte = *(x86pte32_t *)pte_ptr;
2124 		}
2125 
2126 		/*
2127 		 * get the htable / entry
2128 		 */
2129 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2130 		    >> LEVEL_SHIFT(1)];
2131 		entry = htable_va2entry(va, ht);
2132 
2133 		/*
2134 		 * use mostly common code to unmap it.
2135 		 */
2136 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr);
2137 	}
2138 }
2139 
2140 
2141 /*
2142  * unload a range of virtual address space (no callback)
2143  */
2144 void
2145 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2146 {
2147 	uintptr_t va = (uintptr_t)addr;
2148 	ASSERT(hat == kas.a_hat || va + len <= kernelbase);
2149 
2150 	/*
2151 	 * special case for performance.
2152 	 */
2153 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2154 		ASSERT(hat == kas.a_hat);
2155 		hat_kmap_unload(addr, len, flags);
2156 		return;
2157 	}
2158 	hat_unload_callback(hat, addr, len, flags, NULL);
2159 }
2160 
2161 /*
2162  * Do the callbacks for ranges being unloaded.
2163  */
2164 typedef struct range_info {
2165 	uintptr_t	rng_va;
2166 	ulong_t		rng_cnt;
2167 	level_t		rng_level;
2168 } range_info_t;
2169 
2170 static void
2171 handle_ranges(hat_callback_t *cb, uint_t cnt, range_info_t *range)
2172 {
2173 	/*
2174 	 * do callbacks to upper level VM system
2175 	 */
2176 	while (cb != NULL && cnt > 0) {
2177 		--cnt;
2178 		cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2179 		cb->hcb_end_addr = cb->hcb_start_addr;
2180 		cb->hcb_end_addr +=
2181 		    range[cnt].rng_cnt << LEVEL_SIZE(range[cnt].rng_level);
2182 		cb->hcb_function(cb);
2183 	}
2184 }
2185 
2186 /*
2187  * Unload a given range of addresses (has optional callback)
2188  *
2189  * Flags:
2190  * define	HAT_UNLOAD		0x00
2191  * define	HAT_UNLOAD_NOSYNC	0x02
2192  * define	HAT_UNLOAD_UNLOCK	0x04
2193  * define	HAT_UNLOAD_OTHER	0x08 - not used
2194  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2195  */
2196 #define	MAX_UNLOAD_CNT (8)
2197 void
2198 hat_unload_callback(
2199 	hat_t		*hat,
2200 	caddr_t		addr,
2201 	size_t		len,
2202 	uint_t		flags,
2203 	hat_callback_t	*cb)
2204 {
2205 	uintptr_t	vaddr = (uintptr_t)addr;
2206 	uintptr_t	eaddr = vaddr + len;
2207 	htable_t	*ht = NULL;
2208 	uint_t		entry;
2209 	uintptr_t	contig_va = (uintptr_t)-1L;
2210 	range_info_t	r[MAX_UNLOAD_CNT];
2211 	uint_t		r_cnt = 0;
2212 	x86pte_t	old_pte;
2213 
2214 	HATIN(hat_unload_callback, hat, addr, len);
2215 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase);
2216 	ASSERT(IS_PAGEALIGNED(vaddr));
2217 	ASSERT(IS_PAGEALIGNED(eaddr));
2218 
2219 	while (vaddr < eaddr) {
2220 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2221 		if (ht == NULL)
2222 			break;
2223 
2224 		ASSERT(!IN_VA_HOLE(vaddr));
2225 
2226 		if (vaddr < (uintptr_t)addr)
2227 			panic("hat_unload_callback(): unmap inside large page");
2228 
2229 		/*
2230 		 * We'll do the call backs for contiguous ranges
2231 		 */
2232 		if (vaddr != contig_va ||
2233 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2234 			if (r_cnt == MAX_UNLOAD_CNT) {
2235 				handle_ranges(cb, r_cnt, r);
2236 				r_cnt = 0;
2237 			}
2238 			r[r_cnt].rng_va = vaddr;
2239 			r[r_cnt].rng_cnt = 0;
2240 			r[r_cnt].rng_level = ht->ht_level;
2241 			++r_cnt;
2242 		}
2243 
2244 		/*
2245 		 * Unload one mapping from the page tables.
2246 		 */
2247 		entry = htable_va2entry(vaddr, ht);
2248 		hat_pte_unmap(ht, entry, flags, old_pte, NULL);
2249 
2250 		ASSERT(ht->ht_level <= mmu.max_page_level);
2251 		vaddr += LEVEL_SIZE(ht->ht_level);
2252 		contig_va = vaddr;
2253 		++r[r_cnt - 1].rng_cnt;
2254 	}
2255 	if (ht)
2256 		htable_release(ht);
2257 
2258 	/*
2259 	 * handle last range for callbacks
2260 	 */
2261 	if (r_cnt > 0)
2262 		handle_ranges(cb, r_cnt, r);
2263 
2264 	HATOUT(hat_unload_callback, hat, addr);
2265 }
2266 
2267 /*
2268  * synchronize mapping with software data structures
2269  *
2270  * This interface is currently only used by the working set monitor
2271  * driver.
2272  */
2273 /*ARGSUSED*/
2274 void
2275 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2276 {
2277 	uintptr_t	vaddr = (uintptr_t)addr;
2278 	uintptr_t	eaddr = vaddr + len;
2279 	htable_t	*ht = NULL;
2280 	uint_t		entry;
2281 	x86pte_t	pte;
2282 	x86pte_t	save_pte;
2283 	x86pte_t	new;
2284 	page_t		*pp;
2285 
2286 	ASSERT(!IN_VA_HOLE(vaddr));
2287 	ASSERT(IS_PAGEALIGNED(vaddr));
2288 	ASSERT(IS_PAGEALIGNED(eaddr));
2289 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase);
2290 
2291 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2292 try_again:
2293 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2294 		if (ht == NULL)
2295 			break;
2296 		entry = htable_va2entry(vaddr, ht);
2297 
2298 		if (PTE_GET(pte, PT_NOSYNC) ||
2299 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2300 			continue;
2301 
2302 		/*
2303 		 * We need to acquire the mapping list lock to protect
2304 		 * against hat_pageunload(), hat_unload(), etc.
2305 		 */
2306 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2307 		if (pp == NULL)
2308 			break;
2309 		x86_hm_enter(pp);
2310 		save_pte = pte;
2311 		pte = x86pte_get(ht, entry);
2312 		if (pte != save_pte) {
2313 			x86_hm_exit(pp);
2314 			goto try_again;
2315 		}
2316 		if (PTE_GET(pte, PT_NOSYNC) ||
2317 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2318 			x86_hm_exit(pp);
2319 			continue;
2320 		}
2321 
2322 		/*
2323 		 * Need to clear ref or mod bits. We may compete with
2324 		 * hardware updating the R/M bits and have to try again.
2325 		 */
2326 		if (flags == HAT_SYNC_ZERORM) {
2327 			new = pte;
2328 			PTE_CLR(new, PT_REF | PT_MOD);
2329 			pte = hati_update_pte(ht, entry, pte, new);
2330 			if (pte != 0) {
2331 				x86_hm_exit(pp);
2332 				goto try_again;
2333 			}
2334 		} else {
2335 			/*
2336 			 * sync the PTE to the page_t
2337 			 */
2338 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2339 		}
2340 		x86_hm_exit(pp);
2341 	}
2342 	if (ht)
2343 		htable_release(ht);
2344 }
2345 
2346 /*
2347  * void	hat_map(hat, addr, len, flags)
2348  */
2349 /*ARGSUSED*/
2350 void
2351 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2352 {
2353 	/* does nothing */
2354 }
2355 
2356 /*
2357  * uint_t hat_getattr(hat, addr, *attr)
2358  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2359  *	mapping and *attr is valid, nonzero if there was no mapping and
2360  *	*attr is not valid.
2361  */
2362 uint_t
2363 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2364 {
2365 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2366 	htable_t	*ht = NULL;
2367 	x86pte_t	pte;
2368 
2369 	ASSERT(hat == kas.a_hat || vaddr < kernelbase);
2370 
2371 	if (IN_VA_HOLE(vaddr))
2372 		return ((uint_t)-1);
2373 
2374 	ht = htable_getpte(hat, vaddr, NULL, &pte, MAX_PAGE_LEVEL);
2375 	if (ht == NULL)
2376 		return ((uint_t)-1);
2377 
2378 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2379 		htable_release(ht);
2380 		return ((uint_t)-1);
2381 	}
2382 
2383 	*attr = PROT_READ;
2384 	if (PTE_GET(pte, PT_WRITABLE))
2385 		*attr |= PROT_WRITE;
2386 	if (PTE_GET(pte, PT_USER))
2387 		*attr |= PROT_USER;
2388 	if (!PTE_GET(pte, mmu.pt_nx))
2389 		*attr |= PROT_EXEC;
2390 	if (PTE_GET(pte, PT_NOSYNC))
2391 		*attr |= HAT_NOSYNC;
2392 	htable_release(ht);
2393 	return (0);
2394 }
2395 
2396 /*
2397  * hat_updateattr() applies the given attribute change to an existing mapping
2398  */
2399 #define	HAT_LOAD_ATTR		1
2400 #define	HAT_SET_ATTR		2
2401 #define	HAT_CLR_ATTR		3
2402 
2403 static void
2404 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2405 {
2406 	uintptr_t	vaddr = (uintptr_t)addr;
2407 	uintptr_t	eaddr = (uintptr_t)addr + len;
2408 	htable_t	*ht = NULL;
2409 	uint_t		entry;
2410 	x86pte_t	oldpte, newpte;
2411 	page_t		*pp;
2412 
2413 	ASSERT(IS_PAGEALIGNED(vaddr));
2414 	ASSERT(IS_PAGEALIGNED(eaddr));
2415 	ASSERT(hat == kas.a_hat ||
2416 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2417 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2418 try_again:
2419 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2420 		if (ht == NULL)
2421 			break;
2422 		if (PTE_GET(oldpte, PT_NOCONSIST))
2423 			continue;
2424 
2425 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2426 		if (pp == NULL)
2427 			continue;
2428 		x86_hm_enter(pp);
2429 
2430 		newpte = oldpte;
2431 		/*
2432 		 * We found a page table entry in the desired range,
2433 		 * figure out the new attributes.
2434 		 */
2435 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2436 			if ((attr & PROT_WRITE) &&
2437 			    !PTE_GET(oldpte, PT_WRITABLE))
2438 				newpte |= PT_WRITABLE;
2439 
2440 			if ((attr & HAT_NOSYNC) && !PTE_GET(oldpte, PT_NOSYNC))
2441 				newpte |= PT_NOSYNC;
2442 
2443 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2444 				newpte &= ~mmu.pt_nx;
2445 		}
2446 
2447 		if (what == HAT_LOAD_ATTR) {
2448 			if (!(attr & PROT_WRITE) &&
2449 			    PTE_GET(oldpte, PT_WRITABLE))
2450 				newpte &= ~PT_WRITABLE;
2451 
2452 			if (!(attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC))
2453 				newpte &= ~PT_NOSYNC;
2454 
2455 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2456 				newpte |= mmu.pt_nx;
2457 		}
2458 
2459 		if (what == HAT_CLR_ATTR) {
2460 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2461 				newpte &= ~PT_WRITABLE;
2462 
2463 			if ((attr & HAT_NOSYNC) && PTE_GET(oldpte, PT_NOSYNC))
2464 				newpte &= ~PT_NOSYNC;
2465 
2466 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2467 				newpte |= mmu.pt_nx;
2468 		}
2469 
2470 		/*
2471 		 * what about PROT_READ or others? this code only handles:
2472 		 * EXEC, WRITE, NOSYNC
2473 		 */
2474 
2475 		/*
2476 		 * If new PTE really changed, update the table.
2477 		 */
2478 		if (newpte != oldpte) {
2479 			entry = htable_va2entry(vaddr, ht);
2480 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2481 			if (oldpte != 0) {
2482 				x86_hm_exit(pp);
2483 				goto try_again;
2484 			}
2485 		}
2486 		x86_hm_exit(pp);
2487 	}
2488 	if (ht)
2489 		htable_release(ht);
2490 }
2491 
2492 /*
2493  * Various wrappers for hat_updateattr()
2494  */
2495 void
2496 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2497 {
2498 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase);
2499 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2500 }
2501 
2502 void
2503 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2504 {
2505 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase);
2506 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2507 }
2508 
2509 void
2510 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2511 {
2512 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase);
2513 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2514 }
2515 
2516 void
2517 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2518 {
2519 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= kernelbase);
2520 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2521 }
2522 
2523 /*ARGSUSED*/
2524 void
2525 hat_chgattr_pagedir(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2526 {
2527 	panic("hat_chgattr_pgdir() not supported - used by 80387 emulation");
2528 }
2529 
2530 /*
2531  * size_t hat_getpagesize(hat, addr)
2532  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2533  *	no mapping. This is an advisory call.
2534  */
2535 ssize_t
2536 hat_getpagesize(hat_t *hat, caddr_t addr)
2537 {
2538 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2539 	htable_t	*ht;
2540 	size_t		pagesize;
2541 
2542 	ASSERT(hat == kas.a_hat || vaddr < kernelbase);
2543 	if (IN_VA_HOLE(vaddr))
2544 		return (-1);
2545 	ht = htable_getpage(hat, vaddr, NULL);
2546 	if (ht == NULL)
2547 		return (-1);
2548 	pagesize = LEVEL_SIZE(ht->ht_level);
2549 	htable_release(ht);
2550 	return (pagesize);
2551 }
2552 
2553 
2554 
2555 /*
2556  * pfn_t hat_getpfnum(hat, addr)
2557  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2558  */
2559 pfn_t
2560 hat_getpfnum(hat_t *hat, caddr_t addr)
2561 {
2562 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2563 	htable_t	*ht;
2564 	uint_t		entry;
2565 	pfn_t		pfn = PFN_INVALID;
2566 
2567 	ASSERT(hat == kas.a_hat || vaddr < kernelbase);
2568 	if (khat_running == 0)
2569 		panic("hat_getpfnum(): called too early\n");
2570 
2571 	if (IN_VA_HOLE(vaddr))
2572 		return (PFN_INVALID);
2573 
2574 	/*
2575 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2576 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2577 	 * this up.
2578 	 */
2579 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2580 		x86pte_t pte;
2581 		pgcnt_t pg_off;
2582 
2583 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2584 		if (mmu.pae_hat) {
2585 			ATOMIC_LOAD64(mmu.kmap_ptes + pg_off, pte);
2586 		} else {
2587 			pte = ((x86pte32_t *)mmu.kmap_ptes)[pg_off];
2588 		}
2589 		if (!PTE_ISVALID(pte))
2590 			return (PFN_INVALID);
2591 		/*LINTED [use of constant 0 causes a silly lint warning] */
2592 		return (PTE2PFN(pte, 0));
2593 	}
2594 
2595 	ht = htable_getpage(hat, vaddr, &entry);
2596 	if (ht == NULL)
2597 		return (PFN_INVALID);
2598 	ASSERT(vaddr >= ht->ht_vaddr);
2599 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2600 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2601 	if (ht->ht_level > 0)
2602 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2603 	htable_release(ht);
2604 	return (pfn);
2605 }
2606 
2607 /*
2608  * hat_getkpfnum() is an obsolete DDI routine, and its use is discouraged.
2609  * Use hat_getpfnum(kas.a_hat, ...) instead.
2610  *
2611  * We'd like to return PFN_INVALID if the mappings have underlying page_t's
2612  * but can't right now due to the fact that some software has grown to use
2613  * this interface incorrectly. So for now when the interface is misused,
2614  * return a warning to the user that in the future it won't work in the
2615  * way they're abusing it, and carry on.
2616  *
2617  * Note that hat_getkpfnum() is never supported on amd64.
2618  */
2619 #if !defined(__amd64)
2620 pfn_t
2621 hat_getkpfnum(caddr_t addr)
2622 {
2623 	pfn_t	pfn;
2624 	int badcaller = 0;
2625 
2626 
2627 	if (khat_running == 0)
2628 		panic("hat_getkpfnum(): called too early\n");
2629 	if ((uintptr_t)addr < kernelbase)
2630 		return (PFN_INVALID);
2631 
2632 
2633 	if (segkpm && IS_KPM_ADDR(addr)) {
2634 		badcaller = 1;
2635 		pfn = hat_kpm_va2pfn(addr);
2636 	} else {
2637 		pfn = hat_getpfnum(kas.a_hat, addr);
2638 		badcaller = pf_is_memory(pfn);
2639 	}
2640 
2641 	if (badcaller)
2642 		hat_getkpfnum_badcall(caller());
2643 	return (pfn);
2644 }
2645 #endif /* __amd64 */
2646 
2647 /*
2648  * int hat_probe(hat, addr)
2649  *	return 0 if no valid mapping is present.  Faster version
2650  *	of hat_getattr in certain architectures.
2651  */
2652 int
2653 hat_probe(hat_t *hat, caddr_t addr)
2654 {
2655 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2656 	uint_t		entry;
2657 	htable_t	*ht;
2658 	pgcnt_t		pg_off;
2659 
2660 	ASSERT(hat == kas.a_hat || vaddr < kernelbase);
2661 	ASSERT(hat == kas.a_hat ||
2662 	    AS_LOCK_HELD(hat->hat_as, &hat->hat_as->a_lock));
2663 	if (IN_VA_HOLE(vaddr))
2664 		return (0);
2665 
2666 	/*
2667 	 * Most common use of hat_probe is from segmap. We special case it
2668 	 * for performance.
2669 	 */
2670 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2671 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2672 		if (mmu.pae_hat)
2673 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2674 		else
2675 			return (PTE_ISVALID(
2676 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2677 	}
2678 
2679 	ht = htable_getpage(hat, vaddr, &entry);
2680 	if (ht == NULL)
2681 		return (0);
2682 	htable_release(ht);
2683 	return (1);
2684 }
2685 
2686 /*
2687  * Simple implementation of ISM. hat_share() is just like hat_memload_array(),
2688  * except that we use the ism_hat's existing mappings to determine the pages
2689  * and protections to use for this hat. In case we find a properly aligned
2690  * and sized pagetable of 4K mappings, we will attempt to share the pagetable
2691  * itself.
2692  */
2693 /*ARGSUSED*/
2694 int
2695 hat_share(
2696 	hat_t		*hat,
2697 	caddr_t		addr,
2698 	hat_t		*ism_hat,
2699 	caddr_t		src_addr,
2700 	size_t		len,	/* almost useless value, see below.. */
2701 	uint_t		ismszc)
2702 {
2703 	uintptr_t	vaddr_start = (uintptr_t)addr;
2704 	uintptr_t	vaddr;
2705 	uintptr_t	pt_vaddr;
2706 	uintptr_t	eaddr = vaddr_start + len;
2707 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2708 	uintptr_t	ism_addr = ism_addr_start;
2709 	uintptr_t	e_ism_addr = ism_addr + len;
2710 	htable_t	*ism_ht = NULL;
2711 	htable_t	*ht;
2712 	x86pte_t	pte;
2713 	page_t		*pp;
2714 	pfn_t		pfn;
2715 	level_t		l;
2716 	pgcnt_t		pgcnt;
2717 	uint_t		prot;
2718 	uint_t		valid_cnt;
2719 
2720 	/*
2721 	 * We might be asked to share an empty DISM hat by as_dup()
2722 	 */
2723 	ASSERT(hat != kas.a_hat);
2724 	ASSERT(eaddr <= kernelbase);
2725 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2726 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2727 		return (0);
2728 	}
2729 
2730 	/*
2731 	 * The SPT segment driver often passes us a size larger than there are
2732 	 * valid mappings. That's because it rounds the segment size up to a
2733 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2734 	 */
2735 	HATIN(hat_share, hat, addr, len);
2736 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2737 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2738 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2739 	while (ism_addr < e_ism_addr) {
2740 		/*
2741 		 * use htable_walk to get the next valid ISM mapping
2742 		 */
2743 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2744 		if (ism_ht == NULL)
2745 			break;
2746 
2747 		/*
2748 		 * Find the largest page size we can use, based on the
2749 		 * ISM mapping size, our address alignment and the remaining
2750 		 * map length.
2751 		 */
2752 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2753 		for (l = ism_ht->ht_level; l > 0; --l) {
2754 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
2755 			    (vaddr & LEVEL_OFFSET(l)) == 0)
2756 				break;
2757 		}
2758 
2759 		/*
2760 		 * attempt to share the pagetable
2761 		 *
2762 		 * - only 4K pagetables are shared (ie. level == 0)
2763 		 * - the hat_share() length must cover the whole pagetable
2764 		 * - the shared address must align at level 1
2765 		 * - a shared PTE for this address already exists OR
2766 		 * - no page table for this address exists yet
2767 		 */
2768 		pt_vaddr =
2769 		    vaddr_start + (ism_ht->ht_vaddr - ism_addr_start);
2770 		if (ism_ht->ht_level == 0 &&
2771 		    ism_ht->ht_vaddr + LEVEL_SIZE(1) <= e_ism_addr &&
2772 		    (pt_vaddr & LEVEL_OFFSET(1)) == 0) {
2773 
2774 			ht = htable_lookup(hat, pt_vaddr, 0);
2775 			if (ht == NULL)
2776 				ht = htable_create(hat, pt_vaddr, 0, ism_ht);
2777 
2778 			if (ht->ht_level > 0 ||
2779 			    !(ht->ht_flags & HTABLE_SHARED_PFN)) {
2780 
2781 				htable_release(ht);
2782 
2783 			} else {
2784 
2785 				/*
2786 				 * share the page table
2787 				 */
2788 				ASSERT(ht->ht_level == 0);
2789 				ASSERT(ht->ht_shares == ism_ht);
2790 				valid_cnt = ism_ht->ht_valid_cnt;
2791 				atomic_add_long(&hat->hat_pages_mapped[0],
2792 				    valid_cnt - ht->ht_valid_cnt);
2793 				ht->ht_valid_cnt = valid_cnt;
2794 				htable_release(ht);
2795 				ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(1);
2796 				htable_release(ism_ht);
2797 				ism_ht = NULL;
2798 				continue;
2799 			}
2800 		}
2801 
2802 		/*
2803 		 * Unable to share the page table. Instead we will
2804 		 * create new mappings from the values in the ISM mappings.
2805 		 *
2806 		 * The ISM mapping might be larger than the share area,
2807 		 * be careful to trunctate it if needed.
2808 		 */
2809 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
2810 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
2811 		} else {
2812 			pgcnt = mmu_btop(eaddr - vaddr);
2813 			l = 0;
2814 		}
2815 
2816 		pfn = PTE2PFN(pte, ism_ht->ht_level);
2817 		ASSERT(pfn != PFN_INVALID);
2818 		while (pgcnt > 0) {
2819 			/*
2820 			 * Make a new pte for the PFN for this level.
2821 			 * Copy protections for the pte from the ISM pte.
2822 			 */
2823 			pp = page_numtopp_nolock(pfn);
2824 			ASSERT(pp != NULL);
2825 
2826 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
2827 			if (PTE_GET(pte, PT_WRITABLE))
2828 				prot |= PROT_WRITE;
2829 			if (!PTE_GET(pte, PT_NX))
2830 				prot |= PROT_EXEC;
2831 
2832 			/*
2833 			 * XX64 -- can shm ever be written to swap?
2834 			 * if not we could use HAT_NOSYNC here.
2835 			 */
2836 			hati_load_common(hat, vaddr, pp, prot,
2837 			    HAT_LOAD, l, pfn);
2838 
2839 			vaddr += LEVEL_SIZE(l);
2840 			ism_addr += LEVEL_SIZE(l);
2841 			pfn += mmu_btop(LEVEL_SIZE(l));
2842 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
2843 		}
2844 	}
2845 	if (ism_ht != NULL)
2846 		htable_release(ism_ht);
2847 
2848 	HATOUT(hat_share, hat, addr);
2849 	return (0);
2850 }
2851 
2852 
2853 /*
2854  * hat_unshare() is similar to hat_unload_callback(), but
2855  * we have to look for empty shared pagetables. Note that
2856  * hat_unshare() is always invoked against an entire segment.
2857  */
2858 /*ARGSUSED*/
2859 void
2860 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
2861 {
2862 	uintptr_t	vaddr = (uintptr_t)addr;
2863 	uintptr_t	eaddr = vaddr + len;
2864 	htable_t	*ht = NULL;
2865 	uint_t		need_demaps = 0;
2866 
2867 	ASSERT(hat != kas.a_hat);
2868 	ASSERT(eaddr <= kernelbase);
2869 	HATIN(hat_unshare, hat, addr, len);
2870 	ASSERT(IS_PAGEALIGNED(vaddr));
2871 	ASSERT(IS_PAGEALIGNED(eaddr));
2872 
2873 	/*
2874 	 * First go through and remove any shared pagetables.
2875 	 *
2876 	 * Note that it's ok to delay the demap until the entire range is
2877 	 * finished, because if hat_pageunload() were to unload a shared
2878 	 * pagetable page, its hat_demap() will do a global user TLB invalidate.
2879 	 */
2880 	while (vaddr < eaddr) {
2881 		ASSERT(!IN_VA_HOLE(vaddr));
2882 		/*
2883 		 * find the pagetable that would map the current address
2884 		 */
2885 		ht = htable_lookup(hat, vaddr, 0);
2886 		if (ht != NULL) {
2887 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
2888 				/*
2889 				 * clear mapped pages count, set valid_cnt to 0
2890 				 * and let htable_release() finish the job
2891 				 */
2892 				atomic_add_long(&hat->hat_pages_mapped[0],
2893 				    -ht->ht_valid_cnt);
2894 				ht->ht_valid_cnt = 0;
2895 				need_demaps = 1;
2896 			}
2897 			htable_release(ht);
2898 		}
2899 		vaddr = (vaddr & LEVEL_MASK(1)) + LEVEL_SIZE(1);
2900 	}
2901 
2902 	/*
2903 	 * flush the TLBs - since we're probably dealing with MANY mappings
2904 	 * we do just one CR3 reload.
2905 	 */
2906 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
2907 		hat_demap(hat, DEMAP_ALL_ADDR);
2908 
2909 	/*
2910 	 * Now go back and clean up any unaligned mappings that
2911 	 * couldn't share pagetables.
2912 	 */
2913 	hat_unload(hat, addr, len, HAT_UNLOAD_UNMAP);
2914 
2915 	HATOUT(hat_unshare, hat, addr);
2916 }
2917 
2918 
2919 /*
2920  * hat_reserve() does nothing
2921  */
2922 /*ARGSUSED*/
2923 void
2924 hat_reserve(struct as *as, caddr_t addr, size_t len)
2925 {
2926 }
2927 
2928 
2929 /*
2930  * Called when all mappings to a page should have write permission removed.
2931  * Mostly stolem from hat_pagesync()
2932  */
2933 static void
2934 hati_page_clrwrt(struct page *pp)
2935 {
2936 	hment_t		*hm = NULL;
2937 	htable_t	*ht;
2938 	uint_t		entry;
2939 	x86pte_t	old;
2940 	x86pte_t	new;
2941 	uint_t		pszc = 0;
2942 
2943 next_size:
2944 	/*
2945 	 * walk thru the mapping list clearing write permission
2946 	 */
2947 	x86_hm_enter(pp);
2948 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
2949 		if (ht->ht_level < pszc)
2950 			continue;
2951 		old = x86pte_get(ht, entry);
2952 
2953 		for (;;) {
2954 			/*
2955 			 * Is this mapping of interest?
2956 			 */
2957 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
2958 			    PTE_GET(old, PT_WRITABLE) == 0)
2959 				break;
2960 
2961 			/*
2962 			 * Clear ref/mod writable bits. This requires cross
2963 			 * calls to ensure any executing TLBs see cleared bits.
2964 			 */
2965 			new = old;
2966 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
2967 			old = hati_update_pte(ht, entry, old, new);
2968 			if (old != 0)
2969 				continue;
2970 
2971 			break;
2972 		}
2973 	}
2974 	x86_hm_exit(pp);
2975 	while (pszc < pp->p_szc) {
2976 		page_t *tpp;
2977 		pszc++;
2978 		tpp = PP_GROUPLEADER(pp, pszc);
2979 		if (pp != tpp) {
2980 			pp = tpp;
2981 			goto next_size;
2982 		}
2983 	}
2984 }
2985 
2986 /*
2987  * void hat_page_setattr(pp, flag)
2988  * void hat_page_clrattr(pp, flag)
2989  *	used to set/clr ref/mod bits.
2990  */
2991 void
2992 hat_page_setattr(struct page *pp, uint_t flag)
2993 {
2994 	vnode_t		*vp = pp->p_vnode;
2995 	kmutex_t	*vphm = NULL;
2996 	page_t		**listp;
2997 
2998 	if (PP_GETRM(pp, flag) == flag)
2999 		return;
3000 
3001 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3002 		vphm = page_vnode_mutex(vp);
3003 		mutex_enter(vphm);
3004 	}
3005 
3006 	PP_SETRM(pp, flag);
3007 
3008 	if (vphm != NULL) {
3009 
3010 		/*
3011 		 * Some File Systems examine v_pages for NULL w/o
3012 		 * grabbing the vphm mutex. Must not let it become NULL when
3013 		 * pp is the only page on the list.
3014 		 */
3015 		if (pp->p_vpnext != pp) {
3016 			page_vpsub(&vp->v_pages, pp);
3017 			if (vp->v_pages != NULL)
3018 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3019 			else
3020 				listp = &vp->v_pages;
3021 			page_vpadd(listp, pp);
3022 		}
3023 		mutex_exit(vphm);
3024 	}
3025 }
3026 
3027 void
3028 hat_page_clrattr(struct page *pp, uint_t flag)
3029 {
3030 	vnode_t		*vp = pp->p_vnode;
3031 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3032 
3033 	/*
3034 	 * Caller is expected to hold page's io lock for VMODSORT to work
3035 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3036 	 * bit is cleared.
3037 	 * We don't have assert to avoid tripping some existing third party
3038 	 * code. The dirty page is moved back to top of the v_page list
3039 	 * after IO is done in pvn_write_done().
3040 	 */
3041 	PP_CLRRM(pp, flag);
3042 
3043 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3044 
3045 		/*
3046 		 * VMODSORT works by removing write permissions and getting
3047 		 * a fault when a page is made dirty. At this point
3048 		 * we need to remove write permission from all mappings
3049 		 * to this page.
3050 		 */
3051 		hati_page_clrwrt(pp);
3052 	}
3053 }
3054 
3055 /*
3056  *	If flag is specified, returns 0 if attribute is disabled
3057  *	and non zero if enabled.  If flag specifes multiple attributs
3058  *	then returns 0 if ALL atriibutes are disabled.  This is an advisory
3059  *	call.
3060  */
3061 uint_t
3062 hat_page_getattr(struct page *pp, uint_t flag)
3063 {
3064 	return (PP_GETRM(pp, flag));
3065 }
3066 
3067 
3068 /*
3069  * common code used by hat_pageunload() and hment_steal()
3070  */
3071 hment_t *
3072 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3073 {
3074 	x86pte_t old_pte;
3075 	pfn_t pfn = pp->p_pagenum;
3076 	hment_t *hm;
3077 
3078 	/*
3079 	 * We need to acquire a hold on the htable in order to
3080 	 * do the invalidate. We know the htable must exist, since
3081 	 * unmap's don't release the htable until after removing any
3082 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3083 	 */
3084 	htable_acquire(ht);
3085 
3086 	/*
3087 	 * Invalidate the PTE and remove the hment.
3088 	 */
3089 	old_pte = x86pte_invalidate_pfn(ht, entry, pfn, NULL);
3090 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3091 		panic("x86pte_invalidate_pfn() failure found PTE = " FMT_PTE
3092 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3093 		    old_pte, pfn, (uintptr_t)ht, entry);
3094 	}
3095 
3096 	/*
3097 	 * Clean up all the htable information for this mapping
3098 	 */
3099 	ASSERT(ht->ht_valid_cnt > 0);
3100 	HTABLE_DEC(ht->ht_valid_cnt);
3101 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3102 
3103 	/*
3104 	 * sync ref/mod bits to the page_t
3105 	 */
3106 	if (PTE_GET(old_pte, PT_NOSYNC) == 0)
3107 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3108 
3109 	/*
3110 	 * Remove the mapping list entry for this page.
3111 	 */
3112 	hm = hment_remove(pp, ht, entry);
3113 
3114 	/*
3115 	 * drop the mapping list lock so that we might free the
3116 	 * hment and htable.
3117 	 */
3118 	x86_hm_exit(pp);
3119 	htable_release(ht);
3120 	return (hm);
3121 }
3122 
3123 extern int	vpm_enable;
3124 /*
3125  * Unload all translations to a page. If the page is a subpage of a large
3126  * page, the large page mappings are also removed.
3127  *
3128  * The forceflags are unused.
3129  */
3130 
3131 /*ARGSUSED*/
3132 static int
3133 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3134 {
3135 	page_t		*cur_pp = pp;
3136 	hment_t		*hm;
3137 	hment_t		*prev;
3138 	htable_t	*ht;
3139 	uint_t		entry;
3140 	level_t		level;
3141 
3142 #if defined(__amd64)
3143 	/*
3144 	 * clear the vpm ref.
3145 	 */
3146 	if (vpm_enable) {
3147 		pp->p_vpmref = 0;
3148 	}
3149 #endif
3150 	/*
3151 	 * The loop with next_size handles pages with multiple pagesize mappings
3152 	 */
3153 next_size:
3154 	for (;;) {
3155 
3156 		/*
3157 		 * Get a mapping list entry
3158 		 */
3159 		x86_hm_enter(cur_pp);
3160 		for (prev = NULL; ; prev = hm) {
3161 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3162 			if (hm == NULL) {
3163 				x86_hm_exit(cur_pp);
3164 
3165 				/*
3166 				 * If not part of a larger page, we're done.
3167 				 */
3168 				if (cur_pp->p_szc <= pg_szcd)
3169 					return (0);
3170 
3171 				/*
3172 				 * Else check the next larger page size.
3173 				 * hat_page_demote() may decrease p_szc
3174 				 * but that's ok we'll just take an extra
3175 				 * trip discover there're no larger mappings
3176 				 * and return.
3177 				 */
3178 				++pg_szcd;
3179 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3180 				goto next_size;
3181 			}
3182 
3183 			/*
3184 			 * If this mapping size matches, remove it.
3185 			 */
3186 			level = ht->ht_level;
3187 			if (level == pg_szcd)
3188 				break;
3189 		}
3190 
3191 		/*
3192 		 * Remove the mapping list entry for this page.
3193 		 * Note this does the x86_hm_exit() for us.
3194 		 */
3195 		hm = hati_page_unmap(cur_pp, ht, entry);
3196 		if (hm != NULL)
3197 			hment_free(hm);
3198 	}
3199 }
3200 
3201 int
3202 hat_pageunload(struct page *pp, uint_t forceflag)
3203 {
3204 	ASSERT(PAGE_EXCL(pp));
3205 	return (hati_pageunload(pp, 0, forceflag));
3206 }
3207 
3208 /*
3209  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3210  * page level that included pp.
3211  *
3212  * pp must be locked EXCL. Even though no other constituent pages are locked
3213  * it's legal to unload large mappings to pp because all constituent pages of
3214  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3215  * lock on one of constituent pages none of the large mappings to pp are
3216  * locked.
3217  *
3218  * Change (always decrease) p_szc field starting from the last constituent
3219  * page and ending with root constituent page so that root's pszc always shows
3220  * the area where hat_page_demote() may be active.
3221  *
3222  * This mechanism is only used for file system pages where it's not always
3223  * possible to get EXCL locks on all constituent pages to demote the size code
3224  * (as is done for anonymous or kernel large pages).
3225  */
3226 void
3227 hat_page_demote(page_t *pp)
3228 {
3229 	uint_t		pszc;
3230 	uint_t		rszc;
3231 	uint_t		szc;
3232 	page_t		*rootpp;
3233 	page_t		*firstpp;
3234 	page_t		*lastpp;
3235 	pgcnt_t		pgcnt;
3236 
3237 	ASSERT(PAGE_EXCL(pp));
3238 	ASSERT(!PP_ISFREE(pp));
3239 	ASSERT(page_szc_lock_assert(pp));
3240 
3241 	if (pp->p_szc == 0)
3242 		return;
3243 
3244 	rootpp = PP_GROUPLEADER(pp, 1);
3245 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3246 
3247 	/*
3248 	 * all large mappings to pp are gone
3249 	 * and no new can be setup since pp is locked exclusively.
3250 	 *
3251 	 * Lock the root to make sure there's only one hat_page_demote()
3252 	 * outstanding within the area of this root's pszc.
3253 	 *
3254 	 * Second potential hat_page_demote() is already eliminated by upper
3255 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3256 	 * own locking (so that upper layer locking can be changed without
3257 	 * assumptions that hat depends on upper layer VM to prevent multiple
3258 	 * hat_page_demote() to be issued simultaneously to the same large
3259 	 * page).
3260 	 */
3261 again:
3262 	pszc = pp->p_szc;
3263 	if (pszc == 0)
3264 		return;
3265 	rootpp = PP_GROUPLEADER(pp, pszc);
3266 	x86_hm_enter(rootpp);
3267 	/*
3268 	 * If root's p_szc is different from pszc we raced with another
3269 	 * hat_page_demote().  Drop the lock and try to find the root again.
3270 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3271 	 * not done yet.  Take and release mlist lock of root's root to wait
3272 	 * for previous hat_page_demote() to complete.
3273 	 */
3274 	if ((rszc = rootpp->p_szc) != pszc) {
3275 		x86_hm_exit(rootpp);
3276 		if (rszc > pszc) {
3277 			/* p_szc of a locked non free page can't increase */
3278 			ASSERT(pp != rootpp);
3279 
3280 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3281 			x86_hm_enter(rootpp);
3282 			x86_hm_exit(rootpp);
3283 		}
3284 		goto again;
3285 	}
3286 	ASSERT(pp->p_szc == pszc);
3287 
3288 	/*
3289 	 * Decrement by 1 p_szc of every constituent page of a region that
3290 	 * covered pp. For example if original szc is 3 it gets changed to 2
3291 	 * everywhere except in region 2 that covered pp. Region 2 that
3292 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3293 	 * covered pp. The region 1 that covered pp is demoted to region
3294 	 * 0. It's done this way because from region 3 we removed level 3
3295 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3296 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3297 	 * changes are done from from high pfn's to low pfn's so that roots
3298 	 * are changed last allowing one to know the largest region where
3299 	 * hat_page_demote() is stil active by only looking at the root page.
3300 	 *
3301 	 * This algorithm is implemented in 2 while loops. First loop changes
3302 	 * p_szc of pages to the right of pp's level 1 region and second
3303 	 * loop changes p_szc of pages of level 1 region that covers pp
3304 	 * and all pages to the left of level 1 region that covers pp.
3305 	 * In the first loop p_szc keeps dropping with every iteration
3306 	 * and in the second loop it keeps increasing with every iteration.
3307 	 *
3308 	 * First loop description: Demote pages to the right of pp outside of
3309 	 * level 1 region that covers pp.  In every iteration of the while
3310 	 * loop below find the last page of szc region and the first page of
3311 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3312 	 * region that covers pp.  From last such page to first such page
3313 	 * change every page's szc to szc - 1. Decrement szc and continue
3314 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3315 	 * of szc region skip to the next iteration.
3316 	 */
3317 	szc = pszc;
3318 	while (szc > 1) {
3319 		lastpp = PP_GROUPLEADER(pp, szc);
3320 		pgcnt = page_get_pagecnt(szc);
3321 		lastpp += pgcnt - 1;
3322 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3323 		pgcnt = page_get_pagecnt(szc - 1);
3324 		if (lastpp - firstpp < pgcnt) {
3325 			szc--;
3326 			continue;
3327 		}
3328 		firstpp += pgcnt;
3329 		while (lastpp != firstpp) {
3330 			ASSERT(lastpp->p_szc == pszc);
3331 			lastpp->p_szc = szc - 1;
3332 			lastpp--;
3333 		}
3334 		firstpp->p_szc = szc - 1;
3335 		szc--;
3336 	}
3337 
3338 	/*
3339 	 * Second loop description:
3340 	 * First iteration changes p_szc to 0 of every
3341 	 * page of level 1 region that covers pp.
3342 	 * Subsequent iterations find last page of szc region
3343 	 * immediately to the left of szc region that covered pp
3344 	 * and first page of (szc + 1) region that covers pp.
3345 	 * From last to first page change p_szc of every page to szc.
3346 	 * Increment szc and continue looping until szc is pszc.
3347 	 * If pp belongs to the fist szc region of (szc + 1) region
3348 	 * skip to the next iteration.
3349 	 *
3350 	 */
3351 	szc = 0;
3352 	while (szc < pszc) {
3353 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3354 		if (szc == 0) {
3355 			pgcnt = page_get_pagecnt(1);
3356 			lastpp = firstpp + (pgcnt - 1);
3357 		} else {
3358 			lastpp = PP_GROUPLEADER(pp, szc);
3359 			if (firstpp == lastpp) {
3360 				szc++;
3361 				continue;
3362 			}
3363 			lastpp--;
3364 			pgcnt = page_get_pagecnt(szc);
3365 		}
3366 		while (lastpp != firstpp) {
3367 			ASSERT(lastpp->p_szc == pszc);
3368 			lastpp->p_szc = szc;
3369 			lastpp--;
3370 		}
3371 		firstpp->p_szc = szc;
3372 		if (firstpp == rootpp)
3373 			break;
3374 		szc++;
3375 	}
3376 	x86_hm_exit(rootpp);
3377 }
3378 
3379 /*
3380  * get hw stats from hardware into page struct and reset hw stats
3381  * returns attributes of page
3382  * Flags for hat_pagesync, hat_getstat, hat_sync
3383  *
3384  * define	HAT_SYNC_ZERORM		0x01
3385  *
3386  * Additional flags for hat_pagesync
3387  *
3388  * define	HAT_SYNC_STOPON_REF	0x02
3389  * define	HAT_SYNC_STOPON_MOD	0x04
3390  * define	HAT_SYNC_STOPON_RM	0x06
3391  * define	HAT_SYNC_STOPON_SHARED	0x08
3392  */
3393 uint_t
3394 hat_pagesync(struct page *pp, uint_t flags)
3395 {
3396 	hment_t		*hm = NULL;
3397 	htable_t	*ht;
3398 	uint_t		entry;
3399 	x86pte_t	old, save_old;
3400 	x86pte_t	new;
3401 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3402 	extern ulong_t	po_share;
3403 	page_t		*save_pp = pp;
3404 	uint_t		pszc = 0;
3405 
3406 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3407 
3408 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3409 		return (pp->p_nrm & nrmbits);
3410 
3411 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3412 
3413 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3414 			return (pp->p_nrm & nrmbits);
3415 
3416 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3417 			return (pp->p_nrm & nrmbits);
3418 
3419 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3420 		    hat_page_getshare(pp) > po_share) {
3421 			if (PP_ISRO(pp))
3422 				PP_SETREF(pp);
3423 			return (pp->p_nrm & nrmbits);
3424 		}
3425 	}
3426 
3427 next_size:
3428 	/*
3429 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3430 	 */
3431 	x86_hm_enter(pp);
3432 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3433 		if (ht->ht_level < pszc)
3434 			continue;
3435 		old = x86pte_get(ht, entry);
3436 try_again:
3437 
3438 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3439 
3440 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3441 			continue;
3442 
3443 		save_old = old;
3444 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3445 
3446 			/*
3447 			 * Need to clear ref or mod bits. Need to demap
3448 			 * to make sure any executing TLBs see cleared bits.
3449 			 */
3450 			new = old;
3451 			PTE_CLR(new, PT_REF | PT_MOD);
3452 			old = hati_update_pte(ht, entry, old, new);
3453 			if (old != 0)
3454 				goto try_again;
3455 
3456 			old = save_old;
3457 		}
3458 
3459 		/*
3460 		 * Sync the PTE
3461 		 */
3462 		if (!(flags & HAT_SYNC_ZERORM) && PTE_GET(old, PT_NOSYNC) == 0)
3463 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3464 
3465 		/*
3466 		 * can stop short if we found a ref'd or mod'd page
3467 		 */
3468 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3469 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3470 			x86_hm_exit(pp);
3471 			return (save_pp->p_nrm & nrmbits);
3472 		}
3473 	}
3474 	x86_hm_exit(pp);
3475 	while (pszc < pp->p_szc) {
3476 		page_t *tpp;
3477 		pszc++;
3478 		tpp = PP_GROUPLEADER(pp, pszc);
3479 		if (pp != tpp) {
3480 			pp = tpp;
3481 			goto next_size;
3482 		}
3483 	}
3484 	return (save_pp->p_nrm & nrmbits);
3485 }
3486 
3487 /*
3488  * returns approx number of mappings to this pp.  A return of 0 implies
3489  * there are no mappings to the page.
3490  */
3491 ulong_t
3492 hat_page_getshare(page_t *pp)
3493 {
3494 	uint_t cnt;
3495 	cnt = hment_mapcnt(pp);
3496 #if defined(__amd64)
3497 	if (vpm_enable && pp->p_vpmref) {
3498 		cnt += 1;
3499 	}
3500 #endif
3501 	return (cnt);
3502 }
3503 
3504 /*
3505  * hat_softlock isn't supported anymore
3506  */
3507 /*ARGSUSED*/
3508 faultcode_t
3509 hat_softlock(
3510 	hat_t *hat,
3511 	caddr_t addr,
3512 	size_t *len,
3513 	struct page **page_array,
3514 	uint_t flags)
3515 {
3516 	return (FC_NOSUPPORT);
3517 }
3518 
3519 
3520 
3521 /*
3522  * Routine to expose supported HAT features to platform independent code.
3523  */
3524 /*ARGSUSED*/
3525 int
3526 hat_supported(enum hat_features feature, void *arg)
3527 {
3528 	switch (feature) {
3529 
3530 	case HAT_SHARED_PT:	/* this is really ISM */
3531 		return (1);
3532 
3533 	case HAT_DYNAMIC_ISM_UNMAP:
3534 		return (0);
3535 
3536 	case HAT_VMODSORT:
3537 		return (1);
3538 
3539 	default:
3540 		panic("hat_supported() - unknown feature");
3541 	}
3542 	return (0);
3543 }
3544 
3545 /*
3546  * Called when a thread is exiting and has been switched to the kernel AS
3547  */
3548 void
3549 hat_thread_exit(kthread_t *thd)
3550 {
3551 	ASSERT(thd->t_procp->p_as == &kas);
3552 	hat_switch(thd->t_procp->p_as->a_hat);
3553 }
3554 
3555 /*
3556  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3557  */
3558 /*ARGSUSED*/
3559 void
3560 hat_setup(hat_t *hat, int flags)
3561 {
3562 	kpreempt_disable();
3563 
3564 	hat_switch(hat);
3565 
3566 	kpreempt_enable();
3567 }
3568 
3569 /*
3570  * Prepare for a CPU private mapping for the given address.
3571  *
3572  * The address can only be used from a single CPU and can be remapped
3573  * using hat_mempte_remap().  Return the address of the PTE.
3574  *
3575  * We do the htable_create() if necessary and increment the valid count so
3576  * the htable can't disappear.  We also hat_devload() the page table into
3577  * kernel so that the PTE is quickly accessed.
3578  */
3579 void *
3580 hat_mempte_kern_setup(caddr_t addr, void *pt)
3581 {
3582 	uintptr_t	va = (uintptr_t)addr;
3583 	htable_t	*ht;
3584 	uint_t		entry;
3585 	x86pte_t	oldpte;
3586 	caddr_t		p = (caddr_t)pt;
3587 
3588 	ASSERT(IS_PAGEALIGNED(va));
3589 	ASSERT(!IN_VA_HOLE(va));
3590 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3591 	if (ht == NULL) {
3592 		/*
3593 		 * Note that we don't need a hat_reserves_exit() check
3594 		 * for this htable_create(), since that'll be done by the
3595 		 * hat_devload() just below.
3596 		 */
3597 		ht = htable_create(kas.a_hat, va, 0, NULL);
3598 		entry = htable_va2entry(va, ht);
3599 		ASSERT(ht->ht_level == 0);
3600 		oldpte = x86pte_get(ht, entry);
3601 	}
3602 	if (PTE_ISVALID(oldpte))
3603 		panic("hat_mempte_setup(): address already mapped"
3604 		    "ht=%p, entry=%d, pte=" FMT_PTE, ht, entry, oldpte);
3605 
3606 	/*
3607 	 * increment ht_valid_cnt so that the pagetable can't disappear
3608 	 */
3609 	HTABLE_INC(ht->ht_valid_cnt);
3610 
3611 	/*
3612 	 * now we need to map the page holding the pagetable for va into
3613 	 * the kernel's address space.
3614 	 */
3615 	hat_devload(kas.a_hat, p, MMU_PAGESIZE, ht->ht_pfn,
3616 	    PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK,
3617 	    HAT_LOAD | HAT_LOAD_NOCONSIST);
3618 
3619 	/*
3620 	 * return the PTE address to the caller.
3621 	 */
3622 	htable_release(ht);
3623 	p += entry << mmu.pte_size_shift;
3624 	return ((void *)p);
3625 }
3626 
3627 /*
3628  * Prepare for a CPU private mapping for the given address.
3629  */
3630 void *
3631 hat_mempte_setup(caddr_t addr)
3632 {
3633 	x86pte_t	*p;
3634 
3635 	p = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
3636 	return (hat_mempte_kern_setup(addr, p));
3637 }
3638 
3639 /*
3640  * Release a CPU private mapping for the given address.
3641  * We decrement the htable valid count so it might be destroyed.
3642  */
3643 void
3644 hat_mempte_release(caddr_t addr, void *pteptr)
3645 {
3646 	htable_t	*ht;
3647 	uintptr_t	va = ALIGN2PAGE(pteptr);
3648 
3649 	/*
3650 	 * first invalidate any left over mapping and decrement the
3651 	 * htable's mapping count
3652 	 */
3653 	if (mmu.pae_hat)
3654 		*(x86pte_t *)pteptr = 0;
3655 	else
3656 		*(x86pte32_t *)pteptr = 0;
3657 	mmu_tlbflush_entry(addr);
3658 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3659 	if (ht == NULL)
3660 		panic("hat_mempte_release(): invalid address");
3661 	ASSERT(ht->ht_level == 0);
3662 	HTABLE_DEC(ht->ht_valid_cnt);
3663 	htable_release(ht);
3664 
3665 	/*
3666 	 * now blow away the kernel mapping to the page table page
3667 	 * XX64 -- see comment in hat_mempte_setup()
3668 	 */
3669 	hat_unload_callback(kas.a_hat, (caddr_t)va, MMU_PAGESIZE,
3670 	    HAT_UNLOAD, NULL);
3671 }
3672 
3673 /*
3674  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3675  * on this CPU, so this ought to have been called with preemption disabled.
3676  */
3677 void
3678 hat_mempte_remap(
3679 	pfn_t pfn,
3680 	caddr_t addr,
3681 	void *pteptr,
3682 	uint_t attr,
3683 	uint_t flags)
3684 {
3685 	uintptr_t	va = (uintptr_t)addr;
3686 	x86pte_t	pte;
3687 
3688 	/*
3689 	 * Remap the given PTE to the new page's PFN. Invalidate only
3690 	 * on this CPU.
3691 	 */
3692 #ifdef DEBUG
3693 	htable_t	*ht;
3694 	uint_t		entry;
3695 
3696 	ASSERT(IS_PAGEALIGNED(va));
3697 	ASSERT(!IN_VA_HOLE(va));
3698 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3699 	ASSERT(ht != NULL);
3700 	ASSERT(ht->ht_level == 0);
3701 	ASSERT(ht->ht_valid_cnt > 0);
3702 	htable_release(ht);
3703 #endif
3704 	pte = hati_mkpte(pfn, attr, 0, flags);
3705 	if (mmu.pae_hat)
3706 		*(x86pte_t *)pteptr = pte;
3707 	else
3708 		*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3709 	mmu_tlbflush_entry(addr);
3710 }
3711 
3712 
3713 
3714 /*
3715  * Hat locking functions
3716  * XXX - these two functions are currently being used by hatstats
3717  * 	they can be removed by using a per-as mutex for hatstats.
3718  */
3719 void
3720 hat_enter(hat_t *hat)
3721 {
3722 	mutex_enter(&hat->hat_mutex);
3723 }
3724 
3725 void
3726 hat_exit(hat_t *hat)
3727 {
3728 	mutex_exit(&hat->hat_mutex);
3729 }
3730 
3731 
3732 /*
3733  * Used by hat_kern_setup() to create initial kernel HAT mappings from
3734  * the boot loader's mappings.
3735  *
3736  * - size is either PAGESIZE or some multiple of a level one pagesize
3737  * - there may not be page_t's for every pfn. (ie. the nucleus pages)
3738  * - pfn's are continguous for the given va range (va to va + size * cnt)
3739  */
3740 void
3741 hati_kern_setup_load(
3742 	uintptr_t va,	/* starting va of range to map */
3743 	size_t size,	/* either PAGESIZE or multiple of large page size */
3744 	pfn_t pfn,	/* starting PFN */
3745 	pgcnt_t cnt,	/* number of mappings, (cnt * size) == total size */
3746 	uint_t prot)	/* protections (PROT_READ, PROT_WRITE, PROT_EXEC) */
3747 {
3748 	level_t level = (size == MMU_PAGESIZE ? 0 : 1);
3749 	size_t bytes = size * cnt;
3750 	size_t pgsize = LEVEL_SIZE(level);
3751 	page_t *pp;
3752 	uint_t flags = HAT_LOAD;
3753 
3754 	/*
3755 	 * We're only going to throw away mappings below kernelbase or in
3756 	 * boot's special double-mapping region, so set noconsist to avoid
3757 	 * using hments
3758 	 */
3759 	if (BOOT_VA(va))
3760 		flags |= HAT_LOAD_NOCONSIST;
3761 
3762 	prot |= HAT_STORECACHING_OK;
3763 	while (bytes != 0) {
3764 		ASSERT(bytes >= pgsize);
3765 
3766 		pp = NULL;
3767 		if (pf_is_memory(pfn) && !BOOT_VA(va) && level == 0)
3768 			pp = page_numtopp_nolock(pfn);
3769 
3770 		hati_load_common(kas.a_hat, va, pp, prot, flags, level, pfn);
3771 
3772 		va += pgsize;
3773 		pfn += mmu_btop(pgsize);
3774 		bytes -= pgsize;
3775 	}
3776 }
3777 
3778 /*
3779  * HAT part of cpu intialization.
3780  */
3781 void
3782 hat_cpu_online(struct cpu *cpup)
3783 {
3784 	if (cpup != CPU) {
3785 		x86pte_cpu_init(cpup, NULL);
3786 		hat_vlp_setup(cpup);
3787 	}
3788 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
3789 }
3790 
3791 /*
3792  * Function called after all CPUs are brought online.
3793  * Used to remove low address boot mappings.
3794  */
3795 void
3796 clear_boot_mappings(uintptr_t low, uintptr_t high)
3797 {
3798 	uintptr_t vaddr = low;
3799 	htable_t *ht = NULL;
3800 	level_t level;
3801 	uint_t entry;
3802 	x86pte_t pte;
3803 
3804 	/*
3805 	 * On 1st CPU we can unload the prom mappings, basically we blow away
3806 	 * all virtual mappings under kernelbase.
3807 	 */
3808 	while (vaddr < high) {
3809 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
3810 		if (ht == NULL)
3811 			break;
3812 
3813 		level = ht->ht_level;
3814 		entry = htable_va2entry(vaddr, ht);
3815 		ASSERT(level <= mmu.max_page_level);
3816 		ASSERT(PTE_ISPAGE(pte, level));
3817 
3818 		/*
3819 		 * Unload the mapping from the page tables.
3820 		 */
3821 		(void) x86pte_set(ht, entry, 0, NULL);
3822 		ASSERT(ht->ht_valid_cnt > 0);
3823 		HTABLE_DEC(ht->ht_valid_cnt);
3824 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
3825 
3826 		vaddr += LEVEL_SIZE(ht->ht_level);
3827 	}
3828 	if (ht)
3829 		htable_release(ht);
3830 
3831 	/*
3832 	 * cross call for a complete invalidate.
3833 	 */
3834 	hat_demap(kas.a_hat, DEMAP_ALL_ADDR);
3835 }
3836 
3837 /*
3838  * Initialize a special area in the kernel that always holds some PTEs for
3839  * faster performance. This always holds segmap's PTEs.
3840  * In the 32 bit kernel this maps the kernel heap too.
3841  */
3842 void
3843 hat_kmap_init(uintptr_t base, size_t len)
3844 {
3845 	uintptr_t map_addr;	/* base rounded down to large page size */
3846 	uintptr_t map_eaddr;	/* base + len rounded up */
3847 	size_t map_len;
3848 	caddr_t ptes;		/* mapping area in kernel as for ptes */
3849 	size_t window_size;	/* size of mapping area for ptes */
3850 	ulong_t htable_cnt;	/* # of page tables to cover map_len */
3851 	ulong_t i;
3852 	htable_t *ht;
3853 
3854 	/*
3855 	 * we have to map in an area that matches an entire page table
3856 	 */
3857 	map_addr = base & LEVEL_MASK(1);
3858 	map_eaddr = (base + len + LEVEL_SIZE(1) - 1) & LEVEL_MASK(1);
3859 	map_len = map_eaddr - map_addr;
3860 	window_size = mmu_btop(map_len) * mmu.pte_size;
3861 	htable_cnt = mmu_btop(map_len) / mmu.ptes_per_table;
3862 
3863 	/*
3864 	 * allocate vmem for the kmap_ptes
3865 	 */
3866 	ptes = vmem_xalloc(heap_arena, window_size, MMU_PAGESIZE, 0,
3867 	    0, NULL, NULL, VM_SLEEP);
3868 	mmu.kmap_htables =
3869 	    kmem_alloc(htable_cnt * sizeof (htable_t *), KM_SLEEP);
3870 
3871 	/*
3872 	 * Map the page tables that cover kmap into the allocated range.
3873 	 * Note we don't ever htable_release() the kmap page tables - they
3874 	 * can't ever be stolen, freed, etc.
3875 	 */
3876 	for (i = 0; i < htable_cnt; ++i) {
3877 		ht = htable_create(kas.a_hat, map_addr + i * LEVEL_SIZE(1),
3878 		    0, NULL);
3879 		mmu.kmap_htables[i] = ht;
3880 
3881 		hat_devload(kas.a_hat, ptes + i * MMU_PAGESIZE, MMU_PAGESIZE,
3882 		    ht->ht_pfn,
3883 		    PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK,
3884 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
3885 
3886 	}
3887 
3888 	/*
3889 	 * set information in mmu to activate handling of kmap
3890 	 */
3891 	mmu.kmap_addr = base;
3892 	mmu.kmap_eaddr = base + len;
3893 	mmu.kmap_ptes =
3894 	    (x86pte_t *)(ptes + mmu.pte_size * mmu_btop(base - map_addr));
3895 }
3896 
3897 /*
3898  * Atomically update a new translation for a single page.  If the
3899  * currently installed PTE doesn't match the value we expect to find,
3900  * it's not updated and we return the PTE we found.
3901  *
3902  * If activating nosync or NOWRITE and the page was modified we need to sync
3903  * with the page_t. Also sync with page_t if clearing ref/mod bits.
3904  */
3905 static x86pte_t
3906 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
3907 {
3908 	page_t		*pp;
3909 	uint_t		rm = 0;
3910 	x86pte_t	replaced;
3911 
3912 	if (!PTE_GET(expected, PT_NOSYNC | PT_NOCONSIST) &&
3913 	    PTE_GET(expected, PT_MOD | PT_REF) &&
3914 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
3915 		!PTE_GET(new, PT_MOD | PT_REF))) {
3916 
3917 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
3918 		ASSERT(pp != NULL);
3919 		if (PTE_GET(expected, PT_MOD))
3920 			rm |= P_MOD;
3921 		if (PTE_GET(expected, PT_REF))
3922 			rm |= P_REF;
3923 		PTE_CLR(new, PT_MOD | PT_REF);
3924 	}
3925 
3926 	replaced = x86pte_update(ht, entry, expected, new);
3927 	if (replaced != expected)
3928 		return (replaced);
3929 
3930 	if (rm) {
3931 		/*
3932 		 * sync to all constituent pages of a large page
3933 		 */
3934 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
3935 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
3936 		while (pgcnt-- > 0) {
3937 			/*
3938 			 * hat_page_demote() can't decrease
3939 			 * pszc below this mapping size
3940 			 * since large mapping existed after we
3941 			 * took mlist lock.
3942 			 */
3943 			ASSERT(pp->p_szc >= ht->ht_level);
3944 			hat_page_setattr(pp, rm);
3945 			++pp;
3946 		}
3947 	}
3948 
3949 	return (0);
3950 }
3951 
3952 /*
3953  * Kernel Physical Mapping (kpm) facility
3954  *
3955  * Most of the routines needed to support segkpm are almost no-ops on the
3956  * x86 platform.  We map in the entire segment when it is created and leave
3957  * it mapped in, so there is no additional work required to set up and tear
3958  * down individual mappings.  All of these routines were created to support
3959  * SPARC platforms that have to avoid aliasing in their virtually indexed
3960  * caches.
3961  *
3962  * Most of the routines have sanity checks in them (e.g. verifying that the
3963  * passed-in page is locked).  We don't actually care about most of these
3964  * checks on x86, but we leave them in place to identify problems in the
3965  * upper levels.
3966  */
3967 
3968 /*
3969  * Map in a locked page and return the vaddr.
3970  */
3971 /*ARGSUSED*/
3972 caddr_t
3973 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
3974 {
3975 	caddr_t		vaddr;
3976 
3977 #ifdef DEBUG
3978 	if (kpm_enable == 0) {
3979 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
3980 		return ((caddr_t)NULL);
3981 	}
3982 
3983 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
3984 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
3985 		return ((caddr_t)NULL);
3986 	}
3987 #endif
3988 
3989 	vaddr = hat_kpm_page2va(pp, 1);
3990 
3991 	return (vaddr);
3992 }
3993 
3994 /*
3995  * Mapout a locked page.
3996  */
3997 /*ARGSUSED*/
3998 void
3999 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4000 {
4001 #ifdef DEBUG
4002 	if (kpm_enable == 0) {
4003 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4004 		return;
4005 	}
4006 
4007 	if (IS_KPM_ADDR(vaddr) == 0) {
4008 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4009 		return;
4010 	}
4011 
4012 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4013 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4014 		return;
4015 	}
4016 #endif
4017 }
4018 
4019 /*
4020  * Return the kpm virtual address for a specific pfn
4021  */
4022 caddr_t
4023 hat_kpm_pfn2va(pfn_t pfn)
4024 {
4025 	uintptr_t vaddr;
4026 
4027 	ASSERT(kpm_enable);
4028 
4029 	vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4030 
4031 	return ((caddr_t)vaddr);
4032 }
4033 
4034 /*
4035  * Return the kpm virtual address for the page at pp.
4036  */
4037 /*ARGSUSED*/
4038 caddr_t
4039 hat_kpm_page2va(struct page *pp, int checkswap)
4040 {
4041 	return (hat_kpm_pfn2va(pp->p_pagenum));
4042 }
4043 
4044 /*
4045  * Return the page frame number for the kpm virtual address vaddr.
4046  */
4047 pfn_t
4048 hat_kpm_va2pfn(caddr_t vaddr)
4049 {
4050 	pfn_t		pfn;
4051 
4052 	ASSERT(IS_KPM_ADDR(vaddr));
4053 
4054 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4055 
4056 	return (pfn);
4057 }
4058 
4059 
4060 /*
4061  * Return the page for the kpm virtual address vaddr.
4062  */
4063 page_t *
4064 hat_kpm_vaddr2page(caddr_t vaddr)
4065 {
4066 	pfn_t		pfn;
4067 
4068 	ASSERT(IS_KPM_ADDR(vaddr));
4069 
4070 	pfn = hat_kpm_va2pfn(vaddr);
4071 
4072 	return (page_numtopp_nolock(pfn));
4073 }
4074 
4075 /*
4076  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4077  * KPM page.  This should never happen on x86
4078  */
4079 int
4080 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4081 {
4082 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p", hat, vaddr);
4083 
4084 	return (0);
4085 }
4086 
4087 /*ARGSUSED*/
4088 void
4089 hat_kpm_mseghash_clear(int nentries)
4090 {}
4091 
4092 /*ARGSUSED*/
4093 void
4094 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4095 {}
4096