xref: /titanic_52/usr/src/uts/i86pc/vm/hat_i86.c (revision 5e76ec37f9c2848dfd706f6514bbfa0d0476a3ad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 /*
29  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
30  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
31  */
32 
33 /*
34  * VM - Hardware Address Translation management for i386 and amd64
35  *
36  * Implementation of the interfaces described in <common/vm/hat.h>
37  *
38  * Nearly all the details of how the hardware is managed should not be
39  * visible outside this layer except for misc. machine specific functions
40  * that work in conjunction with this code.
41  *
42  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
43  */
44 
45 #include <sys/machparam.h>
46 #include <sys/machsystm.h>
47 #include <sys/mman.h>
48 #include <sys/types.h>
49 #include <sys/systm.h>
50 #include <sys/cpuvar.h>
51 #include <sys/thread.h>
52 #include <sys/proc.h>
53 #include <sys/cpu.h>
54 #include <sys/kmem.h>
55 #include <sys/disp.h>
56 #include <sys/shm.h>
57 #include <sys/sysmacros.h>
58 #include <sys/machparam.h>
59 #include <sys/vmem.h>
60 #include <sys/vmsystm.h>
61 #include <sys/promif.h>
62 #include <sys/var.h>
63 #include <sys/x86_archext.h>
64 #include <sys/atomic.h>
65 #include <sys/bitmap.h>
66 #include <sys/controlregs.h>
67 #include <sys/bootconf.h>
68 #include <sys/bootsvcs.h>
69 #include <sys/bootinfo.h>
70 #include <sys/archsystm.h>
71 
72 #include <vm/seg_kmem.h>
73 #include <vm/hat_i86.h>
74 #include <vm/as.h>
75 #include <vm/seg.h>
76 #include <vm/page.h>
77 #include <vm/seg_kp.h>
78 #include <vm/seg_kpm.h>
79 #include <vm/vm_dep.h>
80 #ifdef __xpv
81 #include <sys/hypervisor.h>
82 #endif
83 #include <vm/kboot_mmu.h>
84 #include <vm/seg_spt.h>
85 
86 #include <sys/cmn_err.h>
87 
88 /*
89  * Basic parameters for hat operation.
90  */
91 struct hat_mmu_info mmu;
92 
93 /*
94  * The page that is the kernel's top level pagetable.
95  *
96  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
97  * on this 4K page for its top level page table. The remaining groups of
98  * 4 entries are used for per processor copies of user VLP pagetables for
99  * running threads.  See hat_switch() and reload_pae32() for details.
100  *
101  * vlp_page[0..3] - level==2 PTEs for kernel HAT
102  * vlp_page[4..7] - level==2 PTEs for user thread on cpu 0
103  * vlp_page[8..11]  - level==2 PTE for user thread on cpu 1
104  * etc...
105  */
106 static x86pte_t *vlp_page;
107 
108 /*
109  * forward declaration of internal utility routines
110  */
111 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
112 	x86pte_t new);
113 
114 /*
115  * The kernel address space exists in all HATs. To implement this the
116  * kernel reserves a fixed number of entries in the topmost level(s) of page
117  * tables. The values are setup during startup and then copied to every user
118  * hat created by hat_alloc(). This means that kernelbase must be:
119  *
120  *	  4Meg aligned for 32 bit kernels
121  *	512Gig aligned for x86_64 64 bit kernel
122  *
123  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
124  * to each user hat.
125  */
126 typedef struct hat_kernel_range {
127 	level_t		hkr_level;
128 	uintptr_t	hkr_start_va;
129 	uintptr_t	hkr_end_va;	/* zero means to end of memory */
130 } hat_kernel_range_t;
131 #define	NUM_KERNEL_RANGE 2
132 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
133 static int num_kernel_ranges;
134 
135 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
136 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
137 
138 /*
139  * enable_1gpg: controls 1g page support for user applications.
140  * By default, 1g pages are exported to user applications. enable_1gpg can
141  * be set to 0 to not export.
142  */
143 int	enable_1gpg = 1;
144 
145 /*
146  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
147  * By default, 1g page support will be disabled for pre-shanghai AMD
148  * processors that don't have optimal tlb support for the 1g page size.
149  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
150  * processors.
151  */
152 int	chk_optimal_1gtlb = 1;
153 
154 
155 #ifdef DEBUG
156 uint_t	map1gcnt;
157 #endif
158 
159 
160 /*
161  * A cpuset for all cpus. This is used for kernel address cross calls, since
162  * the kernel addresses apply to all cpus.
163  */
164 cpuset_t khat_cpuset;
165 
166 /*
167  * management stuff for hat structures
168  */
169 kmutex_t	hat_list_lock;
170 kcondvar_t	hat_list_cv;
171 kmem_cache_t	*hat_cache;
172 kmem_cache_t	*hat_hash_cache;
173 kmem_cache_t	*vlp_hash_cache;
174 
175 /*
176  * Simple statistics
177  */
178 struct hatstats hatstat;
179 
180 /*
181  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
182  * correctly.  For such hypervisors we must set PT_USER for kernel
183  * entries ourselves (normally the emulation would set PT_USER for
184  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
185  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
186  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
187  * incorrect.
188  */
189 int pt_kern;
190 
191 /*
192  * useful stuff for atomic access/clearing/setting REF/MOD/RO bits in page_t's.
193  */
194 extern void atomic_orb(uchar_t *addr, uchar_t val);
195 extern void atomic_andb(uchar_t *addr, uchar_t val);
196 
197 #ifndef __xpv
198 extern pfn_t memseg_get_start(struct memseg *);
199 #endif
200 
201 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
202 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
203 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
204 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
205 
206 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
207 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
208 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
209 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
210 
211 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
212 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
213 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
214 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
215 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
216 
217 /*
218  * kmem cache constructor for struct hat
219  */
220 /*ARGSUSED*/
221 static int
222 hati_constructor(void *buf, void *handle, int kmflags)
223 {
224 	hat_t	*hat = buf;
225 
226 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
227 	bzero(hat->hat_pages_mapped,
228 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
229 	hat->hat_ism_pgcnt = 0;
230 	hat->hat_stats = 0;
231 	hat->hat_flags = 0;
232 	CPUSET_ZERO(hat->hat_cpus);
233 	hat->hat_htable = NULL;
234 	hat->hat_ht_hash = NULL;
235 	return (0);
236 }
237 
238 /*
239  * Allocate a hat structure for as. We also create the top level
240  * htable and initialize it to contain the kernel hat entries.
241  */
242 hat_t *
243 hat_alloc(struct as *as)
244 {
245 	hat_t			*hat;
246 	htable_t		*ht;	/* top level htable */
247 	uint_t			use_vlp;
248 	uint_t			r;
249 	hat_kernel_range_t	*rp;
250 	uintptr_t		va;
251 	uintptr_t		eva;
252 	uint_t			start;
253 	uint_t			cnt;
254 	htable_t		*src;
255 
256 	/*
257 	 * Once we start creating user process HATs we can enable
258 	 * the htable_steal() code.
259 	 */
260 	if (can_steal_post_boot == 0)
261 		can_steal_post_boot = 1;
262 
263 	ASSERT(AS_WRITE_HELD(as));
264 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
265 	hat->hat_as = as;
266 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
267 	ASSERT(hat->hat_flags == 0);
268 
269 #if defined(__xpv)
270 	/*
271 	 * No VLP stuff on the hypervisor due to the 64-bit split top level
272 	 * page tables.  On 32-bit it's not needed as the hypervisor takes
273 	 * care of copying the top level PTEs to a below 4Gig page.
274 	 */
275 	use_vlp = 0;
276 #else	/* __xpv */
277 	/* 32 bit processes uses a VLP style hat when running with PAE */
278 #if defined(__amd64)
279 	use_vlp = (ttoproc(curthread)->p_model == DATAMODEL_ILP32);
280 #elif defined(__i386)
281 	use_vlp = mmu.pae_hat;
282 #endif
283 #endif	/* __xpv */
284 	if (use_vlp) {
285 		hat->hat_flags = HAT_VLP;
286 		bzero(hat->hat_vlp_ptes, VLP_SIZE);
287 	}
288 
289 	/*
290 	 * Allocate the htable hash
291 	 */
292 	if ((hat->hat_flags & HAT_VLP)) {
293 		hat->hat_num_hash = mmu.vlp_hash_cnt;
294 		hat->hat_ht_hash = kmem_cache_alloc(vlp_hash_cache, KM_SLEEP);
295 	} else {
296 		hat->hat_num_hash = mmu.hash_cnt;
297 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
298 	}
299 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
300 
301 	/*
302 	 * Initialize Kernel HAT entries at the top of the top level page
303 	 * tables for the new hat.
304 	 */
305 	hat->hat_htable = NULL;
306 	hat->hat_ht_cached = NULL;
307 	XPV_DISALLOW_MIGRATE();
308 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
309 	hat->hat_htable = ht;
310 
311 #if defined(__amd64)
312 	if (hat->hat_flags & HAT_VLP)
313 		goto init_done;
314 #endif
315 
316 	for (r = 0; r < num_kernel_ranges; ++r) {
317 		rp = &kernel_ranges[r];
318 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
319 		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
320 
321 			if (rp->hkr_level == TOP_LEVEL(hat))
322 				ht = hat->hat_htable;
323 			else
324 				ht = htable_create(hat, va, rp->hkr_level,
325 				    NULL);
326 
327 			start = htable_va2entry(va, ht);
328 			cnt = HTABLE_NUM_PTES(ht) - start;
329 			eva = va +
330 			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
331 			if (rp->hkr_end_va != 0 &&
332 			    (eva > rp->hkr_end_va || eva == 0))
333 				cnt = htable_va2entry(rp->hkr_end_va, ht) -
334 				    start;
335 
336 #if defined(__i386) && !defined(__xpv)
337 			if (ht->ht_flags & HTABLE_VLP) {
338 				bcopy(&vlp_page[start],
339 				    &hat->hat_vlp_ptes[start],
340 				    cnt * sizeof (x86pte_t));
341 				continue;
342 			}
343 #endif
344 			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
345 			ASSERT(src != NULL);
346 			x86pte_copy(src, ht, start, cnt);
347 			htable_release(src);
348 		}
349 	}
350 
351 init_done:
352 
353 #if defined(__xpv)
354 	/*
355 	 * Pin top level page tables after initializing them
356 	 */
357 	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
358 #if defined(__amd64)
359 	xen_pin(hat->hat_user_ptable, mmu.max_level);
360 #endif
361 #endif
362 	XPV_ALLOW_MIGRATE();
363 
364 	/*
365 	 * Put it at the start of the global list of all hats (used by stealing)
366 	 *
367 	 * kas.a_hat is not in the list but is instead used to find the
368 	 * first and last items in the list.
369 	 *
370 	 * - kas.a_hat->hat_next points to the start of the user hats.
371 	 *   The list ends where hat->hat_next == NULL
372 	 *
373 	 * - kas.a_hat->hat_prev points to the last of the user hats.
374 	 *   The list begins where hat->hat_prev == NULL
375 	 */
376 	mutex_enter(&hat_list_lock);
377 	hat->hat_prev = NULL;
378 	hat->hat_next = kas.a_hat->hat_next;
379 	if (hat->hat_next)
380 		hat->hat_next->hat_prev = hat;
381 	else
382 		kas.a_hat->hat_prev = hat;
383 	kas.a_hat->hat_next = hat;
384 	mutex_exit(&hat_list_lock);
385 
386 	return (hat);
387 }
388 
389 /*
390  * process has finished executing but as has not been cleaned up yet.
391  */
392 /*ARGSUSED*/
393 void
394 hat_free_start(hat_t *hat)
395 {
396 	ASSERT(AS_WRITE_HELD(hat->hat_as));
397 
398 	/*
399 	 * If the hat is currently a stealing victim, wait for the stealing
400 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
401 	 * won't look at its pagetables anymore.
402 	 */
403 	mutex_enter(&hat_list_lock);
404 	while (hat->hat_flags & HAT_VICTIM)
405 		cv_wait(&hat_list_cv, &hat_list_lock);
406 	hat->hat_flags |= HAT_FREEING;
407 	mutex_exit(&hat_list_lock);
408 }
409 
410 /*
411  * An address space is being destroyed, so we destroy the associated hat.
412  */
413 void
414 hat_free_end(hat_t *hat)
415 {
416 	kmem_cache_t *cache;
417 
418 	ASSERT(hat->hat_flags & HAT_FREEING);
419 
420 	/*
421 	 * must not be running on the given hat
422 	 */
423 	ASSERT(CPU->cpu_current_hat != hat);
424 
425 	/*
426 	 * Remove it from the list of HATs
427 	 */
428 	mutex_enter(&hat_list_lock);
429 	if (hat->hat_prev)
430 		hat->hat_prev->hat_next = hat->hat_next;
431 	else
432 		kas.a_hat->hat_next = hat->hat_next;
433 	if (hat->hat_next)
434 		hat->hat_next->hat_prev = hat->hat_prev;
435 	else
436 		kas.a_hat->hat_prev = hat->hat_prev;
437 	mutex_exit(&hat_list_lock);
438 	hat->hat_next = hat->hat_prev = NULL;
439 
440 #if defined(__xpv)
441 	/*
442 	 * On the hypervisor, unpin top level page table(s)
443 	 */
444 	xen_unpin(hat->hat_htable->ht_pfn);
445 #if defined(__amd64)
446 	xen_unpin(hat->hat_user_ptable);
447 #endif
448 #endif
449 
450 	/*
451 	 * Make a pass through the htables freeing them all up.
452 	 */
453 	htable_purge_hat(hat);
454 
455 	/*
456 	 * Decide which kmem cache the hash table came from, then free it.
457 	 */
458 	if (hat->hat_flags & HAT_VLP)
459 		cache = vlp_hash_cache;
460 	else
461 		cache = hat_hash_cache;
462 	kmem_cache_free(cache, hat->hat_ht_hash);
463 	hat->hat_ht_hash = NULL;
464 
465 	hat->hat_flags = 0;
466 	kmem_cache_free(hat_cache, hat);
467 }
468 
469 /*
470  * round kernelbase down to a supported value to use for _userlimit
471  *
472  * userlimit must be aligned down to an entry in the top level htable.
473  * The one exception is for 32 bit HAT's running PAE.
474  */
475 uintptr_t
476 hat_kernelbase(uintptr_t va)
477 {
478 #if defined(__i386)
479 	va &= LEVEL_MASK(1);
480 #endif
481 	if (IN_VA_HOLE(va))
482 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
483 	return (va);
484 }
485 
486 /*
487  *
488  */
489 static void
490 set_max_page_level()
491 {
492 	level_t lvl;
493 
494 	if (!kbm_largepage_support) {
495 		lvl = 0;
496 	} else {
497 		if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
498 			lvl = 2;
499 			if (chk_optimal_1gtlb &&
500 			    cpuid_opteron_erratum(CPU, 6671130)) {
501 				lvl = 1;
502 			}
503 			if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
504 			    LEVEL_SHIFT(0))) {
505 				lvl = 1;
506 			}
507 		} else {
508 			lvl = 1;
509 		}
510 	}
511 	mmu.max_page_level = lvl;
512 
513 	if ((lvl == 2) && (enable_1gpg == 0))
514 		mmu.umax_page_level = 1;
515 	else
516 		mmu.umax_page_level = lvl;
517 }
518 
519 /*
520  * Initialize hat data structures based on processor MMU information.
521  */
522 void
523 mmu_init(void)
524 {
525 	uint_t max_htables;
526 	uint_t pa_bits;
527 	uint_t va_bits;
528 	int i;
529 
530 	/*
531 	 * If CPU enabled the page table global bit, use it for the kernel
532 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
533 	 */
534 	if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
535 	    (getcr4() & CR4_PGE) != 0)
536 		mmu.pt_global = PT_GLOBAL;
537 
538 	/*
539 	 * Detect NX and PAE usage.
540 	 */
541 	mmu.pae_hat = kbm_pae_support;
542 	if (kbm_nx_support)
543 		mmu.pt_nx = PT_NX;
544 	else
545 		mmu.pt_nx = 0;
546 
547 	/*
548 	 * Use CPU info to set various MMU parameters
549 	 */
550 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
551 
552 	if (va_bits < sizeof (void *) * NBBY) {
553 		mmu.hole_start = (1ul << (va_bits - 1));
554 		mmu.hole_end = 0ul - mmu.hole_start - 1;
555 	} else {
556 		mmu.hole_end = 0;
557 		mmu.hole_start = mmu.hole_end - 1;
558 	}
559 #if defined(OPTERON_ERRATUM_121)
560 	/*
561 	 * If erratum 121 has already been detected at this time, hole_start
562 	 * contains the value to be subtracted from mmu.hole_start.
563 	 */
564 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
565 	hole_start = mmu.hole_start - hole_start;
566 #else
567 	hole_start = mmu.hole_start;
568 #endif
569 	hole_end = mmu.hole_end;
570 
571 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
572 	if (mmu.pae_hat == 0 && pa_bits > 32)
573 		mmu.highest_pfn = PFN_4G - 1;
574 
575 	if (mmu.pae_hat) {
576 		mmu.pte_size = 8;	/* 8 byte PTEs */
577 		mmu.pte_size_shift = 3;
578 	} else {
579 		mmu.pte_size = 4;	/* 4 byte PTEs */
580 		mmu.pte_size_shift = 2;
581 	}
582 
583 	if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
584 		panic("Processor does not support PAE");
585 
586 	if (!is_x86_feature(x86_featureset, X86FSET_CX8))
587 		panic("Processor does not support cmpxchg8b instruction");
588 
589 #if defined(__amd64)
590 
591 	mmu.num_level = 4;
592 	mmu.max_level = 3;
593 	mmu.ptes_per_table = 512;
594 	mmu.top_level_count = 512;
595 
596 	mmu.level_shift[0] = 12;
597 	mmu.level_shift[1] = 21;
598 	mmu.level_shift[2] = 30;
599 	mmu.level_shift[3] = 39;
600 
601 #elif defined(__i386)
602 
603 	if (mmu.pae_hat) {
604 		mmu.num_level = 3;
605 		mmu.max_level = 2;
606 		mmu.ptes_per_table = 512;
607 		mmu.top_level_count = 4;
608 
609 		mmu.level_shift[0] = 12;
610 		mmu.level_shift[1] = 21;
611 		mmu.level_shift[2] = 30;
612 
613 	} else {
614 		mmu.num_level = 2;
615 		mmu.max_level = 1;
616 		mmu.ptes_per_table = 1024;
617 		mmu.top_level_count = 1024;
618 
619 		mmu.level_shift[0] = 12;
620 		mmu.level_shift[1] = 22;
621 	}
622 
623 #endif	/* __i386 */
624 
625 	for (i = 0; i < mmu.num_level; ++i) {
626 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
627 		mmu.level_offset[i] = mmu.level_size[i] - 1;
628 		mmu.level_mask[i] = ~mmu.level_offset[i];
629 	}
630 
631 	set_max_page_level();
632 
633 	mmu_page_sizes = mmu.max_page_level + 1;
634 	mmu_exported_page_sizes = mmu.umax_page_level + 1;
635 
636 	/* restrict legacy applications from using pagesizes 1g and above */
637 	mmu_legacy_page_sizes =
638 	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
639 
640 
641 	for (i = 0; i <= mmu.max_page_level; ++i) {
642 		mmu.pte_bits[i] = PT_VALID | pt_kern;
643 		if (i > 0)
644 			mmu.pte_bits[i] |= PT_PAGESIZE;
645 	}
646 
647 	/*
648 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
649 	 */
650 	for (i = 1; i < mmu.num_level; ++i)
651 		mmu.ptp_bits[i] = PT_PTPBITS;
652 
653 #if defined(__i386)
654 	mmu.ptp_bits[2] = PT_VALID;
655 #endif
656 
657 	/*
658 	 * Compute how many hash table entries to have per process for htables.
659 	 * We start with 1 page's worth of entries.
660 	 *
661 	 * If physical memory is small, reduce the amount need to cover it.
662 	 */
663 	max_htables = physmax / mmu.ptes_per_table;
664 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
665 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
666 		mmu.hash_cnt >>= 1;
667 	mmu.vlp_hash_cnt = mmu.hash_cnt;
668 
669 #if defined(__amd64)
670 	/*
671 	 * If running in 64 bits and physical memory is large,
672 	 * increase the size of the cache to cover all of memory for
673 	 * a 64 bit process.
674 	 */
675 #define	HASH_MAX_LENGTH 4
676 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
677 		mmu.hash_cnt <<= 1;
678 #endif
679 }
680 
681 
682 /*
683  * initialize hat data structures
684  */
685 void
686 hat_init()
687 {
688 #if defined(__i386)
689 	/*
690 	 * _userlimit must be aligned correctly
691 	 */
692 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
693 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
694 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
695 		halt("hat_init(): Unable to continue");
696 	}
697 #endif
698 
699 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
700 
701 	/*
702 	 * initialize kmem caches
703 	 */
704 	htable_init();
705 	hment_init();
706 
707 	hat_cache = kmem_cache_create("hat_t",
708 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
709 	    NULL, 0, 0);
710 
711 	hat_hash_cache = kmem_cache_create("HatHash",
712 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
713 	    NULL, 0, 0);
714 
715 	/*
716 	 * VLP hats can use a smaller hash table size on large memroy machines
717 	 */
718 	if (mmu.hash_cnt == mmu.vlp_hash_cnt) {
719 		vlp_hash_cache = hat_hash_cache;
720 	} else {
721 		vlp_hash_cache = kmem_cache_create("HatVlpHash",
722 		    mmu.vlp_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
723 		    NULL, 0, 0);
724 	}
725 
726 	/*
727 	 * Set up the kernel's hat
728 	 */
729 	AS_LOCK_ENTER(&kas, RW_WRITER);
730 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
731 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
732 	kas.a_hat->hat_as = &kas;
733 	kas.a_hat->hat_flags = 0;
734 	AS_LOCK_EXIT(&kas);
735 
736 	CPUSET_ZERO(khat_cpuset);
737 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
738 
739 	/*
740 	 * The kernel hat's next pointer serves as the head of the hat list .
741 	 * The kernel hat's prev pointer tracks the last hat on the list for
742 	 * htable_steal() to use.
743 	 */
744 	kas.a_hat->hat_next = NULL;
745 	kas.a_hat->hat_prev = NULL;
746 
747 	/*
748 	 * Allocate an htable hash bucket for the kernel
749 	 * XX64 - tune for 64 bit procs
750 	 */
751 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
752 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
753 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
754 
755 	/*
756 	 * zero out the top level and cached htable pointers
757 	 */
758 	kas.a_hat->hat_ht_cached = NULL;
759 	kas.a_hat->hat_htable = NULL;
760 
761 	/*
762 	 * Pre-allocate hrm_hashtab before enabling the collection of
763 	 * refmod statistics.  Allocating on the fly would mean us
764 	 * running the risk of suffering recursive mutex enters or
765 	 * deadlocks.
766 	 */
767 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
768 	    KM_SLEEP);
769 }
770 
771 /*
772  * Prepare CPU specific pagetables for VLP processes on 64 bit kernels.
773  *
774  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
775  * process it runs. They are the top level pagetable, hci_vlp_l3ptes, and
776  * the next to top level table for the bottom 512 Gig, hci_vlp_l2ptes.
777  */
778 /*ARGSUSED*/
779 static void
780 hat_vlp_setup(struct cpu *cpu)
781 {
782 #if defined(__amd64) && !defined(__xpv)
783 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
784 	pfn_t pfn;
785 
786 	/*
787 	 * allocate the level==2 page table for the bottom most
788 	 * 512Gig of address space (this is where 32 bit apps live)
789 	 */
790 	ASSERT(hci != NULL);
791 	hci->hci_vlp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
792 
793 	/*
794 	 * Allocate a top level pagetable and copy the kernel's
795 	 * entries into it. Then link in hci_vlp_l2ptes in the 1st entry.
796 	 */
797 	hci->hci_vlp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
798 	hci->hci_vlp_pfn =
799 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l3ptes);
800 	ASSERT(hci->hci_vlp_pfn != PFN_INVALID);
801 	bcopy(vlp_page, hci->hci_vlp_l3ptes, MMU_PAGESIZE);
802 
803 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_vlp_l2ptes);
804 	ASSERT(pfn != PFN_INVALID);
805 	hci->hci_vlp_l3ptes[0] = MAKEPTP(pfn, 2);
806 #endif /* __amd64 && !__xpv */
807 }
808 
809 /*ARGSUSED*/
810 static void
811 hat_vlp_teardown(cpu_t *cpu)
812 {
813 #if defined(__amd64) && !defined(__xpv)
814 	struct hat_cpu_info *hci;
815 
816 	if ((hci = cpu->cpu_hat_info) == NULL)
817 		return;
818 	if (hci->hci_vlp_l2ptes)
819 		kmem_free(hci->hci_vlp_l2ptes, MMU_PAGESIZE);
820 	if (hci->hci_vlp_l3ptes)
821 		kmem_free(hci->hci_vlp_l3ptes, MMU_PAGESIZE);
822 #endif
823 }
824 
825 #define	NEXT_HKR(r, l, s, e) {			\
826 	kernel_ranges[r].hkr_level = l;		\
827 	kernel_ranges[r].hkr_start_va = s;	\
828 	kernel_ranges[r].hkr_end_va = e;	\
829 	++r;					\
830 }
831 
832 /*
833  * Finish filling in the kernel hat.
834  * Pre fill in all top level kernel page table entries for the kernel's
835  * part of the address range.  From this point on we can't use any new
836  * kernel large pages if they need PTE's at max_level
837  *
838  * create the kmap mappings.
839  */
840 void
841 hat_init_finish(void)
842 {
843 	size_t		size;
844 	uint_t		r = 0;
845 	uintptr_t	va;
846 	hat_kernel_range_t *rp;
847 
848 
849 	/*
850 	 * We are now effectively running on the kernel hat.
851 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
852 	 * reserve for all HAT allocations.  From here on, the reserves are
853 	 * only used when avoiding recursion in kmem_alloc().
854 	 */
855 	use_boot_reserve = 0;
856 	htable_adjust_reserve();
857 
858 	/*
859 	 * User HATs are initialized with copies of all kernel mappings in
860 	 * higher level page tables. Ensure that those entries exist.
861 	 */
862 #if defined(__amd64)
863 
864 	NEXT_HKR(r, 3, kernelbase, 0);
865 #if defined(__xpv)
866 	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
867 #endif
868 
869 #elif defined(__i386)
870 
871 #if !defined(__xpv)
872 	if (mmu.pae_hat) {
873 		va = kernelbase;
874 		if ((va & LEVEL_MASK(2)) != va) {
875 			va = P2ROUNDUP(va, LEVEL_SIZE(2));
876 			NEXT_HKR(r, 1, kernelbase, va);
877 		}
878 		if (va != 0)
879 			NEXT_HKR(r, 2, va, 0);
880 	} else
881 #endif /* __xpv */
882 		NEXT_HKR(r, 1, kernelbase, 0);
883 
884 #endif /* __i386 */
885 
886 	num_kernel_ranges = r;
887 
888 	/*
889 	 * Create all the kernel pagetables that will have entries
890 	 * shared to user HATs.
891 	 */
892 	for (r = 0; r < num_kernel_ranges; ++r) {
893 		rp = &kernel_ranges[r];
894 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
895 		    va += LEVEL_SIZE(rp->hkr_level)) {
896 			htable_t *ht;
897 
898 			if (IN_HYPERVISOR_VA(va))
899 				continue;
900 
901 			/* can/must skip if a page mapping already exists */
902 			if (rp->hkr_level <= mmu.max_page_level &&
903 			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
904 			    NULL) {
905 				htable_release(ht);
906 				continue;
907 			}
908 
909 			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
910 			    NULL);
911 		}
912 	}
913 
914 	/*
915 	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
916 	 * page holding the top level pagetable. We use the remainder for
917 	 * the "per CPU" page tables for VLP processes.
918 	 * Map the top level kernel pagetable into the kernel to make
919 	 * it easy to use bcopy access these tables.
920 	 */
921 	if (mmu.pae_hat) {
922 		vlp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
923 		hat_devload(kas.a_hat, (caddr_t)vlp_page, MMU_PAGESIZE,
924 		    kas.a_hat->hat_htable->ht_pfn,
925 #if !defined(__xpv)
926 		    PROT_WRITE |
927 #endif
928 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
929 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
930 	}
931 	hat_vlp_setup(CPU);
932 
933 	/*
934 	 * Create kmap (cached mappings of kernel PTEs)
935 	 * for 32 bit we map from segmap_start .. ekernelheap
936 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
937 	 */
938 #if defined(__i386)
939 	size = (uintptr_t)ekernelheap - segmap_start;
940 #elif defined(__amd64)
941 	size = segmapsize;
942 #endif
943 	hat_kmap_init((uintptr_t)segmap_start, size);
944 }
945 
946 /*
947  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
948  * are 32 bit, so for safety we must use atomic_cas_64() to install these.
949  */
950 #ifdef __i386
951 static void
952 reload_pae32(hat_t *hat, cpu_t *cpu)
953 {
954 	x86pte_t *src;
955 	x86pte_t *dest;
956 	x86pte_t pte;
957 	int i;
958 
959 	/*
960 	 * Load the 4 entries of the level 2 page table into this
961 	 * cpu's range of the vlp_page and point cr3 at them.
962 	 */
963 	ASSERT(mmu.pae_hat);
964 	src = hat->hat_vlp_ptes;
965 	dest = vlp_page + (cpu->cpu_id + 1) * VLP_NUM_PTES;
966 	for (i = 0; i < VLP_NUM_PTES; ++i) {
967 		for (;;) {
968 			pte = dest[i];
969 			if (pte == src[i])
970 				break;
971 			if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
972 				break;
973 		}
974 	}
975 }
976 #endif
977 
978 /*
979  * Switch to a new active hat, maintaining bit masks to track active CPUs.
980  *
981  * On the 32-bit PAE hypervisor, %cr3 is a 64-bit value, on metal it
982  * remains a 32-bit value.
983  */
984 void
985 hat_switch(hat_t *hat)
986 {
987 	uint64_t	newcr3;
988 	cpu_t		*cpu = CPU;
989 	hat_t		*old = cpu->cpu_current_hat;
990 
991 	/*
992 	 * set up this information first, so we don't miss any cross calls
993 	 */
994 	if (old != NULL) {
995 		if (old == hat)
996 			return;
997 		if (old != kas.a_hat)
998 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
999 	}
1000 
1001 	/*
1002 	 * Add this CPU to the active set for this HAT.
1003 	 */
1004 	if (hat != kas.a_hat) {
1005 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1006 	}
1007 	cpu->cpu_current_hat = hat;
1008 
1009 	/*
1010 	 * now go ahead and load cr3
1011 	 */
1012 	if (hat->hat_flags & HAT_VLP) {
1013 #if defined(__amd64)
1014 		x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1015 
1016 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1017 		newcr3 = MAKECR3(cpu->cpu_hat_info->hci_vlp_pfn);
1018 #elif defined(__i386)
1019 		reload_pae32(hat, cpu);
1020 		newcr3 = MAKECR3(kas.a_hat->hat_htable->ht_pfn) +
1021 		    (cpu->cpu_id + 1) * VLP_SIZE;
1022 #endif
1023 	} else {
1024 		newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn);
1025 	}
1026 #ifdef __xpv
1027 	{
1028 		struct mmuext_op t[2];
1029 		uint_t retcnt;
1030 		uint_t opcnt = 1;
1031 
1032 		t[0].cmd = MMUEXT_NEW_BASEPTR;
1033 		t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1034 #if defined(__amd64)
1035 		/*
1036 		 * There's an interesting problem here, as to what to
1037 		 * actually specify when switching to the kernel hat.
1038 		 * For now we'll reuse the kernel hat again.
1039 		 */
1040 		t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1041 		if (hat == kas.a_hat)
1042 			t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1043 		else
1044 			t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1045 		++opcnt;
1046 #endif	/* __amd64 */
1047 		if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1048 			panic("HYPERVISOR_mmu_update() failed");
1049 		ASSERT(retcnt == opcnt);
1050 
1051 	}
1052 #else
1053 	setcr3(newcr3);
1054 #endif
1055 	ASSERT(cpu == CPU);
1056 }
1057 
1058 /*
1059  * Utility to return a valid x86pte_t from protections, pfn, and level number
1060  */
1061 static x86pte_t
1062 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1063 {
1064 	x86pte_t	pte;
1065 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1066 
1067 	pte = MAKEPTE(pfn, level);
1068 
1069 	if (attr & PROT_WRITE)
1070 		PTE_SET(pte, PT_WRITABLE);
1071 
1072 	if (attr & PROT_USER)
1073 		PTE_SET(pte, PT_USER);
1074 
1075 	if (!(attr & PROT_EXEC))
1076 		PTE_SET(pte, mmu.pt_nx);
1077 
1078 	/*
1079 	 * Set the software bits used track ref/mod sync's and hments.
1080 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1081 	 */
1082 	if (flags & HAT_LOAD_NOCONSIST)
1083 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1084 	else if (attr & HAT_NOSYNC)
1085 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1086 
1087 	/*
1088 	 * Set the caching attributes in the PTE. The combination
1089 	 * of attributes are poorly defined, so we pay attention
1090 	 * to them in the given order.
1091 	 *
1092 	 * The test for HAT_STRICTORDER is different because it's defined
1093 	 * as "0" - which was a stupid thing to do, but is too late to change!
1094 	 */
1095 	if (cache_attr == HAT_STRICTORDER) {
1096 		PTE_SET(pte, PT_NOCACHE);
1097 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1098 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1099 		/* nothing to set */;
1100 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1101 		PTE_SET(pte, PT_NOCACHE);
1102 		if (is_x86_feature(x86_featureset, X86FSET_PAT))
1103 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1104 		else
1105 			PTE_SET(pte, PT_WRITETHRU);
1106 	} else {
1107 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1108 	}
1109 
1110 	return (pte);
1111 }
1112 
1113 /*
1114  * Duplicate address translations of the parent to the child.
1115  * This function really isn't used anymore.
1116  */
1117 /*ARGSUSED*/
1118 int
1119 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1120 {
1121 	ASSERT((uintptr_t)addr < kernelbase);
1122 	ASSERT(new != kas.a_hat);
1123 	ASSERT(old != kas.a_hat);
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Allocate any hat resources required for a process being swapped in.
1129  */
1130 /*ARGSUSED*/
1131 void
1132 hat_swapin(hat_t *hat)
1133 {
1134 	/* do nothing - we let everything fault back in */
1135 }
1136 
1137 /*
1138  * Unload all translations associated with an address space of a process
1139  * that is being swapped out.
1140  */
1141 void
1142 hat_swapout(hat_t *hat)
1143 {
1144 	uintptr_t	vaddr = (uintptr_t)0;
1145 	uintptr_t	eaddr = _userlimit;
1146 	htable_t	*ht = NULL;
1147 	level_t		l;
1148 
1149 	XPV_DISALLOW_MIGRATE();
1150 	/*
1151 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1152 	 * seg_spt and shared pagetables can't be swapped out.
1153 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1154 	 *
1155 	 * Instead we'll walk through all the address space and unload
1156 	 * any mappings which we are sure are not shared, not locked.
1157 	 */
1158 	ASSERT(IS_PAGEALIGNED(vaddr));
1159 	ASSERT(IS_PAGEALIGNED(eaddr));
1160 	ASSERT(AS_LOCK_HELD(hat->hat_as));
1161 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1162 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1163 
1164 	while (vaddr < eaddr) {
1165 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1166 		if (ht == NULL)
1167 			break;
1168 
1169 		ASSERT(!IN_VA_HOLE(vaddr));
1170 
1171 		/*
1172 		 * If the page table is shared skip its entire range.
1173 		 */
1174 		l = ht->ht_level;
1175 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1176 			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1177 			htable_release(ht);
1178 			ht = NULL;
1179 			continue;
1180 		}
1181 
1182 		/*
1183 		 * If the page table has no locked entries, unload this one.
1184 		 */
1185 		if (ht->ht_lock_cnt == 0)
1186 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1187 			    HAT_UNLOAD_UNMAP);
1188 
1189 		/*
1190 		 * If we have a level 0 page table with locked entries,
1191 		 * skip the entire page table, otherwise skip just one entry.
1192 		 */
1193 		if (ht->ht_lock_cnt > 0 && l == 0)
1194 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1195 		else
1196 			vaddr += LEVEL_SIZE(l);
1197 	}
1198 	if (ht)
1199 		htable_release(ht);
1200 
1201 	/*
1202 	 * We're in swapout because the system is low on memory, so
1203 	 * go back and flush all the htables off the cached list.
1204 	 */
1205 	htable_purge_hat(hat);
1206 	XPV_ALLOW_MIGRATE();
1207 }
1208 
1209 /*
1210  * returns number of bytes that have valid mappings in hat.
1211  */
1212 size_t
1213 hat_get_mapped_size(hat_t *hat)
1214 {
1215 	size_t total = 0;
1216 	int l;
1217 
1218 	for (l = 0; l <= mmu.max_page_level; l++)
1219 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1220 	total += hat->hat_ism_pgcnt;
1221 
1222 	return (total);
1223 }
1224 
1225 /*
1226  * enable/disable collection of stats for hat.
1227  */
1228 int
1229 hat_stats_enable(hat_t *hat)
1230 {
1231 	atomic_inc_32(&hat->hat_stats);
1232 	return (1);
1233 }
1234 
1235 void
1236 hat_stats_disable(hat_t *hat)
1237 {
1238 	atomic_dec_32(&hat->hat_stats);
1239 }
1240 
1241 /*
1242  * Utility to sync the ref/mod bits from a page table entry to the page_t
1243  * We must be holding the mapping list lock when this is called.
1244  */
1245 static void
1246 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1247 {
1248 	uint_t	rm = 0;
1249 	pgcnt_t	pgcnt;
1250 
1251 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1252 		return;
1253 
1254 	if (PTE_GET(pte, PT_REF))
1255 		rm |= P_REF;
1256 
1257 	if (PTE_GET(pte, PT_MOD))
1258 		rm |= P_MOD;
1259 
1260 	if (rm == 0)
1261 		return;
1262 
1263 	/*
1264 	 * sync to all constituent pages of a large page
1265 	 */
1266 	ASSERT(x86_hm_held(pp));
1267 	pgcnt = page_get_pagecnt(level);
1268 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1269 	for (; pgcnt > 0; --pgcnt) {
1270 		/*
1271 		 * hat_page_demote() can't decrease
1272 		 * pszc below this mapping size
1273 		 * since this large mapping existed after we
1274 		 * took mlist lock.
1275 		 */
1276 		ASSERT(pp->p_szc >= level);
1277 		hat_page_setattr(pp, rm);
1278 		++pp;
1279 	}
1280 }
1281 
1282 /*
1283  * This the set of PTE bits for PFN, permissions and caching
1284  * that are allowed to change on a HAT_LOAD_REMAP
1285  */
1286 #define	PT_REMAP_BITS							\
1287 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1288 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1289 
1290 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1291 /*
1292  * Do the low-level work to get a mapping entered into a HAT's pagetables
1293  * and in the mapping list of the associated page_t.
1294  */
1295 static int
1296 hati_pte_map(
1297 	htable_t	*ht,
1298 	uint_t		entry,
1299 	page_t		*pp,
1300 	x86pte_t	pte,
1301 	int		flags,
1302 	void		*pte_ptr)
1303 {
1304 	hat_t		*hat = ht->ht_hat;
1305 	x86pte_t	old_pte;
1306 	level_t		l = ht->ht_level;
1307 	hment_t		*hm;
1308 	uint_t		is_consist;
1309 	uint_t		is_locked;
1310 	int		rv = 0;
1311 
1312 	/*
1313 	 * Is this a consistent (ie. need mapping list lock) mapping?
1314 	 */
1315 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1316 
1317 	/*
1318 	 * Track locked mapping count in the htable.  Do this first,
1319 	 * as we track locking even if there already is a mapping present.
1320 	 */
1321 	is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1322 	if (is_locked)
1323 		HTABLE_LOCK_INC(ht);
1324 
1325 	/*
1326 	 * Acquire the page's mapping list lock and get an hment to use.
1327 	 * Note that hment_prepare() might return NULL.
1328 	 */
1329 	if (is_consist) {
1330 		x86_hm_enter(pp);
1331 		hm = hment_prepare(ht, entry, pp);
1332 	}
1333 
1334 	/*
1335 	 * Set the new pte, retrieving the old one at the same time.
1336 	 */
1337 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1338 
1339 	/*
1340 	 * Did we get a large page / page table collision?
1341 	 */
1342 	if (old_pte == LPAGE_ERROR) {
1343 		if (is_locked)
1344 			HTABLE_LOCK_DEC(ht);
1345 		rv = -1;
1346 		goto done;
1347 	}
1348 
1349 	/*
1350 	 * If the mapping didn't change there is nothing more to do.
1351 	 */
1352 	if (PTE_EQUIV(pte, old_pte))
1353 		goto done;
1354 
1355 	/*
1356 	 * Install a new mapping in the page's mapping list
1357 	 */
1358 	if (!PTE_ISVALID(old_pte)) {
1359 		if (is_consist) {
1360 			hment_assign(ht, entry, pp, hm);
1361 			x86_hm_exit(pp);
1362 		} else {
1363 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1364 		}
1365 #if defined(__amd64)
1366 		if (ht->ht_flags & HTABLE_VLP) {
1367 			cpu_t *cpu = CPU;
1368 			x86pte_t *vlpptep = cpu->cpu_hat_info->hci_vlp_l2ptes;
1369 			VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1370 		}
1371 #endif
1372 		HTABLE_INC(ht->ht_valid_cnt);
1373 		PGCNT_INC(hat, l);
1374 		return (rv);
1375 	}
1376 
1377 	/*
1378 	 * Remap's are more complicated:
1379 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1380 	 *    We also require that NOCONSIST be specified.
1381 	 *  - Otherwise only permission or caching bits may change.
1382 	 */
1383 	if (!PTE_ISPAGE(old_pte, l))
1384 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1385 
1386 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1387 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1388 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
1389 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
1390 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
1391 		    pf_is_memory(PTE2PFN(pte, l)));
1392 		REMAPASSERT(!is_consist);
1393 	}
1394 
1395 	/*
1396 	 * We only let remaps change the certain bits in the PTE.
1397 	 */
1398 	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
1399 		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
1400 		    old_pte, pte);
1401 
1402 	/*
1403 	 * We don't create any mapping list entries on a remap, so release
1404 	 * any allocated hment after we drop the mapping list lock.
1405 	 */
1406 done:
1407 	if (is_consist) {
1408 		x86_hm_exit(pp);
1409 		if (hm != NULL)
1410 			hment_free(hm);
1411 	}
1412 	return (rv);
1413 }
1414 
1415 /*
1416  * Internal routine to load a single page table entry. This only fails if
1417  * we attempt to overwrite a page table link with a large page.
1418  */
1419 static int
1420 hati_load_common(
1421 	hat_t		*hat,
1422 	uintptr_t	va,
1423 	page_t		*pp,
1424 	uint_t		attr,
1425 	uint_t		flags,
1426 	level_t		level,
1427 	pfn_t		pfn)
1428 {
1429 	htable_t	*ht;
1430 	uint_t		entry;
1431 	x86pte_t	pte;
1432 	int		rv = 0;
1433 
1434 	/*
1435 	 * The number 16 is arbitrary and here to catch a recursion problem
1436 	 * early before we blow out the kernel stack.
1437 	 */
1438 	++curthread->t_hatdepth;
1439 	ASSERT(curthread->t_hatdepth < 16);
1440 
1441 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1442 
1443 	if (flags & HAT_LOAD_SHARE)
1444 		hat->hat_flags |= HAT_SHARED;
1445 
1446 	/*
1447 	 * Find the page table that maps this page if it already exists.
1448 	 */
1449 	ht = htable_lookup(hat, va, level);
1450 
1451 	/*
1452 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
1453 	 */
1454 	if (pp == NULL)
1455 		flags |= HAT_LOAD_NOCONSIST;
1456 
1457 	if (ht == NULL) {
1458 		ht = htable_create(hat, va, level, NULL);
1459 		ASSERT(ht != NULL);
1460 	}
1461 	entry = htable_va2entry(va, ht);
1462 
1463 	/*
1464 	 * a bunch of paranoid error checking
1465 	 */
1466 	ASSERT(ht->ht_busy > 0);
1467 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht))
1468 		panic("hati_load_common: bad htable %p, va %p",
1469 		    (void *)ht, (void *)va);
1470 	ASSERT(ht->ht_level == level);
1471 
1472 	/*
1473 	 * construct the new PTE
1474 	 */
1475 	if (hat == kas.a_hat)
1476 		attr &= ~PROT_USER;
1477 	pte = hati_mkpte(pfn, attr, level, flags);
1478 	if (hat == kas.a_hat && va >= kernelbase)
1479 		PTE_SET(pte, mmu.pt_global);
1480 
1481 	/*
1482 	 * establish the mapping
1483 	 */
1484 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
1485 
1486 	/*
1487 	 * release the htable and any reserves
1488 	 */
1489 	htable_release(ht);
1490 	--curthread->t_hatdepth;
1491 	return (rv);
1492 }
1493 
1494 /*
1495  * special case of hat_memload to deal with some kernel addrs for performance
1496  */
1497 static void
1498 hat_kmap_load(
1499 	caddr_t		addr,
1500 	page_t		*pp,
1501 	uint_t		attr,
1502 	uint_t		flags)
1503 {
1504 	uintptr_t	va = (uintptr_t)addr;
1505 	x86pte_t	pte;
1506 	pfn_t		pfn = page_pptonum(pp);
1507 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
1508 	htable_t	*ht;
1509 	uint_t		entry;
1510 	void		*pte_ptr;
1511 
1512 	/*
1513 	 * construct the requested PTE
1514 	 */
1515 	attr &= ~PROT_USER;
1516 	attr |= HAT_STORECACHING_OK;
1517 	pte = hati_mkpte(pfn, attr, 0, flags);
1518 	PTE_SET(pte, mmu.pt_global);
1519 
1520 	/*
1521 	 * Figure out the pte_ptr and htable and use common code to finish up
1522 	 */
1523 	if (mmu.pae_hat)
1524 		pte_ptr = mmu.kmap_ptes + pg_off;
1525 	else
1526 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
1527 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
1528 	    LEVEL_SHIFT(1)];
1529 	entry = htable_va2entry(va, ht);
1530 	++curthread->t_hatdepth;
1531 	ASSERT(curthread->t_hatdepth < 16);
1532 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
1533 	--curthread->t_hatdepth;
1534 }
1535 
1536 /*
1537  * hat_memload() - load a translation to the given page struct
1538  *
1539  * Flags for hat_memload/hat_devload/hat_*attr.
1540  *
1541  * 	HAT_LOAD	Default flags to load a translation to the page.
1542  *
1543  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
1544  *			and hat_devload().
1545  *
1546  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
1547  *			sets PT_NOCONSIST
1548  *
1549  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
1550  *			that map some user pages (not kas) is shared by more
1551  *			than one process (eg. ISM).
1552  *
1553  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
1554  *
1555  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
1556  *			point, it's setting up mapping to allocate internal
1557  *			hat layer data structures.  This flag forces hat layer
1558  *			to tap its reserves in order to prevent infinite
1559  *			recursion.
1560  *
1561  * The following is a protection attribute (like PROT_READ, etc.)
1562  *
1563  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
1564  *			are never cleared.
1565  *
1566  * Installing new valid PTE's and creation of the mapping list
1567  * entry are controlled under the same lock. It's derived from the
1568  * page_t being mapped.
1569  */
1570 static uint_t supported_memload_flags =
1571 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
1572 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
1573 
1574 void
1575 hat_memload(
1576 	hat_t		*hat,
1577 	caddr_t		addr,
1578 	page_t		*pp,
1579 	uint_t		attr,
1580 	uint_t		flags)
1581 {
1582 	uintptr_t	va = (uintptr_t)addr;
1583 	level_t		level = 0;
1584 	pfn_t		pfn = page_pptonum(pp);
1585 
1586 	XPV_DISALLOW_MIGRATE();
1587 	ASSERT(IS_PAGEALIGNED(va));
1588 	ASSERT(hat == kas.a_hat || va < _userlimit);
1589 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1590 	ASSERT((flags & supported_memload_flags) == flags);
1591 
1592 	ASSERT(!IN_VA_HOLE(va));
1593 	ASSERT(!PP_ISFREE(pp));
1594 
1595 	/*
1596 	 * kernel address special case for performance.
1597 	 */
1598 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
1599 		ASSERT(hat == kas.a_hat);
1600 		hat_kmap_load(addr, pp, attr, flags);
1601 		XPV_ALLOW_MIGRATE();
1602 		return;
1603 	}
1604 
1605 	/*
1606 	 * This is used for memory with normal caching enabled, so
1607 	 * always set HAT_STORECACHING_OK.
1608 	 */
1609 	attr |= HAT_STORECACHING_OK;
1610 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
1611 		panic("unexpected hati_load_common() failure");
1612 	XPV_ALLOW_MIGRATE();
1613 }
1614 
1615 /* ARGSUSED */
1616 void
1617 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
1618     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
1619 {
1620 	hat_memload(hat, addr, pp, attr, flags);
1621 }
1622 
1623 /*
1624  * Load the given array of page structs using large pages when possible
1625  */
1626 void
1627 hat_memload_array(
1628 	hat_t		*hat,
1629 	caddr_t		addr,
1630 	size_t		len,
1631 	page_t		**pages,
1632 	uint_t		attr,
1633 	uint_t		flags)
1634 {
1635 	uintptr_t	va = (uintptr_t)addr;
1636 	uintptr_t	eaddr = va + len;
1637 	level_t		level;
1638 	size_t		pgsize;
1639 	pgcnt_t		pgindx = 0;
1640 	pfn_t		pfn;
1641 	pgcnt_t		i;
1642 
1643 	XPV_DISALLOW_MIGRATE();
1644 	ASSERT(IS_PAGEALIGNED(va));
1645 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
1646 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1647 	ASSERT((flags & supported_memload_flags) == flags);
1648 
1649 	/*
1650 	 * memload is used for memory with full caching enabled, so
1651 	 * set HAT_STORECACHING_OK.
1652 	 */
1653 	attr |= HAT_STORECACHING_OK;
1654 
1655 	/*
1656 	 * handle all pages using largest possible pagesize
1657 	 */
1658 	while (va < eaddr) {
1659 		/*
1660 		 * decide what level mapping to use (ie. pagesize)
1661 		 */
1662 		pfn = page_pptonum(pages[pgindx]);
1663 		for (level = mmu.max_page_level; ; --level) {
1664 			pgsize = LEVEL_SIZE(level);
1665 			if (level == 0)
1666 				break;
1667 
1668 			if (!IS_P2ALIGNED(va, pgsize) ||
1669 			    (eaddr - va) < pgsize ||
1670 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
1671 				continue;
1672 
1673 			/*
1674 			 * To use a large mapping of this size, all the
1675 			 * pages we are passed must be sequential subpages
1676 			 * of the large page.
1677 			 * hat_page_demote() can't change p_szc because
1678 			 * all pages are locked.
1679 			 */
1680 			if (pages[pgindx]->p_szc >= level) {
1681 				for (i = 0; i < mmu_btop(pgsize); ++i) {
1682 					if (pfn + i !=
1683 					    page_pptonum(pages[pgindx + i]))
1684 						break;
1685 					ASSERT(pages[pgindx + i]->p_szc >=
1686 					    level);
1687 					ASSERT(pages[pgindx] + i ==
1688 					    pages[pgindx + i]);
1689 				}
1690 				if (i == mmu_btop(pgsize)) {
1691 #ifdef DEBUG
1692 					if (level == 2)
1693 						map1gcnt++;
1694 #endif
1695 					break;
1696 				}
1697 			}
1698 		}
1699 
1700 		/*
1701 		 * Load this page mapping. If the load fails, try a smaller
1702 		 * pagesize.
1703 		 */
1704 		ASSERT(!IN_VA_HOLE(va));
1705 		while (hati_load_common(hat, va, pages[pgindx], attr,
1706 		    flags, level, pfn) != 0) {
1707 			if (level == 0)
1708 				panic("unexpected hati_load_common() failure");
1709 			--level;
1710 			pgsize = LEVEL_SIZE(level);
1711 		}
1712 
1713 		/*
1714 		 * move to next page
1715 		 */
1716 		va += pgsize;
1717 		pgindx += mmu_btop(pgsize);
1718 	}
1719 	XPV_ALLOW_MIGRATE();
1720 }
1721 
1722 /* ARGSUSED */
1723 void
1724 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
1725     struct page **pps, uint_t attr, uint_t flags,
1726     hat_region_cookie_t rcookie)
1727 {
1728 	hat_memload_array(hat, addr, len, pps, attr, flags);
1729 }
1730 
1731 /*
1732  * void hat_devload(hat, addr, len, pf, attr, flags)
1733  *	load/lock the given page frame number
1734  *
1735  * Advisory ordering attributes. Apply only to device mappings.
1736  *
1737  * HAT_STRICTORDER: the CPU must issue the references in order, as the
1738  *	programmer specified.  This is the default.
1739  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
1740  *	of reordering; store or load with store or load).
1741  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
1742  *	to consecutive locations (for example, turn two consecutive byte
1743  *	stores into one halfword store), and it may batch individual loads
1744  *	(for example, turn two consecutive byte loads into one halfword load).
1745  *	This also implies re-ordering.
1746  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
1747  *	until another store occurs.  The default is to fetch new data
1748  *	on every load.  This also implies merging.
1749  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
1750  *	the device (perhaps with other data) at a later time.  The default is
1751  *	to push the data right away.  This also implies load caching.
1752  *
1753  * Equivalent of hat_memload(), but can be used for device memory where
1754  * there are no page_t's and we support additional flags (write merging, etc).
1755  * Note that we can have large page mappings with this interface.
1756  */
1757 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
1758 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
1759 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
1760 
1761 void
1762 hat_devload(
1763 	hat_t		*hat,
1764 	caddr_t		addr,
1765 	size_t		len,
1766 	pfn_t		pfn,
1767 	uint_t		attr,
1768 	int		flags)
1769 {
1770 	uintptr_t	va = ALIGN2PAGE(addr);
1771 	uintptr_t	eva = va + len;
1772 	level_t		level;
1773 	size_t		pgsize;
1774 	page_t		*pp;
1775 	int		f;	/* per PTE copy of flags  - maybe modified */
1776 	uint_t		a;	/* per PTE copy of attr */
1777 
1778 	XPV_DISALLOW_MIGRATE();
1779 	ASSERT(IS_PAGEALIGNED(va));
1780 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
1781 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
1782 	ASSERT((flags & supported_devload_flags) == flags);
1783 
1784 	/*
1785 	 * handle all pages
1786 	 */
1787 	while (va < eva) {
1788 
1789 		/*
1790 		 * decide what level mapping to use (ie. pagesize)
1791 		 */
1792 		for (level = mmu.max_page_level; ; --level) {
1793 			pgsize = LEVEL_SIZE(level);
1794 			if (level == 0)
1795 				break;
1796 			if (IS_P2ALIGNED(va, pgsize) &&
1797 			    (eva - va) >= pgsize &&
1798 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
1799 #ifdef DEBUG
1800 				if (level == 2)
1801 					map1gcnt++;
1802 #endif
1803 				break;
1804 			}
1805 		}
1806 
1807 		/*
1808 		 * If this is just memory then allow caching (this happens
1809 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
1810 		 * to override that. If we don't have a page_t then make sure
1811 		 * NOCONSIST is set.
1812 		 */
1813 		a = attr;
1814 		f = flags;
1815 		if (!pf_is_memory(pfn))
1816 			f |= HAT_LOAD_NOCONSIST;
1817 		else if (!(a & HAT_PLAT_NOCACHE))
1818 			a |= HAT_STORECACHING_OK;
1819 
1820 		if (f & HAT_LOAD_NOCONSIST)
1821 			pp = NULL;
1822 		else
1823 			pp = page_numtopp_nolock(pfn);
1824 
1825 		/*
1826 		 * Check to make sure we are really trying to map a valid
1827 		 * memory page. The caller wishing to intentionally map
1828 		 * free memory pages will have passed the HAT_LOAD_NOCONSIST
1829 		 * flag, then pp will be NULL.
1830 		 */
1831 		if (pp != NULL) {
1832 			if (PP_ISFREE(pp)) {
1833 				panic("hat_devload: loading "
1834 				    "a mapping to free page %p", (void *)pp);
1835 			}
1836 
1837 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
1838 				panic("hat_devload: loading a mapping "
1839 				    "to an unlocked page %p",
1840 				    (void *)pp);
1841 			}
1842 		}
1843 
1844 		/*
1845 		 * load this page mapping
1846 		 */
1847 		ASSERT(!IN_VA_HOLE(va));
1848 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
1849 			if (level == 0)
1850 				panic("unexpected hati_load_common() failure");
1851 			--level;
1852 			pgsize = LEVEL_SIZE(level);
1853 		}
1854 
1855 		/*
1856 		 * move to next page
1857 		 */
1858 		va += pgsize;
1859 		pfn += mmu_btop(pgsize);
1860 	}
1861 	XPV_ALLOW_MIGRATE();
1862 }
1863 
1864 /*
1865  * void hat_unlock(hat, addr, len)
1866  *	unlock the mappings to a given range of addresses
1867  *
1868  * Locks are tracked by ht_lock_cnt in the htable.
1869  */
1870 void
1871 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
1872 {
1873 	uintptr_t	vaddr = (uintptr_t)addr;
1874 	uintptr_t	eaddr = vaddr + len;
1875 	htable_t	*ht = NULL;
1876 
1877 	/*
1878 	 * kernel entries are always locked, we don't track lock counts
1879 	 */
1880 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
1881 	ASSERT(IS_PAGEALIGNED(vaddr));
1882 	ASSERT(IS_PAGEALIGNED(eaddr));
1883 	if (hat == kas.a_hat)
1884 		return;
1885 	if (eaddr > _userlimit)
1886 		panic("hat_unlock() address out of range - above _userlimit");
1887 
1888 	XPV_DISALLOW_MIGRATE();
1889 	ASSERT(AS_LOCK_HELD(hat->hat_as));
1890 	while (vaddr < eaddr) {
1891 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1892 		if (ht == NULL)
1893 			break;
1894 
1895 		ASSERT(!IN_VA_HOLE(vaddr));
1896 
1897 		if (ht->ht_lock_cnt < 1)
1898 			panic("hat_unlock(): lock_cnt < 1, "
1899 			    "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
1900 		HTABLE_LOCK_DEC(ht);
1901 
1902 		vaddr += LEVEL_SIZE(ht->ht_level);
1903 	}
1904 	if (ht)
1905 		htable_release(ht);
1906 	XPV_ALLOW_MIGRATE();
1907 }
1908 
1909 /* ARGSUSED */
1910 void
1911 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
1912     hat_region_cookie_t rcookie)
1913 {
1914 	panic("No shared region support on x86");
1915 }
1916 
1917 #if !defined(__xpv)
1918 /*
1919  * Cross call service routine to demap a virtual page on
1920  * the current CPU or flush all mappings in TLB.
1921  */
1922 /*ARGSUSED*/
1923 static int
1924 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1925 {
1926 	hat_t	*hat = (hat_t *)a1;
1927 	caddr_t	addr = (caddr_t)a2;
1928 	size_t len = (size_t)a3;
1929 
1930 	/*
1931 	 * If the target hat isn't the kernel and this CPU isn't operating
1932 	 * in the target hat, we can ignore the cross call.
1933 	 */
1934 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
1935 		return (0);
1936 
1937 	/*
1938 	 * For a normal address, we flush a range of contiguous mappings
1939 	 */
1940 	if ((uintptr_t)addr != DEMAP_ALL_ADDR) {
1941 		for (size_t i = 0; i < len; i += MMU_PAGESIZE)
1942 			mmu_tlbflush_entry(addr + i);
1943 		return (0);
1944 	}
1945 
1946 	/*
1947 	 * Otherwise we reload cr3 to effect a complete TLB flush.
1948 	 *
1949 	 * A reload of cr3 on a VLP process also means we must also recopy in
1950 	 * the pte values from the struct hat
1951 	 */
1952 	if (hat->hat_flags & HAT_VLP) {
1953 #if defined(__amd64)
1954 		x86pte_t *vlpptep = CPU->cpu_hat_info->hci_vlp_l2ptes;
1955 
1956 		VLP_COPY(hat->hat_vlp_ptes, vlpptep);
1957 #elif defined(__i386)
1958 		reload_pae32(hat, CPU);
1959 #endif
1960 	}
1961 	reload_cr3();
1962 	return (0);
1963 }
1964 
1965 /*
1966  * Flush all TLB entries, including global (ie. kernel) ones.
1967  */
1968 static void
1969 flush_all_tlb_entries(void)
1970 {
1971 	ulong_t cr4 = getcr4();
1972 
1973 	if (cr4 & CR4_PGE) {
1974 		setcr4(cr4 & ~(ulong_t)CR4_PGE);
1975 		setcr4(cr4);
1976 
1977 		/*
1978 		 * 32 bit PAE also needs to always reload_cr3()
1979 		 */
1980 		if (mmu.max_level == 2)
1981 			reload_cr3();
1982 	} else {
1983 		reload_cr3();
1984 	}
1985 }
1986 
1987 #define	TLB_CPU_HALTED	(01ul)
1988 #define	TLB_INVAL_ALL	(02ul)
1989 #define	CAS_TLB_INFO(cpu, old, new)	\
1990 	atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
1991 
1992 /*
1993  * Record that a CPU is going idle
1994  */
1995 void
1996 tlb_going_idle(void)
1997 {
1998 	atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, TLB_CPU_HALTED);
1999 }
2000 
2001 /*
2002  * Service a delayed TLB flush if coming out of being idle.
2003  * It will be called from cpu idle notification with interrupt disabled.
2004  */
2005 void
2006 tlb_service(void)
2007 {
2008 	ulong_t tlb_info;
2009 	ulong_t found;
2010 
2011 	/*
2012 	 * We only have to do something if coming out of being idle.
2013 	 */
2014 	tlb_info = CPU->cpu_m.mcpu_tlb_info;
2015 	if (tlb_info & TLB_CPU_HALTED) {
2016 		ASSERT(CPU->cpu_current_hat == kas.a_hat);
2017 
2018 		/*
2019 		 * Atomic clear and fetch of old state.
2020 		 */
2021 		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2022 			ASSERT(found & TLB_CPU_HALTED);
2023 			tlb_info = found;
2024 			SMT_PAUSE();
2025 		}
2026 		if (tlb_info & TLB_INVAL_ALL)
2027 			flush_all_tlb_entries();
2028 	}
2029 }
2030 #endif /* !__xpv */
2031 
2032 /*
2033  * Internal routine to do cross calls to invalidate a range of pages on
2034  * all CPUs using a given hat.
2035  */
2036 void
2037 hat_tlb_inval_range(hat_t *hat, uintptr_t va, size_t len)
2038 {
2039 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2040 	cpuset_t	justme;
2041 	cpuset_t	cpus_to_shootdown;
2042 #ifndef __xpv
2043 	cpuset_t	check_cpus;
2044 	cpu_t		*cpup;
2045 	int		c;
2046 #endif
2047 
2048 	/*
2049 	 * If the hat is being destroyed, there are no more users, so
2050 	 * demap need not do anything.
2051 	 */
2052 	if (hat->hat_flags & HAT_FREEING)
2053 		return;
2054 
2055 	/*
2056 	 * If demapping from a shared pagetable, we best demap the
2057 	 * entire set of user TLBs, since we don't know what addresses
2058 	 * these were shared at.
2059 	 */
2060 	if (hat->hat_flags & HAT_SHARED) {
2061 		hat = kas.a_hat;
2062 		va = DEMAP_ALL_ADDR;
2063 	}
2064 
2065 	/*
2066 	 * if not running with multiple CPUs, don't use cross calls
2067 	 */
2068 	if (panicstr || !flushes_require_xcalls) {
2069 #ifdef __xpv
2070 		if (va == DEMAP_ALL_ADDR) {
2071 			xen_flush_tlb();
2072 		} else {
2073 			for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2074 				xen_flush_va((caddr_t)(va + i));
2075 		}
2076 #else
2077 		(void) hati_demap_func((xc_arg_t)hat,
2078 		    (xc_arg_t)va, (xc_arg_t)len);
2079 #endif
2080 		return;
2081 	}
2082 
2083 
2084 	/*
2085 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2086 	 * Otherwise it's just CPUs currently executing in this hat.
2087 	 */
2088 	kpreempt_disable();
2089 	CPUSET_ONLY(justme, CPU->cpu_id);
2090 	if (hat == kas.a_hat)
2091 		cpus_to_shootdown = khat_cpuset;
2092 	else
2093 		cpus_to_shootdown = hat->hat_cpus;
2094 
2095 #ifndef __xpv
2096 	/*
2097 	 * If any CPUs in the set are idle, just request a delayed flush
2098 	 * and avoid waking them up.
2099 	 */
2100 	check_cpus = cpus_to_shootdown;
2101 	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2102 		ulong_t tlb_info;
2103 
2104 		if (!CPU_IN_SET(check_cpus, c))
2105 			continue;
2106 		CPUSET_DEL(check_cpus, c);
2107 		cpup = cpu[c];
2108 		if (cpup == NULL)
2109 			continue;
2110 
2111 		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2112 		while (tlb_info == TLB_CPU_HALTED) {
2113 			(void) CAS_TLB_INFO(cpup, TLB_CPU_HALTED,
2114 			    TLB_CPU_HALTED | TLB_INVAL_ALL);
2115 			SMT_PAUSE();
2116 			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2117 		}
2118 		if (tlb_info == (TLB_CPU_HALTED | TLB_INVAL_ALL)) {
2119 			HATSTAT_INC(hs_tlb_inval_delayed);
2120 			CPUSET_DEL(cpus_to_shootdown, c);
2121 		}
2122 	}
2123 #endif
2124 
2125 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2126 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2127 
2128 #ifdef __xpv
2129 		if (va == DEMAP_ALL_ADDR) {
2130 			xen_flush_tlb();
2131 		} else {
2132 			for (size_t i = 0; i < len; i += MMU_PAGESIZE)
2133 				xen_flush_va((caddr_t)(va + i));
2134 		}
2135 #else
2136 		(void) hati_demap_func((xc_arg_t)hat,
2137 		    (xc_arg_t)va, (xc_arg_t)len);
2138 #endif
2139 
2140 	} else {
2141 
2142 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2143 #ifdef __xpv
2144 		if (va == DEMAP_ALL_ADDR) {
2145 			xen_gflush_tlb(cpus_to_shootdown);
2146 		} else {
2147 			for (size_t i = 0; i < len; i += MMU_PAGESIZE) {
2148 				xen_gflush_va((caddr_t)(va + i),
2149 				    cpus_to_shootdown);
2150 			}
2151 		}
2152 #else
2153 		xc_call((xc_arg_t)hat, (xc_arg_t)va, (xc_arg_t)len,
2154 		    CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2155 #endif
2156 
2157 	}
2158 	kpreempt_enable();
2159 }
2160 
2161 void
2162 hat_tlb_inval(hat_t *hat, uintptr_t va)
2163 {
2164 	hat_tlb_inval_range(hat, va, MMU_PAGESIZE);
2165 }
2166 
2167 /*
2168  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2169  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2170  * handle releasing of the htables.
2171  */
2172 void
2173 hat_pte_unmap(
2174 	htable_t	*ht,
2175 	uint_t		entry,
2176 	uint_t		flags,
2177 	x86pte_t	old_pte,
2178 	void		*pte_ptr,
2179 	boolean_t	tlb)
2180 {
2181 	hat_t		*hat = ht->ht_hat;
2182 	hment_t		*hm = NULL;
2183 	page_t		*pp = NULL;
2184 	level_t		l = ht->ht_level;
2185 	pfn_t		pfn;
2186 
2187 	/*
2188 	 * We always track the locking counts, even if nothing is unmapped
2189 	 */
2190 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2191 		ASSERT(ht->ht_lock_cnt > 0);
2192 		HTABLE_LOCK_DEC(ht);
2193 	}
2194 
2195 	/*
2196 	 * Figure out which page's mapping list lock to acquire using the PFN
2197 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2198 	 * If another thread, probably a hat_pageunload, has asynchronously
2199 	 * unmapped/remapped this address we'll loop here.
2200 	 */
2201 	ASSERT(ht->ht_busy > 0);
2202 	while (PTE_ISVALID(old_pte)) {
2203 		pfn = PTE2PFN(old_pte, l);
2204 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2205 			pp = NULL;
2206 		} else {
2207 #ifdef __xpv
2208 			if (pfn == PFN_INVALID)
2209 				panic("Invalid PFN, but not PT_NOCONSIST");
2210 #endif
2211 			pp = page_numtopp_nolock(pfn);
2212 			if (pp == NULL) {
2213 				panic("no page_t, not NOCONSIST: old_pte="
2214 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2215 				    old_pte, (uintptr_t)ht, entry,
2216 				    (uintptr_t)pte_ptr);
2217 			}
2218 			x86_hm_enter(pp);
2219 		}
2220 
2221 		old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb);
2222 
2223 		/*
2224 		 * If the page hadn't changed we've unmapped it and can proceed
2225 		 */
2226 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2227 			break;
2228 
2229 		/*
2230 		 * Otherwise, we'll have to retry with the current old_pte.
2231 		 * Drop the hment lock, since the pfn may have changed.
2232 		 */
2233 		if (pp != NULL) {
2234 			x86_hm_exit(pp);
2235 			pp = NULL;
2236 		} else {
2237 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2238 		}
2239 	}
2240 
2241 	/*
2242 	 * If the old mapping wasn't valid, there's nothing more to do
2243 	 */
2244 	if (!PTE_ISVALID(old_pte)) {
2245 		if (pp != NULL)
2246 			x86_hm_exit(pp);
2247 		return;
2248 	}
2249 
2250 	/*
2251 	 * Take care of syncing any MOD/REF bits and removing the hment.
2252 	 */
2253 	if (pp != NULL) {
2254 		if (!(flags & HAT_UNLOAD_NOSYNC))
2255 			hati_sync_pte_to_page(pp, old_pte, l);
2256 		hm = hment_remove(pp, ht, entry);
2257 		x86_hm_exit(pp);
2258 		if (hm != NULL)
2259 			hment_free(hm);
2260 	}
2261 
2262 	/*
2263 	 * Handle book keeping in the htable and hat
2264 	 */
2265 	ASSERT(ht->ht_valid_cnt > 0);
2266 	HTABLE_DEC(ht->ht_valid_cnt);
2267 	PGCNT_DEC(hat, l);
2268 }
2269 
2270 /*
2271  * very cheap unload implementation to special case some kernel addresses
2272  */
2273 static void
2274 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2275 {
2276 	uintptr_t	va = (uintptr_t)addr;
2277 	uintptr_t	eva = va + len;
2278 	pgcnt_t		pg_index;
2279 	htable_t	*ht;
2280 	uint_t		entry;
2281 	x86pte_t	*pte_ptr;
2282 	x86pte_t	old_pte;
2283 
2284 	for (; va < eva; va += MMU_PAGESIZE) {
2285 		/*
2286 		 * Get the PTE
2287 		 */
2288 		pg_index = mmu_btop(va - mmu.kmap_addr);
2289 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2290 		old_pte = GET_PTE(pte_ptr);
2291 
2292 		/*
2293 		 * get the htable / entry
2294 		 */
2295 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2296 		    >> LEVEL_SHIFT(1)];
2297 		entry = htable_va2entry(va, ht);
2298 
2299 		/*
2300 		 * use mostly common code to unmap it.
2301 		 */
2302 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE);
2303 	}
2304 }
2305 
2306 
2307 /*
2308  * unload a range of virtual address space (no callback)
2309  */
2310 void
2311 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2312 {
2313 	uintptr_t va = (uintptr_t)addr;
2314 
2315 	XPV_DISALLOW_MIGRATE();
2316 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2317 
2318 	/*
2319 	 * special case for performance.
2320 	 */
2321 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2322 		ASSERT(hat == kas.a_hat);
2323 		hat_kmap_unload(addr, len, flags);
2324 	} else {
2325 		hat_unload_callback(hat, addr, len, flags, NULL);
2326 	}
2327 	XPV_ALLOW_MIGRATE();
2328 }
2329 
2330 /*
2331  * Do the callbacks for ranges being unloaded.
2332  */
2333 typedef struct range_info {
2334 	uintptr_t	rng_va;
2335 	ulong_t		rng_cnt;
2336 	level_t		rng_level;
2337 } range_info_t;
2338 
2339 /*
2340  * Invalidate the TLB, and perform the callback to the upper level VM system,
2341  * for the specified ranges of contiguous pages.
2342  */
2343 static void
2344 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, range_info_t *range)
2345 {
2346 	while (cnt > 0) {
2347 		size_t len;
2348 
2349 		--cnt;
2350 		len = range[cnt].rng_cnt << LEVEL_SHIFT(range[cnt].rng_level);
2351 		hat_tlb_inval_range(hat, (uintptr_t)range[cnt].rng_va, len);
2352 
2353 		if (cb != NULL) {
2354 			cb->hcb_start_addr = (caddr_t)range[cnt].rng_va;
2355 			cb->hcb_end_addr = cb->hcb_start_addr;
2356 			cb->hcb_end_addr += len;
2357 			cb->hcb_function(cb);
2358 		}
2359 	}
2360 }
2361 
2362 /*
2363  * Unload a given range of addresses (has optional callback)
2364  *
2365  * Flags:
2366  * define	HAT_UNLOAD		0x00
2367  * define	HAT_UNLOAD_NOSYNC	0x02
2368  * define	HAT_UNLOAD_UNLOCK	0x04
2369  * define	HAT_UNLOAD_OTHER	0x08 - not used
2370  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2371  */
2372 #define	MAX_UNLOAD_CNT (8)
2373 void
2374 hat_unload_callback(
2375 	hat_t		*hat,
2376 	caddr_t		addr,
2377 	size_t		len,
2378 	uint_t		flags,
2379 	hat_callback_t	*cb)
2380 {
2381 	uintptr_t	vaddr = (uintptr_t)addr;
2382 	uintptr_t	eaddr = vaddr + len;
2383 	htable_t	*ht = NULL;
2384 	uint_t		entry;
2385 	uintptr_t	contig_va = (uintptr_t)-1L;
2386 	range_info_t	r[MAX_UNLOAD_CNT];
2387 	uint_t		r_cnt = 0;
2388 	x86pte_t	old_pte;
2389 
2390 	XPV_DISALLOW_MIGRATE();
2391 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2392 	ASSERT(IS_PAGEALIGNED(vaddr));
2393 	ASSERT(IS_PAGEALIGNED(eaddr));
2394 
2395 	/*
2396 	 * Special case a single page being unloaded for speed. This happens
2397 	 * quite frequently, COW faults after a fork() for example.
2398 	 */
2399 	if (cb == NULL && len == MMU_PAGESIZE) {
2400 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2401 		if (ht != NULL) {
2402 			if (PTE_ISVALID(old_pte)) {
2403 				hat_pte_unmap(ht, entry, flags, old_pte,
2404 				    NULL, B_TRUE);
2405 			}
2406 			htable_release(ht);
2407 		}
2408 		XPV_ALLOW_MIGRATE();
2409 		return;
2410 	}
2411 
2412 	while (vaddr < eaddr) {
2413 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
2414 		if (ht == NULL)
2415 			break;
2416 
2417 		ASSERT(!IN_VA_HOLE(vaddr));
2418 
2419 		if (vaddr < (uintptr_t)addr)
2420 			panic("hat_unload_callback(): unmap inside large page");
2421 
2422 		/*
2423 		 * We'll do the call backs for contiguous ranges
2424 		 */
2425 		if (vaddr != contig_va ||
2426 		    (r_cnt > 0 && r[r_cnt - 1].rng_level != ht->ht_level)) {
2427 			if (r_cnt == MAX_UNLOAD_CNT) {
2428 				handle_ranges(hat, cb, r_cnt, r);
2429 				r_cnt = 0;
2430 			}
2431 			r[r_cnt].rng_va = vaddr;
2432 			r[r_cnt].rng_cnt = 0;
2433 			r[r_cnt].rng_level = ht->ht_level;
2434 			++r_cnt;
2435 		}
2436 
2437 		/*
2438 		 * Unload one mapping (for a single page) from the page tables.
2439 		 * Note that we do not remove the mapping from the TLB yet,
2440 		 * as indicated by the tlb=FALSE argument to hat_pte_unmap().
2441 		 * handle_ranges() will clear the TLB entries with one call to
2442 		 * hat_tlb_inval_range() per contiguous range.  This is
2443 		 * safe because the page can not be reused until the
2444 		 * callback is made (or we return).
2445 		 */
2446 		entry = htable_va2entry(vaddr, ht);
2447 		hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE);
2448 		ASSERT(ht->ht_level <= mmu.max_page_level);
2449 		vaddr += LEVEL_SIZE(ht->ht_level);
2450 		contig_va = vaddr;
2451 		++r[r_cnt - 1].rng_cnt;
2452 	}
2453 	if (ht)
2454 		htable_release(ht);
2455 
2456 	/*
2457 	 * handle last range for callbacks
2458 	 */
2459 	if (r_cnt > 0)
2460 		handle_ranges(hat, cb, r_cnt, r);
2461 	XPV_ALLOW_MIGRATE();
2462 }
2463 
2464 /*
2465  * Invalidate a virtual address translation on a slave CPU during
2466  * panic() dumps.
2467  */
2468 void
2469 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
2470 {
2471 	ssize_t sz;
2472 	caddr_t endva = va + size;
2473 
2474 	while (va < endva) {
2475 		sz = hat_getpagesize(hat, va);
2476 		if (sz < 0) {
2477 #ifdef __xpv
2478 			xen_flush_tlb();
2479 #else
2480 			flush_all_tlb_entries();
2481 #endif
2482 			break;
2483 		}
2484 #ifdef __xpv
2485 		xen_flush_va(va);
2486 #else
2487 		mmu_tlbflush_entry(va);
2488 #endif
2489 		va += sz;
2490 	}
2491 }
2492 
2493 /*
2494  * synchronize mapping with software data structures
2495  *
2496  * This interface is currently only used by the working set monitor
2497  * driver.
2498  */
2499 /*ARGSUSED*/
2500 void
2501 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2502 {
2503 	uintptr_t	vaddr = (uintptr_t)addr;
2504 	uintptr_t	eaddr = vaddr + len;
2505 	htable_t	*ht = NULL;
2506 	uint_t		entry;
2507 	x86pte_t	pte;
2508 	x86pte_t	save_pte;
2509 	x86pte_t	new;
2510 	page_t		*pp;
2511 
2512 	ASSERT(!IN_VA_HOLE(vaddr));
2513 	ASSERT(IS_PAGEALIGNED(vaddr));
2514 	ASSERT(IS_PAGEALIGNED(eaddr));
2515 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2516 
2517 	XPV_DISALLOW_MIGRATE();
2518 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2519 try_again:
2520 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
2521 		if (ht == NULL)
2522 			break;
2523 		entry = htable_va2entry(vaddr, ht);
2524 
2525 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2526 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
2527 			continue;
2528 
2529 		/*
2530 		 * We need to acquire the mapping list lock to protect
2531 		 * against hat_pageunload(), hat_unload(), etc.
2532 		 */
2533 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
2534 		if (pp == NULL)
2535 			break;
2536 		x86_hm_enter(pp);
2537 		save_pte = pte;
2538 		pte = x86pte_get(ht, entry);
2539 		if (pte != save_pte) {
2540 			x86_hm_exit(pp);
2541 			goto try_again;
2542 		}
2543 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
2544 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
2545 			x86_hm_exit(pp);
2546 			continue;
2547 		}
2548 
2549 		/*
2550 		 * Need to clear ref or mod bits. We may compete with
2551 		 * hardware updating the R/M bits and have to try again.
2552 		 */
2553 		if (flags == HAT_SYNC_ZERORM) {
2554 			new = pte;
2555 			PTE_CLR(new, PT_REF | PT_MOD);
2556 			pte = hati_update_pte(ht, entry, pte, new);
2557 			if (pte != 0) {
2558 				x86_hm_exit(pp);
2559 				goto try_again;
2560 			}
2561 		} else {
2562 			/*
2563 			 * sync the PTE to the page_t
2564 			 */
2565 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
2566 		}
2567 		x86_hm_exit(pp);
2568 	}
2569 	if (ht)
2570 		htable_release(ht);
2571 	XPV_ALLOW_MIGRATE();
2572 }
2573 
2574 /*
2575  * void	hat_map(hat, addr, len, flags)
2576  */
2577 /*ARGSUSED*/
2578 void
2579 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2580 {
2581 	/* does nothing */
2582 }
2583 
2584 /*
2585  * uint_t hat_getattr(hat, addr, *attr)
2586  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
2587  *	mapping and *attr is valid, nonzero if there was no mapping and
2588  *	*attr is not valid.
2589  */
2590 uint_t
2591 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
2592 {
2593 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2594 	htable_t	*ht = NULL;
2595 	x86pte_t	pte;
2596 
2597 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2598 
2599 	if (IN_VA_HOLE(vaddr))
2600 		return ((uint_t)-1);
2601 
2602 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
2603 	if (ht == NULL)
2604 		return ((uint_t)-1);
2605 
2606 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
2607 		htable_release(ht);
2608 		return ((uint_t)-1);
2609 	}
2610 
2611 	*attr = PROT_READ;
2612 	if (PTE_GET(pte, PT_WRITABLE))
2613 		*attr |= PROT_WRITE;
2614 	if (PTE_GET(pte, PT_USER))
2615 		*attr |= PROT_USER;
2616 	if (!PTE_GET(pte, mmu.pt_nx))
2617 		*attr |= PROT_EXEC;
2618 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
2619 		*attr |= HAT_NOSYNC;
2620 	htable_release(ht);
2621 	return (0);
2622 }
2623 
2624 /*
2625  * hat_updateattr() applies the given attribute change to an existing mapping
2626  */
2627 #define	HAT_LOAD_ATTR		1
2628 #define	HAT_SET_ATTR		2
2629 #define	HAT_CLR_ATTR		3
2630 
2631 static void
2632 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
2633 {
2634 	uintptr_t	vaddr = (uintptr_t)addr;
2635 	uintptr_t	eaddr = (uintptr_t)addr + len;
2636 	htable_t	*ht = NULL;
2637 	uint_t		entry;
2638 	x86pte_t	oldpte, newpte;
2639 	page_t		*pp;
2640 
2641 	XPV_DISALLOW_MIGRATE();
2642 	ASSERT(IS_PAGEALIGNED(vaddr));
2643 	ASSERT(IS_PAGEALIGNED(eaddr));
2644 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2645 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
2646 try_again:
2647 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
2648 		if (ht == NULL)
2649 			break;
2650 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
2651 			continue;
2652 
2653 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
2654 		if (pp == NULL)
2655 			continue;
2656 		x86_hm_enter(pp);
2657 
2658 		newpte = oldpte;
2659 		/*
2660 		 * We found a page table entry in the desired range,
2661 		 * figure out the new attributes.
2662 		 */
2663 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
2664 			if ((attr & PROT_WRITE) &&
2665 			    !PTE_GET(oldpte, PT_WRITABLE))
2666 				newpte |= PT_WRITABLE;
2667 
2668 			if ((attr & HAT_NOSYNC) &&
2669 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
2670 				newpte |= PT_NOSYNC;
2671 
2672 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
2673 				newpte &= ~mmu.pt_nx;
2674 		}
2675 
2676 		if (what == HAT_LOAD_ATTR) {
2677 			if (!(attr & PROT_WRITE) &&
2678 			    PTE_GET(oldpte, PT_WRITABLE))
2679 				newpte &= ~PT_WRITABLE;
2680 
2681 			if (!(attr & HAT_NOSYNC) &&
2682 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2683 				newpte &= ~PT_SOFTWARE;
2684 
2685 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2686 				newpte |= mmu.pt_nx;
2687 		}
2688 
2689 		if (what == HAT_CLR_ATTR) {
2690 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
2691 				newpte &= ~PT_WRITABLE;
2692 
2693 			if ((attr & HAT_NOSYNC) &&
2694 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
2695 				newpte &= ~PT_SOFTWARE;
2696 
2697 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
2698 				newpte |= mmu.pt_nx;
2699 		}
2700 
2701 		/*
2702 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
2703 		 * x86pte_set() depends on this.
2704 		 */
2705 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
2706 			newpte |= PT_REF | PT_MOD;
2707 
2708 		/*
2709 		 * what about PROT_READ or others? this code only handles:
2710 		 * EXEC, WRITE, NOSYNC
2711 		 */
2712 
2713 		/*
2714 		 * If new PTE really changed, update the table.
2715 		 */
2716 		if (newpte != oldpte) {
2717 			entry = htable_va2entry(vaddr, ht);
2718 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
2719 			if (oldpte != 0) {
2720 				x86_hm_exit(pp);
2721 				goto try_again;
2722 			}
2723 		}
2724 		x86_hm_exit(pp);
2725 	}
2726 	if (ht)
2727 		htable_release(ht);
2728 	XPV_ALLOW_MIGRATE();
2729 }
2730 
2731 /*
2732  * Various wrappers for hat_updateattr()
2733  */
2734 void
2735 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2736 {
2737 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2738 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
2739 }
2740 
2741 void
2742 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2743 {
2744 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2745 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
2746 }
2747 
2748 void
2749 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
2750 {
2751 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2752 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
2753 }
2754 
2755 void
2756 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
2757 {
2758 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
2759 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
2760 }
2761 
2762 /*
2763  * size_t hat_getpagesize(hat, addr)
2764  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
2765  *	no mapping. This is an advisory call.
2766  */
2767 ssize_t
2768 hat_getpagesize(hat_t *hat, caddr_t addr)
2769 {
2770 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2771 	htable_t	*ht;
2772 	size_t		pagesize;
2773 
2774 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2775 	if (IN_VA_HOLE(vaddr))
2776 		return (-1);
2777 	ht = htable_getpage(hat, vaddr, NULL);
2778 	if (ht == NULL)
2779 		return (-1);
2780 	pagesize = LEVEL_SIZE(ht->ht_level);
2781 	htable_release(ht);
2782 	return (pagesize);
2783 }
2784 
2785 
2786 
2787 /*
2788  * pfn_t hat_getpfnum(hat, addr)
2789  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
2790  */
2791 pfn_t
2792 hat_getpfnum(hat_t *hat, caddr_t addr)
2793 {
2794 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2795 	htable_t	*ht;
2796 	uint_t		entry;
2797 	pfn_t		pfn = PFN_INVALID;
2798 
2799 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2800 	if (khat_running == 0)
2801 		return (PFN_INVALID);
2802 
2803 	if (IN_VA_HOLE(vaddr))
2804 		return (PFN_INVALID);
2805 
2806 	XPV_DISALLOW_MIGRATE();
2807 	/*
2808 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
2809 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
2810 	 * this up.
2811 	 */
2812 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2813 		x86pte_t pte;
2814 		pgcnt_t pg_index;
2815 
2816 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
2817 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
2818 		if (PTE_ISVALID(pte))
2819 			/*LINTED [use of constant 0 causes a lint warning] */
2820 			pfn = PTE2PFN(pte, 0);
2821 		XPV_ALLOW_MIGRATE();
2822 		return (pfn);
2823 	}
2824 
2825 	ht = htable_getpage(hat, vaddr, &entry);
2826 	if (ht == NULL) {
2827 		XPV_ALLOW_MIGRATE();
2828 		return (PFN_INVALID);
2829 	}
2830 	ASSERT(vaddr >= ht->ht_vaddr);
2831 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
2832 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
2833 	if (ht->ht_level > 0)
2834 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
2835 	htable_release(ht);
2836 	XPV_ALLOW_MIGRATE();
2837 	return (pfn);
2838 }
2839 
2840 /*
2841  * int hat_probe(hat, addr)
2842  *	return 0 if no valid mapping is present.  Faster version
2843  *	of hat_getattr in certain architectures.
2844  */
2845 int
2846 hat_probe(hat_t *hat, caddr_t addr)
2847 {
2848 	uintptr_t	vaddr = ALIGN2PAGE(addr);
2849 	uint_t		entry;
2850 	htable_t	*ht;
2851 	pgcnt_t		pg_off;
2852 
2853 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
2854 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2855 	if (IN_VA_HOLE(vaddr))
2856 		return (0);
2857 
2858 	/*
2859 	 * Most common use of hat_probe is from segmap. We special case it
2860 	 * for performance.
2861 	 */
2862 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
2863 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
2864 		if (mmu.pae_hat)
2865 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
2866 		else
2867 			return (PTE_ISVALID(
2868 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
2869 	}
2870 
2871 	ht = htable_getpage(hat, vaddr, &entry);
2872 	htable_release(ht);
2873 	return (ht != NULL);
2874 }
2875 
2876 /*
2877  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
2878  */
2879 static int
2880 is_it_dism(hat_t *hat, caddr_t va)
2881 {
2882 	struct seg *seg;
2883 	struct shm_data *shmd;
2884 	struct spt_data *sptd;
2885 
2886 	seg = as_findseg(hat->hat_as, va, 0);
2887 	ASSERT(seg != NULL);
2888 	ASSERT(seg->s_base <= va);
2889 	shmd = (struct shm_data *)seg->s_data;
2890 	ASSERT(shmd != NULL);
2891 	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
2892 	ASSERT(sptd != NULL);
2893 	if (sptd->spt_flags & SHM_PAGEABLE)
2894 		return (1);
2895 	return (0);
2896 }
2897 
2898 /*
2899  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
2900  * except that we use the ism_hat's existing mappings to determine the pages
2901  * and protections to use for this hat. If we find a full properly aligned
2902  * and sized pagetable, we will attempt to share the pagetable itself.
2903  */
2904 /*ARGSUSED*/
2905 int
2906 hat_share(
2907 	hat_t		*hat,
2908 	caddr_t		addr,
2909 	hat_t		*ism_hat,
2910 	caddr_t		src_addr,
2911 	size_t		len,	/* almost useless value, see below.. */
2912 	uint_t		ismszc)
2913 {
2914 	uintptr_t	vaddr_start = (uintptr_t)addr;
2915 	uintptr_t	vaddr;
2916 	uintptr_t	eaddr = vaddr_start + len;
2917 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
2918 	uintptr_t	ism_addr = ism_addr_start;
2919 	uintptr_t	e_ism_addr = ism_addr + len;
2920 	htable_t	*ism_ht = NULL;
2921 	htable_t	*ht;
2922 	x86pte_t	pte;
2923 	page_t		*pp;
2924 	pfn_t		pfn;
2925 	level_t		l;
2926 	pgcnt_t		pgcnt;
2927 	uint_t		prot;
2928 	int		is_dism;
2929 	int		flags;
2930 
2931 	/*
2932 	 * We might be asked to share an empty DISM hat by as_dup()
2933 	 */
2934 	ASSERT(hat != kas.a_hat);
2935 	ASSERT(eaddr <= _userlimit);
2936 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
2937 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
2938 		return (0);
2939 	}
2940 	XPV_DISALLOW_MIGRATE();
2941 
2942 	/*
2943 	 * The SPT segment driver often passes us a size larger than there are
2944 	 * valid mappings. That's because it rounds the segment size up to a
2945 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
2946 	 */
2947 	ASSERT(IS_PAGEALIGNED(vaddr_start));
2948 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
2949 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
2950 	is_dism = is_it_dism(hat, addr);
2951 	while (ism_addr < e_ism_addr) {
2952 		/*
2953 		 * use htable_walk to get the next valid ISM mapping
2954 		 */
2955 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
2956 		if (ism_ht == NULL)
2957 			break;
2958 
2959 		/*
2960 		 * First check to see if we already share the page table.
2961 		 */
2962 		l = ism_ht->ht_level;
2963 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
2964 		ht = htable_lookup(hat, vaddr, l);
2965 		if (ht != NULL) {
2966 			if (ht->ht_flags & HTABLE_SHARED_PFN)
2967 				goto shared;
2968 			htable_release(ht);
2969 			goto not_shared;
2970 		}
2971 
2972 		/*
2973 		 * Can't ever share top table.
2974 		 */
2975 		if (l == mmu.max_level)
2976 			goto not_shared;
2977 
2978 		/*
2979 		 * Avoid level mismatches later due to DISM faults.
2980 		 */
2981 		if (is_dism && l > 0)
2982 			goto not_shared;
2983 
2984 		/*
2985 		 * addresses and lengths must align
2986 		 * table must be fully populated
2987 		 * no lower level page tables
2988 		 */
2989 		if (ism_addr != ism_ht->ht_vaddr ||
2990 		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
2991 			goto not_shared;
2992 
2993 		/*
2994 		 * The range of address space must cover a full table.
2995 		 */
2996 		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
2997 			goto not_shared;
2998 
2999 		/*
3000 		 * All entries in the ISM page table must be leaf PTEs.
3001 		 */
3002 		if (l > 0) {
3003 			int e;
3004 
3005 			/*
3006 			 * We know the 0th is from htable_walk() above.
3007 			 */
3008 			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
3009 				x86pte_t pte;
3010 				pte = x86pte_get(ism_ht, e);
3011 				if (!PTE_ISPAGE(pte, l))
3012 					goto not_shared;
3013 			}
3014 		}
3015 
3016 		/*
3017 		 * share the page table
3018 		 */
3019 		ht = htable_create(hat, vaddr, l, ism_ht);
3020 shared:
3021 		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3022 		ASSERT(ht->ht_shares == ism_ht);
3023 		hat->hat_ism_pgcnt +=
3024 		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3025 		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3026 		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3027 		htable_release(ht);
3028 		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3029 		htable_release(ism_ht);
3030 		ism_ht = NULL;
3031 		continue;
3032 
3033 not_shared:
3034 		/*
3035 		 * Unable to share the page table. Instead we will
3036 		 * create new mappings from the values in the ISM mappings.
3037 		 * Figure out what level size mappings to use;
3038 		 */
3039 		for (l = ism_ht->ht_level; l > 0; --l) {
3040 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3041 			    (vaddr & LEVEL_OFFSET(l)) == 0)
3042 				break;
3043 		}
3044 
3045 		/*
3046 		 * The ISM mapping might be larger than the share area,
3047 		 * be careful to truncate it if needed.
3048 		 */
3049 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3050 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3051 		} else {
3052 			pgcnt = mmu_btop(eaddr - vaddr);
3053 			l = 0;
3054 		}
3055 
3056 		pfn = PTE2PFN(pte, ism_ht->ht_level);
3057 		ASSERT(pfn != PFN_INVALID);
3058 		while (pgcnt > 0) {
3059 			/*
3060 			 * Make a new pte for the PFN for this level.
3061 			 * Copy protections for the pte from the ISM pte.
3062 			 */
3063 			pp = page_numtopp_nolock(pfn);
3064 			ASSERT(pp != NULL);
3065 
3066 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3067 			if (PTE_GET(pte, PT_WRITABLE))
3068 				prot |= PROT_WRITE;
3069 			if (!PTE_GET(pte, PT_NX))
3070 				prot |= PROT_EXEC;
3071 
3072 			flags = HAT_LOAD;
3073 			if (!is_dism)
3074 				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3075 			while (hati_load_common(hat, vaddr, pp, prot, flags,
3076 			    l, pfn) != 0) {
3077 				if (l == 0)
3078 					panic("hati_load_common() failure");
3079 				--l;
3080 			}
3081 
3082 			vaddr += LEVEL_SIZE(l);
3083 			ism_addr += LEVEL_SIZE(l);
3084 			pfn += mmu_btop(LEVEL_SIZE(l));
3085 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3086 		}
3087 	}
3088 	if (ism_ht != NULL)
3089 		htable_release(ism_ht);
3090 	XPV_ALLOW_MIGRATE();
3091 	return (0);
3092 }
3093 
3094 
3095 /*
3096  * hat_unshare() is similar to hat_unload_callback(), but
3097  * we have to look for empty shared pagetables. Note that
3098  * hat_unshare() is always invoked against an entire segment.
3099  */
3100 /*ARGSUSED*/
3101 void
3102 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3103 {
3104 	uint64_t	vaddr = (uintptr_t)addr;
3105 	uintptr_t	eaddr = vaddr + len;
3106 	htable_t	*ht = NULL;
3107 	uint_t		need_demaps = 0;
3108 	int		flags = HAT_UNLOAD_UNMAP;
3109 	level_t		l;
3110 
3111 	ASSERT(hat != kas.a_hat);
3112 	ASSERT(eaddr <= _userlimit);
3113 	ASSERT(IS_PAGEALIGNED(vaddr));
3114 	ASSERT(IS_PAGEALIGNED(eaddr));
3115 	XPV_DISALLOW_MIGRATE();
3116 
3117 	/*
3118 	 * First go through and remove any shared pagetables.
3119 	 *
3120 	 * Note that it's ok to delay the TLB shootdown till the entire range is
3121 	 * finished, because if hat_pageunload() were to unload a shared
3122 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3123 	 */
3124 	l = mmu.max_page_level;
3125 	if (l == mmu.max_level)
3126 		--l;
3127 	for (; l >= 0; --l) {
3128 		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3129 		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3130 			ASSERT(!IN_VA_HOLE(vaddr));
3131 			/*
3132 			 * find a pagetable that maps the current address
3133 			 */
3134 			ht = htable_lookup(hat, vaddr, l);
3135 			if (ht == NULL)
3136 				continue;
3137 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3138 				/*
3139 				 * clear page count, set valid_cnt to 0,
3140 				 * let htable_release() finish the job
3141 				 */
3142 				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3143 				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3144 				ht->ht_valid_cnt = 0;
3145 				need_demaps = 1;
3146 			}
3147 			htable_release(ht);
3148 		}
3149 	}
3150 
3151 	/*
3152 	 * flush the TLBs - since we're probably dealing with MANY mappings
3153 	 * we do just one CR3 reload.
3154 	 */
3155 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3156 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3157 
3158 	/*
3159 	 * Now go back and clean up any unaligned mappings that
3160 	 * couldn't share pagetables.
3161 	 */
3162 	if (!is_it_dism(hat, addr))
3163 		flags |= HAT_UNLOAD_UNLOCK;
3164 	hat_unload(hat, addr, len, flags);
3165 	XPV_ALLOW_MIGRATE();
3166 }
3167 
3168 
3169 /*
3170  * hat_reserve() does nothing
3171  */
3172 /*ARGSUSED*/
3173 void
3174 hat_reserve(struct as *as, caddr_t addr, size_t len)
3175 {
3176 }
3177 
3178 
3179 /*
3180  * Called when all mappings to a page should have write permission removed.
3181  * Mostly stolen from hat_pagesync()
3182  */
3183 static void
3184 hati_page_clrwrt(struct page *pp)
3185 {
3186 	hment_t		*hm = NULL;
3187 	htable_t	*ht;
3188 	uint_t		entry;
3189 	x86pte_t	old;
3190 	x86pte_t	new;
3191 	uint_t		pszc = 0;
3192 
3193 	XPV_DISALLOW_MIGRATE();
3194 next_size:
3195 	/*
3196 	 * walk thru the mapping list clearing write permission
3197 	 */
3198 	x86_hm_enter(pp);
3199 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3200 		if (ht->ht_level < pszc)
3201 			continue;
3202 		old = x86pte_get(ht, entry);
3203 
3204 		for (;;) {
3205 			/*
3206 			 * Is this mapping of interest?
3207 			 */
3208 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3209 			    PTE_GET(old, PT_WRITABLE) == 0)
3210 				break;
3211 
3212 			/*
3213 			 * Clear ref/mod writable bits. This requires cross
3214 			 * calls to ensure any executing TLBs see cleared bits.
3215 			 */
3216 			new = old;
3217 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3218 			old = hati_update_pte(ht, entry, old, new);
3219 			if (old != 0)
3220 				continue;
3221 
3222 			break;
3223 		}
3224 	}
3225 	x86_hm_exit(pp);
3226 	while (pszc < pp->p_szc) {
3227 		page_t *tpp;
3228 		pszc++;
3229 		tpp = PP_GROUPLEADER(pp, pszc);
3230 		if (pp != tpp) {
3231 			pp = tpp;
3232 			goto next_size;
3233 		}
3234 	}
3235 	XPV_ALLOW_MIGRATE();
3236 }
3237 
3238 /*
3239  * void hat_page_setattr(pp, flag)
3240  * void hat_page_clrattr(pp, flag)
3241  *	used to set/clr ref/mod bits.
3242  */
3243 void
3244 hat_page_setattr(struct page *pp, uint_t flag)
3245 {
3246 	vnode_t		*vp = pp->p_vnode;
3247 	kmutex_t	*vphm = NULL;
3248 	page_t		**listp;
3249 	int		noshuffle;
3250 
3251 	noshuffle = flag & P_NSH;
3252 	flag &= ~P_NSH;
3253 
3254 	if (PP_GETRM(pp, flag) == flag)
3255 		return;
3256 
3257 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3258 	    !noshuffle) {
3259 		vphm = page_vnode_mutex(vp);
3260 		mutex_enter(vphm);
3261 	}
3262 
3263 	PP_SETRM(pp, flag);
3264 
3265 	if (vphm != NULL) {
3266 
3267 		/*
3268 		 * Some File Systems examine v_pages for NULL w/o
3269 		 * grabbing the vphm mutex. Must not let it become NULL when
3270 		 * pp is the only page on the list.
3271 		 */
3272 		if (pp->p_vpnext != pp) {
3273 			page_vpsub(&vp->v_pages, pp);
3274 			if (vp->v_pages != NULL)
3275 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3276 			else
3277 				listp = &vp->v_pages;
3278 			page_vpadd(listp, pp);
3279 		}
3280 		mutex_exit(vphm);
3281 	}
3282 }
3283 
3284 void
3285 hat_page_clrattr(struct page *pp, uint_t flag)
3286 {
3287 	vnode_t		*vp = pp->p_vnode;
3288 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3289 
3290 	/*
3291 	 * Caller is expected to hold page's io lock for VMODSORT to work
3292 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3293 	 * bit is cleared.
3294 	 * We don't have assert to avoid tripping some existing third party
3295 	 * code. The dirty page is moved back to top of the v_page list
3296 	 * after IO is done in pvn_write_done().
3297 	 */
3298 	PP_CLRRM(pp, flag);
3299 
3300 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3301 
3302 		/*
3303 		 * VMODSORT works by removing write permissions and getting
3304 		 * a fault when a page is made dirty. At this point
3305 		 * we need to remove write permission from all mappings
3306 		 * to this page.
3307 		 */
3308 		hati_page_clrwrt(pp);
3309 	}
3310 }
3311 
3312 /*
3313  *	If flag is specified, returns 0 if attribute is disabled
3314  *	and non zero if enabled.  If flag specifes multiple attributes
3315  *	then returns 0 if ALL attributes are disabled.  This is an advisory
3316  *	call.
3317  */
3318 uint_t
3319 hat_page_getattr(struct page *pp, uint_t flag)
3320 {
3321 	return (PP_GETRM(pp, flag));
3322 }
3323 
3324 
3325 /*
3326  * common code used by hat_pageunload() and hment_steal()
3327  */
3328 hment_t *
3329 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3330 {
3331 	x86pte_t old_pte;
3332 	pfn_t pfn = pp->p_pagenum;
3333 	hment_t *hm;
3334 
3335 	/*
3336 	 * We need to acquire a hold on the htable in order to
3337 	 * do the invalidate. We know the htable must exist, since
3338 	 * unmap's don't release the htable until after removing any
3339 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3340 	 */
3341 	htable_acquire(ht);
3342 
3343 	/*
3344 	 * Invalidate the PTE and remove the hment.
3345 	 */
3346 	old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE);
3347 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3348 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3349 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3350 		    old_pte, pfn, (uintptr_t)ht, entry);
3351 	}
3352 
3353 	/*
3354 	 * Clean up all the htable information for this mapping
3355 	 */
3356 	ASSERT(ht->ht_valid_cnt > 0);
3357 	HTABLE_DEC(ht->ht_valid_cnt);
3358 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3359 
3360 	/*
3361 	 * sync ref/mod bits to the page_t
3362 	 */
3363 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3364 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3365 
3366 	/*
3367 	 * Remove the mapping list entry for this page.
3368 	 */
3369 	hm = hment_remove(pp, ht, entry);
3370 
3371 	/*
3372 	 * drop the mapping list lock so that we might free the
3373 	 * hment and htable.
3374 	 */
3375 	x86_hm_exit(pp);
3376 	htable_release(ht);
3377 	return (hm);
3378 }
3379 
3380 extern int	vpm_enable;
3381 /*
3382  * Unload all translations to a page. If the page is a subpage of a large
3383  * page, the large page mappings are also removed.
3384  *
3385  * The forceflags are unused.
3386  */
3387 
3388 /*ARGSUSED*/
3389 static int
3390 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3391 {
3392 	page_t		*cur_pp = pp;
3393 	hment_t		*hm;
3394 	hment_t		*prev;
3395 	htable_t	*ht;
3396 	uint_t		entry;
3397 	level_t		level;
3398 
3399 	XPV_DISALLOW_MIGRATE();
3400 
3401 	/*
3402 	 * prevent recursion due to kmem_free()
3403 	 */
3404 	++curthread->t_hatdepth;
3405 	ASSERT(curthread->t_hatdepth < 16);
3406 
3407 #if defined(__amd64)
3408 	/*
3409 	 * clear the vpm ref.
3410 	 */
3411 	if (vpm_enable) {
3412 		pp->p_vpmref = 0;
3413 	}
3414 #endif
3415 	/*
3416 	 * The loop with next_size handles pages with multiple pagesize mappings
3417 	 */
3418 next_size:
3419 	for (;;) {
3420 
3421 		/*
3422 		 * Get a mapping list entry
3423 		 */
3424 		x86_hm_enter(cur_pp);
3425 		for (prev = NULL; ; prev = hm) {
3426 			hm = hment_walk(cur_pp, &ht, &entry, prev);
3427 			if (hm == NULL) {
3428 				x86_hm_exit(cur_pp);
3429 
3430 				/*
3431 				 * If not part of a larger page, we're done.
3432 				 */
3433 				if (cur_pp->p_szc <= pg_szcd) {
3434 					ASSERT(curthread->t_hatdepth > 0);
3435 					--curthread->t_hatdepth;
3436 					XPV_ALLOW_MIGRATE();
3437 					return (0);
3438 				}
3439 
3440 				/*
3441 				 * Else check the next larger page size.
3442 				 * hat_page_demote() may decrease p_szc
3443 				 * but that's ok we'll just take an extra
3444 				 * trip discover there're no larger mappings
3445 				 * and return.
3446 				 */
3447 				++pg_szcd;
3448 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
3449 				goto next_size;
3450 			}
3451 
3452 			/*
3453 			 * If this mapping size matches, remove it.
3454 			 */
3455 			level = ht->ht_level;
3456 			if (level == pg_szcd)
3457 				break;
3458 		}
3459 
3460 		/*
3461 		 * Remove the mapping list entry for this page.
3462 		 * Note this does the x86_hm_exit() for us.
3463 		 */
3464 		hm = hati_page_unmap(cur_pp, ht, entry);
3465 		if (hm != NULL)
3466 			hment_free(hm);
3467 	}
3468 }
3469 
3470 int
3471 hat_pageunload(struct page *pp, uint_t forceflag)
3472 {
3473 	ASSERT(PAGE_EXCL(pp));
3474 	return (hati_pageunload(pp, 0, forceflag));
3475 }
3476 
3477 /*
3478  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
3479  * page level that included pp.
3480  *
3481  * pp must be locked EXCL. Even though no other constituent pages are locked
3482  * it's legal to unload large mappings to pp because all constituent pages of
3483  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
3484  * lock on one of constituent pages none of the large mappings to pp are
3485  * locked.
3486  *
3487  * Change (always decrease) p_szc field starting from the last constituent
3488  * page and ending with root constituent page so that root's pszc always shows
3489  * the area where hat_page_demote() may be active.
3490  *
3491  * This mechanism is only used for file system pages where it's not always
3492  * possible to get EXCL locks on all constituent pages to demote the size code
3493  * (as is done for anonymous or kernel large pages).
3494  */
3495 void
3496 hat_page_demote(page_t *pp)
3497 {
3498 	uint_t		pszc;
3499 	uint_t		rszc;
3500 	uint_t		szc;
3501 	page_t		*rootpp;
3502 	page_t		*firstpp;
3503 	page_t		*lastpp;
3504 	pgcnt_t		pgcnt;
3505 
3506 	ASSERT(PAGE_EXCL(pp));
3507 	ASSERT(!PP_ISFREE(pp));
3508 	ASSERT(page_szc_lock_assert(pp));
3509 
3510 	if (pp->p_szc == 0)
3511 		return;
3512 
3513 	rootpp = PP_GROUPLEADER(pp, 1);
3514 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
3515 
3516 	/*
3517 	 * all large mappings to pp are gone
3518 	 * and no new can be setup since pp is locked exclusively.
3519 	 *
3520 	 * Lock the root to make sure there's only one hat_page_demote()
3521 	 * outstanding within the area of this root's pszc.
3522 	 *
3523 	 * Second potential hat_page_demote() is already eliminated by upper
3524 	 * VM layer via page_szc_lock() but we don't rely on it and use our
3525 	 * own locking (so that upper layer locking can be changed without
3526 	 * assumptions that hat depends on upper layer VM to prevent multiple
3527 	 * hat_page_demote() to be issued simultaneously to the same large
3528 	 * page).
3529 	 */
3530 again:
3531 	pszc = pp->p_szc;
3532 	if (pszc == 0)
3533 		return;
3534 	rootpp = PP_GROUPLEADER(pp, pszc);
3535 	x86_hm_enter(rootpp);
3536 	/*
3537 	 * If root's p_szc is different from pszc we raced with another
3538 	 * hat_page_demote().  Drop the lock and try to find the root again.
3539 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
3540 	 * not done yet.  Take and release mlist lock of root's root to wait
3541 	 * for previous hat_page_demote() to complete.
3542 	 */
3543 	if ((rszc = rootpp->p_szc) != pszc) {
3544 		x86_hm_exit(rootpp);
3545 		if (rszc > pszc) {
3546 			/* p_szc of a locked non free page can't increase */
3547 			ASSERT(pp != rootpp);
3548 
3549 			rootpp = PP_GROUPLEADER(rootpp, rszc);
3550 			x86_hm_enter(rootpp);
3551 			x86_hm_exit(rootpp);
3552 		}
3553 		goto again;
3554 	}
3555 	ASSERT(pp->p_szc == pszc);
3556 
3557 	/*
3558 	 * Decrement by 1 p_szc of every constituent page of a region that
3559 	 * covered pp. For example if original szc is 3 it gets changed to 2
3560 	 * everywhere except in region 2 that covered pp. Region 2 that
3561 	 * covered pp gets demoted to 1 everywhere except in region 1 that
3562 	 * covered pp. The region 1 that covered pp is demoted to region
3563 	 * 0. It's done this way because from region 3 we removed level 3
3564 	 * mappings, from region 2 that covered pp we removed level 2 mappings
3565 	 * and from region 1 that covered pp we removed level 1 mappings.  All
3566 	 * changes are done from from high pfn's to low pfn's so that roots
3567 	 * are changed last allowing one to know the largest region where
3568 	 * hat_page_demote() is stil active by only looking at the root page.
3569 	 *
3570 	 * This algorithm is implemented in 2 while loops. First loop changes
3571 	 * p_szc of pages to the right of pp's level 1 region and second
3572 	 * loop changes p_szc of pages of level 1 region that covers pp
3573 	 * and all pages to the left of level 1 region that covers pp.
3574 	 * In the first loop p_szc keeps dropping with every iteration
3575 	 * and in the second loop it keeps increasing with every iteration.
3576 	 *
3577 	 * First loop description: Demote pages to the right of pp outside of
3578 	 * level 1 region that covers pp.  In every iteration of the while
3579 	 * loop below find the last page of szc region and the first page of
3580 	 * (szc - 1) region that is immediately to the right of (szc - 1)
3581 	 * region that covers pp.  From last such page to first such page
3582 	 * change every page's szc to szc - 1. Decrement szc and continue
3583 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
3584 	 * of szc region skip to the next iteration.
3585 	 */
3586 	szc = pszc;
3587 	while (szc > 1) {
3588 		lastpp = PP_GROUPLEADER(pp, szc);
3589 		pgcnt = page_get_pagecnt(szc);
3590 		lastpp += pgcnt - 1;
3591 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
3592 		pgcnt = page_get_pagecnt(szc - 1);
3593 		if (lastpp - firstpp < pgcnt) {
3594 			szc--;
3595 			continue;
3596 		}
3597 		firstpp += pgcnt;
3598 		while (lastpp != firstpp) {
3599 			ASSERT(lastpp->p_szc == pszc);
3600 			lastpp->p_szc = szc - 1;
3601 			lastpp--;
3602 		}
3603 		firstpp->p_szc = szc - 1;
3604 		szc--;
3605 	}
3606 
3607 	/*
3608 	 * Second loop description:
3609 	 * First iteration changes p_szc to 0 of every
3610 	 * page of level 1 region that covers pp.
3611 	 * Subsequent iterations find last page of szc region
3612 	 * immediately to the left of szc region that covered pp
3613 	 * and first page of (szc + 1) region that covers pp.
3614 	 * From last to first page change p_szc of every page to szc.
3615 	 * Increment szc and continue looping until szc is pszc.
3616 	 * If pp belongs to the fist szc region of (szc + 1) region
3617 	 * skip to the next iteration.
3618 	 *
3619 	 */
3620 	szc = 0;
3621 	while (szc < pszc) {
3622 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
3623 		if (szc == 0) {
3624 			pgcnt = page_get_pagecnt(1);
3625 			lastpp = firstpp + (pgcnt - 1);
3626 		} else {
3627 			lastpp = PP_GROUPLEADER(pp, szc);
3628 			if (firstpp == lastpp) {
3629 				szc++;
3630 				continue;
3631 			}
3632 			lastpp--;
3633 			pgcnt = page_get_pagecnt(szc);
3634 		}
3635 		while (lastpp != firstpp) {
3636 			ASSERT(lastpp->p_szc == pszc);
3637 			lastpp->p_szc = szc;
3638 			lastpp--;
3639 		}
3640 		firstpp->p_szc = szc;
3641 		if (firstpp == rootpp)
3642 			break;
3643 		szc++;
3644 	}
3645 	x86_hm_exit(rootpp);
3646 }
3647 
3648 /*
3649  * get hw stats from hardware into page struct and reset hw stats
3650  * returns attributes of page
3651  * Flags for hat_pagesync, hat_getstat, hat_sync
3652  *
3653  * define	HAT_SYNC_ZERORM		0x01
3654  *
3655  * Additional flags for hat_pagesync
3656  *
3657  * define	HAT_SYNC_STOPON_REF	0x02
3658  * define	HAT_SYNC_STOPON_MOD	0x04
3659  * define	HAT_SYNC_STOPON_RM	0x06
3660  * define	HAT_SYNC_STOPON_SHARED	0x08
3661  */
3662 uint_t
3663 hat_pagesync(struct page *pp, uint_t flags)
3664 {
3665 	hment_t		*hm = NULL;
3666 	htable_t	*ht;
3667 	uint_t		entry;
3668 	x86pte_t	old, save_old;
3669 	x86pte_t	new;
3670 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
3671 	extern ulong_t	po_share;
3672 	page_t		*save_pp = pp;
3673 	uint_t		pszc = 0;
3674 
3675 	ASSERT(PAGE_LOCKED(pp) || panicstr);
3676 
3677 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
3678 		return (pp->p_nrm & nrmbits);
3679 
3680 	if ((flags & HAT_SYNC_ZERORM) == 0) {
3681 
3682 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
3683 			return (pp->p_nrm & nrmbits);
3684 
3685 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
3686 			return (pp->p_nrm & nrmbits);
3687 
3688 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
3689 		    hat_page_getshare(pp) > po_share) {
3690 			if (PP_ISRO(pp))
3691 				PP_SETREF(pp);
3692 			return (pp->p_nrm & nrmbits);
3693 		}
3694 	}
3695 
3696 	XPV_DISALLOW_MIGRATE();
3697 next_size:
3698 	/*
3699 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
3700 	 */
3701 	x86_hm_enter(pp);
3702 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3703 		if (ht->ht_level < pszc)
3704 			continue;
3705 		old = x86pte_get(ht, entry);
3706 try_again:
3707 
3708 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
3709 
3710 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
3711 			continue;
3712 
3713 		save_old = old;
3714 		if ((flags & HAT_SYNC_ZERORM) != 0) {
3715 
3716 			/*
3717 			 * Need to clear ref or mod bits. Need to demap
3718 			 * to make sure any executing TLBs see cleared bits.
3719 			 */
3720 			new = old;
3721 			PTE_CLR(new, PT_REF | PT_MOD);
3722 			old = hati_update_pte(ht, entry, old, new);
3723 			if (old != 0)
3724 				goto try_again;
3725 
3726 			old = save_old;
3727 		}
3728 
3729 		/*
3730 		 * Sync the PTE
3731 		 */
3732 		if (!(flags & HAT_SYNC_ZERORM) &&
3733 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
3734 			hati_sync_pte_to_page(pp, old, ht->ht_level);
3735 
3736 		/*
3737 		 * can stop short if we found a ref'd or mod'd page
3738 		 */
3739 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
3740 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
3741 			x86_hm_exit(pp);
3742 			goto done;
3743 		}
3744 	}
3745 	x86_hm_exit(pp);
3746 	while (pszc < pp->p_szc) {
3747 		page_t *tpp;
3748 		pszc++;
3749 		tpp = PP_GROUPLEADER(pp, pszc);
3750 		if (pp != tpp) {
3751 			pp = tpp;
3752 			goto next_size;
3753 		}
3754 	}
3755 done:
3756 	XPV_ALLOW_MIGRATE();
3757 	return (save_pp->p_nrm & nrmbits);
3758 }
3759 
3760 /*
3761  * returns approx number of mappings to this pp.  A return of 0 implies
3762  * there are no mappings to the page.
3763  */
3764 ulong_t
3765 hat_page_getshare(page_t *pp)
3766 {
3767 	uint_t cnt;
3768 	cnt = hment_mapcnt(pp);
3769 #if defined(__amd64)
3770 	if (vpm_enable && pp->p_vpmref) {
3771 		cnt += 1;
3772 	}
3773 #endif
3774 	return (cnt);
3775 }
3776 
3777 /*
3778  * Return 1 the number of mappings exceeds sh_thresh. Return 0
3779  * otherwise.
3780  */
3781 int
3782 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
3783 {
3784 	return (hat_page_getshare(pp) > sh_thresh);
3785 }
3786 
3787 /*
3788  * hat_softlock isn't supported anymore
3789  */
3790 /*ARGSUSED*/
3791 faultcode_t
3792 hat_softlock(
3793 	hat_t *hat,
3794 	caddr_t addr,
3795 	size_t *len,
3796 	struct page **page_array,
3797 	uint_t flags)
3798 {
3799 	return (FC_NOSUPPORT);
3800 }
3801 
3802 
3803 
3804 /*
3805  * Routine to expose supported HAT features to platform independent code.
3806  */
3807 /*ARGSUSED*/
3808 int
3809 hat_supported(enum hat_features feature, void *arg)
3810 {
3811 	switch (feature) {
3812 
3813 	case HAT_SHARED_PT:	/* this is really ISM */
3814 		return (1);
3815 
3816 	case HAT_DYNAMIC_ISM_UNMAP:
3817 		return (0);
3818 
3819 	case HAT_VMODSORT:
3820 		return (1);
3821 
3822 	case HAT_SHARED_REGIONS:
3823 		return (0);
3824 
3825 	default:
3826 		panic("hat_supported() - unknown feature");
3827 	}
3828 	return (0);
3829 }
3830 
3831 /*
3832  * Called when a thread is exiting and has been switched to the kernel AS
3833  */
3834 void
3835 hat_thread_exit(kthread_t *thd)
3836 {
3837 	ASSERT(thd->t_procp->p_as == &kas);
3838 	XPV_DISALLOW_MIGRATE();
3839 	hat_switch(thd->t_procp->p_as->a_hat);
3840 	XPV_ALLOW_MIGRATE();
3841 }
3842 
3843 /*
3844  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
3845  */
3846 /*ARGSUSED*/
3847 void
3848 hat_setup(hat_t *hat, int flags)
3849 {
3850 	XPV_DISALLOW_MIGRATE();
3851 	kpreempt_disable();
3852 
3853 	hat_switch(hat);
3854 
3855 	kpreempt_enable();
3856 	XPV_ALLOW_MIGRATE();
3857 }
3858 
3859 /*
3860  * Prepare for a CPU private mapping for the given address.
3861  *
3862  * The address can only be used from a single CPU and can be remapped
3863  * using hat_mempte_remap().  Return the address of the PTE.
3864  *
3865  * We do the htable_create() if necessary and increment the valid count so
3866  * the htable can't disappear.  We also hat_devload() the page table into
3867  * kernel so that the PTE is quickly accessed.
3868  */
3869 hat_mempte_t
3870 hat_mempte_setup(caddr_t addr)
3871 {
3872 	uintptr_t	va = (uintptr_t)addr;
3873 	htable_t	*ht;
3874 	uint_t		entry;
3875 	x86pte_t	oldpte;
3876 	hat_mempte_t	p;
3877 
3878 	ASSERT(IS_PAGEALIGNED(va));
3879 	ASSERT(!IN_VA_HOLE(va));
3880 	++curthread->t_hatdepth;
3881 	XPV_DISALLOW_MIGRATE();
3882 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
3883 	if (ht == NULL) {
3884 		ht = htable_create(kas.a_hat, va, 0, NULL);
3885 		entry = htable_va2entry(va, ht);
3886 		ASSERT(ht->ht_level == 0);
3887 		oldpte = x86pte_get(ht, entry);
3888 	}
3889 	if (PTE_ISVALID(oldpte))
3890 		panic("hat_mempte_setup(): address already mapped"
3891 		    "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
3892 
3893 	/*
3894 	 * increment ht_valid_cnt so that the pagetable can't disappear
3895 	 */
3896 	HTABLE_INC(ht->ht_valid_cnt);
3897 
3898 	/*
3899 	 * return the PTE physical address to the caller.
3900 	 */
3901 	htable_release(ht);
3902 	XPV_ALLOW_MIGRATE();
3903 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
3904 	--curthread->t_hatdepth;
3905 	return (p);
3906 }
3907 
3908 /*
3909  * Release a CPU private mapping for the given address.
3910  * We decrement the htable valid count so it might be destroyed.
3911  */
3912 /*ARGSUSED1*/
3913 void
3914 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
3915 {
3916 	htable_t	*ht;
3917 
3918 	XPV_DISALLOW_MIGRATE();
3919 	/*
3920 	 * invalidate any left over mapping and decrement the htable valid count
3921 	 */
3922 #ifdef __xpv
3923 	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
3924 	    UVMF_INVLPG | UVMF_LOCAL))
3925 		panic("HYPERVISOR_update_va_mapping() failed");
3926 #else
3927 	{
3928 		x86pte_t *pteptr;
3929 
3930 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3931 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3932 		if (mmu.pae_hat)
3933 			*pteptr = 0;
3934 		else
3935 			*(x86pte32_t *)pteptr = 0;
3936 		mmu_tlbflush_entry(addr);
3937 		x86pte_mapout();
3938 	}
3939 #endif
3940 
3941 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
3942 	if (ht == NULL)
3943 		panic("hat_mempte_release(): invalid address");
3944 	ASSERT(ht->ht_level == 0);
3945 	HTABLE_DEC(ht->ht_valid_cnt);
3946 	htable_release(ht);
3947 	XPV_ALLOW_MIGRATE();
3948 }
3949 
3950 /*
3951  * Apply a temporary CPU private mapping to a page. We flush the TLB only
3952  * on this CPU, so this ought to have been called with preemption disabled.
3953  */
3954 void
3955 hat_mempte_remap(
3956 	pfn_t		pfn,
3957 	caddr_t		addr,
3958 	hat_mempte_t	pte_pa,
3959 	uint_t		attr,
3960 	uint_t		flags)
3961 {
3962 	uintptr_t	va = (uintptr_t)addr;
3963 	x86pte_t	pte;
3964 
3965 	/*
3966 	 * Remap the given PTE to the new page's PFN. Invalidate only
3967 	 * on this CPU.
3968 	 */
3969 #ifdef DEBUG
3970 	htable_t	*ht;
3971 	uint_t		entry;
3972 
3973 	ASSERT(IS_PAGEALIGNED(va));
3974 	ASSERT(!IN_VA_HOLE(va));
3975 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
3976 	ASSERT(ht != NULL);
3977 	ASSERT(ht->ht_level == 0);
3978 	ASSERT(ht->ht_valid_cnt > 0);
3979 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
3980 	htable_release(ht);
3981 #endif
3982 	XPV_DISALLOW_MIGRATE();
3983 	pte = hati_mkpte(pfn, attr, 0, flags);
3984 #ifdef __xpv
3985 	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
3986 		panic("HYPERVISOR_update_va_mapping() failed");
3987 #else
3988 	{
3989 		x86pte_t *pteptr;
3990 
3991 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
3992 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
3993 		if (mmu.pae_hat)
3994 			*(x86pte_t *)pteptr = pte;
3995 		else
3996 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
3997 		mmu_tlbflush_entry(addr);
3998 		x86pte_mapout();
3999 	}
4000 #endif
4001 	XPV_ALLOW_MIGRATE();
4002 }
4003 
4004 
4005 
4006 /*
4007  * Hat locking functions
4008  * XXX - these two functions are currently being used by hatstats
4009  * 	they can be removed by using a per-as mutex for hatstats.
4010  */
4011 void
4012 hat_enter(hat_t *hat)
4013 {
4014 	mutex_enter(&hat->hat_mutex);
4015 }
4016 
4017 void
4018 hat_exit(hat_t *hat)
4019 {
4020 	mutex_exit(&hat->hat_mutex);
4021 }
4022 
4023 /*
4024  * HAT part of cpu initialization.
4025  */
4026 void
4027 hat_cpu_online(struct cpu *cpup)
4028 {
4029 	if (cpup != CPU) {
4030 		x86pte_cpu_init(cpup);
4031 		hat_vlp_setup(cpup);
4032 	}
4033 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4034 }
4035 
4036 /*
4037  * HAT part of cpu deletion.
4038  * (currently, we only call this after the cpu is safely passivated.)
4039  */
4040 void
4041 hat_cpu_offline(struct cpu *cpup)
4042 {
4043 	ASSERT(cpup != CPU);
4044 
4045 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4046 	hat_vlp_teardown(cpup);
4047 	x86pte_cpu_fini(cpup);
4048 }
4049 
4050 /*
4051  * Function called after all CPUs are brought online.
4052  * Used to remove low address boot mappings.
4053  */
4054 void
4055 clear_boot_mappings(uintptr_t low, uintptr_t high)
4056 {
4057 	uintptr_t vaddr = low;
4058 	htable_t *ht = NULL;
4059 	level_t level;
4060 	uint_t entry;
4061 	x86pte_t pte;
4062 
4063 	/*
4064 	 * On 1st CPU we can unload the prom mappings, basically we blow away
4065 	 * all virtual mappings under _userlimit.
4066 	 */
4067 	while (vaddr < high) {
4068 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4069 		if (ht == NULL)
4070 			break;
4071 
4072 		level = ht->ht_level;
4073 		entry = htable_va2entry(vaddr, ht);
4074 		ASSERT(level <= mmu.max_page_level);
4075 		ASSERT(PTE_ISPAGE(pte, level));
4076 
4077 		/*
4078 		 * Unload the mapping from the page tables.
4079 		 */
4080 		(void) x86pte_inval(ht, entry, 0, NULL, B_TRUE);
4081 		ASSERT(ht->ht_valid_cnt > 0);
4082 		HTABLE_DEC(ht->ht_valid_cnt);
4083 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4084 
4085 		vaddr += LEVEL_SIZE(ht->ht_level);
4086 	}
4087 	if (ht)
4088 		htable_release(ht);
4089 }
4090 
4091 /*
4092  * Atomically update a new translation for a single page.  If the
4093  * currently installed PTE doesn't match the value we expect to find,
4094  * it's not updated and we return the PTE we found.
4095  *
4096  * If activating nosync or NOWRITE and the page was modified we need to sync
4097  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4098  */
4099 static x86pte_t
4100 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4101 {
4102 	page_t		*pp;
4103 	uint_t		rm = 0;
4104 	x86pte_t	replaced;
4105 
4106 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4107 	    PTE_GET(expected, PT_MOD | PT_REF) &&
4108 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4109 	    !PTE_GET(new, PT_MOD | PT_REF))) {
4110 
4111 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4112 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4113 		ASSERT(pp != NULL);
4114 		if (PTE_GET(expected, PT_MOD))
4115 			rm |= P_MOD;
4116 		if (PTE_GET(expected, PT_REF))
4117 			rm |= P_REF;
4118 		PTE_CLR(new, PT_MOD | PT_REF);
4119 	}
4120 
4121 	replaced = x86pte_update(ht, entry, expected, new);
4122 	if (replaced != expected)
4123 		return (replaced);
4124 
4125 	if (rm) {
4126 		/*
4127 		 * sync to all constituent pages of a large page
4128 		 */
4129 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4130 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4131 		while (pgcnt-- > 0) {
4132 			/*
4133 			 * hat_page_demote() can't decrease
4134 			 * pszc below this mapping size
4135 			 * since large mapping existed after we
4136 			 * took mlist lock.
4137 			 */
4138 			ASSERT(pp->p_szc >= ht->ht_level);
4139 			hat_page_setattr(pp, rm);
4140 			++pp;
4141 		}
4142 	}
4143 
4144 	return (0);
4145 }
4146 
4147 /* ARGSUSED */
4148 void
4149 hat_join_srd(struct hat *hat, vnode_t *evp)
4150 {
4151 }
4152 
4153 /* ARGSUSED */
4154 hat_region_cookie_t
4155 hat_join_region(struct hat *hat,
4156     caddr_t r_saddr,
4157     size_t r_size,
4158     void *r_obj,
4159     u_offset_t r_objoff,
4160     uchar_t r_perm,
4161     uchar_t r_pgszc,
4162     hat_rgn_cb_func_t r_cb_function,
4163     uint_t flags)
4164 {
4165 	panic("No shared region support on x86");
4166 	return (HAT_INVALID_REGION_COOKIE);
4167 }
4168 
4169 /* ARGSUSED */
4170 void
4171 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4172 {
4173 	panic("No shared region support on x86");
4174 }
4175 
4176 /* ARGSUSED */
4177 void
4178 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4179 {
4180 	panic("No shared region support on x86");
4181 }
4182 
4183 
4184 /*
4185  * Kernel Physical Mapping (kpm) facility
4186  *
4187  * Most of the routines needed to support segkpm are almost no-ops on the
4188  * x86 platform.  We map in the entire segment when it is created and leave
4189  * it mapped in, so there is no additional work required to set up and tear
4190  * down individual mappings.  All of these routines were created to support
4191  * SPARC platforms that have to avoid aliasing in their virtually indexed
4192  * caches.
4193  *
4194  * Most of the routines have sanity checks in them (e.g. verifying that the
4195  * passed-in page is locked).  We don't actually care about most of these
4196  * checks on x86, but we leave them in place to identify problems in the
4197  * upper levels.
4198  */
4199 
4200 /*
4201  * Map in a locked page and return the vaddr.
4202  */
4203 /*ARGSUSED*/
4204 caddr_t
4205 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4206 {
4207 	caddr_t		vaddr;
4208 
4209 #ifdef DEBUG
4210 	if (kpm_enable == 0) {
4211 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4212 		return ((caddr_t)NULL);
4213 	}
4214 
4215 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4216 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4217 		return ((caddr_t)NULL);
4218 	}
4219 #endif
4220 
4221 	vaddr = hat_kpm_page2va(pp, 1);
4222 
4223 	return (vaddr);
4224 }
4225 
4226 /*
4227  * Mapout a locked page.
4228  */
4229 /*ARGSUSED*/
4230 void
4231 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4232 {
4233 #ifdef DEBUG
4234 	if (kpm_enable == 0) {
4235 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4236 		return;
4237 	}
4238 
4239 	if (IS_KPM_ADDR(vaddr) == 0) {
4240 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4241 		return;
4242 	}
4243 
4244 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4245 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4246 		return;
4247 	}
4248 #endif
4249 }
4250 
4251 /*
4252  * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4253  * memory addresses that are not described by a page_t.  It can
4254  * also be used for normal pages that are not locked, but beware
4255  * this is dangerous - no locking is performed, so the identity of
4256  * the page could change.  hat_kpm_mapin_pfn is not supported when
4257  * vac_colors > 1, because the chosen va depends on the page identity,
4258  * which could change.
4259  * The caller must only pass pfn's for valid physical addresses; violation
4260  * of this rule will cause panic.
4261  */
4262 caddr_t
4263 hat_kpm_mapin_pfn(pfn_t pfn)
4264 {
4265 	caddr_t paddr, vaddr;
4266 
4267 	if (kpm_enable == 0)
4268 		return ((caddr_t)NULL);
4269 
4270 	paddr = (caddr_t)ptob(pfn);
4271 	vaddr = (uintptr_t)kpm_vbase + paddr;
4272 
4273 	return ((caddr_t)vaddr);
4274 }
4275 
4276 /*ARGSUSED*/
4277 void
4278 hat_kpm_mapout_pfn(pfn_t pfn)
4279 {
4280 	/* empty */
4281 }
4282 
4283 /*
4284  * Return the kpm virtual address for a specific pfn
4285  */
4286 caddr_t
4287 hat_kpm_pfn2va(pfn_t pfn)
4288 {
4289 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4290 
4291 	ASSERT(!pfn_is_foreign(pfn));
4292 	return ((caddr_t)vaddr);
4293 }
4294 
4295 /*
4296  * Return the kpm virtual address for the page at pp.
4297  */
4298 /*ARGSUSED*/
4299 caddr_t
4300 hat_kpm_page2va(struct page *pp, int checkswap)
4301 {
4302 	return (hat_kpm_pfn2va(pp->p_pagenum));
4303 }
4304 
4305 /*
4306  * Return the page frame number for the kpm virtual address vaddr.
4307  */
4308 pfn_t
4309 hat_kpm_va2pfn(caddr_t vaddr)
4310 {
4311 	pfn_t		pfn;
4312 
4313 	ASSERT(IS_KPM_ADDR(vaddr));
4314 
4315 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4316 
4317 	return (pfn);
4318 }
4319 
4320 
4321 /*
4322  * Return the page for the kpm virtual address vaddr.
4323  */
4324 page_t *
4325 hat_kpm_vaddr2page(caddr_t vaddr)
4326 {
4327 	pfn_t		pfn;
4328 
4329 	ASSERT(IS_KPM_ADDR(vaddr));
4330 
4331 	pfn = hat_kpm_va2pfn(vaddr);
4332 
4333 	return (page_numtopp_nolock(pfn));
4334 }
4335 
4336 /*
4337  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4338  * KPM page.  This should never happen on x86
4339  */
4340 int
4341 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4342 {
4343 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4344 	    (void *)hat, (void *)vaddr);
4345 
4346 	return (0);
4347 }
4348 
4349 /*ARGSUSED*/
4350 void
4351 hat_kpm_mseghash_clear(int nentries)
4352 {}
4353 
4354 /*ARGSUSED*/
4355 void
4356 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4357 {}
4358 
4359 #ifndef	__xpv
4360 void
4361 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4362 	offset_t kpm_pages_off)
4363 {
4364 	_NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4365 	pfn_t base, end;
4366 
4367 	/*
4368 	 * kphysm_add_memory_dynamic() does not set nkpmpgs
4369 	 * when page_t memory is externally allocated.  That
4370 	 * code must properly calculate nkpmpgs in all cases
4371 	 * if nkpmpgs needs to be used at some point.
4372 	 */
4373 
4374 	/*
4375 	 * The meta (page_t) pages for dynamically added memory are allocated
4376 	 * either from the incoming memory itself or from existing memory.
4377 	 * In the former case the base of the incoming pages will be different
4378 	 * than the base of the dynamic segment so call memseg_get_start() to
4379 	 * get the actual base of the incoming memory for each case.
4380 	 */
4381 
4382 	base = memseg_get_start(msp);
4383 	end = msp->pages_end;
4384 
4385 	hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4386 	    mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4387 	    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4388 }
4389 
4390 void
4391 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4392 {
4393 	_NOTE(ARGUNUSED(msp));
4394 }
4395 
4396 void
4397 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4398 {
4399 	_NOTE(ARGUNUSED(msp));
4400 }
4401 
4402 /*
4403  * Return end of metadata for an already setup memseg.
4404  * X86 platforms don't need per-page meta data to support kpm.
4405  */
4406 caddr_t
4407 hat_kpm_mseg_reuse(struct memseg *msp)
4408 {
4409 	return ((caddr_t)msp->epages);
4410 }
4411 
4412 void
4413 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
4414 {
4415 	_NOTE(ARGUNUSED(msp, mspp));
4416 	ASSERT(0);
4417 }
4418 
4419 void
4420 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
4421 	struct memseg *lo, struct memseg *mid, struct memseg *hi)
4422 {
4423 	_NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
4424 	ASSERT(0);
4425 }
4426 
4427 /*
4428  * Walk the memsegs chain, applying func to each memseg span.
4429  */
4430 void
4431 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
4432 {
4433 	pfn_t	pbase, pend;
4434 	void	*base;
4435 	size_t	size;
4436 	struct memseg *msp;
4437 
4438 	for (msp = memsegs; msp; msp = msp->next) {
4439 		pbase = msp->pages_base;
4440 		pend = msp->pages_end;
4441 		base = ptob(pbase) + kpm_vbase;
4442 		size = ptob(pend - pbase);
4443 		func(arg, base, size);
4444 	}
4445 }
4446 
4447 #else	/* __xpv */
4448 
4449 /*
4450  * There are specific Hypervisor calls to establish and remove mappings
4451  * to grant table references and the privcmd driver. We have to ensure
4452  * that a page table actually exists.
4453  */
4454 void
4455 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
4456 {
4457 	maddr_t base_ma;
4458 	htable_t *ht;
4459 	uint_t entry;
4460 
4461 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4462 	XPV_DISALLOW_MIGRATE();
4463 	ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
4464 
4465 	/*
4466 	 * if an address for pte_ma is passed in, return the MA of the pte
4467 	 * for this specific address.  This address is only valid as long
4468 	 * as the htable stays locked.
4469 	 */
4470 	if (pte_ma != NULL) {
4471 		entry = htable_va2entry((uintptr_t)addr, ht);
4472 		base_ma = pa_to_ma(ptob(ht->ht_pfn));
4473 		*pte_ma = base_ma + (entry << mmu.pte_size_shift);
4474 	}
4475 	XPV_ALLOW_MIGRATE();
4476 }
4477 
4478 void
4479 hat_release_mapping(hat_t *hat, caddr_t addr)
4480 {
4481 	htable_t *ht;
4482 
4483 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
4484 	XPV_DISALLOW_MIGRATE();
4485 	ht = htable_lookup(hat, (uintptr_t)addr, 0);
4486 	ASSERT(ht != NULL);
4487 	ASSERT(ht->ht_busy >= 2);
4488 	htable_release(ht);
4489 	htable_release(ht);
4490 	XPV_ALLOW_MIGRATE();
4491 }
4492 #endif	/* __xpv */
4493