xref: /titanic_52/usr/src/uts/i86pc/os/trap.c (revision a7317ceb814150d472383df8b987d7e3282ea15b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
28 /*		All Rights Reserved   				*/
29 /*								*/
30 /*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
31 /*		All Rights Reserved   				*/
32 /*								*/
33 
34 /*
35  * Copyright 2012 Joyent, Inc. All rights reserved.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/sysmacros.h>
40 #include <sys/param.h>
41 #include <sys/signal.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <sys/core.h>
48 #include <sys/syscall.h>
49 #include <sys/cpuvar.h>
50 #include <sys/vm.h>
51 #include <sys/sysinfo.h>
52 #include <sys/fault.h>
53 #include <sys/stack.h>
54 #include <sys/psw.h>
55 #include <sys/regset.h>
56 #include <sys/fp.h>
57 #include <sys/trap.h>
58 #include <sys/kmem.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/prsystm.h>
62 #include <sys/mutex_impl.h>
63 #include <sys/machsystm.h>
64 #include <sys/archsystm.h>
65 #include <sys/sdt.h>
66 #include <sys/avintr.h>
67 #include <sys/kobj.h>
68 
69 #include <vm/hat.h>
70 
71 #include <vm/seg_kmem.h>
72 #include <vm/as.h>
73 #include <vm/seg.h>
74 #include <vm/hat_pte.h>
75 #include <vm/hat_i86.h>
76 
77 #include <sys/procfs.h>
78 
79 #include <sys/reboot.h>
80 #include <sys/debug.h>
81 #include <sys/debugreg.h>
82 #include <sys/modctl.h>
83 #include <sys/aio_impl.h>
84 #include <sys/tnf.h>
85 #include <sys/tnf_probe.h>
86 #include <sys/cred.h>
87 #include <sys/mman.h>
88 #include <sys/x86_archext.h>
89 #include <sys/copyops.h>
90 #include <c2/audit.h>
91 #include <sys/ftrace.h>
92 #include <sys/panic.h>
93 #include <sys/traptrace.h>
94 #include <sys/ontrap.h>
95 #include <sys/cpc_impl.h>
96 #include <sys/bootconf.h>
97 #include <sys/bootinfo.h>
98 #include <sys/promif.h>
99 #include <sys/mach_mmu.h>
100 #if defined(__xpv)
101 #include <sys/hypervisor.h>
102 #endif
103 #include <sys/contract/process_impl.h>
104 
105 #define	USER	0x10000		/* user-mode flag added to trap type */
106 
107 static const char *trap_type_mnemonic[] = {
108 	"de",	"db",	"2",	"bp",
109 	"of",	"br",	"ud",	"nm",
110 	"df",	"9",	"ts",	"np",
111 	"ss",	"gp",	"pf",	"15",
112 	"mf",	"ac",	"mc",	"xf"
113 };
114 
115 static const char *trap_type[] = {
116 	"Divide error",				/* trap id 0 	*/
117 	"Debug",				/* trap id 1	*/
118 	"NMI interrupt",			/* trap id 2	*/
119 	"Breakpoint",				/* trap id 3 	*/
120 	"Overflow",				/* trap id 4 	*/
121 	"BOUND range exceeded",			/* trap id 5 	*/
122 	"Invalid opcode",			/* trap id 6 	*/
123 	"Device not available",			/* trap id 7 	*/
124 	"Double fault",				/* trap id 8 	*/
125 	"Coprocessor segment overrun",		/* trap id 9 	*/
126 	"Invalid TSS",				/* trap id 10 	*/
127 	"Segment not present",			/* trap id 11 	*/
128 	"Stack segment fault",			/* trap id 12 	*/
129 	"General protection",			/* trap id 13 	*/
130 	"Page fault",				/* trap id 14 	*/
131 	"Reserved",				/* trap id 15 	*/
132 	"x87 floating point error",		/* trap id 16 	*/
133 	"Alignment check",			/* trap id 17 	*/
134 	"Machine check",			/* trap id 18	*/
135 	"SIMD floating point exception",	/* trap id 19	*/
136 };
137 
138 #define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
139 
140 #define	SLOW_SCALL_SIZE	2
141 #define	FAST_SCALL_SIZE	2
142 
143 int tudebug = 0;
144 int tudebugbpt = 0;
145 int tudebugfpe = 0;
146 int tudebugsse = 0;
147 
148 #if defined(TRAPDEBUG) || defined(lint)
149 int tdebug = 0;
150 int lodebug = 0;
151 int faultdebug = 0;
152 #else
153 #define	tdebug	0
154 #define	lodebug	0
155 #define	faultdebug	0
156 #endif /* defined(TRAPDEBUG) || defined(lint) */
157 
158 #if defined(TRAPTRACE)
159 /*
160  * trap trace record for cpu0 is allocated here.
161  * trap trace records for non-boot cpus are allocated in mp_startup_init().
162  */
163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
165 	{
166 	    (uintptr_t)trap_tr0,			/* next record */
167 	    (uintptr_t)trap_tr0,			/* first record */
168 	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
169 	    (uintptr_t)0				/* current */
170 	},
171 };
172 
173 /*
174  * default trap buffer size
175  */
176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
177 int trap_trace_freeze = 0;
178 int trap_trace_off = 0;
179 
180 /*
181  * A dummy TRAPTRACE entry to use after death.
182  */
183 trap_trace_rec_t trap_trace_postmort;
184 
185 static void dump_ttrace(void);
186 #endif	/* TRAPTRACE */
187 static void dumpregs(struct regs *);
188 static void showregs(uint_t, struct regs *, caddr_t);
189 static int kern_gpfault(struct regs *);
190 
191 /*ARGSUSED*/
192 static int
193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
194 {
195 	struct panic_trap_info ti;
196 	const char *trap_name, *trap_mnemonic;
197 
198 	if (type < TRAP_TYPES) {
199 		trap_name = trap_type[type];
200 		trap_mnemonic = trap_type_mnemonic[type];
201 	} else {
202 		trap_name = "trap";
203 		trap_mnemonic = "-";
204 	}
205 
206 #ifdef TRAPTRACE
207 	TRAPTRACE_FREEZE;
208 #endif
209 
210 	ti.trap_regs = rp;
211 	ti.trap_type = type & ~USER;
212 	ti.trap_addr = addr;
213 
214 	curthread->t_panic_trap = &ti;
215 
216 	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
217 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
218 		    "occurred in module \"%s\" due to %s",
219 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
220 		    mod_containing_pc((caddr_t)rp->r_pc),
221 		    addr < (caddr_t)PAGESIZE ?
222 		    "a NULL pointer dereference" :
223 		    "an illegal access to a user address");
224 	} else
225 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
226 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
227 	return (0);
228 }
229 
230 /*
231  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
232  *
233  * int <vector> is two bytes: 0xCD <vector>
234  */
235 
236 static int
237 rewrite_syscall(caddr_t pc)
238 {
239 	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
240 
241 	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
242 	    (uintptr_t)pc) != 0)
243 		return (1);
244 
245 	return (0);
246 }
247 
248 /*
249  * Test to see if the instruction at pc is sysenter or syscall. The second
250  * argument should be the x86 feature flag corresponding to the expected
251  * instruction.
252  *
253  * sysenter is two bytes: 0x0F 0x34
254  * syscall is two bytes:  0x0F 0x05
255  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
256  */
257 
258 static int
259 instr_is_other_syscall(caddr_t pc, int which)
260 {
261 	uchar_t instr[FAST_SCALL_SIZE];
262 
263 	ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
264 
265 	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
266 		return (0);
267 
268 	switch (which) {
269 	case X86FSET_SEP:
270 		if (instr[0] == 0x0F && instr[1] == 0x34)
271 			return (1);
272 		break;
273 	case X86FSET_ASYSC:
274 		if (instr[0] == 0x0F && instr[1] == 0x05)
275 			return (1);
276 		break;
277 	case 0xCD:
278 		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
279 			return (1);
280 		break;
281 	}
282 
283 	return (0);
284 }
285 
286 static const char *
287 syscall_insn_string(int syscall_insn)
288 {
289 	switch (syscall_insn) {
290 	case X86FSET_SEP:
291 		return ("sysenter");
292 	case X86FSET_ASYSC:
293 		return ("syscall");
294 	case 0xCD:
295 		return ("int");
296 	default:
297 		return ("Unknown");
298 	}
299 }
300 
301 static int
302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
303 {
304 	caddr_t	linearpc;
305 	int return_code = 0;
306 
307 	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
308 
309 	if (linear_pc(rp, p, &linearpc) == 0) {
310 
311 		/*
312 		 * If another thread beat us here, it already changed
313 		 * this site to the slower (int) syscall instruction.
314 		 */
315 		if (instr_is_other_syscall(linearpc, 0xCD)) {
316 			return_code = 1;
317 		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
318 
319 			if (rewrite_syscall(linearpc) == 0) {
320 				return_code = 1;
321 			}
322 #ifdef DEBUG
323 			else
324 				cmn_err(CE_WARN, "failed to rewrite %s "
325 				    "instruction in process %d",
326 				    syscall_insn_string(syscall_insn),
327 				    p->p_pid);
328 #endif /* DEBUG */
329 		}
330 	}
331 
332 	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
333 
334 	return (return_code);
335 }
336 
337 /*
338  * Test to see if the instruction at pc is a system call instruction.
339  *
340  * The bytes of an lcall instruction used for the syscall trap.
341  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
342  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
343  */
344 
345 #define	LCALLSIZE	7
346 
347 static int
348 instr_is_lcall_syscall(caddr_t pc)
349 {
350 	uchar_t instr[LCALLSIZE];
351 
352 	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
353 	    instr[0] == 0x9a &&
354 	    instr[1] == 0 &&
355 	    instr[2] == 0 &&
356 	    instr[3] == 0 &&
357 	    instr[4] == 0 &&
358 	    (instr[5] == 0x7 || instr[5] == 0x27) &&
359 	    instr[6] == 0)
360 		return (1);
361 
362 	return (0);
363 }
364 
365 #ifdef __amd64
366 
367 /*
368  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
369  * SAHF instructions were not implemented in 64-bit mode. Later revisions
370  * did implement these instructions. An extension to the cpuid instruction
371  * was added to check for the capability of executing these instructions
372  * in 64-bit mode.
373  *
374  * Intel originally did not implement these instructions in EM64T either,
375  * but added them in later revisions.
376  *
377  * So, there are different chip revisions by both vendors out there that
378  * may or may not implement these instructions. The easy solution is to
379  * just always emulate these instructions on demand.
380  *
381  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
382  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
383  */
384 
385 #define	LSAHFSIZE 1
386 
387 static int
388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
389 {
390 	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
391 	    (*instr == 0x9e || *instr == 0x9f))
392 		return (1);
393 	return (0);
394 }
395 
396 /*
397  * Emulate the LAHF and SAHF instructions. The reference manuals define
398  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
399  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
400  *
401  * Note that %ah is bits 8-15 of %rax.
402  */
403 static void
404 emulate_lsahf(struct regs *rp, uchar_t instr)
405 {
406 	if (instr == 0x9e) {
407 		/* sahf. Copy bits from %ah to flags. */
408 		rp->r_ps = (rp->r_ps & ~0xff) |
409 		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
410 	} else {
411 		/* lahf. Copy bits from flags to %ah. */
412 		rp->r_rax = (rp->r_rax & ~0xff00) |
413 		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
414 	}
415 	rp->r_pc += LSAHFSIZE;
416 }
417 #endif /* __amd64 */
418 
419 #ifdef OPTERON_ERRATUM_91
420 
421 /*
422  * Test to see if the instruction at pc is a prefetch instruction.
423  *
424  * The first byte of prefetch instructions is always 0x0F.
425  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
426  * The third byte (ModRM) contains the register field bits (bits 3-5).
427  * These bits must be between 0 and 3 inclusive for regular prefetch and
428  * 0 and 1 inclusive for AMD 3dnow prefetch.
429  *
430  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
431  */
432 
433 static int
434 cmp_to_prefetch(uchar_t *p)
435 {
436 #ifdef _LP64
437 	if ((p[0] & 0xF0) == 0x40)	/* 64-bit REX prefix */
438 		p++;
439 #endif
440 	return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
441 	    (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
442 }
443 
444 static int
445 instr_is_prefetch(caddr_t pc)
446 {
447 	uchar_t instr[4];	/* optional REX prefix plus 3-byte opcode */
448 
449 	return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
450 	    cmp_to_prefetch(instr));
451 }
452 
453 #endif /* OPTERON_ERRATUM_91 */
454 
455 /*
456  * Called from the trap handler when a processor trap occurs.
457  *
458  * Note: All user-level traps that might call stop() must exit
459  * trap() by 'goto out' or by falling through.
460  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
461  * however, there are paths that arrive here with PS_IE == 0 so special care
462  * must be taken in those cases.
463  */
464 void
465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
466 {
467 	kthread_t *ct = curthread;
468 	enum seg_rw rw;
469 	unsigned type;
470 	proc_t *p = ttoproc(ct);
471 	klwp_t *lwp = ttolwp(ct);
472 	uintptr_t lofault;
473 	label_t *onfault;
474 	faultcode_t pagefault(), res, errcode;
475 	enum fault_type fault_type;
476 	k_siginfo_t siginfo;
477 	uint_t fault = 0;
478 	int mstate;
479 	int sicode = 0;
480 	int watchcode;
481 	int watchpage;
482 	caddr_t vaddr;
483 	int singlestep_twiddle;
484 	size_t sz;
485 	int ta;
486 #ifdef __amd64
487 	uchar_t instr;
488 #endif
489 
490 	ASSERT_STACK_ALIGNED();
491 
492 	type = rp->r_trapno;
493 	CPU_STATS_ADDQ(CPU, sys, trap, 1);
494 	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
495 
496 	if (type == T_PGFLT) {
497 
498 		errcode = rp->r_err;
499 		if (errcode & PF_ERR_WRITE)
500 			rw = S_WRITE;
501 		else if ((caddr_t)rp->r_pc == addr ||
502 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
503 			rw = S_EXEC;
504 		else
505 			rw = S_READ;
506 
507 #if defined(__i386)
508 		/*
509 		 * Pentium Pro work-around
510 		 */
511 		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
512 			uint_t	attr;
513 			uint_t	priv_violation;
514 			uint_t	access_violation;
515 
516 			if (hat_getattr(addr < (caddr_t)kernelbase ?
517 			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
518 			    == -1) {
519 				errcode &= ~PF_ERR_PROT;
520 			} else {
521 				priv_violation = (errcode & PF_ERR_USER) &&
522 				    !(attr & PROT_USER);
523 				access_violation = (errcode & PF_ERR_WRITE) &&
524 				    !(attr & PROT_WRITE);
525 				if (!priv_violation && !access_violation)
526 					goto cleanup;
527 			}
528 		}
529 #endif /* __i386 */
530 
531 	} else if (type == T_SGLSTP && lwp != NULL)
532 		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
533 
534 	if (tdebug)
535 		showregs(type, rp, addr);
536 
537 	if (USERMODE(rp->r_cs)) {
538 		/*
539 		 * Set up the current cred to use during this trap. u_cred
540 		 * no longer exists.  t_cred is used instead.
541 		 * The current process credential applies to the thread for
542 		 * the entire trap.  If trapping from the kernel, this
543 		 * should already be set up.
544 		 */
545 		if (ct->t_cred != p->p_cred) {
546 			cred_t *oldcred = ct->t_cred;
547 			/*
548 			 * DTrace accesses t_cred in probe context.  t_cred
549 			 * must always be either NULL, or point to a valid,
550 			 * allocated cred structure.
551 			 */
552 			ct->t_cred = crgetcred();
553 			crfree(oldcred);
554 		}
555 		ASSERT(lwp != NULL);
556 		type |= USER;
557 		ASSERT(lwptoregs(lwp) == rp);
558 		lwp->lwp_state = LWP_SYS;
559 
560 		switch (type) {
561 		case T_PGFLT + USER:
562 			if ((caddr_t)rp->r_pc == addr)
563 				mstate = LMS_TFAULT;
564 			else
565 				mstate = LMS_DFAULT;
566 			break;
567 		default:
568 			mstate = LMS_TRAP;
569 			break;
570 		}
571 		/* Kernel probe */
572 		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
573 		    tnf_microstate, state, mstate);
574 		mstate = new_mstate(ct, mstate);
575 
576 		bzero(&siginfo, sizeof (siginfo));
577 	}
578 
579 	switch (type) {
580 	case T_PGFLT + USER:
581 	case T_SGLSTP:
582 	case T_SGLSTP + USER:
583 	case T_BPTFLT + USER:
584 		break;
585 
586 	default:
587 		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
588 		    (ulong_t)type, (ulong_t)rp);
589 		break;
590 	}
591 
592 	switch (type) {
593 	case T_SIMDFPE:
594 		/* Make sure we enable interrupts before die()ing */
595 		sti();	/* The SIMD exception comes in via cmninttrap */
596 		/*FALLTHROUGH*/
597 	default:
598 		if (type & USER) {
599 			if (tudebug)
600 				showregs(type, rp, (caddr_t)0);
601 			printf("trap: Unknown trap type %d in user mode\n",
602 			    type & ~USER);
603 			siginfo.si_signo = SIGILL;
604 			siginfo.si_code  = ILL_ILLTRP;
605 			siginfo.si_addr  = (caddr_t)rp->r_pc;
606 			siginfo.si_trapno = type & ~USER;
607 			fault = FLTILL;
608 			break;
609 		} else {
610 			(void) die(type, rp, addr, cpuid);
611 			/*NOTREACHED*/
612 		}
613 
614 	case T_PGFLT:		/* system page fault */
615 		/*
616 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
617 		 * set ot_trap and bounce back to the on_trap() call site
618 		 * via the installed trampoline.
619 		 */
620 		if ((ct->t_ontrap != NULL) &&
621 		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
622 			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
623 			rp->r_pc = ct->t_ontrap->ot_trampoline;
624 			goto cleanup;
625 		}
626 
627 		/*
628 		 * If we have an Instruction fault in kernel mode, then that
629 		 * means we've tried to execute a user page (SMEP) or both of
630 		 * PAE and NXE are enabled. In either case, given that it's a
631 		 * kernel fault, we should panic immediately and not try to make
632 		 * any more forward progress. This indicates a bug in the
633 		 * kernel, which if execution continued, could be exploited to
634 		 * wreak havoc on the system.
635 		 */
636 		if (errcode & PF_ERR_EXEC) {
637 			(void) die(type, rp, addr, cpuid);
638 		}
639 
640 		/*
641 		 * See if we can handle as pagefault. Save lofault and onfault
642 		 * across this. Here we assume that an address less than
643 		 * KERNELBASE is a user fault.  We can do this as copy.s
644 		 * routines verify that the starting address is less than
645 		 * KERNELBASE before starting and because we know that we
646 		 * always have KERNELBASE mapped as invalid to serve as a
647 		 * "barrier".
648 		 */
649 		lofault = ct->t_lofault;
650 		onfault = ct->t_onfault;
651 		ct->t_lofault = 0;
652 
653 		mstate = new_mstate(ct, LMS_KFAULT);
654 
655 		if (addr < (caddr_t)kernelbase) {
656 			res = pagefault(addr,
657 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
658 			if (res == FC_NOMAP &&
659 			    addr < p->p_usrstack &&
660 			    grow(addr))
661 				res = 0;
662 		} else {
663 			res = pagefault(addr,
664 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
665 		}
666 		(void) new_mstate(ct, mstate);
667 
668 		/*
669 		 * Restore lofault and onfault. If we resolved the fault, exit.
670 		 * If we didn't and lofault wasn't set, die.
671 		 */
672 		ct->t_lofault = lofault;
673 		ct->t_onfault = onfault;
674 		if (res == 0)
675 			goto cleanup;
676 
677 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
678 		if (lofault == 0 && opteron_erratum_93) {
679 			/*
680 			 * Workaround for Opteron Erratum 93. On return from
681 			 * a System Managment Interrupt at a HLT instruction
682 			 * the %rip might be truncated to a 32 bit value.
683 			 * BIOS is supposed to fix this, but some don't.
684 			 * If this occurs we simply restore the high order bits.
685 			 * The HLT instruction is 1 byte of 0xf4.
686 			 */
687 			uintptr_t	rip = rp->r_pc;
688 
689 			if ((rip & 0xfffffffful) == rip) {
690 				rip |= 0xfffffffful << 32;
691 				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
692 				    PFN_INVALID &&
693 				    (*(uchar_t *)rip == 0xf4 ||
694 				    *(uchar_t *)(rip - 1) == 0xf4)) {
695 					rp->r_pc = rip;
696 					goto cleanup;
697 				}
698 			}
699 		}
700 #endif /* OPTERON_ERRATUM_93 && _LP64 */
701 
702 #ifdef OPTERON_ERRATUM_91
703 		if (lofault == 0 && opteron_erratum_91) {
704 			/*
705 			 * Workaround for Opteron Erratum 91. Prefetches may
706 			 * generate a page fault (they're not supposed to do
707 			 * that!). If this occurs we simply return back to the
708 			 * instruction.
709 			 */
710 			caddr_t		pc = (caddr_t)rp->r_pc;
711 
712 			/*
713 			 * If the faulting PC is not mapped, this is a
714 			 * legitimate kernel page fault that must result in a
715 			 * panic. If the faulting PC is mapped, it could contain
716 			 * a prefetch instruction. Check for that here.
717 			 */
718 			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
719 				if (cmp_to_prefetch((uchar_t *)pc)) {
720 #ifdef DEBUG
721 					cmn_err(CE_WARN, "Opteron erratum 91 "
722 					    "occurred: kernel prefetch"
723 					    " at %p generated a page fault!",
724 					    (void *)rp->r_pc);
725 #endif /* DEBUG */
726 					goto cleanup;
727 				}
728 			}
729 			(void) die(type, rp, addr, cpuid);
730 		}
731 #endif /* OPTERON_ERRATUM_91 */
732 
733 		if (lofault == 0)
734 			(void) die(type, rp, addr, cpuid);
735 
736 		/*
737 		 * Cannot resolve fault.  Return to lofault.
738 		 */
739 		if (lodebug) {
740 			showregs(type, rp, addr);
741 			traceregs(rp);
742 		}
743 		if (FC_CODE(res) == FC_OBJERR)
744 			res = FC_ERRNO(res);
745 		else
746 			res = EFAULT;
747 		rp->r_r0 = res;
748 		rp->r_pc = ct->t_lofault;
749 		goto cleanup;
750 
751 	case T_PGFLT + USER:	/* user page fault */
752 		if (faultdebug) {
753 			char *fault_str;
754 
755 			switch (rw) {
756 			case S_READ:
757 				fault_str = "read";
758 				break;
759 			case S_WRITE:
760 				fault_str = "write";
761 				break;
762 			case S_EXEC:
763 				fault_str = "exec";
764 				break;
765 			default:
766 				fault_str = "";
767 				break;
768 			}
769 			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
770 			    fault_str, (uintptr_t)addr, errcode);
771 		}
772 
773 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
774 		/*
775 		 * Workaround for AMD erratum 100
776 		 *
777 		 * A 32-bit process may receive a page fault on a non
778 		 * 32-bit address by mistake. The range of the faulting
779 		 * address will be
780 		 *
781 		 *	0xffffffff80000000 .. 0xffffffffffffffff or
782 		 *	0x0000000100000000 .. 0x000000017fffffff
783 		 *
784 		 * The fault is always due to an instruction fetch, however
785 		 * the value of r_pc should be correct (in 32 bit range),
786 		 * so we ignore the page fault on the bogus address.
787 		 */
788 		if (p->p_model == DATAMODEL_ILP32 &&
789 		    (0xffffffff80000000 <= (uintptr_t)addr ||
790 		    (0x100000000 <= (uintptr_t)addr &&
791 		    (uintptr_t)addr <= 0x17fffffff))) {
792 			if (!opteron_erratum_100)
793 				panic("unexpected erratum #100");
794 			if (rp->r_pc <= 0xffffffff)
795 				goto out;
796 		}
797 #endif /* OPTERON_ERRATUM_100 && _LP64 */
798 
799 		ASSERT(!(curthread->t_flag & T_WATCHPT));
800 		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
801 #ifdef __i386
802 		/*
803 		 * In 32-bit mode, the lcall (system call) instruction fetches
804 		 * one word from the stack, at the stack pointer, because of the
805 		 * way the call gate is constructed.  This is a bogus
806 		 * read and should not be counted as a read watchpoint.
807 		 * We work around the problem here by testing to see if
808 		 * this situation applies and, if so, simply jumping to
809 		 * the code in locore.s that fields the system call trap.
810 		 * The registers on the stack are already set up properly
811 		 * due to the match between the call gate sequence and the
812 		 * trap gate sequence.  We just have to adjust the pc.
813 		 */
814 		if (watchpage && addr == (caddr_t)rp->r_sp &&
815 		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
816 			extern void watch_syscall(void);
817 
818 			rp->r_pc += LCALLSIZE;
819 			watch_syscall();	/* never returns */
820 			/* NOTREACHED */
821 		}
822 #endif /* __i386 */
823 		vaddr = addr;
824 		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
825 			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
826 		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
827 		    sz, NULL, rw)) != 0) {
828 			if (ta) {
829 				do_watch_step(vaddr, sz, rw,
830 				    watchcode, rp->r_pc);
831 				fault_type = F_INVAL;
832 			} else {
833 				bzero(&siginfo, sizeof (siginfo));
834 				siginfo.si_signo = SIGTRAP;
835 				siginfo.si_code = watchcode;
836 				siginfo.si_addr = vaddr;
837 				siginfo.si_trapafter = 0;
838 				siginfo.si_pc = (caddr_t)rp->r_pc;
839 				fault = FLTWATCH;
840 				break;
841 			}
842 		} else {
843 			/* XXX pr_watch_emul() never succeeds (for now) */
844 			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
845 				goto out;
846 			do_watch_step(vaddr, sz, rw, 0, 0);
847 			fault_type = F_INVAL;
848 		}
849 
850 		res = pagefault(addr, fault_type, rw, 0);
851 
852 		/*
853 		 * If pagefault() succeeded, ok.
854 		 * Otherwise attempt to grow the stack.
855 		 */
856 		if (res == 0 ||
857 		    (res == FC_NOMAP &&
858 		    addr < p->p_usrstack &&
859 		    grow(addr))) {
860 			lwp->lwp_lastfault = FLTPAGE;
861 			lwp->lwp_lastfaddr = addr;
862 			if (prismember(&p->p_fltmask, FLTPAGE)) {
863 				bzero(&siginfo, sizeof (siginfo));
864 				siginfo.si_addr = addr;
865 				(void) stop_on_fault(FLTPAGE, &siginfo);
866 			}
867 			goto out;
868 		} else if (res == FC_PROT && addr < p->p_usrstack &&
869 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
870 			report_stack_exec(p, addr);
871 		}
872 
873 #ifdef OPTERON_ERRATUM_91
874 		/*
875 		 * Workaround for Opteron Erratum 91. Prefetches may generate a
876 		 * page fault (they're not supposed to do that!). If this
877 		 * occurs we simply return back to the instruction.
878 		 *
879 		 * We rely on copyin to properly fault in the page with r_pc.
880 		 */
881 		if (opteron_erratum_91 &&
882 		    addr != (caddr_t)rp->r_pc &&
883 		    instr_is_prefetch((caddr_t)rp->r_pc)) {
884 #ifdef DEBUG
885 			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
886 			    "prefetch at %p in pid %d generated a trap!",
887 			    (void *)rp->r_pc, p->p_pid);
888 #endif /* DEBUG */
889 			goto out;
890 		}
891 #endif /* OPTERON_ERRATUM_91 */
892 
893 		if (tudebug)
894 			showregs(type, rp, addr);
895 		/*
896 		 * In the case where both pagefault and grow fail,
897 		 * set the code to the value provided by pagefault.
898 		 * We map all errors returned from pagefault() to SIGSEGV.
899 		 */
900 		bzero(&siginfo, sizeof (siginfo));
901 		siginfo.si_addr = addr;
902 		switch (FC_CODE(res)) {
903 		case FC_HWERR:
904 		case FC_NOSUPPORT:
905 			siginfo.si_signo = SIGBUS;
906 			siginfo.si_code = BUS_ADRERR;
907 			fault = FLTACCESS;
908 			break;
909 		case FC_ALIGN:
910 			siginfo.si_signo = SIGBUS;
911 			siginfo.si_code = BUS_ADRALN;
912 			fault = FLTACCESS;
913 			break;
914 		case FC_OBJERR:
915 			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
916 				siginfo.si_signo = SIGBUS;
917 				siginfo.si_code = BUS_OBJERR;
918 				fault = FLTACCESS;
919 			}
920 			break;
921 		default:	/* FC_NOMAP or FC_PROT */
922 			siginfo.si_signo = SIGSEGV;
923 			siginfo.si_code =
924 			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
925 			fault = FLTBOUNDS;
926 			break;
927 		}
928 		break;
929 
930 	case T_ILLINST + USER:	/* invalid opcode fault */
931 		/*
932 		 * If the syscall instruction is disabled due to LDT usage, a
933 		 * user program that attempts to execute it will trigger a #ud
934 		 * trap. Check for that case here. If this occurs on a CPU which
935 		 * doesn't even support syscall, the result of all of this will
936 		 * be to emulate that particular instruction.
937 		 */
938 		if (p->p_ldt != NULL &&
939 		    ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
940 			goto out;
941 
942 #ifdef __amd64
943 		/*
944 		 * Emulate the LAHF and SAHF instructions if needed.
945 		 * See the instr_is_lsahf function for details.
946 		 */
947 		if (p->p_model == DATAMODEL_LP64 &&
948 		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
949 			emulate_lsahf(rp, instr);
950 			goto out;
951 		}
952 #endif
953 
954 		/*FALLTHROUGH*/
955 
956 		if (tudebug)
957 			showregs(type, rp, (caddr_t)0);
958 		siginfo.si_signo = SIGILL;
959 		siginfo.si_code  = ILL_ILLOPC;
960 		siginfo.si_addr  = (caddr_t)rp->r_pc;
961 		fault = FLTILL;
962 		break;
963 
964 	case T_ZERODIV + USER:		/* integer divide by zero */
965 		if (tudebug && tudebugfpe)
966 			showregs(type, rp, (caddr_t)0);
967 		siginfo.si_signo = SIGFPE;
968 		siginfo.si_code  = FPE_INTDIV;
969 		siginfo.si_addr  = (caddr_t)rp->r_pc;
970 		fault = FLTIZDIV;
971 		break;
972 
973 	case T_OVFLW + USER:	/* integer overflow */
974 		if (tudebug && tudebugfpe)
975 			showregs(type, rp, (caddr_t)0);
976 		siginfo.si_signo = SIGFPE;
977 		siginfo.si_code  = FPE_INTOVF;
978 		siginfo.si_addr  = (caddr_t)rp->r_pc;
979 		fault = FLTIOVF;
980 		break;
981 
982 	case T_NOEXTFLT + USER:	/* math coprocessor not available */
983 		if (tudebug && tudebugfpe)
984 			showregs(type, rp, addr);
985 		if (fpnoextflt(rp)) {
986 			siginfo.si_signo = SIGILL;
987 			siginfo.si_code  = ILL_ILLOPC;
988 			siginfo.si_addr  = (caddr_t)rp->r_pc;
989 			fault = FLTILL;
990 		}
991 		break;
992 
993 	case T_EXTOVRFLT:	/* extension overrun fault */
994 		/* check if we took a kernel trap on behalf of user */
995 		{
996 			extern  void ndptrap_frstor(void);
997 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
998 				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
999 				(void) die(type, rp, addr, cpuid);
1000 			}
1001 			type |= USER;
1002 		}
1003 		/*FALLTHROUGH*/
1004 	case T_EXTOVRFLT + USER:	/* extension overrun fault */
1005 		if (tudebug && tudebugfpe)
1006 			showregs(type, rp, addr);
1007 		if (fpextovrflt(rp)) {
1008 			siginfo.si_signo = SIGSEGV;
1009 			siginfo.si_code  = SEGV_MAPERR;
1010 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1011 			fault = FLTBOUNDS;
1012 		}
1013 		break;
1014 
1015 	case T_EXTERRFLT:	/* x87 floating point exception pending */
1016 		/* check if we took a kernel trap on behalf of user */
1017 		{
1018 			extern  void ndptrap_frstor(void);
1019 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1020 				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1021 				(void) die(type, rp, addr, cpuid);
1022 			}
1023 			type |= USER;
1024 		}
1025 		/*FALLTHROUGH*/
1026 
1027 	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1028 		if (tudebug && tudebugfpe)
1029 			showregs(type, rp, addr);
1030 		if (sicode = fpexterrflt(rp)) {
1031 			siginfo.si_signo = SIGFPE;
1032 			siginfo.si_code  = sicode;
1033 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1034 			fault = FLTFPE;
1035 		}
1036 		break;
1037 
1038 	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1039 		if (tudebug && tudebugsse)
1040 			showregs(type, rp, addr);
1041 		if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1042 		    !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1043 			/*
1044 			 * There are rumours that some user instructions
1045 			 * on older CPUs can cause this trap to occur; in
1046 			 * which case send a SIGILL instead of a SIGFPE.
1047 			 */
1048 			siginfo.si_signo = SIGILL;
1049 			siginfo.si_code  = ILL_ILLTRP;
1050 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1051 			siginfo.si_trapno = type & ~USER;
1052 			fault = FLTILL;
1053 		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1054 			siginfo.si_signo = SIGFPE;
1055 			siginfo.si_code = sicode;
1056 			siginfo.si_addr = (caddr_t)rp->r_pc;
1057 			fault = FLTFPE;
1058 		}
1059 
1060 		sti();	/* The SIMD exception comes in via cmninttrap */
1061 		break;
1062 
1063 	case T_BPTFLT:	/* breakpoint trap */
1064 		/*
1065 		 * Kernel breakpoint traps should only happen when kmdb is
1066 		 * active, and even then, it'll have interposed on the IDT, so
1067 		 * control won't get here.  If it does, we've hit a breakpoint
1068 		 * without the debugger, which is very strange, and very
1069 		 * fatal.
1070 		 */
1071 		if (tudebug && tudebugbpt)
1072 			showregs(type, rp, (caddr_t)0);
1073 
1074 		(void) die(type, rp, addr, cpuid);
1075 		break;
1076 
1077 	case T_SGLSTP: /* single step/hw breakpoint exception */
1078 
1079 		/* Now evaluate how we got here */
1080 		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1081 			/*
1082 			 * i386 single-steps even through lcalls which
1083 			 * change the privilege level. So we take a trap at
1084 			 * the first instruction in privileged mode.
1085 			 *
1086 			 * Set a flag to indicate that upon completion of
1087 			 * the system call, deal with the single-step trap.
1088 			 *
1089 			 * The same thing happens for sysenter, too.
1090 			 */
1091 			singlestep_twiddle = 0;
1092 			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1093 			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1094 				singlestep_twiddle = 1;
1095 #if defined(__amd64)
1096 				/*
1097 				 * Since we are already on the kernel's
1098 				 * %gs, on 64-bit systems the sysenter case
1099 				 * needs to adjust the pc to avoid
1100 				 * executing the swapgs instruction at the
1101 				 * top of the handler.
1102 				 */
1103 				if (rp->r_pc == (uintptr_t)sys_sysenter)
1104 					rp->r_pc = (uintptr_t)
1105 					    _sys_sysenter_post_swapgs;
1106 				else
1107 					rp->r_pc = (uintptr_t)
1108 					    _brand_sys_sysenter_post_swapgs;
1109 #endif
1110 			}
1111 #if defined(__i386)
1112 			else if (rp->r_pc == (uintptr_t)sys_call ||
1113 			    rp->r_pc == (uintptr_t)brand_sys_call) {
1114 				singlestep_twiddle = 1;
1115 			}
1116 #endif
1117 			else {
1118 				/* not on sysenter/syscall; uregs available */
1119 				if (tudebug && tudebugbpt)
1120 					showregs(type, rp, (caddr_t)0);
1121 			}
1122 			if (singlestep_twiddle) {
1123 				rp->r_ps &= ~PS_T; /* turn off trace */
1124 				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1125 				ct->t_post_sys = 1;
1126 				aston(curthread);
1127 				goto cleanup;
1128 			}
1129 		}
1130 		/* XXX - needs review on debugger interface? */
1131 		if (boothowto & RB_DEBUG)
1132 			debug_enter((char *)NULL);
1133 		else
1134 			(void) die(type, rp, addr, cpuid);
1135 		break;
1136 
1137 	case T_NMIFLT:	/* NMI interrupt */
1138 		printf("Unexpected NMI in system mode\n");
1139 		goto cleanup;
1140 
1141 	case T_NMIFLT + USER:	/* NMI interrupt */
1142 		printf("Unexpected NMI in user mode\n");
1143 		break;
1144 
1145 	case T_GPFLT:	/* general protection violation */
1146 		/*
1147 		 * Any #GP that occurs during an on_trap .. no_trap bracket
1148 		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1149 		 * or in a on_fault .. no_fault bracket, is forgiven
1150 		 * and we trampoline.  This protection is given regardless
1151 		 * of whether we are 32/64 bit etc - if a distinction is
1152 		 * required then define new on_trap protection types.
1153 		 *
1154 		 * On amd64, we can get a #gp from referencing addresses
1155 		 * in the virtual address hole e.g. from a copyin or in
1156 		 * update_sregs while updating user segment registers.
1157 		 *
1158 		 * On the 32-bit hypervisor we could also generate one in
1159 		 * mfn_to_pfn by reaching around or into where the hypervisor
1160 		 * lives which is protected by segmentation.
1161 		 */
1162 
1163 		/*
1164 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1165 		 * set ot_trap and trampoline back to the on_trap() call site
1166 		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1167 		 */
1168 		if (ct->t_ontrap != NULL) {
1169 			int ttype =  ct->t_ontrap->ot_prot &
1170 			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1171 
1172 			if (ttype != 0) {
1173 				ct->t_ontrap->ot_trap |= ttype;
1174 				if (tudebug)
1175 					showregs(type, rp, (caddr_t)0);
1176 				rp->r_pc = ct->t_ontrap->ot_trampoline;
1177 				goto cleanup;
1178 			}
1179 		}
1180 
1181 		/*
1182 		 * If we're under lofault protection (copyin etc.),
1183 		 * longjmp back to lofault with an EFAULT.
1184 		 */
1185 		if (ct->t_lofault) {
1186 			/*
1187 			 * Fault is not resolvable, so just return to lofault
1188 			 */
1189 			if (lodebug) {
1190 				showregs(type, rp, addr);
1191 				traceregs(rp);
1192 			}
1193 			rp->r_r0 = EFAULT;
1194 			rp->r_pc = ct->t_lofault;
1195 			goto cleanup;
1196 		}
1197 
1198 		/*
1199 		 * We fall through to the next case, which repeats
1200 		 * the OT_SEGMENT_ACCESS check which we've already
1201 		 * done, so we'll always fall through to the
1202 		 * T_STKFLT case.
1203 		 */
1204 		/*FALLTHROUGH*/
1205 	case T_SEGFLT:	/* segment not present fault */
1206 		/*
1207 		 * One example of this is #NP in update_sregs while
1208 		 * attempting to update a user segment register
1209 		 * that points to a descriptor that is marked not
1210 		 * present.
1211 		 */
1212 		if (ct->t_ontrap != NULL &&
1213 		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1214 			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1215 			if (tudebug)
1216 				showregs(type, rp, (caddr_t)0);
1217 			rp->r_pc = ct->t_ontrap->ot_trampoline;
1218 			goto cleanup;
1219 		}
1220 		/*FALLTHROUGH*/
1221 	case T_STKFLT:	/* stack fault */
1222 	case T_TSSFLT:	/* invalid TSS fault */
1223 		if (tudebug)
1224 			showregs(type, rp, (caddr_t)0);
1225 		if (kern_gpfault(rp))
1226 			(void) die(type, rp, addr, cpuid);
1227 		goto cleanup;
1228 
1229 	/*
1230 	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1231 	 * should have no need for them, so we put a stop to it here.
1232 	 *
1233 	 * So: not-present fault is ONLY valid for 32-bit processes with
1234 	 * a private LDT trying to do a system call. Emulate it.
1235 	 *
1236 	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1237 	 * have a private LDT, and are trying to do a system call. Emulate it.
1238 	 */
1239 
1240 	case T_SEGFLT + USER:	/* segment not present fault */
1241 	case T_GPFLT + USER:	/* general protection violation */
1242 #ifdef _SYSCALL32_IMPL
1243 		if (p->p_model != DATAMODEL_NATIVE) {
1244 #endif /* _SYSCALL32_IMPL */
1245 		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1246 			if (type == T_SEGFLT + USER)
1247 				ASSERT(p->p_ldt != NULL);
1248 
1249 			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1250 			    type == T_SEGFLT + USER) {
1251 
1252 			/*
1253 			 * The user attempted a system call via the obsolete
1254 			 * call gate mechanism. Because the process doesn't have
1255 			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1256 			 * Emulate the syscall here, just as we do above for a
1257 			 * #np trap.
1258 			 */
1259 
1260 			/*
1261 			 * Since this is a not-present trap, rp->r_pc points to
1262 			 * the trapping lcall instruction. We need to bump it
1263 			 * to the next insn so the app can continue on.
1264 			 */
1265 			rp->r_pc += LCALLSIZE;
1266 			lwp->lwp_regs = rp;
1267 
1268 			/*
1269 			 * Normally the microstate of the LWP is forced back to
1270 			 * LMS_USER by the syscall handlers. Emulate that
1271 			 * behavior here.
1272 			 */
1273 			mstate = LMS_USER;
1274 
1275 			dosyscall();
1276 			goto out;
1277 			}
1278 		}
1279 #ifdef _SYSCALL32_IMPL
1280 		}
1281 #endif /* _SYSCALL32_IMPL */
1282 		/*
1283 		 * If the current process is using a private LDT and the
1284 		 * trapping instruction is sysenter, the sysenter instruction
1285 		 * has been disabled on the CPU because it destroys segment
1286 		 * registers. If this is the case, rewrite the instruction to
1287 		 * be a safe system call and retry it. If this occurs on a CPU
1288 		 * which doesn't even support sysenter, the result of all of
1289 		 * this will be to emulate that particular instruction.
1290 		 */
1291 		if (p->p_ldt != NULL &&
1292 		    ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1293 			goto out;
1294 
1295 		/*FALLTHROUGH*/
1296 
1297 	case T_BOUNDFLT + USER:	/* bound fault */
1298 	case T_STKFLT + USER:	/* stack fault */
1299 	case T_TSSFLT + USER:	/* invalid TSS fault */
1300 		if (tudebug)
1301 			showregs(type, rp, (caddr_t)0);
1302 		siginfo.si_signo = SIGSEGV;
1303 		siginfo.si_code  = SEGV_MAPERR;
1304 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1305 		fault = FLTBOUNDS;
1306 		break;
1307 
1308 	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1309 		if (tudebug)
1310 			showregs(type, rp, (caddr_t)0);
1311 		bzero(&siginfo, sizeof (siginfo));
1312 		siginfo.si_signo = SIGBUS;
1313 		siginfo.si_code = BUS_ADRALN;
1314 		siginfo.si_addr = (caddr_t)rp->r_pc;
1315 		fault = FLTACCESS;
1316 		break;
1317 
1318 	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1319 		if (tudebug && tudebugbpt)
1320 			showregs(type, rp, (caddr_t)0);
1321 
1322 		/* Was it single-stepping? */
1323 		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1324 			pcb_t *pcb = &lwp->lwp_pcb;
1325 
1326 			rp->r_ps &= ~PS_T;
1327 			/*
1328 			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1329 			 * give precedence to WATCH_STEP.  If neither is set,
1330 			 * user must have set the PS_T bit in %efl; treat this
1331 			 * as NORMAL_STEP.
1332 			 */
1333 			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1334 			    ((pcb->pcb_flags & NORMAL_STEP) ||
1335 			    !(pcb->pcb_flags & WATCH_STEP))) {
1336 				siginfo.si_signo = SIGTRAP;
1337 				siginfo.si_code = TRAP_TRACE;
1338 				siginfo.si_addr = (caddr_t)rp->r_pc;
1339 				fault = FLTTRACE;
1340 			}
1341 			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1342 		}
1343 		break;
1344 
1345 	case T_BPTFLT + USER:	/* breakpoint trap */
1346 		if (tudebug && tudebugbpt)
1347 			showregs(type, rp, (caddr_t)0);
1348 		/*
1349 		 * int 3 (the breakpoint instruction) leaves the pc referring
1350 		 * to the address one byte after the breakpointed address.
1351 		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1352 		 * it back so it refers to the breakpointed address.
1353 		 */
1354 		if (p->p_proc_flag & P_PR_BPTADJ)
1355 			rp->r_pc--;
1356 		siginfo.si_signo = SIGTRAP;
1357 		siginfo.si_code  = TRAP_BRKPT;
1358 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1359 		fault = FLTBPT;
1360 		break;
1361 
1362 	case T_AST:
1363 		/*
1364 		 * This occurs only after the cs register has been made to
1365 		 * look like a kernel selector, either through debugging or
1366 		 * possibly by functions like setcontext().  The thread is
1367 		 * about to cause a general protection fault at common_iret()
1368 		 * in locore.  We let that happen immediately instead of
1369 		 * doing the T_AST processing.
1370 		 */
1371 		goto cleanup;
1372 
1373 	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1374 		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1375 			proc_t *p = ttoproc(curthread);
1376 			extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1377 
1378 			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1379 			print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1380 			    p);
1381 			contract_process_hwerr(p->p_ct_process, p);
1382 			siginfo.si_signo = SIGKILL;
1383 			siginfo.si_code = SI_NOINFO;
1384 		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1385 			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1386 			if (kcpc_overflow_ast()) {
1387 				/*
1388 				 * Signal performance counter overflow
1389 				 */
1390 				if (tudebug)
1391 					showregs(type, rp, (caddr_t)0);
1392 				bzero(&siginfo, sizeof (siginfo));
1393 				siginfo.si_signo = SIGEMT;
1394 				siginfo.si_code = EMT_CPCOVF;
1395 				siginfo.si_addr = (caddr_t)rp->r_pc;
1396 				fault = FLTCPCOVF;
1397 			}
1398 		}
1399 
1400 		break;
1401 	}
1402 
1403 	/*
1404 	 * We can't get here from a system trap
1405 	 */
1406 	ASSERT(type & USER);
1407 
1408 	if (fault) {
1409 		/* We took a fault so abort single step. */
1410 		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1411 		/*
1412 		 * Remember the fault and fault adddress
1413 		 * for real-time (SIGPROF) profiling.
1414 		 */
1415 		lwp->lwp_lastfault = fault;
1416 		lwp->lwp_lastfaddr = siginfo.si_addr;
1417 
1418 		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1419 
1420 		/*
1421 		 * If a debugger has declared this fault to be an
1422 		 * event of interest, stop the lwp.  Otherwise just
1423 		 * deliver the associated signal.
1424 		 */
1425 		if (siginfo.si_signo != SIGKILL &&
1426 		    prismember(&p->p_fltmask, fault) &&
1427 		    stop_on_fault(fault, &siginfo) == 0)
1428 			siginfo.si_signo = 0;
1429 	}
1430 
1431 	if (siginfo.si_signo)
1432 		trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1433 
1434 	if (lwp->lwp_oweupc)
1435 		profil_tick(rp->r_pc);
1436 
1437 	if (ct->t_astflag | ct->t_sig_check) {
1438 		/*
1439 		 * Turn off the AST flag before checking all the conditions that
1440 		 * may have caused an AST.  This flag is on whenever a signal or
1441 		 * unusual condition should be handled after the next trap or
1442 		 * syscall.
1443 		 */
1444 		astoff(ct);
1445 		/*
1446 		 * If a single-step trap occurred on a syscall (see above)
1447 		 * recognize it now.  Do this before checking for signals
1448 		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1449 		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1450 		 */
1451 		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1452 			deferred_singlestep_trap((caddr_t)rp->r_pc);
1453 
1454 		ct->t_sig_check = 0;
1455 
1456 		mutex_enter(&p->p_lock);
1457 		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1458 			timer_lwpbind();
1459 			curthread->t_proc_flag &= ~TP_CHANGEBIND;
1460 		}
1461 		mutex_exit(&p->p_lock);
1462 
1463 		/*
1464 		 * for kaio requests that are on the per-process poll queue,
1465 		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1466 		 * should copyout their result_t to user memory. by copying
1467 		 * out the result_t, the user can poll on memory waiting
1468 		 * for the kaio request to complete.
1469 		 */
1470 		if (p->p_aio)
1471 			aio_cleanup(0);
1472 		/*
1473 		 * If this LWP was asked to hold, call holdlwp(), which will
1474 		 * stop.  holdlwps() sets this up and calls pokelwps() which
1475 		 * sets the AST flag.
1476 		 *
1477 		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1478 		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1479 		 * syscall failed after creating the LWP.
1480 		 */
1481 		if (ISHOLD(p))
1482 			holdlwp();
1483 
1484 		/*
1485 		 * All code that sets signals and makes ISSIG evaluate true must
1486 		 * set t_astflag afterwards.
1487 		 */
1488 		if (ISSIG_PENDING(ct, lwp, p)) {
1489 			if (issig(FORREAL))
1490 				psig();
1491 			ct->t_sig_check = 1;
1492 		}
1493 
1494 		if (ct->t_rprof != NULL) {
1495 			realsigprof(0, 0, 0);
1496 			ct->t_sig_check = 1;
1497 		}
1498 
1499 		/*
1500 		 * /proc can't enable/disable the trace bit itself
1501 		 * because that could race with the call gate used by
1502 		 * system calls via "lcall". If that happened, an
1503 		 * invalid EFLAGS would result. prstep()/prnostep()
1504 		 * therefore schedule an AST for the purpose.
1505 		 */
1506 		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1507 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1508 			rp->r_ps |= PS_T;
1509 		}
1510 		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1511 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1512 			rp->r_ps &= ~PS_T;
1513 		}
1514 	}
1515 
1516 out:	/* We can't get here from a system trap */
1517 	ASSERT(type & USER);
1518 
1519 	if (ISHOLD(p))
1520 		holdlwp();
1521 
1522 	/*
1523 	 * Set state to LWP_USER here so preempt won't give us a kernel
1524 	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1525 	 * restore the user-level priority.
1526 	 *
1527 	 * It is important that no locks (other than spinlocks) be entered
1528 	 * after this point before returning to user mode (unless lwp_state
1529 	 * is set back to LWP_SYS).
1530 	 */
1531 	lwp->lwp_state = LWP_USER;
1532 
1533 	if (ct->t_trapret) {
1534 		ct->t_trapret = 0;
1535 		thread_lock(ct);
1536 		CL_TRAPRET(ct);
1537 		thread_unlock(ct);
1538 	}
1539 	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1540 		preempt();
1541 	prunstop();
1542 	(void) new_mstate(ct, mstate);
1543 
1544 	/* Kernel probe */
1545 	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1546 	    tnf_microstate, state, LMS_USER);
1547 
1548 	return;
1549 
1550 cleanup:	/* system traps end up here */
1551 	ASSERT(!(type & USER));
1552 }
1553 
1554 /*
1555  * Patch non-zero to disable preemption of threads in the kernel.
1556  */
1557 int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1558 
1559 struct kpreempt_cnts {		/* kernel preemption statistics */
1560 	int	kpc_idle;	/* executing idle thread */
1561 	int	kpc_intr;	/* executing interrupt thread */
1562 	int	kpc_clock;	/* executing clock thread */
1563 	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1564 	int	kpc_notonproc;	/* thread is surrendering processor */
1565 	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1566 	int	kpc_prilevel;	/* processor interrupt level is too high */
1567 	int	kpc_apreempt;	/* asynchronous preemption */
1568 	int	kpc_spreempt;	/* synchronous preemption */
1569 } kpreempt_cnts;
1570 
1571 /*
1572  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1573  *	the argument is old PIL for an interrupt,
1574  *	or the distingished value KPREEMPT_SYNC.
1575  */
1576 void
1577 kpreempt(int asyncspl)
1578 {
1579 	kthread_t *ct = curthread;
1580 
1581 	if (IGNORE_KERNEL_PREEMPTION) {
1582 		aston(CPU->cpu_dispthread);
1583 		return;
1584 	}
1585 
1586 	/*
1587 	 * Check that conditions are right for kernel preemption
1588 	 */
1589 	do {
1590 		if (ct->t_preempt) {
1591 			/*
1592 			 * either a privileged thread (idle, panic, interrupt)
1593 			 * or will check when t_preempt is lowered
1594 			 * We need to specifically handle the case where
1595 			 * the thread is in the middle of swtch (resume has
1596 			 * been called) and has its t_preempt set
1597 			 * [idle thread and a thread which is in kpreempt
1598 			 * already] and then a high priority thread is
1599 			 * available in the local dispatch queue.
1600 			 * In this case the resumed thread needs to take a
1601 			 * trap so that it can call kpreempt. We achieve
1602 			 * this by using siron().
1603 			 * How do we detect this condition:
1604 			 * idle thread is running and is in the midst of
1605 			 * resume: curthread->t_pri == -1 && CPU->dispthread
1606 			 * != CPU->thread
1607 			 * Need to ensure that this happens only at high pil
1608 			 * resume is called at high pil
1609 			 * Only in resume_from_idle is the pil changed.
1610 			 */
1611 			if (ct->t_pri < 0) {
1612 				kpreempt_cnts.kpc_idle++;
1613 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1614 					siron();
1615 			} else if (ct->t_flag & T_INTR_THREAD) {
1616 				kpreempt_cnts.kpc_intr++;
1617 				if (ct->t_pil == CLOCK_LEVEL)
1618 					kpreempt_cnts.kpc_clock++;
1619 			} else {
1620 				kpreempt_cnts.kpc_blocked++;
1621 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1622 					siron();
1623 			}
1624 			aston(CPU->cpu_dispthread);
1625 			return;
1626 		}
1627 		if (ct->t_state != TS_ONPROC ||
1628 		    ct->t_disp_queue != CPU->cpu_disp) {
1629 			/* this thread will be calling swtch() shortly */
1630 			kpreempt_cnts.kpc_notonproc++;
1631 			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1632 				/* already in swtch(), force another */
1633 				kpreempt_cnts.kpc_inswtch++;
1634 				siron();
1635 			}
1636 			return;
1637 		}
1638 		if (getpil() >= DISP_LEVEL) {
1639 			/*
1640 			 * We can't preempt this thread if it is at
1641 			 * a PIL >= DISP_LEVEL since it may be holding
1642 			 * a spin lock (like sched_lock).
1643 			 */
1644 			siron();	/* check back later */
1645 			kpreempt_cnts.kpc_prilevel++;
1646 			return;
1647 		}
1648 		if (!interrupts_enabled()) {
1649 			/*
1650 			 * Can't preempt while running with ints disabled
1651 			 */
1652 			kpreempt_cnts.kpc_prilevel++;
1653 			return;
1654 		}
1655 		if (asyncspl != KPREEMPT_SYNC)
1656 			kpreempt_cnts.kpc_apreempt++;
1657 		else
1658 			kpreempt_cnts.kpc_spreempt++;
1659 
1660 		ct->t_preempt++;
1661 		preempt();
1662 		ct->t_preempt--;
1663 	} while (CPU->cpu_kprunrun);
1664 }
1665 
1666 /*
1667  * Print out debugging info.
1668  */
1669 static void
1670 showregs(uint_t type, struct regs *rp, caddr_t addr)
1671 {
1672 	int s;
1673 
1674 	s = spl7();
1675 	type &= ~USER;
1676 	if (PTOU(curproc)->u_comm[0])
1677 		printf("%s: ", PTOU(curproc)->u_comm);
1678 	if (type < TRAP_TYPES)
1679 		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1680 	else
1681 		switch (type) {
1682 		case T_SYSCALL:
1683 			printf("Syscall Trap:\n");
1684 			break;
1685 		case T_AST:
1686 			printf("AST\n");
1687 			break;
1688 		default:
1689 			printf("Bad Trap = %d\n", type);
1690 			break;
1691 		}
1692 	if (type == T_PGFLT) {
1693 		printf("Bad %s fault at addr=0x%lx\n",
1694 		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1695 	} else if (addr) {
1696 		printf("addr=0x%lx\n", (uintptr_t)addr);
1697 	}
1698 
1699 	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1700 	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1701 	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1702 
1703 #if defined(__lint)
1704 	/*
1705 	 * this clause can be deleted when lint bug 4870403 is fixed
1706 	 * (lint thinks that bit 32 is illegal in a %b format string)
1707 	 */
1708 	printf("cr0: %x cr4: %b\n",
1709 	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1710 #else
1711 	printf("cr0: %b cr4: %b\n",
1712 	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1713 #endif	/* __lint */
1714 
1715 	printf("cr2: %lx", getcr2());
1716 #if !defined(__xpv)
1717 	printf("cr3: %lx", getcr3());
1718 #if defined(__amd64)
1719 	printf("cr8: %lx\n", getcr8());
1720 #endif
1721 #endif
1722 	printf("\n");
1723 
1724 	dumpregs(rp);
1725 	splx(s);
1726 }
1727 
1728 static void
1729 dumpregs(struct regs *rp)
1730 {
1731 #if defined(__amd64)
1732 	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1733 
1734 	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1735 	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1736 	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1737 	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1738 	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1739 
1740 	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1741 	    " ds", rp->r_ds);
1742 	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1743 
1744 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1745 	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1746 
1747 	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1748 
1749 #elif defined(__i386)
1750 	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1751 
1752 	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1753 	    " es", rp->r_es, " ds", rp->r_ds);
1754 	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1755 	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1756 	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1757 	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1758 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1759 	    "eip", rp->r_eip, " cs", rp->r_cs);
1760 	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1761 	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1762 
1763 #endif	/* __i386 */
1764 }
1765 
1766 /*
1767  * Test to see if the instruction is iret on i386 or iretq on amd64.
1768  *
1769  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1770  * then we are in the context of hypervisor's failsafe handler because it
1771  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1772  */
1773 static int
1774 instr_is_iret(caddr_t pc)
1775 {
1776 
1777 #if defined(__xpv)
1778 	extern void nopop_sys_rtt_syscall(void);
1779 	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1780 
1781 #else
1782 
1783 #if defined(__amd64)
1784 	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1785 
1786 #elif defined(__i386)
1787 	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1788 #endif	/* __i386 */
1789 	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1790 
1791 #endif	/* __xpv */
1792 }
1793 
1794 #if defined(__i386)
1795 
1796 /*
1797  * Test to see if the instruction is part of __SEGREGS_POP
1798  *
1799  * Note carefully the appallingly awful dependency between
1800  * the instruction sequence used in __SEGREGS_POP and these
1801  * instructions encoded here.
1802  */
1803 static int
1804 instr_is_segregs_pop(caddr_t pc)
1805 {
1806 	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1807 	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1808 	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1809 	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1810 
1811 	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1812 	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1813 	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1814 	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1815 		return (1);
1816 
1817 	return (0);
1818 }
1819 
1820 #endif	/* __i386 */
1821 
1822 /*
1823  * Test to see if the instruction is part of _sys_rtt.
1824  *
1825  * Again on the hypervisor if we try to IRET to user land with a bad code
1826  * or stack selector we will get vectored through xen_failsafe_callback.
1827  * In which case we assume we got here via _sys_rtt since we only allow
1828  * IRET to user land to take place in _sys_rtt.
1829  */
1830 static int
1831 instr_is_sys_rtt(caddr_t pc)
1832 {
1833 	extern void _sys_rtt(), _sys_rtt_end();
1834 
1835 	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1836 	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1837 		return (0);
1838 
1839 	return (1);
1840 }
1841 
1842 /*
1843  * Handle #gp faults in kernel mode.
1844  *
1845  * One legitimate way this can happen is if we attempt to update segment
1846  * registers to naughty values on the way out of the kernel.
1847  *
1848  * This can happen in a couple of ways: someone - either accidentally or
1849  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1850  * (signal(2)) a ucontext that contains silly segment register values.
1851  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1852  * of a subject process via /proc to contain silly segment register values.
1853  *
1854  * (The unfortunate part is that we can end up discovering the bad segment
1855  * register value in the middle of an 'iret' after we've popped most of the
1856  * stack.  So it becomes quite difficult to associate an accurate ucontext
1857  * with the lwp, because the act of taking the #gp trap overwrites most of
1858  * what we were going to send the lwp.)
1859  *
1860  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1861  * trying to return to user mode and we get a #gp fault, then we need
1862  * to die() -- which will happen if we return non-zero from this routine.
1863  */
1864 static int
1865 kern_gpfault(struct regs *rp)
1866 {
1867 	kthread_t *t = curthread;
1868 	proc_t *p = ttoproc(t);
1869 	klwp_t *lwp = ttolwp(t);
1870 	struct regs tmpregs, *trp = NULL;
1871 	caddr_t pc = (caddr_t)rp->r_pc;
1872 	int v;
1873 	uint32_t auditing = AU_AUDITING();
1874 
1875 	/*
1876 	 * if we're not an lwp, or in the case of running native the
1877 	 * pc range is outside _sys_rtt, then we should immediately
1878 	 * be die()ing horribly.
1879 	 */
1880 	if (lwp == NULL || !instr_is_sys_rtt(pc))
1881 		return (1);
1882 
1883 	/*
1884 	 * So at least we're in the right part of the kernel.
1885 	 *
1886 	 * Disassemble the instruction at the faulting pc.
1887 	 * Once we know what it is, we carefully reconstruct the stack
1888 	 * based on the order in which the stack is deconstructed in
1889 	 * _sys_rtt. Ew.
1890 	 */
1891 	if (instr_is_iret(pc)) {
1892 		/*
1893 		 * We took the #gp while trying to perform the IRET.
1894 		 * This means that either %cs or %ss are bad.
1895 		 * All we know for sure is that most of the general
1896 		 * registers have been restored, including the
1897 		 * segment registers, and all we have left on the
1898 		 * topmost part of the lwp's stack are the
1899 		 * registers that the iretq was unable to consume.
1900 		 *
1901 		 * All the rest of the state was crushed by the #gp
1902 		 * which pushed -its- registers atop our old save area
1903 		 * (because we had to decrement the stack pointer, sigh) so
1904 		 * all that we can try and do is to reconstruct the
1905 		 * crushed frame from the #gp trap frame itself.
1906 		 */
1907 		trp = &tmpregs;
1908 		trp->r_ss = lwptoregs(lwp)->r_ss;
1909 		trp->r_sp = lwptoregs(lwp)->r_sp;
1910 		trp->r_ps = lwptoregs(lwp)->r_ps;
1911 		trp->r_cs = lwptoregs(lwp)->r_cs;
1912 		trp->r_pc = lwptoregs(lwp)->r_pc;
1913 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1914 
1915 		/*
1916 		 * Validate simple math
1917 		 */
1918 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1919 		ASSERT(trp->r_err == rp->r_err);
1920 
1921 
1922 
1923 	}
1924 
1925 #if defined(__amd64)
1926 	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1927 
1928 		/*
1929 		 * This is the common case -- we're trying to load
1930 		 * a bad segment register value in the only section
1931 		 * of kernel code that ever loads segment registers.
1932 		 *
1933 		 * We don't need to do anything at this point because
1934 		 * the pcb contains all the pending segment register
1935 		 * state, and the regs are still intact because we
1936 		 * didn't adjust the stack pointer yet.  Given the fidelity
1937 		 * of all this, we could conceivably send a signal
1938 		 * to the lwp, rather than core-ing.
1939 		 */
1940 		trp = lwptoregs(lwp);
1941 		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1942 	}
1943 
1944 #elif defined(__i386)
1945 
1946 	if (trp == NULL && instr_is_segregs_pop(pc))
1947 		trp = lwptoregs(lwp);
1948 
1949 #endif	/* __i386 */
1950 
1951 	if (trp == NULL)
1952 		return (1);
1953 
1954 	/*
1955 	 * If we get to here, we're reasonably confident that we've
1956 	 * correctly decoded what happened on the way out of the kernel.
1957 	 * Rewrite the lwp's registers so that we can create a core dump
1958 	 * the (at least vaguely) represents the mcontext we were
1959 	 * being asked to restore when things went so terribly wrong.
1960 	 */
1961 
1962 	/*
1963 	 * Make sure that we have a meaningful %trapno and %err.
1964 	 */
1965 	trp->r_trapno = rp->r_trapno;
1966 	trp->r_err = rp->r_err;
1967 
1968 	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1969 		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1970 
1971 
1972 	mutex_enter(&p->p_lock);
1973 	lwp->lwp_cursig = SIGSEGV;
1974 	mutex_exit(&p->p_lock);
1975 
1976 	/*
1977 	 * Terminate all LWPs but don't discard them.  If another lwp beat
1978 	 * us to the punch by calling exit(), evaporate now.
1979 	 */
1980 	proc_is_exiting(p);
1981 	if (exitlwps(1) != 0) {
1982 		mutex_enter(&p->p_lock);
1983 		lwp_exit();
1984 	}
1985 
1986 	if (auditing)		/* audit core dump */
1987 		audit_core_start(SIGSEGV);
1988 	v = core(SIGSEGV, B_FALSE);
1989 	if (auditing)		/* audit core dump */
1990 		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
1991 	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
1992 	return (0);
1993 }
1994 
1995 /*
1996  * dump_tss() - Display the TSS structure
1997  */
1998 
1999 #if !defined(__xpv)
2000 #if defined(__amd64)
2001 
2002 static void
2003 dump_tss(void)
2004 {
2005 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2006 	tss_t *tss = CPU->cpu_tss;
2007 
2008 	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
2009 	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
2010 	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
2011 
2012 	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
2013 	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
2014 	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
2015 	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2016 	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2017 	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2018 	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2019 }
2020 
2021 #elif defined(__i386)
2022 
2023 static void
2024 dump_tss(void)
2025 {
2026 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2027 	tss_t *tss = CPU->cpu_tss;
2028 
2029 	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2030 	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2031 	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2032 	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2033 	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2034 	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2035 	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2036 	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2037 	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2038 	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2039 	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2040 	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2041 	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2042 	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2043 	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2044 }
2045 
2046 #endif	/* __amd64 */
2047 #endif	/* !__xpv */
2048 
2049 #if defined(TRAPTRACE)
2050 
2051 int ttrace_nrec = 10;		/* number of records to dump out */
2052 int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2053 
2054 /*
2055  * Dump out the last ttrace_nrec traptrace records on each CPU
2056  */
2057 static void
2058 dump_ttrace(void)
2059 {
2060 	trap_trace_ctl_t *ttc;
2061 	trap_trace_rec_t *rec;
2062 	uintptr_t current;
2063 	int i, j, k;
2064 	int n = NCPU;
2065 #if defined(__amd64)
2066 	const char banner[] =
2067 	    "\ncpu          address    timestamp "
2068 	    "type  vc  handler   pc\n";
2069 	const char fmt1[] = "%3d %016lx %12llx ";
2070 #elif defined(__i386)
2071 	const char banner[] =
2072 	    "\ncpu  address     timestamp type  vc  handler   pc\n";
2073 	const char fmt1[] = "%3d %08lx %12llx ";
2074 #endif
2075 	const char fmt2[] = "%4s %3x ";
2076 	const char fmt3[] = "%8s ";
2077 
2078 	if (ttrace_nrec == 0)
2079 		return;
2080 
2081 	printf(banner);
2082 
2083 	for (i = 0; i < n; i++) {
2084 		ttc = &trap_trace_ctl[i];
2085 		if (ttc->ttc_first == NULL)
2086 			continue;
2087 
2088 		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2089 		for (j = 0; j < ttrace_nrec; j++) {
2090 			struct sysent	*sys;
2091 			struct autovec	*vec;
2092 			extern struct av_head autovect[];
2093 			int type;
2094 			ulong_t	off;
2095 			char *sym, *stype;
2096 
2097 			if (current < ttc->ttc_first)
2098 				current =
2099 				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2100 
2101 			if (current == NULL)
2102 				continue;
2103 
2104 			rec = (trap_trace_rec_t *)current;
2105 
2106 			if (rec->ttr_stamp == 0)
2107 				break;
2108 
2109 			printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp);
2110 
2111 			switch (rec->ttr_marker) {
2112 			case TT_SYSCALL:
2113 			case TT_SYSENTER:
2114 			case TT_SYSC:
2115 			case TT_SYSC64:
2116 #if defined(__amd64)
2117 				sys = &sysent32[rec->ttr_sysnum];
2118 				switch (rec->ttr_marker) {
2119 				case TT_SYSC64:
2120 					sys = &sysent[rec->ttr_sysnum];
2121 					/*FALLTHROUGH*/
2122 #elif defined(__i386)
2123 				sys = &sysent[rec->ttr_sysnum];
2124 				switch (rec->ttr_marker) {
2125 				case TT_SYSC64:
2126 #endif
2127 				case TT_SYSC:
2128 					stype = "sysc";	/* syscall */
2129 					break;
2130 				case TT_SYSCALL:
2131 					stype = "lcal";	/* lcall */
2132 					break;
2133 				case TT_SYSENTER:
2134 					stype = "syse";	/* sysenter */
2135 					break;
2136 				default:
2137 					break;
2138 				}
2139 				printf(fmt2, "sysc", rec->ttr_sysnum);
2140 				if (sys != NULL) {
2141 					sym = kobj_getsymname(
2142 					    (uintptr_t)sys->sy_callc,
2143 					    &off);
2144 					if (sym != NULL)
2145 						printf(fmt3, sym);
2146 					else
2147 						printf("%p ", sys->sy_callc);
2148 				} else {
2149 					printf(fmt3, "unknown");
2150 				}
2151 				break;
2152 
2153 			case TT_INTERRUPT:
2154 				printf(fmt2, "intr", rec->ttr_vector);
2155 				if (get_intr_handler != NULL)
2156 					vec = (struct autovec *)
2157 					    (*get_intr_handler)
2158 					    (rec->ttr_cpuid, rec->ttr_vector);
2159 				else
2160 					vec =
2161 					    autovect[rec->ttr_vector].avh_link;
2162 
2163 				if (vec != NULL) {
2164 					sym = kobj_getsymname(
2165 					    (uintptr_t)vec->av_vector, &off);
2166 					if (sym != NULL)
2167 						printf(fmt3, sym);
2168 					else
2169 						printf("%p ", vec->av_vector);
2170 				} else {
2171 					printf(fmt3, "unknown ");
2172 				}
2173 				break;
2174 
2175 			case TT_TRAP:
2176 			case TT_EVENT:
2177 				type = rec->ttr_regs.r_trapno;
2178 				printf(fmt2, "trap", type);
2179 				if (type < TRAP_TYPES)
2180 					printf("     #%s ",
2181 					    trap_type_mnemonic[type]);
2182 				else
2183 					switch (type) {
2184 					case T_AST:
2185 						printf(fmt3, "ast");
2186 						break;
2187 					default:
2188 						printf(fmt3, "");
2189 						break;
2190 					}
2191 				break;
2192 
2193 			default:
2194 				break;
2195 			}
2196 
2197 			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2198 			if (sym != NULL)
2199 				printf("%s+%lx\n", sym, off);
2200 			else
2201 				printf("%lx\n", rec->ttr_regs.r_pc);
2202 
2203 			if (ttrace_dump_nregs-- > 0) {
2204 				int s;
2205 
2206 				if (rec->ttr_marker == TT_INTERRUPT)
2207 					printf(
2208 					    "\t\tipl %x spl %x pri %x\n",
2209 					    rec->ttr_ipl,
2210 					    rec->ttr_spl,
2211 					    rec->ttr_pri);
2212 
2213 				dumpregs(&rec->ttr_regs);
2214 
2215 				printf("\t%3s: %p\n\n", " ct",
2216 				    (void *)rec->ttr_curthread);
2217 
2218 				/*
2219 				 * print out the pc stack that we recorded
2220 				 * at trap time (if any)
2221 				 */
2222 				for (s = 0; s < rec->ttr_sdepth; s++) {
2223 					uintptr_t fullpc;
2224 
2225 					if (s >= TTR_STACK_DEPTH) {
2226 						printf("ttr_sdepth corrupt\n");
2227 						break;
2228 					}
2229 
2230 					fullpc = (uintptr_t)rec->ttr_stack[s];
2231 
2232 					sym = kobj_getsymname(fullpc, &off);
2233 					if (sym != NULL)
2234 						printf("-> %s+0x%lx()\n",
2235 						    sym, off);
2236 					else
2237 						printf("-> 0x%lx()\n", fullpc);
2238 				}
2239 				printf("\n");
2240 			}
2241 			current -= sizeof (trap_trace_rec_t);
2242 		}
2243 	}
2244 }
2245 
2246 #endif	/* TRAPTRACE */
2247 
2248 void
2249 panic_showtrap(struct panic_trap_info *tip)
2250 {
2251 	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2252 
2253 #if defined(TRAPTRACE)
2254 	dump_ttrace();
2255 #endif
2256 
2257 #if !defined(__xpv)
2258 	if (tip->trap_type == T_DBLFLT)
2259 		dump_tss();
2260 #endif
2261 }
2262 
2263 void
2264 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2265 {
2266 	panic_saveregs(pdp, tip->trap_regs);
2267 }
2268