xref: /titanic_52/usr/src/uts/i86pc/os/timestamp.c (revision 6c9596d46e3a733328712fdad3ea5ee362795acc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/disp.h>
33 #include <sys/var.h>
34 #include <sys/cmn_err.h>
35 #include <sys/debug.h>
36 #include <sys/x86_archext.h>
37 #include <sys/archsystm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/psm_defs.h>
40 #include <sys/clock.h>
41 #include <sys/atomic.h>
42 #include <sys/lockstat.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/dtrace.h>
45 #include <sys/time.h>
46 #include <sys/panic.h>
47 
48 /*
49  * Using the Pentium's TSC register for gethrtime()
50  * ------------------------------------------------
51  *
52  * The Pentium family, like many chip architectures, has a high-resolution
53  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
54  * of the timestamp counter are read with the RDTSC instruction.
55  *
56  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
57  * must be translated into nanoseconds in order to implement gethrtime().
58  * We avoid inducing floating point operations in this conversion by
59  * implementing the same nsec_scale algorithm as that found in the sun4u
60  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
61  * a detailed description of the algorithm; the comment is not reproduced
62  * here.  This implementation differs only in its value for NSEC_SHIFT:
63  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
64  * 60 MHz Pentiums.
65  *
66  * While TSC and %tick are both cycle counting registers, TSC's functionality
67  * falls short in several critical ways:
68  *
69  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
70  *	practice they often _are_ in sync, this isn't guaranteed by the
71  *	architecture.
72  *
73  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
74  *	only supports writing the low 32-bits of TSC, making it impractical
75  *	to rewrite.
76  *
77  *  (c)	The architecture doesn't have the capacity to interrupt based on
78  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
79  *
80  * Together, (a) and (b) imply that software must track the skew between
81  * TSCs and account for it (it is assumed that while there may exist skew,
82  * there does not exist drift).  To determine the skew between CPUs, we
83  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
84  * the online operation calls tsc_sync_master().  Once both CPUs are ready,
85  * the master sets a shared flag, and each reads its TSC register.  To reduce
86  * bias, we then wait until both CPUs are ready again, but this time the
87  * slave sets the shared flag, and each reads its TSC register again. The
88  * master compares the average of the two sample values, and, if observable
89  * skew is found, changes the gethrtimef function pointer to point to a
90  * gethrtime() implementation which will take the discovered skew into
91  * consideration.
92  *
93  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
94  * sync with gettimeofday().  This is problematic; given (c), the software
95  * cannot drive its time-of-day source from TSC, and yet they must somehow be
96  * kept in sync.  We implement this by having a routine, tsc_tick(), which
97  * is called once per second from the interrupt which drives time-of-day.
98  * tsc_tick() recalculates nsec_scale based on the number of the CPU cycles
99  * since boot versus the number of seconds since boot.  This algorithm
100  * becomes more accurate over time and converges quickly; the error in
101  * nsec_scale is typically under 1 ppm less than 10 seconds after boot, and
102  * is less than 100 ppb 1 minute after boot.
103  *
104  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
105  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
106  * monotonically increases.
107  */
108 
109 #define	NSEC_SHIFT 5
110 
111 static uint_t nsec_scale;
112 
113 /*
114  * These two variables used to be grouped together inside of a structure that
115  * lived on a single cache line. A regression (bug ID 4623398) caused the
116  * compiler to emit code that "optimized" away the while-loops below. The
117  * result was that no synchronization between the onlining and onlined CPUs
118  * took place.
119  */
120 static volatile int tsc_ready;
121 static volatile int tsc_sync_go;
122 
123 /*
124  * Used as indices into the tsc_sync_snaps[] array.
125  */
126 #define	TSC_MASTER		0
127 #define	TSC_SLAVE		1
128 
129 /*
130  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
131  */
132 #define	TSC_SYNC_STOP		1
133 #define	TSC_SYNC_GO		2
134 #define	TSC_SYNC_AGAIN		3
135 
136 #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) {	 	\
137 	unsigned int *_l = (unsigned int *)&(tsc); 	\
138 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; 	\
139 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
140 }
141 
142 #define	TSC_CONVERT(tsc, hrt, scale) { 			\
143 	unsigned int *_l = (unsigned int *)&(tsc); 	\
144 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; 	\
145 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
146 }
147 
148 int tsc_master_slave_sync_needed = 1;
149 
150 static int	tsc_max_delta;
151 static hrtime_t tsc_sync_snaps[2];
152 static hrtime_t tsc_sync_delta[NCPU];
153 static hrtime_t tsc_sync_tick_delta[NCPU];
154 static hrtime_t	tsc_last = 0;
155 static hrtime_t	tsc_last_jumped = 0;
156 static hrtime_t	tsc_hrtime_base = 0;
157 static int	tsc_jumped = 0;
158 
159 static hrtime_t	shadow_tsc_hrtime_base;
160 static hrtime_t	shadow_tsc_last;
161 static uint_t	shadow_nsec_scale;
162 static uint32_t	shadow_hres_lock;
163 
164 hrtime_t
165 tsc_gethrtime(void)
166 {
167 	uint32_t old_hres_lock;
168 	hrtime_t tsc, hrt;
169 
170 	do {
171 		old_hres_lock = hres_lock;
172 
173 		if ((tsc = tsc_read()) >= tsc_last) {
174 			/*
175 			 * It would seem to be obvious that this is true
176 			 * (that is, the past is less than the present),
177 			 * but it isn't true in the presence of suspend/resume
178 			 * cycles.  If we manage to call gethrtime()
179 			 * after a resume, but before the first call to
180 			 * tsc_tick(), we will see the jump.  In this case,
181 			 * we will simply use the value in TSC as the delta.
182 			 */
183 			tsc -= tsc_last;
184 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
185 			/*
186 			 * There is a chance that tsc_tick() has just run on
187 			 * another CPU, and we have drifted just enough so that
188 			 * we appear behind tsc_last.  In this case, force the
189 			 * delta to be zero.
190 			 */
191 			tsc = 0;
192 		}
193 
194 		hrt = tsc_hrtime_base;
195 
196 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
197 	} while ((old_hres_lock & ~1) != hres_lock);
198 
199 	return (hrt);
200 }
201 
202 hrtime_t
203 tsc_gethrtime_delta(void)
204 {
205 	uint32_t old_hres_lock;
206 	hrtime_t tsc, hrt;
207 	int flags;
208 
209 	do {
210 		old_hres_lock = hres_lock;
211 
212 		/*
213 		 * We need to disable interrupts here to assure that we
214 		 * don't migrate between the call to tsc_read() and
215 		 * adding the CPU's TSC tick delta. Note that disabling
216 		 * and reenabling preemption is forbidden here because
217 		 * we may be in the middle of a fast trap. In the amd64
218 		 * kernel we cannot tolerate preemption during a fast
219 		 * trap. See _update_sregs().
220 		 */
221 
222 		flags = clear_int_flag();
223 		tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id];
224 		restore_int_flag(flags);
225 
226 		/* See comments in tsc_gethrtime() above */
227 
228 		if (tsc >= tsc_last) {
229 			tsc -= tsc_last;
230 		} else if (tsc >= tsc_last - 2 * tsc_max_delta) {
231 			tsc = 0;
232 		}
233 
234 		hrt = tsc_hrtime_base;
235 
236 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
237 	} while ((old_hres_lock & ~1) != hres_lock);
238 
239 	return (hrt);
240 }
241 
242 /*
243  * This is similar to the above, but it cannot actually spin on hres_lock.
244  * As a result, it caches all of the variables it needs; if the variables
245  * don't change, it's done.
246  */
247 hrtime_t
248 dtrace_gethrtime(void)
249 {
250 	uint32_t old_hres_lock;
251 	hrtime_t tsc, hrt;
252 	int flags;
253 
254 	do {
255 		old_hres_lock = hres_lock;
256 
257 		/*
258 		 * Interrupts are disabled to ensure that the thread isn't
259 		 * migrated between the tsc_read() and adding the CPU's
260 		 * TSC tick delta.
261 		 */
262 		flags = clear_int_flag();
263 
264 		tsc = tsc_read();
265 
266 		if (gethrtimef == tsc_gethrtime_delta)
267 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
268 
269 		restore_int_flag(flags);
270 
271 		/*
272 		 * See the comments in tsc_gethrtime(), above.
273 		 */
274 		if (tsc >= tsc_last)
275 			tsc -= tsc_last;
276 		else if (tsc >= tsc_last - 2*tsc_max_delta)
277 			tsc = 0;
278 
279 		hrt = tsc_hrtime_base;
280 
281 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
282 
283 		if ((old_hres_lock & ~1) == hres_lock)
284 			break;
285 
286 		/*
287 		 * If we're here, the clock lock is locked -- or it has been
288 		 * unlocked and locked since we looked.  This may be due to
289 		 * tsc_tick() running on another CPU -- or it may be because
290 		 * some code path has ended up in dtrace_probe() with
291 		 * CLOCK_LOCK held.  We'll try to determine that we're in
292 		 * the former case by taking another lap if the lock has
293 		 * changed since when we first looked at it.
294 		 */
295 		if (old_hres_lock != hres_lock)
296 			continue;
297 
298 		/*
299 		 * So the lock was and is locked.  We'll use the old data
300 		 * instead.
301 		 */
302 		old_hres_lock = shadow_hres_lock;
303 
304 		/*
305 		 * Again, disable interrupts to ensure that the thread
306 		 * isn't migrated between the tsc_read() and adding
307 		 * the CPU's TSC tick delta.
308 		 */
309 		flags = clear_int_flag();
310 
311 		tsc = tsc_read();
312 
313 		if (gethrtimef == tsc_gethrtime_delta)
314 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
315 
316 		restore_int_flag(flags);
317 
318 		/*
319 		 * See the comments in tsc_gethrtime(), above.
320 		 */
321 		if (tsc >= shadow_tsc_last)
322 			tsc -= shadow_tsc_last;
323 		else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta)
324 			tsc = 0;
325 
326 		hrt = shadow_tsc_hrtime_base;
327 
328 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
329 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
330 
331 	return (hrt);
332 }
333 
334 hrtime_t
335 tsc_gethrtimeunscaled(void)
336 {
337 	uint32_t old_hres_lock;
338 	hrtime_t tsc;
339 
340 	do {
341 		old_hres_lock = hres_lock;
342 
343 		/* See tsc_tick(). */
344 		tsc = tsc_read() + tsc_last_jumped;
345 	} while ((old_hres_lock & ~1) != hres_lock);
346 
347 	return (tsc);
348 }
349 
350 
351 /* Convert a tsc timestamp to nanoseconds */
352 void
353 tsc_scalehrtime(hrtime_t *tsc)
354 {
355 	hrtime_t hrt;
356 	hrtime_t mytsc;
357 
358 	if (tsc == NULL)
359 		return;
360 	mytsc = *tsc;
361 
362 	TSC_CONVERT(mytsc, hrt, nsec_scale);
363 	*tsc  = hrt;
364 }
365 
366 hrtime_t
367 tsc_gethrtimeunscaled_delta(void)
368 {
369 	hrtime_t hrt;
370 	int flags;
371 
372 	/*
373 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
374 	 * to prevent migration between the call to tsc_gethrtimeunscaled
375 	 * and adding the CPU's hrtime delta. Note that disabling and
376 	 * reenabling preemption is forbidden here because we may be in the
377 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
378 	 * preemption during a fast trap. See _update_sregs().
379 	 */
380 
381 	flags = clear_int_flag();
382 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
383 	restore_int_flag(flags);
384 
385 	return (hrt);
386 }
387 
388 /*
389  * Called by the master after the sync operation is complete.  If the
390  * slave is discovered to lag, gethrtimef will be changed to point to
391  * tsc_gethrtime_delta().
392  */
393 static void
394 tsc_digest(processorid_t target)
395 {
396 	hrtime_t tdelta, hdelta = 0;
397 	int max = tsc_max_delta;
398 	processorid_t source = CPU->cpu_id;
399 	int update;
400 
401 	update = tsc_sync_delta[source] != 0 ||
402 	    gethrtimef == tsc_gethrtime_delta;
403 
404 	/*
405 	 * We divide by 2 since each of the data points is the sum of two TSC
406 	 * reads; this takes the average of the two.
407 	 */
408 	tdelta = (tsc_sync_snaps[TSC_SLAVE] - tsc_sync_snaps[TSC_MASTER]) / 2;
409 	if ((tdelta > max) || ((tdelta >= 0) && update)) {
410 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
411 		tsc_sync_delta[target] = tsc_sync_delta[source] - hdelta;
412 		tsc_sync_tick_delta[target] = -tdelta;
413 		gethrtimef = tsc_gethrtime_delta;
414 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
415 		return;
416 	}
417 
418 	tdelta = -tdelta;
419 	if ((tdelta > max) || update) {
420 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
421 		tsc_sync_delta[target] = tsc_sync_delta[source] + hdelta;
422 		tsc_sync_tick_delta[target] = tdelta;
423 		gethrtimef = tsc_gethrtime_delta;
424 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
425 	}
426 
427 }
428 
429 /*
430  * Called by a CPU which has just performed an online operation on another
431  * CPU.  It is expected that the newly onlined CPU will call tsc_sync_slave().
432  */
433 void
434 tsc_sync_master(processorid_t slave)
435 {
436 	ulong_t flags;
437 	hrtime_t hrt;
438 
439 	if (!tsc_master_slave_sync_needed)
440 		return;
441 
442 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
443 
444 	flags = clear_int_flag();
445 
446 	/*
447 	 * Wait for the slave CPU to arrive.
448 	 */
449 	while (tsc_ready != TSC_SYNC_GO)
450 		continue;
451 
452 	/*
453 	 * Tell the slave CPU to begin reading its TSC; read our own.
454 	 */
455 	tsc_sync_go = TSC_SYNC_GO;
456 	hrt = tsc_read();
457 
458 	/*
459 	 * Tell the slave that we're ready, and wait for the slave to tell us
460 	 * to read our TSC again.
461 	 */
462 	tsc_ready = TSC_SYNC_AGAIN;
463 	while (tsc_sync_go != TSC_SYNC_AGAIN)
464 		continue;
465 
466 	hrt += tsc_read();
467 	tsc_sync_snaps[TSC_MASTER] = hrt;
468 
469 	/*
470 	 * Wait for the slave to finish reading its TSC.
471 	 */
472 	while (tsc_ready != TSC_SYNC_STOP)
473 		continue;
474 
475 	/*
476 	 * At this point, both CPUs have performed their tsc_read() calls.
477 	 * We'll digest it now before letting the slave CPU return.
478 	 */
479 	tsc_digest(slave);
480 	tsc_sync_go = TSC_SYNC_STOP;
481 
482 	restore_int_flag(flags);
483 }
484 
485 /*
486  * Called by a CPU which has just been onlined.  It is expected that the CPU
487  * performing the online operation will call tsc_sync_master().
488  */
489 void
490 tsc_sync_slave(void)
491 {
492 	ulong_t flags;
493 	hrtime_t hrt;
494 
495 	if (!tsc_master_slave_sync_needed)
496 		return;
497 
498 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
499 
500 	flags = clear_int_flag();
501 
502 	/* to test tsc_gethrtime_delta, add wrmsr(REG_TSC, 0) here */
503 
504 	/*
505 	 * Tell the master CPU that we're ready, and wait for the master to
506 	 * tell us to begin reading our TSC.
507 	 */
508 	tsc_ready = TSC_SYNC_GO;
509 	while (tsc_sync_go != TSC_SYNC_GO)
510 		continue;
511 
512 	hrt = tsc_read();
513 
514 	/*
515 	 * Wait for the master CPU to be ready to read its TSC again.
516 	 */
517 	while (tsc_ready != TSC_SYNC_AGAIN)
518 		continue;
519 
520 	/*
521 	 * Tell the master CPU to read its TSC again; read ours again.
522 	 */
523 	tsc_sync_go = TSC_SYNC_AGAIN;
524 
525 	hrt += tsc_read();
526 	tsc_sync_snaps[TSC_SLAVE] = hrt;
527 
528 	/*
529 	 * Tell the master that we're done, and wait to be dismissed.
530 	 */
531 	tsc_ready = TSC_SYNC_STOP;
532 	while (tsc_sync_go != TSC_SYNC_STOP)
533 		continue;
534 
535 	restore_int_flag(flags);
536 }
537 
538 /*
539  * Called once per second on a CPU from the cyclic subsystem's
540  * CY_HIGH_LEVEL interrupt.  (No longer just cpu0-only)
541  */
542 void
543 tsc_tick(void)
544 {
545 	hrtime_t now, delta;
546 	ushort_t spl;
547 
548 	/*
549 	 * Before we set the new variables, we set the shadow values.  This
550 	 * allows for lock free operation in dtrace_gethrtime().
551 	 */
552 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
553 	    ipltospl(CBE_HIGH_PIL), &spl);
554 
555 	shadow_tsc_hrtime_base = tsc_hrtime_base;
556 	shadow_tsc_last = tsc_last;
557 	shadow_nsec_scale = nsec_scale;
558 
559 	shadow_hres_lock++;
560 	splx(spl);
561 
562 	CLOCK_LOCK(&spl);
563 
564 	now = tsc_read();
565 
566 	if (gethrtimef == tsc_gethrtime_delta)
567 		now += tsc_sync_tick_delta[CPU->cpu_id];
568 
569 	if (now < tsc_last) {
570 		/*
571 		 * The TSC has just jumped into the past.  We assume that
572 		 * this is due to a suspend/resume cycle, and we're going
573 		 * to use the _current_ value of TSC as the delta.  This
574 		 * will keep tsc_hrtime_base correct.  We're also going to
575 		 * assume that rate of tsc does not change after a suspend
576 		 * resume (i.e nsec_scale remains the same).
577 		 */
578 		delta = now;
579 		tsc_last_jumped += tsc_last;
580 		tsc_jumped = 1;
581 	} else {
582 		/*
583 		 * Determine the number of TSC ticks since the last clock
584 		 * tick, and add that to the hrtime base.
585 		 */
586 		delta = now - tsc_last;
587 	}
588 
589 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
590 	tsc_last = now;
591 
592 	CLOCK_UNLOCK(spl);
593 }
594 
595 void
596 tsc_hrtimeinit(uint64_t cpu_freq_hz)
597 {
598 	extern int gethrtime_hires;
599 	longlong_t tsc;
600 	ulong_t flags;
601 
602 	/*
603 	 * cpu_freq_hz is the measured cpu frequency in hertz
604 	 */
605 
606 	/*
607 	 * We can't accommodate CPUs slower than 31.25 MHz.
608 	 */
609 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
610 	nsec_scale =
611 	    (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
612 
613 	flags = clear_int_flag();
614 	tsc = tsc_read();
615 	(void) tsc_gethrtime();
616 	tsc_max_delta = tsc_read() - tsc;
617 	restore_int_flag(flags);
618 	gethrtimef = tsc_gethrtime;
619 	gethrtimeunscaledf = tsc_gethrtimeunscaled;
620 	scalehrtimef = tsc_scalehrtime;
621 	hrtime_tick = tsc_tick;
622 	gethrtime_hires = 1;
623 }
624