xref: /titanic_52/usr/src/uts/i86pc/os/timestamp.c (revision 554ff184129088135ad2643c1c9832174a17be88)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/disp.h>
33 #include <sys/var.h>
34 #include <sys/cmn_err.h>
35 #include <sys/debug.h>
36 #include <sys/x86_archext.h>
37 #include <sys/archsystm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/psm_defs.h>
40 #include <sys/clock.h>
41 #include <sys/atomic.h>
42 #include <sys/lockstat.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/dtrace.h>
45 #include <sys/time.h>
46 
47 /*
48  * Using the Pentium's TSC register for gethrtime()
49  * ------------------------------------------------
50  *
51  * The Pentium family, like many chip architectures, has a high-resolution
52  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
53  * of the timestamp counter are read with the RDTSC instruction.
54  *
55  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
56  * must be translated into nanoseconds in order to implement gethrtime().
57  * We avoid inducing floating point operations in this conversion by
58  * implementing the same nsec_scale algorithm as that found in the sun4u
59  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
60  * a detailed description of the algorithm; the comment is not reproduced
61  * here.  This implementation differs only in its value for NSEC_SHIFT:
62  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
63  * 60 MHz Pentiums.
64  *
65  * While TSC and %tick are both cycle counting registers, TSC's functionality
66  * falls short in several critical ways:
67  *
68  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
69  *	practice they often _are_ in sync, this isn't guaranteed by the
70  *	architecture.
71  *
72  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
73  *	only supports writing the low 32-bits of TSC, making it impractical
74  *	to rewrite.
75  *
76  *  (c)	The architecture doesn't have the capacity to interrupt based on
77  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
78  *
79  * Together, (a) and (b) imply that software must track the skew between
80  * TSCs and account for it (it is assumed that while there may exist skew,
81  * there does not exist drift).  To determine the skew between CPUs, we
82  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
83  * the online operation calls tsc_sync_master().  Once both CPUs are ready,
84  * the master sets a shared flag, and each reads its TSC register.  To reduce
85  * bias, we then wait until both CPUs are ready again, but this time the
86  * slave sets the shared flag, and each reads its TSC register again. The
87  * master compares the average of the two sample values, and, if observable
88  * skew is found, changes the gethrtimef function pointer to point to a
89  * gethrtime() implementation which will take the discovered skew into
90  * consideration.
91  *
92  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
93  * sync with gettimeofday().  This is problematic; given (c), the software
94  * cannot drive its time-of-day source from TSC, and yet they must somehow be
95  * kept in sync.  We implement this by having a routine, tsc_tick(), which
96  * is called once per second from the interrupt which drives time-of-day.
97  * tsc_tick() recalculates nsec_scale based on the number of the CPU cycles
98  * since boot versus the number of seconds since boot.  This algorithm
99  * becomes more accurate over time and converges quickly; the error in
100  * nsec_scale is typically under 1 ppm less than 10 seconds after boot, and
101  * is less than 100 ppb 1 minute after boot.
102  *
103  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
104  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
105  * monotonically increases.
106  */
107 
108 #define	NSEC_SHIFT 5
109 
110 static uint_t nsec_scale;
111 
112 /*
113  * These two variables used to be grouped together inside of a structure that
114  * lived on a single cache line. A regression (bug ID 4623398) caused the
115  * compiler to emit code that "optimized" away the while-loops below. The
116  * result was that no synchronization between the onlining and onlined CPUs
117  * took place.
118  */
119 static volatile int tsc_ready;
120 static volatile int tsc_sync_go;
121 
122 /*
123  * Used as indices into the tsc_sync_snaps[] array.
124  */
125 #define	TSC_MASTER		0
126 #define	TSC_SLAVE		1
127 
128 /*
129  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
130  */
131 #define	TSC_SYNC_STOP		1
132 #define	TSC_SYNC_GO		2
133 #define	TSC_SYNC_AGAIN		3
134 
135 /*
136  * XX64	Is the faster way to do this with a 64-bit ABI?
137  */
138 #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) { \
139 	unsigned int *_l = (unsigned int *)&(tsc); \
140 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; \
141 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
142 }
143 
144 #define	TSC_CONVERT(tsc, hrt, scale) { \
145 	unsigned int *_l = (unsigned int *)&(tsc); \
146 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; \
147 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
148 }
149 
150 
151 
152 static int	tsc_max_delta;
153 static hrtime_t tsc_sync_snaps[2];
154 static hrtime_t tsc_sync_delta[NCPU];
155 static hrtime_t tsc_sync_tick_delta[NCPU];
156 static hrtime_t	tsc_last = 0;
157 static hrtime_t	tsc_last_jumped = 0;
158 static hrtime_t	tsc_hrtime_base = 0;
159 static int	tsc_jumped = 0;
160 
161 static hrtime_t	shadow_tsc_hrtime_base;
162 static hrtime_t	shadow_tsc_last;
163 static uint_t	shadow_nsec_scale;
164 static uint32_t	shadow_hres_lock;
165 
166 /*
167  * Called by the master after the sync operation is complete.  If the
168  * slave is discovered to lag, gethrtimef will be changed to point to
169  * tsc_gethrtime_delta().
170  */
171 static void
172 tsc_digest(processorid_t target)
173 {
174 	hrtime_t tdelta, hdelta = 0;
175 	int max = tsc_max_delta;
176 	processorid_t source = CPU->cpu_id;
177 	int update;
178 
179 	update = tsc_sync_delta[source] != 0 ||
180 	    gethrtimef == tsc_gethrtime_delta;
181 
182 	/*
183 	 * We divide by 2 since each of the data points is the sum of two TSC
184 	 * reads; this takes the average of the two.
185 	 */
186 	tdelta = (tsc_sync_snaps[TSC_SLAVE] - tsc_sync_snaps[TSC_MASTER]) / 2;
187 	if ((tdelta > max) || ((tdelta >= 0) && update)) {
188 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
189 		tsc_sync_delta[target] = tsc_sync_delta[source] - hdelta;
190 		tsc_sync_tick_delta[target] = -tdelta;
191 		gethrtimef = tsc_gethrtime_delta;
192 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
193 		return;
194 	}
195 
196 	tdelta = -tdelta;
197 	if ((tdelta > max) || update) {
198 		TSC_CONVERT_AND_ADD(tdelta, hdelta, nsec_scale);
199 		tsc_sync_delta[target] = tsc_sync_delta[source] + hdelta;
200 		tsc_sync_tick_delta[target] = tdelta;
201 		gethrtimef = tsc_gethrtime_delta;
202 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
203 	}
204 
205 }
206 
207 /*
208  * Called by a CPU which has just performed an online operation on another
209  * CPU.  It is expected that the newly onlined CPU will call tsc_sync_slave().
210  */
211 void
212 tsc_sync_master(processorid_t slave)
213 {
214 	int flags;
215 	hrtime_t hrt;
216 
217 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
218 
219 	flags = clear_int_flag();
220 
221 	/*
222 	 * Wait for the slave CPU to arrive.
223 	 */
224 	while (tsc_ready != TSC_SYNC_GO)
225 		continue;
226 
227 	/*
228 	 * Tell the slave CPU to begin reading its TSC; read our own.
229 	 */
230 	tsc_sync_go = TSC_SYNC_GO;
231 	hrt = tsc_read();
232 
233 	/*
234 	 * Tell the slave that we're ready, and wait for the slave to tell us
235 	 * to read our TSC again.
236 	 */
237 	tsc_ready = TSC_SYNC_AGAIN;
238 	while (tsc_sync_go != TSC_SYNC_AGAIN)
239 		continue;
240 
241 	hrt += tsc_read();
242 	tsc_sync_snaps[TSC_MASTER] = hrt;
243 
244 	/*
245 	 * Wait for the slave to finish reading its TSC.
246 	 */
247 	while (tsc_ready != TSC_SYNC_STOP)
248 		continue;
249 
250 	/*
251 	 * At this point, both CPUs have performed their tsc_read() calls.
252 	 * We'll digest it now before letting the slave CPU return.
253 	 */
254 	tsc_digest(slave);
255 	tsc_sync_go = TSC_SYNC_STOP;
256 
257 	restore_int_flag(flags);
258 }
259 
260 /*
261  * Called by a CPU which has just been onlined.  It is expected that the CPU
262  * performing the online operation will call tsc_sync_master().
263  */
264 void
265 tsc_sync_slave(void)
266 {
267 	int flags;
268 	hrtime_t hrt;
269 
270 	ASSERT(tsc_sync_go != TSC_SYNC_GO);
271 
272 	flags = clear_int_flag();
273 
274 	/*
275 	 * Tell the master CPU that we're ready, and wait for the master to
276 	 * tell us to begin reading our TSC.
277 	 */
278 	tsc_ready = TSC_SYNC_GO;
279 	while (tsc_sync_go != TSC_SYNC_GO)
280 		continue;
281 
282 	hrt = tsc_read();
283 
284 	/*
285 	 * Wait for the master CPU to be ready to read its TSC again.
286 	 */
287 	while (tsc_ready != TSC_SYNC_AGAIN)
288 		continue;
289 
290 	/*
291 	 * Tell the master CPU to read its TSC again; read ours again.
292 	 */
293 	tsc_sync_go = TSC_SYNC_AGAIN;
294 
295 	hrt += tsc_read();
296 	tsc_sync_snaps[TSC_SLAVE] = hrt;
297 
298 	/*
299 	 * Tell the master that we're done, and wait to be dismissed.
300 	 */
301 	tsc_ready = TSC_SYNC_STOP;
302 	while (tsc_sync_go != TSC_SYNC_STOP)
303 		continue;
304 
305 	restore_int_flag(flags);
306 }
307 
308 void
309 tsc_hrtimeinit(uint64_t cpu_freq_hz)
310 {
311 	longlong_t tsc;
312 	int flags;
313 
314 	/*
315 	 * cpu_freq_hz is the measured cpu frequency in hertz
316 	 */
317 
318 	/*
319 	 * We can't accommodate CPUs slower than 31.25 MHz.
320 	 */
321 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
322 	nsec_scale =
323 	    (uint_t)
324 		(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
325 
326 	flags = clear_int_flag();
327 	tsc = tsc_read();
328 	(void) tsc_gethrtime();
329 	tsc_max_delta = tsc_read() - tsc;
330 	restore_int_flag(flags);
331 }
332 
333 /*
334  * Called once per second on CPU 0 from the cyclic subsystem's CY_HIGH_LEVEL
335  * interrupt.
336  */
337 void
338 tsc_tick(void)
339 {
340 	hrtime_t now, delta;
341 	ushort_t spl;
342 
343 	/*
344 	 * Before we set the new variables, we set the shadow values.  This
345 	 * allows for lock free operation in dtrace_gethrtime().
346 	 */
347 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
348 	    ipltospl(CBE_HIGH_PIL), &spl);
349 
350 	shadow_tsc_hrtime_base = tsc_hrtime_base;
351 	shadow_tsc_last = tsc_last;
352 	shadow_nsec_scale = nsec_scale;
353 
354 	shadow_hres_lock++;
355 	splx(spl);
356 
357 	CLOCK_LOCK(&spl);
358 
359 	now = tsc_read();
360 
361 	if (now < tsc_last) {
362 		/*
363 		 * The TSC has just jumped into the past.  We assume that
364 		 * this is due to a suspend/resume cycle, and we're going
365 		 * to use the _current_ value of TSC as the delta.  This
366 		 * will keep tsc_hrtime_base correct.  We're also going to
367 		 * assume that rate of tsc does not change after a suspend
368 		 * resume (i.e nsec_scale remains the same).
369 		 */
370 		delta = now;
371 		tsc_last_jumped += tsc_last;
372 		tsc_jumped = 1;
373 	} else {
374 		/*
375 		 * Determine the number of TSC ticks since the last clock
376 		 * tick, and add that to the hrtime base.
377 		 */
378 		delta = now - tsc_last;
379 	}
380 
381 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
382 	tsc_last = now;
383 
384 	CLOCK_UNLOCK(spl);
385 }
386 
387 hrtime_t
388 tsc_gethrtime(void)
389 {
390 	uint32_t old_hres_lock;
391 	hrtime_t tsc, hrt;
392 
393 	do {
394 		old_hres_lock = hres_lock;
395 
396 		if ((tsc = tsc_read()) >= tsc_last) {
397 			/*
398 			 * It would seem to be obvious that this is true
399 			 * (that is, the past is less than the present),
400 			 * but it isn't true in the presence of suspend/resume
401 			 * cycles.  If we manage to call gethrtime()
402 			 * after a resume, but before the first call to
403 			 * tsc_tick(), we will see the jump.  In this case,
404 			 * we will simply use the value in TSC as the delta.
405 			 */
406 			tsc -= tsc_last;
407 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
408 			/*
409 			 * There is a chance that tsc_tick() has just run on
410 			 * another CPU, and we have drifted just enough so that
411 			 * we appear behind tsc_last.  In this case, force the
412 			 * delta to be zero.
413 			 */
414 			tsc = 0;
415 		}
416 
417 		hrt = tsc_hrtime_base;
418 
419 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
420 	} while ((old_hres_lock & ~1) != hres_lock);
421 
422 	return (hrt);
423 }
424 
425 /*
426  * This is similar to the above, but it cannot actually spin on hres_lock.
427  * As a result, it caches all of the variables it needs; if the variables
428  * don't change, it's done.
429  */
430 hrtime_t
431 dtrace_gethrtime(void)
432 {
433 	uint32_t old_hres_lock;
434 	hrtime_t tsc, hrt;
435 
436 	do {
437 		old_hres_lock = hres_lock;
438 
439 		/*
440 		 * See the comments in tsc_gethrtime(), above.
441 		 */
442 		if ((tsc = tsc_read()) >= tsc_last)
443 			tsc -= tsc_last;
444 		else if (tsc >= tsc_last - 2*tsc_max_delta)
445 			tsc = 0;
446 
447 		hrt = tsc_hrtime_base;
448 
449 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
450 
451 		if ((old_hres_lock & ~1) == hres_lock)
452 			break;
453 
454 		/*
455 		 * If we're here, the clock lock is locked -- or it has been
456 		 * unlocked and locked since we looked.  This may be due to
457 		 * tsc_tick() running on another CPU -- or it may be because
458 		 * some code path has ended up in dtrace_probe() with
459 		 * CLOCK_LOCK held.  We'll try to determine that we're in
460 		 * the former case by taking another lap if the lock has
461 		 * changed since when we first looked at it.
462 		 */
463 		if (old_hres_lock != hres_lock)
464 			continue;
465 
466 		/*
467 		 * So the lock was and is locked.  We'll use the old data
468 		 * instead.
469 		 */
470 		old_hres_lock = shadow_hres_lock;
471 
472 		/*
473 		 * See the comments in tsc_gethrtime(), above.
474 		 */
475 		if ((tsc = tsc_read()) >= shadow_tsc_last)
476 			tsc -= shadow_tsc_last;
477 		else if (tsc >= shadow_tsc_last - 2*tsc_max_delta)
478 			tsc = 0;
479 
480 		hrt = shadow_tsc_hrtime_base;
481 
482 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
483 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
484 
485 	return (hrt);
486 }
487 
488 hrtime_t
489 tsc_gethrtime_delta(void)
490 {
491 	hrtime_t hrt;
492 	int flags;
493 
494 	/*
495 	 * We need to disable interrupts here to assure that we don't migrate
496 	 * between the call to tsc_gethrtime() and adding the CPU's hrtime
497 	 * delta. Note that disabling and reenabling preemption is forbidden
498 	 * here because we may be in the middle of a fast trap. In the amd64
499 	 * kernel we cannot tolerate preemption during a fast trap. See
500 	 * _update_sregs().
501 	 */
502 
503 	flags = clear_int_flag();
504 	hrt = tsc_gethrtime() + tsc_sync_delta[CPU->cpu_id];
505 	restore_int_flag(flags);
506 
507 	return (hrt);
508 }
509 
510 extern uint64_t cpu_freq_hz;
511 extern int tsc_gethrtime_enable;
512 
513 /*
514  * The following converts nanoseconds of highres-time to ticks
515  */
516 
517 static uint64_t
518 hrtime2tick(hrtime_t ts)
519 {
520 	hrtime_t q = ts / NANOSEC;
521 	hrtime_t r = ts - (q * NANOSEC);
522 
523 	return (q * cpu_freq_hz + ((r * cpu_freq_hz) / NANOSEC));
524 }
525 
526 /*
527  * This is used to convert scaled high-res time from nanoseconds to
528  * unscaled hardware ticks.  (Read from hardware timestamp counter)
529  */
530 
531 uint64_t
532 unscalehrtime(hrtime_t ts)
533 {
534 	if (tsc_gethrtime_enable) {
535 		uint64_t unscale = 0;
536 		hrtime_t rescale;
537 		hrtime_t diff = ts;
538 
539 		while (diff > (nsec_per_tick)) {
540 			unscale += hrtime2tick(diff);
541 			rescale = unscale;
542 			scalehrtime(&rescale);
543 			diff = ts - rescale;
544 		}
545 
546 		return (unscale);
547 	}
548 	return (0);
549 }
550 
551 
552 hrtime_t
553 tsc_gethrtimeunscaled(void)
554 {
555 	uint32_t old_hres_lock;
556 	hrtime_t tsc;
557 
558 	do {
559 		old_hres_lock = hres_lock;
560 
561 		if ((tsc = tsc_read()) < tsc_last) {
562 			/*
563 			 * see comments in tsc_gethrtime
564 			 */
565 			tsc += tsc_last_jumped;
566 		}
567 
568 	} while ((old_hres_lock & ~1) != hres_lock);
569 
570 	return (tsc);
571 }
572 
573 
574 /* Convert a tsc timestamp to nanoseconds */
575 void
576 tsc_scalehrtime(hrtime_t *tsc)
577 {
578 	hrtime_t hrt;
579 	hrtime_t mytsc;
580 
581 	if (tsc == NULL)
582 		return;
583 	mytsc = *tsc;
584 
585 	TSC_CONVERT(mytsc, hrt, nsec_scale);
586 	*tsc  = hrt;
587 }
588 
589 hrtime_t
590 tsc_gethrtimeunscaled_delta(void)
591 {
592 	hrtime_t hrt;
593 	int flags;
594 
595 	/*
596 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
597 	 * to prevent migration between the call to tsc_gethrtimeunscaled
598 	 * and adding the CPU's hrtime delta. Note that disabling and
599 	 * reenabling preemption is forbidden here because we may be in the
600 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
601 	 * preemption during a fast trap. See _update_sregs().
602 	 */
603 
604 	flags = clear_int_flag();
605 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
606 	restore_int_flag(flags);
607 
608 	return (hrt);
609 }
610