1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 #include <sys/conf.h> 39 #include <sys/avintr.h> 40 #include <sys/autoconf.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/bitmap.h> 44 45 #include <sys/privregs.h> 46 47 #include <sys/proc.h> 48 #include <sys/buf.h> 49 #include <sys/kmem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 #include <sys/uadmin.h> 54 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/file.h> 58 59 #include <sys/procfs.h> 60 #include <sys/acct.h> 61 62 #include <sys/vfs.h> 63 #include <sys/dnlc.h> 64 #include <sys/var.h> 65 #include <sys/cmn_err.h> 66 #include <sys/utsname.h> 67 #include <sys/debug.h> 68 #include <sys/kdi.h> 69 70 #include <sys/dumphdr.h> 71 #include <sys/bootconf.h> 72 #include <sys/varargs.h> 73 #include <sys/promif.h> 74 #include <sys/prom_emul.h> /* for create_prom_prop */ 75 #include <sys/modctl.h> /* for "procfs" hack */ 76 77 #include <sys/consdev.h> 78 #include <sys/frame.h> 79 80 #include <sys/sunddi.h> 81 #include <sys/sunndi.h> 82 #include <sys/ndi_impldefs.h> 83 #include <sys/ddidmareq.h> 84 #include <sys/psw.h> 85 #include <sys/regset.h> 86 #include <sys/clock.h> 87 #include <sys/pte.h> 88 #include <sys/mmu.h> 89 #include <sys/tss.h> 90 #include <sys/stack.h> 91 #include <sys/trap.h> 92 #include <sys/pic.h> 93 #include <sys/fp.h> 94 #include <vm/anon.h> 95 #include <vm/as.h> 96 #include <vm/page.h> 97 #include <vm/seg.h> 98 #include <vm/seg_dev.h> 99 #include <vm/seg_kmem.h> 100 #include <vm/seg_kpm.h> 101 #include <vm/seg_map.h> 102 #include <vm/seg_vn.h> 103 #include <vm/seg_kp.h> 104 #include <sys/memnode.h> 105 #include <vm/vm_dep.h> 106 #include <sys/swap.h> 107 #include <sys/thread.h> 108 #include <sys/sysconf.h> 109 #include <sys/vm_machparam.h> 110 #include <sys/archsystm.h> 111 #include <sys/machsystm.h> 112 #include <vm/hat.h> 113 #include <vm/hat_i86.h> 114 #include <sys/pmem.h> 115 #include <sys/instance.h> 116 #include <sys/smp_impldefs.h> 117 #include <sys/x86_archext.h> 118 #include <sys/segments.h> 119 #include <sys/clconf.h> 120 #include <sys/kobj.h> 121 #include <sys/kobj_lex.h> 122 #include <sys/prom_emul.h> 123 #include <sys/cpc_impl.h> 124 #include <sys/chip.h> 125 #include <sys/x86_archext.h> 126 #include <sys/cpu_module.h> 127 #include <sys/smbios.h> 128 129 extern void progressbar_init(void); 130 extern void progressbar_start(void); 131 132 /* 133 * XXX make declaration below "static" when drivers no longer use this 134 * interface. 135 */ 136 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 137 138 /* 139 * segkp 140 */ 141 extern int segkp_fromheap; 142 143 static void kvm_init(void); 144 static void startup_init(void); 145 static void startup_memlist(void); 146 static void startup_modules(void); 147 static void startup_bop_gone(void); 148 static void startup_vm(void); 149 static void startup_end(void); 150 151 /* 152 * Declare these as initialized data so we can patch them. 153 */ 154 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 155 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 156 157 char *kobj_file_buf; 158 int kobj_file_bufsize; /* set in /etc/system */ 159 160 /* Global variables for MP support. Used in mp_startup */ 161 caddr_t rm_platter_va; 162 uint32_t rm_platter_pa; 163 164 int auto_lpg_disable = 1; 165 166 /* 167 * Some CPUs have holes in the middle of the 64-bit virtual address range. 168 */ 169 uintptr_t hole_start, hole_end; 170 171 /* 172 * kpm mapping window 173 */ 174 caddr_t kpm_vbase; 175 size_t kpm_size; 176 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 177 178 /* 179 * VA range that must be preserved for boot until we release all of its 180 * mappings. 181 */ 182 #if defined(__amd64) 183 static void *kmem_setaside; 184 #endif 185 186 /* 187 * Configuration parameters set at boot time. 188 */ 189 190 caddr_t econtig; /* end of first block of contiguous kernel */ 191 192 struct bootops *bootops = 0; /* passed in from boot */ 193 struct bootops **bootopsp; 194 struct boot_syscalls *sysp; /* passed in from boot */ 195 196 char bootblock_fstype[16]; 197 198 char kern_bootargs[OBP_MAXPATHLEN]; 199 200 /* 201 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 202 * depends on number of BOP_ALLOC calls made and requested size, memory size 203 * combination and whether boot.bin memory needs to be freed. 204 */ 205 #define POSS_NEW_FRAGMENTS 12 206 207 /* 208 * VM data structures 209 */ 210 long page_hashsz; /* Size of page hash table (power of two) */ 211 struct page *pp_base; /* Base of initial system page struct array */ 212 struct page **page_hash; /* Page hash table */ 213 struct seg ktextseg; /* Segment used for kernel executable image */ 214 struct seg kvalloc; /* Segment used for "valloc" mapping */ 215 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 216 struct seg kmapseg; /* Segment used for generic kernel mappings */ 217 struct seg kdebugseg; /* Segment used for the kernel debugger */ 218 219 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 220 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 221 222 #if defined(__amd64) 223 struct seg kvseg_core; /* Segment used for the core heap */ 224 struct seg kpmseg; /* Segment used for physical mapping */ 225 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 226 #else 227 struct seg *segkpm = NULL; /* Unused on IA32 */ 228 #endif 229 230 caddr_t segkp_base; /* Base address of segkp */ 231 #if defined(__amd64) 232 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 233 #else 234 pgcnt_t segkpsize = 0; 235 #endif 236 237 struct memseg *memseg_base; 238 struct vnode unused_pages_vp; 239 240 #define FOURGB 0x100000000LL 241 242 struct memlist *memlist; 243 244 caddr_t s_text; /* start of kernel text segment */ 245 caddr_t e_text; /* end of kernel text segment */ 246 caddr_t s_data; /* start of kernel data segment */ 247 caddr_t e_data; /* end of kernel data segment */ 248 caddr_t modtext; /* start of loadable module text reserved */ 249 caddr_t e_modtext; /* end of loadable module text reserved */ 250 caddr_t moddata; /* start of loadable module data reserved */ 251 caddr_t e_moddata; /* end of loadable module data reserved */ 252 253 struct memlist *phys_install; /* Total installed physical memory */ 254 struct memlist *phys_avail; /* Total available physical memory */ 255 256 static void memlist_add(uint64_t, uint64_t, struct memlist *, 257 struct memlist **); 258 259 /* 260 * kphysm_init returns the number of pages that were processed 261 */ 262 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 263 264 #define IO_PROP_SIZE 64 /* device property size */ 265 266 /* 267 * a couple useful roundup macros 268 */ 269 #define ROUND_UP_PAGE(x) \ 270 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 271 #define ROUND_UP_LPAGE(x) \ 272 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 273 #define ROUND_UP_4MEG(x) \ 274 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 275 #define ROUND_UP_TOPLEVEL(x) \ 276 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 277 278 /* 279 * 32-bit Kernel's Virtual memory layout. 280 * +-----------------------+ 281 * | psm 1-1 map | 282 * | exec args area | 283 * 0xFFC00000 -|-----------------------|- ARGSBASE 284 * | debugger | 285 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 286 * | Kernel Data | 287 * 0xFEC00000 -|-----------------------| 288 * | Kernel Text | 289 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 290 * | LUFS sinkhole | 291 * 0xFE000000 -|-----------------------|- lufs_addr 292 * --- -|-----------------------|- valloc_base + valloc_sz 293 * | early pp structures | 294 * | memsegs, memlists, | 295 * | page hash, etc. | 296 * --- -|-----------------------|- valloc_base (floating) 297 * | ptable_va | 298 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 299 * | | (segkp is an arena under the heap) 300 * | | 301 * | kvseg | 302 * | | 303 * | | 304 * --- -|-----------------------|- kernelheap (floating) 305 * | Segkmap | 306 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 307 * | Red Zone | 308 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 309 * | | || 310 * | Shared objects | \/ 311 * | | 312 * : : 313 * | user data | 314 * |-----------------------| 315 * | user text | 316 * 0x08048000 -|-----------------------| 317 * | user stack | 318 * : : 319 * | invalid | 320 * 0x00000000 +-----------------------+ 321 * 322 * 323 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 324 * +-----------------------+ 325 * | psm 1-1 map | 326 * | exec args area | 327 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 328 * | debugger (?) | 329 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 330 * | unused | 331 * +-----------------------+ 332 * | Kernel Data | 333 * 0xFFFFFFFF.FBC00000 |-----------------------| 334 * | Kernel Text | 335 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 336 * | LUFS sinkhole | 337 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 338 * --- |-----------------------|- valloc_base + valloc_sz 339 * | early pp structures | 340 * | memsegs, memlists, | 341 * | page hash, etc. | 342 * --- |-----------------------|- valloc_base 343 * | ptable_va | 344 * --- |-----------------------|- ptable_va 345 * | Core heap | (used for loadable modules) 346 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 347 * | Kernel | 348 * | heap | 349 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 350 * | segkmap | 351 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 352 * | device mappings | 353 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 354 * | segkp | 355 * --- |-----------------------|- segkp_base 356 * | segkpm | 357 * 0xFFFFFE00.00000000 |-----------------------| 358 * | Red Zone | 359 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 360 * | User stack |- User space memory 361 * | | 362 * | shared objects, etc | (grows downwards) 363 * : : 364 * | | 365 * 0xFFFF8000.00000000 |-----------------------| 366 * | | 367 * | VA Hole / unused | 368 * | | 369 * 0x00008000.00000000 |-----------------------| 370 * | | 371 * | | 372 * : : 373 * | user heap | (grows upwards) 374 * | | 375 * | user data | 376 * |-----------------------| 377 * | user text | 378 * 0x00000000.04000000 |-----------------------| 379 * | invalid | 380 * 0x00000000.00000000 +-----------------------+ 381 * 382 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 383 * kernel, except that userlimit is raised to 0xfe000000 384 * 385 * Floating values: 386 * 387 * valloc_base: start of the kernel's memory management/tracking data 388 * structures. This region contains page_t structures for the lowest 4GB 389 * of physical memory, memsegs, memlists, and the page hash. 390 * 391 * core_base: start of the kernel's "core" heap area on 64-bit systems. 392 * This area is intended to be used for global data as well as for module 393 * text/data that does not fit into the nucleus pages. The core heap is 394 * restricted to a 2GB range, allowing every address within it to be 395 * accessed using rip-relative addressing 396 * 397 * ekernelheap: end of kernelheap and start of segmap. 398 * 399 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 400 * above a red zone that separates the user's address space from the 401 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 402 * 403 * segkmap_start: start of segmap. The length of segmap can be modified 404 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 405 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 406 * 407 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 408 * decreased by 2X the size required for page_t. This allows the kernel 409 * heap to grow in size with physical memory. With sizeof(page_t) == 80 410 * bytes, the following shows the values of kernelbase and kernel heap 411 * sizes for different memory configurations (assuming default segmap and 412 * segkp sizes). 413 * 414 * mem size for kernelbase kernel heap 415 * size page_t's size 416 * ---- --------- ---------- ----------- 417 * 1gb 0x01400000 0xd1800000 684MB 418 * 2gb 0x02800000 0xcf000000 704MB 419 * 4gb 0x05000000 0xca000000 744MB 420 * 6gb 0x07800000 0xc5000000 784MB 421 * 8gb 0x0a000000 0xc0000000 824MB 422 * 16gb 0x14000000 0xac000000 984MB 423 * 32gb 0x28000000 0x84000000 1304MB 424 * 64gb 0x50000000 0x34000000 1944MB (*) 425 * 426 * kernelbase is less than the abi minimum of 0xc0000000 for memory 427 * configurations above 8gb. 428 * 429 * (*) support for memory configurations above 32gb will require manual tuning 430 * of kernelbase to balance out the need of user applications. 431 */ 432 433 void init_intr_threads(struct cpu *); 434 435 /* real-time-clock initialization parameters */ 436 long gmt_lag; /* offset in seconds of gmt to local time */ 437 extern long process_rtc_config_file(void); 438 439 char *final_kernelheap; 440 char *boot_kernelheap; 441 uintptr_t kernelbase; 442 uintptr_t eprom_kernelbase; 443 size_t segmapsize; 444 static uintptr_t segmap_reserved; 445 uintptr_t segkmap_start; 446 int segmapfreelists; 447 pgcnt_t boot_npages; 448 pgcnt_t npages; 449 size_t core_size; /* size of "core" heap */ 450 uintptr_t core_base; /* base address of "core" heap */ 451 452 /* 453 * List of bootstrap pages. We mark these as allocated in startup. 454 * release_bootstrap() will free them when we're completely done with 455 * the bootstrap. 456 */ 457 static page_t *bootpages, *rd_pages; 458 459 struct system_hardware system_hardware; 460 461 /* 462 * Enable some debugging messages concerning memory usage... 463 * 464 * XX64 There should only be one print routine once memlist usage between 465 * vmx and the kernel is cleaned up and there is a single memlist structure 466 * shared between kernel and boot. 467 */ 468 static void 469 print_boot_memlist(char *title, struct memlist *mp) 470 { 471 prom_printf("MEMLIST: %s:\n", title); 472 while (mp != NULL) { 473 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 474 mp->address, mp->size); 475 mp = mp->next; 476 } 477 } 478 479 static void 480 print_kernel_memlist(char *title, struct memlist *mp) 481 { 482 prom_printf("MEMLIST: %s:\n", title); 483 while (mp != NULL) { 484 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 485 mp->address, mp->size); 486 mp = mp->next; 487 } 488 } 489 490 /* 491 * XX64 need a comment here.. are these just default values, surely 492 * we read the "cpuid" type information to figure this out. 493 */ 494 int l2cache_sz = 0x80000; 495 int l2cache_linesz = 0x40; 496 int l2cache_assoc = 1; 497 498 /* 499 * on 64 bit we use a predifined VA range for mapping devices in the kernel 500 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 501 */ 502 #ifdef __amd64 503 504 vmem_t *device_arena; 505 uintptr_t toxic_addr = (uintptr_t)NULL; 506 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 507 508 #else /* __i386 */ 509 510 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 511 size_t toxic_bit_map_len = 0; /* in bits */ 512 513 #endif /* __i386 */ 514 515 /* 516 * Simple boot time debug facilities 517 */ 518 static char *prm_dbg_str[] = { 519 "%s:%d: '%s' is 0x%x\n", 520 "%s:%d: '%s' is 0x%llx\n" 521 }; 522 523 int prom_debug; 524 525 #define PRM_DEBUG(q) if (prom_debug) \ 526 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 527 #define PRM_POINT(q) if (prom_debug) \ 528 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 529 530 /* 531 * This structure is used to keep track of the intial allocations 532 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 533 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 534 */ 535 #define NUM_ALLOCATIONS 7 536 int num_allocations = 0; 537 struct { 538 void **al_ptr; 539 size_t al_size; 540 } allocations[NUM_ALLOCATIONS]; 541 size_t valloc_sz = 0; 542 uintptr_t valloc_base; 543 extern uintptr_t ptable_va; 544 extern size_t ptable_sz; 545 546 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 547 size = ROUND_UP_PAGE(size); \ 548 if (num_allocations == NUM_ALLOCATIONS) \ 549 panic("too many ADD_TO_ALLOCATIONS()"); \ 550 allocations[num_allocations].al_ptr = (void**)&ptr; \ 551 allocations[num_allocations].al_size = size; \ 552 valloc_sz += size; \ 553 ++num_allocations; \ 554 } 555 556 static void 557 perform_allocations(void) 558 { 559 caddr_t mem; 560 int i; 561 562 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 563 if (mem != (caddr_t)valloc_base) 564 panic("BOP_ALLOC() failed"); 565 bzero(mem, valloc_sz); 566 for (i = 0; i < num_allocations; ++i) { 567 *allocations[i].al_ptr = (void *)mem; 568 mem += allocations[i].al_size; 569 } 570 } 571 572 /* 573 * Our world looks like this at startup time. 574 * 575 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 576 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 577 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 578 * addresses are fixed in the binary at link time. 579 * 580 * On the text page: 581 * unix/genunix/krtld/module text loads. 582 * 583 * On the data page: 584 * unix/genunix/krtld/module data loads and space for page_t's. 585 */ 586 /* 587 * Machine-dependent startup code 588 */ 589 void 590 startup(void) 591 { 592 extern void startup_bios_disk(); 593 /* 594 * Make sure that nobody tries to use sekpm until we have 595 * initialized it properly. 596 */ 597 #if defined(__amd64) 598 kpm_desired = kpm_enable; 599 #endif 600 kpm_enable = 0; 601 602 progressbar_init(); 603 startup_init(); 604 startup_memlist(); 605 startup_modules(); 606 startup_bios_disk(); 607 startup_bop_gone(); 608 startup_vm(); 609 startup_end(); 610 progressbar_start(); 611 } 612 613 static void 614 startup_init() 615 { 616 PRM_POINT("startup_init() starting..."); 617 618 /* 619 * Complete the extraction of cpuid data 620 */ 621 cpuid_pass2(CPU); 622 623 (void) check_boot_version(BOP_GETVERSION(bootops)); 624 625 /* 626 * Check for prom_debug in boot environment 627 */ 628 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 629 ++prom_debug; 630 PRM_POINT("prom_debug found in boot enviroment"); 631 } 632 633 /* 634 * Collect node, cpu and memory configuration information. 635 */ 636 get_system_configuration(); 637 638 /* 639 * Halt if this is an unsupported processor. 640 */ 641 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 642 printf("\n486 processor (\"%s\") detected.\n", 643 CPU->cpu_brandstr); 644 halt("This processor is not supported by this release " 645 "of Solaris."); 646 } 647 648 PRM_POINT("startup_init() done"); 649 } 650 651 /* 652 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 653 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 654 * also filters out physical page zero. There is some reliance on the 655 * boot loader allocating only a few contiguous physical memory chunks. 656 */ 657 static void 658 avail_filter(uint64_t *addr, uint64_t *size) 659 { 660 uintptr_t va; 661 uintptr_t next_va; 662 pfn_t pfn; 663 uint64_t pfn_addr; 664 uint64_t pfn_eaddr; 665 uint_t prot; 666 size_t len; 667 uint_t change; 668 669 if (prom_debug) 670 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 671 *addr, *size); 672 673 /* 674 * page zero is required for BIOS.. never make it available 675 */ 676 if (*addr == 0) { 677 *addr += MMU_PAGESIZE; 678 *size -= MMU_PAGESIZE; 679 } 680 681 /* 682 * First we trim from the front of the range. Since hat_boot_probe() 683 * walks ranges in virtual order, but addr/size are physical, we need 684 * to the list until no changes are seen. This deals with the case 685 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 686 * but w < v. 687 */ 688 do { 689 change = 0; 690 for (va = KERNEL_TEXT; 691 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 692 va = next_va) { 693 694 next_va = va + len; 695 pfn_addr = ptob((uint64_t)pfn); 696 pfn_eaddr = pfn_addr + len; 697 698 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 699 change = 1; 700 while (*size > 0 && len > 0) { 701 *addr += MMU_PAGESIZE; 702 *size -= MMU_PAGESIZE; 703 len -= MMU_PAGESIZE; 704 } 705 } 706 } 707 if (change && prom_debug) 708 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 709 *addr, *size); 710 } while (change); 711 712 /* 713 * Trim pages from the end of the range. 714 */ 715 for (va = KERNEL_TEXT; 716 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 717 va = next_va) { 718 719 next_va = va + len; 720 pfn_addr = ptob((uint64_t)pfn); 721 722 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 723 *size = pfn_addr - *addr; 724 } 725 726 if (prom_debug) 727 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 728 *addr, *size); 729 } 730 731 static void 732 kpm_init() 733 { 734 struct segkpm_crargs b; 735 uintptr_t start, end; 736 struct memlist *pmem; 737 738 /* 739 * These variables were all designed for sfmmu in which segkpm is 740 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 741 * might use 2+ page sizes on a single machine, so none of these 742 * variables have a single correct value. They are set up as if we 743 * always use a 4KB pagesize, which should do no harm. In the long 744 * run, we should get rid of KPM's assumption that only a single 745 * pagesize is used. 746 */ 747 kpm_pgshft = MMU_PAGESHIFT; 748 kpm_pgsz = MMU_PAGESIZE; 749 kpm_pgoff = MMU_PAGEOFFSET; 750 kpmp2pshft = 0; 751 kpmpnpgs = 1; 752 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 753 754 PRM_POINT("about to create segkpm"); 755 rw_enter(&kas.a_lock, RW_WRITER); 756 757 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 758 panic("cannot attach segkpm"); 759 760 b.prot = PROT_READ | PROT_WRITE; 761 b.nvcolors = 1; 762 763 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 764 panic("segkpm_create segkpm"); 765 766 rw_exit(&kas.a_lock); 767 768 /* 769 * Map each of the memsegs into the kpm segment, coalesing adjacent 770 * memsegs to allow mapping with the largest possible pages. 771 */ 772 pmem = phys_install; 773 start = pmem->address; 774 end = start + pmem->size; 775 for (;;) { 776 if (pmem == NULL || pmem->address > end) { 777 hat_devload(kas.a_hat, kpm_vbase + start, 778 end - start, mmu_btop(start), 779 PROT_READ | PROT_WRITE, 780 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 781 if (pmem == NULL) 782 break; 783 start = pmem->address; 784 } 785 end = pmem->address + pmem->size; 786 pmem = pmem->next; 787 } 788 } 789 790 /* 791 * The purpose of startup memlist is to get the system to the 792 * point where it can use kmem_alloc()'s that operate correctly 793 * relying on BOP_ALLOC(). This includes allocating page_ts, 794 * page hash table, vmem initialized, etc. 795 * 796 * Boot's versions of physinstalled and physavail are insufficient for 797 * the kernel's purposes. Specifically we don't know which pages that 798 * are not in physavail can be reclaimed after boot is gone. 799 * 800 * This code solves the problem by dividing the address space 801 * into 3 regions as it takes over the MMU from the booter. 802 * 803 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 804 * can not be used by the kernel. 805 * 806 * 2) Any free page that happens to be mapped below kernelbase 807 * is protected until the boot loader is released, but will then be reclaimed. 808 * 809 * 3) Boot shouldn't use any address in the remaining area between kernelbase 810 * and KERNEL_TEXT. 811 * 812 * In the case of multiple mappings to the same page, region 1 has precedence 813 * over region 2. 814 */ 815 static void 816 startup_memlist(void) 817 { 818 size_t memlist_sz; 819 size_t memseg_sz; 820 size_t pagehash_sz; 821 size_t pp_sz; 822 uintptr_t va; 823 size_t len; 824 uint_t prot; 825 pfn_t pfn; 826 int memblocks; 827 caddr_t pagecolor_mem; 828 size_t pagecolor_memsz; 829 caddr_t page_ctrs_mem; 830 size_t page_ctrs_size; 831 struct memlist *current; 832 extern void startup_build_mem_nodes(struct memlist *); 833 834 /* XX64 fix these - they should be in include files */ 835 extern ulong_t cr4_value; 836 extern size_t page_coloring_init(uint_t, int, int); 837 extern void page_coloring_setup(caddr_t); 838 839 PRM_POINT("startup_memlist() starting..."); 840 841 /* 842 * Take the most current snapshot we can by calling mem-update. 843 * For this to work properly, we first have to ask boot for its 844 * end address. 845 */ 846 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 847 (void) BOP_GETPROP(bootops, "memory-update", NULL); 848 849 /* 850 * find if the kernel is mapped on a large page 851 */ 852 va = KERNEL_TEXT; 853 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 854 panic("Couldn't find kernel text boot mapping"); 855 856 /* 857 * Use leftover large page nucleus text/data space for loadable modules. 858 * Use at most MODTEXT/MODDATA. 859 */ 860 if (len > MMU_PAGESIZE) { 861 862 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 863 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 864 if (e_moddata - moddata > MODDATA) 865 e_moddata = moddata + MODDATA; 866 867 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 868 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 869 if (e_modtext - modtext > MODTEXT) 870 e_modtext = modtext + MODTEXT; 871 872 873 } else { 874 875 PRM_POINT("Kernel NOT loaded on Large Page!"); 876 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 877 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 878 879 } 880 econtig = e_moddata; 881 882 PRM_DEBUG(modtext); 883 PRM_DEBUG(e_modtext); 884 PRM_DEBUG(moddata); 885 PRM_DEBUG(e_moddata); 886 PRM_DEBUG(econtig); 887 888 /* 889 * For MP machines cr4_value must be set or the non-boot 890 * CPUs will not be able to start. 891 */ 892 if (x86_feature & X86_LARGEPAGE) 893 cr4_value = getcr4(); 894 PRM_DEBUG(cr4_value); 895 896 /* 897 * Examine the boot loaders physical memory map to find out: 898 * - total memory in system - physinstalled 899 * - the max physical address - physmax 900 * - the number of segments the intsalled memory comes in 901 */ 902 if (prom_debug) 903 print_boot_memlist("boot physinstalled", 904 bootops->boot_mem->physinstalled); 905 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 906 &physinstalled, &memblocks); 907 PRM_DEBUG(physmax); 908 PRM_DEBUG(physinstalled); 909 PRM_DEBUG(memblocks); 910 911 if (prom_debug) 912 print_boot_memlist("boot physavail", 913 bootops->boot_mem->physavail); 914 915 /* 916 * Initialize hat's mmu parameters. 917 * Check for enforce-prot-exec in boot environment. It's used to 918 * enable/disable support for the page table entry NX bit. 919 * The default is to enforce PROT_EXEC on processors that support NX. 920 * Boot seems to round up the "len", but 8 seems to be big enough. 921 */ 922 mmu_init(); 923 924 #ifdef __i386 925 /* 926 * physmax is lowered if there is more memory than can be 927 * physically addressed in 32 bit (PAE/non-PAE) modes. 928 */ 929 if (mmu.pae_hat) { 930 if (PFN_ABOVE64G(physmax)) { 931 physinstalled -= (physmax - (PFN_64G - 1)); 932 physmax = PFN_64G - 1; 933 } 934 } else { 935 if (PFN_ABOVE4G(physmax)) { 936 physinstalled -= (physmax - (PFN_4G - 1)); 937 physmax = PFN_4G - 1; 938 } 939 } 940 #endif 941 942 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 943 944 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 945 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 946 char value[8]; 947 948 if (len < 8) 949 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 950 else 951 (void) strcpy(value, ""); 952 if (strcmp(value, "off") == 0) 953 mmu.pt_nx = 0; 954 } 955 PRM_DEBUG(mmu.pt_nx); 956 957 /* 958 * We will need page_t's for every page in the system, except for 959 * memory mapped at or above above the start of the kernel text segment. 960 * 961 * pages above e_modtext are attributed to kernel debugger (obp_pages) 962 */ 963 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 964 obp_pages = 0; 965 va = KERNEL_TEXT; 966 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 967 npages -= len >> MMU_PAGESHIFT; 968 if (va >= (uintptr_t)e_moddata) 969 obp_pages += len >> MMU_PAGESHIFT; 970 va += len; 971 } 972 PRM_DEBUG(npages); 973 PRM_DEBUG(obp_pages); 974 975 /* 976 * If physmem is patched to be non-zero, use it instead of 977 * the computed value unless it is larger than the real 978 * amount of memory on hand. 979 */ 980 if (physmem == 0 || physmem > npages) { 981 physmem = npages; 982 } else if (physmem < npages) { 983 cmn_err(CE_WARN, "limiting physmem to 0x%lx of" 984 " 0x%lx available pages", physmem, npages); 985 npages = physmem; 986 } 987 PRM_DEBUG(physmem); 988 989 /* 990 * We now compute the sizes of all the initial allocations for 991 * structures the kernel needs in order do kmem_alloc(). These 992 * include: 993 * memsegs 994 * memlists 995 * page hash table 996 * page_t's 997 * page coloring data structs 998 */ 999 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1000 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1001 PRM_DEBUG(memseg_sz); 1002 1003 /* 1004 * Reserve space for phys_avail/phys_install memlists. 1005 * There's no real good way to know exactly how much room we'll need, 1006 * but this should be a good upper bound. 1007 */ 1008 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1009 (memblocks + POSS_NEW_FRAGMENTS)); 1010 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1011 PRM_DEBUG(memlist_sz); 1012 1013 /* 1014 * The page structure hash table size is a power of 2 1015 * such that the average hash chain length is PAGE_HASHAVELEN. 1016 */ 1017 page_hashsz = npages / PAGE_HASHAVELEN; 1018 page_hashsz = 1 << highbit(page_hashsz); 1019 pagehash_sz = sizeof (struct page *) * page_hashsz; 1020 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1021 PRM_DEBUG(pagehash_sz); 1022 1023 /* 1024 * Set aside room for the page structures themselves. Note: on 1025 * 64-bit systems we don't allocate page_t's for every page here. 1026 * We just allocate enough to map the lowest 4GB of physical 1027 * memory, minus those pages that are used for the "nucleus" kernel 1028 * text and data. The remaining pages are allocated once we can 1029 * map around boot. 1030 * 1031 * boot_npages is used to allocate an area big enough for our 1032 * initial page_t's. kphym_init may use less than that. 1033 */ 1034 boot_npages = npages; 1035 #if defined(__amd64) 1036 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1037 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1038 #endif 1039 PRM_DEBUG(boot_npages); 1040 pp_sz = sizeof (struct page) * boot_npages; 1041 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1042 PRM_DEBUG(pp_sz); 1043 1044 /* 1045 * determine l2 cache info and memory size for page coloring 1046 */ 1047 (void) getl2cacheinfo(CPU, 1048 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1049 pagecolor_memsz = 1050 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1051 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1052 PRM_DEBUG(pagecolor_memsz); 1053 1054 page_ctrs_size = page_ctrs_sz(); 1055 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1056 PRM_DEBUG(page_ctrs_size); 1057 1058 /* 1059 * valloc_base will be below kernel text 1060 * The extra pages are for the HAT and kmdb to map page tables. 1061 */ 1062 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1063 valloc_base = KERNEL_TEXT - valloc_sz; 1064 PRM_DEBUG(valloc_base); 1065 ptable_va = valloc_base - ptable_sz; 1066 1067 #if defined(__amd64) 1068 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1069 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1070 "systems."); 1071 kernelbase = (uintptr_t)KERNELBASE; 1072 core_base = (uintptr_t)COREHEAP_BASE; 1073 core_size = ptable_va - core_base; 1074 #else /* __i386 */ 1075 /* 1076 * We configure kernelbase based on: 1077 * 1078 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1079 * KERNELBASE_MAX. we large page align eprom_kernelbase 1080 * 1081 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1082 * On large memory systems we must lower kernelbase to allow 1083 * enough room for page_t's for all of memory. 1084 * 1085 * The value set here, might be changed a little later. 1086 */ 1087 if (eprom_kernelbase) { 1088 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1089 if (kernelbase > KERNELBASE_MAX) 1090 kernelbase = KERNELBASE_MAX; 1091 } else { 1092 kernelbase = (uintptr_t)KERNELBASE; 1093 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1094 } 1095 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1096 core_base = ptable_va; 1097 core_size = 0; 1098 #endif 1099 1100 PRM_DEBUG(kernelbase); 1101 PRM_DEBUG(core_base); 1102 PRM_DEBUG(core_size); 1103 1104 /* 1105 * At this point, we can only use a portion of the kernelheap that 1106 * will be available after we boot. Both 32-bit and 64-bit systems 1107 * have this limitation, although the reasons are completely 1108 * different. 1109 * 1110 * On 64-bit systems, the booter only supports allocations in the 1111 * upper 4GB of memory, so we have to work with a reduced kernel 1112 * heap until we take over all allocations. The booter also sits 1113 * in the lower portion of that 4GB range, so we have to raise the 1114 * bottom of the heap even further. 1115 * 1116 * On 32-bit systems we have to leave room to place segmap below 1117 * the heap. We don't yet know how large segmap will be, so we 1118 * have to be very conservative. 1119 */ 1120 #if defined(__amd64) 1121 /* 1122 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1123 * address range. In the long run, that should be fixed. It's 1124 * insane for a booter to need 2 2GB address ranges. 1125 */ 1126 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1127 segmap_reserved = 0; 1128 1129 #else /* __i386 */ 1130 segkp_fromheap = 1; 1131 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1132 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1133 segmap_reserved); 1134 #endif 1135 PRM_DEBUG(boot_kernelheap); 1136 kernelheap = boot_kernelheap; 1137 ekernelheap = (char *)core_base; 1138 1139 /* 1140 * If segmap is too large we can push the bottom of the kernel heap 1141 * higher than the base. Or worse, it could exceed the top of the 1142 * VA space entirely, causing it to wrap around. 1143 */ 1144 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1145 panic("too little memory available for kernelheap," 1146 " use a different kernelbase"); 1147 1148 /* 1149 * Now that we know the real value of kernelbase, 1150 * update variables that were initialized with a value of 1151 * KERNELBASE (in common/conf/param.c). 1152 * 1153 * XXX The problem with this sort of hackery is that the 1154 * compiler just may feel like putting the const declarations 1155 * (in param.c) into the .text section. Perhaps they should 1156 * just be declared as variables there? 1157 */ 1158 1159 #if defined(__amd64) 1160 ASSERT(_kernelbase == KERNELBASE); 1161 ASSERT(_userlimit == USERLIMIT); 1162 /* 1163 * As one final sanity check, verify that the "red zone" between 1164 * kernel and userspace is exactly the size we expected. 1165 */ 1166 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1167 #else 1168 *(uintptr_t *)&_kernelbase = kernelbase; 1169 *(uintptr_t *)&_userlimit = kernelbase; 1170 *(uintptr_t *)&_userlimit32 = _userlimit; 1171 #endif 1172 PRM_DEBUG(_kernelbase); 1173 PRM_DEBUG(_userlimit); 1174 PRM_DEBUG(_userlimit32); 1175 1176 /* 1177 * do all the initial allocations 1178 */ 1179 perform_allocations(); 1180 1181 /* 1182 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1183 */ 1184 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1185 (void *)core_base, (void *)ptable_va); 1186 1187 /* 1188 * Build phys_install and phys_avail in kernel memspace. 1189 * - phys_install should be all memory in the system. 1190 * - phys_avail is phys_install minus any memory mapped before this 1191 * point above KERNEL_TEXT. 1192 */ 1193 current = phys_install = memlist; 1194 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1195 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1196 panic("physinstalled was too big!"); 1197 if (prom_debug) 1198 print_kernel_memlist("phys_install", phys_install); 1199 1200 phys_avail = current; 1201 PRM_POINT("Building phys_avail:\n"); 1202 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1203 avail_filter); 1204 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1205 panic("physavail was too big!"); 1206 if (prom_debug) 1207 print_kernel_memlist("phys_avail", phys_avail); 1208 1209 /* 1210 * setup page coloring 1211 */ 1212 page_coloring_setup(pagecolor_mem); 1213 page_lock_init(); /* currently a no-op */ 1214 1215 /* 1216 * free page list counters 1217 */ 1218 (void) page_ctrs_alloc(page_ctrs_mem); 1219 1220 /* 1221 * Initialize the page structures from the memory lists. 1222 */ 1223 availrmem_initial = availrmem = freemem = 0; 1224 PRM_POINT("Calling kphysm_init()..."); 1225 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1226 PRM_POINT("kphysm_init() done"); 1227 PRM_DEBUG(boot_npages); 1228 1229 /* 1230 * Now that page_t's have been initialized, remove all the 1231 * initial allocation pages from the kernel free page lists. 1232 */ 1233 boot_mapin((caddr_t)valloc_base, valloc_sz); 1234 1235 /* 1236 * Initialize kernel memory allocator. 1237 */ 1238 kmem_init(); 1239 1240 /* 1241 * print this out early so that we know what's going on 1242 */ 1243 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1244 1245 /* 1246 * Initialize bp_mapin(). 1247 */ 1248 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1249 1250 #if defined(__i386) 1251 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1252 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1253 "System using 0x%lx", 1254 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1255 #endif 1256 1257 #ifdef KERNELBASE_ABI_MIN 1258 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1259 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1260 "i386 ABI compliant.", (uintptr_t)kernelbase); 1261 } 1262 #endif 1263 1264 PRM_POINT("startup_memlist() done"); 1265 } 1266 1267 static void 1268 startup_modules(void) 1269 { 1270 unsigned int i; 1271 extern void prom_setup(void); 1272 1273 PRM_POINT("startup_modules() starting..."); 1274 /* 1275 * Initialize ten-micro second timer so that drivers will 1276 * not get short changed in their init phase. This was 1277 * not getting called until clkinit which, on fast cpu's 1278 * caused the drv_usecwait to be way too short. 1279 */ 1280 microfind(); 1281 1282 /* 1283 * Read the GMT lag from /etc/rtc_config. 1284 */ 1285 gmt_lag = process_rtc_config_file(); 1286 1287 /* 1288 * Calculate default settings of system parameters based upon 1289 * maxusers, yet allow to be overridden via the /etc/system file. 1290 */ 1291 param_calc(0); 1292 1293 mod_setup(); 1294 1295 /* 1296 * Initialize system parameters. 1297 */ 1298 param_init(); 1299 1300 /* 1301 * maxmem is the amount of physical memory we're playing with. 1302 */ 1303 maxmem = physmem; 1304 1305 /* 1306 * Initialize the hat layer. 1307 */ 1308 hat_init(); 1309 1310 /* 1311 * Initialize segment management stuff. 1312 */ 1313 seg_init(); 1314 1315 if (modload("fs", "specfs") == -1) 1316 halt("Can't load specfs"); 1317 1318 if (modload("fs", "devfs") == -1) 1319 halt("Can't load devfs"); 1320 1321 dispinit(); 1322 1323 /* 1324 * This is needed here to initialize hw_serial[] for cluster booting. 1325 */ 1326 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1327 (void) modunload(i); 1328 else 1329 cmn_err(CE_CONT, "sysinit load failed"); 1330 1331 /* Read cluster configuration data. */ 1332 clconf_init(); 1333 1334 /* 1335 * Create a kernel device tree. First, create rootnex and 1336 * then invoke bus specific code to probe devices. 1337 */ 1338 setup_ddi(); 1339 1340 /* 1341 * Set up the CPU module subsystem. Modifies the device tree, so it 1342 * must be done after setup_ddi(). 1343 */ 1344 cmi_init(); 1345 1346 /* 1347 * Initialize the MCA handlers 1348 */ 1349 if (x86_feature & X86_MCA) 1350 cmi_mca_init(); 1351 1352 /* 1353 * Fake a prom tree such that /dev/openprom continues to work 1354 */ 1355 prom_setup(); 1356 1357 /* 1358 * Load all platform specific modules 1359 */ 1360 psm_modload(); 1361 1362 PRM_POINT("startup_modules() done"); 1363 } 1364 1365 static void 1366 startup_bop_gone(void) 1367 { 1368 PRM_POINT("startup_bop_gone() starting..."); 1369 1370 /* 1371 * Do final allocations of HAT data structures that need to 1372 * be allocated before quiescing the boot loader. 1373 */ 1374 PRM_POINT("Calling hat_kern_alloc()..."); 1375 hat_kern_alloc(); 1376 PRM_POINT("hat_kern_alloc() done"); 1377 1378 /* 1379 * Setup MTRR (Memory type range registers) 1380 */ 1381 setup_mtrr(); 1382 PRM_POINT("startup_bop_gone() done"); 1383 } 1384 1385 /* 1386 * Walk through the pagetables looking for pages mapped in by boot. If the 1387 * setaside flag is set the pages are expected to be returned to the 1388 * kernel later in boot, so we add them to the bootpages list. 1389 */ 1390 static void 1391 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1392 { 1393 uintptr_t va = low; 1394 size_t len; 1395 uint_t prot; 1396 pfn_t pfn; 1397 page_t *pp; 1398 pgcnt_t boot_protect_cnt = 0; 1399 1400 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1401 if (va + len >= high) 1402 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1403 "legal range.", len, (void *)va); 1404 1405 while (len > 0) { 1406 pp = page_numtopp_alloc(pfn); 1407 if (pp != NULL) { 1408 if (setaside == 0) 1409 panic("Unexpected mapping by boot. " 1410 "addr=%p pfn=%lx\n", 1411 (void *)va, pfn); 1412 1413 pp->p_next = bootpages; 1414 bootpages = pp; 1415 ++boot_protect_cnt; 1416 } 1417 1418 ++pfn; 1419 len -= MMU_PAGESIZE; 1420 va += MMU_PAGESIZE; 1421 } 1422 } 1423 PRM_DEBUG(boot_protect_cnt); 1424 } 1425 1426 static void 1427 startup_vm(void) 1428 { 1429 struct segmap_crargs a; 1430 extern void hat_kern_setup(void); 1431 pgcnt_t pages_left; 1432 1433 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1434 extern pgcnt_t auto_lpg_min_physmem; 1435 1436 PRM_POINT("startup_vm() starting..."); 1437 1438 /* 1439 * The next two loops are done in distinct steps in order 1440 * to be sure that any page that is doubly mapped (both above 1441 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1442 * Note this may never happen, but it might someday. 1443 */ 1444 1445 bootpages = NULL; 1446 PRM_POINT("Protecting boot pages"); 1447 /* 1448 * Protect any pages mapped above KERNEL_TEXT that somehow have 1449 * page_t's. This can only happen if something weird allocated 1450 * in this range (like kadb/kmdb). 1451 */ 1452 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1453 1454 /* 1455 * Before we can take over memory allocation/mapping from the boot 1456 * loader we must remove from our free page lists any boot pages that 1457 * will stay mapped until release_bootstrap(). 1458 */ 1459 protect_boot_range(0, kernelbase, 1); 1460 #if defined(__amd64) 1461 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1462 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1463 #endif 1464 1465 /* 1466 * Copy in boot's page tables, set up extra page tables for the kernel, 1467 * and switch to the kernel's context. 1468 */ 1469 PRM_POINT("Calling hat_kern_setup()..."); 1470 hat_kern_setup(); 1471 1472 /* 1473 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1474 */ 1475 bootops->bsys_alloc = NULL; 1476 PRM_POINT("hat_kern_setup() done"); 1477 1478 hat_cpu_online(CPU); 1479 1480 /* 1481 * Before we call kvm_init(), we need to establish the final size 1482 * of the kernel's heap. So, we need to figure out how much space 1483 * to set aside for segkp, segkpm, and segmap. 1484 */ 1485 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1486 #if defined(__amd64) 1487 if (kpm_desired) { 1488 /* 1489 * Segkpm appears at the bottom of the kernel's address 1490 * range. To detect accidental overruns of the user 1491 * address space, we leave a "red zone" of unmapped memory 1492 * between kernelbase and the beginning of segkpm. 1493 */ 1494 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1495 kpm_size = mmu_ptob(physmax); 1496 PRM_DEBUG(kpm_vbase); 1497 PRM_DEBUG(kpm_size); 1498 final_kernelheap = 1499 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1500 } 1501 1502 if (!segkp_fromheap) { 1503 size_t sz = mmu_ptob(segkpsize); 1504 1505 /* 1506 * determine size of segkp and adjust the bottom of the 1507 * kernel's heap. 1508 */ 1509 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1510 sz = SEGKPDEFSIZE; 1511 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1512 "segkpsize has been reset to %ld pages", 1513 mmu_btop(sz)); 1514 } 1515 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1516 1517 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1518 segkp_base = final_kernelheap; 1519 PRM_DEBUG(segkpsize); 1520 PRM_DEBUG(segkp_base); 1521 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1522 PRM_DEBUG(final_kernelheap); 1523 } 1524 1525 /* 1526 * put the range of VA for device mappings next 1527 */ 1528 toxic_addr = (uintptr_t)final_kernelheap; 1529 PRM_DEBUG(toxic_addr); 1530 final_kernelheap = (char *)toxic_addr + toxic_size; 1531 #endif 1532 PRM_DEBUG(final_kernelheap); 1533 ASSERT(final_kernelheap < boot_kernelheap); 1534 1535 /* 1536 * Users can change segmapsize through eeprom or /etc/system. 1537 * If the variable is tuned through eeprom, there is no upper 1538 * bound on the size of segmap. If it is tuned through 1539 * /etc/system on 32-bit systems, it must be no larger than we 1540 * planned for in startup_memlist(). 1541 */ 1542 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1543 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1544 1545 #if defined(__i386) 1546 if (segmapsize > segmap_reserved) { 1547 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1548 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1549 segmapsize = segmap_reserved; 1550 } 1551 /* 1552 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1553 * the bottom of the kernel's address range. Set aside space for a 1554 * red zone just below the start of segmap. 1555 */ 1556 segkmap_start += KERNEL_REDZONE_SIZE; 1557 segmapsize -= KERNEL_REDZONE_SIZE; 1558 #endif 1559 final_kernelheap = (char *)(segkmap_start + segmapsize); 1560 1561 PRM_DEBUG(segkmap_start); 1562 PRM_DEBUG(segmapsize); 1563 PRM_DEBUG(final_kernelheap); 1564 1565 /* 1566 * Initialize VM system 1567 */ 1568 PRM_POINT("Calling kvm_init()..."); 1569 kvm_init(); 1570 PRM_POINT("kvm_init() done"); 1571 1572 /* 1573 * Tell kmdb that the VM system is now working 1574 */ 1575 if (boothowto & RB_DEBUG) 1576 kdi_dvec_vmready(); 1577 1578 /* 1579 * Mangle the brand string etc. 1580 */ 1581 cpuid_pass3(CPU); 1582 1583 PRM_DEBUG(final_kernelheap); 1584 1585 /* 1586 * Now that we can use memory outside the top 4GB (on 64-bit 1587 * systems) and we know the size of segmap, we can set the final 1588 * size of the kernel's heap. Note: on 64-bit systems we still 1589 * can't touch anything in the bottom half of the top 4GB range 1590 * because boot still has pages mapped there. 1591 */ 1592 if (final_kernelheap < boot_kernelheap) { 1593 kernelheap_extend(final_kernelheap, boot_kernelheap); 1594 #if defined(__amd64) 1595 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1596 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1597 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1598 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1599 PRM_DEBUG(kmem_setaside); 1600 if (kmem_setaside == NULL) 1601 panic("Could not protect boot's memory"); 1602 #endif 1603 } 1604 /* 1605 * Now that the kernel heap may have grown significantly, we need 1606 * to make all the remaining page_t's available to back that memory. 1607 * 1608 * XX64 this should probably wait till after release boot-strap too. 1609 */ 1610 pages_left = npages - boot_npages; 1611 if (pages_left > 0) { 1612 PRM_DEBUG(pages_left); 1613 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1614 } 1615 1616 #if defined(__amd64) 1617 1618 /* 1619 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1620 */ 1621 device_arena = vmem_create("device", (void *)toxic_addr, 1622 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1623 1624 #else /* __i386 */ 1625 1626 /* 1627 * allocate the bit map that tracks toxic pages 1628 */ 1629 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1630 PRM_DEBUG(toxic_bit_map_len); 1631 toxic_bit_map = 1632 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1633 ASSERT(toxic_bit_map != NULL); 1634 PRM_DEBUG(toxic_bit_map); 1635 1636 #endif /* __i386 */ 1637 1638 1639 /* 1640 * Now that we've got more VA, as well as the ability to allocate from 1641 * it, tell the debugger. 1642 */ 1643 if (boothowto & RB_DEBUG) 1644 kdi_dvec_memavail(); 1645 1646 /* 1647 * The following code installs a special page fault handler (#pf) 1648 * to work around a pentium bug. 1649 */ 1650 #if !defined(__amd64) 1651 if (x86_type == X86_TYPE_P5) { 1652 gate_desc_t *newidt; 1653 desctbr_t newidt_r; 1654 1655 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1656 panic("failed to install pentium_pftrap"); 1657 1658 bcopy(idt0, newidt, sizeof (idt0)); 1659 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1660 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1661 1662 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1663 PROT_READ|PROT_EXEC); 1664 1665 newidt_r.dtr_limit = sizeof (idt0) - 1; 1666 newidt_r.dtr_base = (uintptr_t)newidt; 1667 CPU->cpu_idt = newidt; 1668 wr_idtr(&newidt_r); 1669 } 1670 #endif /* !__amd64 */ 1671 1672 /* 1673 * Map page pfn=0 for drivers, such as kd, that need to pick up 1674 * parameters left there by controllers/BIOS. 1675 */ 1676 PRM_POINT("setup up p0_va"); 1677 p0_va = i86devmap(0, 1, PROT_READ); 1678 PRM_DEBUG(p0_va); 1679 1680 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1681 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1682 1683 /* 1684 * disable automatic large pages for small memory systems or 1685 * when the disable flag is set. 1686 */ 1687 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1688 exec_lpg_disable = 1; 1689 use_brk_lpg = 0; 1690 use_stk_lpg = 0; 1691 use_zmap_lpg = 0; 1692 } 1693 1694 PRM_POINT("Calling hat_init_finish()..."); 1695 hat_init_finish(); 1696 PRM_POINT("hat_init_finish() done"); 1697 1698 /* 1699 * Initialize the segkp segment type. 1700 */ 1701 rw_enter(&kas.a_lock, RW_WRITER); 1702 if (!segkp_fromheap) { 1703 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1704 segkp) < 0) { 1705 panic("startup: cannot attach segkp"); 1706 /*NOTREACHED*/ 1707 } 1708 } else { 1709 /* 1710 * For 32 bit x86 systems, we will have segkp under the heap. 1711 * There will not be a segkp segment. We do, however, need 1712 * to fill in the seg structure. 1713 */ 1714 segkp->s_as = &kas; 1715 } 1716 if (segkp_create(segkp) != 0) { 1717 panic("startup: segkp_create failed"); 1718 /*NOTREACHED*/ 1719 } 1720 PRM_DEBUG(segkp); 1721 rw_exit(&kas.a_lock); 1722 1723 /* 1724 * kpm segment 1725 */ 1726 segmap_kpm = 0; 1727 if (kpm_desired) { 1728 kpm_init(); 1729 kpm_enable = 1; 1730 } 1731 1732 /* 1733 * Now create segmap segment. 1734 */ 1735 rw_enter(&kas.a_lock, RW_WRITER); 1736 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1737 panic("cannot attach segkmap"); 1738 /*NOTREACHED*/ 1739 } 1740 PRM_DEBUG(segkmap); 1741 1742 /* 1743 * The 64 bit HAT permanently maps only segmap's page tables. 1744 * The 32 bit HAT maps the heap's page tables too. 1745 */ 1746 #if defined(__amd64) 1747 hat_kmap_init(segkmap_start, segmapsize); 1748 #else /* __i386 */ 1749 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1750 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1751 #endif /* __i386 */ 1752 1753 a.prot = PROT_READ | PROT_WRITE; 1754 a.shmsize = 0; 1755 a.nfreelist = segmapfreelists; 1756 1757 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1758 panic("segmap_create segkmap"); 1759 rw_exit(&kas.a_lock); 1760 1761 setup_vaddr_for_ppcopy(CPU); 1762 1763 segdev_init(); 1764 pmem_init(); 1765 PRM_POINT("startup_vm() done"); 1766 } 1767 1768 static void 1769 startup_end(void) 1770 { 1771 extern void setx86isalist(void); 1772 1773 PRM_POINT("startup_end() starting..."); 1774 1775 /* 1776 * Perform tasks that get done after most of the VM 1777 * initialization has been done but before the clock 1778 * and other devices get started. 1779 */ 1780 kern_setup1(); 1781 1782 /* 1783 * Perform CPC initialization for this CPU. 1784 */ 1785 kcpc_hw_init(CPU); 1786 1787 #if defined(__amd64) 1788 /* 1789 * Validate support for syscall/sysret 1790 * XX64 -- include SSE, SSE2, etc. here too? 1791 */ 1792 if ((x86_feature & X86_ASYSC) == 0) { 1793 cmn_err(CE_WARN, 1794 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1795 } 1796 #endif 1797 /* 1798 * Configure the system. 1799 */ 1800 PRM_POINT("Calling configure()..."); 1801 configure(); /* set up devices */ 1802 PRM_POINT("configure() done"); 1803 1804 /* 1805 * Set the isa_list string to the defined instruction sets we 1806 * support. 1807 */ 1808 setx86isalist(); 1809 init_intr_threads(CPU); 1810 psm_install(); 1811 1812 /* 1813 * We're done with bootops. We don't unmap the bootstrap yet because 1814 * we're still using bootsvcs. 1815 */ 1816 PRM_POINT("zeroing out bootops"); 1817 *bootopsp = (struct bootops *)0; 1818 bootops = (struct bootops *)NULL; 1819 1820 PRM_POINT("Enabling interrupts"); 1821 (*picinitf)(); 1822 sti(); 1823 1824 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1825 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1826 1827 PRM_POINT("startup_end() done"); 1828 } 1829 1830 extern char hw_serial[]; 1831 char *_hs1107 = hw_serial; 1832 ulong_t _bdhs34; 1833 1834 void 1835 post_startup(void) 1836 { 1837 /* 1838 * Set the system wide, processor-specific flags to be passed 1839 * to userland via the aux vector for performance hints and 1840 * instruction set extensions. 1841 */ 1842 bind_hwcap(); 1843 1844 /* 1845 * Load the System Management BIOS into the global ksmbios handle, 1846 * if an SMBIOS is present on this system. 1847 */ 1848 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1849 1850 /* 1851 * Startup memory scrubber. 1852 */ 1853 memscrub_init(); 1854 1855 /* 1856 * Complete CPU module initialization 1857 */ 1858 cmi_post_init(); 1859 1860 /* 1861 * Perform forceloading tasks for /etc/system. 1862 */ 1863 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1864 1865 /* 1866 * ON4.0: Force /proc module in until clock interrupt handle fixed 1867 * ON4.0: This must be fixed or restated in /etc/systems. 1868 */ 1869 (void) modload("fs", "procfs"); 1870 1871 #if defined(__i386) 1872 /* 1873 * Check for required functional Floating Point hardware, 1874 * unless FP hardware explicitly disabled. 1875 */ 1876 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1877 halt("No working FP hardware found"); 1878 #endif 1879 1880 maxmem = freemem; 1881 1882 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1883 1884 /* 1885 * Perform the formal initialization of the boot chip, 1886 * and associate the boot cpu with it. 1887 * This must be done after the cpu node for CPU has been 1888 * added to the device tree, when the necessary probing to 1889 * know the chip type and chip "id" is performed. 1890 */ 1891 chip_cpu_init(CPU); 1892 chip_cpu_assign(CPU); 1893 } 1894 1895 static int 1896 pp_in_ramdisk(page_t *pp) 1897 { 1898 extern uint64_t ramdisk_start, ramdisk_end; 1899 1900 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1901 (pp->p_pagenum < btopr(ramdisk_end))); 1902 } 1903 1904 void 1905 release_bootstrap(void) 1906 { 1907 int root_is_ramdisk; 1908 pfn_t pfn; 1909 page_t *pp; 1910 extern void kobj_boot_unmountroot(void); 1911 extern dev_t rootdev; 1912 1913 /* unmount boot ramdisk and release kmem usage */ 1914 kobj_boot_unmountroot(); 1915 1916 /* 1917 * We're finished using the boot loader so free its pages. 1918 */ 1919 PRM_POINT("Unmapping lower boot pages"); 1920 clear_boot_mappings(0, kernelbase); 1921 #if defined(__amd64) 1922 PRM_POINT("Unmapping upper boot pages"); 1923 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1924 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1925 #endif 1926 1927 /* 1928 * If root isn't on ramdisk, destroy the hardcoded 1929 * ramdisk node now and release the memory. Else, 1930 * ramdisk memory is kept in rd_pages. 1931 */ 1932 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1933 if (!root_is_ramdisk) { 1934 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1935 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1936 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1937 (void) ddi_remove_child(dip, 0); 1938 } 1939 1940 PRM_POINT("Releasing boot pages"); 1941 while (bootpages) { 1942 pp = bootpages; 1943 bootpages = pp->p_next; 1944 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1945 pp->p_next = rd_pages; 1946 rd_pages = pp; 1947 continue; 1948 } 1949 pp->p_next = (struct page *)0; 1950 page_free(pp, 1); 1951 } 1952 1953 /* 1954 * Find 1 page below 1 MB so that other processors can boot up. 1955 * Make sure it has a kernel VA as well as a 1:1 mapping. 1956 * We should have just free'd one up. 1957 */ 1958 if (use_mp) { 1959 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 1960 if (page_numtopp_alloc(pfn) == NULL) 1961 continue; 1962 rm_platter_va = i86devmap(pfn, 1, 1963 PROT_READ | PROT_WRITE | PROT_EXEC); 1964 rm_platter_pa = ptob(pfn); 1965 hat_devload(kas.a_hat, 1966 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1967 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 1968 HAT_LOAD_NOCONSIST); 1969 break; 1970 } 1971 if (pfn == btop(1*1024*1024)) 1972 panic("No page available for starting " 1973 "other processors"); 1974 } 1975 1976 #if defined(__amd64) 1977 PRM_POINT("Returning boot's VA space to kernel heap"); 1978 if (kmem_setaside != NULL) 1979 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 1980 #endif 1981 } 1982 1983 /* 1984 * Initialize the platform-specific parts of a page_t. 1985 */ 1986 void 1987 add_physmem_cb(page_t *pp, pfn_t pnum) 1988 { 1989 pp->p_pagenum = pnum; 1990 pp->p_mapping = NULL; 1991 pp->p_embed = 0; 1992 pp->p_share = 0; 1993 pp->p_mlentry = 0; 1994 } 1995 1996 /* 1997 * kphysm_init() initializes physical memory. 1998 */ 1999 static pgcnt_t 2000 kphysm_init( 2001 page_t *inpp, 2002 struct memseg *memsegp, 2003 pgcnt_t start, 2004 pgcnt_t npages) 2005 { 2006 struct memlist *pmem; 2007 struct memseg *cur_memseg; 2008 struct memseg **memsegpp; 2009 pfn_t base_pfn; 2010 pgcnt_t num; 2011 pgcnt_t total_skipped = 0; 2012 pgcnt_t skipping = 0; 2013 pgcnt_t pages_done = 0; 2014 pgcnt_t largepgcnt; 2015 uint64_t addr; 2016 uint64_t size; 2017 page_t *pp = inpp; 2018 int dobreak = 0; 2019 extern pfn_t ddiphysmin; 2020 2021 ASSERT(page_hash != NULL && page_hashsz != 0); 2022 2023 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2024 ASSERT(cur_memseg == memsegp || start > 0); 2025 2026 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2027 /* 2028 * In a 32 bit kernel can't use higher memory if we're 2029 * not booting in PAE mode. This check takes care of that. 2030 */ 2031 addr = pmem->address; 2032 size = pmem->size; 2033 if (btop(addr) > physmax) 2034 continue; 2035 2036 /* 2037 * align addr and size - they may not be at page boundaries 2038 */ 2039 if ((addr & MMU_PAGEOFFSET) != 0) { 2040 addr += MMU_PAGEOFFSET; 2041 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2042 size -= addr - pmem->address; 2043 } 2044 2045 /* only process pages below or equal to physmax */ 2046 if ((btop(addr + size) - 1) > physmax) 2047 size = ptob(physmax - btop(addr) + 1); 2048 2049 num = btop(size); 2050 if (num == 0) 2051 continue; 2052 2053 if (total_skipped < start) { 2054 if (start - total_skipped > num) { 2055 total_skipped += num; 2056 continue; 2057 } 2058 skipping = start - total_skipped; 2059 num -= skipping; 2060 addr += (MMU_PAGESIZE * skipping); 2061 total_skipped = start; 2062 } 2063 if (num == 0) 2064 continue; 2065 2066 if (num > npages) 2067 num = npages; 2068 2069 npages -= num; 2070 pages_done += num; 2071 base_pfn = btop(addr); 2072 2073 /* 2074 * If the caller didn't provide space for the page 2075 * structures, carve them out of the memseg they will 2076 * represent. 2077 */ 2078 if (pp == NULL) { 2079 pgcnt_t pp_pgs; 2080 2081 if (num <= 1) 2082 continue; 2083 2084 /* 2085 * Compute how many of the pages we need to use for 2086 * page_ts 2087 */ 2088 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2089 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2090 num - pp_pgs + 1) 2091 --pp_pgs; 2092 PRM_DEBUG(pp_pgs); 2093 2094 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2095 VM_NOSLEEP); 2096 if (pp == NULL) { 2097 cmn_err(CE_WARN, "Unable to add %ld pages to " 2098 "the system.", num); 2099 continue; 2100 } 2101 2102 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2103 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2104 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2105 bzero(pp, mmu_ptob(pp_pgs)); 2106 num -= pp_pgs; 2107 base_pfn += pp_pgs; 2108 } 2109 2110 if (prom_debug) 2111 prom_printf("MEMSEG addr=0x%" PRIx64 2112 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2113 addr, num, base_pfn, base_pfn + num); 2114 2115 /* 2116 * drop pages below ddiphysmin to simplify ddi memory 2117 * allocation with non-zero addr_lo requests. 2118 */ 2119 if (base_pfn < ddiphysmin) { 2120 if (base_pfn + num <= ddiphysmin) { 2121 /* drop entire range below ddiphysmin */ 2122 continue; 2123 } 2124 /* adjust range to ddiphysmin */ 2125 pp += (ddiphysmin - base_pfn); 2126 num -= (ddiphysmin - base_pfn); 2127 base_pfn = ddiphysmin; 2128 } 2129 /* 2130 * Build the memsegs entry 2131 */ 2132 cur_memseg->pages = pp; 2133 cur_memseg->epages = pp + num; 2134 cur_memseg->pages_base = base_pfn; 2135 cur_memseg->pages_end = base_pfn + num; 2136 2137 /* 2138 * insert in memseg list in decreasing pfn range order. 2139 * Low memory is typically more fragmented such that this 2140 * ordering keeps the larger ranges at the front of the list 2141 * for code that searches memseg. 2142 */ 2143 memsegpp = &memsegs; 2144 for (;;) { 2145 if (*memsegpp == NULL) { 2146 /* empty memsegs */ 2147 memsegs = cur_memseg; 2148 break; 2149 } 2150 /* check for continuity with start of memsegpp */ 2151 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2152 if (cur_memseg->epages == (*memsegpp)->pages) { 2153 /* 2154 * contiguous pfn and page_t's. Merge 2155 * cur_memseg into *memsegpp. Drop 2156 * cur_memseg 2157 */ 2158 (*memsegpp)->pages_base = 2159 cur_memseg->pages_base; 2160 (*memsegpp)->pages = 2161 cur_memseg->pages; 2162 /* 2163 * check if contiguous with the end of 2164 * the next memseg. 2165 */ 2166 if ((*memsegpp)->next && 2167 ((*memsegpp)->pages_base == 2168 (*memsegpp)->next->pages_end)) { 2169 cur_memseg = *memsegpp; 2170 memsegpp = &((*memsegpp)->next); 2171 dobreak = 1; 2172 } else { 2173 break; 2174 } 2175 } else { 2176 /* 2177 * contiguous pfn but not page_t's. 2178 * drop last pfn/page_t in cur_memseg 2179 * to prevent creation of large pages 2180 * with noncontiguous page_t's if not 2181 * aligned to largest page boundary. 2182 */ 2183 largepgcnt = page_get_pagecnt( 2184 page_num_pagesizes() - 1); 2185 2186 if (cur_memseg->pages_end & 2187 (largepgcnt - 1)) { 2188 num--; 2189 cur_memseg->epages--; 2190 cur_memseg->pages_end--; 2191 } 2192 } 2193 } 2194 2195 /* check for continuity with end of memsegpp */ 2196 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2197 if (cur_memseg->pages == (*memsegpp)->epages) { 2198 /* 2199 * contiguous pfn and page_t's. Merge 2200 * cur_memseg into *memsegpp. Drop 2201 * cur_memseg. 2202 */ 2203 if (dobreak) { 2204 /* merge previously done */ 2205 cur_memseg->pages = 2206 (*memsegpp)->pages; 2207 cur_memseg->pages_base = 2208 (*memsegpp)->pages_base; 2209 cur_memseg->next = 2210 (*memsegpp)->next; 2211 } else { 2212 (*memsegpp)->pages_end = 2213 cur_memseg->pages_end; 2214 (*memsegpp)->epages = 2215 cur_memseg->epages; 2216 } 2217 break; 2218 } 2219 /* 2220 * contiguous pfn but not page_t's. 2221 * drop first pfn/page_t in cur_memseg 2222 * to prevent creation of large pages 2223 * with noncontiguous page_t's if not 2224 * aligned to largest page boundary. 2225 */ 2226 largepgcnt = page_get_pagecnt( 2227 page_num_pagesizes() - 1); 2228 if (base_pfn & (largepgcnt - 1)) { 2229 num--; 2230 base_pfn++; 2231 cur_memseg->pages++; 2232 cur_memseg->pages_base++; 2233 pp = cur_memseg->pages; 2234 } 2235 if (dobreak) 2236 break; 2237 } 2238 2239 if (cur_memseg->pages_base >= 2240 (*memsegpp)->pages_end) { 2241 cur_memseg->next = *memsegpp; 2242 *memsegpp = cur_memseg; 2243 break; 2244 } 2245 if ((*memsegpp)->next == NULL) { 2246 cur_memseg->next = NULL; 2247 (*memsegpp)->next = cur_memseg; 2248 break; 2249 } 2250 memsegpp = &((*memsegpp)->next); 2251 ASSERT(*memsegpp != NULL); 2252 } 2253 2254 /* 2255 * add_physmem() initializes the PSM part of the page 2256 * struct by calling the PSM back with add_physmem_cb(). 2257 * In addition it coalesces pages into larger pages as 2258 * it initializes them. 2259 */ 2260 add_physmem(pp, num, base_pfn); 2261 cur_memseg++; 2262 availrmem_initial += num; 2263 availrmem += num; 2264 2265 /* 2266 * If the caller provided the page frames to us, then 2267 * advance in that list. Otherwise, prepare to allocate 2268 * our own page frames for the next memseg. 2269 */ 2270 pp = (inpp == NULL) ? NULL : pp + num; 2271 } 2272 2273 PRM_DEBUG(availrmem_initial); 2274 PRM_DEBUG(availrmem); 2275 PRM_DEBUG(freemem); 2276 build_pfn_hash(); 2277 return (pages_done); 2278 } 2279 2280 /* 2281 * Kernel VM initialization. 2282 */ 2283 static void 2284 kvm_init(void) 2285 { 2286 #ifdef DEBUG 2287 extern void _start(); 2288 2289 ASSERT((caddr_t)_start == s_text); 2290 #endif 2291 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2292 2293 /* 2294 * Put the kernel segments in kernel address space. 2295 */ 2296 rw_enter(&kas.a_lock, RW_WRITER); 2297 as_avlinit(&kas); 2298 2299 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2300 (void) segkmem_create(&ktextseg); 2301 2302 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2303 (void) segkmem_create(&kvalloc); 2304 2305 /* 2306 * We're about to map out /boot. This is the beginning of the 2307 * system resource management transition. We can no longer 2308 * call into /boot for I/O or memory allocations. 2309 * 2310 * XX64 - Is this still correct with kernelheap_extend() being called 2311 * later than this???? 2312 */ 2313 (void) seg_attach(&kas, final_kernelheap, 2314 ekernelheap - final_kernelheap, &kvseg); 2315 (void) segkmem_create(&kvseg); 2316 2317 #if defined(__amd64) 2318 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2319 (void) segkmem_create(&kvseg_core); 2320 #endif 2321 2322 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2323 &kdebugseg); 2324 (void) segkmem_create(&kdebugseg); 2325 2326 rw_exit(&kas.a_lock); 2327 2328 /* 2329 * Ensure that the red zone at kernelbase is never accessible. 2330 */ 2331 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2332 2333 /* 2334 * Make the text writable so that it can be hot patched by DTrace. 2335 */ 2336 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2337 PROT_READ | PROT_WRITE | PROT_EXEC); 2338 2339 /* 2340 * Make data writable until end. 2341 */ 2342 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2343 PROT_READ | PROT_WRITE | PROT_EXEC); 2344 } 2345 2346 /* 2347 * These are MTTR registers supported by P6 2348 */ 2349 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2350 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2351 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2352 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2353 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2354 uint64_t mtrrdef, pat_attr_reg; 2355 2356 /* 2357 * Disable reprogramming of MTRRs by default. 2358 */ 2359 int enable_relaxed_mtrr = 0; 2360 2361 void 2362 setup_mtrr() 2363 { 2364 int i, ecx; 2365 int vcnt; 2366 struct mtrrvar *mtrrphys; 2367 2368 if (!(x86_feature & X86_MTRR)) 2369 return; 2370 2371 mtrrcap = rdmsr(REG_MTRRCAP); 2372 mtrrdef = rdmsr(REG_MTRRDEF); 2373 if (mtrrcap & MTRRCAP_FIX) { 2374 mtrr64k = rdmsr(REG_MTRR64K); 2375 mtrr16k1 = rdmsr(REG_MTRR16K1); 2376 mtrr16k2 = rdmsr(REG_MTRR16K2); 2377 mtrr4k1 = rdmsr(REG_MTRR4K1); 2378 mtrr4k2 = rdmsr(REG_MTRR4K2); 2379 mtrr4k3 = rdmsr(REG_MTRR4K3); 2380 mtrr4k4 = rdmsr(REG_MTRR4K4); 2381 mtrr4k5 = rdmsr(REG_MTRR4K5); 2382 mtrr4k6 = rdmsr(REG_MTRR4K6); 2383 mtrr4k7 = rdmsr(REG_MTRR4K7); 2384 mtrr4k8 = rdmsr(REG_MTRR4K8); 2385 } 2386 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2387 vcnt = MAX_MTRRVAR; 2388 2389 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2390 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2391 mtrrphys->mtrrphys_base = rdmsr(ecx); 2392 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2393 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2394 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2395 } 2396 } 2397 if (x86_feature & X86_PAT) { 2398 if (enable_relaxed_mtrr) 2399 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2400 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2401 } 2402 2403 mtrr_sync(); 2404 } 2405 2406 /* 2407 * Sync current cpu mtrr with the incore copy of mtrr. 2408 * This function has to be invoked with interrupts disabled 2409 * Currently we do not capture other cpu's. This is invoked on cpu0 2410 * just after reading /etc/system. 2411 * On other cpu's its invoked from mp_startup(). 2412 */ 2413 void 2414 mtrr_sync() 2415 { 2416 uint_t crvalue, cr0_orig; 2417 int vcnt, i, ecx; 2418 struct mtrrvar *mtrrphys; 2419 2420 cr0_orig = crvalue = getcr0(); 2421 crvalue |= CR0_CD; 2422 crvalue &= ~CR0_NW; 2423 setcr0(crvalue); 2424 invalidate_cache(); 2425 setcr3(getcr3()); 2426 2427 if (x86_feature & X86_PAT) 2428 wrmsr(REG_MTRRPAT, pat_attr_reg); 2429 2430 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2431 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2432 2433 if (mtrrcap & MTRRCAP_FIX) { 2434 wrmsr(REG_MTRR64K, mtrr64k); 2435 wrmsr(REG_MTRR16K1, mtrr16k1); 2436 wrmsr(REG_MTRR16K2, mtrr16k2); 2437 wrmsr(REG_MTRR4K1, mtrr4k1); 2438 wrmsr(REG_MTRR4K2, mtrr4k2); 2439 wrmsr(REG_MTRR4K3, mtrr4k3); 2440 wrmsr(REG_MTRR4K4, mtrr4k4); 2441 wrmsr(REG_MTRR4K5, mtrr4k5); 2442 wrmsr(REG_MTRR4K6, mtrr4k6); 2443 wrmsr(REG_MTRR4K7, mtrr4k7); 2444 wrmsr(REG_MTRR4K8, mtrr4k8); 2445 } 2446 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2447 vcnt = MAX_MTRRVAR; 2448 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2449 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2450 wrmsr(ecx, mtrrphys->mtrrphys_base); 2451 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2452 } 2453 wrmsr(REG_MTRRDEF, mtrrdef); 2454 setcr3(getcr3()); 2455 invalidate_cache(); 2456 setcr0(cr0_orig); 2457 } 2458 2459 /* 2460 * resync mtrr so that BIOS is happy. Called from mdboot 2461 */ 2462 void 2463 mtrr_resync() 2464 { 2465 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2466 /* 2467 * We could have changed the default mtrr definition. 2468 * Put it back to uncached which is what it is at power on 2469 */ 2470 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2471 mtrr_sync(); 2472 } 2473 } 2474 2475 void 2476 get_system_configuration() 2477 { 2478 char prop[32]; 2479 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2480 2481 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2482 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2483 (kobj_getvalue(prop, &nodes_ll) == -1) || 2484 (nodes_ll > MAXNODES)) || 2485 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2486 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2487 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2488 2489 system_hardware.hd_nodes = 1; 2490 system_hardware.hd_cpus_per_node = 0; 2491 } else { 2492 system_hardware.hd_nodes = (int)nodes_ll; 2493 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2494 } 2495 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2496 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2497 (kobj_getvalue(prop, &lvalue) == -1)) 2498 eprom_kernelbase = NULL; 2499 else 2500 eprom_kernelbase = (uintptr_t)lvalue; 2501 2502 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2503 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2504 (kobj_getvalue(prop, &lvalue) == -1)) { 2505 segmapsize = SEGMAPDEFAULT; 2506 } else { 2507 segmapsize = (uintptr_t)lvalue; 2508 } 2509 2510 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2511 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2512 (kobj_getvalue(prop, &lvalue) == -1)) { 2513 segmapfreelists = 0; /* use segmap driver default */ 2514 } else { 2515 segmapfreelists = (int)lvalue; 2516 } 2517 2518 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2519 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2520 (kobj_getvalue(prop, &lvalue) != -1)) { 2521 physmem = (uintptr_t)lvalue; 2522 } 2523 } 2524 2525 /* 2526 * Add to a memory list. 2527 * start = start of new memory segment 2528 * len = length of new memory segment in bytes 2529 * new = pointer to a new struct memlist 2530 * memlistp = memory list to which to add segment. 2531 */ 2532 static void 2533 memlist_add( 2534 uint64_t start, 2535 uint64_t len, 2536 struct memlist *new, 2537 struct memlist **memlistp) 2538 { 2539 struct memlist *cur; 2540 uint64_t end = start + len; 2541 2542 new->address = start; 2543 new->size = len; 2544 2545 cur = *memlistp; 2546 2547 while (cur) { 2548 if (cur->address >= end) { 2549 new->next = cur; 2550 *memlistp = new; 2551 new->prev = cur->prev; 2552 cur->prev = new; 2553 return; 2554 } 2555 ASSERT(cur->address + cur->size <= start); 2556 if (cur->next == NULL) { 2557 cur->next = new; 2558 new->prev = cur; 2559 new->next = NULL; 2560 return; 2561 } 2562 memlistp = &cur->next; 2563 cur = cur->next; 2564 } 2565 } 2566 2567 void 2568 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2569 { 2570 size_t tsize = e_modtext - modtext; 2571 size_t dsize = e_moddata - moddata; 2572 2573 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2574 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2575 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2576 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2577 } 2578 2579 caddr_t 2580 kobj_text_alloc(vmem_t *arena, size_t size) 2581 { 2582 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2583 } 2584 2585 /*ARGSUSED*/ 2586 caddr_t 2587 kobj_texthole_alloc(caddr_t addr, size_t size) 2588 { 2589 panic("unexpected call to kobj_texthole_alloc()"); 2590 /*NOTREACHED*/ 2591 return (0); 2592 } 2593 2594 /*ARGSUSED*/ 2595 void 2596 kobj_texthole_free(caddr_t addr, size_t size) 2597 { 2598 panic("unexpected call to kobj_texthole_free()"); 2599 } 2600 2601 /* 2602 * This is called just after configure() in startup(). 2603 * 2604 * The ISALIST concept is a bit hopeless on Intel, because 2605 * there's no guarantee of an ever-more-capable processor 2606 * given that various parts of the instruction set may appear 2607 * and disappear between different implementations. 2608 * 2609 * While it would be possible to correct it and even enhance 2610 * it somewhat, the explicit hardware capability bitmask allows 2611 * more flexibility. 2612 * 2613 * So, we just leave this alone. 2614 */ 2615 void 2616 setx86isalist(void) 2617 { 2618 char *tp; 2619 size_t len; 2620 extern char *isa_list; 2621 2622 #define TBUFSIZE 1024 2623 2624 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2625 *tp = '\0'; 2626 2627 #if defined(__amd64) 2628 (void) strcpy(tp, "amd64 "); 2629 #endif 2630 2631 switch (x86_vendor) { 2632 case X86_VENDOR_Intel: 2633 case X86_VENDOR_AMD: 2634 case X86_VENDOR_TM: 2635 if (x86_feature & X86_CMOV) { 2636 /* 2637 * Pentium Pro or later 2638 */ 2639 (void) strcat(tp, "pentium_pro"); 2640 (void) strcat(tp, x86_feature & X86_MMX ? 2641 "+mmx pentium_pro " : " "); 2642 } 2643 /*FALLTHROUGH*/ 2644 case X86_VENDOR_Cyrix: 2645 /* 2646 * The Cyrix 6x86 does not have any Pentium features 2647 * accessible while not at privilege level 0. 2648 */ 2649 if (x86_feature & X86_CPUID) { 2650 (void) strcat(tp, "pentium"); 2651 (void) strcat(tp, x86_feature & X86_MMX ? 2652 "+mmx pentium " : " "); 2653 } 2654 break; 2655 default: 2656 break; 2657 } 2658 (void) strcat(tp, "i486 i386 i86"); 2659 len = strlen(tp) + 1; /* account for NULL at end of string */ 2660 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2661 kmem_free(tp, TBUFSIZE); 2662 2663 #undef TBUFSIZE 2664 } 2665 2666 2667 #ifdef __amd64 2668 2669 void * 2670 device_arena_alloc(size_t size, int vm_flag) 2671 { 2672 return (vmem_alloc(device_arena, size, vm_flag)); 2673 } 2674 2675 void 2676 device_arena_free(void *vaddr, size_t size) 2677 { 2678 vmem_free(device_arena, vaddr, size); 2679 } 2680 2681 #else 2682 2683 void * 2684 device_arena_alloc(size_t size, int vm_flag) 2685 { 2686 caddr_t vaddr; 2687 uintptr_t v; 2688 size_t start; 2689 size_t end; 2690 2691 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2692 if (vaddr == NULL) 2693 return (NULL); 2694 2695 v = (uintptr_t)vaddr; 2696 ASSERT(v >= kernelbase); 2697 ASSERT(v + size <= ptable_va); 2698 2699 start = btop(v - kernelbase); 2700 end = btop(v + size - 1 - kernelbase); 2701 ASSERT(start < toxic_bit_map_len); 2702 ASSERT(end < toxic_bit_map_len); 2703 2704 while (start <= end) { 2705 BT_ATOMIC_SET(toxic_bit_map, start); 2706 ++start; 2707 } 2708 return (vaddr); 2709 } 2710 2711 void 2712 device_arena_free(void *vaddr, size_t size) 2713 { 2714 uintptr_t v = (uintptr_t)vaddr; 2715 size_t start; 2716 size_t end; 2717 2718 ASSERT(v >= kernelbase); 2719 ASSERT(v + size <= ptable_va); 2720 2721 start = btop(v - kernelbase); 2722 end = btop(v + size - 1 - kernelbase); 2723 ASSERT(start < toxic_bit_map_len); 2724 ASSERT(end < toxic_bit_map_len); 2725 2726 while (start <= end) { 2727 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2728 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2729 ++start; 2730 } 2731 vmem_free(heap_arena, vaddr, size); 2732 } 2733 2734 /* 2735 * returns 1st address in range that is in device arena, or NULL 2736 * if len is not NULL it returns the length of the toxic range 2737 */ 2738 void * 2739 device_arena_contains(void *vaddr, size_t size, size_t *len) 2740 { 2741 uintptr_t v = (uintptr_t)vaddr; 2742 uintptr_t eaddr = v + size; 2743 size_t start; 2744 size_t end; 2745 2746 /* 2747 * if called very early by kmdb, just return NULL 2748 */ 2749 if (toxic_bit_map == NULL) 2750 return (NULL); 2751 2752 /* 2753 * First check if we're completely outside the bitmap range. 2754 */ 2755 if (v >= ptable_va || eaddr < kernelbase) 2756 return (NULL); 2757 2758 /* 2759 * Trim ends of search to look at only what the bitmap covers. 2760 */ 2761 if (v < kernelbase) 2762 v = kernelbase; 2763 start = btop(v - kernelbase); 2764 end = btop(eaddr - kernelbase); 2765 if (end >= toxic_bit_map_len) 2766 end = toxic_bit_map_len; 2767 2768 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2769 return (NULL); 2770 2771 v = kernelbase + ptob(start); 2772 if (len != NULL) 2773 *len = ptob(end - start); 2774 return ((void *)v); 2775 } 2776 2777 #endif 2778