1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/mem.h> 50 #include <sys/kstat.h> 51 52 #include <sys/reboot.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 60 #include <sys/vfs.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 #include <sys/kdi.h> 65 66 #include <sys/dumphdr.h> 67 #include <sys/bootconf.h> 68 #include <sys/varargs.h> 69 #include <sys/promif.h> 70 #include <sys/modctl.h> 71 72 #include <sys/sunddi.h> 73 #include <sys/sunndi.h> 74 #include <sys/ndi_impldefs.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/clock.h> 79 #include <sys/pte.h> 80 #include <sys/tss.h> 81 #include <sys/stack.h> 82 #include <sys/trap.h> 83 #include <sys/fp.h> 84 #include <vm/anon.h> 85 #include <vm/as.h> 86 #include <vm/page.h> 87 #include <vm/seg.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_kmem.h> 90 #include <vm/seg_kpm.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <sys/memnode.h> 95 #include <vm/vm_dep.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <vm/hat.h> 102 #include <vm/hat_i86.h> 103 #include <sys/pmem.h> 104 #include <sys/smp_impldefs.h> 105 #include <sys/x86_archext.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 #include <sys/debug_info.h> 115 #include <sys/ddi_timer.h> 116 117 #ifdef __xpv 118 #include <sys/hypervisor.h> 119 #include <sys/xen_mmu.h> 120 #include <sys/evtchn_impl.h> 121 #include <sys/gnttab.h> 122 #include <sys/xpv_panic.h> 123 #include <xen/sys/xenbus_comms.h> 124 #include <xen/public/physdev.h> 125 extern void xen_late_startup(void); 126 extern struct xen_evt_data cpu0_evt_data; 127 #endif 128 129 #include <sys/bootinfo.h> 130 #include <vm/kboot_mmu.h> 131 132 extern void progressbar_init(void); 133 extern void progressbar_start(void); 134 extern void brand_init(void); 135 136 extern int size_pse_array(pgcnt_t, int); 137 138 /* 139 * XXX make declaration below "static" when drivers no longer use this 140 * interface. 141 */ 142 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 143 144 /* 145 * segkp 146 */ 147 extern int segkp_fromheap; 148 149 static void kvm_init(void); 150 static void startup_init(void); 151 static void startup_memlist(void); 152 static void startup_kmem(void); 153 static void startup_modules(void); 154 static void startup_vm(void); 155 static void startup_end(void); 156 static void layout_kernel_va(void); 157 158 /* 159 * Declare these as initialized data so we can patch them. 160 */ 161 #ifdef __i386 162 163 /* 164 * Due to virtual address space limitations running in 32 bit mode, restrict 165 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 166 * 167 * If the physical max memory size of 64g were allowed to be configured, the 168 * size of user virtual address space will be less than 1g. A limited user 169 * address space greatly reduces the range of applications that can run. 170 * 171 * If more physical memory than PHYSMEM is required, users should preferably 172 * run in 64 bit mode which has far looser virtual address space limitations. 173 * 174 * If 64 bit mode is not available (as in IA32) and/or more physical memory 175 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 176 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 177 * should also be carefully tuned to balance out the need of the user 178 * application while minimizing the risk of kernel heap exhaustion due to 179 * kernelbase being set too high. 180 */ 181 #define PHYSMEM 0x400000 182 183 #else /* __amd64 */ 184 185 /* 186 * For now we can handle memory with physical addresses up to about 187 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 188 * half the VA space for seg_kpm. When systems get bigger than 64TB this 189 * code will need revisiting. There is an implicit assumption that there 190 * are no *huge* holes in the physical address space too. 191 */ 192 #define TERABYTE (1ul << 40) 193 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 194 #define PHYSMEM PHYSMEM_MAX64 195 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 196 197 #endif /* __amd64 */ 198 199 pgcnt_t physmem = PHYSMEM; 200 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 201 202 char *kobj_file_buf; 203 int kobj_file_bufsize; /* set in /etc/system */ 204 205 /* Global variables for MP support. Used in mp_startup */ 206 caddr_t rm_platter_va; 207 uint32_t rm_platter_pa; 208 209 int auto_lpg_disable = 1; 210 211 /* 212 * Some CPUs have holes in the middle of the 64-bit virtual address range. 213 */ 214 uintptr_t hole_start, hole_end; 215 216 /* 217 * kpm mapping window 218 */ 219 caddr_t kpm_vbase; 220 size_t kpm_size; 221 static int kpm_desired; 222 #ifdef __amd64 223 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 224 #endif 225 226 /* 227 * Configuration parameters set at boot time. 228 */ 229 230 caddr_t econtig; /* end of first block of contiguous kernel */ 231 232 struct bootops *bootops = 0; /* passed in from boot */ 233 struct bootops **bootopsp; 234 struct boot_syscalls *sysp; /* passed in from boot */ 235 236 char bootblock_fstype[16]; 237 238 char kern_bootargs[OBP_MAXPATHLEN]; 239 240 /* 241 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 242 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 243 * zio buffers from their own segment, otherwise they are allocated from the 244 * heap. The optimization of allocating zio buffers from their own segment is 245 * only valid on 64-bit kernels. 246 */ 247 #if defined(__amd64) 248 int segzio_fromheap = 0; 249 #else 250 int segzio_fromheap = 1; 251 #endif 252 253 /* 254 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 255 * depends on number of BOP_ALLOC calls made and requested size, memory size 256 * combination and whether boot.bin memory needs to be freed. 257 */ 258 #define POSS_NEW_FRAGMENTS 12 259 260 /* 261 * VM data structures 262 */ 263 long page_hashsz; /* Size of page hash table (power of two) */ 264 struct page *pp_base; /* Base of initial system page struct array */ 265 struct page **page_hash; /* Page hash table */ 266 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 267 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 268 int pse_shift; /* log2(pse_table_size) */ 269 struct seg ktextseg; /* Segment used for kernel executable image */ 270 struct seg kvalloc; /* Segment used for "valloc" mapping */ 271 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 272 struct seg kmapseg; /* Segment used for generic kernel mappings */ 273 struct seg kdebugseg; /* Segment used for the kernel debugger */ 274 275 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 276 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 277 278 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 279 280 #if defined(__amd64) 281 struct seg kvseg_core; /* Segment used for the core heap */ 282 struct seg kpmseg; /* Segment used for physical mapping */ 283 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 284 #else 285 struct seg *segkpm = NULL; /* Unused on IA32 */ 286 #endif 287 288 caddr_t segkp_base; /* Base address of segkp */ 289 caddr_t segzio_base; /* Base address of segzio */ 290 #if defined(__amd64) 291 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 292 #else 293 pgcnt_t segkpsize = 0; 294 #endif 295 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 296 297 /* 298 * VA range available to the debugger 299 */ 300 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 301 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 302 303 struct memseg *memseg_base; 304 struct vnode unused_pages_vp; 305 306 #define FOURGB 0x100000000LL 307 308 struct memlist *memlist; 309 310 caddr_t s_text; /* start of kernel text segment */ 311 caddr_t e_text; /* end of kernel text segment */ 312 caddr_t s_data; /* start of kernel data segment */ 313 caddr_t e_data; /* end of kernel data segment */ 314 caddr_t modtext; /* start of loadable module text reserved */ 315 caddr_t e_modtext; /* end of loadable module text reserved */ 316 caddr_t moddata; /* start of loadable module data reserved */ 317 caddr_t e_moddata; /* end of loadable module data reserved */ 318 319 struct memlist *phys_install; /* Total installed physical memory */ 320 struct memlist *phys_avail; /* Total available physical memory */ 321 322 /* 323 * kphysm_init returns the number of pages that were processed 324 */ 325 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 326 327 #define IO_PROP_SIZE 64 /* device property size */ 328 329 /* 330 * a couple useful roundup macros 331 */ 332 #define ROUND_UP_PAGE(x) \ 333 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 334 #define ROUND_UP_LPAGE(x) \ 335 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 336 #define ROUND_UP_4MEG(x) \ 337 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 338 #define ROUND_UP_TOPLEVEL(x) \ 339 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 340 341 /* 342 * 32-bit Kernel's Virtual memory layout. 343 * +-----------------------+ 344 * | | 345 * 0xFFC00000 -|-----------------------|- ARGSBASE 346 * | debugger | 347 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 348 * | Kernel Data | 349 * 0xFEC00000 -|-----------------------| 350 * | Kernel Text | 351 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 352 * |--- GDT ---|- GDT page (GDT_VA) 353 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 354 * | | 355 * | page_t structures | 356 * | memsegs, memlists, | 357 * | page hash, etc. | 358 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 359 * | | (segkp is just an arena in the heap) 360 * | | 361 * | kvseg | 362 * | | 363 * | | 364 * --- -|-----------------------|- kernelheap (floating) 365 * | Segkmap | 366 * 0xC3002000 -|-----------------------|- segmap_start (floating) 367 * | Red Zone | 368 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 369 * | | || 370 * | Shared objects | \/ 371 * | | 372 * : : 373 * | user data | 374 * |-----------------------| 375 * | user text | 376 * 0x08048000 -|-----------------------| 377 * | user stack | 378 * : : 379 * | invalid | 380 * 0x00000000 +-----------------------+ 381 * 382 * 383 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 384 * +-----------------------+ 385 * | | 386 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 387 * | debugger (?) | 388 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 389 * | unused | 390 * +-----------------------+ 391 * | Kernel Data | 392 * 0xFFFFFFFF.FBC00000 |-----------------------| 393 * | Kernel Text | 394 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 395 * |--- GDT ---|- GDT page (GDT_VA) 396 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 397 * | | 398 * | Core heap | (used for loadable modules) 399 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 400 * | Kernel | 401 * | heap | 402 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 403 * | segmap | 404 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 405 * | device mappings | 406 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 407 * | segzio | 408 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 409 * | segkp | 410 * --- |-----------------------|- segkp_base (floating) 411 * | page_t structures | valloc_base + valloc_sz 412 * | memsegs, memlists, | 413 * | page hash, etc. | 414 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 415 * | segkpm | 416 * 0xFFFFFE00.00000000 |-----------------------| 417 * | Red Zone | 418 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 419 * | User stack |- User space memory 420 * | | 421 * | shared objects, etc | (grows downwards) 422 * : : 423 * | | 424 * 0xFFFF8000.00000000 |-----------------------| 425 * | | 426 * | VA Hole / unused | 427 * | | 428 * 0x00008000.00000000 |-----------------------| 429 * | | 430 * | | 431 * : : 432 * | user heap | (grows upwards) 433 * | | 434 * | user data | 435 * |-----------------------| 436 * | user text | 437 * 0x00000000.04000000 |-----------------------| 438 * | invalid | 439 * 0x00000000.00000000 +-----------------------+ 440 * 441 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 442 * kernel, except that userlimit is raised to 0xfe000000 443 * 444 * Floating values: 445 * 446 * valloc_base: start of the kernel's memory management/tracking data 447 * structures. This region contains page_t structures for 448 * physical memory, memsegs, memlists, and the page hash. 449 * 450 * core_base: start of the kernel's "core" heap area on 64-bit systems. 451 * This area is intended to be used for global data as well as for module 452 * text/data that does not fit into the nucleus pages. The core heap is 453 * restricted to a 2GB range, allowing every address within it to be 454 * accessed using rip-relative addressing 455 * 456 * ekernelheap: end of kernelheap and start of segmap. 457 * 458 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 459 * above a red zone that separates the user's address space from the 460 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 461 * 462 * segmap_start: start of segmap. The length of segmap can be modified 463 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 464 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 465 * 466 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 467 * decreased by 2X the size required for page_t. This allows the kernel 468 * heap to grow in size with physical memory. With sizeof(page_t) == 80 469 * bytes, the following shows the values of kernelbase and kernel heap 470 * sizes for different memory configurations (assuming default segmap and 471 * segkp sizes). 472 * 473 * mem size for kernelbase kernel heap 474 * size page_t's size 475 * ---- --------- ---------- ----------- 476 * 1gb 0x01400000 0xd1800000 684MB 477 * 2gb 0x02800000 0xcf000000 704MB 478 * 4gb 0x05000000 0xca000000 744MB 479 * 6gb 0x07800000 0xc5000000 784MB 480 * 8gb 0x0a000000 0xc0000000 824MB 481 * 16gb 0x14000000 0xac000000 984MB 482 * 32gb 0x28000000 0x84000000 1304MB 483 * 64gb 0x50000000 0x34000000 1944MB (*) 484 * 485 * kernelbase is less than the abi minimum of 0xc0000000 for memory 486 * configurations above 8gb. 487 * 488 * (*) support for memory configurations above 32gb will require manual tuning 489 * of kernelbase to balance out the need of user applications. 490 */ 491 492 /* real-time-clock initialization parameters */ 493 extern time_t process_rtc_config_file(void); 494 495 uintptr_t kernelbase; 496 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 497 uintptr_t eprom_kernelbase; 498 size_t segmapsize; 499 uintptr_t segmap_start; 500 int segmapfreelists; 501 pgcnt_t npages; 502 pgcnt_t orig_npages; 503 size_t core_size; /* size of "core" heap */ 504 uintptr_t core_base; /* base address of "core" heap */ 505 506 /* 507 * List of bootstrap pages. We mark these as allocated in startup. 508 * release_bootstrap() will free them when we're completely done with 509 * the bootstrap. 510 */ 511 static page_t *bootpages; 512 513 /* 514 * boot time pages that have a vnode from the ramdisk will keep that forever. 515 */ 516 static page_t *rd_pages; 517 518 struct system_hardware system_hardware; 519 520 /* 521 * Enable some debugging messages concerning memory usage... 522 */ 523 static void 524 print_memlist(char *title, struct memlist *mp) 525 { 526 prom_printf("MEMLIST: %s:\n", title); 527 while (mp != NULL) { 528 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 529 mp->address, mp->size); 530 mp = mp->next; 531 } 532 } 533 534 /* 535 * XX64 need a comment here.. are these just default values, surely 536 * we read the "cpuid" type information to figure this out. 537 */ 538 int l2cache_sz = 0x80000; 539 int l2cache_linesz = 0x40; 540 int l2cache_assoc = 1; 541 542 static size_t textrepl_min_gb = 10; 543 544 /* 545 * on 64 bit we use a predifined VA range for mapping devices in the kernel 546 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 547 */ 548 #ifdef __amd64 549 550 vmem_t *device_arena; 551 uintptr_t toxic_addr = (uintptr_t)NULL; 552 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 553 554 #else /* __i386 */ 555 556 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 557 size_t toxic_bit_map_len = 0; /* in bits */ 558 559 #endif /* __i386 */ 560 561 /* 562 * Simple boot time debug facilities 563 */ 564 static char *prm_dbg_str[] = { 565 "%s:%d: '%s' is 0x%x\n", 566 "%s:%d: '%s' is 0x%llx\n" 567 }; 568 569 int prom_debug; 570 571 #define PRM_DEBUG(q) if (prom_debug) \ 572 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 573 #define PRM_POINT(q) if (prom_debug) \ 574 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 575 576 /* 577 * This structure is used to keep track of the intial allocations 578 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 579 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 580 */ 581 #define NUM_ALLOCATIONS 7 582 int num_allocations = 0; 583 struct { 584 void **al_ptr; 585 size_t al_size; 586 } allocations[NUM_ALLOCATIONS]; 587 size_t valloc_sz = 0; 588 uintptr_t valloc_base; 589 590 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 591 size = ROUND_UP_PAGE(size); \ 592 if (num_allocations == NUM_ALLOCATIONS) \ 593 panic("too many ADD_TO_ALLOCATIONS()"); \ 594 allocations[num_allocations].al_ptr = (void**)&ptr; \ 595 allocations[num_allocations].al_size = size; \ 596 valloc_sz += size; \ 597 ++num_allocations; \ 598 } 599 600 /* 601 * Allocate all the initial memory needed by the page allocator. 602 */ 603 static void 604 perform_allocations(void) 605 { 606 caddr_t mem; 607 int i; 608 int valloc_align; 609 610 PRM_DEBUG(valloc_base); 611 PRM_DEBUG(valloc_sz); 612 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 613 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 614 if (mem != (caddr_t)valloc_base) 615 panic("BOP_ALLOC() failed"); 616 bzero(mem, valloc_sz); 617 for (i = 0; i < num_allocations; ++i) { 618 *allocations[i].al_ptr = (void *)mem; 619 mem += allocations[i].al_size; 620 } 621 } 622 623 /* 624 * Our world looks like this at startup time. 625 * 626 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 627 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 628 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 629 * addresses are fixed in the binary at link time. 630 * 631 * On the text page: 632 * unix/genunix/krtld/module text loads. 633 * 634 * On the data page: 635 * unix/genunix/krtld/module data loads. 636 * 637 * Machine-dependent startup code 638 */ 639 void 640 startup(void) 641 { 642 #if !defined(__xpv) 643 extern void startup_bios_disk(void); 644 extern void startup_pci_bios(void); 645 #endif 646 /* 647 * Make sure that nobody tries to use sekpm until we have 648 * initialized it properly. 649 */ 650 #if defined(__amd64) 651 kpm_desired = 1; 652 #endif 653 kpm_enable = 0; 654 655 #if defined(__xpv) /* XXPV fix me! */ 656 { 657 extern int segvn_use_regions; 658 segvn_use_regions = 0; 659 } 660 #endif 661 progressbar_init(); 662 startup_init(); 663 startup_memlist(); 664 startup_kmem(); 665 startup_vm(); 666 #if !defined(__xpv) 667 startup_pci_bios(); 668 #endif 669 startup_modules(); 670 #if !defined(__xpv) 671 startup_bios_disk(); 672 #endif 673 startup_end(); 674 progressbar_start(); 675 } 676 677 static void 678 startup_init() 679 { 680 PRM_POINT("startup_init() starting..."); 681 682 /* 683 * Complete the extraction of cpuid data 684 */ 685 cpuid_pass2(CPU); 686 687 (void) check_boot_version(BOP_GETVERSION(bootops)); 688 689 /* 690 * Check for prom_debug in boot environment 691 */ 692 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 693 ++prom_debug; 694 PRM_POINT("prom_debug found in boot enviroment"); 695 } 696 697 /* 698 * Collect node, cpu and memory configuration information. 699 */ 700 get_system_configuration(); 701 702 /* 703 * Halt if this is an unsupported processor. 704 */ 705 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 706 printf("\n486 processor (\"%s\") detected.\n", 707 CPU->cpu_brandstr); 708 halt("This processor is not supported by this release " 709 "of Solaris."); 710 } 711 712 PRM_POINT("startup_init() done"); 713 } 714 715 /* 716 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 717 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 718 * also filters out physical page zero. There is some reliance on the 719 * boot loader allocating only a few contiguous physical memory chunks. 720 */ 721 static void 722 avail_filter(uint64_t *addr, uint64_t *size) 723 { 724 uintptr_t va; 725 uintptr_t next_va; 726 pfn_t pfn; 727 uint64_t pfn_addr; 728 uint64_t pfn_eaddr; 729 uint_t prot; 730 size_t len; 731 uint_t change; 732 733 if (prom_debug) 734 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 735 *addr, *size); 736 737 /* 738 * page zero is required for BIOS.. never make it available 739 */ 740 if (*addr == 0) { 741 *addr += MMU_PAGESIZE; 742 *size -= MMU_PAGESIZE; 743 } 744 745 /* 746 * First we trim from the front of the range. Since kbm_probe() 747 * walks ranges in virtual order, but addr/size are physical, we need 748 * to the list until no changes are seen. This deals with the case 749 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 750 * but w < v. 751 */ 752 do { 753 change = 0; 754 for (va = KERNEL_TEXT; 755 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 756 va = next_va) { 757 758 next_va = va + len; 759 pfn_addr = pfn_to_pa(pfn); 760 pfn_eaddr = pfn_addr + len; 761 762 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 763 change = 1; 764 while (*size > 0 && len > 0) { 765 *addr += MMU_PAGESIZE; 766 *size -= MMU_PAGESIZE; 767 len -= MMU_PAGESIZE; 768 } 769 } 770 } 771 if (change && prom_debug) 772 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 773 *addr, *size); 774 } while (change); 775 776 /* 777 * Trim pages from the end of the range. 778 */ 779 for (va = KERNEL_TEXT; 780 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 781 va = next_va) { 782 783 next_va = va + len; 784 pfn_addr = pfn_to_pa(pfn); 785 786 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 787 *size = pfn_addr - *addr; 788 } 789 790 if (prom_debug) 791 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 792 *addr, *size); 793 } 794 795 static void 796 kpm_init() 797 { 798 struct segkpm_crargs b; 799 800 /* 801 * These variables were all designed for sfmmu in which segkpm is 802 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 803 * might use 2+ page sizes on a single machine, so none of these 804 * variables have a single correct value. They are set up as if we 805 * always use a 4KB pagesize, which should do no harm. In the long 806 * run, we should get rid of KPM's assumption that only a single 807 * pagesize is used. 808 */ 809 kpm_pgshft = MMU_PAGESHIFT; 810 kpm_pgsz = MMU_PAGESIZE; 811 kpm_pgoff = MMU_PAGEOFFSET; 812 kpmp2pshft = 0; 813 kpmpnpgs = 1; 814 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 815 816 PRM_POINT("about to create segkpm"); 817 rw_enter(&kas.a_lock, RW_WRITER); 818 819 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 820 panic("cannot attach segkpm"); 821 822 b.prot = PROT_READ | PROT_WRITE; 823 b.nvcolors = 1; 824 825 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 826 panic("segkpm_create segkpm"); 827 828 rw_exit(&kas.a_lock); 829 } 830 831 /* 832 * The debug info page provides enough information to allow external 833 * inspectors (e.g. when running under a hypervisor) to bootstrap 834 * themselves into allowing full-blown kernel debugging. 835 */ 836 static void 837 init_debug_info(void) 838 { 839 caddr_t mem; 840 debug_info_t *di; 841 842 #ifndef __lint 843 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 844 #endif 845 846 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 847 MMU_PAGESIZE); 848 849 if (mem != (caddr_t)DEBUG_INFO_VA) 850 panic("BOP_ALLOC() failed"); 851 bzero(mem, MMU_PAGESIZE); 852 853 di = (debug_info_t *)mem; 854 855 di->di_magic = DEBUG_INFO_MAGIC; 856 di->di_version = DEBUG_INFO_VERSION; 857 di->di_modules = (uintptr_t)&modules; 858 di->di_s_text = (uintptr_t)s_text; 859 di->di_e_text = (uintptr_t)e_text; 860 di->di_s_data = (uintptr_t)s_data; 861 di->di_e_data = (uintptr_t)e_data; 862 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 863 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 864 } 865 866 /* 867 * Build the memlists and other kernel essential memory system data structures. 868 * This is everything at valloc_base. 869 */ 870 static void 871 startup_memlist(void) 872 { 873 size_t memlist_sz; 874 size_t memseg_sz; 875 size_t pagehash_sz; 876 size_t pp_sz; 877 uintptr_t va; 878 size_t len; 879 uint_t prot; 880 pfn_t pfn; 881 int memblocks; 882 caddr_t pagecolor_mem; 883 size_t pagecolor_memsz; 884 caddr_t page_ctrs_mem; 885 size_t page_ctrs_size; 886 size_t pse_table_alloc_size; 887 struct memlist *current; 888 extern void startup_build_mem_nodes(struct memlist *); 889 890 /* XX64 fix these - they should be in include files */ 891 extern size_t page_coloring_init(uint_t, int, int); 892 extern void page_coloring_setup(caddr_t); 893 894 PRM_POINT("startup_memlist() starting..."); 895 896 /* 897 * Use leftover large page nucleus text/data space for loadable modules. 898 * Use at most MODTEXT/MODDATA. 899 */ 900 len = kbm_nucleus_size; 901 ASSERT(len > MMU_PAGESIZE); 902 903 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 904 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 905 if (e_moddata - moddata > MODDATA) 906 e_moddata = moddata + MODDATA; 907 908 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 909 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 910 if (e_modtext - modtext > MODTEXT) 911 e_modtext = modtext + MODTEXT; 912 913 econtig = e_moddata; 914 915 PRM_DEBUG(modtext); 916 PRM_DEBUG(e_modtext); 917 PRM_DEBUG(moddata); 918 PRM_DEBUG(e_moddata); 919 PRM_DEBUG(econtig); 920 921 /* 922 * Examine the boot loader physical memory map to find out: 923 * - total memory in system - physinstalled 924 * - the max physical address - physmax 925 * - the number of discontiguous segments of memory. 926 */ 927 if (prom_debug) 928 print_memlist("boot physinstalled", 929 bootops->boot_mem->physinstalled); 930 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 931 &physinstalled, &memblocks); 932 PRM_DEBUG(physmax); 933 PRM_DEBUG(physinstalled); 934 PRM_DEBUG(memblocks); 935 936 /* 937 * Initialize hat's mmu parameters. 938 * Check for enforce-prot-exec in boot environment. It's used to 939 * enable/disable support for the page table entry NX bit. 940 * The default is to enforce PROT_EXEC on processors that support NX. 941 * Boot seems to round up the "len", but 8 seems to be big enough. 942 */ 943 mmu_init(); 944 945 #ifdef __i386 946 /* 947 * physmax is lowered if there is more memory than can be 948 * physically addressed in 32 bit (PAE/non-PAE) modes. 949 */ 950 if (mmu.pae_hat) { 951 if (PFN_ABOVE64G(physmax)) { 952 physinstalled -= (physmax - (PFN_64G - 1)); 953 physmax = PFN_64G - 1; 954 } 955 } else { 956 if (PFN_ABOVE4G(physmax)) { 957 physinstalled -= (physmax - (PFN_4G - 1)); 958 physmax = PFN_4G - 1; 959 } 960 } 961 #endif 962 963 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 964 965 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 966 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 967 char value[8]; 968 969 if (len < 8) 970 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 971 else 972 (void) strcpy(value, ""); 973 if (strcmp(value, "off") == 0) 974 mmu.pt_nx = 0; 975 } 976 PRM_DEBUG(mmu.pt_nx); 977 978 /* 979 * We will need page_t's for every page in the system, except for 980 * memory mapped at or above above the start of the kernel text segment. 981 * 982 * pages above e_modtext are attributed to kernel debugger (obp_pages) 983 */ 984 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 985 obp_pages = 0; 986 va = KERNEL_TEXT; 987 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 988 npages -= len >> MMU_PAGESHIFT; 989 if (va >= (uintptr_t)e_moddata) 990 obp_pages += len >> MMU_PAGESHIFT; 991 va += len; 992 } 993 PRM_DEBUG(npages); 994 PRM_DEBUG(obp_pages); 995 996 /* 997 * If physmem is patched to be non-zero, use it instead of the computed 998 * value unless it is larger than the actual amount of memory on hand. 999 */ 1000 if (physmem == 0 || physmem > npages) { 1001 physmem = npages; 1002 } else if (physmem < npages) { 1003 orig_npages = npages; 1004 npages = physmem; 1005 } 1006 PRM_DEBUG(physmem); 1007 1008 /* 1009 * We now compute the sizes of all the initial allocations for 1010 * structures the kernel needs in order do kmem_alloc(). These 1011 * include: 1012 * memsegs 1013 * memlists 1014 * page hash table 1015 * page_t's 1016 * page coloring data structs 1017 */ 1018 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1019 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1020 PRM_DEBUG(memseg_sz); 1021 1022 /* 1023 * Reserve space for memlists. There's no real good way to know exactly 1024 * how much room we'll need, but this should be a good upper bound. 1025 */ 1026 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1027 (memblocks + POSS_NEW_FRAGMENTS)); 1028 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1029 PRM_DEBUG(memlist_sz); 1030 1031 /* 1032 * The page structure hash table size is a power of 2 1033 * such that the average hash chain length is PAGE_HASHAVELEN. 1034 */ 1035 page_hashsz = npages / PAGE_HASHAVELEN; 1036 page_hashsz = 1 << highbit(page_hashsz); 1037 pagehash_sz = sizeof (struct page *) * page_hashsz; 1038 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1039 PRM_DEBUG(pagehash_sz); 1040 1041 /* 1042 * Set aside room for the page structures themselves. 1043 */ 1044 PRM_DEBUG(npages); 1045 pp_sz = sizeof (struct page) * npages; 1046 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1047 PRM_DEBUG(pp_sz); 1048 1049 /* 1050 * determine l2 cache info and memory size for page coloring 1051 */ 1052 (void) getl2cacheinfo(CPU, 1053 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1054 pagecolor_memsz = 1055 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1056 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1057 PRM_DEBUG(pagecolor_memsz); 1058 1059 page_ctrs_size = page_ctrs_sz(); 1060 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1061 PRM_DEBUG(page_ctrs_size); 1062 1063 /* 1064 * Allocate the array that protects pp->p_selock. 1065 */ 1066 pse_shift = size_pse_array(physmem, max_ncpus); 1067 pse_table_size = 1 << pse_shift; 1068 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1069 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1070 1071 #if defined(__amd64) 1072 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1073 valloc_base = VALLOC_BASE; 1074 1075 /* 1076 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1077 * for values of physmax up to 1 Terabyte. They need adjusting when 1078 * memory is at addresses above 1 TB. 1079 */ 1080 if (physmax + 1 > mmu_btop(TERABYTE)) { 1081 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1082 1083 /* Round to largest possible pagesize for now */ 1084 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1085 1086 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1087 1088 /* make sure we leave some space for user apps above hole */ 1089 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1090 if (segkpm_base > SEGKPM_BASE) 1091 segkpm_base = SEGKPM_BASE; 1092 PRM_DEBUG(segkpm_base); 1093 1094 valloc_base = segkpm_base + kpm_resv_amount; 1095 PRM_DEBUG(valloc_base); 1096 } 1097 #else /* __i386 */ 1098 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1099 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1100 PRM_DEBUG(valloc_base); 1101 #endif /* __i386 */ 1102 1103 /* 1104 * do all the initial allocations 1105 */ 1106 perform_allocations(); 1107 1108 /* 1109 * Build phys_install and phys_avail in kernel memspace. 1110 * - phys_install should be all memory in the system. 1111 * - phys_avail is phys_install minus any memory mapped before this 1112 * point above KERNEL_TEXT. 1113 */ 1114 current = phys_install = memlist; 1115 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1116 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1117 panic("physinstalled was too big!"); 1118 if (prom_debug) 1119 print_memlist("phys_install", phys_install); 1120 1121 phys_avail = current; 1122 PRM_POINT("Building phys_avail:\n"); 1123 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1124 avail_filter); 1125 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1126 panic("physavail was too big!"); 1127 if (prom_debug) 1128 print_memlist("phys_avail", phys_avail); 1129 1130 /* 1131 * setup page coloring 1132 */ 1133 page_coloring_setup(pagecolor_mem); 1134 page_lock_init(); /* currently a no-op */ 1135 1136 /* 1137 * free page list counters 1138 */ 1139 (void) page_ctrs_alloc(page_ctrs_mem); 1140 1141 /* 1142 * Initialize the page structures from the memory lists. 1143 */ 1144 availrmem_initial = availrmem = freemem = 0; 1145 PRM_POINT("Calling kphysm_init()..."); 1146 npages = kphysm_init(pp_base, npages); 1147 PRM_POINT("kphysm_init() done"); 1148 PRM_DEBUG(npages); 1149 1150 init_debug_info(); 1151 1152 /* 1153 * Now that page_t's have been initialized, remove all the 1154 * initial allocation pages from the kernel free page lists. 1155 */ 1156 boot_mapin((caddr_t)valloc_base, valloc_sz); 1157 boot_mapin((caddr_t)GDT_VA, MMU_PAGESIZE); 1158 boot_mapin((caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE); 1159 PRM_POINT("startup_memlist() done"); 1160 1161 PRM_DEBUG(valloc_sz); 1162 1163 #if defined(__amd64) 1164 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1165 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1166 extern size_t textrepl_size_thresh; 1167 textrepl_size_thresh = (16 << 20) - 1; 1168 } 1169 #endif 1170 } 1171 1172 /* 1173 * Layout the kernel's part of address space and initialize kmem allocator. 1174 */ 1175 static void 1176 startup_kmem(void) 1177 { 1178 extern void page_set_colorequiv_arr(void); 1179 1180 PRM_POINT("startup_kmem() starting..."); 1181 1182 #if defined(__amd64) 1183 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1184 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1185 "systems."); 1186 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1187 core_base = (uintptr_t)COREHEAP_BASE; 1188 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1189 #else /* __i386 */ 1190 /* 1191 * We configure kernelbase based on: 1192 * 1193 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1194 * KERNELBASE_MAX. we large page align eprom_kernelbase 1195 * 1196 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1197 * On large memory systems we must lower kernelbase to allow 1198 * enough room for page_t's for all of memory. 1199 * 1200 * The value set here, might be changed a little later. 1201 */ 1202 if (eprom_kernelbase) { 1203 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1204 if (kernelbase > KERNELBASE_MAX) 1205 kernelbase = KERNELBASE_MAX; 1206 } else { 1207 kernelbase = (uintptr_t)KERNELBASE; 1208 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1209 } 1210 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1211 core_base = valloc_base; 1212 core_size = 0; 1213 #endif /* __i386 */ 1214 1215 PRM_DEBUG(core_base); 1216 PRM_DEBUG(core_size); 1217 PRM_DEBUG(kernelbase); 1218 1219 #if defined(__i386) 1220 segkp_fromheap = 1; 1221 #endif /* __i386 */ 1222 1223 ekernelheap = (char *)core_base; 1224 PRM_DEBUG(ekernelheap); 1225 1226 /* 1227 * Now that we know the real value of kernelbase, 1228 * update variables that were initialized with a value of 1229 * KERNELBASE (in common/conf/param.c). 1230 * 1231 * XXX The problem with this sort of hackery is that the 1232 * compiler just may feel like putting the const declarations 1233 * (in param.c) into the .text section. Perhaps they should 1234 * just be declared as variables there? 1235 */ 1236 1237 *(uintptr_t *)&_kernelbase = kernelbase; 1238 *(uintptr_t *)&_userlimit = kernelbase; 1239 #if defined(__amd64) 1240 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1241 #else 1242 *(uintptr_t *)&_userlimit32 = _userlimit; 1243 #endif 1244 PRM_DEBUG(_kernelbase); 1245 PRM_DEBUG(_userlimit); 1246 PRM_DEBUG(_userlimit32); 1247 1248 layout_kernel_va(); 1249 1250 #if defined(__i386) 1251 /* 1252 * If segmap is too large we can push the bottom of the kernel heap 1253 * higher than the base. Or worse, it could exceed the top of the 1254 * VA space entirely, causing it to wrap around. 1255 */ 1256 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1257 panic("too little address space available for kernelheap," 1258 " use eeprom for lower kernelbase or smaller segmapsize"); 1259 #endif /* __i386 */ 1260 1261 /* 1262 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1263 */ 1264 kernelheap_init(kernelheap, ekernelheap, 1265 kernelheap + MMU_PAGESIZE, 1266 (void *)core_base, (void *)(core_base + core_size)); 1267 1268 #if defined(__xpv) 1269 /* 1270 * Link pending events struct into cpu struct 1271 */ 1272 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1273 #endif 1274 /* 1275 * Initialize kernel memory allocator. 1276 */ 1277 kmem_init(); 1278 1279 /* 1280 * Factor in colorequiv to check additional 'equivalent' bins 1281 */ 1282 page_set_colorequiv_arr(); 1283 1284 #if defined(__xpv) 1285 xen_version(); 1286 #endif 1287 1288 /* 1289 * print this out early so that we know what's going on 1290 */ 1291 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1292 1293 /* 1294 * Initialize bp_mapin(). 1295 */ 1296 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1297 1298 /* 1299 * orig_npages is non-zero if physmem has been configured for less 1300 * than the available memory. 1301 */ 1302 if (orig_npages) { 1303 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1304 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1305 npages, orig_npages); 1306 } 1307 #if defined(__i386) 1308 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1309 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1310 "System using 0x%lx", 1311 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1312 #endif 1313 1314 #ifdef KERNELBASE_ABI_MIN 1315 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1316 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1317 "i386 ABI compliant.", (uintptr_t)kernelbase); 1318 } 1319 #endif 1320 1321 #ifdef __xpv 1322 /* 1323 * Some of the xen start information has to be relocated up 1324 * into the kernel's permanent address space. 1325 */ 1326 PRM_POINT("calling xen_relocate_start_info()"); 1327 xen_relocate_start_info(); 1328 PRM_POINT("xen_relocate_start_info() done"); 1329 1330 /* 1331 * (Update the vcpu pointer in our cpu structure to point into 1332 * the relocated shared info.) 1333 */ 1334 CPU->cpu_m.mcpu_vcpu_info = 1335 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1336 #endif 1337 1338 PRM_POINT("startup_kmem() done"); 1339 } 1340 1341 static void 1342 startup_modules(void) 1343 { 1344 unsigned int i; 1345 extern void prom_setup(void); 1346 1347 PRM_POINT("startup_modules() starting..."); 1348 1349 #ifndef __xpv 1350 /* 1351 * Initialize ten-micro second timer so that drivers will 1352 * not get short changed in their init phase. This was 1353 * not getting called until clkinit which, on fast cpu's 1354 * caused the drv_usecwait to be way too short. 1355 */ 1356 microfind(); 1357 #endif 1358 1359 /* 1360 * Read the GMT lag from /etc/rtc_config. 1361 */ 1362 sgmtl(process_rtc_config_file()); 1363 1364 /* 1365 * Calculate default settings of system parameters based upon 1366 * maxusers, yet allow to be overridden via the /etc/system file. 1367 */ 1368 param_calc(0); 1369 1370 mod_setup(); 1371 1372 /* 1373 * Initialize system parameters. 1374 */ 1375 param_init(); 1376 1377 /* 1378 * Initialize the default brands 1379 */ 1380 brand_init(); 1381 1382 /* 1383 * maxmem is the amount of physical memory we're playing with. 1384 */ 1385 maxmem = physmem; 1386 1387 /* 1388 * Initialize segment management stuff. 1389 */ 1390 seg_init(); 1391 1392 if (modload("fs", "specfs") == -1) 1393 halt("Can't load specfs"); 1394 1395 if (modload("fs", "devfs") == -1) 1396 halt("Can't load devfs"); 1397 1398 if (modload("fs", "dev") == -1) 1399 halt("Can't load dev"); 1400 1401 (void) modloadonly("sys", "lbl_edition"); 1402 1403 dispinit(); 1404 1405 /* 1406 * This is needed here to initialize hw_serial[] for cluster booting. 1407 */ 1408 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1409 (void) modunload(i); 1410 else 1411 cmn_err(CE_CONT, "sysinit load failed"); 1412 1413 /* Read cluster configuration data. */ 1414 clconf_init(); 1415 1416 #if defined(__xpv) 1417 ec_init(); 1418 gnttab_init(); 1419 (void) xs_early_init(); 1420 #endif /* __xpv */ 1421 1422 /* 1423 * Create a kernel device tree. First, create rootnex and 1424 * then invoke bus specific code to probe devices. 1425 */ 1426 setup_ddi(); 1427 1428 /* 1429 * Set up the CPU module subsystem. Modifies the device tree, so it 1430 * must be done after setup_ddi(). 1431 */ 1432 cmi_init(); 1433 1434 /* 1435 * Initialize the MCA handlers 1436 */ 1437 if (x86_feature & X86_MCA) 1438 cmi_mca_init(); 1439 1440 /* 1441 * Fake a prom tree such that /dev/openprom continues to work 1442 */ 1443 PRM_POINT("startup_modules: calling prom_setup..."); 1444 prom_setup(); 1445 PRM_POINT("startup_modules: done"); 1446 1447 /* 1448 * Load all platform specific modules 1449 */ 1450 PRM_POINT("startup_modules: calling psm_modload..."); 1451 psm_modload(); 1452 1453 PRM_POINT("startup_modules() done"); 1454 } 1455 1456 /* 1457 * claim a "setaside" boot page for use in the kernel 1458 */ 1459 page_t * 1460 boot_claim_page(pfn_t pfn) 1461 { 1462 page_t *pp; 1463 1464 pp = page_numtopp_nolock(pfn); 1465 ASSERT(pp != NULL); 1466 1467 if (PP_ISBOOTPAGES(pp)) { 1468 if (pp->p_next != NULL) 1469 pp->p_next->p_prev = pp->p_prev; 1470 if (pp->p_prev == NULL) 1471 bootpages = pp->p_next; 1472 else 1473 pp->p_prev->p_next = pp->p_next; 1474 } else { 1475 /* 1476 * htable_attach() expects a base pagesize page 1477 */ 1478 if (pp->p_szc != 0) 1479 page_boot_demote(pp); 1480 pp = page_numtopp(pfn, SE_EXCL); 1481 } 1482 return (pp); 1483 } 1484 1485 /* 1486 * Walk through the pagetables looking for pages mapped in by boot. If the 1487 * setaside flag is set the pages are expected to be returned to the 1488 * kernel later in boot, so we add them to the bootpages list. 1489 */ 1490 static void 1491 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1492 { 1493 uintptr_t va = low; 1494 size_t len; 1495 uint_t prot; 1496 pfn_t pfn; 1497 page_t *pp; 1498 pgcnt_t boot_protect_cnt = 0; 1499 1500 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1501 if (va + len >= high) 1502 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1503 "legal range.", len, (void *)va); 1504 1505 while (len > 0) { 1506 pp = page_numtopp_alloc(pfn); 1507 if (pp != NULL) { 1508 if (setaside == 0) 1509 panic("Unexpected mapping by boot. " 1510 "addr=%p pfn=%lx\n", 1511 (void *)va, pfn); 1512 1513 pp->p_next = bootpages; 1514 pp->p_prev = NULL; 1515 PP_SETBOOTPAGES(pp); 1516 if (bootpages != NULL) { 1517 bootpages->p_prev = pp; 1518 } 1519 bootpages = pp; 1520 ++boot_protect_cnt; 1521 } 1522 1523 ++pfn; 1524 len -= MMU_PAGESIZE; 1525 va += MMU_PAGESIZE; 1526 } 1527 } 1528 PRM_DEBUG(boot_protect_cnt); 1529 } 1530 1531 /* 1532 * 1533 */ 1534 static void 1535 layout_kernel_va(void) 1536 { 1537 PRM_POINT("layout_kernel_va() starting..."); 1538 /* 1539 * Establish the final size of the kernel's heap, size of segmap, 1540 * segkp, etc. 1541 */ 1542 1543 #if defined(__amd64) 1544 1545 kpm_vbase = (caddr_t)segkpm_base; 1546 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1547 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1548 panic("not enough room for kpm!"); 1549 PRM_DEBUG(kpm_size); 1550 PRM_DEBUG(kpm_vbase); 1551 1552 /* 1553 * By default we create a seg_kp in 64 bit kernels, it's a little 1554 * faster to access than embedding it in the heap. 1555 */ 1556 segkp_base = (caddr_t)valloc_base + valloc_sz; 1557 if (!segkp_fromheap) { 1558 size_t sz = mmu_ptob(segkpsize); 1559 1560 /* 1561 * determine size of segkp 1562 */ 1563 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1564 sz = SEGKPDEFSIZE; 1565 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1566 "segkpsize has been reset to %ld pages", 1567 mmu_btop(sz)); 1568 } 1569 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1570 1571 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1572 } 1573 PRM_DEBUG(segkp_base); 1574 PRM_DEBUG(segkpsize); 1575 1576 /* 1577 * segzio is used for ZFS cached data. It uses a distinct VA 1578 * segment (from kernel heap) so that we can easily tell not to 1579 * include it in kernel crash dumps on 64 bit kernels. The trick is 1580 * to give it lots of VA, but not constrain the kernel heap. 1581 * We scale the size of segzio linearly with physmem up to 1582 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1583 */ 1584 segzio_base = segkp_base + mmu_ptob(segkpsize); 1585 if (segzio_fromheap) { 1586 segziosize = 0; 1587 } else { 1588 size_t physmem_size = mmu_ptob(physmem); 1589 size_t size = (segziosize == 0) ? 1590 physmem_size : mmu_ptob(segziosize); 1591 1592 if (size < SEGZIOMINSIZE) 1593 size = SEGZIOMINSIZE; 1594 if (size > SEGZIOMAXSIZE) { 1595 size = SEGZIOMAXSIZE; 1596 if (physmem_size > size) 1597 size += (physmem_size - size) / 2; 1598 } 1599 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1600 } 1601 PRM_DEBUG(segziosize); 1602 PRM_DEBUG(segzio_base); 1603 1604 /* 1605 * Put the range of VA for device mappings next, kmdb knows to not 1606 * grep in this range of addresses. 1607 */ 1608 toxic_addr = 1609 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1610 PRM_DEBUG(toxic_addr); 1611 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1612 #else /* __i386 */ 1613 segmap_start = ROUND_UP_LPAGE(kernelbase); 1614 #endif /* __i386 */ 1615 PRM_DEBUG(segmap_start); 1616 1617 /* 1618 * Users can change segmapsize through eeprom or /etc/system. 1619 * If the variable is tuned through eeprom, there is no upper 1620 * bound on the size of segmap. If it is tuned through 1621 * /etc/system on 32-bit systems, it must be no larger than we 1622 * planned for in startup_memlist(). 1623 */ 1624 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1625 1626 #if defined(__i386) 1627 /* 1628 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1629 * the bottom of the kernel's address range. Set aside space for a 1630 * small red zone just below the start of segmap. 1631 */ 1632 segmap_start += KERNEL_REDZONE_SIZE; 1633 segmapsize -= KERNEL_REDZONE_SIZE; 1634 #endif 1635 1636 PRM_DEBUG(segmap_start); 1637 PRM_DEBUG(segmapsize); 1638 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1639 PRM_DEBUG(kernelheap); 1640 PRM_POINT("layout_kernel_va() done..."); 1641 } 1642 1643 /* 1644 * Finish initializing the VM system, now that we are no longer 1645 * relying on the boot time memory allocators. 1646 */ 1647 static void 1648 startup_vm(void) 1649 { 1650 struct segmap_crargs a; 1651 1652 extern int use_brk_lpg, use_stk_lpg; 1653 1654 PRM_POINT("startup_vm() starting..."); 1655 1656 /* 1657 * Initialize the hat layer. 1658 */ 1659 hat_init(); 1660 1661 /* 1662 * Do final allocations of HAT data structures that need to 1663 * be allocated before quiescing the boot loader. 1664 */ 1665 PRM_POINT("Calling hat_kern_alloc()..."); 1666 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1667 PRM_POINT("hat_kern_alloc() done"); 1668 1669 #ifndef __xpv 1670 /* 1671 * Setup MTRR (Memory type range registers) 1672 */ 1673 setup_mtrr(); 1674 #endif 1675 1676 /* 1677 * The next two loops are done in distinct steps in order 1678 * to be sure that any page that is doubly mapped (both above 1679 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1680 * Note this may never happen, but it might someday. 1681 */ 1682 bootpages = NULL; 1683 PRM_POINT("Protecting boot pages"); 1684 1685 /* 1686 * Protect any pages mapped above KERNEL_TEXT that somehow have 1687 * page_t's. This can only happen if something weird allocated 1688 * in this range (like kadb/kmdb). 1689 */ 1690 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1691 1692 /* 1693 * Before we can take over memory allocation/mapping from the boot 1694 * loader we must remove from our free page lists any boot allocated 1695 * pages that stay mapped until release_bootstrap(). 1696 */ 1697 protect_boot_range(0, kernelbase, 1); 1698 1699 1700 /* 1701 * Switch to running on regular HAT (not boot_mmu) 1702 */ 1703 PRM_POINT("Calling hat_kern_setup()..."); 1704 hat_kern_setup(); 1705 1706 /* 1707 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1708 */ 1709 bop_no_more_mem(); 1710 1711 PRM_POINT("hat_kern_setup() done"); 1712 1713 hat_cpu_online(CPU); 1714 1715 /* 1716 * Initialize VM system 1717 */ 1718 PRM_POINT("Calling kvm_init()..."); 1719 kvm_init(); 1720 PRM_POINT("kvm_init() done"); 1721 1722 /* 1723 * Tell kmdb that the VM system is now working 1724 */ 1725 if (boothowto & RB_DEBUG) 1726 kdi_dvec_vmready(); 1727 1728 #if defined(__xpv) 1729 /* 1730 * Populate the I/O pool on domain 0 1731 */ 1732 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1733 extern long populate_io_pool(void); 1734 long init_io_pool_cnt; 1735 1736 PRM_POINT("Populating reserve I/O page pool"); 1737 init_io_pool_cnt = populate_io_pool(); 1738 PRM_DEBUG(init_io_pool_cnt); 1739 } 1740 #endif 1741 /* 1742 * Mangle the brand string etc. 1743 */ 1744 cpuid_pass3(CPU); 1745 1746 #if defined(__amd64) 1747 1748 /* 1749 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1750 */ 1751 device_arena = vmem_create("device", (void *)toxic_addr, 1752 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1753 1754 #else /* __i386 */ 1755 1756 /* 1757 * allocate the bit map that tracks toxic pages 1758 */ 1759 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1760 PRM_DEBUG(toxic_bit_map_len); 1761 toxic_bit_map = 1762 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1763 ASSERT(toxic_bit_map != NULL); 1764 PRM_DEBUG(toxic_bit_map); 1765 1766 #endif /* __i386 */ 1767 1768 1769 /* 1770 * Now that we've got more VA, as well as the ability to allocate from 1771 * it, tell the debugger. 1772 */ 1773 if (boothowto & RB_DEBUG) 1774 kdi_dvec_memavail(); 1775 1776 /* 1777 * The following code installs a special page fault handler (#pf) 1778 * to work around a pentium bug. 1779 */ 1780 #if !defined(__amd64) && !defined(__xpv) 1781 if (x86_type == X86_TYPE_P5) { 1782 desctbr_t idtr; 1783 gate_desc_t *newidt; 1784 struct machcpu *mcpu = &CPU->cpu_m; 1785 1786 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1787 panic("failed to install pentium_pftrap"); 1788 1789 bcopy(idt0, newidt, sizeof (idt0)); 1790 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1791 KCS_SEL, SDT_SYSIGT, TRP_KPL); 1792 1793 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1794 PROT_READ|PROT_EXEC); 1795 1796 mcpu->mcpu_idt = newidt; 1797 idtr.dtr_base = (uintptr_t)mcpu->mcpu_idt; 1798 idtr.dtr_limit = sizeof (idt0) - 1; 1799 wr_idtr(&idtr); 1800 } 1801 #endif /* !__amd64 */ 1802 1803 #if !defined(__xpv) 1804 /* 1805 * Map page pfn=0 for drivers, such as kd, that need to pick up 1806 * parameters left there by controllers/BIOS. 1807 */ 1808 PRM_POINT("setup up p0_va"); 1809 p0_va = i86devmap(0, 1, PROT_READ); 1810 PRM_DEBUG(p0_va); 1811 #endif 1812 1813 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1814 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1815 1816 /* 1817 * disable automatic large pages for small memory systems or 1818 * when the disable flag is set. 1819 */ 1820 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1821 max_uheap_lpsize = LEVEL_SIZE(1); 1822 max_ustack_lpsize = LEVEL_SIZE(1); 1823 max_privmap_lpsize = LEVEL_SIZE(1); 1824 max_uidata_lpsize = LEVEL_SIZE(1); 1825 max_utext_lpsize = LEVEL_SIZE(1); 1826 max_shm_lpsize = LEVEL_SIZE(1); 1827 } 1828 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1829 auto_lpg_disable) { 1830 use_brk_lpg = 0; 1831 use_stk_lpg = 0; 1832 } 1833 if (mmu.max_page_level > 0) { 1834 mcntl0_lpsize = LEVEL_SIZE(1); 1835 } 1836 1837 PRM_POINT("Calling hat_init_finish()..."); 1838 hat_init_finish(); 1839 PRM_POINT("hat_init_finish() done"); 1840 1841 /* 1842 * Initialize the segkp segment type. 1843 */ 1844 rw_enter(&kas.a_lock, RW_WRITER); 1845 PRM_POINT("Attaching segkp"); 1846 if (segkp_fromheap) { 1847 segkp->s_as = &kas; 1848 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1849 segkp) < 0) { 1850 panic("startup: cannot attach segkp"); 1851 /*NOTREACHED*/ 1852 } 1853 PRM_POINT("Doing segkp_create()"); 1854 if (segkp_create(segkp) != 0) { 1855 panic("startup: segkp_create failed"); 1856 /*NOTREACHED*/ 1857 } 1858 PRM_DEBUG(segkp); 1859 rw_exit(&kas.a_lock); 1860 1861 /* 1862 * kpm segment 1863 */ 1864 segmap_kpm = 0; 1865 if (kpm_desired) { 1866 kpm_init(); 1867 kpm_enable = 1; 1868 vpm_enable = 1; 1869 } 1870 1871 /* 1872 * Now create segmap segment. 1873 */ 1874 rw_enter(&kas.a_lock, RW_WRITER); 1875 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1876 panic("cannot attach segmap"); 1877 /*NOTREACHED*/ 1878 } 1879 PRM_DEBUG(segmap); 1880 1881 a.prot = PROT_READ | PROT_WRITE; 1882 a.shmsize = 0; 1883 a.nfreelist = segmapfreelists; 1884 1885 if (segmap_create(segmap, (caddr_t)&a) != 0) 1886 panic("segmap_create segmap"); 1887 rw_exit(&kas.a_lock); 1888 1889 setup_vaddr_for_ppcopy(CPU); 1890 1891 segdev_init(); 1892 #if defined(__xpv) 1893 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1894 #endif 1895 pmem_init(); 1896 1897 PRM_POINT("startup_vm() done"); 1898 } 1899 1900 /* 1901 * Load a tod module for the non-standard tod part found on this system. 1902 */ 1903 static void 1904 load_tod_module(char *todmod) 1905 { 1906 if (modload("tod", todmod) == -1) 1907 halt("Can't load TOD module"); 1908 } 1909 1910 static void 1911 startup_end(void) 1912 { 1913 int i; 1914 extern void setx86isalist(void); 1915 1916 PRM_POINT("startup_end() starting..."); 1917 1918 /* 1919 * Perform tasks that get done after most of the VM 1920 * initialization has been done but before the clock 1921 * and other devices get started. 1922 */ 1923 kern_setup1(); 1924 1925 /* 1926 * Perform CPC initialization for this CPU. 1927 */ 1928 kcpc_hw_init(CPU); 1929 1930 #if defined(OPTERON_WORKAROUND_6323525) 1931 if (opteron_workaround_6323525) 1932 patch_workaround_6323525(); 1933 #endif 1934 /* 1935 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 1936 * (For now, "needed" is defined as set tod_module_name in /etc/system) 1937 */ 1938 if (tod_module_name != NULL) { 1939 PRM_POINT("load_tod_module()"); 1940 load_tod_module(tod_module_name); 1941 } 1942 1943 #if defined(__xpv) 1944 /* 1945 * Forceload interposing TOD module for the hypervisor. 1946 */ 1947 PRM_POINT("load_tod_module()"); 1948 load_tod_module("xpvtod"); 1949 #endif 1950 1951 /* 1952 * Configure the system. 1953 */ 1954 PRM_POINT("Calling configure()..."); 1955 configure(); /* set up devices */ 1956 PRM_POINT("configure() done"); 1957 1958 /* 1959 * Set the isa_list string to the defined instruction sets we 1960 * support. 1961 */ 1962 setx86isalist(); 1963 cpu_intr_alloc(CPU, NINTR_THREADS); 1964 psm_install(); 1965 1966 /* 1967 * We're done with bootops. We don't unmap the bootstrap yet because 1968 * we're still using bootsvcs. 1969 */ 1970 PRM_POINT("NULLing out bootops"); 1971 *bootopsp = (struct bootops *)NULL; 1972 bootops = (struct bootops *)NULL; 1973 1974 #if defined(__xpv) 1975 ec_init_debug_irq(); 1976 xs_domu_init(); 1977 #endif 1978 PRM_POINT("Enabling interrupts"); 1979 (*picinitf)(); 1980 sti(); 1981 #if defined(__xpv) 1982 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 1983 xen_late_startup(); 1984 #endif 1985 1986 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1987 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1988 1989 /* 1990 * Register these software interrupts for ddi timer. 1991 * Software interrupts up to the level 10 are supported. 1992 */ 1993 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 1994 char name[sizeof ("timer_softintr") + 2]; 1995 (void) sprintf(name, "timer_softintr%02d", i); 1996 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 1997 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 1998 } 1999 2000 PRM_POINT("startup_end() done"); 2001 } 2002 2003 extern char hw_serial[]; 2004 char *_hs1107 = hw_serial; 2005 ulong_t _bdhs34; 2006 2007 void 2008 post_startup(void) 2009 { 2010 /* 2011 * Set the system wide, processor-specific flags to be passed 2012 * to userland via the aux vector for performance hints and 2013 * instruction set extensions. 2014 */ 2015 bind_hwcap(); 2016 2017 #ifdef __xpv 2018 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2019 #endif 2020 { 2021 /* 2022 * Load the System Management BIOS into the global ksmbios 2023 * handle, if an SMBIOS is present on this system. 2024 */ 2025 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2026 2027 #if defined(__xpv) 2028 xpv_panic_init(); 2029 #else 2030 /* 2031 * Startup the memory scrubber. 2032 * XXPV This should be running somewhere .. 2033 */ 2034 memscrub_init(); 2035 #endif 2036 } 2037 2038 /* 2039 * Complete CPU module initialization 2040 */ 2041 cmi_post_init(); 2042 2043 /* 2044 * Perform forceloading tasks for /etc/system. 2045 */ 2046 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2047 2048 /* 2049 * ON4.0: Force /proc module in until clock interrupt handle fixed 2050 * ON4.0: This must be fixed or restated in /etc/systems. 2051 */ 2052 (void) modload("fs", "procfs"); 2053 2054 #if defined(__i386) 2055 /* 2056 * Check for required functional Floating Point hardware, 2057 * unless FP hardware explicitly disabled. 2058 */ 2059 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2060 halt("No working FP hardware found"); 2061 #endif 2062 2063 maxmem = freemem; 2064 2065 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2066 } 2067 2068 static int 2069 pp_in_ramdisk(page_t *pp) 2070 { 2071 extern uint64_t ramdisk_start, ramdisk_end; 2072 2073 return ((pp->p_pagenum >= btop(ramdisk_start)) && 2074 (pp->p_pagenum < btopr(ramdisk_end))); 2075 } 2076 2077 void 2078 release_bootstrap(void) 2079 { 2080 int root_is_ramdisk; 2081 page_t *pp; 2082 extern void kobj_boot_unmountroot(void); 2083 extern dev_t rootdev; 2084 2085 /* unmount boot ramdisk and release kmem usage */ 2086 kobj_boot_unmountroot(); 2087 2088 /* 2089 * We're finished using the boot loader so free its pages. 2090 */ 2091 PRM_POINT("Unmapping lower boot pages"); 2092 clear_boot_mappings(0, _userlimit); 2093 postbootkernelbase = kernelbase; 2094 2095 /* 2096 * If root isn't on ramdisk, destroy the hardcoded 2097 * ramdisk node now and release the memory. Else, 2098 * ramdisk memory is kept in rd_pages. 2099 */ 2100 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2101 if (!root_is_ramdisk) { 2102 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2103 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2104 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2105 (void) ddi_remove_child(dip, 0); 2106 } 2107 2108 PRM_POINT("Releasing boot pages"); 2109 while (bootpages) { 2110 pp = bootpages; 2111 bootpages = pp->p_next; 2112 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 2113 pp->p_next = rd_pages; 2114 rd_pages = pp; 2115 continue; 2116 } 2117 pp->p_next = (struct page *)0; 2118 pp->p_prev = (struct page *)0; 2119 PP_CLRBOOTPAGES(pp); 2120 page_free(pp, 1); 2121 } 2122 PRM_POINT("Boot pages released"); 2123 2124 #if !defined(__xpv) 2125 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2126 /* 2127 * Find 1 page below 1 MB so that other processors can boot up. 2128 * Make sure it has a kernel VA as well as a 1:1 mapping. 2129 * We should have just free'd one up. 2130 */ 2131 if (use_mp) { 2132 pfn_t pfn; 2133 2134 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2135 if (page_numtopp_alloc(pfn) == NULL) 2136 continue; 2137 rm_platter_va = i86devmap(pfn, 1, 2138 PROT_READ | PROT_WRITE | PROT_EXEC); 2139 rm_platter_pa = ptob(pfn); 2140 hat_devload(kas.a_hat, 2141 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2142 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2143 HAT_LOAD_NOCONSIST); 2144 break; 2145 } 2146 if (pfn == btop(1*1024*1024)) 2147 panic("No page available for starting " 2148 "other processors"); 2149 } 2150 #endif /* !__xpv */ 2151 } 2152 2153 /* 2154 * Initialize the platform-specific parts of a page_t. 2155 */ 2156 void 2157 add_physmem_cb(page_t *pp, pfn_t pnum) 2158 { 2159 pp->p_pagenum = pnum; 2160 pp->p_mapping = NULL; 2161 pp->p_embed = 0; 2162 pp->p_share = 0; 2163 pp->p_mlentry = 0; 2164 } 2165 2166 /* 2167 * kphysm_init() initializes physical memory. 2168 */ 2169 static pgcnt_t 2170 kphysm_init( 2171 page_t *pp, 2172 pgcnt_t npages) 2173 { 2174 struct memlist *pmem; 2175 struct memseg *cur_memseg; 2176 pfn_t base_pfn; 2177 pgcnt_t num; 2178 pgcnt_t pages_done = 0; 2179 uint64_t addr; 2180 uint64_t size; 2181 extern pfn_t ddiphysmin; 2182 2183 ASSERT(page_hash != NULL && page_hashsz != 0); 2184 2185 cur_memseg = memseg_base; 2186 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2187 /* 2188 * In a 32 bit kernel can't use higher memory if we're 2189 * not booting in PAE mode. This check takes care of that. 2190 */ 2191 addr = pmem->address; 2192 size = pmem->size; 2193 if (btop(addr) > physmax) 2194 continue; 2195 2196 /* 2197 * align addr and size - they may not be at page boundaries 2198 */ 2199 if ((addr & MMU_PAGEOFFSET) != 0) { 2200 addr += MMU_PAGEOFFSET; 2201 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2202 size -= addr - pmem->address; 2203 } 2204 2205 /* only process pages below or equal to physmax */ 2206 if ((btop(addr + size) - 1) > physmax) 2207 size = ptob(physmax - btop(addr) + 1); 2208 2209 num = btop(size); 2210 if (num == 0) 2211 continue; 2212 2213 if (num > npages) 2214 num = npages; 2215 2216 npages -= num; 2217 pages_done += num; 2218 base_pfn = btop(addr); 2219 2220 if (prom_debug) 2221 prom_printf("MEMSEG addr=0x%" PRIx64 2222 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2223 addr, num, base_pfn, base_pfn + num); 2224 2225 /* 2226 * Ignore pages below ddiphysmin to simplify ddi memory 2227 * allocation with non-zero addr_lo requests. 2228 */ 2229 if (base_pfn < ddiphysmin) { 2230 if (base_pfn + num <= ddiphysmin) 2231 continue; 2232 pp += (ddiphysmin - base_pfn); 2233 num -= (ddiphysmin - base_pfn); 2234 base_pfn = ddiphysmin; 2235 } 2236 2237 /* 2238 * Build the memsegs entry 2239 */ 2240 cur_memseg->pages = pp; 2241 cur_memseg->epages = pp + num; 2242 cur_memseg->pages_base = base_pfn; 2243 cur_memseg->pages_end = base_pfn + num; 2244 2245 /* 2246 * Insert into memseg list in decreasing pfn range order. 2247 * Low memory is typically more fragmented such that this 2248 * ordering keeps the larger ranges at the front of the list 2249 * for code that searches memseg. 2250 * This ASSERTS that the memsegs coming in from boot are in 2251 * increasing physical address order and not contiguous. 2252 */ 2253 if (memsegs != NULL) { 2254 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2255 cur_memseg->next = memsegs; 2256 } 2257 memsegs = cur_memseg; 2258 2259 /* 2260 * add_physmem() initializes the PSM part of the page 2261 * struct by calling the PSM back with add_physmem_cb(). 2262 * In addition it coalesces pages into larger pages as 2263 * it initializes them. 2264 */ 2265 add_physmem(pp, num, base_pfn); 2266 cur_memseg++; 2267 availrmem_initial += num; 2268 availrmem += num; 2269 2270 pp += num; 2271 } 2272 2273 PRM_DEBUG(availrmem_initial); 2274 PRM_DEBUG(availrmem); 2275 PRM_DEBUG(freemem); 2276 build_pfn_hash(); 2277 return (pages_done); 2278 } 2279 2280 /* 2281 * Kernel VM initialization. 2282 */ 2283 static void 2284 kvm_init(void) 2285 { 2286 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2287 2288 /* 2289 * Put the kernel segments in kernel address space. 2290 */ 2291 rw_enter(&kas.a_lock, RW_WRITER); 2292 as_avlinit(&kas); 2293 2294 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2295 (void) segkmem_create(&ktextseg); 2296 2297 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2298 (void) segkmem_create(&kvalloc); 2299 2300 (void) seg_attach(&kas, kernelheap, 2301 ekernelheap - kernelheap, &kvseg); 2302 (void) segkmem_create(&kvseg); 2303 2304 if (core_size > 0) { 2305 PRM_POINT("attaching kvseg_core"); 2306 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2307 &kvseg_core); 2308 (void) segkmem_create(&kvseg_core); 2309 } 2310 2311 if (segziosize > 0) { 2312 PRM_POINT("attaching segzio"); 2313 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2314 &kzioseg); 2315 (void) segkmem_zio_create(&kzioseg); 2316 2317 /* create zio area covering new segment */ 2318 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2319 } 2320 2321 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2322 (void) segkmem_create(&kdebugseg); 2323 2324 rw_exit(&kas.a_lock); 2325 2326 /* 2327 * Ensure that the red zone at kernelbase is never accessible. 2328 */ 2329 PRM_POINT("protecting redzone"); 2330 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2331 2332 /* 2333 * Make the text writable so that it can be hot patched by DTrace. 2334 */ 2335 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2336 PROT_READ | PROT_WRITE | PROT_EXEC); 2337 2338 /* 2339 * Make data writable until end. 2340 */ 2341 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2342 PROT_READ | PROT_WRITE | PROT_EXEC); 2343 } 2344 2345 #ifndef __xpv 2346 /* 2347 * These are MTTR registers supported by P6 2348 */ 2349 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2350 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2351 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2352 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2353 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2354 uint64_t mtrrdef, pat_attr_reg; 2355 2356 /* 2357 * Disable reprogramming of MTRRs by default. 2358 */ 2359 int enable_relaxed_mtrr = 0; 2360 2361 void 2362 setup_mtrr(void) 2363 { 2364 int i, ecx; 2365 int vcnt; 2366 struct mtrrvar *mtrrphys; 2367 2368 if (!(x86_feature & X86_MTRR)) 2369 return; 2370 2371 mtrrcap = rdmsr(REG_MTRRCAP); 2372 mtrrdef = rdmsr(REG_MTRRDEF); 2373 if (mtrrcap & MTRRCAP_FIX) { 2374 mtrr64k = rdmsr(REG_MTRR64K); 2375 mtrr16k1 = rdmsr(REG_MTRR16K1); 2376 mtrr16k2 = rdmsr(REG_MTRR16K2); 2377 mtrr4k1 = rdmsr(REG_MTRR4K1); 2378 mtrr4k2 = rdmsr(REG_MTRR4K2); 2379 mtrr4k3 = rdmsr(REG_MTRR4K3); 2380 mtrr4k4 = rdmsr(REG_MTRR4K4); 2381 mtrr4k5 = rdmsr(REG_MTRR4K5); 2382 mtrr4k6 = rdmsr(REG_MTRR4K6); 2383 mtrr4k7 = rdmsr(REG_MTRR4K7); 2384 mtrr4k8 = rdmsr(REG_MTRR4K8); 2385 } 2386 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2387 vcnt = MAX_MTRRVAR; 2388 2389 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2390 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2391 mtrrphys->mtrrphys_base = rdmsr(ecx); 2392 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2393 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) 2394 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2395 } 2396 if (x86_feature & X86_PAT) { 2397 if (enable_relaxed_mtrr) 2398 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2399 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2400 } 2401 2402 mtrr_sync(); 2403 } 2404 2405 /* 2406 * Sync current cpu mtrr with the incore copy of mtrr. 2407 * This function has to be invoked with interrupts disabled 2408 * Currently we do not capture other cpu's. This is invoked on cpu0 2409 * just after reading /etc/system. 2410 * On other cpu's its invoked from mp_startup(). 2411 */ 2412 void 2413 mtrr_sync(void) 2414 { 2415 uint_t crvalue, cr0_orig; 2416 int vcnt, i, ecx; 2417 struct mtrrvar *mtrrphys; 2418 2419 cr0_orig = crvalue = getcr0(); 2420 crvalue |= CR0_CD; 2421 crvalue &= ~CR0_NW; 2422 setcr0(crvalue); 2423 invalidate_cache(); 2424 2425 #if !defined(__xpv) 2426 reload_cr3(); 2427 #endif 2428 if (x86_feature & X86_PAT) 2429 wrmsr(REG_MTRRPAT, pat_attr_reg); 2430 2431 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2432 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2433 2434 if (mtrrcap & MTRRCAP_FIX) { 2435 wrmsr(REG_MTRR64K, mtrr64k); 2436 wrmsr(REG_MTRR16K1, mtrr16k1); 2437 wrmsr(REG_MTRR16K2, mtrr16k2); 2438 wrmsr(REG_MTRR4K1, mtrr4k1); 2439 wrmsr(REG_MTRR4K2, mtrr4k2); 2440 wrmsr(REG_MTRR4K3, mtrr4k3); 2441 wrmsr(REG_MTRR4K4, mtrr4k4); 2442 wrmsr(REG_MTRR4K5, mtrr4k5); 2443 wrmsr(REG_MTRR4K6, mtrr4k6); 2444 wrmsr(REG_MTRR4K7, mtrr4k7); 2445 wrmsr(REG_MTRR4K8, mtrr4k8); 2446 } 2447 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2448 vcnt = MAX_MTRRVAR; 2449 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2450 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2451 wrmsr(ecx, mtrrphys->mtrrphys_base); 2452 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2453 } 2454 wrmsr(REG_MTRRDEF, mtrrdef); 2455 2456 #if !defined(__xpv) 2457 reload_cr3(); 2458 #endif 2459 invalidate_cache(); 2460 setcr0(cr0_orig); 2461 } 2462 2463 /* 2464 * resync mtrr so that BIOS is happy. Called from mdboot 2465 */ 2466 void 2467 mtrr_resync(void) 2468 { 2469 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2470 /* 2471 * We could have changed the default mtrr definition. 2472 * Put it back to uncached which is what it is at power on 2473 */ 2474 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2475 mtrr_sync(); 2476 } 2477 } 2478 #endif 2479 2480 void 2481 get_system_configuration(void) 2482 { 2483 char prop[32]; 2484 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2485 2486 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2487 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2488 kobj_getvalue(prop, &nodes_ll) == -1 || 2489 nodes_ll > MAXNODES || 2490 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2491 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2492 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2493 system_hardware.hd_nodes = 1; 2494 system_hardware.hd_cpus_per_node = 0; 2495 } else { 2496 system_hardware.hd_nodes = (int)nodes_ll; 2497 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2498 } 2499 2500 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2501 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2502 kobj_getvalue(prop, &lvalue) == -1) 2503 eprom_kernelbase = NULL; 2504 else 2505 eprom_kernelbase = (uintptr_t)lvalue; 2506 2507 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2508 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2509 kobj_getvalue(prop, &lvalue) == -1) 2510 segmapsize = SEGMAPDEFAULT; 2511 else 2512 segmapsize = (uintptr_t)lvalue; 2513 2514 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2515 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2516 kobj_getvalue(prop, &lvalue) == -1) 2517 segmapfreelists = 0; /* use segmap driver default */ 2518 else 2519 segmapfreelists = (int)lvalue; 2520 2521 /* physmem used to be here, but moved much earlier to fakebop.c */ 2522 } 2523 2524 /* 2525 * Add to a memory list. 2526 * start = start of new memory segment 2527 * len = length of new memory segment in bytes 2528 * new = pointer to a new struct memlist 2529 * memlistp = memory list to which to add segment. 2530 */ 2531 void 2532 memlist_add( 2533 uint64_t start, 2534 uint64_t len, 2535 struct memlist *new, 2536 struct memlist **memlistp) 2537 { 2538 struct memlist *cur; 2539 uint64_t end = start + len; 2540 2541 new->address = start; 2542 new->size = len; 2543 2544 cur = *memlistp; 2545 2546 while (cur) { 2547 if (cur->address >= end) { 2548 new->next = cur; 2549 *memlistp = new; 2550 new->prev = cur->prev; 2551 cur->prev = new; 2552 return; 2553 } 2554 ASSERT(cur->address + cur->size <= start); 2555 if (cur->next == NULL) { 2556 cur->next = new; 2557 new->prev = cur; 2558 new->next = NULL; 2559 return; 2560 } 2561 memlistp = &cur->next; 2562 cur = cur->next; 2563 } 2564 } 2565 2566 void 2567 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2568 { 2569 size_t tsize = e_modtext - modtext; 2570 size_t dsize = e_moddata - moddata; 2571 2572 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2573 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2574 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2575 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2576 } 2577 2578 caddr_t 2579 kobj_text_alloc(vmem_t *arena, size_t size) 2580 { 2581 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2582 } 2583 2584 /*ARGSUSED*/ 2585 caddr_t 2586 kobj_texthole_alloc(caddr_t addr, size_t size) 2587 { 2588 panic("unexpected call to kobj_texthole_alloc()"); 2589 /*NOTREACHED*/ 2590 return (0); 2591 } 2592 2593 /*ARGSUSED*/ 2594 void 2595 kobj_texthole_free(caddr_t addr, size_t size) 2596 { 2597 panic("unexpected call to kobj_texthole_free()"); 2598 } 2599 2600 /* 2601 * This is called just after configure() in startup(). 2602 * 2603 * The ISALIST concept is a bit hopeless on Intel, because 2604 * there's no guarantee of an ever-more-capable processor 2605 * given that various parts of the instruction set may appear 2606 * and disappear between different implementations. 2607 * 2608 * While it would be possible to correct it and even enhance 2609 * it somewhat, the explicit hardware capability bitmask allows 2610 * more flexibility. 2611 * 2612 * So, we just leave this alone. 2613 */ 2614 void 2615 setx86isalist(void) 2616 { 2617 char *tp; 2618 size_t len; 2619 extern char *isa_list; 2620 2621 #define TBUFSIZE 1024 2622 2623 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2624 *tp = '\0'; 2625 2626 #if defined(__amd64) 2627 (void) strcpy(tp, "amd64 "); 2628 #endif 2629 2630 switch (x86_vendor) { 2631 case X86_VENDOR_Intel: 2632 case X86_VENDOR_AMD: 2633 case X86_VENDOR_TM: 2634 if (x86_feature & X86_CMOV) { 2635 /* 2636 * Pentium Pro or later 2637 */ 2638 (void) strcat(tp, "pentium_pro"); 2639 (void) strcat(tp, x86_feature & X86_MMX ? 2640 "+mmx pentium_pro " : " "); 2641 } 2642 /*FALLTHROUGH*/ 2643 case X86_VENDOR_Cyrix: 2644 /* 2645 * The Cyrix 6x86 does not have any Pentium features 2646 * accessible while not at privilege level 0. 2647 */ 2648 if (x86_feature & X86_CPUID) { 2649 (void) strcat(tp, "pentium"); 2650 (void) strcat(tp, x86_feature & X86_MMX ? 2651 "+mmx pentium " : " "); 2652 } 2653 break; 2654 default: 2655 break; 2656 } 2657 (void) strcat(tp, "i486 i386 i86"); 2658 len = strlen(tp) + 1; /* account for NULL at end of string */ 2659 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2660 kmem_free(tp, TBUFSIZE); 2661 2662 #undef TBUFSIZE 2663 } 2664 2665 2666 #ifdef __amd64 2667 2668 void * 2669 device_arena_alloc(size_t size, int vm_flag) 2670 { 2671 return (vmem_alloc(device_arena, size, vm_flag)); 2672 } 2673 2674 void 2675 device_arena_free(void *vaddr, size_t size) 2676 { 2677 vmem_free(device_arena, vaddr, size); 2678 } 2679 2680 #else /* __i386 */ 2681 2682 void * 2683 device_arena_alloc(size_t size, int vm_flag) 2684 { 2685 caddr_t vaddr; 2686 uintptr_t v; 2687 size_t start; 2688 size_t end; 2689 2690 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2691 if (vaddr == NULL) 2692 return (NULL); 2693 2694 v = (uintptr_t)vaddr; 2695 ASSERT(v >= kernelbase); 2696 ASSERT(v + size <= valloc_base); 2697 2698 start = btop(v - kernelbase); 2699 end = btop(v + size - 1 - kernelbase); 2700 ASSERT(start < toxic_bit_map_len); 2701 ASSERT(end < toxic_bit_map_len); 2702 2703 while (start <= end) { 2704 BT_ATOMIC_SET(toxic_bit_map, start); 2705 ++start; 2706 } 2707 return (vaddr); 2708 } 2709 2710 void 2711 device_arena_free(void *vaddr, size_t size) 2712 { 2713 uintptr_t v = (uintptr_t)vaddr; 2714 size_t start; 2715 size_t end; 2716 2717 ASSERT(v >= kernelbase); 2718 ASSERT(v + size <= valloc_base); 2719 2720 start = btop(v - kernelbase); 2721 end = btop(v + size - 1 - kernelbase); 2722 ASSERT(start < toxic_bit_map_len); 2723 ASSERT(end < toxic_bit_map_len); 2724 2725 while (start <= end) { 2726 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2727 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2728 ++start; 2729 } 2730 vmem_free(heap_arena, vaddr, size); 2731 } 2732 2733 /* 2734 * returns 1st address in range that is in device arena, or NULL 2735 * if len is not NULL it returns the length of the toxic range 2736 */ 2737 void * 2738 device_arena_contains(void *vaddr, size_t size, size_t *len) 2739 { 2740 uintptr_t v = (uintptr_t)vaddr; 2741 uintptr_t eaddr = v + size; 2742 size_t start; 2743 size_t end; 2744 2745 /* 2746 * if called very early by kmdb, just return NULL 2747 */ 2748 if (toxic_bit_map == NULL) 2749 return (NULL); 2750 2751 /* 2752 * First check if we're completely outside the bitmap range. 2753 */ 2754 if (v >= valloc_base || eaddr < kernelbase) 2755 return (NULL); 2756 2757 /* 2758 * Trim ends of search to look at only what the bitmap covers. 2759 */ 2760 if (v < kernelbase) 2761 v = kernelbase; 2762 start = btop(v - kernelbase); 2763 end = btop(eaddr - kernelbase); 2764 if (end >= toxic_bit_map_len) 2765 end = toxic_bit_map_len; 2766 2767 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2768 return (NULL); 2769 2770 v = kernelbase + ptob(start); 2771 if (len != NULL) 2772 *len = ptob(end - start); 2773 return ((void *)v); 2774 } 2775 2776 #endif /* __i386 */ 2777