1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/signal.h> 31 #include <sys/systm.h> 32 #include <sys/user.h> 33 #include <sys/mman.h> 34 #include <sys/vm.h> 35 #include <sys/conf.h> 36 #include <sys/avintr.h> 37 #include <sys/autoconf.h> 38 #include <sys/disp.h> 39 #include <sys/class.h> 40 #include <sys/bitmap.h> 41 42 #include <sys/privregs.h> 43 44 #include <sys/proc.h> 45 #include <sys/buf.h> 46 #include <sys/kmem.h> 47 #include <sys/mem.h> 48 #include <sys/kstat.h> 49 50 #include <sys/reboot.h> 51 52 #include <sys/cred.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 56 #include <sys/procfs.h> 57 58 #include <sys/vfs.h> 59 #include <sys/cmn_err.h> 60 #include <sys/utsname.h> 61 #include <sys/debug.h> 62 #include <sys/kdi.h> 63 64 #include <sys/dumphdr.h> 65 #include <sys/bootconf.h> 66 #include <sys/varargs.h> 67 #include <sys/promif.h> 68 #include <sys/modctl.h> 69 70 #include <sys/sunddi.h> 71 #include <sys/sunndi.h> 72 #include <sys/ndi_impldefs.h> 73 #include <sys/ddidmareq.h> 74 #include <sys/psw.h> 75 #include <sys/regset.h> 76 #include <sys/clock.h> 77 #include <sys/pte.h> 78 #include <sys/tss.h> 79 #include <sys/stack.h> 80 #include <sys/trap.h> 81 #include <sys/fp.h> 82 #include <vm/kboot_mmu.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/cpuvar.h> 106 #include <sys/segments.h> 107 #include <sys/clconf.h> 108 #include <sys/kobj.h> 109 #include <sys/kobj_lex.h> 110 #include <sys/cpc_impl.h> 111 #include <sys/cpu_module.h> 112 #include <sys/smbios.h> 113 #include <sys/debug_info.h> 114 #include <sys/bootinfo.h> 115 #include <sys/ddi_timer.h> 116 #include <sys/systeminfo.h> 117 #include <sys/multiboot.h> 118 119 #ifdef __xpv 120 121 #include <sys/hypervisor.h> 122 #include <sys/xen_mmu.h> 123 #include <sys/evtchn_impl.h> 124 #include <sys/gnttab.h> 125 #include <sys/xpv_panic.h> 126 #include <xen/sys/xenbus_comms.h> 127 #include <xen/public/physdev.h> 128 129 extern void xen_late_startup(void); 130 131 struct xen_evt_data cpu0_evt_data; 132 133 #endif /* __xpv */ 134 135 extern void progressbar_init(void); 136 extern void progressbar_start(void); 137 extern void brand_init(void); 138 extern void pcf_init(void); 139 extern void pg_init(void); 140 141 extern int size_pse_array(pgcnt_t, int); 142 143 #if defined(_SOFT_HOSTID) 144 145 #include <sys/rtc.h> 146 147 static int32_t set_soft_hostid(void); 148 static char hostid_file[] = "/etc/hostid"; 149 150 #endif 151 152 void *gfx_devinfo_list; 153 154 /* 155 * XXX make declaration below "static" when drivers no longer use this 156 * interface. 157 */ 158 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 159 160 /* 161 * segkp 162 */ 163 extern int segkp_fromheap; 164 165 static void kvm_init(void); 166 static void startup_init(void); 167 static void startup_memlist(void); 168 static void startup_kmem(void); 169 static void startup_modules(void); 170 static void startup_vm(void); 171 static void startup_end(void); 172 static void layout_kernel_va(void); 173 174 /* 175 * Declare these as initialized data so we can patch them. 176 */ 177 #ifdef __i386 178 179 /* 180 * Due to virtual address space limitations running in 32 bit mode, restrict 181 * the amount of physical memory configured to a max of PHYSMEM pages (16g). 182 * 183 * If the physical max memory size of 64g were allowed to be configured, the 184 * size of user virtual address space will be less than 1g. A limited user 185 * address space greatly reduces the range of applications that can run. 186 * 187 * If more physical memory than PHYSMEM is required, users should preferably 188 * run in 64 bit mode which has far looser virtual address space limitations. 189 * 190 * If 64 bit mode is not available (as in IA32) and/or more physical memory 191 * than PHYSMEM is required in 32 bit mode, physmem can be set to the desired 192 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 193 * should also be carefully tuned to balance out the need of the user 194 * application while minimizing the risk of kernel heap exhaustion due to 195 * kernelbase being set too high. 196 */ 197 #define PHYSMEM 0x400000 198 199 #else /* __amd64 */ 200 201 /* 202 * For now we can handle memory with physical addresses up to about 203 * 64 Terabytes. This keeps the kernel above the VA hole, leaving roughly 204 * half the VA space for seg_kpm. When systems get bigger than 64TB this 205 * code will need revisiting. There is an implicit assumption that there 206 * are no *huge* holes in the physical address space too. 207 */ 208 #define TERABYTE (1ul << 40) 209 #define PHYSMEM_MAX64 mmu_btop(64 * TERABYTE) 210 #define PHYSMEM PHYSMEM_MAX64 211 #define AMD64_VA_HOLE_END 0xFFFF800000000000ul 212 213 #endif /* __amd64 */ 214 215 pgcnt_t physmem = PHYSMEM; 216 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 217 218 char *kobj_file_buf; 219 int kobj_file_bufsize; /* set in /etc/system */ 220 221 /* Global variables for MP support. Used in mp_startup */ 222 caddr_t rm_platter_va = 0; 223 uint32_t rm_platter_pa; 224 225 int auto_lpg_disable = 1; 226 227 /* 228 * Some CPUs have holes in the middle of the 64-bit virtual address range. 229 */ 230 uintptr_t hole_start, hole_end; 231 232 /* 233 * kpm mapping window 234 */ 235 caddr_t kpm_vbase; 236 size_t kpm_size; 237 static int kpm_desired; 238 #ifdef __amd64 239 static uintptr_t segkpm_base = (uintptr_t)SEGKPM_BASE; 240 #endif 241 242 /* 243 * Configuration parameters set at boot time. 244 */ 245 246 caddr_t econtig; /* end of first block of contiguous kernel */ 247 248 struct bootops *bootops = 0; /* passed in from boot */ 249 struct bootops **bootopsp; 250 struct boot_syscalls *sysp; /* passed in from boot */ 251 252 char bootblock_fstype[16]; 253 254 char kern_bootargs[OBP_MAXPATHLEN]; 255 char kern_bootfile[OBP_MAXPATHLEN]; 256 257 /* 258 * ZFS zio segment. This allows us to exclude large portions of ZFS data that 259 * gets cached in kmem caches on the heap. If this is set to zero, we allocate 260 * zio buffers from their own segment, otherwise they are allocated from the 261 * heap. The optimization of allocating zio buffers from their own segment is 262 * only valid on 64-bit kernels. 263 */ 264 #if defined(__amd64) 265 int segzio_fromheap = 0; 266 #else 267 int segzio_fromheap = 1; 268 #endif 269 270 /* 271 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 272 * depends on number of BOP_ALLOC calls made and requested size, memory size 273 * combination and whether boot.bin memory needs to be freed. 274 */ 275 #define POSS_NEW_FRAGMENTS 12 276 277 /* 278 * VM data structures 279 */ 280 long page_hashsz; /* Size of page hash table (power of two) */ 281 struct page *pp_base; /* Base of initial system page struct array */ 282 struct page **page_hash; /* Page hash table */ 283 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 284 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 285 int pse_shift; /* log2(pse_table_size) */ 286 struct seg ktextseg; /* Segment used for kernel executable image */ 287 struct seg kvalloc; /* Segment used for "valloc" mapping */ 288 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 289 struct seg kmapseg; /* Segment used for generic kernel mappings */ 290 struct seg kdebugseg; /* Segment used for the kernel debugger */ 291 292 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 293 static struct seg *segmap = &kmapseg; /* easier to use name for in here */ 294 295 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 296 297 #if defined(__amd64) 298 struct seg kvseg_core; /* Segment used for the core heap */ 299 struct seg kpmseg; /* Segment used for physical mapping */ 300 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 301 #else 302 struct seg *segkpm = NULL; /* Unused on IA32 */ 303 #endif 304 305 caddr_t segkp_base; /* Base address of segkp */ 306 caddr_t segzio_base; /* Base address of segzio */ 307 #if defined(__amd64) 308 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 309 #else 310 pgcnt_t segkpsize = 0; 311 #endif 312 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 313 314 /* 315 * VA range available to the debugger 316 */ 317 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 318 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 319 320 struct memseg *memseg_base; 321 struct vnode unused_pages_vp; 322 323 #define FOURGB 0x100000000LL 324 325 struct memlist *memlist; 326 327 caddr_t s_text; /* start of kernel text segment */ 328 caddr_t e_text; /* end of kernel text segment */ 329 caddr_t s_data; /* start of kernel data segment */ 330 caddr_t e_data; /* end of kernel data segment */ 331 caddr_t modtext; /* start of loadable module text reserved */ 332 caddr_t e_modtext; /* end of loadable module text reserved */ 333 caddr_t moddata; /* start of loadable module data reserved */ 334 caddr_t e_moddata; /* end of loadable module data reserved */ 335 336 struct memlist *phys_install; /* Total installed physical memory */ 337 struct memlist *phys_avail; /* Total available physical memory */ 338 339 /* 340 * kphysm_init returns the number of pages that were processed 341 */ 342 static pgcnt_t kphysm_init(page_t *, pgcnt_t); 343 344 #define IO_PROP_SIZE 64 /* device property size */ 345 346 /* 347 * a couple useful roundup macros 348 */ 349 #define ROUND_UP_PAGE(x) \ 350 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 351 #define ROUND_UP_LPAGE(x) \ 352 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 353 #define ROUND_UP_4MEG(x) \ 354 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOUR_MEG)) 355 #define ROUND_UP_TOPLEVEL(x) \ 356 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 357 358 /* 359 * 32-bit Kernel's Virtual memory layout. 360 * +-----------------------+ 361 * | | 362 * 0xFFC00000 -|-----------------------|- ARGSBASE 363 * | debugger | 364 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 365 * | Kernel Data | 366 * 0xFEC00000 -|-----------------------| 367 * | Kernel Text | 368 * 0xFE800000 -|-----------------------|- KERNEL_TEXT (0xFB400000 on Xen) 369 * |--- GDT ---|- GDT page (GDT_VA) 370 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 371 * | | 372 * | page_t structures | 373 * | memsegs, memlists, | 374 * | page hash, etc. | 375 * --- -|-----------------------|- ekernelheap, valloc_base (floating) 376 * | | (segkp is just an arena in the heap) 377 * | | 378 * | kvseg | 379 * | | 380 * | | 381 * --- -|-----------------------|- kernelheap (floating) 382 * | Segkmap | 383 * 0xC3002000 -|-----------------------|- segmap_start (floating) 384 * | Red Zone | 385 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 386 * | | || 387 * | Shared objects | \/ 388 * | | 389 * : : 390 * | user data | 391 * |-----------------------| 392 * | user text | 393 * 0x08048000 -|-----------------------| 394 * | user stack | 395 * : : 396 * | invalid | 397 * 0x00000000 +-----------------------+ 398 * 399 * 400 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 401 * +-----------------------+ 402 * | | 403 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 404 * | debugger (?) | 405 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 406 * | unused | 407 * +-----------------------+ 408 * | Kernel Data | 409 * 0xFFFFFFFF.FBC00000 |-----------------------| 410 * | Kernel Text | 411 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 412 * |--- GDT ---|- GDT page (GDT_VA) 413 * |--- debug info ---|- debug info (DEBUG_INFO_VA) 414 * | | 415 * | Core heap | (used for loadable modules) 416 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 417 * | Kernel | 418 * | heap | 419 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 420 * | segmap | 421 * 0xFFFFFXXX.XXX00000 |-----------------------|- segmap_start (floating) 422 * | device mappings | 423 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 424 * | segzio | 425 * 0xFFFFFXXX.XXX00000 |-----------------------|- segzio_base (floating) 426 * | segkp | 427 * --- |-----------------------|- segkp_base (floating) 428 * | page_t structures | valloc_base + valloc_sz 429 * | memsegs, memlists, | 430 * | page hash, etc. | 431 * 0xFFFFFF00.00000000 |-----------------------|- valloc_base (lower if > 1TB) 432 * | segkpm | 433 * 0xFFFFFE00.00000000 |-----------------------| 434 * | Red Zone | 435 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE (lower if > 1TB) 436 * | User stack |- User space memory 437 * | | 438 * | shared objects, etc | (grows downwards) 439 * : : 440 * | | 441 * 0xFFFF8000.00000000 |-----------------------| 442 * | | 443 * | VA Hole / unused | 444 * | | 445 * 0x00008000.00000000 |-----------------------| 446 * | | 447 * | | 448 * : : 449 * | user heap | (grows upwards) 450 * | | 451 * | user data | 452 * |-----------------------| 453 * | user text | 454 * 0x00000000.04000000 |-----------------------| 455 * | invalid | 456 * 0x00000000.00000000 +-----------------------+ 457 * 458 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 459 * kernel, except that userlimit is raised to 0xfe000000 460 * 461 * Floating values: 462 * 463 * valloc_base: start of the kernel's memory management/tracking data 464 * structures. This region contains page_t structures for 465 * physical memory, memsegs, memlists, and the page hash. 466 * 467 * core_base: start of the kernel's "core" heap area on 64-bit systems. 468 * This area is intended to be used for global data as well as for module 469 * text/data that does not fit into the nucleus pages. The core heap is 470 * restricted to a 2GB range, allowing every address within it to be 471 * accessed using rip-relative addressing 472 * 473 * ekernelheap: end of kernelheap and start of segmap. 474 * 475 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 476 * above a red zone that separates the user's address space from the 477 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 478 * 479 * segmap_start: start of segmap. The length of segmap can be modified 480 * through eeprom. The default length is 16MB on 32-bit systems and 64MB 481 * on 64-bit systems. 482 * 483 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 484 * decreased by 2X the size required for page_t. This allows the kernel 485 * heap to grow in size with physical memory. With sizeof(page_t) == 80 486 * bytes, the following shows the values of kernelbase and kernel heap 487 * sizes for different memory configurations (assuming default segmap and 488 * segkp sizes). 489 * 490 * mem size for kernelbase kernel heap 491 * size page_t's size 492 * ---- --------- ---------- ----------- 493 * 1gb 0x01400000 0xd1800000 684MB 494 * 2gb 0x02800000 0xcf000000 704MB 495 * 4gb 0x05000000 0xca000000 744MB 496 * 6gb 0x07800000 0xc5000000 784MB 497 * 8gb 0x0a000000 0xc0000000 824MB 498 * 16gb 0x14000000 0xac000000 984MB 499 * 32gb 0x28000000 0x84000000 1304MB 500 * 64gb 0x50000000 0x34000000 1944MB (*) 501 * 502 * kernelbase is less than the abi minimum of 0xc0000000 for memory 503 * configurations above 8gb. 504 * 505 * (*) support for memory configurations above 32gb will require manual tuning 506 * of kernelbase to balance out the need of user applications. 507 */ 508 509 /* real-time-clock initialization parameters */ 510 extern time_t process_rtc_config_file(void); 511 512 uintptr_t kernelbase; 513 uintptr_t postbootkernelbase; /* not set till boot loader is gone */ 514 uintptr_t eprom_kernelbase; 515 size_t segmapsize; 516 uintptr_t segmap_start; 517 int segmapfreelists; 518 pgcnt_t npages; 519 pgcnt_t orig_npages; 520 size_t core_size; /* size of "core" heap */ 521 uintptr_t core_base; /* base address of "core" heap */ 522 523 /* 524 * List of bootstrap pages. We mark these as allocated in startup. 525 * release_bootstrap() will free them when we're completely done with 526 * the bootstrap. 527 */ 528 static page_t *bootpages; 529 530 /* 531 * boot time pages that have a vnode from the ramdisk will keep that forever. 532 */ 533 static page_t *rd_pages; 534 535 /* 536 * Lower 64K 537 */ 538 static page_t *lower_pages = NULL; 539 static int lower_pages_count = 0; 540 541 struct system_hardware system_hardware; 542 543 /* 544 * Enable some debugging messages concerning memory usage... 545 */ 546 static void 547 print_memlist(char *title, struct memlist *mp) 548 { 549 prom_printf("MEMLIST: %s:\n", title); 550 while (mp != NULL) { 551 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 552 mp->address, mp->size); 553 mp = mp->next; 554 } 555 } 556 557 /* 558 * XX64 need a comment here.. are these just default values, surely 559 * we read the "cpuid" type information to figure this out. 560 */ 561 int l2cache_sz = 0x80000; 562 int l2cache_linesz = 0x40; 563 int l2cache_assoc = 1; 564 565 static size_t textrepl_min_gb = 10; 566 567 /* 568 * on 64 bit we use a predifined VA range for mapping devices in the kernel 569 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 570 */ 571 #ifdef __amd64 572 573 vmem_t *device_arena; 574 uintptr_t toxic_addr = (uintptr_t)NULL; 575 size_t toxic_size = 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 576 577 #else /* __i386 */ 578 579 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 580 size_t toxic_bit_map_len = 0; /* in bits */ 581 582 #endif /* __i386 */ 583 584 /* 585 * Simple boot time debug facilities 586 */ 587 static char *prm_dbg_str[] = { 588 "%s:%d: '%s' is 0x%x\n", 589 "%s:%d: '%s' is 0x%llx\n" 590 }; 591 592 int prom_debug; 593 594 #define PRM_DEBUG(q) if (prom_debug) \ 595 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 596 #define PRM_POINT(q) if (prom_debug) \ 597 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 598 599 /* 600 * This structure is used to keep track of the intial allocations 601 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 602 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 603 */ 604 #define NUM_ALLOCATIONS 7 605 int num_allocations = 0; 606 struct { 607 void **al_ptr; 608 size_t al_size; 609 } allocations[NUM_ALLOCATIONS]; 610 size_t valloc_sz = 0; 611 uintptr_t valloc_base; 612 613 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 614 size = ROUND_UP_PAGE(size); \ 615 if (num_allocations == NUM_ALLOCATIONS) \ 616 panic("too many ADD_TO_ALLOCATIONS()"); \ 617 allocations[num_allocations].al_ptr = (void**)&ptr; \ 618 allocations[num_allocations].al_size = size; \ 619 valloc_sz += size; \ 620 ++num_allocations; \ 621 } 622 623 /* 624 * Allocate all the initial memory needed by the page allocator. 625 */ 626 static void 627 perform_allocations(void) 628 { 629 caddr_t mem; 630 int i; 631 int valloc_align; 632 633 PRM_DEBUG(valloc_base); 634 PRM_DEBUG(valloc_sz); 635 valloc_align = mmu.level_size[mmu.max_page_level > 0]; 636 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, valloc_align); 637 if (mem != (caddr_t)valloc_base) 638 panic("BOP_ALLOC() failed"); 639 bzero(mem, valloc_sz); 640 for (i = 0; i < num_allocations; ++i) { 641 *allocations[i].al_ptr = (void *)mem; 642 mem += allocations[i].al_size; 643 } 644 } 645 646 /* 647 * Our world looks like this at startup time. 648 * 649 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 650 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 651 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 652 * addresses are fixed in the binary at link time. 653 * 654 * On the text page: 655 * unix/genunix/krtld/module text loads. 656 * 657 * On the data page: 658 * unix/genunix/krtld/module data loads. 659 * 660 * Machine-dependent startup code 661 */ 662 void 663 startup(void) 664 { 665 #if !defined(__xpv) 666 extern void startup_bios_disk(void); 667 extern void startup_pci_bios(void); 668 extern int post_fastreboot; 669 #endif 670 extern cpuset_t cpu_ready_set; 671 672 /* 673 * Make sure that nobody tries to use sekpm until we have 674 * initialized it properly. 675 */ 676 #if defined(__amd64) 677 kpm_desired = 1; 678 #endif 679 kpm_enable = 0; 680 CPUSET_ONLY(cpu_ready_set, 0); /* cpu 0 is boot cpu */ 681 682 #if defined(__xpv) /* XXPV fix me! */ 683 { 684 extern int segvn_use_regions; 685 segvn_use_regions = 0; 686 } 687 #endif 688 progressbar_init(); 689 startup_init(); 690 #if defined(__xpv) 691 startup_xen_version(); 692 #endif 693 startup_memlist(); 694 startup_kmem(); 695 startup_vm(); 696 #if !defined(__xpv) 697 if (!post_fastreboot) 698 startup_pci_bios(); 699 #endif 700 #if defined(__xpv) 701 startup_xen_mca(); 702 #endif 703 startup_modules(); 704 #if !defined(__xpv) 705 if (!post_fastreboot) 706 startup_bios_disk(); 707 #endif 708 startup_end(); 709 progressbar_start(); 710 } 711 712 static void 713 startup_init() 714 { 715 PRM_POINT("startup_init() starting..."); 716 717 /* 718 * Complete the extraction of cpuid data 719 */ 720 cpuid_pass2(CPU); 721 722 (void) check_boot_version(BOP_GETVERSION(bootops)); 723 724 /* 725 * Check for prom_debug in boot environment 726 */ 727 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 728 ++prom_debug; 729 PRM_POINT("prom_debug found in boot enviroment"); 730 } 731 732 /* 733 * Collect node, cpu and memory configuration information. 734 */ 735 get_system_configuration(); 736 737 /* 738 * Halt if this is an unsupported processor. 739 */ 740 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 741 printf("\n486 processor (\"%s\") detected.\n", 742 CPU->cpu_brandstr); 743 halt("This processor is not supported by this release " 744 "of Solaris."); 745 } 746 747 PRM_POINT("startup_init() done"); 748 } 749 750 /* 751 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 752 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 753 * also filters out physical page zero. There is some reliance on the 754 * boot loader allocating only a few contiguous physical memory chunks. 755 */ 756 static void 757 avail_filter(uint64_t *addr, uint64_t *size) 758 { 759 uintptr_t va; 760 uintptr_t next_va; 761 pfn_t pfn; 762 uint64_t pfn_addr; 763 uint64_t pfn_eaddr; 764 uint_t prot; 765 size_t len; 766 uint_t change; 767 768 if (prom_debug) 769 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 770 *addr, *size); 771 772 /* 773 * page zero is required for BIOS.. never make it available 774 */ 775 if (*addr == 0) { 776 *addr += MMU_PAGESIZE; 777 *size -= MMU_PAGESIZE; 778 } 779 780 /* 781 * First we trim from the front of the range. Since kbm_probe() 782 * walks ranges in virtual order, but addr/size are physical, we need 783 * to the list until no changes are seen. This deals with the case 784 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 785 * but w < v. 786 */ 787 do { 788 change = 0; 789 for (va = KERNEL_TEXT; 790 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 791 va = next_va) { 792 793 next_va = va + len; 794 pfn_addr = pfn_to_pa(pfn); 795 pfn_eaddr = pfn_addr + len; 796 797 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 798 change = 1; 799 while (*size > 0 && len > 0) { 800 *addr += MMU_PAGESIZE; 801 *size -= MMU_PAGESIZE; 802 len -= MMU_PAGESIZE; 803 } 804 } 805 } 806 if (change && prom_debug) 807 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 808 *addr, *size); 809 } while (change); 810 811 /* 812 * Trim pages from the end of the range. 813 */ 814 for (va = KERNEL_TEXT; 815 *size > 0 && kbm_probe(&va, &len, &pfn, &prot) != 0; 816 va = next_va) { 817 818 next_va = va + len; 819 pfn_addr = pfn_to_pa(pfn); 820 821 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 822 *size = pfn_addr - *addr; 823 } 824 825 if (prom_debug) 826 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 827 *addr, *size); 828 } 829 830 static void 831 kpm_init() 832 { 833 struct segkpm_crargs b; 834 835 /* 836 * These variables were all designed for sfmmu in which segkpm is 837 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 838 * might use 2+ page sizes on a single machine, so none of these 839 * variables have a single correct value. They are set up as if we 840 * always use a 4KB pagesize, which should do no harm. In the long 841 * run, we should get rid of KPM's assumption that only a single 842 * pagesize is used. 843 */ 844 kpm_pgshft = MMU_PAGESHIFT; 845 kpm_pgsz = MMU_PAGESIZE; 846 kpm_pgoff = MMU_PAGEOFFSET; 847 kpmp2pshft = 0; 848 kpmpnpgs = 1; 849 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 850 851 PRM_POINT("about to create segkpm"); 852 rw_enter(&kas.a_lock, RW_WRITER); 853 854 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 855 panic("cannot attach segkpm"); 856 857 b.prot = PROT_READ | PROT_WRITE; 858 b.nvcolors = 1; 859 860 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 861 panic("segkpm_create segkpm"); 862 863 rw_exit(&kas.a_lock); 864 } 865 866 /* 867 * The debug info page provides enough information to allow external 868 * inspectors (e.g. when running under a hypervisor) to bootstrap 869 * themselves into allowing full-blown kernel debugging. 870 */ 871 static void 872 init_debug_info(void) 873 { 874 caddr_t mem; 875 debug_info_t *di; 876 877 #ifndef __lint 878 ASSERT(sizeof (debug_info_t) < MMU_PAGESIZE); 879 #endif 880 881 mem = BOP_ALLOC(bootops, (caddr_t)DEBUG_INFO_VA, MMU_PAGESIZE, 882 MMU_PAGESIZE); 883 884 if (mem != (caddr_t)DEBUG_INFO_VA) 885 panic("BOP_ALLOC() failed"); 886 bzero(mem, MMU_PAGESIZE); 887 888 di = (debug_info_t *)mem; 889 890 di->di_magic = DEBUG_INFO_MAGIC; 891 di->di_version = DEBUG_INFO_VERSION; 892 di->di_modules = (uintptr_t)&modules; 893 di->di_s_text = (uintptr_t)s_text; 894 di->di_e_text = (uintptr_t)e_text; 895 di->di_s_data = (uintptr_t)s_data; 896 di->di_e_data = (uintptr_t)e_data; 897 di->di_hat_htable_off = offsetof(hat_t, hat_htable); 898 di->di_ht_pfn_off = offsetof(htable_t, ht_pfn); 899 } 900 901 /* 902 * Build the memlists and other kernel essential memory system data structures. 903 * This is everything at valloc_base. 904 */ 905 static void 906 startup_memlist(void) 907 { 908 size_t memlist_sz; 909 size_t memseg_sz; 910 size_t pagehash_sz; 911 size_t pp_sz; 912 uintptr_t va; 913 size_t len; 914 uint_t prot; 915 pfn_t pfn; 916 int memblocks; 917 caddr_t pagecolor_mem; 918 size_t pagecolor_memsz; 919 caddr_t page_ctrs_mem; 920 size_t page_ctrs_size; 921 size_t pse_table_alloc_size; 922 struct memlist *current; 923 extern void startup_build_mem_nodes(struct memlist *); 924 925 /* XX64 fix these - they should be in include files */ 926 extern size_t page_coloring_init(uint_t, int, int); 927 extern void page_coloring_setup(caddr_t); 928 929 PRM_POINT("startup_memlist() starting..."); 930 931 /* 932 * Use leftover large page nucleus text/data space for loadable modules. 933 * Use at most MODTEXT/MODDATA. 934 */ 935 len = kbm_nucleus_size; 936 ASSERT(len > MMU_PAGESIZE); 937 938 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 939 e_moddata = (caddr_t)P2ROUNDUP((uintptr_t)e_data, (uintptr_t)len); 940 if (e_moddata - moddata > MODDATA) 941 e_moddata = moddata + MODDATA; 942 943 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 944 e_modtext = (caddr_t)P2ROUNDUP((uintptr_t)e_text, (uintptr_t)len); 945 if (e_modtext - modtext > MODTEXT) 946 e_modtext = modtext + MODTEXT; 947 948 econtig = e_moddata; 949 950 PRM_DEBUG(modtext); 951 PRM_DEBUG(e_modtext); 952 PRM_DEBUG(moddata); 953 PRM_DEBUG(e_moddata); 954 PRM_DEBUG(econtig); 955 956 /* 957 * Examine the boot loader physical memory map to find out: 958 * - total memory in system - physinstalled 959 * - the max physical address - physmax 960 * - the number of discontiguous segments of memory. 961 */ 962 if (prom_debug) 963 print_memlist("boot physinstalled", 964 bootops->boot_mem->physinstalled); 965 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 966 &physinstalled, &memblocks); 967 PRM_DEBUG(physmax); 968 PRM_DEBUG(physinstalled); 969 PRM_DEBUG(memblocks); 970 971 /* 972 * Initialize hat's mmu parameters. 973 * Check for enforce-prot-exec in boot environment. It's used to 974 * enable/disable support for the page table entry NX bit. 975 * The default is to enforce PROT_EXEC on processors that support NX. 976 * Boot seems to round up the "len", but 8 seems to be big enough. 977 */ 978 mmu_init(); 979 980 #ifdef __i386 981 /* 982 * physmax is lowered if there is more memory than can be 983 * physically addressed in 32 bit (PAE/non-PAE) modes. 984 */ 985 if (mmu.pae_hat) { 986 if (PFN_ABOVE64G(physmax)) { 987 physinstalled -= (physmax - (PFN_64G - 1)); 988 physmax = PFN_64G - 1; 989 } 990 } else { 991 if (PFN_ABOVE4G(physmax)) { 992 physinstalled -= (physmax - (PFN_4G - 1)); 993 physmax = PFN_4G - 1; 994 } 995 } 996 #endif 997 998 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 999 1000 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 1001 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 1002 char value[8]; 1003 1004 if (len < 8) 1005 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 1006 else 1007 (void) strcpy(value, ""); 1008 if (strcmp(value, "off") == 0) 1009 mmu.pt_nx = 0; 1010 } 1011 PRM_DEBUG(mmu.pt_nx); 1012 1013 /* 1014 * We will need page_t's for every page in the system, except for 1015 * memory mapped at or above above the start of the kernel text segment. 1016 * 1017 * pages above e_modtext are attributed to kernel debugger (obp_pages) 1018 */ 1019 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 1020 obp_pages = 0; 1021 va = KERNEL_TEXT; 1022 while (kbm_probe(&va, &len, &pfn, &prot) != 0) { 1023 npages -= len >> MMU_PAGESHIFT; 1024 if (va >= (uintptr_t)e_moddata) 1025 obp_pages += len >> MMU_PAGESHIFT; 1026 va += len; 1027 } 1028 PRM_DEBUG(npages); 1029 PRM_DEBUG(obp_pages); 1030 1031 /* 1032 * If physmem is patched to be non-zero, use it instead of the computed 1033 * value unless it is larger than the actual amount of memory on hand. 1034 */ 1035 if (physmem == 0 || physmem > npages) { 1036 physmem = npages; 1037 } else if (physmem < npages) { 1038 orig_npages = npages; 1039 npages = physmem; 1040 } 1041 PRM_DEBUG(physmem); 1042 1043 /* 1044 * We now compute the sizes of all the initial allocations for 1045 * structures the kernel needs in order do kmem_alloc(). These 1046 * include: 1047 * memsegs 1048 * memlists 1049 * page hash table 1050 * page_t's 1051 * page coloring data structs 1052 */ 1053 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1054 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1055 PRM_DEBUG(memseg_sz); 1056 1057 /* 1058 * Reserve space for memlists. There's no real good way to know exactly 1059 * how much room we'll need, but this should be a good upper bound. 1060 */ 1061 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1062 (memblocks + POSS_NEW_FRAGMENTS)); 1063 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1064 PRM_DEBUG(memlist_sz); 1065 1066 /* 1067 * The page structure hash table size is a power of 2 1068 * such that the average hash chain length is PAGE_HASHAVELEN. 1069 */ 1070 page_hashsz = npages / PAGE_HASHAVELEN; 1071 page_hashsz = 1 << highbit(page_hashsz); 1072 pagehash_sz = sizeof (struct page *) * page_hashsz; 1073 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1074 PRM_DEBUG(pagehash_sz); 1075 1076 /* 1077 * Set aside room for the page structures themselves. 1078 */ 1079 PRM_DEBUG(npages); 1080 pp_sz = sizeof (struct page) * npages; 1081 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1082 PRM_DEBUG(pp_sz); 1083 1084 /* 1085 * determine l2 cache info and memory size for page coloring 1086 */ 1087 (void) getl2cacheinfo(CPU, 1088 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1089 pagecolor_memsz = 1090 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1091 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1092 PRM_DEBUG(pagecolor_memsz); 1093 1094 page_ctrs_size = page_ctrs_sz(); 1095 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1096 PRM_DEBUG(page_ctrs_size); 1097 1098 /* 1099 * Allocate the array that protects pp->p_selock. 1100 */ 1101 pse_shift = size_pse_array(physmem, max_ncpus); 1102 pse_table_size = 1 << pse_shift; 1103 pse_table_alloc_size = pse_table_size * sizeof (pad_mutex_t); 1104 ADD_TO_ALLOCATIONS(pse_mutex, pse_table_alloc_size); 1105 1106 #if defined(__amd64) 1107 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1108 valloc_base = VALLOC_BASE; 1109 1110 /* 1111 * The default values of VALLOC_BASE and SEGKPM_BASE should work 1112 * for values of physmax up to 1 Terabyte. They need adjusting when 1113 * memory is at addresses above 1 TB. 1114 */ 1115 if (physmax + 1 > mmu_btop(TERABYTE)) { 1116 uint64_t kpm_resv_amount = mmu_ptob(physmax + 1); 1117 1118 /* Round to largest possible pagesize for now */ 1119 kpm_resv_amount = P2ROUNDUP(kpm_resv_amount, ONE_GIG); 1120 1121 segkpm_base = -(2 * kpm_resv_amount); /* down from top VA */ 1122 1123 /* make sure we leave some space for user apps above hole */ 1124 segkpm_base = MAX(segkpm_base, AMD64_VA_HOLE_END + TERABYTE); 1125 if (segkpm_base > SEGKPM_BASE) 1126 segkpm_base = SEGKPM_BASE; 1127 PRM_DEBUG(segkpm_base); 1128 1129 valloc_base = segkpm_base + kpm_resv_amount; 1130 PRM_DEBUG(valloc_base); 1131 } 1132 #else /* __i386 */ 1133 valloc_base = (uintptr_t)(MISC_VA_BASE - valloc_sz); 1134 valloc_base = P2ALIGN(valloc_base, mmu.level_size[1]); 1135 PRM_DEBUG(valloc_base); 1136 #endif /* __i386 */ 1137 1138 /* 1139 * do all the initial allocations 1140 */ 1141 perform_allocations(); 1142 1143 /* 1144 * Build phys_install and phys_avail in kernel memspace. 1145 * - phys_install should be all memory in the system. 1146 * - phys_avail is phys_install minus any memory mapped before this 1147 * point above KERNEL_TEXT. 1148 */ 1149 current = phys_install = memlist; 1150 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1151 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1152 panic("physinstalled was too big!"); 1153 if (prom_debug) 1154 print_memlist("phys_install", phys_install); 1155 1156 phys_avail = current; 1157 PRM_POINT("Building phys_avail:\n"); 1158 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1159 avail_filter); 1160 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1161 panic("physavail was too big!"); 1162 if (prom_debug) 1163 print_memlist("phys_avail", phys_avail); 1164 1165 /* 1166 * setup page coloring 1167 */ 1168 page_coloring_setup(pagecolor_mem); 1169 page_lock_init(); /* currently a no-op */ 1170 1171 /* 1172 * free page list counters 1173 */ 1174 (void) page_ctrs_alloc(page_ctrs_mem); 1175 1176 /* 1177 * Size the pcf array based on the number of cpus in the box at 1178 * boot time. 1179 */ 1180 1181 pcf_init(); 1182 1183 /* 1184 * Initialize the page structures from the memory lists. 1185 */ 1186 availrmem_initial = availrmem = freemem = 0; 1187 PRM_POINT("Calling kphysm_init()..."); 1188 npages = kphysm_init(pp_base, npages); 1189 PRM_POINT("kphysm_init() done"); 1190 PRM_DEBUG(npages); 1191 1192 init_debug_info(); 1193 1194 /* 1195 * Now that page_t's have been initialized, remove all the 1196 * initial allocation pages from the kernel free page lists. 1197 */ 1198 boot_mapin((caddr_t)valloc_base, valloc_sz); 1199 boot_mapin((caddr_t)MISC_VA_BASE, MISC_VA_SIZE); 1200 PRM_POINT("startup_memlist() done"); 1201 1202 PRM_DEBUG(valloc_sz); 1203 1204 #if defined(__amd64) 1205 if ((availrmem >> (30 - MMU_PAGESHIFT)) >= 1206 textrepl_min_gb && l2cache_sz <= 2 << 20) { 1207 extern size_t textrepl_size_thresh; 1208 textrepl_size_thresh = (16 << 20) - 1; 1209 } 1210 #endif 1211 } 1212 1213 /* 1214 * Layout the kernel's part of address space and initialize kmem allocator. 1215 */ 1216 static void 1217 startup_kmem(void) 1218 { 1219 extern void page_set_colorequiv_arr(void); 1220 const char *fmt = "?features: %b\n"; 1221 1222 PRM_POINT("startup_kmem() starting..."); 1223 1224 #if defined(__amd64) 1225 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1226 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1227 "systems."); 1228 kernelbase = segkpm_base - KERNEL_REDZONE_SIZE; 1229 core_base = (uintptr_t)COREHEAP_BASE; 1230 core_size = (size_t)MISC_VA_BASE - COREHEAP_BASE; 1231 #else /* __i386 */ 1232 /* 1233 * We configure kernelbase based on: 1234 * 1235 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1236 * KERNELBASE_MAX. we large page align eprom_kernelbase 1237 * 1238 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1239 * On large memory systems we must lower kernelbase to allow 1240 * enough room for page_t's for all of memory. 1241 * 1242 * The value set here, might be changed a little later. 1243 */ 1244 if (eprom_kernelbase) { 1245 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1246 if (kernelbase > KERNELBASE_MAX) 1247 kernelbase = KERNELBASE_MAX; 1248 } else { 1249 kernelbase = (uintptr_t)KERNELBASE; 1250 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1251 } 1252 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1253 core_base = valloc_base; 1254 core_size = 0; 1255 #endif /* __i386 */ 1256 1257 PRM_DEBUG(core_base); 1258 PRM_DEBUG(core_size); 1259 PRM_DEBUG(kernelbase); 1260 1261 #if defined(__i386) 1262 segkp_fromheap = 1; 1263 #endif /* __i386 */ 1264 1265 ekernelheap = (char *)core_base; 1266 PRM_DEBUG(ekernelheap); 1267 1268 /* 1269 * Now that we know the real value of kernelbase, 1270 * update variables that were initialized with a value of 1271 * KERNELBASE (in common/conf/param.c). 1272 * 1273 * XXX The problem with this sort of hackery is that the 1274 * compiler just may feel like putting the const declarations 1275 * (in param.c) into the .text section. Perhaps they should 1276 * just be declared as variables there? 1277 */ 1278 1279 *(uintptr_t *)&_kernelbase = kernelbase; 1280 *(uintptr_t *)&_userlimit = kernelbase; 1281 #if defined(__amd64) 1282 *(uintptr_t *)&_userlimit -= KERNELBASE - USERLIMIT; 1283 #else 1284 *(uintptr_t *)&_userlimit32 = _userlimit; 1285 #endif 1286 PRM_DEBUG(_kernelbase); 1287 PRM_DEBUG(_userlimit); 1288 PRM_DEBUG(_userlimit32); 1289 1290 layout_kernel_va(); 1291 1292 #if defined(__i386) 1293 /* 1294 * If segmap is too large we can push the bottom of the kernel heap 1295 * higher than the base. Or worse, it could exceed the top of the 1296 * VA space entirely, causing it to wrap around. 1297 */ 1298 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1299 panic("too little address space available for kernelheap," 1300 " use eeprom for lower kernelbase or smaller segmapsize"); 1301 #endif /* __i386 */ 1302 1303 /* 1304 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1305 */ 1306 kernelheap_init(kernelheap, ekernelheap, 1307 kernelheap + MMU_PAGESIZE, 1308 (void *)core_base, (void *)(core_base + core_size)); 1309 1310 #if defined(__xpv) 1311 /* 1312 * Link pending events struct into cpu struct 1313 */ 1314 CPU->cpu_m.mcpu_evt_pend = &cpu0_evt_data; 1315 #endif 1316 /* 1317 * Initialize kernel memory allocator. 1318 */ 1319 kmem_init(); 1320 1321 /* 1322 * Factor in colorequiv to check additional 'equivalent' bins 1323 */ 1324 page_set_colorequiv_arr(); 1325 1326 /* 1327 * print this out early so that we know what's going on 1328 */ 1329 cmn_err(CE_CONT, fmt, x86_feature, FMT_X86_FEATURE); 1330 1331 /* 1332 * Initialize bp_mapin(). 1333 */ 1334 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1335 1336 /* 1337 * orig_npages is non-zero if physmem has been configured for less 1338 * than the available memory. 1339 */ 1340 if (orig_npages) { 1341 cmn_err(CE_WARN, "!%slimiting physmem to 0x%lx of 0x%lx pages", 1342 (npages == PHYSMEM ? "Due to virtual address space " : ""), 1343 npages, orig_npages); 1344 } 1345 #if defined(__i386) 1346 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1347 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1348 "System using 0x%lx", 1349 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1350 #endif 1351 1352 #ifdef KERNELBASE_ABI_MIN 1353 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1354 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1355 "i386 ABI compliant.", (uintptr_t)kernelbase); 1356 } 1357 #endif 1358 1359 #ifdef __xpv 1360 /* 1361 * Some of the xen start information has to be relocated up 1362 * into the kernel's permanent address space. 1363 */ 1364 PRM_POINT("calling xen_relocate_start_info()"); 1365 xen_relocate_start_info(); 1366 PRM_POINT("xen_relocate_start_info() done"); 1367 1368 /* 1369 * (Update the vcpu pointer in our cpu structure to point into 1370 * the relocated shared info.) 1371 */ 1372 CPU->cpu_m.mcpu_vcpu_info = 1373 &HYPERVISOR_shared_info->vcpu_info[CPU->cpu_id]; 1374 #endif 1375 1376 PRM_POINT("startup_kmem() done"); 1377 } 1378 1379 #ifndef __xpv 1380 /* 1381 * If we have detected that we are running in an HVM environment, we need 1382 * to prepend the PV driver directory to the module search path. 1383 */ 1384 #define HVM_MOD_DIR "/platform/i86hvm/kernel" 1385 static void 1386 update_default_path() 1387 { 1388 char *current, *newpath; 1389 int newlen; 1390 1391 /* 1392 * We are about to resync with krtld. krtld will reset its 1393 * internal module search path iff Solaris has set default_path. 1394 * We want to be sure we're prepending this new directory to the 1395 * right search path. 1396 */ 1397 current = (default_path == NULL) ? kobj_module_path : default_path; 1398 1399 newlen = strlen(HVM_MOD_DIR) + strlen(current) + 1; 1400 newpath = kmem_alloc(newlen, KM_SLEEP); 1401 (void) strcpy(newpath, HVM_MOD_DIR); 1402 (void) strcat(newpath, " "); 1403 (void) strcat(newpath, current); 1404 1405 default_path = newpath; 1406 } 1407 #endif 1408 1409 static void 1410 startup_modules(void) 1411 { 1412 int cnt; 1413 extern void prom_setup(void); 1414 int32_t v, h; 1415 char d[11]; 1416 char *cp; 1417 cmi_hdl_t hdl; 1418 1419 PRM_POINT("startup_modules() starting..."); 1420 1421 #ifndef __xpv 1422 /* 1423 * Initialize ten-micro second timer so that drivers will 1424 * not get short changed in their init phase. This was 1425 * not getting called until clkinit which, on fast cpu's 1426 * caused the drv_usecwait to be way too short. 1427 */ 1428 microfind(); 1429 1430 if (get_hwenv() == HW_XEN_HVM) 1431 update_default_path(); 1432 #endif 1433 1434 /* 1435 * Read the GMT lag from /etc/rtc_config. 1436 */ 1437 sgmtl(process_rtc_config_file()); 1438 1439 /* 1440 * Calculate default settings of system parameters based upon 1441 * maxusers, yet allow to be overridden via the /etc/system file. 1442 */ 1443 param_calc(0); 1444 1445 mod_setup(); 1446 1447 /* 1448 * Initialize system parameters. 1449 */ 1450 param_init(); 1451 1452 /* 1453 * Initialize the default brands 1454 */ 1455 brand_init(); 1456 1457 /* 1458 * maxmem is the amount of physical memory we're playing with. 1459 */ 1460 maxmem = physmem; 1461 1462 /* 1463 * Initialize segment management stuff. 1464 */ 1465 seg_init(); 1466 1467 if (modload("fs", "specfs") == -1) 1468 halt("Can't load specfs"); 1469 1470 if (modload("fs", "devfs") == -1) 1471 halt("Can't load devfs"); 1472 1473 if (modload("fs", "dev") == -1) 1474 halt("Can't load dev"); 1475 1476 (void) modloadonly("sys", "lbl_edition"); 1477 1478 dispinit(); 1479 1480 /* 1481 * This is needed here to initialize hw_serial[] for cluster booting. 1482 */ 1483 if ((h = set_soft_hostid()) == HW_INVALID_HOSTID) { 1484 cmn_err(CE_WARN, "Unable to set hostid"); 1485 } else { 1486 for (v = h, cnt = 0; cnt < 10; cnt++) { 1487 d[cnt] = (char)(v % 10); 1488 v /= 10; 1489 if (v == 0) 1490 break; 1491 } 1492 for (cp = hw_serial; cnt >= 0; cnt--) 1493 *cp++ = d[cnt] + '0'; 1494 *cp = 0; 1495 } 1496 1497 /* Read cluster configuration data. */ 1498 clconf_init(); 1499 1500 #if defined(__xpv) 1501 ec_init(); 1502 gnttab_init(); 1503 (void) xs_early_init(); 1504 #endif /* __xpv */ 1505 1506 /* 1507 * Create a kernel device tree. First, create rootnex and 1508 * then invoke bus specific code to probe devices. 1509 */ 1510 setup_ddi(); 1511 1512 /* 1513 * Set up the CPU module subsystem for the boot cpu in the native 1514 * case, and all physical cpu resource in the xpv dom0 case. 1515 * Modifies the device tree, so this must be done after 1516 * setup_ddi(). 1517 */ 1518 #ifdef __xpv 1519 /* 1520 * If paravirtualized and on dom0 then we initialize all physical 1521 * cpu handles now; if paravirtualized on a domU then do not 1522 * initialize. 1523 */ 1524 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1525 xen_mc_lcpu_cookie_t cpi; 1526 1527 for (cpi = xen_physcpu_next(NULL); cpi != NULL; 1528 cpi = xen_physcpu_next(cpi)) { 1529 if ((hdl = cmi_init(CMI_HDL_SOLARIS_xVM_MCA, 1530 xen_physcpu_chipid(cpi), xen_physcpu_coreid(cpi), 1531 xen_physcpu_strandid(cpi))) != NULL && 1532 (x86_feature & X86_MCA)) 1533 cmi_mca_init(hdl); 1534 } 1535 } 1536 #else 1537 /* 1538 * Initialize a handle for the boot cpu - others will initialize 1539 * as they startup. Do not do this if we know we are in an HVM domU. 1540 */ 1541 if ((get_hwenv() != HW_XEN_HVM) && 1542 (hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1543 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL && 1544 (x86_feature & X86_MCA)) 1545 cmi_mca_init(hdl); 1546 #endif /* __xpv */ 1547 1548 /* 1549 * Fake a prom tree such that /dev/openprom continues to work 1550 */ 1551 PRM_POINT("startup_modules: calling prom_setup..."); 1552 prom_setup(); 1553 PRM_POINT("startup_modules: done"); 1554 1555 /* 1556 * Load all platform specific modules 1557 */ 1558 PRM_POINT("startup_modules: calling psm_modload..."); 1559 psm_modload(); 1560 1561 PRM_POINT("startup_modules() done"); 1562 } 1563 1564 /* 1565 * claim a "setaside" boot page for use in the kernel 1566 */ 1567 page_t * 1568 boot_claim_page(pfn_t pfn) 1569 { 1570 page_t *pp; 1571 1572 pp = page_numtopp_nolock(pfn); 1573 ASSERT(pp != NULL); 1574 1575 if (PP_ISBOOTPAGES(pp)) { 1576 if (pp->p_next != NULL) 1577 pp->p_next->p_prev = pp->p_prev; 1578 if (pp->p_prev == NULL) 1579 bootpages = pp->p_next; 1580 else 1581 pp->p_prev->p_next = pp->p_next; 1582 } else { 1583 /* 1584 * htable_attach() expects a base pagesize page 1585 */ 1586 if (pp->p_szc != 0) 1587 page_boot_demote(pp); 1588 pp = page_numtopp(pfn, SE_EXCL); 1589 } 1590 return (pp); 1591 } 1592 1593 /* 1594 * Walk through the pagetables looking for pages mapped in by boot. If the 1595 * setaside flag is set the pages are expected to be returned to the 1596 * kernel later in boot, so we add them to the bootpages list. 1597 */ 1598 static void 1599 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1600 { 1601 uintptr_t va = low; 1602 size_t len; 1603 uint_t prot; 1604 pfn_t pfn; 1605 page_t *pp; 1606 pgcnt_t boot_protect_cnt = 0; 1607 1608 while (kbm_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1609 if (va + len >= high) 1610 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1611 "legal range.", len, (void *)va); 1612 1613 while (len > 0) { 1614 pp = page_numtopp_alloc(pfn); 1615 if (pp != NULL) { 1616 if (setaside == 0) 1617 panic("Unexpected mapping by boot. " 1618 "addr=%p pfn=%lx\n", 1619 (void *)va, pfn); 1620 1621 pp->p_next = bootpages; 1622 pp->p_prev = NULL; 1623 PP_SETBOOTPAGES(pp); 1624 if (bootpages != NULL) { 1625 bootpages->p_prev = pp; 1626 } 1627 bootpages = pp; 1628 ++boot_protect_cnt; 1629 } 1630 1631 ++pfn; 1632 len -= MMU_PAGESIZE; 1633 va += MMU_PAGESIZE; 1634 } 1635 } 1636 PRM_DEBUG(boot_protect_cnt); 1637 } 1638 1639 /* 1640 * 1641 */ 1642 static void 1643 layout_kernel_va(void) 1644 { 1645 PRM_POINT("layout_kernel_va() starting..."); 1646 /* 1647 * Establish the final size of the kernel's heap, size of segmap, 1648 * segkp, etc. 1649 */ 1650 1651 #if defined(__amd64) 1652 1653 kpm_vbase = (caddr_t)segkpm_base; 1654 kpm_size = ROUND_UP_LPAGE(mmu_ptob(physmax + 1)); 1655 if ((uintptr_t)kpm_vbase + kpm_size > (uintptr_t)valloc_base) 1656 panic("not enough room for kpm!"); 1657 PRM_DEBUG(kpm_size); 1658 PRM_DEBUG(kpm_vbase); 1659 1660 /* 1661 * By default we create a seg_kp in 64 bit kernels, it's a little 1662 * faster to access than embedding it in the heap. 1663 */ 1664 segkp_base = (caddr_t)valloc_base + valloc_sz; 1665 if (!segkp_fromheap) { 1666 size_t sz = mmu_ptob(segkpsize); 1667 1668 /* 1669 * determine size of segkp 1670 */ 1671 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1672 sz = SEGKPDEFSIZE; 1673 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1674 "segkpsize has been reset to %ld pages", 1675 mmu_btop(sz)); 1676 } 1677 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1678 1679 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1680 } 1681 PRM_DEBUG(segkp_base); 1682 PRM_DEBUG(segkpsize); 1683 1684 /* 1685 * segzio is used for ZFS cached data. It uses a distinct VA 1686 * segment (from kernel heap) so that we can easily tell not to 1687 * include it in kernel crash dumps on 64 bit kernels. The trick is 1688 * to give it lots of VA, but not constrain the kernel heap. 1689 * We scale the size of segzio linearly with physmem up to 1690 * SEGZIOMAXSIZE. Above that amount it scales at 50% of physmem. 1691 */ 1692 segzio_base = segkp_base + mmu_ptob(segkpsize); 1693 if (segzio_fromheap) { 1694 segziosize = 0; 1695 } else { 1696 size_t physmem_size = mmu_ptob(physmem); 1697 size_t size = (segziosize == 0) ? 1698 physmem_size : mmu_ptob(segziosize); 1699 1700 if (size < SEGZIOMINSIZE) 1701 size = SEGZIOMINSIZE; 1702 if (size > SEGZIOMAXSIZE) { 1703 size = SEGZIOMAXSIZE; 1704 if (physmem_size > size) 1705 size += (physmem_size - size) / 2; 1706 } 1707 segziosize = mmu_btop(ROUND_UP_LPAGE(size)); 1708 } 1709 PRM_DEBUG(segziosize); 1710 PRM_DEBUG(segzio_base); 1711 1712 /* 1713 * Put the range of VA for device mappings next, kmdb knows to not 1714 * grep in this range of addresses. 1715 */ 1716 toxic_addr = 1717 ROUND_UP_LPAGE((uintptr_t)segzio_base + mmu_ptob(segziosize)); 1718 PRM_DEBUG(toxic_addr); 1719 segmap_start = ROUND_UP_LPAGE(toxic_addr + toxic_size); 1720 #else /* __i386 */ 1721 segmap_start = ROUND_UP_LPAGE(kernelbase); 1722 #endif /* __i386 */ 1723 PRM_DEBUG(segmap_start); 1724 1725 /* 1726 * Users can change segmapsize through eeprom. If the variable 1727 * is tuned through eeprom, there is no upper bound on the 1728 * size of segmap. 1729 */ 1730 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1731 1732 #if defined(__i386) 1733 /* 1734 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1735 * the bottom of the kernel's address range. Set aside space for a 1736 * small red zone just below the start of segmap. 1737 */ 1738 segmap_start += KERNEL_REDZONE_SIZE; 1739 segmapsize -= KERNEL_REDZONE_SIZE; 1740 #endif 1741 1742 PRM_DEBUG(segmap_start); 1743 PRM_DEBUG(segmapsize); 1744 kernelheap = (caddr_t)ROUND_UP_LPAGE(segmap_start + segmapsize); 1745 PRM_DEBUG(kernelheap); 1746 PRM_POINT("layout_kernel_va() done..."); 1747 } 1748 1749 /* 1750 * Finish initializing the VM system, now that we are no longer 1751 * relying on the boot time memory allocators. 1752 */ 1753 static void 1754 startup_vm(void) 1755 { 1756 struct segmap_crargs a; 1757 1758 extern int use_brk_lpg, use_stk_lpg; 1759 1760 PRM_POINT("startup_vm() starting..."); 1761 1762 /* 1763 * Initialize the hat layer. 1764 */ 1765 hat_init(); 1766 1767 /* 1768 * Do final allocations of HAT data structures that need to 1769 * be allocated before quiescing the boot loader. 1770 */ 1771 PRM_POINT("Calling hat_kern_alloc()..."); 1772 hat_kern_alloc((caddr_t)segmap_start, segmapsize, ekernelheap); 1773 PRM_POINT("hat_kern_alloc() done"); 1774 1775 #ifndef __xpv 1776 /* 1777 * Setup Page Attribute Table 1778 */ 1779 pat_sync(); 1780 #endif 1781 1782 /* 1783 * The next two loops are done in distinct steps in order 1784 * to be sure that any page that is doubly mapped (both above 1785 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1786 * Note this may never happen, but it might someday. 1787 */ 1788 bootpages = NULL; 1789 PRM_POINT("Protecting boot pages"); 1790 1791 /* 1792 * Protect any pages mapped above KERNEL_TEXT that somehow have 1793 * page_t's. This can only happen if something weird allocated 1794 * in this range (like kadb/kmdb). 1795 */ 1796 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1797 1798 /* 1799 * Before we can take over memory allocation/mapping from the boot 1800 * loader we must remove from our free page lists any boot allocated 1801 * pages that stay mapped until release_bootstrap(). 1802 */ 1803 protect_boot_range(0, kernelbase, 1); 1804 1805 1806 /* 1807 * Switch to running on regular HAT (not boot_mmu) 1808 */ 1809 PRM_POINT("Calling hat_kern_setup()..."); 1810 hat_kern_setup(); 1811 1812 /* 1813 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1814 */ 1815 bop_no_more_mem(); 1816 1817 PRM_POINT("hat_kern_setup() done"); 1818 1819 hat_cpu_online(CPU); 1820 1821 /* 1822 * Initialize VM system 1823 */ 1824 PRM_POINT("Calling kvm_init()..."); 1825 kvm_init(); 1826 PRM_POINT("kvm_init() done"); 1827 1828 /* 1829 * Tell kmdb that the VM system is now working 1830 */ 1831 if (boothowto & RB_DEBUG) 1832 kdi_dvec_vmready(); 1833 1834 #if defined(__xpv) 1835 /* 1836 * Populate the I/O pool on domain 0 1837 */ 1838 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1839 extern long populate_io_pool(void); 1840 long init_io_pool_cnt; 1841 1842 PRM_POINT("Populating reserve I/O page pool"); 1843 init_io_pool_cnt = populate_io_pool(); 1844 PRM_DEBUG(init_io_pool_cnt); 1845 } 1846 #endif 1847 /* 1848 * Mangle the brand string etc. 1849 */ 1850 cpuid_pass3(CPU); 1851 1852 #if defined(__amd64) 1853 1854 /* 1855 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1856 */ 1857 device_arena = vmem_create("device", (void *)toxic_addr, 1858 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1859 1860 #else /* __i386 */ 1861 1862 /* 1863 * allocate the bit map that tracks toxic pages 1864 */ 1865 toxic_bit_map_len = btop((ulong_t)(valloc_base - kernelbase)); 1866 PRM_DEBUG(toxic_bit_map_len); 1867 toxic_bit_map = 1868 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1869 ASSERT(toxic_bit_map != NULL); 1870 PRM_DEBUG(toxic_bit_map); 1871 1872 #endif /* __i386 */ 1873 1874 1875 /* 1876 * Now that we've got more VA, as well as the ability to allocate from 1877 * it, tell the debugger. 1878 */ 1879 if (boothowto & RB_DEBUG) 1880 kdi_dvec_memavail(); 1881 1882 /* 1883 * The following code installs a special page fault handler (#pf) 1884 * to work around a pentium bug. 1885 */ 1886 #if !defined(__amd64) && !defined(__xpv) 1887 if (x86_type == X86_TYPE_P5) { 1888 desctbr_t idtr; 1889 gate_desc_t *newidt; 1890 1891 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1892 panic("failed to install pentium_pftrap"); 1893 1894 bcopy(idt0, newidt, NIDT * sizeof (*idt0)); 1895 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1896 KCS_SEL, SDT_SYSIGT, TRP_KPL, 0); 1897 1898 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1899 PROT_READ | PROT_EXEC); 1900 1901 CPU->cpu_idt = newidt; 1902 idtr.dtr_base = (uintptr_t)CPU->cpu_idt; 1903 idtr.dtr_limit = (NIDT * sizeof (*idt0)) - 1; 1904 wr_idtr(&idtr); 1905 } 1906 #endif /* !__amd64 */ 1907 1908 #if !defined(__xpv) 1909 /* 1910 * Map page pfn=0 for drivers, such as kd, that need to pick up 1911 * parameters left there by controllers/BIOS. 1912 */ 1913 PRM_POINT("setup up p0_va"); 1914 p0_va = i86devmap(0, 1, PROT_READ); 1915 PRM_DEBUG(p0_va); 1916 #endif 1917 1918 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1919 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1920 1921 /* 1922 * disable automatic large pages for small memory systems or 1923 * when the disable flag is set. 1924 * 1925 * Do not yet consider page sizes larger than 2m/4m. 1926 */ 1927 if (!auto_lpg_disable && mmu.max_page_level > 0) { 1928 max_uheap_lpsize = LEVEL_SIZE(1); 1929 max_ustack_lpsize = LEVEL_SIZE(1); 1930 max_privmap_lpsize = LEVEL_SIZE(1); 1931 max_uidata_lpsize = LEVEL_SIZE(1); 1932 max_utext_lpsize = LEVEL_SIZE(1); 1933 max_shm_lpsize = LEVEL_SIZE(1); 1934 } 1935 if (physmem < privm_lpg_min_physmem || mmu.max_page_level == 0 || 1936 auto_lpg_disable) { 1937 use_brk_lpg = 0; 1938 use_stk_lpg = 0; 1939 } 1940 mcntl0_lpsize = LEVEL_SIZE(mmu.umax_page_level); 1941 1942 PRM_POINT("Calling hat_init_finish()..."); 1943 hat_init_finish(); 1944 PRM_POINT("hat_init_finish() done"); 1945 1946 /* 1947 * Initialize the segkp segment type. 1948 */ 1949 rw_enter(&kas.a_lock, RW_WRITER); 1950 PRM_POINT("Attaching segkp"); 1951 if (segkp_fromheap) { 1952 segkp->s_as = &kas; 1953 } else if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1954 segkp) < 0) { 1955 panic("startup: cannot attach segkp"); 1956 /*NOTREACHED*/ 1957 } 1958 PRM_POINT("Doing segkp_create()"); 1959 if (segkp_create(segkp) != 0) { 1960 panic("startup: segkp_create failed"); 1961 /*NOTREACHED*/ 1962 } 1963 PRM_DEBUG(segkp); 1964 rw_exit(&kas.a_lock); 1965 1966 /* 1967 * kpm segment 1968 */ 1969 segmap_kpm = 0; 1970 if (kpm_desired) { 1971 kpm_init(); 1972 kpm_enable = 1; 1973 } 1974 1975 /* 1976 * Now create segmap segment. 1977 */ 1978 rw_enter(&kas.a_lock, RW_WRITER); 1979 if (seg_attach(&kas, (caddr_t)segmap_start, segmapsize, segmap) < 0) { 1980 panic("cannot attach segmap"); 1981 /*NOTREACHED*/ 1982 } 1983 PRM_DEBUG(segmap); 1984 1985 a.prot = PROT_READ | PROT_WRITE; 1986 a.shmsize = 0; 1987 a.nfreelist = segmapfreelists; 1988 1989 if (segmap_create(segmap, (caddr_t)&a) != 0) 1990 panic("segmap_create segmap"); 1991 rw_exit(&kas.a_lock); 1992 1993 setup_vaddr_for_ppcopy(CPU); 1994 1995 segdev_init(); 1996 #if defined(__xpv) 1997 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1998 #endif 1999 pmem_init(); 2000 2001 PRM_POINT("startup_vm() done"); 2002 } 2003 2004 /* 2005 * Load a tod module for the non-standard tod part found on this system. 2006 */ 2007 static void 2008 load_tod_module(char *todmod) 2009 { 2010 if (modload("tod", todmod) == -1) 2011 halt("Can't load TOD module"); 2012 } 2013 2014 static void 2015 startup_end(void) 2016 { 2017 int i; 2018 extern void setx86isalist(void); 2019 extern void cpu_event_init(void); 2020 2021 PRM_POINT("startup_end() starting..."); 2022 2023 /* 2024 * Perform tasks that get done after most of the VM 2025 * initialization has been done but before the clock 2026 * and other devices get started. 2027 */ 2028 kern_setup1(); 2029 2030 /* 2031 * Perform CPC initialization for this CPU. 2032 */ 2033 kcpc_hw_init(CPU); 2034 2035 /* 2036 * Initialize cpu event framework. 2037 */ 2038 cpu_event_init(); 2039 2040 #if defined(OPTERON_WORKAROUND_6323525) 2041 if (opteron_workaround_6323525) 2042 patch_workaround_6323525(); 2043 #endif 2044 /* 2045 * If needed, load TOD module now so that ddi_get_time(9F) etc. work 2046 * (For now, "needed" is defined as set tod_module_name in /etc/system) 2047 */ 2048 if (tod_module_name != NULL) { 2049 PRM_POINT("load_tod_module()"); 2050 load_tod_module(tod_module_name); 2051 } 2052 2053 #if defined(__xpv) 2054 /* 2055 * Forceload interposing TOD module for the hypervisor. 2056 */ 2057 PRM_POINT("load_tod_module()"); 2058 load_tod_module("xpvtod"); 2059 #endif 2060 2061 /* 2062 * Configure the system. 2063 */ 2064 PRM_POINT("Calling configure()..."); 2065 configure(); /* set up devices */ 2066 PRM_POINT("configure() done"); 2067 2068 /* 2069 * Set the isa_list string to the defined instruction sets we 2070 * support. 2071 */ 2072 setx86isalist(); 2073 cpu_intr_alloc(CPU, NINTR_THREADS); 2074 psm_install(); 2075 2076 /* 2077 * We're done with bootops. We don't unmap the bootstrap yet because 2078 * we're still using bootsvcs. 2079 */ 2080 PRM_POINT("NULLing out bootops"); 2081 *bootopsp = (struct bootops *)NULL; 2082 bootops = (struct bootops *)NULL; 2083 2084 #if defined(__xpv) 2085 ec_init_debug_irq(); 2086 xs_domu_init(); 2087 #endif 2088 PRM_POINT("Enabling interrupts"); 2089 (*picinitf)(); 2090 sti(); 2091 #if defined(__xpv) 2092 ASSERT(CPU->cpu_m.mcpu_vcpu_info->evtchn_upcall_mask == 0); 2093 xen_late_startup(); 2094 #endif 2095 2096 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 2097 "softlevel1", NULL, NULL); /* XXX to be moved later */ 2098 2099 /* 2100 * Register these software interrupts for ddi timer. 2101 * Software interrupts up to the level 10 are supported. 2102 */ 2103 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) { 2104 char name[sizeof ("timer_softintr") + 2]; 2105 (void) sprintf(name, "timer_softintr%02d", i); 2106 (void) add_avsoftintr((void *)&softlevel_hdl[i-1], i, 2107 (avfunc)timer_softintr, name, (caddr_t)(uintptr_t)i, NULL); 2108 } 2109 2110 #if !defined(__xpv) 2111 if (modload("drv", "amd_iommu") < 0) { 2112 PRM_POINT("No AMD IOMMU present\n"); 2113 } else if (ddi_hold_installed_driver(ddi_name_to_major( 2114 "amd_iommu")) == NULL) { 2115 prom_printf("ERROR: failed to attach AMD IOMMU\n"); 2116 } 2117 #endif 2118 post_startup_cpu_fixups(); 2119 2120 PRM_POINT("startup_end() done"); 2121 } 2122 2123 /* 2124 * Don't remove the following 2 variables. They are necessary 2125 * for reading the hostid from the legacy file (/kernel/misc/sysinit). 2126 */ 2127 char *_hs1107 = hw_serial; 2128 ulong_t _bdhs34; 2129 2130 void 2131 post_startup(void) 2132 { 2133 extern void cpupm_init(cpu_t *); 2134 extern void cpu_event_init_cpu(cpu_t *); 2135 2136 /* 2137 * Set the system wide, processor-specific flags to be passed 2138 * to userland via the aux vector for performance hints and 2139 * instruction set extensions. 2140 */ 2141 bind_hwcap(); 2142 2143 #ifdef __xpv 2144 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2145 #endif 2146 { 2147 /* 2148 * Load the System Management BIOS into the global ksmbios 2149 * handle, if an SMBIOS is present on this system. 2150 */ 2151 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 2152 2153 #if defined(__xpv) 2154 xpv_panic_init(); 2155 #else 2156 /* 2157 * Startup the memory scrubber. 2158 * XXPV This should be running somewhere .. 2159 */ 2160 if (get_hwenv() != HW_XEN_HVM) 2161 memscrub_init(); 2162 #endif 2163 } 2164 2165 /* 2166 * Complete CPU module initialization 2167 */ 2168 cmi_post_startup(); 2169 2170 /* 2171 * Perform forceloading tasks for /etc/system. 2172 */ 2173 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2174 2175 /* 2176 * ON4.0: Force /proc module in until clock interrupt handle fixed 2177 * ON4.0: This must be fixed or restated in /etc/systems. 2178 */ 2179 (void) modload("fs", "procfs"); 2180 2181 (void) i_ddi_attach_hw_nodes("pit_beep"); 2182 2183 #if defined(__i386) 2184 /* 2185 * Check for required functional Floating Point hardware, 2186 * unless FP hardware explicitly disabled. 2187 */ 2188 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 2189 halt("No working FP hardware found"); 2190 #endif 2191 2192 maxmem = freemem; 2193 2194 cpu_event_init_cpu(CPU); 2195 cpupm_init(CPU); 2196 2197 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 2198 2199 pg_init(); 2200 } 2201 2202 static int 2203 pp_in_range(page_t *pp, uint64_t low_addr, uint64_t high_addr) 2204 { 2205 return ((pp->p_pagenum >= btop(low_addr)) && 2206 (pp->p_pagenum < btopr(high_addr))); 2207 } 2208 2209 void 2210 release_bootstrap(void) 2211 { 2212 int root_is_ramdisk; 2213 page_t *pp; 2214 extern void kobj_boot_unmountroot(void); 2215 extern dev_t rootdev; 2216 #if !defined(__xpv) 2217 pfn_t pfn; 2218 #endif 2219 2220 /* unmount boot ramdisk and release kmem usage */ 2221 kobj_boot_unmountroot(); 2222 2223 /* 2224 * We're finished using the boot loader so free its pages. 2225 */ 2226 PRM_POINT("Unmapping lower boot pages"); 2227 2228 clear_boot_mappings(0, _userlimit); 2229 2230 postbootkernelbase = kernelbase; 2231 2232 /* 2233 * If root isn't on ramdisk, destroy the hardcoded 2234 * ramdisk node now and release the memory. Else, 2235 * ramdisk memory is kept in rd_pages. 2236 */ 2237 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 2238 if (!root_is_ramdisk) { 2239 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 2240 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 2241 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 2242 (void) ddi_remove_child(dip, 0); 2243 } 2244 2245 PRM_POINT("Releasing boot pages"); 2246 while (bootpages) { 2247 extern uint64_t ramdisk_start, ramdisk_end; 2248 pp = bootpages; 2249 bootpages = pp->p_next; 2250 2251 2252 /* Keep pages for the lower 64K */ 2253 if (pp_in_range(pp, 0, 0x40000)) { 2254 pp->p_next = lower_pages; 2255 lower_pages = pp; 2256 lower_pages_count++; 2257 continue; 2258 } 2259 2260 2261 if (root_is_ramdisk && pp_in_range(pp, ramdisk_start, 2262 ramdisk_end)) { 2263 pp->p_next = rd_pages; 2264 rd_pages = pp; 2265 continue; 2266 } 2267 pp->p_next = (struct page *)0; 2268 pp->p_prev = (struct page *)0; 2269 PP_CLRBOOTPAGES(pp); 2270 page_free(pp, 1); 2271 } 2272 PRM_POINT("Boot pages released"); 2273 2274 #if !defined(__xpv) 2275 /* XXPV -- note this following bunch of code needs to be revisited in Xen 3.0 */ 2276 /* 2277 * Find 1 page below 1 MB so that other processors can boot up or 2278 * so that any processor can resume. 2279 * Make sure it has a kernel VA as well as a 1:1 mapping. 2280 * We should have just free'd one up. 2281 */ 2282 2283 /* 2284 * 0x10 pages is 64K. Leave the bottom 64K alone 2285 * for BIOS. 2286 */ 2287 for (pfn = 0x10; pfn < btop(1*1024*1024); pfn++) { 2288 if (page_numtopp_alloc(pfn) == NULL) 2289 continue; 2290 rm_platter_va = i86devmap(pfn, 1, 2291 PROT_READ | PROT_WRITE | PROT_EXEC); 2292 rm_platter_pa = ptob(pfn); 2293 hat_devload(kas.a_hat, 2294 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2295 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2296 HAT_LOAD_NOCONSIST); 2297 break; 2298 } 2299 if (pfn == btop(1*1024*1024) && use_mp) 2300 panic("No page below 1M available for starting " 2301 "other processors or for resuming from system-suspend"); 2302 #endif /* !__xpv */ 2303 } 2304 2305 /* 2306 * Initialize the platform-specific parts of a page_t. 2307 */ 2308 void 2309 add_physmem_cb(page_t *pp, pfn_t pnum) 2310 { 2311 pp->p_pagenum = pnum; 2312 pp->p_mapping = NULL; 2313 pp->p_embed = 0; 2314 pp->p_share = 0; 2315 pp->p_mlentry = 0; 2316 } 2317 2318 /* 2319 * kphysm_init() initializes physical memory. 2320 */ 2321 static pgcnt_t 2322 kphysm_init( 2323 page_t *pp, 2324 pgcnt_t npages) 2325 { 2326 struct memlist *pmem; 2327 struct memseg *cur_memseg; 2328 pfn_t base_pfn; 2329 pgcnt_t num; 2330 pgcnt_t pages_done = 0; 2331 uint64_t addr; 2332 uint64_t size; 2333 extern pfn_t ddiphysmin; 2334 2335 ASSERT(page_hash != NULL && page_hashsz != 0); 2336 2337 cur_memseg = memseg_base; 2338 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2339 /* 2340 * In a 32 bit kernel can't use higher memory if we're 2341 * not booting in PAE mode. This check takes care of that. 2342 */ 2343 addr = pmem->address; 2344 size = pmem->size; 2345 if (btop(addr) > physmax) 2346 continue; 2347 2348 /* 2349 * align addr and size - they may not be at page boundaries 2350 */ 2351 if ((addr & MMU_PAGEOFFSET) != 0) { 2352 addr += MMU_PAGEOFFSET; 2353 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2354 size -= addr - pmem->address; 2355 } 2356 2357 /* only process pages below or equal to physmax */ 2358 if ((btop(addr + size) - 1) > physmax) 2359 size = ptob(physmax - btop(addr) + 1); 2360 2361 num = btop(size); 2362 if (num == 0) 2363 continue; 2364 2365 if (num > npages) 2366 num = npages; 2367 2368 npages -= num; 2369 pages_done += num; 2370 base_pfn = btop(addr); 2371 2372 if (prom_debug) 2373 prom_printf("MEMSEG addr=0x%" PRIx64 2374 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2375 addr, num, base_pfn, base_pfn + num); 2376 2377 /* 2378 * Ignore pages below ddiphysmin to simplify ddi memory 2379 * allocation with non-zero addr_lo requests. 2380 */ 2381 if (base_pfn < ddiphysmin) { 2382 if (base_pfn + num <= ddiphysmin) 2383 continue; 2384 pp += (ddiphysmin - base_pfn); 2385 num -= (ddiphysmin - base_pfn); 2386 base_pfn = ddiphysmin; 2387 } 2388 2389 /* 2390 * Build the memsegs entry 2391 */ 2392 cur_memseg->pages = pp; 2393 cur_memseg->epages = pp + num; 2394 cur_memseg->pages_base = base_pfn; 2395 cur_memseg->pages_end = base_pfn + num; 2396 2397 /* 2398 * Insert into memseg list in decreasing pfn range order. 2399 * Low memory is typically more fragmented such that this 2400 * ordering keeps the larger ranges at the front of the list 2401 * for code that searches memseg. 2402 * This ASSERTS that the memsegs coming in from boot are in 2403 * increasing physical address order and not contiguous. 2404 */ 2405 if (memsegs != NULL) { 2406 ASSERT(cur_memseg->pages_base >= memsegs->pages_end); 2407 cur_memseg->next = memsegs; 2408 } 2409 memsegs = cur_memseg; 2410 2411 /* 2412 * add_physmem() initializes the PSM part of the page 2413 * struct by calling the PSM back with add_physmem_cb(). 2414 * In addition it coalesces pages into larger pages as 2415 * it initializes them. 2416 */ 2417 add_physmem(pp, num, base_pfn); 2418 cur_memseg++; 2419 availrmem_initial += num; 2420 availrmem += num; 2421 2422 pp += num; 2423 } 2424 2425 PRM_DEBUG(availrmem_initial); 2426 PRM_DEBUG(availrmem); 2427 PRM_DEBUG(freemem); 2428 build_pfn_hash(); 2429 return (pages_done); 2430 } 2431 2432 /* 2433 * Kernel VM initialization. 2434 */ 2435 static void 2436 kvm_init(void) 2437 { 2438 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2439 2440 /* 2441 * Put the kernel segments in kernel address space. 2442 */ 2443 rw_enter(&kas.a_lock, RW_WRITER); 2444 as_avlinit(&kas); 2445 2446 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2447 (void) segkmem_create(&ktextseg); 2448 2449 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2450 (void) segkmem_create(&kvalloc); 2451 2452 (void) seg_attach(&kas, kernelheap, 2453 ekernelheap - kernelheap, &kvseg); 2454 (void) segkmem_create(&kvseg); 2455 2456 if (core_size > 0) { 2457 PRM_POINT("attaching kvseg_core"); 2458 (void) seg_attach(&kas, (caddr_t)core_base, core_size, 2459 &kvseg_core); 2460 (void) segkmem_create(&kvseg_core); 2461 } 2462 2463 if (segziosize > 0) { 2464 PRM_POINT("attaching segzio"); 2465 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2466 &kzioseg); 2467 (void) segkmem_zio_create(&kzioseg); 2468 2469 /* create zio area covering new segment */ 2470 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2471 } 2472 2473 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2474 (void) segkmem_create(&kdebugseg); 2475 2476 rw_exit(&kas.a_lock); 2477 2478 /* 2479 * Ensure that the red zone at kernelbase is never accessible. 2480 */ 2481 PRM_POINT("protecting redzone"); 2482 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2483 2484 /* 2485 * Make the text writable so that it can be hot patched by DTrace. 2486 */ 2487 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2488 PROT_READ | PROT_WRITE | PROT_EXEC); 2489 2490 /* 2491 * Make data writable until end. 2492 */ 2493 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2494 PROT_READ | PROT_WRITE | PROT_EXEC); 2495 } 2496 2497 #ifndef __xpv 2498 /* 2499 * Solaris adds an entry for Write Combining caching to the PAT 2500 */ 2501 static uint64_t pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2502 2503 void 2504 pat_sync(void) 2505 { 2506 ulong_t cr0, cr0_orig, cr4; 2507 2508 if (!(x86_feature & X86_PAT)) 2509 return; 2510 cr0_orig = cr0 = getcr0(); 2511 cr4 = getcr4(); 2512 2513 /* disable caching and flush all caches and TLBs */ 2514 cr0 |= CR0_CD; 2515 cr0 &= ~CR0_NW; 2516 setcr0(cr0); 2517 invalidate_cache(); 2518 if (cr4 & CR4_PGE) { 2519 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2520 setcr4(cr4); 2521 } else { 2522 reload_cr3(); 2523 } 2524 2525 /* add our entry to the PAT */ 2526 wrmsr(REG_PAT, pat_attr_reg); 2527 2528 /* flush TLBs and cache again, then reenable cr0 caching */ 2529 if (cr4 & CR4_PGE) { 2530 setcr4(cr4 & ~(ulong_t)CR4_PGE); 2531 setcr4(cr4); 2532 } else { 2533 reload_cr3(); 2534 } 2535 invalidate_cache(); 2536 setcr0(cr0_orig); 2537 } 2538 2539 #endif /* !__xpv */ 2540 2541 #if defined(_SOFT_HOSTID) 2542 /* 2543 * On platforms that do not have a hardware serial number, attempt 2544 * to set one based on the contents of /etc/hostid. If this file does 2545 * not exist, assume that we are to generate a new hostid and set 2546 * it in the kernel, for subsequent saving by a userland process 2547 * once the system is up and the root filesystem is mounted r/w. 2548 * 2549 * In order to gracefully support upgrade on OpenSolaris, if 2550 * /etc/hostid does not exist, we will attempt to get a serial number 2551 * using the legacy method (/kernel/misc/sysinit). 2552 * 2553 * In an attempt to make the hostid less prone to abuse 2554 * (for license circumvention, etc), we store it in /etc/hostid 2555 * in rot47 format. 2556 */ 2557 extern volatile unsigned long tenmicrodata; 2558 static int atoi(char *); 2559 2560 static int32_t 2561 set_soft_hostid(void) 2562 { 2563 struct _buf *file; 2564 char tokbuf[MAXNAMELEN]; 2565 token_t token; 2566 int done = 0; 2567 u_longlong_t tmp; 2568 int i; 2569 int32_t hostid = (int32_t)HW_INVALID_HOSTID; 2570 unsigned char *c; 2571 hrtime_t tsc; 2572 2573 /* 2574 * If /etc/hostid file not found, we'd like to get a pseudo 2575 * random number to use at the hostid. A nice way to do this 2576 * is to read the real time clock. To remain xen-compatible, 2577 * we can't poke the real hardware, so we use tsc_read() to 2578 * read the real time clock. However, there is an ominous 2579 * warning in tsc_read that says it can return zero, so we 2580 * deal with that possibility by falling back to using the 2581 * (hopefully random enough) value in tenmicrodata. 2582 */ 2583 2584 if ((file = kobj_open_file(hostid_file)) == (struct _buf *)-1) { 2585 /* 2586 * hostid file not found - try to load sysinit module 2587 * and see if it has a nonzero hostid value...use that 2588 * instead of generating a new hostid here if so. 2589 */ 2590 if ((i = modload("misc", "sysinit")) != -1) { 2591 if (strlen(hw_serial) > 0) 2592 hostid = (int32_t)atoi(hw_serial); 2593 (void) modunload(i); 2594 } 2595 if (hostid == HW_INVALID_HOSTID) { 2596 tsc = tsc_read(); 2597 if (tsc == 0) /* tsc_read can return zero sometimes */ 2598 hostid = (int32_t)tenmicrodata & 0x0CFFFFF; 2599 else 2600 hostid = (int32_t)tsc & 0x0CFFFFF; 2601 } 2602 } else { 2603 /* hostid file found */ 2604 while (!done) { 2605 token = kobj_lex(file, tokbuf, sizeof (tokbuf)); 2606 2607 switch (token) { 2608 case POUND: 2609 /* 2610 * skip comments 2611 */ 2612 kobj_find_eol(file); 2613 break; 2614 case STRING: 2615 /* 2616 * un-rot47 - obviously this 2617 * nonsense is ascii-specific 2618 */ 2619 for (c = (unsigned char *)tokbuf; 2620 *c != '\0'; c++) { 2621 *c += 47; 2622 if (*c > '~') 2623 *c -= 94; 2624 else if (*c < '!') 2625 *c += 94; 2626 } 2627 /* 2628 * now we should have a real number 2629 */ 2630 2631 if (kobj_getvalue(tokbuf, &tmp) != 0) 2632 kobj_file_err(CE_WARN, file, 2633 "Bad value %s for hostid", 2634 tokbuf); 2635 else 2636 hostid = (int32_t)tmp; 2637 2638 break; 2639 case EOF: 2640 done = 1; 2641 /* FALLTHROUGH */ 2642 case NEWLINE: 2643 kobj_newline(file); 2644 break; 2645 default: 2646 break; 2647 2648 } 2649 } 2650 if (hostid == HW_INVALID_HOSTID) /* didn't find a hostid */ 2651 kobj_file_err(CE_WARN, file, 2652 "hostid missing or corrupt"); 2653 2654 kobj_close_file(file); 2655 } 2656 /* 2657 * hostid is now the value read from /etc/hostid, or the 2658 * new hostid we generated in this routine or HW_INVALID_HOSTID if not 2659 * set. 2660 */ 2661 return (hostid); 2662 } 2663 2664 static int 2665 atoi(char *p) 2666 { 2667 int i = 0; 2668 2669 while (*p != '\0') 2670 i = 10 * i + (*p++ - '0'); 2671 2672 return (i); 2673 } 2674 2675 #endif /* _SOFT_HOSTID */ 2676 2677 void 2678 get_system_configuration(void) 2679 { 2680 char prop[32]; 2681 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2682 2683 if (BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop) || 2684 BOP_GETPROP(bootops, "nodes", prop) < 0 || 2685 kobj_getvalue(prop, &nodes_ll) == -1 || 2686 nodes_ll > MAXNODES || 2687 BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop) || 2688 BOP_GETPROP(bootops, "cpus_pernode", prop) < 0 || 2689 kobj_getvalue(prop, &cpus_pernode_ll) == -1) { 2690 system_hardware.hd_nodes = 1; 2691 system_hardware.hd_cpus_per_node = 0; 2692 } else { 2693 system_hardware.hd_nodes = (int)nodes_ll; 2694 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2695 } 2696 2697 if (BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop) || 2698 BOP_GETPROP(bootops, "kernelbase", prop) < 0 || 2699 kobj_getvalue(prop, &lvalue) == -1) 2700 eprom_kernelbase = NULL; 2701 else 2702 eprom_kernelbase = (uintptr_t)lvalue; 2703 2704 if (BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop) || 2705 BOP_GETPROP(bootops, "segmapsize", prop) < 0 || 2706 kobj_getvalue(prop, &lvalue) == -1) 2707 segmapsize = SEGMAPDEFAULT; 2708 else 2709 segmapsize = (uintptr_t)lvalue; 2710 2711 if (BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop) || 2712 BOP_GETPROP(bootops, "segmapfreelists", prop) < 0 || 2713 kobj_getvalue(prop, &lvalue) == -1) 2714 segmapfreelists = 0; /* use segmap driver default */ 2715 else 2716 segmapfreelists = (int)lvalue; 2717 2718 /* physmem used to be here, but moved much earlier to fakebop.c */ 2719 } 2720 2721 /* 2722 * Add to a memory list. 2723 * start = start of new memory segment 2724 * len = length of new memory segment in bytes 2725 * new = pointer to a new struct memlist 2726 * memlistp = memory list to which to add segment. 2727 */ 2728 void 2729 memlist_add( 2730 uint64_t start, 2731 uint64_t len, 2732 struct memlist *new, 2733 struct memlist **memlistp) 2734 { 2735 struct memlist *cur; 2736 uint64_t end = start + len; 2737 2738 new->address = start; 2739 new->size = len; 2740 2741 cur = *memlistp; 2742 2743 while (cur) { 2744 if (cur->address >= end) { 2745 new->next = cur; 2746 *memlistp = new; 2747 new->prev = cur->prev; 2748 cur->prev = new; 2749 return; 2750 } 2751 ASSERT(cur->address + cur->size <= start); 2752 if (cur->next == NULL) { 2753 cur->next = new; 2754 new->prev = cur; 2755 new->next = NULL; 2756 return; 2757 } 2758 memlistp = &cur->next; 2759 cur = cur->next; 2760 } 2761 } 2762 2763 void 2764 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2765 { 2766 size_t tsize = e_modtext - modtext; 2767 size_t dsize = e_moddata - moddata; 2768 2769 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2770 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2771 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2772 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2773 } 2774 2775 caddr_t 2776 kobj_text_alloc(vmem_t *arena, size_t size) 2777 { 2778 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2779 } 2780 2781 /*ARGSUSED*/ 2782 caddr_t 2783 kobj_texthole_alloc(caddr_t addr, size_t size) 2784 { 2785 panic("unexpected call to kobj_texthole_alloc()"); 2786 /*NOTREACHED*/ 2787 return (0); 2788 } 2789 2790 /*ARGSUSED*/ 2791 void 2792 kobj_texthole_free(caddr_t addr, size_t size) 2793 { 2794 panic("unexpected call to kobj_texthole_free()"); 2795 } 2796 2797 /* 2798 * This is called just after configure() in startup(). 2799 * 2800 * The ISALIST concept is a bit hopeless on Intel, because 2801 * there's no guarantee of an ever-more-capable processor 2802 * given that various parts of the instruction set may appear 2803 * and disappear between different implementations. 2804 * 2805 * While it would be possible to correct it and even enhance 2806 * it somewhat, the explicit hardware capability bitmask allows 2807 * more flexibility. 2808 * 2809 * So, we just leave this alone. 2810 */ 2811 void 2812 setx86isalist(void) 2813 { 2814 char *tp; 2815 size_t len; 2816 extern char *isa_list; 2817 2818 #define TBUFSIZE 1024 2819 2820 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2821 *tp = '\0'; 2822 2823 #if defined(__amd64) 2824 (void) strcpy(tp, "amd64 "); 2825 #endif 2826 2827 switch (x86_vendor) { 2828 case X86_VENDOR_Intel: 2829 case X86_VENDOR_AMD: 2830 case X86_VENDOR_TM: 2831 if (x86_feature & X86_CMOV) { 2832 /* 2833 * Pentium Pro or later 2834 */ 2835 (void) strcat(tp, "pentium_pro"); 2836 (void) strcat(tp, x86_feature & X86_MMX ? 2837 "+mmx pentium_pro " : " "); 2838 } 2839 /*FALLTHROUGH*/ 2840 case X86_VENDOR_Cyrix: 2841 /* 2842 * The Cyrix 6x86 does not have any Pentium features 2843 * accessible while not at privilege level 0. 2844 */ 2845 if (x86_feature & X86_CPUID) { 2846 (void) strcat(tp, "pentium"); 2847 (void) strcat(tp, x86_feature & X86_MMX ? 2848 "+mmx pentium " : " "); 2849 } 2850 break; 2851 default: 2852 break; 2853 } 2854 (void) strcat(tp, "i486 i386 i86"); 2855 len = strlen(tp) + 1; /* account for NULL at end of string */ 2856 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2857 kmem_free(tp, TBUFSIZE); 2858 2859 #undef TBUFSIZE 2860 } 2861 2862 2863 #ifdef __amd64 2864 2865 void * 2866 device_arena_alloc(size_t size, int vm_flag) 2867 { 2868 return (vmem_alloc(device_arena, size, vm_flag)); 2869 } 2870 2871 void 2872 device_arena_free(void *vaddr, size_t size) 2873 { 2874 vmem_free(device_arena, vaddr, size); 2875 } 2876 2877 #else /* __i386 */ 2878 2879 void * 2880 device_arena_alloc(size_t size, int vm_flag) 2881 { 2882 caddr_t vaddr; 2883 uintptr_t v; 2884 size_t start; 2885 size_t end; 2886 2887 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2888 if (vaddr == NULL) 2889 return (NULL); 2890 2891 v = (uintptr_t)vaddr; 2892 ASSERT(v >= kernelbase); 2893 ASSERT(v + size <= valloc_base); 2894 2895 start = btop(v - kernelbase); 2896 end = btop(v + size - 1 - kernelbase); 2897 ASSERT(start < toxic_bit_map_len); 2898 ASSERT(end < toxic_bit_map_len); 2899 2900 while (start <= end) { 2901 BT_ATOMIC_SET(toxic_bit_map, start); 2902 ++start; 2903 } 2904 return (vaddr); 2905 } 2906 2907 void 2908 device_arena_free(void *vaddr, size_t size) 2909 { 2910 uintptr_t v = (uintptr_t)vaddr; 2911 size_t start; 2912 size_t end; 2913 2914 ASSERT(v >= kernelbase); 2915 ASSERT(v + size <= valloc_base); 2916 2917 start = btop(v - kernelbase); 2918 end = btop(v + size - 1 - kernelbase); 2919 ASSERT(start < toxic_bit_map_len); 2920 ASSERT(end < toxic_bit_map_len); 2921 2922 while (start <= end) { 2923 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2924 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2925 ++start; 2926 } 2927 vmem_free(heap_arena, vaddr, size); 2928 } 2929 2930 /* 2931 * returns 1st address in range that is in device arena, or NULL 2932 * if len is not NULL it returns the length of the toxic range 2933 */ 2934 void * 2935 device_arena_contains(void *vaddr, size_t size, size_t *len) 2936 { 2937 uintptr_t v = (uintptr_t)vaddr; 2938 uintptr_t eaddr = v + size; 2939 size_t start; 2940 size_t end; 2941 2942 /* 2943 * if called very early by kmdb, just return NULL 2944 */ 2945 if (toxic_bit_map == NULL) 2946 return (NULL); 2947 2948 /* 2949 * First check if we're completely outside the bitmap range. 2950 */ 2951 if (v >= valloc_base || eaddr < kernelbase) 2952 return (NULL); 2953 2954 /* 2955 * Trim ends of search to look at only what the bitmap covers. 2956 */ 2957 if (v < kernelbase) 2958 v = kernelbase; 2959 start = btop(v - kernelbase); 2960 end = btop(eaddr - kernelbase); 2961 if (end >= toxic_bit_map_len) 2962 end = toxic_bit_map_len; 2963 2964 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2965 return (NULL); 2966 2967 v = kernelbase + ptob(start); 2968 if (len != NULL) 2969 *len = ptob(end - start); 2970 return ((void *)v); 2971 } 2972 2973 #endif /* __i386 */ 2974