1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <sys/signal.h> 33 #include <sys/systm.h> 34 #include <sys/user.h> 35 #include <sys/mman.h> 36 #include <sys/vm.h> 37 #include <sys/conf.h> 38 #include <sys/avintr.h> 39 #include <sys/autoconf.h> 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 #include <sys/bitmap.h> 43 44 #include <sys/privregs.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 #include <sys/kstat.h> 50 51 #include <sys/reboot.h> 52 53 #include <sys/cred.h> 54 #include <sys/vnode.h> 55 #include <sys/file.h> 56 57 #include <sys/procfs.h> 58 59 #include <sys/vfs.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> /* for "procfs" hack */ 70 71 #include <sys/sunddi.h> 72 #include <sys/sunndi.h> 73 #include <sys/ndi_impldefs.h> 74 #include <sys/ddidmareq.h> 75 #include <sys/psw.h> 76 #include <sys/regset.h> 77 #include <sys/clock.h> 78 #include <sys/pte.h> 79 #include <sys/tss.h> 80 #include <sys/stack.h> 81 #include <sys/trap.h> 82 #include <sys/fp.h> 83 #include <vm/anon.h> 84 #include <vm/as.h> 85 #include <vm/page.h> 86 #include <vm/seg.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_kmem.h> 89 #include <vm/seg_kpm.h> 90 #include <vm/seg_map.h> 91 #include <vm/seg_vn.h> 92 #include <vm/seg_kp.h> 93 #include <sys/memnode.h> 94 #include <vm/vm_dep.h> 95 #include <sys/thread.h> 96 #include <sys/sysconf.h> 97 #include <sys/vm_machparam.h> 98 #include <sys/archsystm.h> 99 #include <sys/machsystm.h> 100 #include <vm/hat.h> 101 #include <vm/hat_i86.h> 102 #include <sys/pmem.h> 103 #include <sys/smp_impldefs.h> 104 #include <sys/x86_archext.h> 105 #include <sys/segments.h> 106 #include <sys/clconf.h> 107 #include <sys/kobj.h> 108 #include <sys/kobj_lex.h> 109 #include <sys/cpc_impl.h> 110 #include <sys/chip.h> 111 #include <sys/x86_archext.h> 112 #include <sys/cpu_module.h> 113 #include <sys/smbios.h> 114 115 extern void progressbar_init(void); 116 extern void progressbar_start(void); 117 extern void brand_init(void); 118 119 /* 120 * XXX make declaration below "static" when drivers no longer use this 121 * interface. 122 */ 123 extern caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 124 125 /* 126 * segkp 127 */ 128 extern int segkp_fromheap; 129 130 static void kvm_init(void); 131 static void startup_init(void); 132 static void startup_memlist(void); 133 static void startup_modules(void); 134 static void startup_bop_gone(void); 135 static void startup_vm(void); 136 static void startup_end(void); 137 138 /* 139 * Declare these as initialized data so we can patch them. 140 */ 141 #ifdef __i386 142 /* 143 * Due to virtual address space limitations running in 32 bit mode, restrict 144 * the amount of physical memory configured to a max of PHYSMEM32 pages (16g). 145 * 146 * If the physical max memory size of 64g were allowed to be configured, the 147 * size of user virtual address space will be less than 1g. A limited user 148 * address space greatly reduces the range of applications that can run. 149 * 150 * If more physical memory than PHYSMEM32 is required, users should preferably 151 * run in 64 bit mode which has no virtual address space limitation issues. 152 * 153 * If 64 bit mode is not available (as in IA32) and/or more physical memory 154 * than PHYSMEM32 is required in 32 bit mode, physmem can be set to the desired 155 * value or to 0 (to configure all available memory) via eeprom(1M). kernelbase 156 * should also be carefully tuned to balance out the need of the user 157 * application while minimizing the risk of kernel heap exhaustion due to 158 * kernelbase being set too high. 159 */ 160 #define PHYSMEM32 0x400000 161 162 pgcnt_t physmem = PHYSMEM32; 163 #else 164 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 165 #endif 166 pgcnt_t obp_pages; /* Memory used by PROM for its text and data */ 167 168 char *kobj_file_buf; 169 int kobj_file_bufsize; /* set in /etc/system */ 170 171 /* Global variables for MP support. Used in mp_startup */ 172 caddr_t rm_platter_va; 173 uint32_t rm_platter_pa; 174 175 int auto_lpg_disable = 1; 176 177 /* 178 * Some CPUs have holes in the middle of the 64-bit virtual address range. 179 */ 180 uintptr_t hole_start, hole_end; 181 182 /* 183 * kpm mapping window 184 */ 185 caddr_t kpm_vbase; 186 size_t kpm_size; 187 static int kpm_desired = 0; /* Do we want to try to use segkpm? */ 188 189 /* 190 * VA range that must be preserved for boot until we release all of its 191 * mappings. 192 */ 193 #if defined(__amd64) 194 static void *kmem_setaside; 195 #endif 196 197 /* 198 * Configuration parameters set at boot time. 199 */ 200 201 caddr_t econtig; /* end of first block of contiguous kernel */ 202 203 struct bootops *bootops = 0; /* passed in from boot */ 204 struct bootops **bootopsp; 205 struct boot_syscalls *sysp; /* passed in from boot */ 206 207 char bootblock_fstype[16]; 208 209 char kern_bootargs[OBP_MAXPATHLEN]; 210 211 /* 212 * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this 213 * depends on number of BOP_ALLOC calls made and requested size, memory size 214 * combination and whether boot.bin memory needs to be freed. 215 */ 216 #define POSS_NEW_FRAGMENTS 12 217 218 /* 219 * VM data structures 220 */ 221 long page_hashsz; /* Size of page hash table (power of two) */ 222 struct page *pp_base; /* Base of initial system page struct array */ 223 struct page **page_hash; /* Page hash table */ 224 struct seg ktextseg; /* Segment used for kernel executable image */ 225 struct seg kvalloc; /* Segment used for "valloc" mapping */ 226 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 227 struct seg kmapseg; /* Segment used for generic kernel mappings */ 228 struct seg kdebugseg; /* Segment used for the kernel debugger */ 229 230 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 231 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 232 233 #if defined(__amd64) 234 struct seg kvseg_core; /* Segment used for the core heap */ 235 struct seg kpmseg; /* Segment used for physical mapping */ 236 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 237 #else 238 struct seg *segkpm = NULL; /* Unused on IA32 */ 239 #endif 240 241 caddr_t segkp_base; /* Base address of segkp */ 242 #if defined(__amd64) 243 pgcnt_t segkpsize = btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 244 #else 245 pgcnt_t segkpsize = 0; 246 #endif 247 248 struct memseg *memseg_base; 249 struct vnode unused_pages_vp; 250 251 #define FOURGB 0x100000000LL 252 253 struct memlist *memlist; 254 255 caddr_t s_text; /* start of kernel text segment */ 256 caddr_t e_text; /* end of kernel text segment */ 257 caddr_t s_data; /* start of kernel data segment */ 258 caddr_t e_data; /* end of kernel data segment */ 259 caddr_t modtext; /* start of loadable module text reserved */ 260 caddr_t e_modtext; /* end of loadable module text reserved */ 261 caddr_t moddata; /* start of loadable module data reserved */ 262 caddr_t e_moddata; /* end of loadable module data reserved */ 263 264 struct memlist *phys_install; /* Total installed physical memory */ 265 struct memlist *phys_avail; /* Total available physical memory */ 266 267 static void memlist_add(uint64_t, uint64_t, struct memlist *, 268 struct memlist **); 269 270 /* 271 * kphysm_init returns the number of pages that were processed 272 */ 273 static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t); 274 275 #define IO_PROP_SIZE 64 /* device property size */ 276 277 /* 278 * a couple useful roundup macros 279 */ 280 #define ROUND_UP_PAGE(x) \ 281 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE)) 282 #define ROUND_UP_LPAGE(x) \ 283 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1])) 284 #define ROUND_UP_4MEG(x) \ 285 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE)) 286 #define ROUND_UP_TOPLEVEL(x) \ 287 ((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level])) 288 289 /* 290 * 32-bit Kernel's Virtual memory layout. 291 * +-----------------------+ 292 * | psm 1-1 map | 293 * | exec args area | 294 * 0xFFC00000 -|-----------------------|- ARGSBASE 295 * | debugger | 296 * 0xFF800000 -|-----------------------|- SEGDEBUGBASE 297 * | Kernel Data | 298 * 0xFEC00000 -|-----------------------| 299 * | Kernel Text | 300 * 0xFE800000 -|-----------------------|- KERNEL_TEXT 301 * | LUFS sinkhole | 302 * 0xFE000000 -|-----------------------|- lufs_addr 303 * --- -|-----------------------|- valloc_base + valloc_sz 304 * | early pp structures | 305 * | memsegs, memlists, | 306 * | page hash, etc. | 307 * --- -|-----------------------|- valloc_base (floating) 308 * | ptable_va | 309 * 0xFDFFE000 -|-----------------------|- ekernelheap, ptable_va 310 * | | (segkp is an arena under the heap) 311 * | | 312 * | kvseg | 313 * | | 314 * | | 315 * --- -|-----------------------|- kernelheap (floating) 316 * | Segkmap | 317 * 0xC3002000 -|-----------------------|- segkmap_start (floating) 318 * | Red Zone | 319 * 0xC3000000 -|-----------------------|- kernelbase / userlimit (floating) 320 * | | || 321 * | Shared objects | \/ 322 * | | 323 * : : 324 * | user data | 325 * |-----------------------| 326 * | user text | 327 * 0x08048000 -|-----------------------| 328 * | user stack | 329 * : : 330 * | invalid | 331 * 0x00000000 +-----------------------+ 332 * 333 * 334 * 64-bit Kernel's Virtual memory layout. (assuming 64 bit app) 335 * +-----------------------+ 336 * | psm 1-1 map | 337 * | exec args area | 338 * 0xFFFFFFFF.FFC00000 |-----------------------|- ARGSBASE 339 * | debugger (?) | 340 * 0xFFFFFFFF.FF800000 |-----------------------|- SEGDEBUGBASE 341 * | unused | 342 * +-----------------------+ 343 * | Kernel Data | 344 * 0xFFFFFFFF.FBC00000 |-----------------------| 345 * | Kernel Text | 346 * 0xFFFFFFFF.FB800000 |-----------------------|- KERNEL_TEXT 347 * | LUFS sinkhole | 348 * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr 349 * --- |-----------------------|- valloc_base + valloc_sz 350 * | early pp structures | 351 * | memsegs, memlists, | 352 * | page hash, etc. | 353 * --- |-----------------------|- valloc_base 354 * | ptable_va | 355 * --- |-----------------------|- ptable_va 356 * | Core heap | (used for loadable modules) 357 * 0xFFFFFFFF.C0000000 |-----------------------|- core_base / ekernelheap 358 * | Kernel | 359 * | heap | 360 * 0xFFFFFXXX.XXX00000 |-----------------------|- kernelheap (floating) 361 * | segkmap | 362 * 0xFFFFFXXX.XXX00000 |-----------------------|- segkmap_start (floating) 363 * | device mappings | 364 * 0xFFFFFXXX.XXX00000 |-----------------------|- toxic_addr (floating) 365 * | segkp | 366 * --- |-----------------------|- segkp_base 367 * | segkpm | 368 * 0xFFFFFE00.00000000 |-----------------------| 369 * | Red Zone | 370 * 0xFFFFFD80.00000000 |-----------------------|- KERNELBASE 371 * | User stack |- User space memory 372 * | | 373 * | shared objects, etc | (grows downwards) 374 * : : 375 * | | 376 * 0xFFFF8000.00000000 |-----------------------| 377 * | | 378 * | VA Hole / unused | 379 * | | 380 * 0x00008000.00000000 |-----------------------| 381 * | | 382 * | | 383 * : : 384 * | user heap | (grows upwards) 385 * | | 386 * | user data | 387 * |-----------------------| 388 * | user text | 389 * 0x00000000.04000000 |-----------------------| 390 * | invalid | 391 * 0x00000000.00000000 +-----------------------+ 392 * 393 * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit 394 * kernel, except that userlimit is raised to 0xfe000000 395 * 396 * Floating values: 397 * 398 * valloc_base: start of the kernel's memory management/tracking data 399 * structures. This region contains page_t structures for the lowest 4GB 400 * of physical memory, memsegs, memlists, and the page hash. 401 * 402 * core_base: start of the kernel's "core" heap area on 64-bit systems. 403 * This area is intended to be used for global data as well as for module 404 * text/data that does not fit into the nucleus pages. The core heap is 405 * restricted to a 2GB range, allowing every address within it to be 406 * accessed using rip-relative addressing 407 * 408 * ekernelheap: end of kernelheap and start of segmap. 409 * 410 * kernelheap: start of kernel heap. On 32-bit systems, this starts right 411 * above a red zone that separates the user's address space from the 412 * kernel's. On 64-bit systems, it sits above segkp and segkpm. 413 * 414 * segkmap_start: start of segmap. The length of segmap can be modified 415 * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated). 416 * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems. 417 * 418 * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be 419 * decreased by 2X the size required for page_t. This allows the kernel 420 * heap to grow in size with physical memory. With sizeof(page_t) == 80 421 * bytes, the following shows the values of kernelbase and kernel heap 422 * sizes for different memory configurations (assuming default segmap and 423 * segkp sizes). 424 * 425 * mem size for kernelbase kernel heap 426 * size page_t's size 427 * ---- --------- ---------- ----------- 428 * 1gb 0x01400000 0xd1800000 684MB 429 * 2gb 0x02800000 0xcf000000 704MB 430 * 4gb 0x05000000 0xca000000 744MB 431 * 6gb 0x07800000 0xc5000000 784MB 432 * 8gb 0x0a000000 0xc0000000 824MB 433 * 16gb 0x14000000 0xac000000 984MB 434 * 32gb 0x28000000 0x84000000 1304MB 435 * 64gb 0x50000000 0x34000000 1944MB (*) 436 * 437 * kernelbase is less than the abi minimum of 0xc0000000 for memory 438 * configurations above 8gb. 439 * 440 * (*) support for memory configurations above 32gb will require manual tuning 441 * of kernelbase to balance out the need of user applications. 442 */ 443 444 /* real-time-clock initialization parameters */ 445 long gmt_lag; /* offset in seconds of gmt to local time */ 446 extern long process_rtc_config_file(void); 447 448 char *final_kernelheap; 449 char *boot_kernelheap; 450 uintptr_t kernelbase; 451 uintptr_t eprom_kernelbase; 452 size_t segmapsize; 453 static uintptr_t segmap_reserved; 454 uintptr_t segkmap_start; 455 int segmapfreelists; 456 pgcnt_t boot_npages; 457 pgcnt_t npages; 458 size_t core_size; /* size of "core" heap */ 459 uintptr_t core_base; /* base address of "core" heap */ 460 461 /* 462 * List of bootstrap pages. We mark these as allocated in startup. 463 * release_bootstrap() will free them when we're completely done with 464 * the bootstrap. 465 */ 466 static page_t *bootpages, *rd_pages; 467 468 struct system_hardware system_hardware; 469 470 /* 471 * Enable some debugging messages concerning memory usage... 472 * 473 * XX64 There should only be one print routine once memlist usage between 474 * vmx and the kernel is cleaned up and there is a single memlist structure 475 * shared between kernel and boot. 476 */ 477 static void 478 print_boot_memlist(char *title, struct memlist *mp) 479 { 480 prom_printf("MEMLIST: %s:\n", title); 481 while (mp != NULL) { 482 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 483 mp->address, mp->size); 484 mp = mp->next; 485 } 486 } 487 488 static void 489 print_kernel_memlist(char *title, struct memlist *mp) 490 { 491 prom_printf("MEMLIST: %s:\n", title); 492 while (mp != NULL) { 493 prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n", 494 mp->address, mp->size); 495 mp = mp->next; 496 } 497 } 498 499 /* 500 * XX64 need a comment here.. are these just default values, surely 501 * we read the "cpuid" type information to figure this out. 502 */ 503 int l2cache_sz = 0x80000; 504 int l2cache_linesz = 0x40; 505 int l2cache_assoc = 1; 506 507 /* 508 * on 64 bit we use a predifined VA range for mapping devices in the kernel 509 * on 32 bit the mappings are intermixed in the heap, so we use a bit map 510 */ 511 #ifdef __amd64 512 513 vmem_t *device_arena; 514 uintptr_t toxic_addr = (uintptr_t)NULL; 515 size_t toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */ 516 517 #else /* __i386 */ 518 519 ulong_t *toxic_bit_map; /* one bit for each 4k of VA in heap_arena */ 520 size_t toxic_bit_map_len = 0; /* in bits */ 521 522 #endif /* __i386 */ 523 524 /* 525 * Simple boot time debug facilities 526 */ 527 static char *prm_dbg_str[] = { 528 "%s:%d: '%s' is 0x%x\n", 529 "%s:%d: '%s' is 0x%llx\n" 530 }; 531 532 int prom_debug; 533 534 #define PRM_DEBUG(q) if (prom_debug) \ 535 prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q); 536 #define PRM_POINT(q) if (prom_debug) \ 537 prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q); 538 539 /* 540 * This structure is used to keep track of the intial allocations 541 * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to 542 * be >= the number of ADD_TO_ALLOCATIONS() executed in the code. 543 */ 544 #define NUM_ALLOCATIONS 7 545 int num_allocations = 0; 546 struct { 547 void **al_ptr; 548 size_t al_size; 549 } allocations[NUM_ALLOCATIONS]; 550 size_t valloc_sz = 0; 551 uintptr_t valloc_base; 552 extern uintptr_t ptable_va; 553 extern size_t ptable_sz; 554 555 #define ADD_TO_ALLOCATIONS(ptr, size) { \ 556 size = ROUND_UP_PAGE(size); \ 557 if (num_allocations == NUM_ALLOCATIONS) \ 558 panic("too many ADD_TO_ALLOCATIONS()"); \ 559 allocations[num_allocations].al_ptr = (void**)&ptr; \ 560 allocations[num_allocations].al_size = size; \ 561 valloc_sz += size; \ 562 ++num_allocations; \ 563 } 564 565 static void 566 perform_allocations(void) 567 { 568 caddr_t mem; 569 int i; 570 571 mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN); 572 if (mem != (caddr_t)valloc_base) 573 panic("BOP_ALLOC() failed"); 574 bzero(mem, valloc_sz); 575 for (i = 0; i < num_allocations; ++i) { 576 *allocations[i].al_ptr = (void *)mem; 577 mem += allocations[i].al_size; 578 } 579 } 580 581 /* 582 * Our world looks like this at startup time. 583 * 584 * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data 585 * at 0xfec00000. On a 64-bit OS, kernel text and data are loaded at 586 * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively. Those 587 * addresses are fixed in the binary at link time. 588 * 589 * On the text page: 590 * unix/genunix/krtld/module text loads. 591 * 592 * On the data page: 593 * unix/genunix/krtld/module data loads and space for page_t's. 594 */ 595 /* 596 * Machine-dependent startup code 597 */ 598 void 599 startup(void) 600 { 601 extern void startup_bios_disk(void); 602 extern void startup_pci_bios(void); 603 /* 604 * Make sure that nobody tries to use sekpm until we have 605 * initialized it properly. 606 */ 607 #if defined(__amd64) 608 kpm_desired = kpm_enable; 609 #endif 610 kpm_enable = 0; 611 612 progressbar_init(); 613 startup_init(); 614 startup_memlist(); 615 startup_pci_bios(); 616 startup_modules(); 617 startup_bios_disk(); 618 startup_bop_gone(); 619 startup_vm(); 620 startup_end(); 621 progressbar_start(); 622 } 623 624 static void 625 startup_init() 626 { 627 PRM_POINT("startup_init() starting..."); 628 629 /* 630 * Complete the extraction of cpuid data 631 */ 632 cpuid_pass2(CPU); 633 634 (void) check_boot_version(BOP_GETVERSION(bootops)); 635 636 /* 637 * Check for prom_debug in boot environment 638 */ 639 if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) { 640 ++prom_debug; 641 PRM_POINT("prom_debug found in boot enviroment"); 642 } 643 644 /* 645 * Collect node, cpu and memory configuration information. 646 */ 647 get_system_configuration(); 648 649 /* 650 * Halt if this is an unsupported processor. 651 */ 652 if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) { 653 printf("\n486 processor (\"%s\") detected.\n", 654 CPU->cpu_brandstr); 655 halt("This processor is not supported by this release " 656 "of Solaris."); 657 } 658 659 PRM_POINT("startup_init() done"); 660 } 661 662 /* 663 * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie. 664 * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it 665 * also filters out physical page zero. There is some reliance on the 666 * boot loader allocating only a few contiguous physical memory chunks. 667 */ 668 static void 669 avail_filter(uint64_t *addr, uint64_t *size) 670 { 671 uintptr_t va; 672 uintptr_t next_va; 673 pfn_t pfn; 674 uint64_t pfn_addr; 675 uint64_t pfn_eaddr; 676 uint_t prot; 677 size_t len; 678 uint_t change; 679 680 if (prom_debug) 681 prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n", 682 *addr, *size); 683 684 /* 685 * page zero is required for BIOS.. never make it available 686 */ 687 if (*addr == 0) { 688 *addr += MMU_PAGESIZE; 689 *size -= MMU_PAGESIZE; 690 } 691 692 /* 693 * First we trim from the front of the range. Since hat_boot_probe() 694 * walks ranges in virtual order, but addr/size are physical, we need 695 * to the list until no changes are seen. This deals with the case 696 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w 697 * but w < v. 698 */ 699 do { 700 change = 0; 701 for (va = KERNEL_TEXT; 702 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 703 va = next_va) { 704 705 next_va = va + len; 706 pfn_addr = ptob((uint64_t)pfn); 707 pfn_eaddr = pfn_addr + len; 708 709 if (pfn_addr <= *addr && pfn_eaddr > *addr) { 710 change = 1; 711 while (*size > 0 && len > 0) { 712 *addr += MMU_PAGESIZE; 713 *size -= MMU_PAGESIZE; 714 len -= MMU_PAGESIZE; 715 } 716 } 717 } 718 if (change && prom_debug) 719 prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n", 720 *addr, *size); 721 } while (change); 722 723 /* 724 * Trim pages from the end of the range. 725 */ 726 for (va = KERNEL_TEXT; 727 *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0; 728 va = next_va) { 729 730 next_va = va + len; 731 pfn_addr = ptob((uint64_t)pfn); 732 733 if (pfn_addr >= *addr && pfn_addr < *addr + *size) 734 *size = pfn_addr - *addr; 735 } 736 737 if (prom_debug) 738 prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n", 739 *addr, *size); 740 } 741 742 static void 743 kpm_init() 744 { 745 struct segkpm_crargs b; 746 uintptr_t start, end; 747 struct memlist *pmem; 748 749 /* 750 * These variables were all designed for sfmmu in which segkpm is 751 * mapped using a single pagesize - either 8KB or 4MB. On x86, we 752 * might use 2+ page sizes on a single machine, so none of these 753 * variables have a single correct value. They are set up as if we 754 * always use a 4KB pagesize, which should do no harm. In the long 755 * run, we should get rid of KPM's assumption that only a single 756 * pagesize is used. 757 */ 758 kpm_pgshft = MMU_PAGESHIFT; 759 kpm_pgsz = MMU_PAGESIZE; 760 kpm_pgoff = MMU_PAGEOFFSET; 761 kpmp2pshft = 0; 762 kpmpnpgs = 1; 763 ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0); 764 765 PRM_POINT("about to create segkpm"); 766 rw_enter(&kas.a_lock, RW_WRITER); 767 768 if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0) 769 panic("cannot attach segkpm"); 770 771 b.prot = PROT_READ | PROT_WRITE; 772 b.nvcolors = 1; 773 774 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 775 panic("segkpm_create segkpm"); 776 777 rw_exit(&kas.a_lock); 778 779 /* 780 * Map each of the memsegs into the kpm segment, coalesing adjacent 781 * memsegs to allow mapping with the largest possible pages. 782 */ 783 pmem = phys_install; 784 start = pmem->address; 785 end = start + pmem->size; 786 for (;;) { 787 if (pmem == NULL || pmem->address > end) { 788 hat_devload(kas.a_hat, kpm_vbase + start, 789 end - start, mmu_btop(start), 790 PROT_READ | PROT_WRITE, 791 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 792 if (pmem == NULL) 793 break; 794 start = pmem->address; 795 } 796 end = pmem->address + pmem->size; 797 pmem = pmem->next; 798 } 799 } 800 801 /* 802 * The purpose of startup memlist is to get the system to the 803 * point where it can use kmem_alloc()'s that operate correctly 804 * relying on BOP_ALLOC(). This includes allocating page_ts, 805 * page hash table, vmem initialized, etc. 806 * 807 * Boot's versions of physinstalled and physavail are insufficient for 808 * the kernel's purposes. Specifically we don't know which pages that 809 * are not in physavail can be reclaimed after boot is gone. 810 * 811 * This code solves the problem by dividing the address space 812 * into 3 regions as it takes over the MMU from the booter. 813 * 814 * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT 815 * can not be used by the kernel. 816 * 817 * 2) Any free page that happens to be mapped below kernelbase 818 * is protected until the boot loader is released, but will then be reclaimed. 819 * 820 * 3) Boot shouldn't use any address in the remaining area between kernelbase 821 * and KERNEL_TEXT. 822 * 823 * In the case of multiple mappings to the same page, region 1 has precedence 824 * over region 2. 825 */ 826 static void 827 startup_memlist(void) 828 { 829 size_t memlist_sz; 830 size_t memseg_sz; 831 size_t pagehash_sz; 832 size_t pp_sz; 833 uintptr_t va; 834 size_t len; 835 uint_t prot; 836 pfn_t pfn; 837 int memblocks; 838 caddr_t pagecolor_mem; 839 size_t pagecolor_memsz; 840 caddr_t page_ctrs_mem; 841 size_t page_ctrs_size; 842 struct memlist *current; 843 pgcnt_t orig_npages = 0; 844 extern void startup_build_mem_nodes(struct memlist *); 845 846 /* XX64 fix these - they should be in include files */ 847 extern ulong_t cr4_value; 848 extern size_t page_coloring_init(uint_t, int, int); 849 extern void page_coloring_setup(caddr_t); 850 851 PRM_POINT("startup_memlist() starting..."); 852 853 /* 854 * Take the most current snapshot we can by calling mem-update. 855 * For this to work properly, we first have to ask boot for its 856 * end address. 857 */ 858 if (BOP_GETPROPLEN(bootops, "memory-update") == 0) 859 (void) BOP_GETPROP(bootops, "memory-update", NULL); 860 861 /* 862 * find if the kernel is mapped on a large page 863 */ 864 va = KERNEL_TEXT; 865 if (hat_boot_probe(&va, &len, &pfn, &prot) == 0) 866 panic("Couldn't find kernel text boot mapping"); 867 868 /* 869 * Use leftover large page nucleus text/data space for loadable modules. 870 * Use at most MODTEXT/MODDATA. 871 */ 872 if (len > MMU_PAGESIZE) { 873 874 moddata = (caddr_t)ROUND_UP_PAGE(e_data); 875 e_moddata = (caddr_t)ROUND_UP_4MEG(e_data); 876 if (e_moddata - moddata > MODDATA) 877 e_moddata = moddata + MODDATA; 878 879 modtext = (caddr_t)ROUND_UP_PAGE(e_text); 880 e_modtext = (caddr_t)ROUND_UP_4MEG(e_text); 881 if (e_modtext - modtext > MODTEXT) 882 e_modtext = modtext + MODTEXT; 883 884 885 } else { 886 887 PRM_POINT("Kernel NOT loaded on Large Page!"); 888 e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data); 889 e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text); 890 891 } 892 econtig = e_moddata; 893 894 PRM_DEBUG(modtext); 895 PRM_DEBUG(e_modtext); 896 PRM_DEBUG(moddata); 897 PRM_DEBUG(e_moddata); 898 PRM_DEBUG(econtig); 899 900 /* 901 * For MP machines cr4_value must be set or the non-boot 902 * CPUs will not be able to start. 903 */ 904 if (x86_feature & X86_LARGEPAGE) 905 cr4_value = getcr4(); 906 PRM_DEBUG(cr4_value); 907 908 /* 909 * Examine the boot loaders physical memory map to find out: 910 * - total memory in system - physinstalled 911 * - the max physical address - physmax 912 * - the number of segments the intsalled memory comes in 913 */ 914 if (prom_debug) 915 print_boot_memlist("boot physinstalled", 916 bootops->boot_mem->physinstalled); 917 installed_top_size(bootops->boot_mem->physinstalled, &physmax, 918 &physinstalled, &memblocks); 919 PRM_DEBUG(physmax); 920 PRM_DEBUG(physinstalled); 921 PRM_DEBUG(memblocks); 922 923 if (prom_debug) 924 print_boot_memlist("boot physavail", 925 bootops->boot_mem->physavail); 926 927 /* 928 * Initialize hat's mmu parameters. 929 * Check for enforce-prot-exec in boot environment. It's used to 930 * enable/disable support for the page table entry NX bit. 931 * The default is to enforce PROT_EXEC on processors that support NX. 932 * Boot seems to round up the "len", but 8 seems to be big enough. 933 */ 934 mmu_init(); 935 936 #ifdef __i386 937 /* 938 * physmax is lowered if there is more memory than can be 939 * physically addressed in 32 bit (PAE/non-PAE) modes. 940 */ 941 if (mmu.pae_hat) { 942 if (PFN_ABOVE64G(physmax)) { 943 physinstalled -= (physmax - (PFN_64G - 1)); 944 physmax = PFN_64G - 1; 945 } 946 } else { 947 if (PFN_ABOVE4G(physmax)) { 948 physinstalled -= (physmax - (PFN_4G - 1)); 949 physmax = PFN_4G - 1; 950 } 951 } 952 #endif 953 954 startup_build_mem_nodes(bootops->boot_mem->physinstalled); 955 956 if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) { 957 int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec"); 958 char value[8]; 959 960 if (len < 8) 961 (void) BOP_GETPROP(bootops, "enforce-prot-exec", value); 962 else 963 (void) strcpy(value, ""); 964 if (strcmp(value, "off") == 0) 965 mmu.pt_nx = 0; 966 } 967 PRM_DEBUG(mmu.pt_nx); 968 969 /* 970 * We will need page_t's for every page in the system, except for 971 * memory mapped at or above above the start of the kernel text segment. 972 * 973 * pages above e_modtext are attributed to kernel debugger (obp_pages) 974 */ 975 npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */ 976 obp_pages = 0; 977 va = KERNEL_TEXT; 978 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) { 979 npages -= len >> MMU_PAGESHIFT; 980 if (va >= (uintptr_t)e_moddata) 981 obp_pages += len >> MMU_PAGESHIFT; 982 va += len; 983 } 984 PRM_DEBUG(npages); 985 PRM_DEBUG(obp_pages); 986 987 /* 988 * If physmem is patched to be non-zero, use it instead of 989 * the computed value unless it is larger than the real 990 * amount of memory on hand. 991 */ 992 if (physmem == 0 || physmem > npages) { 993 physmem = npages; 994 } else if (physmem < npages) { 995 orig_npages = npages; 996 npages = physmem; 997 } 998 PRM_DEBUG(physmem); 999 1000 /* 1001 * We now compute the sizes of all the initial allocations for 1002 * structures the kernel needs in order do kmem_alloc(). These 1003 * include: 1004 * memsegs 1005 * memlists 1006 * page hash table 1007 * page_t's 1008 * page coloring data structs 1009 */ 1010 memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS); 1011 ADD_TO_ALLOCATIONS(memseg_base, memseg_sz); 1012 PRM_DEBUG(memseg_sz); 1013 1014 /* 1015 * Reserve space for phys_avail/phys_install memlists. 1016 * There's no real good way to know exactly how much room we'll need, 1017 * but this should be a good upper bound. 1018 */ 1019 memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) * 1020 (memblocks + POSS_NEW_FRAGMENTS)); 1021 ADD_TO_ALLOCATIONS(memlist, memlist_sz); 1022 PRM_DEBUG(memlist_sz); 1023 1024 /* 1025 * The page structure hash table size is a power of 2 1026 * such that the average hash chain length is PAGE_HASHAVELEN. 1027 */ 1028 page_hashsz = npages / PAGE_HASHAVELEN; 1029 page_hashsz = 1 << highbit(page_hashsz); 1030 pagehash_sz = sizeof (struct page *) * page_hashsz; 1031 ADD_TO_ALLOCATIONS(page_hash, pagehash_sz); 1032 PRM_DEBUG(pagehash_sz); 1033 1034 /* 1035 * Set aside room for the page structures themselves. Note: on 1036 * 64-bit systems we don't allocate page_t's for every page here. 1037 * We just allocate enough to map the lowest 4GB of physical 1038 * memory, minus those pages that are used for the "nucleus" kernel 1039 * text and data. The remaining pages are allocated once we can 1040 * map around boot. 1041 * 1042 * boot_npages is used to allocate an area big enough for our 1043 * initial page_t's. kphym_init may use less than that. 1044 */ 1045 boot_npages = npages; 1046 #if defined(__amd64) 1047 if (npages > mmu_btop(FOURGB - (econtig - s_text))) 1048 boot_npages = mmu_btop(FOURGB - (econtig - s_text)); 1049 #endif 1050 PRM_DEBUG(boot_npages); 1051 pp_sz = sizeof (struct page) * boot_npages; 1052 ADD_TO_ALLOCATIONS(pp_base, pp_sz); 1053 PRM_DEBUG(pp_sz); 1054 1055 /* 1056 * determine l2 cache info and memory size for page coloring 1057 */ 1058 (void) getl2cacheinfo(CPU, 1059 &l2cache_sz, &l2cache_linesz, &l2cache_assoc); 1060 pagecolor_memsz = 1061 page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc); 1062 ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz); 1063 PRM_DEBUG(pagecolor_memsz); 1064 1065 page_ctrs_size = page_ctrs_sz(); 1066 ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size); 1067 PRM_DEBUG(page_ctrs_size); 1068 1069 /* 1070 * valloc_base will be below kernel text 1071 * The extra pages are for the HAT and kmdb to map page tables. 1072 */ 1073 valloc_sz = ROUND_UP_LPAGE(valloc_sz); 1074 valloc_base = KERNEL_TEXT - valloc_sz; 1075 PRM_DEBUG(valloc_base); 1076 ptable_va = valloc_base - ptable_sz; 1077 1078 #if defined(__amd64) 1079 if (eprom_kernelbase && eprom_kernelbase != KERNELBASE) 1080 cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit " 1081 "systems."); 1082 kernelbase = (uintptr_t)KERNELBASE; 1083 core_base = (uintptr_t)COREHEAP_BASE; 1084 core_size = ptable_va - core_base; 1085 #else /* __i386 */ 1086 /* 1087 * We configure kernelbase based on: 1088 * 1089 * 1. user specified kernelbase via eeprom command. Value cannot exceed 1090 * KERNELBASE_MAX. we large page align eprom_kernelbase 1091 * 1092 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t. 1093 * On large memory systems we must lower kernelbase to allow 1094 * enough room for page_t's for all of memory. 1095 * 1096 * The value set here, might be changed a little later. 1097 */ 1098 if (eprom_kernelbase) { 1099 kernelbase = eprom_kernelbase & mmu.level_mask[1]; 1100 if (kernelbase > KERNELBASE_MAX) 1101 kernelbase = KERNELBASE_MAX; 1102 } else { 1103 kernelbase = (uintptr_t)KERNELBASE; 1104 kernelbase -= ROUND_UP_4MEG(2 * valloc_sz); 1105 } 1106 ASSERT((kernelbase & mmu.level_offset[1]) == 0); 1107 core_base = ptable_va; 1108 core_size = 0; 1109 #endif 1110 1111 PRM_DEBUG(kernelbase); 1112 PRM_DEBUG(core_base); 1113 PRM_DEBUG(core_size); 1114 1115 /* 1116 * At this point, we can only use a portion of the kernelheap that 1117 * will be available after we boot. Both 32-bit and 64-bit systems 1118 * have this limitation, although the reasons are completely 1119 * different. 1120 * 1121 * On 64-bit systems, the booter only supports allocations in the 1122 * upper 4GB of memory, so we have to work with a reduced kernel 1123 * heap until we take over all allocations. The booter also sits 1124 * in the lower portion of that 4GB range, so we have to raise the 1125 * bottom of the heap even further. 1126 * 1127 * On 32-bit systems we have to leave room to place segmap below 1128 * the heap. We don't yet know how large segmap will be, so we 1129 * have to be very conservative. 1130 */ 1131 #if defined(__amd64) 1132 /* 1133 * XX64: For now, we let boot have the lower 2GB of the top 4GB 1134 * address range. In the long run, that should be fixed. It's 1135 * insane for a booter to need 2 2GB address ranges. 1136 */ 1137 boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1138 segmap_reserved = 0; 1139 1140 #else /* __i386 */ 1141 segkp_fromheap = 1; 1142 segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX)); 1143 boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) + 1144 segmap_reserved); 1145 #endif 1146 PRM_DEBUG(boot_kernelheap); 1147 kernelheap = boot_kernelheap; 1148 ekernelheap = (char *)core_base; 1149 1150 /* 1151 * If segmap is too large we can push the bottom of the kernel heap 1152 * higher than the base. Or worse, it could exceed the top of the 1153 * VA space entirely, causing it to wrap around. 1154 */ 1155 if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase) 1156 panic("too little memory available for kernelheap," 1157 " use a different kernelbase"); 1158 1159 /* 1160 * Now that we know the real value of kernelbase, 1161 * update variables that were initialized with a value of 1162 * KERNELBASE (in common/conf/param.c). 1163 * 1164 * XXX The problem with this sort of hackery is that the 1165 * compiler just may feel like putting the const declarations 1166 * (in param.c) into the .text section. Perhaps they should 1167 * just be declared as variables there? 1168 */ 1169 1170 #if defined(__amd64) 1171 ASSERT(_kernelbase == KERNELBASE); 1172 ASSERT(_userlimit == USERLIMIT); 1173 /* 1174 * As one final sanity check, verify that the "red zone" between 1175 * kernel and userspace is exactly the size we expected. 1176 */ 1177 ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024))); 1178 #else 1179 *(uintptr_t *)&_kernelbase = kernelbase; 1180 *(uintptr_t *)&_userlimit = kernelbase; 1181 *(uintptr_t *)&_userlimit32 = _userlimit; 1182 #endif 1183 PRM_DEBUG(_kernelbase); 1184 PRM_DEBUG(_userlimit); 1185 PRM_DEBUG(_userlimit32); 1186 1187 /* 1188 * do all the initial allocations 1189 */ 1190 perform_allocations(); 1191 1192 /* 1193 * Initialize the kernel heap. Note 3rd argument must be > 1st. 1194 */ 1195 kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE, 1196 (void *)core_base, (void *)ptable_va); 1197 1198 /* 1199 * Build phys_install and phys_avail in kernel memspace. 1200 * - phys_install should be all memory in the system. 1201 * - phys_avail is phys_install minus any memory mapped before this 1202 * point above KERNEL_TEXT. 1203 */ 1204 current = phys_install = memlist; 1205 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, NULL); 1206 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1207 panic("physinstalled was too big!"); 1208 if (prom_debug) 1209 print_kernel_memlist("phys_install", phys_install); 1210 1211 phys_avail = current; 1212 PRM_POINT("Building phys_avail:\n"); 1213 copy_memlist_filter(bootops->boot_mem->physinstalled, ¤t, 1214 avail_filter); 1215 if ((caddr_t)current > (caddr_t)memlist + memlist_sz) 1216 panic("physavail was too big!"); 1217 if (prom_debug) 1218 print_kernel_memlist("phys_avail", phys_avail); 1219 1220 /* 1221 * setup page coloring 1222 */ 1223 page_coloring_setup(pagecolor_mem); 1224 page_lock_init(); /* currently a no-op */ 1225 1226 /* 1227 * free page list counters 1228 */ 1229 (void) page_ctrs_alloc(page_ctrs_mem); 1230 1231 /* 1232 * Initialize the page structures from the memory lists. 1233 */ 1234 availrmem_initial = availrmem = freemem = 0; 1235 PRM_POINT("Calling kphysm_init()..."); 1236 boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages); 1237 PRM_POINT("kphysm_init() done"); 1238 PRM_DEBUG(boot_npages); 1239 1240 /* 1241 * Now that page_t's have been initialized, remove all the 1242 * initial allocation pages from the kernel free page lists. 1243 */ 1244 boot_mapin((caddr_t)valloc_base, valloc_sz); 1245 1246 /* 1247 * Initialize kernel memory allocator. 1248 */ 1249 kmem_init(); 1250 1251 /* 1252 * print this out early so that we know what's going on 1253 */ 1254 cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE); 1255 1256 /* 1257 * Initialize bp_mapin(). 1258 */ 1259 bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK); 1260 1261 /* 1262 * orig_npages is non-zero if physmem has been configured for less 1263 * than the available memory. 1264 */ 1265 if (orig_npages) { 1266 #ifdef __i386 1267 /* 1268 * use npages for physmem in case it has been temporarily 1269 * modified via /etc/system in kmem_init/mod_read_system_file. 1270 */ 1271 if (npages == PHYSMEM32) { 1272 cmn_err(CE_WARN, "!Due to 32 bit virtual" 1273 " address space limitations, limiting" 1274 " physmem to 0x%lx of 0x%lx available pages", 1275 npages, orig_npages); 1276 } else { 1277 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1278 " 0x%lx available pages", npages, orig_npages); 1279 } 1280 #else 1281 cmn_err(CE_WARN, "!limiting physmem to 0x%lx of" 1282 " 0x%lx available pages", npages, orig_npages); 1283 #endif 1284 } 1285 #if defined(__i386) 1286 if (eprom_kernelbase && (eprom_kernelbase != kernelbase)) 1287 cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, " 1288 "System using 0x%lx", 1289 (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase); 1290 #endif 1291 1292 #ifdef KERNELBASE_ABI_MIN 1293 if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) { 1294 cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not " 1295 "i386 ABI compliant.", (uintptr_t)kernelbase); 1296 } 1297 #endif 1298 1299 PRM_POINT("startup_memlist() done"); 1300 } 1301 1302 static void 1303 startup_modules(void) 1304 { 1305 unsigned int i; 1306 extern void prom_setup(void); 1307 1308 PRM_POINT("startup_modules() starting..."); 1309 /* 1310 * Initialize ten-micro second timer so that drivers will 1311 * not get short changed in their init phase. This was 1312 * not getting called until clkinit which, on fast cpu's 1313 * caused the drv_usecwait to be way too short. 1314 */ 1315 microfind(); 1316 1317 /* 1318 * Read the GMT lag from /etc/rtc_config. 1319 */ 1320 gmt_lag = process_rtc_config_file(); 1321 1322 /* 1323 * Calculate default settings of system parameters based upon 1324 * maxusers, yet allow to be overridden via the /etc/system file. 1325 */ 1326 param_calc(0); 1327 1328 mod_setup(); 1329 1330 /* 1331 * Initialize system parameters. 1332 */ 1333 param_init(); 1334 1335 /* 1336 * Initialize the default brands 1337 */ 1338 brand_init(); 1339 1340 /* 1341 * maxmem is the amount of physical memory we're playing with. 1342 */ 1343 maxmem = physmem; 1344 1345 /* 1346 * Initialize the hat layer. 1347 */ 1348 hat_init(); 1349 1350 /* 1351 * Initialize segment management stuff. 1352 */ 1353 seg_init(); 1354 1355 if (modload("fs", "specfs") == -1) 1356 halt("Can't load specfs"); 1357 1358 if (modload("fs", "devfs") == -1) 1359 halt("Can't load devfs"); 1360 1361 if (modload("fs", "dev") == -1) 1362 halt("Can't load dev"); 1363 1364 (void) modloadonly("sys", "lbl_edition"); 1365 1366 dispinit(); 1367 1368 /* 1369 * This is needed here to initialize hw_serial[] for cluster booting. 1370 */ 1371 if ((i = modload("misc", "sysinit")) != (unsigned int)-1) 1372 (void) modunload(i); 1373 else 1374 cmn_err(CE_CONT, "sysinit load failed"); 1375 1376 /* Read cluster configuration data. */ 1377 clconf_init(); 1378 1379 /* 1380 * Create a kernel device tree. First, create rootnex and 1381 * then invoke bus specific code to probe devices. 1382 */ 1383 setup_ddi(); 1384 1385 /* 1386 * Set up the CPU module subsystem. Modifies the device tree, so it 1387 * must be done after setup_ddi(). 1388 */ 1389 cmi_init(); 1390 1391 /* 1392 * Initialize the MCA handlers 1393 */ 1394 if (x86_feature & X86_MCA) 1395 cmi_mca_init(); 1396 1397 /* 1398 * Fake a prom tree such that /dev/openprom continues to work 1399 */ 1400 prom_setup(); 1401 1402 /* 1403 * Load all platform specific modules 1404 */ 1405 psm_modload(); 1406 1407 PRM_POINT("startup_modules() done"); 1408 } 1409 1410 static void 1411 startup_bop_gone(void) 1412 { 1413 PRM_POINT("startup_bop_gone() starting..."); 1414 1415 /* 1416 * Do final allocations of HAT data structures that need to 1417 * be allocated before quiescing the boot loader. 1418 */ 1419 PRM_POINT("Calling hat_kern_alloc()..."); 1420 hat_kern_alloc(); 1421 PRM_POINT("hat_kern_alloc() done"); 1422 1423 /* 1424 * Setup MTRR (Memory type range registers) 1425 */ 1426 setup_mtrr(); 1427 PRM_POINT("startup_bop_gone() done"); 1428 } 1429 1430 /* 1431 * Walk through the pagetables looking for pages mapped in by boot. If the 1432 * setaside flag is set the pages are expected to be returned to the 1433 * kernel later in boot, so we add them to the bootpages list. 1434 */ 1435 static void 1436 protect_boot_range(uintptr_t low, uintptr_t high, int setaside) 1437 { 1438 uintptr_t va = low; 1439 size_t len; 1440 uint_t prot; 1441 pfn_t pfn; 1442 page_t *pp; 1443 pgcnt_t boot_protect_cnt = 0; 1444 1445 while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) { 1446 if (va + len >= high) 1447 panic("0x%lx byte mapping at 0x%p exceeds boot's " 1448 "legal range.", len, (void *)va); 1449 1450 while (len > 0) { 1451 pp = page_numtopp_alloc(pfn); 1452 if (pp != NULL) { 1453 if (setaside == 0) 1454 panic("Unexpected mapping by boot. " 1455 "addr=%p pfn=%lx\n", 1456 (void *)va, pfn); 1457 1458 pp->p_next = bootpages; 1459 bootpages = pp; 1460 ++boot_protect_cnt; 1461 } 1462 1463 ++pfn; 1464 len -= MMU_PAGESIZE; 1465 va += MMU_PAGESIZE; 1466 } 1467 } 1468 PRM_DEBUG(boot_protect_cnt); 1469 } 1470 1471 static void 1472 startup_vm(void) 1473 { 1474 struct segmap_crargs a; 1475 extern void hat_kern_setup(void); 1476 pgcnt_t pages_left; 1477 1478 extern int exec_lpg_disable, use_brk_lpg, use_stk_lpg, use_zmap_lpg; 1479 extern pgcnt_t auto_lpg_min_physmem; 1480 1481 PRM_POINT("startup_vm() starting..."); 1482 1483 /* 1484 * The next two loops are done in distinct steps in order 1485 * to be sure that any page that is doubly mapped (both above 1486 * KERNEL_TEXT and below kernelbase) is dealt with correctly. 1487 * Note this may never happen, but it might someday. 1488 */ 1489 1490 bootpages = NULL; 1491 PRM_POINT("Protecting boot pages"); 1492 /* 1493 * Protect any pages mapped above KERNEL_TEXT that somehow have 1494 * page_t's. This can only happen if something weird allocated 1495 * in this range (like kadb/kmdb). 1496 */ 1497 protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0); 1498 1499 /* 1500 * Before we can take over memory allocation/mapping from the boot 1501 * loader we must remove from our free page lists any boot pages that 1502 * will stay mapped until release_bootstrap(). 1503 */ 1504 protect_boot_range(0, kernelbase, 1); 1505 #if defined(__amd64) 1506 protect_boot_range(BOOT_DOUBLEMAP_BASE, 1507 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0); 1508 #endif 1509 1510 /* 1511 * Copy in boot's page tables, set up extra page tables for the kernel, 1512 * and switch to the kernel's context. 1513 */ 1514 PRM_POINT("Calling hat_kern_setup()..."); 1515 hat_kern_setup(); 1516 1517 /* 1518 * It is no longer safe to call BOP_ALLOC(), so make sure we don't. 1519 */ 1520 bootops->bsys_alloc = NULL; 1521 PRM_POINT("hat_kern_setup() done"); 1522 1523 hat_cpu_online(CPU); 1524 1525 /* 1526 * Before we call kvm_init(), we need to establish the final size 1527 * of the kernel's heap. So, we need to figure out how much space 1528 * to set aside for segkp, segkpm, and segmap. 1529 */ 1530 final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase); 1531 #if defined(__amd64) 1532 if (kpm_desired) { 1533 /* 1534 * Segkpm appears at the bottom of the kernel's address 1535 * range. To detect accidental overruns of the user 1536 * address space, we leave a "red zone" of unmapped memory 1537 * between kernelbase and the beginning of segkpm. 1538 */ 1539 kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE; 1540 kpm_size = mmu_ptob(physmax + 1); 1541 PRM_DEBUG(kpm_vbase); 1542 PRM_DEBUG(kpm_size); 1543 final_kernelheap = 1544 (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size); 1545 } 1546 1547 if (!segkp_fromheap) { 1548 size_t sz = mmu_ptob(segkpsize); 1549 1550 /* 1551 * determine size of segkp and adjust the bottom of the 1552 * kernel's heap. 1553 */ 1554 if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) { 1555 sz = SEGKPDEFSIZE; 1556 cmn_err(CE_WARN, "!Illegal value for segkpsize. " 1557 "segkpsize has been reset to %ld pages", 1558 mmu_btop(sz)); 1559 } 1560 sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem))); 1561 1562 segkpsize = mmu_btop(ROUND_UP_LPAGE(sz)); 1563 segkp_base = final_kernelheap; 1564 PRM_DEBUG(segkpsize); 1565 PRM_DEBUG(segkp_base); 1566 final_kernelheap = segkp_base + mmu_ptob(segkpsize); 1567 PRM_DEBUG(final_kernelheap); 1568 } 1569 1570 /* 1571 * put the range of VA for device mappings next 1572 */ 1573 toxic_addr = (uintptr_t)final_kernelheap; 1574 PRM_DEBUG(toxic_addr); 1575 final_kernelheap = (char *)toxic_addr + toxic_size; 1576 #endif 1577 PRM_DEBUG(final_kernelheap); 1578 ASSERT(final_kernelheap < boot_kernelheap); 1579 1580 /* 1581 * Users can change segmapsize through eeprom or /etc/system. 1582 * If the variable is tuned through eeprom, there is no upper 1583 * bound on the size of segmap. If it is tuned through 1584 * /etc/system on 32-bit systems, it must be no larger than we 1585 * planned for in startup_memlist(). 1586 */ 1587 segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT); 1588 segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap); 1589 1590 #if defined(__i386) 1591 if (segmapsize > segmap_reserved) { 1592 cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in " 1593 "/etc/system. Use eeprom.", (long)SEGMAPMAX); 1594 segmapsize = segmap_reserved; 1595 } 1596 /* 1597 * 32-bit systems don't have segkpm or segkp, so segmap appears at 1598 * the bottom of the kernel's address range. Set aside space for a 1599 * red zone just below the start of segmap. 1600 */ 1601 segkmap_start += KERNEL_REDZONE_SIZE; 1602 segmapsize -= KERNEL_REDZONE_SIZE; 1603 #endif 1604 final_kernelheap = (char *)(segkmap_start + segmapsize); 1605 1606 PRM_DEBUG(segkmap_start); 1607 PRM_DEBUG(segmapsize); 1608 PRM_DEBUG(final_kernelheap); 1609 1610 /* 1611 * Initialize VM system 1612 */ 1613 PRM_POINT("Calling kvm_init()..."); 1614 kvm_init(); 1615 PRM_POINT("kvm_init() done"); 1616 1617 /* 1618 * Tell kmdb that the VM system is now working 1619 */ 1620 if (boothowto & RB_DEBUG) 1621 kdi_dvec_vmready(); 1622 1623 /* 1624 * Mangle the brand string etc. 1625 */ 1626 cpuid_pass3(CPU); 1627 1628 PRM_DEBUG(final_kernelheap); 1629 1630 /* 1631 * Now that we can use memory outside the top 4GB (on 64-bit 1632 * systems) and we know the size of segmap, we can set the final 1633 * size of the kernel's heap. Note: on 64-bit systems we still 1634 * can't touch anything in the bottom half of the top 4GB range 1635 * because boot still has pages mapped there. 1636 */ 1637 if (final_kernelheap < boot_kernelheap) { 1638 kernelheap_extend(final_kernelheap, boot_kernelheap); 1639 #if defined(__amd64) 1640 kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE, 1641 MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE), 1642 (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE), 1643 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1644 PRM_DEBUG(kmem_setaside); 1645 if (kmem_setaside == NULL) 1646 panic("Could not protect boot's memory"); 1647 #endif 1648 } 1649 /* 1650 * Now that the kernel heap may have grown significantly, we need 1651 * to make all the remaining page_t's available to back that memory. 1652 * 1653 * XX64 this should probably wait till after release boot-strap too. 1654 */ 1655 pages_left = npages - boot_npages; 1656 if (pages_left > 0) { 1657 PRM_DEBUG(pages_left); 1658 (void) kphysm_init(NULL, memseg_base, boot_npages, pages_left); 1659 } 1660 1661 #if defined(__amd64) 1662 1663 /* 1664 * Create the device arena for toxic (to dtrace/kmdb) mappings. 1665 */ 1666 device_arena = vmem_create("device", (void *)toxic_addr, 1667 toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 1668 1669 #else /* __i386 */ 1670 1671 /* 1672 * allocate the bit map that tracks toxic pages 1673 */ 1674 toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase)); 1675 PRM_DEBUG(toxic_bit_map_len); 1676 toxic_bit_map = 1677 kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP); 1678 ASSERT(toxic_bit_map != NULL); 1679 PRM_DEBUG(toxic_bit_map); 1680 1681 #endif /* __i386 */ 1682 1683 1684 /* 1685 * Now that we've got more VA, as well as the ability to allocate from 1686 * it, tell the debugger. 1687 */ 1688 if (boothowto & RB_DEBUG) 1689 kdi_dvec_memavail(); 1690 1691 /* 1692 * The following code installs a special page fault handler (#pf) 1693 * to work around a pentium bug. 1694 */ 1695 #if !defined(__amd64) 1696 if (x86_type == X86_TYPE_P5) { 1697 gate_desc_t *newidt; 1698 desctbr_t newidt_r; 1699 1700 if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL) 1701 panic("failed to install pentium_pftrap"); 1702 1703 bcopy(idt0, newidt, sizeof (idt0)); 1704 set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap, 1705 KCS_SEL, 0, SDT_SYSIGT, SEL_KPL); 1706 1707 (void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE, 1708 PROT_READ|PROT_EXEC); 1709 1710 newidt_r.dtr_limit = sizeof (idt0) - 1; 1711 newidt_r.dtr_base = (uintptr_t)newidt; 1712 CPU->cpu_idt = newidt; 1713 wr_idtr(&newidt_r); 1714 } 1715 #endif /* !__amd64 */ 1716 1717 /* 1718 * Map page pfn=0 for drivers, such as kd, that need to pick up 1719 * parameters left there by controllers/BIOS. 1720 */ 1721 PRM_POINT("setup up p0_va"); 1722 p0_va = i86devmap(0, 1, PROT_READ); 1723 PRM_DEBUG(p0_va); 1724 1725 cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n", 1726 physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled)); 1727 1728 /* 1729 * disable automatic large pages for small memory systems or 1730 * when the disable flag is set. 1731 */ 1732 if (physmem < auto_lpg_min_physmem || auto_lpg_disable) { 1733 exec_lpg_disable = 1; 1734 use_brk_lpg = 0; 1735 use_stk_lpg = 0; 1736 use_zmap_lpg = 0; 1737 } 1738 1739 PRM_POINT("Calling hat_init_finish()..."); 1740 hat_init_finish(); 1741 PRM_POINT("hat_init_finish() done"); 1742 1743 /* 1744 * Initialize the segkp segment type. 1745 */ 1746 rw_enter(&kas.a_lock, RW_WRITER); 1747 if (!segkp_fromheap) { 1748 if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize), 1749 segkp) < 0) { 1750 panic("startup: cannot attach segkp"); 1751 /*NOTREACHED*/ 1752 } 1753 } else { 1754 /* 1755 * For 32 bit x86 systems, we will have segkp under the heap. 1756 * There will not be a segkp segment. We do, however, need 1757 * to fill in the seg structure. 1758 */ 1759 segkp->s_as = &kas; 1760 } 1761 if (segkp_create(segkp) != 0) { 1762 panic("startup: segkp_create failed"); 1763 /*NOTREACHED*/ 1764 } 1765 PRM_DEBUG(segkp); 1766 rw_exit(&kas.a_lock); 1767 1768 /* 1769 * kpm segment 1770 */ 1771 segmap_kpm = 0; 1772 if (kpm_desired) { 1773 kpm_init(); 1774 kpm_enable = 1; 1775 vpm_enable = 1; 1776 } 1777 1778 /* 1779 * Now create segmap segment. 1780 */ 1781 rw_enter(&kas.a_lock, RW_WRITER); 1782 if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) { 1783 panic("cannot attach segkmap"); 1784 /*NOTREACHED*/ 1785 } 1786 PRM_DEBUG(segkmap); 1787 1788 /* 1789 * The 64 bit HAT permanently maps only segmap's page tables. 1790 * The 32 bit HAT maps the heap's page tables too. 1791 */ 1792 #if defined(__amd64) 1793 hat_kmap_init(segkmap_start, segmapsize); 1794 #else /* __i386 */ 1795 ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap); 1796 hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start); 1797 #endif /* __i386 */ 1798 1799 a.prot = PROT_READ | PROT_WRITE; 1800 a.shmsize = 0; 1801 a.nfreelist = segmapfreelists; 1802 1803 if (segmap_create(segkmap, (caddr_t)&a) != 0) 1804 panic("segmap_create segkmap"); 1805 rw_exit(&kas.a_lock); 1806 1807 setup_vaddr_for_ppcopy(CPU); 1808 1809 segdev_init(); 1810 pmem_init(); 1811 PRM_POINT("startup_vm() done"); 1812 } 1813 1814 static void 1815 startup_end(void) 1816 { 1817 extern void setx86isalist(void); 1818 1819 PRM_POINT("startup_end() starting..."); 1820 1821 /* 1822 * Perform tasks that get done after most of the VM 1823 * initialization has been done but before the clock 1824 * and other devices get started. 1825 */ 1826 kern_setup1(); 1827 1828 /* 1829 * Perform CPC initialization for this CPU. 1830 */ 1831 kcpc_hw_init(CPU); 1832 1833 #if defined(__amd64) 1834 /* 1835 * Validate support for syscall/sysret 1836 * XX64 -- include SSE, SSE2, etc. here too? 1837 */ 1838 if ((x86_feature & X86_ASYSC) == 0) { 1839 cmn_err(CE_WARN, 1840 "cpu%d does not support syscall/sysret", CPU->cpu_id); 1841 } 1842 #endif 1843 1844 #if defined(OPTERON_WORKAROUND_6323525) 1845 if (opteron_workaround_6323525) 1846 patch_workaround_6323525(); 1847 #endif 1848 /* 1849 * Configure the system. 1850 */ 1851 PRM_POINT("Calling configure()..."); 1852 configure(); /* set up devices */ 1853 PRM_POINT("configure() done"); 1854 1855 /* 1856 * Set the isa_list string to the defined instruction sets we 1857 * support. 1858 */ 1859 setx86isalist(); 1860 cpu_intr_alloc(CPU, NINTR_THREADS); 1861 psm_install(); 1862 1863 /* 1864 * We're done with bootops. We don't unmap the bootstrap yet because 1865 * we're still using bootsvcs. 1866 */ 1867 PRM_POINT("zeroing out bootops"); 1868 *bootopsp = (struct bootops *)0; 1869 bootops = (struct bootops *)NULL; 1870 1871 PRM_POINT("Enabling interrupts"); 1872 (*picinitf)(); 1873 sti(); 1874 1875 (void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1, 1876 "softlevel1", NULL, NULL); /* XXX to be moved later */ 1877 1878 PRM_POINT("startup_end() done"); 1879 } 1880 1881 extern char hw_serial[]; 1882 char *_hs1107 = hw_serial; 1883 ulong_t _bdhs34; 1884 1885 void 1886 post_startup(void) 1887 { 1888 /* 1889 * Set the system wide, processor-specific flags to be passed 1890 * to userland via the aux vector for performance hints and 1891 * instruction set extensions. 1892 */ 1893 bind_hwcap(); 1894 1895 /* 1896 * Load the System Management BIOS into the global ksmbios handle, 1897 * if an SMBIOS is present on this system. 1898 */ 1899 ksmbios = smbios_open(NULL, SMB_VERSION, ksmbios_flags, NULL); 1900 1901 /* 1902 * Startup memory scrubber. 1903 */ 1904 memscrub_init(); 1905 1906 /* 1907 * Complete CPU module initialization 1908 */ 1909 cmi_post_init(); 1910 1911 /* 1912 * Perform forceloading tasks for /etc/system. 1913 */ 1914 (void) mod_sysctl(SYS_FORCELOAD, NULL); 1915 1916 /* 1917 * ON4.0: Force /proc module in until clock interrupt handle fixed 1918 * ON4.0: This must be fixed or restated in /etc/systems. 1919 */ 1920 (void) modload("fs", "procfs"); 1921 1922 #if defined(__i386) 1923 /* 1924 * Check for required functional Floating Point hardware, 1925 * unless FP hardware explicitly disabled. 1926 */ 1927 if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO)) 1928 halt("No working FP hardware found"); 1929 #endif 1930 1931 maxmem = freemem; 1932 1933 add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi); 1934 1935 /* 1936 * Perform the formal initialization of the boot chip, 1937 * and associate the boot cpu with it. 1938 * This must be done after the cpu node for CPU has been 1939 * added to the device tree, when the necessary probing to 1940 * know the chip type and chip "id" is performed. 1941 */ 1942 chip_cpu_init(CPU); 1943 chip_cpu_assign(CPU); 1944 } 1945 1946 static int 1947 pp_in_ramdisk(page_t *pp) 1948 { 1949 extern uint64_t ramdisk_start, ramdisk_end; 1950 1951 return ((pp->p_pagenum >= btop(ramdisk_start)) && 1952 (pp->p_pagenum < btopr(ramdisk_end))); 1953 } 1954 1955 void 1956 release_bootstrap(void) 1957 { 1958 int root_is_ramdisk; 1959 pfn_t pfn; 1960 page_t *pp; 1961 extern void kobj_boot_unmountroot(void); 1962 extern dev_t rootdev; 1963 1964 /* unmount boot ramdisk and release kmem usage */ 1965 kobj_boot_unmountroot(); 1966 1967 /* 1968 * We're finished using the boot loader so free its pages. 1969 */ 1970 PRM_POINT("Unmapping lower boot pages"); 1971 clear_boot_mappings(0, kernelbase); 1972 #if defined(__amd64) 1973 PRM_POINT("Unmapping upper boot pages"); 1974 clear_boot_mappings(BOOT_DOUBLEMAP_BASE, 1975 BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE); 1976 #endif 1977 1978 /* 1979 * If root isn't on ramdisk, destroy the hardcoded 1980 * ramdisk node now and release the memory. Else, 1981 * ramdisk memory is kept in rd_pages. 1982 */ 1983 root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk")); 1984 if (!root_is_ramdisk) { 1985 dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0); 1986 ASSERT(dip && ddi_get_parent(dip) == ddi_root_node()); 1987 ndi_rele_devi(dip); /* held from ddi_find_devinfo */ 1988 (void) ddi_remove_child(dip, 0); 1989 } 1990 1991 PRM_POINT("Releasing boot pages"); 1992 while (bootpages) { 1993 pp = bootpages; 1994 bootpages = pp->p_next; 1995 if (root_is_ramdisk && pp_in_ramdisk(pp)) { 1996 pp->p_next = rd_pages; 1997 rd_pages = pp; 1998 continue; 1999 } 2000 pp->p_next = (struct page *)0; 2001 page_free(pp, 1); 2002 } 2003 2004 /* 2005 * Find 1 page below 1 MB so that other processors can boot up. 2006 * Make sure it has a kernel VA as well as a 1:1 mapping. 2007 * We should have just free'd one up. 2008 */ 2009 if (use_mp) { 2010 for (pfn = 1; pfn < btop(1*1024*1024); pfn++) { 2011 if (page_numtopp_alloc(pfn) == NULL) 2012 continue; 2013 rm_platter_va = i86devmap(pfn, 1, 2014 PROT_READ | PROT_WRITE | PROT_EXEC); 2015 rm_platter_pa = ptob(pfn); 2016 hat_devload(kas.a_hat, 2017 (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 2018 pfn, PROT_READ | PROT_WRITE | PROT_EXEC, 2019 HAT_LOAD_NOCONSIST); 2020 break; 2021 } 2022 if (pfn == btop(1*1024*1024)) 2023 panic("No page available for starting " 2024 "other processors"); 2025 } 2026 2027 #if defined(__amd64) 2028 PRM_POINT("Returning boot's VA space to kernel heap"); 2029 if (kmem_setaside != NULL) 2030 vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE); 2031 #endif 2032 } 2033 2034 /* 2035 * Initialize the platform-specific parts of a page_t. 2036 */ 2037 void 2038 add_physmem_cb(page_t *pp, pfn_t pnum) 2039 { 2040 pp->p_pagenum = pnum; 2041 pp->p_mapping = NULL; 2042 pp->p_embed = 0; 2043 pp->p_share = 0; 2044 pp->p_mlentry = 0; 2045 } 2046 2047 /* 2048 * kphysm_init() initializes physical memory. 2049 */ 2050 static pgcnt_t 2051 kphysm_init( 2052 page_t *inpp, 2053 struct memseg *memsegp, 2054 pgcnt_t start, 2055 pgcnt_t npages) 2056 { 2057 struct memlist *pmem; 2058 struct memseg *cur_memseg; 2059 struct memseg **memsegpp; 2060 pfn_t base_pfn; 2061 pgcnt_t num; 2062 pgcnt_t total_skipped = 0; 2063 pgcnt_t skipping = 0; 2064 pgcnt_t pages_done = 0; 2065 pgcnt_t largepgcnt; 2066 uint64_t addr; 2067 uint64_t size; 2068 page_t *pp = inpp; 2069 int dobreak = 0; 2070 extern pfn_t ddiphysmin; 2071 2072 ASSERT(page_hash != NULL && page_hashsz != 0); 2073 2074 for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++); 2075 ASSERT(cur_memseg == memsegp || start > 0); 2076 2077 for (pmem = phys_avail; pmem && npages; pmem = pmem->next) { 2078 /* 2079 * In a 32 bit kernel can't use higher memory if we're 2080 * not booting in PAE mode. This check takes care of that. 2081 */ 2082 addr = pmem->address; 2083 size = pmem->size; 2084 if (btop(addr) > physmax) 2085 continue; 2086 2087 /* 2088 * align addr and size - they may not be at page boundaries 2089 */ 2090 if ((addr & MMU_PAGEOFFSET) != 0) { 2091 addr += MMU_PAGEOFFSET; 2092 addr &= ~(uint64_t)MMU_PAGEOFFSET; 2093 size -= addr - pmem->address; 2094 } 2095 2096 /* only process pages below or equal to physmax */ 2097 if ((btop(addr + size) - 1) > physmax) 2098 size = ptob(physmax - btop(addr) + 1); 2099 2100 num = btop(size); 2101 if (num == 0) 2102 continue; 2103 2104 if (total_skipped < start) { 2105 if (start - total_skipped > num) { 2106 total_skipped += num; 2107 continue; 2108 } 2109 skipping = start - total_skipped; 2110 num -= skipping; 2111 addr += (MMU_PAGESIZE * skipping); 2112 total_skipped = start; 2113 } 2114 if (num == 0) 2115 continue; 2116 2117 if (num > npages) 2118 num = npages; 2119 2120 npages -= num; 2121 pages_done += num; 2122 base_pfn = btop(addr); 2123 2124 /* 2125 * If the caller didn't provide space for the page 2126 * structures, carve them out of the memseg they will 2127 * represent. 2128 */ 2129 if (pp == NULL) { 2130 pgcnt_t pp_pgs; 2131 2132 if (num <= 1) 2133 continue; 2134 2135 /* 2136 * Compute how many of the pages we need to use for 2137 * page_ts 2138 */ 2139 pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1; 2140 while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >= 2141 num - pp_pgs + 1) 2142 --pp_pgs; 2143 PRM_DEBUG(pp_pgs); 2144 2145 pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs), 2146 VM_NOSLEEP); 2147 if (pp == NULL) { 2148 cmn_err(CE_WARN, "Unable to add %ld pages to " 2149 "the system.", num); 2150 continue; 2151 } 2152 2153 hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs), 2154 base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK, 2155 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 2156 bzero(pp, mmu_ptob(pp_pgs)); 2157 num -= pp_pgs; 2158 base_pfn += pp_pgs; 2159 } 2160 2161 if (prom_debug) 2162 prom_printf("MEMSEG addr=0x%" PRIx64 2163 " pgs=0x%lx pfn 0x%lx-0x%lx\n", 2164 addr, num, base_pfn, base_pfn + num); 2165 2166 /* 2167 * drop pages below ddiphysmin to simplify ddi memory 2168 * allocation with non-zero addr_lo requests. 2169 */ 2170 if (base_pfn < ddiphysmin) { 2171 if (base_pfn + num <= ddiphysmin) { 2172 /* drop entire range below ddiphysmin */ 2173 continue; 2174 } 2175 /* adjust range to ddiphysmin */ 2176 pp += (ddiphysmin - base_pfn); 2177 num -= (ddiphysmin - base_pfn); 2178 base_pfn = ddiphysmin; 2179 } 2180 /* 2181 * Build the memsegs entry 2182 */ 2183 cur_memseg->pages = pp; 2184 cur_memseg->epages = pp + num; 2185 cur_memseg->pages_base = base_pfn; 2186 cur_memseg->pages_end = base_pfn + num; 2187 2188 /* 2189 * insert in memseg list in decreasing pfn range order. 2190 * Low memory is typically more fragmented such that this 2191 * ordering keeps the larger ranges at the front of the list 2192 * for code that searches memseg. 2193 */ 2194 memsegpp = &memsegs; 2195 for (;;) { 2196 if (*memsegpp == NULL) { 2197 /* empty memsegs */ 2198 memsegs = cur_memseg; 2199 break; 2200 } 2201 /* check for continuity with start of memsegpp */ 2202 if (cur_memseg->pages_end == (*memsegpp)->pages_base) { 2203 if (cur_memseg->epages == (*memsegpp)->pages) { 2204 /* 2205 * contiguous pfn and page_t's. Merge 2206 * cur_memseg into *memsegpp. Drop 2207 * cur_memseg 2208 */ 2209 (*memsegpp)->pages_base = 2210 cur_memseg->pages_base; 2211 (*memsegpp)->pages = 2212 cur_memseg->pages; 2213 /* 2214 * check if contiguous with the end of 2215 * the next memseg. 2216 */ 2217 if ((*memsegpp)->next && 2218 ((*memsegpp)->pages_base == 2219 (*memsegpp)->next->pages_end)) { 2220 cur_memseg = *memsegpp; 2221 memsegpp = &((*memsegpp)->next); 2222 dobreak = 1; 2223 } else { 2224 break; 2225 } 2226 } else { 2227 /* 2228 * contiguous pfn but not page_t's. 2229 * drop last pfn/page_t in cur_memseg 2230 * to prevent creation of large pages 2231 * with noncontiguous page_t's if not 2232 * aligned to largest page boundary. 2233 */ 2234 largepgcnt = page_get_pagecnt( 2235 page_num_pagesizes() - 1); 2236 2237 if (cur_memseg->pages_end & 2238 (largepgcnt - 1)) { 2239 num--; 2240 cur_memseg->epages--; 2241 cur_memseg->pages_end--; 2242 } 2243 } 2244 } 2245 2246 /* check for continuity with end of memsegpp */ 2247 if (cur_memseg->pages_base == (*memsegpp)->pages_end) { 2248 if (cur_memseg->pages == (*memsegpp)->epages) { 2249 /* 2250 * contiguous pfn and page_t's. Merge 2251 * cur_memseg into *memsegpp. Drop 2252 * cur_memseg. 2253 */ 2254 if (dobreak) { 2255 /* merge previously done */ 2256 cur_memseg->pages = 2257 (*memsegpp)->pages; 2258 cur_memseg->pages_base = 2259 (*memsegpp)->pages_base; 2260 cur_memseg->next = 2261 (*memsegpp)->next; 2262 } else { 2263 (*memsegpp)->pages_end = 2264 cur_memseg->pages_end; 2265 (*memsegpp)->epages = 2266 cur_memseg->epages; 2267 } 2268 break; 2269 } 2270 /* 2271 * contiguous pfn but not page_t's. 2272 * drop first pfn/page_t in cur_memseg 2273 * to prevent creation of large pages 2274 * with noncontiguous page_t's if not 2275 * aligned to largest page boundary. 2276 */ 2277 largepgcnt = page_get_pagecnt( 2278 page_num_pagesizes() - 1); 2279 if (base_pfn & (largepgcnt - 1)) { 2280 num--; 2281 base_pfn++; 2282 cur_memseg->pages++; 2283 cur_memseg->pages_base++; 2284 pp = cur_memseg->pages; 2285 } 2286 if (dobreak) 2287 break; 2288 } 2289 2290 if (cur_memseg->pages_base >= 2291 (*memsegpp)->pages_end) { 2292 cur_memseg->next = *memsegpp; 2293 *memsegpp = cur_memseg; 2294 break; 2295 } 2296 if ((*memsegpp)->next == NULL) { 2297 cur_memseg->next = NULL; 2298 (*memsegpp)->next = cur_memseg; 2299 break; 2300 } 2301 memsegpp = &((*memsegpp)->next); 2302 ASSERT(*memsegpp != NULL); 2303 } 2304 2305 /* 2306 * add_physmem() initializes the PSM part of the page 2307 * struct by calling the PSM back with add_physmem_cb(). 2308 * In addition it coalesces pages into larger pages as 2309 * it initializes them. 2310 */ 2311 add_physmem(pp, num, base_pfn); 2312 cur_memseg++; 2313 availrmem_initial += num; 2314 availrmem += num; 2315 2316 /* 2317 * If the caller provided the page frames to us, then 2318 * advance in that list. Otherwise, prepare to allocate 2319 * our own page frames for the next memseg. 2320 */ 2321 pp = (inpp == NULL) ? NULL : pp + num; 2322 } 2323 2324 PRM_DEBUG(availrmem_initial); 2325 PRM_DEBUG(availrmem); 2326 PRM_DEBUG(freemem); 2327 build_pfn_hash(); 2328 return (pages_done); 2329 } 2330 2331 /* 2332 * Kernel VM initialization. 2333 */ 2334 static void 2335 kvm_init(void) 2336 { 2337 #ifdef DEBUG 2338 extern void _start(); 2339 2340 ASSERT((caddr_t)_start == s_text); 2341 #endif 2342 ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0); 2343 2344 /* 2345 * Put the kernel segments in kernel address space. 2346 */ 2347 rw_enter(&kas.a_lock, RW_WRITER); 2348 as_avlinit(&kas); 2349 2350 (void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg); 2351 (void) segkmem_create(&ktextseg); 2352 2353 (void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc); 2354 (void) segkmem_create(&kvalloc); 2355 2356 /* 2357 * We're about to map out /boot. This is the beginning of the 2358 * system resource management transition. We can no longer 2359 * call into /boot for I/O or memory allocations. 2360 * 2361 * XX64 - Is this still correct with kernelheap_extend() being called 2362 * later than this???? 2363 */ 2364 (void) seg_attach(&kas, final_kernelheap, 2365 ekernelheap - final_kernelheap, &kvseg); 2366 (void) segkmem_create(&kvseg); 2367 2368 #if defined(__amd64) 2369 (void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core); 2370 (void) segkmem_create(&kvseg_core); 2371 #endif 2372 2373 (void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE, 2374 &kdebugseg); 2375 (void) segkmem_create(&kdebugseg); 2376 2377 rw_exit(&kas.a_lock); 2378 2379 /* 2380 * Ensure that the red zone at kernelbase is never accessible. 2381 */ 2382 (void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0); 2383 2384 /* 2385 * Make the text writable so that it can be hot patched by DTrace. 2386 */ 2387 (void) as_setprot(&kas, s_text, e_modtext - s_text, 2388 PROT_READ | PROT_WRITE | PROT_EXEC); 2389 2390 /* 2391 * Make data writable until end. 2392 */ 2393 (void) as_setprot(&kas, s_data, e_moddata - s_data, 2394 PROT_READ | PROT_WRITE | PROT_EXEC); 2395 } 2396 2397 /* 2398 * These are MTTR registers supported by P6 2399 */ 2400 static struct mtrrvar mtrrphys_arr[MAX_MTRRVAR]; 2401 static uint64_t mtrr64k, mtrr16k1, mtrr16k2; 2402 static uint64_t mtrr4k1, mtrr4k2, mtrr4k3; 2403 static uint64_t mtrr4k4, mtrr4k5, mtrr4k6; 2404 static uint64_t mtrr4k7, mtrr4k8, mtrrcap; 2405 uint64_t mtrrdef, pat_attr_reg; 2406 2407 /* 2408 * Disable reprogramming of MTRRs by default. 2409 */ 2410 int enable_relaxed_mtrr = 0; 2411 2412 void 2413 setup_mtrr(void) 2414 { 2415 int i, ecx; 2416 int vcnt; 2417 struct mtrrvar *mtrrphys; 2418 2419 if (!(x86_feature & X86_MTRR)) 2420 return; 2421 2422 mtrrcap = rdmsr(REG_MTRRCAP); 2423 mtrrdef = rdmsr(REG_MTRRDEF); 2424 if (mtrrcap & MTRRCAP_FIX) { 2425 mtrr64k = rdmsr(REG_MTRR64K); 2426 mtrr16k1 = rdmsr(REG_MTRR16K1); 2427 mtrr16k2 = rdmsr(REG_MTRR16K2); 2428 mtrr4k1 = rdmsr(REG_MTRR4K1); 2429 mtrr4k2 = rdmsr(REG_MTRR4K2); 2430 mtrr4k3 = rdmsr(REG_MTRR4K3); 2431 mtrr4k4 = rdmsr(REG_MTRR4K4); 2432 mtrr4k5 = rdmsr(REG_MTRR4K5); 2433 mtrr4k6 = rdmsr(REG_MTRR4K6); 2434 mtrr4k7 = rdmsr(REG_MTRR4K7); 2435 mtrr4k8 = rdmsr(REG_MTRR4K8); 2436 } 2437 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2438 vcnt = MAX_MTRRVAR; 2439 2440 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2441 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2442 mtrrphys->mtrrphys_base = rdmsr(ecx); 2443 mtrrphys->mtrrphys_mask = rdmsr(ecx + 1); 2444 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2445 mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V; 2446 } 2447 } 2448 if (x86_feature & X86_PAT) { 2449 if (enable_relaxed_mtrr) 2450 mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E; 2451 pat_attr_reg = PAT_DEFAULT_ATTRIBUTE; 2452 } 2453 2454 mtrr_sync(); 2455 } 2456 2457 /* 2458 * Sync current cpu mtrr with the incore copy of mtrr. 2459 * This function has to be invoked with interrupts disabled 2460 * Currently we do not capture other cpu's. This is invoked on cpu0 2461 * just after reading /etc/system. 2462 * On other cpu's its invoked from mp_startup(). 2463 */ 2464 void 2465 mtrr_sync(void) 2466 { 2467 uint_t crvalue, cr0_orig; 2468 int vcnt, i, ecx; 2469 struct mtrrvar *mtrrphys; 2470 2471 cr0_orig = crvalue = getcr0(); 2472 crvalue |= CR0_CD; 2473 crvalue &= ~CR0_NW; 2474 setcr0(crvalue); 2475 invalidate_cache(); 2476 setcr3(getcr3()); 2477 2478 if (x86_feature & X86_PAT) 2479 wrmsr(REG_MTRRPAT, pat_attr_reg); 2480 2481 wrmsr(REG_MTRRDEF, rdmsr(REG_MTRRDEF) & 2482 ~((uint64_t)(uintptr_t)MTRRDEF_E)); 2483 2484 if (mtrrcap & MTRRCAP_FIX) { 2485 wrmsr(REG_MTRR64K, mtrr64k); 2486 wrmsr(REG_MTRR16K1, mtrr16k1); 2487 wrmsr(REG_MTRR16K2, mtrr16k2); 2488 wrmsr(REG_MTRR4K1, mtrr4k1); 2489 wrmsr(REG_MTRR4K2, mtrr4k2); 2490 wrmsr(REG_MTRR4K3, mtrr4k3); 2491 wrmsr(REG_MTRR4K4, mtrr4k4); 2492 wrmsr(REG_MTRR4K5, mtrr4k5); 2493 wrmsr(REG_MTRR4K6, mtrr4k6); 2494 wrmsr(REG_MTRR4K7, mtrr4k7); 2495 wrmsr(REG_MTRR4K8, mtrr4k8); 2496 } 2497 if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR) 2498 vcnt = MAX_MTRRVAR; 2499 for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr; 2500 i < vcnt - 1; i++, ecx += 2, mtrrphys++) { 2501 wrmsr(ecx, mtrrphys->mtrrphys_base); 2502 wrmsr(ecx + 1, mtrrphys->mtrrphys_mask); 2503 } 2504 wrmsr(REG_MTRRDEF, mtrrdef); 2505 setcr3(getcr3()); 2506 invalidate_cache(); 2507 setcr0(cr0_orig); 2508 } 2509 2510 /* 2511 * resync mtrr so that BIOS is happy. Called from mdboot 2512 */ 2513 void 2514 mtrr_resync(void) 2515 { 2516 if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) { 2517 /* 2518 * We could have changed the default mtrr definition. 2519 * Put it back to uncached which is what it is at power on 2520 */ 2521 mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E; 2522 mtrr_sync(); 2523 } 2524 } 2525 2526 void 2527 get_system_configuration(void) 2528 { 2529 char prop[32]; 2530 u_longlong_t nodes_ll, cpus_pernode_ll, lvalue; 2531 2532 if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) || 2533 (BOP_GETPROP(bootops, "nodes", prop) < 0) || 2534 (kobj_getvalue(prop, &nodes_ll) == -1) || 2535 (nodes_ll > MAXNODES)) || 2536 ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) || 2537 (BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) || 2538 (kobj_getvalue(prop, &cpus_pernode_ll) == -1))) { 2539 2540 system_hardware.hd_nodes = 1; 2541 system_hardware.hd_cpus_per_node = 0; 2542 } else { 2543 system_hardware.hd_nodes = (int)nodes_ll; 2544 system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll; 2545 } 2546 if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) || 2547 (BOP_GETPROP(bootops, "kernelbase", prop) < 0) || 2548 (kobj_getvalue(prop, &lvalue) == -1)) 2549 eprom_kernelbase = NULL; 2550 else 2551 eprom_kernelbase = (uintptr_t)lvalue; 2552 2553 if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) || 2554 (BOP_GETPROP(bootops, "segmapsize", prop) < 0) || 2555 (kobj_getvalue(prop, &lvalue) == -1)) { 2556 segmapsize = SEGMAPDEFAULT; 2557 } else { 2558 segmapsize = (uintptr_t)lvalue; 2559 } 2560 2561 if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) || 2562 (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) || 2563 (kobj_getvalue(prop, &lvalue) == -1)) { 2564 segmapfreelists = 0; /* use segmap driver default */ 2565 } else { 2566 segmapfreelists = (int)lvalue; 2567 } 2568 2569 if ((BOP_GETPROPLEN(bootops, "physmem") <= sizeof (prop)) && 2570 (BOP_GETPROP(bootops, "physmem", prop) >= 0) && 2571 (kobj_getvalue(prop, &lvalue) != -1)) { 2572 physmem = (uintptr_t)lvalue; 2573 } 2574 } 2575 2576 /* 2577 * Add to a memory list. 2578 * start = start of new memory segment 2579 * len = length of new memory segment in bytes 2580 * new = pointer to a new struct memlist 2581 * memlistp = memory list to which to add segment. 2582 */ 2583 static void 2584 memlist_add( 2585 uint64_t start, 2586 uint64_t len, 2587 struct memlist *new, 2588 struct memlist **memlistp) 2589 { 2590 struct memlist *cur; 2591 uint64_t end = start + len; 2592 2593 new->address = start; 2594 new->size = len; 2595 2596 cur = *memlistp; 2597 2598 while (cur) { 2599 if (cur->address >= end) { 2600 new->next = cur; 2601 *memlistp = new; 2602 new->prev = cur->prev; 2603 cur->prev = new; 2604 return; 2605 } 2606 ASSERT(cur->address + cur->size <= start); 2607 if (cur->next == NULL) { 2608 cur->next = new; 2609 new->prev = cur; 2610 new->next = NULL; 2611 return; 2612 } 2613 memlistp = &cur->next; 2614 cur = cur->next; 2615 } 2616 } 2617 2618 void 2619 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 2620 { 2621 size_t tsize = e_modtext - modtext; 2622 size_t dsize = e_moddata - moddata; 2623 2624 *text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize, 2625 1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP); 2626 *data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize, 2627 1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 2628 } 2629 2630 caddr_t 2631 kobj_text_alloc(vmem_t *arena, size_t size) 2632 { 2633 return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT)); 2634 } 2635 2636 /*ARGSUSED*/ 2637 caddr_t 2638 kobj_texthole_alloc(caddr_t addr, size_t size) 2639 { 2640 panic("unexpected call to kobj_texthole_alloc()"); 2641 /*NOTREACHED*/ 2642 return (0); 2643 } 2644 2645 /*ARGSUSED*/ 2646 void 2647 kobj_texthole_free(caddr_t addr, size_t size) 2648 { 2649 panic("unexpected call to kobj_texthole_free()"); 2650 } 2651 2652 /* 2653 * This is called just after configure() in startup(). 2654 * 2655 * The ISALIST concept is a bit hopeless on Intel, because 2656 * there's no guarantee of an ever-more-capable processor 2657 * given that various parts of the instruction set may appear 2658 * and disappear between different implementations. 2659 * 2660 * While it would be possible to correct it and even enhance 2661 * it somewhat, the explicit hardware capability bitmask allows 2662 * more flexibility. 2663 * 2664 * So, we just leave this alone. 2665 */ 2666 void 2667 setx86isalist(void) 2668 { 2669 char *tp; 2670 size_t len; 2671 extern char *isa_list; 2672 2673 #define TBUFSIZE 1024 2674 2675 tp = kmem_alloc(TBUFSIZE, KM_SLEEP); 2676 *tp = '\0'; 2677 2678 #if defined(__amd64) 2679 (void) strcpy(tp, "amd64 "); 2680 #endif 2681 2682 switch (x86_vendor) { 2683 case X86_VENDOR_Intel: 2684 case X86_VENDOR_AMD: 2685 case X86_VENDOR_TM: 2686 if (x86_feature & X86_CMOV) { 2687 /* 2688 * Pentium Pro or later 2689 */ 2690 (void) strcat(tp, "pentium_pro"); 2691 (void) strcat(tp, x86_feature & X86_MMX ? 2692 "+mmx pentium_pro " : " "); 2693 } 2694 /*FALLTHROUGH*/ 2695 case X86_VENDOR_Cyrix: 2696 /* 2697 * The Cyrix 6x86 does not have any Pentium features 2698 * accessible while not at privilege level 0. 2699 */ 2700 if (x86_feature & X86_CPUID) { 2701 (void) strcat(tp, "pentium"); 2702 (void) strcat(tp, x86_feature & X86_MMX ? 2703 "+mmx pentium " : " "); 2704 } 2705 break; 2706 default: 2707 break; 2708 } 2709 (void) strcat(tp, "i486 i386 i86"); 2710 len = strlen(tp) + 1; /* account for NULL at end of string */ 2711 isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp); 2712 kmem_free(tp, TBUFSIZE); 2713 2714 #undef TBUFSIZE 2715 } 2716 2717 2718 #ifdef __amd64 2719 2720 void * 2721 device_arena_alloc(size_t size, int vm_flag) 2722 { 2723 return (vmem_alloc(device_arena, size, vm_flag)); 2724 } 2725 2726 void 2727 device_arena_free(void *vaddr, size_t size) 2728 { 2729 vmem_free(device_arena, vaddr, size); 2730 } 2731 2732 #else 2733 2734 void * 2735 device_arena_alloc(size_t size, int vm_flag) 2736 { 2737 caddr_t vaddr; 2738 uintptr_t v; 2739 size_t start; 2740 size_t end; 2741 2742 vaddr = vmem_alloc(heap_arena, size, vm_flag); 2743 if (vaddr == NULL) 2744 return (NULL); 2745 2746 v = (uintptr_t)vaddr; 2747 ASSERT(v >= kernelbase); 2748 ASSERT(v + size <= ptable_va); 2749 2750 start = btop(v - kernelbase); 2751 end = btop(v + size - 1 - kernelbase); 2752 ASSERT(start < toxic_bit_map_len); 2753 ASSERT(end < toxic_bit_map_len); 2754 2755 while (start <= end) { 2756 BT_ATOMIC_SET(toxic_bit_map, start); 2757 ++start; 2758 } 2759 return (vaddr); 2760 } 2761 2762 void 2763 device_arena_free(void *vaddr, size_t size) 2764 { 2765 uintptr_t v = (uintptr_t)vaddr; 2766 size_t start; 2767 size_t end; 2768 2769 ASSERT(v >= kernelbase); 2770 ASSERT(v + size <= ptable_va); 2771 2772 start = btop(v - kernelbase); 2773 end = btop(v + size - 1 - kernelbase); 2774 ASSERT(start < toxic_bit_map_len); 2775 ASSERT(end < toxic_bit_map_len); 2776 2777 while (start <= end) { 2778 ASSERT(BT_TEST(toxic_bit_map, start) != 0); 2779 BT_ATOMIC_CLEAR(toxic_bit_map, start); 2780 ++start; 2781 } 2782 vmem_free(heap_arena, vaddr, size); 2783 } 2784 2785 /* 2786 * returns 1st address in range that is in device arena, or NULL 2787 * if len is not NULL it returns the length of the toxic range 2788 */ 2789 void * 2790 device_arena_contains(void *vaddr, size_t size, size_t *len) 2791 { 2792 uintptr_t v = (uintptr_t)vaddr; 2793 uintptr_t eaddr = v + size; 2794 size_t start; 2795 size_t end; 2796 2797 /* 2798 * if called very early by kmdb, just return NULL 2799 */ 2800 if (toxic_bit_map == NULL) 2801 return (NULL); 2802 2803 /* 2804 * First check if we're completely outside the bitmap range. 2805 */ 2806 if (v >= ptable_va || eaddr < kernelbase) 2807 return (NULL); 2808 2809 /* 2810 * Trim ends of search to look at only what the bitmap covers. 2811 */ 2812 if (v < kernelbase) 2813 v = kernelbase; 2814 start = btop(v - kernelbase); 2815 end = btop(eaddr - kernelbase); 2816 if (end >= toxic_bit_map_len) 2817 end = toxic_bit_map_len; 2818 2819 if (bt_range(toxic_bit_map, &start, &end, end) == 0) 2820 return (NULL); 2821 2822 v = kernelbase + ptob(start); 2823 if (len != NULL) 2824 *len = ptob(end - start); 2825 return ((void *)v); 2826 } 2827 2828 #endif 2829