1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/thread.h> 31 #include <sys/cpuvar.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/proc.h> 35 #include <sys/disp.h> 36 #include <sys/mmu.h> 37 #include <sys/class.h> 38 #include <sys/cmn_err.h> 39 #include <sys/debug.h> 40 #include <sys/asm_linkage.h> 41 #include <sys/x_call.h> 42 #include <sys/systm.h> 43 #include <sys/var.h> 44 #include <sys/vtrace.h> 45 #include <vm/hat.h> 46 #include <sys/mmu.h> 47 #include <vm/as.h> 48 #include <vm/seg_kmem.h> 49 #include <sys/segments.h> 50 #include <sys/kmem.h> 51 #include <sys/stack.h> 52 #include <sys/smp_impldefs.h> 53 #include <sys/x86_archext.h> 54 #include <sys/machsystm.h> 55 #include <sys/traptrace.h> 56 #include <sys/clock.h> 57 #include <sys/cpc_impl.h> 58 #include <sys/chip.h> 59 #include <sys/dtrace.h> 60 #include <sys/archsystm.h> 61 #include <sys/fp.h> 62 #include <sys/reboot.h> 63 #include <sys/kdi.h> 64 #include <vm/hat_i86.h> 65 #include <sys/memnode.h> 66 67 struct cpu cpus[1]; /* CPU data */ 68 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 69 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 70 71 /* 72 * Useful for disabling MP bring-up for an MP capable kernel 73 * (a kernel that was built with MP defined) 74 */ 75 int use_mp = 1; 76 77 int mp_cpus = 0x1; /* to be set by platform specific module */ 78 79 /* 80 * This variable is used by the hat layer to decide whether or not 81 * critical sections are needed to prevent race conditions. For sun4m, 82 * this variable is set once enough MP initialization has been done in 83 * order to allow cross calls. 84 */ 85 int flushes_require_xcalls = 0; 86 ulong_t cpu_ready_set = 1; 87 88 extern void real_mode_start(void); 89 extern void real_mode_end(void); 90 static void mp_startup(void); 91 92 static void cpu_sep_enable(void); 93 static void cpu_sep_disable(void); 94 static void cpu_asysc_enable(void); 95 static void cpu_asysc_disable(void); 96 97 extern int tsc_gethrtime_enable; 98 99 /* 100 * Init CPU info - get CPU type info for processor_info system call. 101 */ 102 void 103 init_cpu_info(struct cpu *cp) 104 { 105 processor_info_t *pi = &cp->cpu_type_info; 106 char buf[CPU_IDSTRLEN]; 107 108 /* 109 * Get clock-frequency property for the CPU. 110 */ 111 pi->pi_clock = cpu_freq; 112 113 (void) strcpy(pi->pi_processor_type, "i386"); 114 if (fpu_exists) 115 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 116 117 (void) cpuid_getidstr(cp, buf, sizeof (buf)); 118 119 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 120 (void) strcpy(cp->cpu_idstr, buf); 121 122 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 123 124 (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); 125 cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 126 (void) strcpy(cp->cpu_brandstr, buf); 127 128 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 129 } 130 131 /* 132 * Configure syscall support on this CPU. 133 */ 134 /*ARGSUSED*/ 135 static void 136 init_cpu_syscall(struct cpu *cp) 137 { 138 uint64_t value; 139 140 kpreempt_disable(); 141 142 #if defined(__amd64) 143 if (x86_feature & X86_ASYSC) { 144 145 #if !defined(__lint) 146 /* 147 * The syscall instruction imposes a certain ordering on 148 * segment selectors, so we double-check that ordering 149 * here. 150 */ 151 ASSERT(KDS_SEL == KCS_SEL + 8); 152 ASSERT(UDS_SEL == U32CS_SEL + 8); 153 ASSERT(UCS_SEL == U32CS_SEL + 16); 154 #endif 155 /* 156 * Turn syscall/sysret extensions on. 157 */ 158 cpu_asysc_enable(); 159 160 /* 161 * Program the magic registers .. 162 */ 163 value = ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32; 164 wrmsr(MSR_AMD_STAR, &value); 165 value = (uintptr_t)sys_syscall; 166 wrmsr(MSR_AMD_LSTAR, &value); 167 value = (uintptr_t)sys_syscall32; 168 wrmsr(MSR_AMD_CSTAR, &value); 169 170 /* 171 * This list of flags is masked off the incoming 172 * %rfl when we enter the kernel. 173 */ 174 value = PS_IE | PS_T; 175 wrmsr(MSR_AMD_SFMASK, &value); 176 } 177 #endif 178 179 /* 180 * On 32-bit kernels, we use sysenter/sysexit because it's too 181 * hard to use syscall/sysret, and it is more portable anyway. 182 * 183 * On 64-bit kernels on Nocona machines, the 32-bit syscall 184 * variant isn't available to 32-bit applications, but sysenter is. 185 */ 186 if (x86_feature & X86_SEP) { 187 188 #if !defined(__lint) 189 /* 190 * The sysenter instruction imposes a certain ordering on 191 * segment selectors, so we double-check that ordering 192 * here. See "sysenter" in Intel document 245471-012, "IA-32 193 * Intel Architecture Software Developer's Manual Volume 2: 194 * Instruction Set Reference" 195 */ 196 ASSERT(KDS_SEL == KCS_SEL + 8); 197 198 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 199 ASSERT32(UDS_SEL == UCS_SEL + 8); 200 201 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 202 ASSERT64(UDS_SEL == U32CS_SEL + 8); 203 #endif 204 205 cpu_sep_enable(); 206 207 /* 208 * resume() sets this value to the base of the threads stack 209 * via a context handler. 210 */ 211 value = 0; 212 wrmsr(MSR_INTC_SEP_ESP, &value); 213 214 value = (uintptr_t)sys_sysenter; 215 wrmsr(MSR_INTC_SEP_EIP, &value); 216 } 217 218 kpreempt_enable(); 219 } 220 221 /* 222 * Multiprocessor initialization. 223 * 224 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 225 * startup and idle threads for the specified CPU. 226 */ 227 static void 228 mp_startup_init(int cpun) 229 { 230 #if defined(__amd64) 231 extern void *long_mode_64(void); 232 #endif /* __amd64 */ 233 234 struct cpu *cp; 235 struct tss *ntss; 236 kthread_id_t tp; 237 caddr_t sp; 238 int size; 239 proc_t *procp; 240 extern void idle(); 241 extern void init_intr_threads(struct cpu *); 242 243 struct cpu_tables *tablesp; 244 rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va; 245 246 #ifdef TRAPTRACE 247 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 248 #endif 249 250 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 251 252 if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) { 253 panic("mp_startup_init: cpu%d: " 254 "no memory for cpu structure", cpun); 255 /*NOTREACHED*/ 256 } 257 procp = curthread->t_procp; 258 259 mutex_enter(&cpu_lock); 260 /* 261 * Initialize the dispatcher first. 262 */ 263 disp_cpu_init(cp); 264 mutex_exit(&cpu_lock); 265 266 /* 267 * Allocate and initialize the startup thread for this CPU. 268 * Interrupt and process switch stacks get allocated later 269 * when the CPU starts running. 270 */ 271 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 272 TS_STOPPED, maxclsyspri); 273 274 /* 275 * Set state to TS_ONPROC since this thread will start running 276 * as soon as the CPU comes online. 277 * 278 * All the other fields of the thread structure are setup by 279 * thread_create(). 280 */ 281 THREAD_ONPROC(tp, cp); 282 tp->t_preempt = 1; 283 tp->t_bound_cpu = cp; 284 tp->t_affinitycnt = 1; 285 tp->t_cpu = cp; 286 tp->t_disp_queue = cp->cpu_disp; 287 288 /* 289 * Setup thread to start in mp_startup. 290 */ 291 sp = tp->t_stk; 292 tp->t_pc = (uintptr_t)mp_startup; 293 tp->t_sp = (uintptr_t)(sp - MINFRAME); 294 295 cp->cpu_id = cpun; 296 cp->cpu_self = cp; 297 cp->cpu_mask = 1 << cpun; 298 cp->cpu_thread = tp; 299 cp->cpu_lwp = NULL; 300 cp->cpu_dispthread = tp; 301 cp->cpu_dispatch_pri = DISP_PRIO(tp); 302 303 /* 304 * Now, initialize per-CPU idle thread for this CPU. 305 */ 306 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 307 308 cp->cpu_idle_thread = tp; 309 310 tp->t_preempt = 1; 311 tp->t_bound_cpu = cp; 312 tp->t_affinitycnt = 1; 313 tp->t_cpu = cp; 314 tp->t_disp_queue = cp->cpu_disp; 315 316 /* 317 * Bootstrap the CPU for CMT aware scheduling 318 * The rest of the initialization will happen from 319 * mp_startup() 320 */ 321 chip_bootstrap_cpu(cp); 322 323 /* 324 * Perform CPC intialization on the new CPU. 325 */ 326 kcpc_hw_init(cp); 327 328 /* 329 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 330 * for each CPU. 331 */ 332 333 setup_vaddr_for_ppcopy(cp); 334 335 /* 336 * Allocate space for page directory, stack, tss, gdt and idt. 337 * This assumes that kmem_alloc will return memory which is aligned 338 * to the next higher power of 2 or a page(if size > MAXABIG) 339 * If this assumption goes wrong at any time due to change in 340 * kmem alloc, things may not work as the page directory has to be 341 * page aligned 342 */ 343 if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL) 344 panic("mp_startup_init: cpu%d cannot allocate tables", cpun); 345 346 if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) { 347 kmem_free(tablesp, sizeof (struct cpu_tables)); 348 size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE; 349 tablesp = kmem_zalloc(size, KM_NOSLEEP); 350 tablesp = (struct cpu_tables *) 351 (((uintptr_t)tablesp + MMU_STD_PAGESIZE) & 352 MMU_STD_PAGEMASK); 353 } 354 355 ntss = cp->cpu_tss = &tablesp->ct_tss; 356 cp->cpu_gdt = tablesp->ct_gdt; 357 bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t))); 358 359 #if defined(__amd64) 360 361 /* 362 * #DF (double fault). 363 */ 364 ntss->tss_ist1 = 365 (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; 366 367 #elif defined(__i386) 368 369 ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp = 370 (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; 371 372 ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL; 373 374 ntss->tss_eip = (uint32_t)mp_startup; 375 376 ntss->tss_cs = KCS_SEL; 377 ntss->tss_fs = KFS_SEL; 378 ntss->tss_gs = KGS_SEL; 379 380 /* 381 * setup kernel %gs. 382 */ 383 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 384 SEL_KPL, 0, 1); 385 386 #endif /* __i386 */ 387 388 /* 389 * Set I/O bit map offset equal to size of TSS segment limit 390 * for no I/O permission map. This will cause all user I/O 391 * instructions to generate #gp fault. 392 */ 393 ntss->tss_bitmapbase = sizeof (*ntss); 394 395 /* 396 * setup kernel tss. 397 */ 398 set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss, 399 sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL); 400 401 /* 402 * If we have more than one node, each cpu gets a copy of IDT 403 * local to its node. If this is a Pentium box, we use cpu 0's 404 * IDT. cpu 0's IDT has been made read-only to workaround the 405 * cmpxchgl register bug 406 */ 407 cp->cpu_idt = CPU->cpu_idt; 408 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 409 cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP); 410 bcopy(idt0, cp->cpu_idt, sizeof (idt0)); 411 } 412 413 /* 414 * Get interrupt priority data from cpu 0 415 */ 416 cp->cpu_pri_data = CPU->cpu_pri_data; 417 418 hat_cpu_online(cp); 419 420 /* Should remove all entries for the current process/thread here */ 421 422 /* 423 * Fill up the real mode platter to make it easy for real mode code to 424 * kick it off. This area should really be one passed by boot to kernel 425 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also 426 * have identical physical and virtual address in paged mode. 427 */ 428 real_mode_platter->rm_idt_base = cp->cpu_idt; 429 real_mode_platter->rm_idt_lim = sizeof (idt0) - 1; 430 real_mode_platter->rm_gdt_base = cp->cpu_gdt; 431 real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1; 432 real_mode_platter->rm_pdbr = getcr3(); 433 real_mode_platter->rm_cpu = cpun; 434 real_mode_platter->rm_x86feature = x86_feature; 435 real_mode_platter->rm_cr4 = cr4_value; 436 437 #if defined(__amd64) 438 if (getcr3() > 0xffffffffUL) 439 panic("Cannot initialize CPUs; kernel's 64-bit page tables\n" 440 "located above 4G in physical memory (@ 0x%llx).", 441 (unsigned long long)getcr3()); 442 443 /* 444 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY 445 * by code in real_mode_start(): 446 * 447 * GDT[0]: NULL selector 448 * GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1 449 * 450 * Clear the IDT as interrupts will be off and a limit of 0 will cause 451 * the CPU to triple fault and reset on an NMI, seemingly as reasonable 452 * a course of action as any other, though it may cause the entire 453 * platform to reset in some cases... 454 */ 455 real_mode_platter->rm_temp_gdt[0] = 0ULL; 456 real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL; 457 458 real_mode_platter->rm_temp_gdt_lim = (ushort_t) 459 (sizeof (real_mode_platter->rm_temp_gdt) - 1); 460 real_mode_platter->rm_temp_gdt_base = rm_platter_pa + 461 (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt); 462 463 real_mode_platter->rm_temp_idt_lim = 0; 464 real_mode_platter->rm_temp_idt_base = 0; 465 466 /* 467 * Since the CPU needs to jump to protected mode using an identity 468 * mapped address, we need to calculate it here. 469 */ 470 real_mode_platter->rm_longmode64_addr = rm_platter_pa + 471 ((uint32_t)long_mode_64 - (uint32_t)real_mode_start); 472 #endif /* __amd64 */ 473 474 #ifdef TRAPTRACE 475 /* 476 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this 477 * CPU. 478 */ 479 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 480 ttc->ttc_next = ttc->ttc_first; 481 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 482 #endif 483 484 /* 485 * Record that we have another CPU. 486 */ 487 mutex_enter(&cpu_lock); 488 /* 489 * Initialize the interrupt threads for this CPU 490 */ 491 init_intr_threads(cp); 492 /* 493 * Add CPU to list of available CPUs. It'll be on the active list 494 * after mp_startup(). 495 */ 496 cpu_add_unit(cp); 497 mutex_exit(&cpu_lock); 498 } 499 500 /* 501 * Apply workarounds for known errata, and warn about those that are absent. 502 * 503 * System vendors occasionally create configurations which contain different 504 * revisions of the CPUs that are almost but not exactly the same. At the 505 * time of writing, this meant that their clock rates were the same, their 506 * feature sets were the same, but the required workaround were -not- 507 * necessarily the same. So, this routine is invoked on -every- CPU soon 508 * after starting to make sure that the resulting system contains the most 509 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 510 * system. 511 * 512 * These workarounds are based on Rev 3.57 of the Revision Guide for 513 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 514 */ 515 516 #if defined(OPTERON_ERRATUM_91) 517 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 518 #endif 519 520 #if defined(OPTERON_ERRATUM_93) 521 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 522 #endif 523 524 #if defined(OPTERON_ERRATUM_100) 525 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 526 #endif 527 528 #if defined(OPTERON_ERRATUM_109) 529 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 530 #endif 531 532 #if defined(OPTERON_ERRATUM_121) 533 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 534 #endif 535 536 #if defined(OPTERON_ERRATUM_122) 537 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 538 #endif 539 540 #if defined(OPTERON_ERRATUM_123) 541 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 542 #endif 543 544 #if defined(OPTERON_ERRATUM_131) 545 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 546 #endif 547 548 #define WARNING(cpu, n) \ 549 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d", \ 550 (cpu)->cpu_id, (n)) 551 552 uint_t 553 workaround_errata(struct cpu *cpu) 554 { 555 uint_t missing = 0; 556 557 ASSERT(cpu == CPU); 558 559 /*LINTED*/ 560 if (cpuid_opteron_erratum(cpu, 88) > 0) { 561 /* 562 * SWAPGS May Fail To Read Correct GS Base 563 */ 564 #if defined(OPTERON_ERRATUM_88) 565 /* 566 * The workaround is an mfence in the relevant assembler code 567 */ 568 #else 569 WARNING(cpu, 88); 570 missing++; 571 #endif 572 } 573 574 if (cpuid_opteron_erratum(cpu, 91) > 0) { 575 /* 576 * Software Prefetches May Report A Page Fault 577 */ 578 #if defined(OPTERON_ERRATUM_91) 579 /* 580 * fix is in trap.c 581 */ 582 opteron_erratum_91++; 583 #else 584 WARNING(cpu, 91); 585 missing++; 586 #endif 587 } 588 589 if (cpuid_opteron_erratum(cpu, 93) > 0) { 590 /* 591 * RSM Auto-Halt Restart Returns to Incorrect RIP 592 */ 593 #if defined(OPTERON_ERRATUM_93) 594 /* 595 * fix is in trap.c 596 */ 597 opteron_erratum_93++; 598 #else 599 WARNING(cpu, 93); 600 missing++; 601 #endif 602 } 603 604 /*LINTED*/ 605 if (cpuid_opteron_erratum(cpu, 95) > 0) { 606 /* 607 * RET Instruction May Return to Incorrect EIP 608 */ 609 #if defined(OPTERON_ERRATUM_95) 610 #if defined(_LP64) 611 /* 612 * Workaround this by ensuring that 32-bit user code and 613 * 64-bit kernel code never occupy the same address 614 * range mod 4G. 615 */ 616 if (_userlimit32 > 0xc0000000ul) 617 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 618 619 /*LINTED*/ 620 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 621 #endif /* _LP64 */ 622 #else 623 WARNING(cpu, 95); 624 missing++; 625 #endif /* OPTERON_ERRATUM_95 */ 626 } 627 628 if (cpuid_opteron_erratum(cpu, 100) > 0) { 629 /* 630 * Compatibility Mode Branches Transfer to Illegal Address 631 */ 632 #if defined(OPTERON_ERRATUM_100) 633 /* 634 * fix is in trap.c 635 */ 636 opteron_erratum_100++; 637 #else 638 WARNING(cpu, 100); 639 missing++; 640 #endif 641 } 642 643 /*LINTED*/ 644 if (cpuid_opteron_erratum(cpu, 108) > 0) { 645 /* 646 * CPUID Instruction May Return Incorrect Model Number In 647 * Some Processors 648 */ 649 #if defined(OPTERON_ERRATUM_108) 650 /* 651 * (Our cpuid-handling code corrects the model number on 652 * those processors) 653 */ 654 #else 655 WARNING(cpu, 108); 656 missing++; 657 #endif 658 } 659 660 /*LINTED*/ 661 if (cpuid_opteron_erratum(cpu, 109) > 0) { 662 /* 663 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour 664 */ 665 #if defined(OPTERON_ERRATUM_109) 666 uint64_t patchlevel; 667 668 (void) rdmsr(MSR_AMD_PATCHLEVEL, &patchlevel); 669 /* workaround is to print a warning to upgrade BIOS */ 670 if (patchlevel == 0) 671 opteron_erratum_109++; 672 #else 673 WARNING(cpu, 109); 674 missing++; 675 #endif 676 } 677 /*LINTED*/ 678 if (cpuid_opteron_erratum(cpu, 121) > 0) { 679 /* 680 * Sequential Execution Across Non_Canonical Boundary Caused 681 * Processor Hang 682 */ 683 #if defined(OPTERON_ERRATUM_121) 684 static int lma; 685 686 if (opteron_erratum_121) 687 opteron_erratum_121++; 688 689 /* 690 * Erratum 121 is only present in long (64 bit) mode. 691 * Workaround is to include the page immediately before the 692 * va hole to eliminate the possibility of system hangs due to 693 * sequential execution across the va hole boundary. 694 */ 695 if (lma == 0) { 696 uint64_t efer; 697 698 /* 699 * check LMA once: assume all cpus are in long mode 700 * or not. 701 */ 702 lma = 1; 703 704 (void) rdmsr(MSR_AMD_EFER, &efer); 705 if (efer & AMD_EFER_LMA) { 706 if (hole_start) { 707 hole_start -= PAGESIZE; 708 } else { 709 /* 710 * hole_start not yet initialized by 711 * mmu_init. Initialize hole_start 712 * with value to be subtracted. 713 */ 714 hole_start = PAGESIZE; 715 } 716 opteron_erratum_121++; 717 } 718 } 719 #else 720 WARNING(cpu, 121); 721 missing++; 722 #endif 723 } 724 725 /*LINTED*/ 726 if (cpuid_opteron_erratum(cpu, 122) > 0) { 727 /* 728 * TLB Flush Filter May Cause Cohenrency Problem in 729 * Multiprocessor Systems 730 */ 731 #if defined(OPTERON_ERRATUM_122) 732 /* 733 * Erratum 122 is only present in MP configurations (multi-core 734 * or multi-processor). 735 */ 736 737 if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 || 738 cpuid_get_ncpu_per_chip(cpu) > 1) { 739 uint64_t hwcrval; 740 741 /* disable TLB Flush Filter */ 742 (void) rdmsr(MSR_AMD_HWCR, &hwcrval); 743 hwcrval |= AMD_HWCR_FFDIS; 744 wrmsr(MSR_AMD_HWCR, &hwcrval); 745 opteron_erratum_122++; 746 } 747 748 #else 749 WARNING(cpu, 122); 750 missing++; 751 #endif 752 } 753 754 #if defined(OPTERON_ERRATUM_123) 755 /*LINTED*/ 756 if (cpuid_opteron_erratum(cpu, 123) > 0) { 757 /* 758 * Bypassed Reads May Cause Data Corruption of System Hang in 759 * Dual Core Processors 760 */ 761 /* 762 * Erratum 123 applies only to multi-core cpus. 763 */ 764 765 if (cpuid_get_ncpu_per_chip(cpu) > 1) { 766 uint64_t patchlevel; 767 768 (void) rdmsr(MSR_AMD_PATCHLEVEL, &patchlevel); 769 /* workaround is to print a warning to upgrade BIOS */ 770 if (patchlevel == 0) 771 opteron_erratum_123++; 772 } 773 } 774 #endif 775 776 #if defined(OPTERON_ERRATUM_131) 777 /*LINTED*/ 778 if (cpuid_opteron_erratum(cpu, 131) > 0) { 779 /* 780 * Multiprocessor Systems with Four or More Cores May Deadlock 781 * Waiting for a Probe Response 782 */ 783 /* 784 * Erratum 131 applies to any system with four or more cores. 785 */ 786 if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt * 787 cpuid_get_ncpu_per_chip(cpu)) >= 4)) { 788 uint64_t nbcfg; 789 790 /* 791 * Workaround is to print a warning to upgrade 792 * the BIOS 793 */ 794 (void) rdmsr(MSR_AMD_NB_CFG, &nbcfg); 795 if (!(nbcfg & AMD_NB_CFG_SRQ_HEARTBEAT)) 796 opteron_erratum_131++; 797 } 798 #endif 799 } 800 return (missing); 801 } 802 803 void 804 workaround_errata_end() 805 { 806 #if defined(OPTERON_ERRATUM_109) 807 if (opteron_erratum_109) { 808 cmn_err(CE_WARN, 809 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 810 " processor\nerratum 109 was not detected; updating your" 811 " system's BIOS to a version\ncontaining this" 812 " microcode patch is HIGHLY recommended or erroneous" 813 " system\noperation may occur.\n"); 814 } 815 #endif /* OPTERON_ERRATUM_109 */ 816 #if defined(OPTERON_ERRATUM_123) 817 if (opteron_erratum_123) { 818 cmn_err(CE_WARN, 819 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 820 " processor\nerratum 123 was not detected; updating your" 821 " system's BIOS to a version\ncontaining this" 822 " microcode patch is HIGHLY recommended or erroneous" 823 " system\noperation may occur.\n"); 824 } 825 #endif /* OPTERON_ERRATUM_123 */ 826 #if defined(OPTERON_ERRATUM_131) 827 if (opteron_erratum_131) { 828 cmn_err(CE_WARN, 829 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 830 " processor\nerratum 131 was not detected; updating your" 831 " system's BIOS to a version\ncontaining this" 832 " microcode patch is HIGHLY recommended or erroneous" 833 " system\noperation may occur.\n"); 834 } 835 #endif /* OPTERON_ERRATUM_131 */ 836 } 837 838 static ushort_t *mp_map_warm_reset_vector(); 839 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector); 840 841 /*ARGSUSED*/ 842 void 843 start_other_cpus(int cprboot) 844 { 845 unsigned who; 846 int cpuid = getbootcpuid(); 847 int delays = 0; 848 int started_cpu; 849 ushort_t *warm_reset_vector = NULL; 850 extern int procset; 851 852 /* 853 * Initialize our own cpu_info. 854 */ 855 init_cpu_info(CPU); 856 857 /* 858 * Initialize our syscall handlers 859 */ 860 init_cpu_syscall(CPU); 861 862 /* 863 * if only 1 cpu or not using MP, skip the rest of this 864 */ 865 if (!(mp_cpus & ~(1 << cpuid)) || use_mp == 0) { 866 if (use_mp == 0) 867 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 868 goto done; 869 } 870 871 /* 872 * perform such initialization as is needed 873 * to be able to take CPUs on- and off-line. 874 */ 875 cpu_pause_init(); 876 877 xc_init(); /* initialize processor crosscalls */ 878 879 /* 880 * Copy the real mode code at "real_mode_start" to the 881 * page at rm_platter_va. 882 */ 883 warm_reset_vector = mp_map_warm_reset_vector(); 884 if (warm_reset_vector == NULL) 885 goto done; 886 887 bcopy((caddr_t)real_mode_start, 888 (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code, 889 (size_t)real_mode_end - (size_t)real_mode_start); 890 891 flushes_require_xcalls = 1; 892 893 affinity_set(CPU_CURRENT); 894 895 for (who = 0; who < NCPU; who++) { 896 if (who == cpuid) 897 continue; 898 899 if ((mp_cpus & (1 << who)) == 0) 900 continue; 901 902 mp_startup_init(who); 903 started_cpu = 1; 904 (*cpu_startf)(who, rm_platter_pa); 905 906 while ((procset & (1 << who)) == 0) { 907 908 delay(1); 909 if (++delays > (20 * hz)) { 910 911 cmn_err(CE_WARN, 912 "cpu%d failed to start", who); 913 914 mutex_enter(&cpu_lock); 915 cpu[who]->cpu_flags = 0; 916 cpu_del_unit(who); 917 mutex_exit(&cpu_lock); 918 919 started_cpu = 0; 920 break; 921 } 922 } 923 if (!started_cpu) 924 continue; 925 if (tsc_gethrtime_enable) 926 tsc_sync_master(who); 927 928 929 if (dtrace_cpu_init != NULL) { 930 /* 931 * DTrace CPU initialization expects cpu_lock 932 * to be held. 933 */ 934 mutex_enter(&cpu_lock); 935 (*dtrace_cpu_init)(who); 936 mutex_exit(&cpu_lock); 937 } 938 } 939 940 affinity_clear(); 941 942 for (who = 0; who < NCPU; who++) { 943 if (who == cpuid) 944 continue; 945 946 if (!(procset & (1 << who))) 947 continue; 948 949 while (!(cpu_ready_set & (1 << who))) 950 delay(1); 951 } 952 953 done: 954 workaround_errata_end(); 955 956 if (warm_reset_vector != NULL) 957 mp_unmap_warm_reset_vector(warm_reset_vector); 958 hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 959 HAT_UNLOAD); 960 } 961 962 /* 963 * Dummy functions - no i86pc platforms support dynamic cpu allocation. 964 */ 965 /*ARGSUSED*/ 966 int 967 mp_cpu_configure(int cpuid) 968 { 969 return (ENOTSUP); /* not supported */ 970 } 971 972 /*ARGSUSED*/ 973 int 974 mp_cpu_unconfigure(int cpuid) 975 { 976 return (ENOTSUP); /* not supported */ 977 } 978 979 /* 980 * Startup function for 'other' CPUs (besides boot cpu). 981 * Resumed from cpu_startup. 982 */ 983 void 984 mp_startup(void) 985 { 986 struct cpu *cp = CPU; 987 extern int procset; 988 uint_t new_x86_feature; 989 990 new_x86_feature = cpuid_pass1(cp); 991 992 /* 993 * We need to Sync MTRR with cpu0's MTRR. We have to do 994 * this with interrupts disabled. 995 */ 996 if (x86_feature & X86_MTRR) 997 mtrr_sync(); 998 /* 999 * Enable machine check architecture 1000 */ 1001 if (x86_feature & X86_MCA) 1002 setup_mca(); 1003 1004 /* 1005 * Initialize this CPU's syscall handlers 1006 */ 1007 init_cpu_syscall(cp); 1008 1009 /* 1010 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1011 * highest level at which a routine is permitted to block on 1012 * an adaptive mutex (allows for cpu poke interrupt in case 1013 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1014 * device interrupts that may end up in the hat layer issuing cross 1015 * calls before CPU_READY is set. 1016 */ 1017 (void) splx(ipltospl(LOCK_LEVEL)); 1018 1019 /* 1020 * Do a sanity check to make sure this new CPU is a sane thing 1021 * to add to the collection of processors running this system. 1022 * 1023 * XXX Clearly this needs to get more sophisticated, if x86 1024 * systems start to get built out of heterogenous CPUs; as is 1025 * likely to happen once the number of processors in a configuration 1026 * gets large enough. 1027 */ 1028 if ((x86_feature & new_x86_feature) != x86_feature) { 1029 cmn_err(CE_CONT, "?cpu%d: %b\n", 1030 cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); 1031 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1032 } 1033 1034 /* 1035 * We could be more sophisticated here, and just mark the CPU 1036 * as "faulted" but at this point we'll opt for the easier 1037 * answer of dieing horribly. Provided the boot cpu is ok, 1038 * the system can be recovered by booting with use_mp set to zero. 1039 */ 1040 if (workaround_errata(cp) != 0) 1041 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1042 1043 cpuid_pass2(cp); 1044 cpuid_pass3(cp); 1045 (void) cpuid_pass4(cp); 1046 1047 init_cpu_info(cp); 1048 1049 add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); 1050 1051 mutex_enter(&cpu_lock); 1052 procset |= 1 << cp->cpu_id; 1053 mutex_exit(&cpu_lock); 1054 1055 if (tsc_gethrtime_enable) 1056 tsc_sync_slave(); 1057 1058 mutex_enter(&cpu_lock); 1059 /* 1060 * It's unfortunate that chip_cpu_init() has to be called here. 1061 * It really belongs in cpu_add_unit(), but unfortunately it is 1062 * dependent on the cpuid probing, which must be done in the 1063 * context of the current CPU. Care must be taken on x86 to ensure 1064 * that mp_startup can safely block even though chip_cpu_init() and 1065 * cpu_add_active() have not yet been called. 1066 */ 1067 chip_cpu_init(cp); 1068 chip_cpu_startup(cp); 1069 1070 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS; 1071 cpu_add_active(cp); 1072 mutex_exit(&cpu_lock); 1073 1074 (void) spl0(); /* enable interrupts */ 1075 1076 if (boothowto & RB_DEBUG) 1077 kdi_dvec_cpu_init(cp); 1078 1079 /* 1080 * Setting the bit in cpu_ready_set must be the last operation in 1081 * processor initialization; the boot CPU will continue to boot once 1082 * it sees this bit set for all active CPUs. 1083 */ 1084 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1085 1086 /* 1087 * Because mp_startup() gets fired off after init() starts, we 1088 * can't use the '?' trick to do 'boot -v' printing - so we 1089 * always direct the 'cpu .. online' messages to the log. 1090 */ 1091 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 1092 cp->cpu_id); 1093 1094 /* 1095 * Now we are done with the startup thread, so free it up. 1096 */ 1097 thread_exit(); 1098 panic("mp_startup: cannot return"); 1099 /*NOTREACHED*/ 1100 } 1101 1102 1103 /* 1104 * Start CPU on user request. 1105 */ 1106 /* ARGSUSED */ 1107 int 1108 mp_cpu_start(struct cpu *cp) 1109 { 1110 ASSERT(MUTEX_HELD(&cpu_lock)); 1111 if (cp->cpu_id == getbootcpuid()) 1112 return (EBUSY); /* Cannot start boot CPU */ 1113 return (0); 1114 } 1115 1116 /* 1117 * Stop CPU on user request. 1118 */ 1119 /* ARGSUSED */ 1120 int 1121 mp_cpu_stop(struct cpu *cp) 1122 { 1123 ASSERT(MUTEX_HELD(&cpu_lock)); 1124 if (cp->cpu_id == getbootcpuid()) 1125 return (EBUSY); /* Cannot stop boot CPU */ 1126 1127 return (0); 1128 } 1129 1130 /* 1131 * Power on CPU. 1132 */ 1133 /* ARGSUSED */ 1134 int 1135 mp_cpu_poweron(struct cpu *cp) 1136 { 1137 ASSERT(MUTEX_HELD(&cpu_lock)); 1138 return (ENOTSUP); /* not supported */ 1139 } 1140 1141 /* 1142 * Power off CPU. 1143 */ 1144 /* ARGSUSED */ 1145 int 1146 mp_cpu_poweroff(struct cpu *cp) 1147 { 1148 ASSERT(MUTEX_HELD(&cpu_lock)); 1149 return (ENOTSUP); /* not supported */ 1150 } 1151 1152 1153 /* 1154 * Take the specified CPU out of participation in interrupts. 1155 */ 1156 int 1157 cpu_disable_intr(struct cpu *cp) 1158 { 1159 /* 1160 * cannot disable interrupts on boot cpu 1161 */ 1162 if (cp == cpu[getbootcpuid()]) 1163 return (EBUSY); 1164 1165 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1166 return (EBUSY); 1167 1168 cp->cpu_flags &= ~CPU_ENABLE; 1169 return (0); 1170 } 1171 1172 /* 1173 * Allow the specified CPU to participate in interrupts. 1174 */ 1175 void 1176 cpu_enable_intr(struct cpu *cp) 1177 { 1178 ASSERT(MUTEX_HELD(&cpu_lock)); 1179 if (cp == cpu[getbootcpuid()]) 1180 return; 1181 1182 cp->cpu_flags |= CPU_ENABLE; 1183 psm_enable_intr(cp->cpu_id); 1184 } 1185 1186 1187 /* 1188 * return the cpu id of the initial startup cpu 1189 */ 1190 processorid_t 1191 getbootcpuid(void) 1192 { 1193 return (0); 1194 } 1195 1196 static ushort_t * 1197 mp_map_warm_reset_vector() 1198 { 1199 ushort_t *warm_reset_vector; 1200 1201 if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR, 1202 sizeof (ushort_t *), PROT_READ|PROT_WRITE))) 1203 return (NULL); 1204 1205 /* 1206 * setup secondary cpu bios boot up vector 1207 */ 1208 *warm_reset_vector = (ushort_t)((caddr_t) 1209 ((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va 1210 + ((ulong_t)rm_platter_va & 0xf)); 1211 warm_reset_vector++; 1212 *warm_reset_vector = (ushort_t)(rm_platter_pa >> 4); 1213 1214 --warm_reset_vector; 1215 return (warm_reset_vector); 1216 } 1217 1218 static void 1219 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector) 1220 { 1221 psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *)); 1222 } 1223 1224 /*ARGSUSED*/ 1225 void 1226 mp_cpu_faulted_enter(struct cpu *cp) 1227 {} 1228 1229 /*ARGSUSED*/ 1230 void 1231 mp_cpu_faulted_exit(struct cpu *cp) 1232 {} 1233 1234 /* 1235 * The following two routines are used as context operators on threads belonging 1236 * to processes with a private LDT (see sysi86). Due to the rarity of such 1237 * processes, these routines are currently written for best code readability and 1238 * organization rather than speed. We could avoid checking x86_feature at every 1239 * context switch by installing different context ops, depending on the 1240 * x86_feature flags, at LDT creation time -- one for each combination of fast 1241 * syscall feature flags. 1242 */ 1243 1244 /*ARGSUSED*/ 1245 void 1246 cpu_fast_syscall_disable(void *arg) 1247 { 1248 if (x86_feature & X86_SEP) 1249 cpu_sep_disable(); 1250 if (x86_feature & X86_ASYSC) 1251 cpu_asysc_disable(); 1252 } 1253 1254 /*ARGSUSED*/ 1255 void 1256 cpu_fast_syscall_enable(void *arg) 1257 { 1258 if (x86_feature & X86_SEP) 1259 cpu_sep_enable(); 1260 if (x86_feature & X86_ASYSC) 1261 cpu_asysc_enable(); 1262 } 1263 1264 static void 1265 cpu_sep_enable(void) 1266 { 1267 uint64_t value; 1268 1269 ASSERT(x86_feature & X86_SEP); 1270 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1271 1272 value = KCS_SEL; 1273 wrmsr(MSR_INTC_SEP_CS, &value); 1274 } 1275 1276 static void 1277 cpu_sep_disable(void) 1278 { 1279 uint64_t value; 1280 1281 ASSERT(x86_feature & X86_SEP); 1282 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1283 1284 /* 1285 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 1286 * the sysenter or sysexit instruction to trigger a #gp fault. 1287 */ 1288 value = 0; 1289 wrmsr(MSR_INTC_SEP_CS, &value); 1290 } 1291 1292 static void 1293 cpu_asysc_enable(void) 1294 { 1295 uint64_t value; 1296 1297 ASSERT(x86_feature & X86_ASYSC); 1298 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1299 1300 (void) rdmsr(MSR_AMD_EFER, &value); 1301 value |= AMD_EFER_SCE; 1302 wrmsr(MSR_AMD_EFER, &value); 1303 } 1304 1305 static void 1306 cpu_asysc_disable(void) 1307 { 1308 uint64_t value; 1309 1310 ASSERT(x86_feature & X86_ASYSC); 1311 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1312 1313 /* 1314 * Turn off the SCE (syscall enable) bit in the EFER register. Software 1315 * executing syscall or sysret with this bit off will incur a #ud trap. 1316 */ 1317 (void) rdmsr(MSR_AMD_EFER, &value); 1318 value &= ~AMD_EFER_SCE; 1319 wrmsr(MSR_AMD_EFER, &value); 1320 } 1321