1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/segments.h> 33 #include <sys/sysmacros.h> 34 #include <sys/signal.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/mman.h> 38 #include <sys/vm.h> 39 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/kmem.h> 46 47 #include <sys/reboot.h> 48 #include <sys/uadmin.h> 49 #include <sys/callb.h> 50 51 #include <sys/cred.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 55 #include <sys/procfs.h> 56 #include <sys/acct.h> 57 58 #include <sys/vfs.h> 59 #include <sys/dnlc.h> 60 #include <sys/var.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <vm/hat.h> 86 #include <vm/anon.h> 87 #include <vm/as.h> 88 #include <vm/page.h> 89 #include <vm/seg.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <vm/hat_i86.h> 95 #include <sys/swap.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <sys/machlock.h> 102 #include <sys/x_call.h> 103 #include <sys/instance.h> 104 105 #include <sys/time.h> 106 #include <sys/smp_impldefs.h> 107 #include <sys/psm_types.h> 108 #include <sys/atomic.h> 109 #include <sys/panic.h> 110 #include <sys/cpuvar.h> 111 #include <sys/dtrace.h> 112 #include <sys/bl.h> 113 #include <sys/nvpair.h> 114 #include <sys/x86_archext.h> 115 #include <sys/pool_pset.h> 116 #include <sys/autoconf.h> 117 #include <sys/mem.h> 118 #include <sys/dumphdr.h> 119 #include <sys/compress.h> 120 #if defined(__xpv) 121 #include <sys/hypervisor.h> 122 #include <sys/xpv_panic.h> 123 #endif 124 125 #ifdef TRAPTRACE 126 #include <sys/traptrace.h> 127 #endif /* TRAPTRACE */ 128 129 #ifdef C2_AUDIT 130 extern void audit_enterprom(int); 131 extern void audit_exitprom(int); 132 #endif 133 134 /* 135 * The panicbuf array is used to record messages and state: 136 */ 137 char panicbuf[PANICBUFSIZE]; 138 139 /* 140 * maxphys - used during physio 141 * klustsize - used for klustering by swapfs and specfs 142 */ 143 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 144 int klustsize = 56 * 1024; 145 146 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 147 148 /* 149 * defined here, though unused on x86, 150 * to make kstat_fr.c happy. 151 */ 152 int vac; 153 154 void stop_other_cpus(); 155 void debug_enter(char *); 156 157 extern void pm_cfb_check_and_powerup(void); 158 extern void pm_cfb_rele(void); 159 160 /* 161 * Machine dependent code to reboot. 162 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 163 * to a string to be used as the argument string when rebooting. 164 * 165 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 166 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 167 * we are in a normal shutdown sequence (interrupts are not blocked, the 168 * system is not panic'ing or being suspended). 169 */ 170 /*ARGSUSED*/ 171 void 172 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 173 { 174 #ifndef __xpv 175 extern void mtrr_resync(void); 176 #endif 177 178 if (!panicstr) { 179 kpreempt_disable(); 180 affinity_set(CPU_CURRENT); 181 } 182 183 /* 184 * XXX - rconsvp is set to NULL to ensure that output messages 185 * are sent to the underlying "hardware" device using the 186 * monitor's printf routine since we are in the process of 187 * either rebooting or halting the machine. 188 */ 189 rconsvp = NULL; 190 191 /* 192 * Print the reboot message now, before pausing other cpus. 193 * There is a race condition in the printing support that 194 * can deadlock multiprocessor machines. 195 */ 196 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 197 prom_printf("rebooting...\n"); 198 199 if (IN_XPV_PANIC()) 200 reset(); 201 202 /* 203 * We can't bring up the console from above lock level, so do it now 204 */ 205 pm_cfb_check_and_powerup(); 206 207 /* make sure there are no more changes to the device tree */ 208 devtree_freeze(); 209 210 if (invoke_cb) 211 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 212 213 /* 214 * Clear any unresolved UEs from memory. 215 */ 216 page_retire_mdboot(); 217 218 #if defined(__xpv) 219 /* 220 * XXPV Should probably think some more about how we deal 221 * with panicing before it's really safe to panic. 222 * On hypervisors, we reboot very quickly.. Perhaps panic 223 * should only attempt to recover by rebooting if, 224 * say, we were able to mount the root filesystem, 225 * or if we successfully launched init(1m). 226 */ 227 if (panicstr && proc_init == NULL) 228 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 229 #endif 230 231 /* 232 * stop other cpus and raise our priority. since there is only 233 * one active cpu after this, and our priority will be too high 234 * for us to be preempted, we're essentially single threaded 235 * from here on out. 236 */ 237 (void) spl6(); 238 if (!panicstr) { 239 mutex_enter(&cpu_lock); 240 pause_cpus(NULL); 241 mutex_exit(&cpu_lock); 242 } 243 244 /* 245 * try and reset leaf devices. reset_leaves() should only 246 * be called when there are no other threads that could be 247 * accessing devices 248 */ 249 reset_leaves(); 250 251 (void) spl8(); 252 (*psm_shutdownf)(cmd, fcn); 253 254 #ifndef __xpv 255 mtrr_resync(); 256 #endif 257 258 if (fcn == AD_HALT || fcn == AD_POWEROFF) 259 halt((char *)NULL); 260 else 261 prom_reboot(""); 262 /*NOTREACHED*/ 263 } 264 265 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 266 /*ARGSUSED*/ 267 void 268 mdpreboot(int cmd, int fcn, char *mdep) 269 { 270 (*psm_preshutdownf)(cmd, fcn); 271 } 272 273 void 274 idle_other_cpus() 275 { 276 int cpuid = CPU->cpu_id; 277 cpuset_t xcset; 278 279 ASSERT(cpuid < NCPU); 280 CPUSET_ALL_BUT(xcset, cpuid); 281 xc_capture_cpus(xcset); 282 } 283 284 void 285 resume_other_cpus() 286 { 287 ASSERT(CPU->cpu_id < NCPU); 288 289 xc_release_cpus(); 290 } 291 292 void 293 stop_other_cpus() 294 { 295 int cpuid = CPU->cpu_id; 296 cpuset_t xcset; 297 298 ASSERT(cpuid < NCPU); 299 300 /* 301 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 302 * and will return immediately regardless of whether or not it was 303 * able to make them do it. 304 */ 305 CPUSET_ALL_BUT(xcset, cpuid); 306 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 307 } 308 309 /* 310 * Machine dependent abort sequence handling 311 */ 312 void 313 abort_sequence_enter(char *msg) 314 { 315 if (abort_enable == 0) { 316 #ifdef C2_AUDIT 317 if (audit_active) 318 audit_enterprom(0); 319 #endif /* C2_AUDIT */ 320 return; 321 } 322 #ifdef C2_AUDIT 323 if (audit_active) 324 audit_enterprom(1); 325 #endif /* C2_AUDIT */ 326 debug_enter(msg); 327 #ifdef C2_AUDIT 328 if (audit_active) 329 audit_exitprom(1); 330 #endif /* C2_AUDIT */ 331 } 332 333 /* 334 * Enter debugger. Called when the user types ctrl-alt-d or whenever 335 * code wants to enter the debugger and possibly resume later. 336 */ 337 void 338 debug_enter( 339 char *msg) /* message to print, possibly NULL */ 340 { 341 if (dtrace_debugger_init != NULL) 342 (*dtrace_debugger_init)(); 343 344 if (msg) 345 prom_printf("%s\n", msg); 346 347 if (boothowto & RB_DEBUG) 348 kmdb_enter(); 349 350 if (dtrace_debugger_fini != NULL) 351 (*dtrace_debugger_fini)(); 352 } 353 354 void 355 reset(void) 356 { 357 #if !defined(__xpv) 358 ushort_t *bios_memchk; 359 360 /* 361 * Can't use psm_map_phys before the hat is initialized. 362 */ 363 if (khat_running) { 364 bios_memchk = (ushort_t *)psm_map_phys(0x472, 365 sizeof (ushort_t), PROT_READ | PROT_WRITE); 366 if (bios_memchk) 367 *bios_memchk = 0x1234; /* bios memory check disable */ 368 } 369 370 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 371 efi_reset(); 372 pc_reset(); 373 #else 374 if (IN_XPV_PANIC()) 375 pc_reset(); 376 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 377 panic("HYPERVISOR_shutdown() failed"); 378 #endif 379 /*NOTREACHED*/ 380 } 381 382 /* 383 * Halt the machine and return to the monitor 384 */ 385 void 386 halt(char *s) 387 { 388 stop_other_cpus(); /* send stop signal to other CPUs */ 389 if (s) 390 prom_printf("(%s) \n", s); 391 prom_exit_to_mon(); 392 /*NOTREACHED*/ 393 } 394 395 /* 396 * Initiate interrupt redistribution. 397 */ 398 void 399 i_ddi_intr_redist_all_cpus() 400 { 401 } 402 403 /* 404 * XXX These probably ought to live somewhere else 405 * XXX They are called from mem.c 406 */ 407 408 /* 409 * Convert page frame number to an OBMEM page frame number 410 * (i.e. put in the type bits -- zero for this implementation) 411 */ 412 pfn_t 413 impl_obmem_pfnum(pfn_t pf) 414 { 415 return (pf); 416 } 417 418 #ifdef NM_DEBUG 419 int nmi_test = 0; /* checked in intentry.s during clock int */ 420 int nmtest = -1; 421 nmfunc1(arg, rp) 422 int arg; 423 struct regs *rp; 424 { 425 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 426 nmtest += 50; 427 if (arg == nmtest) { 428 printf("ip = %x\n", rp->r_pc); 429 return (1); 430 } 431 return (0); 432 } 433 434 #endif 435 436 #include <sys/bootsvcs.h> 437 438 /* Hacked up initialization for initial kernel check out is HERE. */ 439 /* The basic steps are: */ 440 /* kernel bootfuncs definition/initialization for KADB */ 441 /* kadb bootfuncs pointer initialization */ 442 /* putchar/getchar (interrupts disabled) */ 443 444 /* kadb bootfuncs pointer initialization */ 445 446 int 447 sysp_getchar() 448 { 449 int i; 450 ulong_t s; 451 452 if (cons_polledio == NULL) { 453 /* Uh oh */ 454 prom_printf("getchar called with no console\n"); 455 for (;;) 456 /* LOOP FOREVER */; 457 } 458 459 s = clear_int_flag(); 460 i = cons_polledio->cons_polledio_getchar( 461 cons_polledio->cons_polledio_argument); 462 restore_int_flag(s); 463 return (i); 464 } 465 466 void 467 sysp_putchar(int c) 468 { 469 ulong_t s; 470 471 /* 472 * We have no alternative but to drop the output on the floor. 473 */ 474 if (cons_polledio == NULL || 475 cons_polledio->cons_polledio_putchar == NULL) 476 return; 477 478 s = clear_int_flag(); 479 cons_polledio->cons_polledio_putchar( 480 cons_polledio->cons_polledio_argument, c); 481 restore_int_flag(s); 482 } 483 484 int 485 sysp_ischar() 486 { 487 int i; 488 ulong_t s; 489 490 if (cons_polledio == NULL || 491 cons_polledio->cons_polledio_ischar == NULL) 492 return (0); 493 494 s = clear_int_flag(); 495 i = cons_polledio->cons_polledio_ischar( 496 cons_polledio->cons_polledio_argument); 497 restore_int_flag(s); 498 return (i); 499 } 500 501 int 502 goany(void) 503 { 504 prom_printf("Type any key to continue "); 505 (void) prom_getchar(); 506 prom_printf("\n"); 507 return (1); 508 } 509 510 static struct boot_syscalls kern_sysp = { 511 sysp_getchar, /* unchar (*getchar)(); 7 */ 512 sysp_putchar, /* int (*putchar)(); 8 */ 513 sysp_ischar, /* int (*ischar)(); 9 */ 514 }; 515 516 #if defined(__xpv) 517 int using_kern_polledio; 518 #endif 519 520 void 521 kadb_uses_kernel() 522 { 523 /* 524 * This routine is now totally misnamed, since it does not in fact 525 * control kadb's I/O; it only controls the kernel's prom_* I/O. 526 */ 527 sysp = &kern_sysp; 528 #if defined(__xpv) 529 using_kern_polledio = 1; 530 #endif 531 } 532 533 /* 534 * the interface to the outside world 535 */ 536 537 /* 538 * poll_port -- wait for a register to achieve a 539 * specific state. Arguments are a mask of bits we care about, 540 * and two sub-masks. To return normally, all the bits in the 541 * first sub-mask must be ON, all the bits in the second sub- 542 * mask must be OFF. If about seconds pass without the register 543 * achieving the desired bit configuration, we return 1, else 544 * 0. 545 */ 546 int 547 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 548 { 549 int i; 550 ushort_t maskval; 551 552 for (i = 500000; i; i--) { 553 maskval = inb(port) & mask; 554 if (((maskval & onbits) == onbits) && 555 ((maskval & offbits) == 0)) 556 return (0); 557 drv_usecwait(10); 558 } 559 return (1); 560 } 561 562 /* 563 * set_idle_cpu is called from idle() when a CPU becomes idle. 564 */ 565 /*LINTED: static unused */ 566 static uint_t last_idle_cpu; 567 568 /*ARGSUSED*/ 569 void 570 set_idle_cpu(int cpun) 571 { 572 last_idle_cpu = cpun; 573 (*psm_set_idle_cpuf)(cpun); 574 } 575 576 /* 577 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 578 */ 579 /*ARGSUSED*/ 580 void 581 unset_idle_cpu(int cpun) 582 { 583 (*psm_unset_idle_cpuf)(cpun); 584 } 585 586 /* 587 * This routine is almost correct now, but not quite. It still needs the 588 * equivalent concept of "hres_last_tick", just like on the sparc side. 589 * The idea is to take a snapshot of the hi-res timer while doing the 590 * hrestime_adj updates under hres_lock in locore, so that the small 591 * interval between interrupt assertion and interrupt processing is 592 * accounted for correctly. Once we have this, the code below should 593 * be modified to subtract off hres_last_tick rather than hrtime_base. 594 * 595 * I'd have done this myself, but I don't have source to all of the 596 * vendor-specific hi-res timer routines (grrr...). The generic hook I 597 * need is something like "gethrtime_unlocked()", which would be just like 598 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 599 * This is what the GET_HRTIME() macro is for on sparc (although it also 600 * serves the function of making time available without a function call 601 * so you don't take a register window overflow while traps are disabled). 602 */ 603 void 604 pc_gethrestime(timestruc_t *tp) 605 { 606 int lock_prev; 607 timestruc_t now; 608 int nslt; /* nsec since last tick */ 609 int adj; /* amount of adjustment to apply */ 610 611 loop: 612 lock_prev = hres_lock; 613 now = hrestime; 614 nslt = (int)(gethrtime() - hres_last_tick); 615 if (nslt < 0) { 616 /* 617 * nslt < 0 means a tick came between sampling 618 * gethrtime() and hres_last_tick; restart the loop 619 */ 620 621 goto loop; 622 } 623 now.tv_nsec += nslt; 624 if (hrestime_adj != 0) { 625 if (hrestime_adj > 0) { 626 adj = (nslt >> ADJ_SHIFT); 627 if (adj > hrestime_adj) 628 adj = (int)hrestime_adj; 629 } else { 630 adj = -(nslt >> ADJ_SHIFT); 631 if (adj < hrestime_adj) 632 adj = (int)hrestime_adj; 633 } 634 now.tv_nsec += adj; 635 } 636 while ((unsigned long)now.tv_nsec >= NANOSEC) { 637 638 /* 639 * We might have a large adjustment or have been in the 640 * debugger for a long time; take care of (at most) four 641 * of those missed seconds (tv_nsec is 32 bits, so 642 * anything >4s will be wrapping around). However, 643 * anything more than 2 seconds out of sync will trigger 644 * timedelta from clock() to go correct the time anyway, 645 * so do what we can, and let the big crowbar do the 646 * rest. A similar correction while loop exists inside 647 * hres_tick(); in all cases we'd like tv_nsec to 648 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 649 * user processes, but if tv_sec's a little behind for a 650 * little while, that's OK; time still monotonically 651 * increases. 652 */ 653 654 now.tv_nsec -= NANOSEC; 655 now.tv_sec++; 656 } 657 if ((hres_lock & ~1) != lock_prev) 658 goto loop; 659 660 *tp = now; 661 } 662 663 void 664 gethrestime_lasttick(timespec_t *tp) 665 { 666 int s; 667 668 s = hr_clock_lock(); 669 *tp = hrestime; 670 hr_clock_unlock(s); 671 } 672 673 time_t 674 gethrestime_sec(void) 675 { 676 timestruc_t now; 677 678 gethrestime(&now); 679 return (now.tv_sec); 680 } 681 682 /* 683 * Initialize a kernel thread's stack 684 */ 685 686 caddr_t 687 thread_stk_init(caddr_t stk) 688 { 689 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 690 return (stk - SA(MINFRAME)); 691 } 692 693 /* 694 * Initialize lwp's kernel stack. 695 */ 696 697 #ifdef TRAPTRACE 698 /* 699 * There's a tricky interdependency here between use of sysenter and 700 * TRAPTRACE which needs recording to avoid future confusion (this is 701 * about the third time I've re-figured this out ..) 702 * 703 * Here's how debugging lcall works with TRAPTRACE. 704 * 705 * 1 We're in userland with a breakpoint on the lcall instruction. 706 * 2 We execute the instruction - the instruction pushes the userland 707 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 708 * via the call gate. 709 * 3 The hardware raises a debug trap in kernel mode, the hardware 710 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 711 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 712 * 5 cmntrap finishes building a trap frame 713 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 714 * off the stack into the traptrace buffer. 715 * 716 * This means that the traptrace buffer contains the wrong values in 717 * %esp and %ss, but everything else in there is correct. 718 * 719 * Here's how debugging sysenter works with TRAPTRACE. 720 * 721 * a We're in userland with a breakpoint on the sysenter instruction. 722 * b We execute the instruction - the instruction pushes -nothing- 723 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 724 * values to take us to sys_sysenter, at the top of the lwp's 725 * stack. 726 * c goto 3 727 * 728 * At this point, because we got into the kernel without the requisite 729 * five pushes on the stack, if we didn't make extra room, we'd 730 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 731 * values from negative (unmapped) stack addresses -- which really bites. 732 * That's why we do the '-= 8' below. 733 * 734 * XXX Note that reading "up" lwp0's stack works because t0 is declared 735 * right next to t0stack in locore.s 736 */ 737 #endif 738 739 caddr_t 740 lwp_stk_init(klwp_t *lwp, caddr_t stk) 741 { 742 caddr_t oldstk; 743 struct pcb *pcb = &lwp->lwp_pcb; 744 745 oldstk = stk; 746 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 747 #ifdef TRAPTRACE 748 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 749 #endif 750 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 751 bzero(stk, oldstk - stk); 752 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 753 754 /* 755 * Arrange that the virtualized %fs and %gs GDT descriptors 756 * have a well-defined initial state (present, ring 3 757 * and of type data). 758 */ 759 #if defined(__amd64) 760 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 761 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 762 else 763 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 764 #elif defined(__i386) 765 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 766 #endif /* __i386 */ 767 lwp_installctx(lwp); 768 return (stk); 769 } 770 771 /*ARGSUSED*/ 772 void 773 lwp_stk_fini(klwp_t *lwp) 774 {} 775 776 /* 777 * If we're not the panic CPU, we wait in panic_idle for reboot. 778 */ 779 static void 780 panic_idle(void) 781 { 782 splx(ipltospl(CLOCK_LEVEL)); 783 (void) setjmp(&curthread->t_pcb); 784 785 for (;;) 786 ; 787 } 788 789 /* 790 * Stop the other CPUs by cross-calling them and forcing them to enter 791 * the panic_idle() loop above. 792 */ 793 /*ARGSUSED*/ 794 void 795 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 796 { 797 processorid_t i; 798 cpuset_t xcset; 799 800 /* 801 * In the case of a Xen panic, the hypervisor has already stopped 802 * all of the CPUs. 803 */ 804 if (!IN_XPV_PANIC()) { 805 (void) splzs(); 806 807 CPUSET_ALL_BUT(xcset, cp->cpu_id); 808 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 809 } 810 811 for (i = 0; i < NCPU; i++) { 812 if (i != cp->cpu_id && cpu[i] != NULL && 813 (cpu[i]->cpu_flags & CPU_EXISTS)) 814 cpu[i]->cpu_flags |= CPU_QUIESCED; 815 } 816 } 817 818 /* 819 * Platform callback following each entry to panicsys(). 820 */ 821 /*ARGSUSED*/ 822 void 823 panic_enter_hw(int spl) 824 { 825 /* Nothing to do here */ 826 } 827 828 /* 829 * Platform-specific code to execute after panicstr is set: we invoke 830 * the PSM entry point to indicate that a panic has occurred. 831 */ 832 /*ARGSUSED*/ 833 void 834 panic_quiesce_hw(panic_data_t *pdp) 835 { 836 psm_notifyf(PSM_PANIC_ENTER); 837 838 #ifdef TRAPTRACE 839 /* 840 * Turn off TRAPTRACE 841 */ 842 TRAPTRACE_FREEZE; 843 #endif /* TRAPTRACE */ 844 } 845 846 /* 847 * Platform callback prior to writing crash dump. 848 */ 849 /*ARGSUSED*/ 850 void 851 panic_dump_hw(int spl) 852 { 853 /* Nothing to do here */ 854 } 855 856 void * 857 plat_traceback(void *fpreg) 858 { 859 #ifdef __xpv 860 if (IN_XPV_PANIC()) 861 return (xpv_traceback(fpreg)); 862 #endif 863 return (fpreg); 864 } 865 866 /*ARGSUSED*/ 867 void 868 plat_tod_fault(enum tod_fault_type tod_bad) 869 {} 870 871 /*ARGSUSED*/ 872 int 873 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 874 { 875 return (ENOTSUP); 876 } 877 878 /* 879 * The underlying console output routines are protected by raising IPL in case 880 * we are still calling into the early boot services. Once we start calling 881 * the kernel console emulator, it will disable interrupts completely during 882 * character rendering (see sysp_putchar, for example). Refer to the comments 883 * and code in common/os/console.c for more information on these callbacks. 884 */ 885 /*ARGSUSED*/ 886 int 887 console_enter(int busy) 888 { 889 return (splzs()); 890 } 891 892 /*ARGSUSED*/ 893 void 894 console_exit(int busy, int spl) 895 { 896 splx(spl); 897 } 898 899 /* 900 * Allocate a region of virtual address space, unmapped. 901 * Stubbed out except on sparc, at least for now. 902 */ 903 /*ARGSUSED*/ 904 void * 905 boot_virt_alloc(void *addr, size_t size) 906 { 907 return (addr); 908 } 909 910 volatile unsigned long tenmicrodata; 911 912 void 913 tenmicrosec(void) 914 { 915 extern int gethrtime_hires; 916 917 if (gethrtime_hires) { 918 hrtime_t start, end; 919 start = end = gethrtime(); 920 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 921 SMT_PAUSE(); 922 end = gethrtime(); 923 } 924 } else { 925 #if defined(__xpv) 926 hrtime_t newtime; 927 928 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 929 while (xpv_gethrtime() < newtime) 930 SMT_PAUSE(); 931 #else /* __xpv */ 932 int i; 933 934 /* 935 * Artificial loop to induce delay. 936 */ 937 for (i = 0; i < microdata; i++) 938 tenmicrodata = microdata; 939 #endif /* __xpv */ 940 } 941 } 942 943 /* 944 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 945 * long, and it fills in the array with the time spent on cpu in 946 * each of the mstates, where time is returned in nsec. 947 * 948 * No guarantee is made that the returned values in times[] will 949 * monotonically increase on sequential calls, although this will 950 * be true in the long run. Any such guarantee must be handled by 951 * the caller, if needed. This can happen if we fail to account 952 * for elapsed time due to a generation counter conflict, yet we 953 * did account for it on a prior call (see below). 954 * 955 * The complication is that the cpu in question may be updating 956 * its microstate at the same time that we are reading it. 957 * Because the microstate is only updated when the CPU's state 958 * changes, the values in cpu_intracct[] can be indefinitely out 959 * of date. To determine true current values, it is necessary to 960 * compare the current time with cpu_mstate_start, and add the 961 * difference to times[cpu_mstate]. 962 * 963 * This can be a problem if those values are changing out from 964 * under us. Because the code path in new_cpu_mstate() is 965 * performance critical, we have not added a lock to it. Instead, 966 * we have added a generation counter. Before beginning 967 * modifications, the counter is set to 0. After modifications, 968 * it is set to the old value plus one. 969 * 970 * get_cpu_mstate() will not consider the values of cpu_mstate 971 * and cpu_mstate_start to be usable unless the value of 972 * cpu_mstate_gen is both non-zero and unchanged, both before and 973 * after reading the mstate information. Note that we must 974 * protect against out-of-order loads around accesses to the 975 * generation counter. Also, this is a best effort approach in 976 * that we do not retry should the counter be found to have 977 * changed. 978 * 979 * cpu_intracct[] is used to identify time spent in each CPU 980 * mstate while handling interrupts. Such time should be reported 981 * against system time, and so is subtracted out from its 982 * corresponding cpu_acct[] time and added to 983 * cpu_acct[CMS_SYSTEM]. 984 */ 985 986 void 987 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 988 { 989 int i; 990 hrtime_t now, start; 991 uint16_t gen; 992 uint16_t state; 993 hrtime_t intracct[NCMSTATES]; 994 995 /* 996 * Load all volatile state under the protection of membar. 997 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 998 * of (now - cpu_mstate_start) by a change in CPU mstate that 999 * arrives after we make our last check of cpu_mstate_gen. 1000 */ 1001 1002 now = gethrtime_unscaled(); 1003 gen = cpu->cpu_mstate_gen; 1004 1005 membar_consumer(); /* guarantee load ordering */ 1006 start = cpu->cpu_mstate_start; 1007 state = cpu->cpu_mstate; 1008 for (i = 0; i < NCMSTATES; i++) { 1009 intracct[i] = cpu->cpu_intracct[i]; 1010 times[i] = cpu->cpu_acct[i]; 1011 } 1012 membar_consumer(); /* guarantee load ordering */ 1013 1014 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1015 times[state] += now - start; 1016 1017 for (i = 0; i < NCMSTATES; i++) { 1018 if (i == CMS_SYSTEM) 1019 continue; 1020 times[i] -= intracct[i]; 1021 if (times[i] < 0) { 1022 intracct[i] += times[i]; 1023 times[i] = 0; 1024 } 1025 times[CMS_SYSTEM] += intracct[i]; 1026 scalehrtime(×[i]); 1027 } 1028 scalehrtime(×[CMS_SYSTEM]); 1029 } 1030 1031 1032 /* 1033 * This is a version of the rdmsr instruction that allows 1034 * an error code to be returned in the case of failure. 1035 */ 1036 int 1037 checked_rdmsr(uint_t msr, uint64_t *value) 1038 { 1039 if ((x86_feature & X86_MSR) == 0) 1040 return (ENOTSUP); 1041 *value = rdmsr(msr); 1042 return (0); 1043 } 1044 1045 /* 1046 * This is a version of the wrmsr instruction that allows 1047 * an error code to be returned in the case of failure. 1048 */ 1049 int 1050 checked_wrmsr(uint_t msr, uint64_t value) 1051 { 1052 if ((x86_feature & X86_MSR) == 0) 1053 return (ENOTSUP); 1054 wrmsr(msr, value); 1055 return (0); 1056 } 1057 1058 /* 1059 * The mem driver's usual method of using hat_devload() to establish a 1060 * temporary mapping will not work for foreign pages mapped into this 1061 * domain or for the special hypervisor-provided pages. For the foreign 1062 * pages, we often don't know which domain owns them, so we can't ask the 1063 * hypervisor to set up a new mapping. For the other pages, we don't have 1064 * a pfn, so we can't create a new PTE. For these special cases, we do a 1065 * direct uiomove() from the existing kernel virtual address. 1066 */ 1067 /*ARGSUSED*/ 1068 int 1069 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1070 { 1071 #if defined(__xpv) 1072 void *va = (void *)(uintptr_t)uio->uio_loffset; 1073 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1074 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1075 (size_t)uio->uio_iov->iov_len); 1076 1077 if ((rw == UIO_READ && 1078 (va == HYPERVISOR_shared_info || va == xen_info)) || 1079 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1080 return (uiomove(va, nbytes, rw, uio)); 1081 #endif 1082 return (ENOTSUP); 1083 } 1084 1085 pgcnt_t 1086 num_phys_pages() 1087 { 1088 pgcnt_t npages = 0; 1089 struct memlist *mp; 1090 1091 #if defined(__xpv) 1092 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1093 xen_sysctl_t op; 1094 1095 op.cmd = XEN_SYSCTL_physinfo; 1096 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1097 if (HYPERVISOR_sysctl(&op) != 0) 1098 panic("physinfo op refused"); 1099 1100 return ((pgcnt_t)op.u.physinfo.total_pages); 1101 } 1102 #endif /* __xpv */ 1103 1104 for (mp = phys_install; mp != NULL; mp = mp->next) 1105 npages += mp->size >> PAGESHIFT; 1106 1107 return (npages); 1108 } 1109 1110 int 1111 dump_plat_addr() 1112 { 1113 #ifdef __xpv 1114 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1115 mem_vtop_t mem_vtop; 1116 int cnt; 1117 1118 /* 1119 * On the hypervisor, we want to dump the page with shared_info on it. 1120 */ 1121 if (!IN_XPV_PANIC()) { 1122 mem_vtop.m_as = &kas; 1123 mem_vtop.m_va = HYPERVISOR_shared_info; 1124 mem_vtop.m_pfn = pfn; 1125 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1126 cnt = 1; 1127 } else { 1128 cnt = dump_xpv_addr(); 1129 } 1130 return (cnt); 1131 #else 1132 return (0); 1133 #endif 1134 } 1135 1136 void 1137 dump_plat_pfn() 1138 { 1139 #ifdef __xpv 1140 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1141 1142 if (!IN_XPV_PANIC()) 1143 dumpvp_write(&pfn, sizeof (pfn)); 1144 else 1145 dump_xpv_pfn(); 1146 #endif 1147 } 1148 1149 /*ARGSUSED*/ 1150 int 1151 dump_plat_data(void *dump_cbuf) 1152 { 1153 #ifdef __xpv 1154 uint32_t csize; 1155 int cnt; 1156 1157 if (!IN_XPV_PANIC()) { 1158 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1159 PAGESIZE); 1160 dumpvp_write(&csize, sizeof (uint32_t)); 1161 dumpvp_write(dump_cbuf, csize); 1162 cnt = 1; 1163 } else { 1164 cnt = dump_xpv_data(dump_cbuf); 1165 } 1166 return (cnt); 1167 #else 1168 return (0); 1169 #endif 1170 } 1171 1172 /* 1173 * Calculates a linear address, given the CS selector and PC values 1174 * by looking up the %cs selector process's LDT or the CPU's GDT. 1175 * proc->p_ldtlock must be held across this call. 1176 */ 1177 int 1178 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1179 { 1180 user_desc_t *descrp; 1181 caddr_t baseaddr; 1182 uint16_t idx = SELTOIDX(rp->r_cs); 1183 1184 ASSERT(rp->r_cs <= 0xFFFF); 1185 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1186 1187 if (SELISLDT(rp->r_cs)) { 1188 /* 1189 * Currently 64 bit processes cannot have private LDTs. 1190 */ 1191 ASSERT(p->p_model != DATAMODEL_LP64); 1192 1193 if (p->p_ldt == NULL) 1194 return (-1); 1195 1196 descrp = &p->p_ldt[idx]; 1197 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1198 1199 /* 1200 * Calculate the linear address (wraparound is not only ok, 1201 * it's expected behavior). The cast to uint32_t is because 1202 * LDT selectors are only allowed in 32-bit processes. 1203 */ 1204 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1205 rp->r_pc); 1206 } else { 1207 #ifdef DEBUG 1208 descrp = &CPU->cpu_gdt[idx]; 1209 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1210 /* GDT-based descriptors' base addresses should always be 0 */ 1211 ASSERT(baseaddr == 0); 1212 #endif 1213 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1214 } 1215 1216 return (0); 1217 } 1218 1219 /* 1220 * The implementation of dtrace_linear_pc is similar to the that of 1221 * linear_pc, above, but here we acquire p_ldtlock before accessing 1222 * p_ldt. This implementation is used by the pid provider; we prefix 1223 * it with "dtrace_" to avoid inducing spurious tracing events. 1224 */ 1225 int 1226 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1227 { 1228 user_desc_t *descrp; 1229 caddr_t baseaddr; 1230 uint16_t idx = SELTOIDX(rp->r_cs); 1231 1232 ASSERT(rp->r_cs <= 0xFFFF); 1233 1234 if (SELISLDT(rp->r_cs)) { 1235 /* 1236 * Currently 64 bit processes cannot have private LDTs. 1237 */ 1238 ASSERT(p->p_model != DATAMODEL_LP64); 1239 1240 mutex_enter(&p->p_ldtlock); 1241 if (p->p_ldt == NULL) { 1242 mutex_exit(&p->p_ldtlock); 1243 return (-1); 1244 } 1245 descrp = &p->p_ldt[idx]; 1246 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1247 mutex_exit(&p->p_ldtlock); 1248 1249 /* 1250 * Calculate the linear address (wraparound is not only ok, 1251 * it's expected behavior). The cast to uint32_t is because 1252 * LDT selectors are only allowed in 32-bit processes. 1253 */ 1254 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1255 rp->r_pc); 1256 } else { 1257 #ifdef DEBUG 1258 descrp = &CPU->cpu_gdt[idx]; 1259 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1260 /* GDT-based descriptors' base addresses should always be 0 */ 1261 ASSERT(baseaddr == 0); 1262 #endif 1263 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1264 } 1265 1266 return (0); 1267 } 1268