xref: /titanic_52/usr/src/uts/i86pc/os/fakebop.c (revision eb9fe4ca958d89d923b240585deb93dd52e24335)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains the functionality that mimics the boot operations
29  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
30  * The x86 kernel now does everything on its own.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/bootconf.h>
35 #include <sys/bootsvcs.h>
36 #include <sys/bootinfo.h>
37 #include <sys/multiboot.h>
38 #include <sys/bootvfs.h>
39 #include <sys/bootprops.h>
40 #include <sys/varargs.h>
41 #include <sys/param.h>
42 #include <sys/machparam.h>
43 #include <sys/archsystm.h>
44 #include <sys/boot_console.h>
45 #include <sys/cmn_err.h>
46 #include <sys/systm.h>
47 #include <sys/promif.h>
48 #include <sys/archsystm.h>
49 #include <sys/x86_archext.h>
50 #include <sys/kobj.h>
51 #include <sys/privregs.h>
52 #include <sys/sysmacros.h>
53 #include <sys/ctype.h>
54 #include <sys/fastboot.h>
55 #ifdef __xpv
56 #include <sys/hypervisor.h>
57 #include <net/if.h>
58 #endif
59 #include <vm/kboot_mmu.h>
60 #include <vm/hat_pte.h>
61 #include <sys/dmar_acpi.h>
62 #include "acpi_fw.h"
63 
64 static int have_console = 0;	/* set once primitive console is initialized */
65 static char *boot_args = "";
66 
67 /*
68  * Debugging macros
69  */
70 static uint_t kbm_debug = 0;
71 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
72 #define	DBG(x)		{ if (kbm_debug)			\
73 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
74 	}
75 
76 #define	PUT_STRING(s) {				\
77 	char *cp;				\
78 	for (cp = (s); *cp; ++cp)		\
79 		bcons_putchar(*cp);		\
80 	}
81 
82 struct xboot_info *xbootp;	/* boot info from "glue" code in low memory */
83 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
84 struct bsys_mem bm;
85 
86 static uintptr_t next_virt;	/* next available virtual address */
87 static paddr_t next_phys;	/* next available physical address from dboot */
88 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
89 
90 /*
91  * buffer for vsnprintf for console I/O
92  */
93 #define	BUFFERSIZE	256
94 static char buffer[BUFFERSIZE];
95 /*
96  * stuff to store/report/manipulate boot property settings.
97  */
98 typedef struct bootprop {
99 	struct bootprop *bp_next;
100 	char *bp_name;
101 	uint_t bp_vlen;
102 	char *bp_value;
103 } bootprop_t;
104 
105 static bootprop_t *bprops = NULL;
106 static char *curr_page = NULL;		/* ptr to avail bprop memory */
107 static int curr_space = 0;		/* amount of memory at curr_page */
108 
109 #ifdef __xpv
110 start_info_t *xen_info;
111 shared_info_t *HYPERVISOR_shared_info;
112 #endif
113 
114 /*
115  * some allocator statistics
116  */
117 static ulong_t total_bop_alloc_scratch = 0;
118 static ulong_t total_bop_alloc_kernel = 0;
119 
120 static void build_firmware_properties(void);
121 
122 static int early_allocation = 1;
123 
124 #ifdef	__xpv
125 int fastreboot_capable = 0;
126 int force_fastreboot = 0;
127 int post_fastreboot = 0;
128 #else
129 int fastreboot_capable = 1;
130 int force_fastreboot = 0;
131 int post_fastreboot = 0;
132 #endif
133 
134 /*
135  * Information saved from current boot for fast reboot.
136  * If the information size exceeds what we have allocated, fast reboot
137  * will not be supported.
138  */
139 multiboot_info_t saved_mbi;
140 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
141 struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT];
142 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
143 int saved_cmdline_len = 0;
144 
145 /*
146  * Pointers to where System Resource Affinity Table (SRAT) and
147  * System Locality Information Table (SLIT) are mapped into virtual memory
148  */
149 struct srat	*srat_ptr = NULL;
150 struct slit	*slit_ptr = NULL;
151 
152 
153 /*
154  * Allocate aligned physical memory at boot time. This allocator allocates
155  * from the highest possible addresses. This avoids exhausting memory that
156  * would be useful for DMA buffers.
157  */
158 paddr_t
159 do_bop_phys_alloc(uint64_t size, uint64_t align)
160 {
161 	paddr_t	pa = 0;
162 	paddr_t	start;
163 	paddr_t	end;
164 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
165 
166 	/*
167 	 * Be careful if high memory usage is limited in startup.c
168 	 * Since there are holes in the low part of the physical address
169 	 * space we can treat physmem as a pfn (not just a pgcnt) and
170 	 * get a conservative upper limit.
171 	 */
172 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
173 		high_phys = pfn_to_pa(physmem);
174 
175 	/*
176 	 * find the lowest or highest available memory in physinstalled
177 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
178 	 */
179 #if defined(__i386)
180 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
181 		high_phys = FOUR_GIG;
182 #endif
183 
184 	/*
185 	 * find the highest available memory in physinstalled
186 	 */
187 	size = P2ROUNDUP(size, align);
188 	for (; ml; ml = ml->next) {
189 		start = P2ROUNDUP(ml->address, align);
190 		end = P2ALIGN(ml->address + ml->size, align);
191 		if (start < next_phys)
192 			start = P2ROUNDUP(next_phys, align);
193 		if (end > high_phys)
194 			end = P2ALIGN(high_phys, align);
195 
196 		if (end <= start)
197 			continue;
198 		if (end - start < size)
199 			continue;
200 
201 		/*
202 		 * Early allocations need to use low memory, since
203 		 * physmem might be further limited by bootenv.rc
204 		 */
205 		if (early_allocation) {
206 			if (pa == 0 || start < pa)
207 				pa = start;
208 		} else {
209 			if (end - size > pa)
210 				pa = end - size;
211 		}
212 	}
213 	if (pa != 0) {
214 		if (early_allocation)
215 			next_phys = pa + size;
216 		else
217 			high_phys = pa;
218 		return (pa);
219 	}
220 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
221 	    ") Out of memory\n", size, align);
222 	/*NOTREACHED*/
223 }
224 
225 static uintptr_t
226 alloc_vaddr(size_t size, paddr_t align)
227 {
228 	uintptr_t rv;
229 
230 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
231 	rv = (uintptr_t)next_virt;
232 	next_virt += size;
233 	return (rv);
234 }
235 
236 /*
237  * Allocate virtual memory. The size is always rounded up to a multiple
238  * of base pagesize.
239  */
240 
241 /*ARGSUSED*/
242 static caddr_t
243 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
244 {
245 	paddr_t a = align;	/* same type as pa for masking */
246 	uint_t pgsize;
247 	paddr_t pa;
248 	uintptr_t va;
249 	ssize_t s;		/* the aligned size */
250 	uint_t level;
251 	uint_t is_kernel = (virthint != 0);
252 
253 	if (a < MMU_PAGESIZE)
254 		a = MMU_PAGESIZE;
255 	else if (!ISP2(a))
256 		prom_panic("do_bsys_alloc() incorrect alignment");
257 	size = P2ROUNDUP(size, MMU_PAGESIZE);
258 
259 	/*
260 	 * Use the next aligned virtual address if we weren't given one.
261 	 */
262 	if (virthint == NULL) {
263 		virthint = (caddr_t)alloc_vaddr(size, a);
264 		total_bop_alloc_scratch += size;
265 	} else {
266 		total_bop_alloc_kernel += size;
267 	}
268 
269 	/*
270 	 * allocate the physical memory
271 	 */
272 	pa = do_bop_phys_alloc(size, a);
273 
274 	/*
275 	 * Add the mappings to the page tables, try large pages first.
276 	 */
277 	va = (uintptr_t)virthint;
278 	s = size;
279 	level = 1;
280 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
281 	if (xbootp->bi_use_largepage && a == pgsize) {
282 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
283 		    s >= pgsize) {
284 			kbm_map(va, pa, level, is_kernel);
285 			va += pgsize;
286 			pa += pgsize;
287 			s -= pgsize;
288 		}
289 	}
290 
291 	/*
292 	 * Map remaining pages use small mappings
293 	 */
294 	level = 0;
295 	pgsize = MMU_PAGESIZE;
296 	while (s > 0) {
297 		kbm_map(va, pa, level, is_kernel);
298 		va += pgsize;
299 		pa += pgsize;
300 		s -= pgsize;
301 	}
302 	return (virthint);
303 }
304 
305 /*
306  * Free virtual memory - we'll just ignore these.
307  */
308 /*ARGSUSED*/
309 static void
310 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
311 {
312 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
313 	    (void *)virt, size);
314 }
315 
316 /*
317  * Old interface
318  */
319 /*ARGSUSED*/
320 static caddr_t
321 do_bsys_ealloc(
322 	bootops_t *bop,
323 	caddr_t virthint,
324 	size_t size,
325 	int align,
326 	int flags)
327 {
328 	prom_panic("unsupported call to BOP_EALLOC()\n");
329 	return (0);
330 }
331 
332 
333 static void
334 bsetprop(char *name, int nlen, void *value, int vlen)
335 {
336 	uint_t size;
337 	uint_t need_size;
338 	bootprop_t *b;
339 
340 	/*
341 	 * align the size to 16 byte boundary
342 	 */
343 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
344 	size = (size + 0xf) & ~0xf;
345 	if (size > curr_space) {
346 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
347 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
348 		curr_space = need_size;
349 	}
350 
351 	/*
352 	 * use a bootprop_t at curr_page and link into list
353 	 */
354 	b = (bootprop_t *)curr_page;
355 	curr_page += sizeof (bootprop_t);
356 	curr_space -=  sizeof (bootprop_t);
357 	b->bp_next = bprops;
358 	bprops = b;
359 
360 	/*
361 	 * follow by name and ending zero byte
362 	 */
363 	b->bp_name = curr_page;
364 	bcopy(name, curr_page, nlen);
365 	curr_page += nlen;
366 	*curr_page++ = 0;
367 	curr_space -= nlen + 1;
368 
369 	/*
370 	 * copy in value, but no ending zero byte
371 	 */
372 	b->bp_value = curr_page;
373 	b->bp_vlen = vlen;
374 	if (vlen > 0) {
375 		bcopy(value, curr_page, vlen);
376 		curr_page += vlen;
377 		curr_space -= vlen;
378 	}
379 
380 	/*
381 	 * align new values of curr_page, curr_space
382 	 */
383 	while (curr_space & 0xf) {
384 		++curr_page;
385 		--curr_space;
386 	}
387 }
388 
389 static void
390 bsetprops(char *name, char *value)
391 {
392 	bsetprop(name, strlen(name), value, strlen(value) + 1);
393 }
394 
395 static void
396 bsetprop64(char *name, uint64_t value)
397 {
398 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
399 }
400 
401 static void
402 bsetpropsi(char *name, int value)
403 {
404 	char prop_val[32];
405 
406 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
407 	bsetprops(name, prop_val);
408 }
409 
410 /*
411  * to find the size of the buffer to allocate
412  */
413 /*ARGSUSED*/
414 int
415 do_bsys_getproplen(bootops_t *bop, const char *name)
416 {
417 	bootprop_t *b;
418 
419 	for (b = bprops; b; b = b->bp_next) {
420 		if (strcmp(name, b->bp_name) != 0)
421 			continue;
422 		return (b->bp_vlen);
423 	}
424 	return (-1);
425 }
426 
427 /*
428  * get the value associated with this name
429  */
430 /*ARGSUSED*/
431 int
432 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
433 {
434 	bootprop_t *b;
435 
436 	for (b = bprops; b; b = b->bp_next) {
437 		if (strcmp(name, b->bp_name) != 0)
438 			continue;
439 		bcopy(b->bp_value, value, b->bp_vlen);
440 		return (0);
441 	}
442 	return (-1);
443 }
444 
445 /*
446  * get the name of the next property in succession from the standalone
447  */
448 /*ARGSUSED*/
449 static char *
450 do_bsys_nextprop(bootops_t *bop, char *name)
451 {
452 	bootprop_t *b;
453 
454 	/*
455 	 * A null name is a special signal for the 1st boot property
456 	 */
457 	if (name == NULL || strlen(name) == 0) {
458 		if (bprops == NULL)
459 			return (NULL);
460 		return (bprops->bp_name);
461 	}
462 
463 	for (b = bprops; b; b = b->bp_next) {
464 		if (name != b->bp_name)
465 			continue;
466 		b = b->bp_next;
467 		if (b == NULL)
468 			return (NULL);
469 		return (b->bp_name);
470 	}
471 	return (NULL);
472 }
473 
474 /*
475  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
476  */
477 static int
478 parse_value(char *p, uint64_t *retval)
479 {
480 	int adjust = 0;
481 	uint64_t tmp = 0;
482 	int digit;
483 	int radix = 10;
484 
485 	*retval = 0;
486 	if (*p == '-' || *p == '~')
487 		adjust = *p++;
488 
489 	if (*p == '0') {
490 		++p;
491 		if (*p == 0)
492 			return (0);
493 		if (*p == 'x' || *p == 'X') {
494 			radix = 16;
495 			++p;
496 		} else {
497 			radix = 8;
498 			++p;
499 		}
500 	}
501 	while (*p) {
502 		if ('0' <= *p && *p <= '9')
503 			digit = *p - '0';
504 		else if ('a' <= *p && *p <= 'f')
505 			digit = 10 + *p - 'a';
506 		else if ('A' <= *p && *p <= 'F')
507 			digit = 10 + *p - 'A';
508 		else
509 			return (-1);
510 		if (digit >= radix)
511 			return (-1);
512 		tmp = tmp * radix + digit;
513 		++p;
514 	}
515 	if (adjust == '-')
516 		tmp = -tmp;
517 	else if (adjust == '~')
518 		tmp = ~tmp;
519 	*retval = tmp;
520 	return (0);
521 }
522 
523 /*
524  * 2nd part of building the table of boot properties. This includes:
525  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
526  *
527  * lines look like one of:
528  * ^$
529  * ^# comment till end of line
530  * setprop name 'value'
531  * setprop name value
532  * setprop name "value"
533  *
534  * we do single character I/O since this is really just looking at memory
535  */
536 void
537 boot_prop_finish(void)
538 {
539 	int fd;
540 	char *line;
541 	int c;
542 	int bytes_read;
543 	char *name;
544 	int n_len;
545 	char *value;
546 	int v_len;
547 	char *inputdev;	/* these override the command line if serial ports */
548 	char *outputdev;
549 	char *consoledev;
550 	uint64_t lvalue;
551 	int use_xencons = 0;
552 
553 #ifdef __xpv
554 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
555 		use_xencons = 1;
556 #endif /* __xpv */
557 
558 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
559 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
560 	DBG(fd);
561 
562 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
563 	while (fd >= 0) {
564 
565 		/*
566 		 * get a line
567 		 */
568 		for (c = 0; ; ++c) {
569 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
570 			if (bytes_read == 0) {
571 				if (c == 0)
572 					goto done;
573 				break;
574 			}
575 			if (line[c] == '\n')
576 				break;
577 		}
578 		line[c] = 0;
579 
580 		/*
581 		 * ignore comment lines
582 		 */
583 		c = 0;
584 		while (ISSPACE(line[c]))
585 			++c;
586 		if (line[c] == '#' || line[c] == 0)
587 			continue;
588 
589 		/*
590 		 * must have "setprop " or "setprop\t"
591 		 */
592 		if (strncmp(line + c, "setprop ", 8) != 0 &&
593 		    strncmp(line + c, "setprop\t", 8) != 0)
594 			continue;
595 		c += 8;
596 		while (ISSPACE(line[c]))
597 			++c;
598 		if (line[c] == 0)
599 			continue;
600 
601 		/*
602 		 * gather up the property name
603 		 */
604 		name = line + c;
605 		n_len = 0;
606 		while (line[c] && !ISSPACE(line[c]))
607 			++n_len, ++c;
608 
609 		/*
610 		 * gather up the value, if any
611 		 */
612 		value = "";
613 		v_len = 0;
614 		while (ISSPACE(line[c]))
615 			++c;
616 		if (line[c] != 0) {
617 			value = line + c;
618 			while (line[c] && !ISSPACE(line[c]))
619 				++v_len, ++c;
620 		}
621 
622 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
623 		    (value[0] == '\'' || value[0] == '"')) {
624 			++value;
625 			v_len -= 2;
626 		}
627 		name[n_len] = 0;
628 		if (v_len > 0)
629 			value[v_len] = 0;
630 		else
631 			continue;
632 
633 		/*
634 		 * ignore "boot-file" property, it's now meaningless
635 		 */
636 		if (strcmp(name, "boot-file") == 0)
637 			continue;
638 		if (strcmp(name, "boot-args") == 0 &&
639 		    strlen(boot_args) > 0)
640 			continue;
641 
642 		/*
643 		 * If a property was explicitly set on the command line
644 		 * it will override a setting in bootenv.rc
645 		 */
646 		if (do_bsys_getproplen(NULL, name) > 0)
647 			continue;
648 
649 		bsetprop(name, n_len, value, v_len + 1);
650 	}
651 done:
652 	if (fd >= 0)
653 		BRD_CLOSE(bfs_ops, fd);
654 
655 	/*
656 	 * Check if we have to limit the boot time allocator
657 	 */
658 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
659 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
660 	    parse_value(line, &lvalue) != -1) {
661 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
662 			physmem = (pgcnt_t)lvalue;
663 			DBG(physmem);
664 		}
665 	}
666 	early_allocation = 0;
667 
668 	/*
669 	 * check to see if we have to override the default value of the console
670 	 */
671 	if (!use_xencons) {
672 		inputdev = line;
673 		v_len = do_bsys_getproplen(NULL, "input-device");
674 		if (v_len > 0)
675 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
676 		else
677 			v_len = 0;
678 		inputdev[v_len] = 0;
679 
680 		outputdev = inputdev + v_len + 1;
681 		v_len = do_bsys_getproplen(NULL, "output-device");
682 		if (v_len > 0)
683 			(void) do_bsys_getprop(NULL, "output-device",
684 			    outputdev);
685 		else
686 			v_len = 0;
687 		outputdev[v_len] = 0;
688 
689 		consoledev = outputdev + v_len + 1;
690 		v_len = do_bsys_getproplen(NULL, "console");
691 		if (v_len > 0)
692 			(void) do_bsys_getprop(NULL, "console", consoledev);
693 		else
694 			v_len = 0;
695 		consoledev[v_len] = 0;
696 		bcons_init2(inputdev, outputdev, consoledev);
697 	} else {
698 		/*
699 		 * Ensure console property exists
700 		 * If not create it as "hypervisor"
701 		 */
702 		v_len = do_bsys_getproplen(NULL, "console");
703 		if (v_len < 0)
704 			bsetprops("console", "hypervisor");
705 		inputdev = outputdev = consoledev = "hypervisor";
706 		bcons_init2(inputdev, outputdev, consoledev);
707 	}
708 
709 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
710 		value = line;
711 		bop_printf(NULL, "\nBoot properties:\n");
712 		name = "";
713 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
714 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
715 			(void) do_bsys_getprop(NULL, name, value);
716 			v_len = do_bsys_getproplen(NULL, name);
717 			bop_printf(NULL, "len=%d ", v_len);
718 			value[v_len] = 0;
719 			bop_printf(NULL, "%s\n", value);
720 		}
721 	}
722 }
723 
724 /*
725  * print formatted output
726  */
727 /*PRINTFLIKE2*/
728 /*ARGSUSED*/
729 void
730 bop_printf(bootops_t *bop, const char *fmt, ...)
731 {
732 	va_list	ap;
733 
734 	if (have_console == 0)
735 		return;
736 
737 	va_start(ap, fmt);
738 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
739 	va_end(ap);
740 	PUT_STRING(buffer);
741 }
742 
743 /*
744  * Another panic() variant; this one can be used even earlier during boot than
745  * prom_panic().
746  */
747 /*PRINTFLIKE1*/
748 void
749 bop_panic(const char *fmt, ...)
750 {
751 	va_list ap;
752 
753 	va_start(ap, fmt);
754 	bop_printf(NULL, fmt, ap);
755 	va_end(ap);
756 
757 	bop_printf(NULL, "\nPress any key to reboot.\n");
758 	(void) bcons_getchar();
759 	bop_printf(NULL, "Resetting...\n");
760 	pc_reset();
761 }
762 
763 /*
764  * Do a real mode interrupt BIOS call
765  */
766 typedef struct bios_regs {
767 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
768 } bios_regs_t;
769 typedef int (*bios_func_t)(int, bios_regs_t *);
770 
771 /*ARGSUSED*/
772 static void
773 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
774 {
775 #if defined(__xpv)
776 	prom_panic("unsupported call to BOP_DOINT()\n");
777 #else	/* __xpv */
778 	static int firsttime = 1;
779 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
780 	bios_regs_t br;
781 
782 	/*
783 	 * The first time we do this, we have to copy the pre-packaged
784 	 * low memory bios call code image into place.
785 	 */
786 	if (firsttime) {
787 		extern char bios_image[];
788 		extern uint32_t bios_size;
789 
790 		bcopy(bios_image, (void *)bios_func, bios_size);
791 		firsttime = 0;
792 	}
793 
794 	br.ax = rp->eax.word.ax;
795 	br.bx = rp->ebx.word.bx;
796 	br.cx = rp->ecx.word.cx;
797 	br.dx = rp->edx.word.dx;
798 	br.bp = rp->ebp.word.bp;
799 	br.si = rp->esi.word.si;
800 	br.di = rp->edi.word.di;
801 	br.ds = rp->ds;
802 	br.es = rp->es;
803 
804 	DBG_MSG("Doing BIOS call...");
805 	DBG(br.ax);
806 	DBG(br.bx);
807 	DBG(br.dx);
808 	rp->eflags = bios_func(intnum, &br);
809 	DBG_MSG("done\n");
810 
811 	rp->eax.word.ax = br.ax;
812 	rp->ebx.word.bx = br.bx;
813 	rp->ecx.word.cx = br.cx;
814 	rp->edx.word.dx = br.dx;
815 	rp->ebp.word.bp = br.bp;
816 	rp->esi.word.si = br.si;
817 	rp->edi.word.di = br.di;
818 	rp->ds = br.ds;
819 	rp->es = br.es;
820 #endif /* __xpv */
821 }
822 
823 static struct boot_syscalls bop_sysp = {
824 	bcons_getchar,
825 	bcons_putchar,
826 	bcons_ischar,
827 };
828 
829 static char *whoami;
830 
831 #define	BUFLEN	64
832 
833 #if defined(__xpv)
834 
835 static char namebuf[32];
836 
837 static void
838 xen_parse_props(char *s, char *prop_map[], int n_prop)
839 {
840 	char **prop_name = prop_map;
841 	char *cp = s, *scp;
842 
843 	do {
844 		scp = cp;
845 		while ((*cp != NULL) && (*cp != ':'))
846 			cp++;
847 
848 		if ((scp != cp) && (*prop_name != NULL)) {
849 			*cp = NULL;
850 			bsetprops(*prop_name, scp);
851 		}
852 
853 		cp++;
854 		prop_name++;
855 		n_prop--;
856 	} while (n_prop > 0);
857 }
858 
859 #define	VBDPATHLEN	64
860 
861 /*
862  * parse the 'xpv-root' property to create properties used by
863  * ufs_mountroot.
864  */
865 static void
866 xen_vbdroot_props(char *s)
867 {
868 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
869 	const char lnamefix[] = "/dev/dsk/c0d";
870 	char *pnp;
871 	char *prop_p;
872 	char mi;
873 	short minor;
874 	long addr = 0;
875 
876 	pnp = vbdpath + strlen(vbdpath);
877 	prop_p = s + strlen(lnamefix);
878 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
879 		addr = addr * 10 + *prop_p++ - '0';
880 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
881 	pnp = vbdpath + strlen(vbdpath);
882 	if (*prop_p == 's')
883 		mi = 'a';
884 	else if (*prop_p == 'p')
885 		mi = 'q';
886 	else
887 		ASSERT(0); /* shouldn't be here */
888 	prop_p++;
889 	ASSERT(*prop_p != '\0');
890 	if (ISDIGIT(*prop_p)) {
891 		minor = *prop_p - '0';
892 		prop_p++;
893 		if (ISDIGIT(*prop_p)) {
894 			minor = minor * 10 + *prop_p - '0';
895 		}
896 	} else {
897 		/* malformed root path, use 0 as default */
898 		minor = 0;
899 	}
900 	ASSERT(minor < 16); /* at most 16 partitions */
901 	mi += minor;
902 	*pnp++ = ':';
903 	*pnp++ = mi;
904 	*pnp++ = '\0';
905 	bsetprops("fstype", "ufs");
906 	bsetprops("bootpath", vbdpath);
907 
908 	DBG_MSG("VBD bootpath set to ");
909 	DBG_MSG(vbdpath);
910 	DBG_MSG("\n");
911 }
912 
913 /*
914  * parse the xpv-nfsroot property to create properties used by
915  * nfs_mountroot.
916  */
917 static void
918 xen_nfsroot_props(char *s)
919 {
920 	char *prop_map[] = {
921 		BP_SERVER_IP,	/* server IP address */
922 		BP_SERVER_NAME,	/* server hostname */
923 		BP_SERVER_PATH,	/* root path */
924 	};
925 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
926 
927 	bsetprop("fstype", 6, "nfs", 4);
928 
929 	xen_parse_props(s, prop_map, n_prop);
930 
931 	/*
932 	 * If a server name wasn't specified, use a default.
933 	 */
934 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
935 		bsetprops(BP_SERVER_NAME, "unknown");
936 }
937 
938 /*
939  * Extract our IP address, etc. from the "xpv-ip" property.
940  */
941 static void
942 xen_ip_props(char *s)
943 {
944 	char *prop_map[] = {
945 		BP_HOST_IP,		/* IP address */
946 		NULL,			/* NFS server IP address (ignored in */
947 					/* favour of xpv-nfsroot) */
948 		BP_ROUTER_IP,		/* IP gateway */
949 		BP_SUBNET_MASK,		/* IP subnet mask */
950 		"xpv-hostname",		/* hostname (ignored) */
951 		BP_NETWORK_INTERFACE,	/* interface name */
952 		"xpv-hcp",		/* host configuration protocol */
953 	};
954 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
955 	char ifname[IFNAMSIZ];
956 
957 	xen_parse_props(s, prop_map, n_prop);
958 
959 	/*
960 	 * A Linux dom0 administrator expects all interfaces to be
961 	 * called "ethX", which is not the case here.
962 	 *
963 	 * If the interface name specified is "eth0", presume that
964 	 * this is really intended to be "xnf0" (the first domU ->
965 	 * dom0 interface for this domain).
966 	 */
967 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
968 	    (strcmp("eth0", ifname) == 0)) {
969 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
970 		bop_printf(NULL,
971 		    "network interface name 'eth0' replaced with 'xnf0'\n");
972 	}
973 }
974 
975 #else	/* __xpv */
976 
977 static void
978 setup_rarp_props(struct sol_netinfo *sip)
979 {
980 	char buf[BUFLEN];	/* to hold ip/mac addrs */
981 	uint8_t *val;
982 
983 	val = (uint8_t *)&sip->sn_ciaddr;
984 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
985 	    val[0], val[1], val[2], val[3]);
986 	bsetprops(BP_HOST_IP, buf);
987 
988 	val = (uint8_t *)&sip->sn_siaddr;
989 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
990 	    val[0], val[1], val[2], val[3]);
991 	bsetprops(BP_SERVER_IP, buf);
992 
993 	if (sip->sn_giaddr != 0) {
994 		val = (uint8_t *)&sip->sn_giaddr;
995 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
996 		    val[0], val[1], val[2], val[3]);
997 		bsetprops(BP_ROUTER_IP, buf);
998 	}
999 
1000 	if (sip->sn_netmask != 0) {
1001 		val = (uint8_t *)&sip->sn_netmask;
1002 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1003 		    val[0], val[1], val[2], val[3]);
1004 		bsetprops(BP_SUBNET_MASK, buf);
1005 	}
1006 
1007 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1008 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1009 		    sip->sn_mactype, sip->sn_maclen);
1010 	} else {
1011 		val = sip->sn_macaddr;
1012 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1013 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1014 		bsetprops(BP_BOOT_MAC, buf);
1015 	}
1016 }
1017 
1018 #endif	/* __xpv */
1019 
1020 /*
1021  * 1st pass at building the table of boot properties. This includes:
1022  * - values set on the command line: -B a=x,b=y,c=z ....
1023  * - known values we just compute (ie. from xbootp)
1024  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1025  *
1026  * the grub command line looked like:
1027  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1028  *
1029  * whoami is the same as boot-file
1030  */
1031 static void
1032 build_boot_properties(void)
1033 {
1034 	char *name;
1035 	int name_len;
1036 	char *value;
1037 	int value_len;
1038 	struct boot_modules *bm;
1039 	char *propbuf;
1040 	int quoted = 0;
1041 	int boot_arg_len;
1042 #ifndef __xpv
1043 	static int stdout_val = 0;
1044 	uchar_t boot_device;
1045 	char str[3];
1046 	multiboot_info_t *mbi;
1047 	int netboot;
1048 	struct sol_netinfo *sip;
1049 #endif
1050 
1051 	/*
1052 	 * These have to be done first, so that kobj_mount_root() works
1053 	 */
1054 	DBG_MSG("Building boot properties\n");
1055 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1056 	DBG((uintptr_t)propbuf);
1057 	if (xbootp->bi_module_cnt > 0) {
1058 		bm = xbootp->bi_modules;
1059 		bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr);
1060 		bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr +
1061 		    bm->bm_size);
1062 	}
1063 
1064 	DBG_MSG("Parsing command line for boot properties\n");
1065 	value = xbootp->bi_cmdline;
1066 
1067 	/*
1068 	 * allocate memory to collect boot_args into
1069 	 */
1070 	boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1071 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1072 	boot_args[0] = 0;
1073 	boot_arg_len = 0;
1074 
1075 #ifndef	__xpv
1076 	saved_cmdline_len =  strlen(xbootp->bi_cmdline) + 1;
1077 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1078 		DBG(saved_cmdline_len);
1079 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1080 		fastreboot_capable = 0;
1081 	} else {
1082 		bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1083 		    saved_cmdline_len);
1084 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1085 	}
1086 #endif
1087 
1088 
1089 #ifdef __xpv
1090 	/*
1091 	 * Xen puts a lot of device information in front of the kernel name
1092 	 * let's grab them and make them boot properties.  The first
1093 	 * string w/o an "=" in it will be the boot-file property.
1094 	 */
1095 	(void) strcpy(namebuf, "xpv-");
1096 	for (;;) {
1097 		/*
1098 		 * get to next property
1099 		 */
1100 		while (ISSPACE(*value))
1101 			++value;
1102 		name = value;
1103 		/*
1104 		 * look for an "="
1105 		 */
1106 		while (*value && !ISSPACE(*value) && *value != '=') {
1107 			value++;
1108 		}
1109 		if (*value != '=') { /* no "=" in the property */
1110 			value = name;
1111 			break;
1112 		}
1113 		name_len = value - name;
1114 		value_len = 0;
1115 		/*
1116 		 * skip over the "="
1117 		 */
1118 		value++;
1119 		while (value[value_len] && !ISSPACE(value[value_len])) {
1120 			++value_len;
1121 		}
1122 		/*
1123 		 * build property name with "xpv-" prefix
1124 		 */
1125 		if (name_len + 4 > 32) { /* skip if name too long */
1126 			value += value_len;
1127 			continue;
1128 		}
1129 		bcopy(name, &namebuf[4], name_len);
1130 		name_len += 4;
1131 		namebuf[name_len] = 0;
1132 		bcopy(value, propbuf, value_len);
1133 		propbuf[value_len] = 0;
1134 		bsetprops(namebuf, propbuf);
1135 
1136 		/*
1137 		 * xpv-root is set to the logical disk name of the xen
1138 		 * VBD when booting from a disk-based filesystem.
1139 		 */
1140 		if (strcmp(namebuf, "xpv-root") == 0)
1141 			xen_vbdroot_props(propbuf);
1142 		/*
1143 		 * While we're here, if we have a "xpv-nfsroot" property
1144 		 * then we need to set "fstype" to "nfs" so we mount
1145 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1146 		 * property to create the properties that nfs_mountroot will
1147 		 * need to find the root and mount it.
1148 		 */
1149 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1150 			xen_nfsroot_props(propbuf);
1151 
1152 		if (strcmp(namebuf, "xpv-ip") == 0)
1153 			xen_ip_props(propbuf);
1154 		value += value_len;
1155 	}
1156 #endif
1157 
1158 	while (ISSPACE(*value))
1159 		++value;
1160 	/*
1161 	 * value now points at the boot-file
1162 	 */
1163 	value_len = 0;
1164 	while (value[value_len] && !ISSPACE(value[value_len]))
1165 		++value_len;
1166 	if (value_len > 0) {
1167 		whoami = propbuf;
1168 		bcopy(value, whoami, value_len);
1169 		whoami[value_len] = 0;
1170 		bsetprops("boot-file", whoami);
1171 		/*
1172 		 * strip leading path stuff from whoami, so running from
1173 		 * PXE/miniroot makes sense.
1174 		 */
1175 		if (strstr(whoami, "/platform/") != NULL)
1176 			whoami = strstr(whoami, "/platform/");
1177 		bsetprops("whoami", whoami);
1178 	}
1179 
1180 	/*
1181 	 * Values forcibly set boot properties on the command line via -B.
1182 	 * Allow use of quotes in values. Other stuff goes on kernel
1183 	 * command line.
1184 	 */
1185 	name = value + value_len;
1186 	while (*name != 0) {
1187 		/*
1188 		 * anything not " -B" is copied to the command line
1189 		 */
1190 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1191 			boot_args[boot_arg_len++] = *name;
1192 			boot_args[boot_arg_len] = 0;
1193 			++name;
1194 			continue;
1195 		}
1196 
1197 		/*
1198 		 * skip the " -B" and following white space
1199 		 */
1200 		name += 3;
1201 		while (ISSPACE(*name))
1202 			++name;
1203 		while (*name && !ISSPACE(*name)) {
1204 			value = strstr(name, "=");
1205 			if (value == NULL)
1206 				break;
1207 			name_len = value - name;
1208 			++value;
1209 			value_len = 0;
1210 			quoted = 0;
1211 			for (; ; ++value_len) {
1212 				if (!value[value_len])
1213 					break;
1214 
1215 				/*
1216 				 * is this value quoted?
1217 				 */
1218 				if (value_len == 0 &&
1219 				    (value[0] == '\'' || value[0] == '"')) {
1220 					quoted = value[0];
1221 					++value_len;
1222 				}
1223 
1224 				/*
1225 				 * In the quote accept any character,
1226 				 * but look for ending quote.
1227 				 */
1228 				if (quoted) {
1229 					if (value[value_len] == quoted)
1230 						quoted = 0;
1231 					continue;
1232 				}
1233 
1234 				/*
1235 				 * a comma or white space ends the value
1236 				 */
1237 				if (value[value_len] == ',' ||
1238 				    ISSPACE(value[value_len]))
1239 					break;
1240 			}
1241 
1242 			if (value_len == 0) {
1243 				bsetprop(name, name_len, "true", 5);
1244 			} else {
1245 				char *v = value;
1246 				int l = value_len;
1247 				if (v[0] == v[l - 1] &&
1248 				    (v[0] == '\'' || v[0] == '"')) {
1249 					++v;
1250 					l -= 2;
1251 				}
1252 				bcopy(v, propbuf, l);
1253 				propbuf[l] = '\0';
1254 				bsetprop(name, name_len, propbuf,
1255 				    l + 1);
1256 			}
1257 			name = value + value_len;
1258 			while (*name == ',')
1259 				++name;
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * set boot-args property
1265 	 * 1275 name is bootargs, so set
1266 	 * that too
1267 	 */
1268 	bsetprops("boot-args", boot_args);
1269 	bsetprops("bootargs", boot_args);
1270 
1271 #ifndef __xpv
1272 	/*
1273 	 * set the BIOS boot device from GRUB
1274 	 */
1275 	netboot = 0;
1276 	mbi = xbootp->bi_mb_info;
1277 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1278 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1279 		DBG_MSG("mbi->mmap_length too big: clearing "
1280 		    "fastreboot_capable\n");
1281 		fastreboot_capable = 0;
1282 	} else {
1283 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1284 		    mbi->mmap_length);
1285 	}
1286 
1287 	if (mbi->drives_length > sizeof (saved_drives)) {
1288 		DBG(mbi->drives_length);
1289 		DBG_MSG("mbi->drives_length too big: clearing "
1290 		    "fastreboot_capable\n");
1291 		fastreboot_capable = 0;
1292 	} else {
1293 		bcopy((void *)(uintptr_t)mbi->drives_addr, (void *)saved_drives,
1294 		    mbi->drives_length);
1295 	}
1296 
1297 	if (mbi != NULL && mbi->flags & 0x2) {
1298 		boot_device = mbi->boot_device >> 24;
1299 		if (boot_device == 0x20)
1300 			netboot++;
1301 		str[0] = (boot_device >> 4) + '0';
1302 		str[1] = (boot_device & 0xf) + '0';
1303 		str[2] = 0;
1304 		bsetprops("bios-boot-device", str);
1305 	} else {
1306 		netboot = 1;
1307 	}
1308 
1309 	/*
1310 	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1311 	 * This is not multiboot compliant and requires special pxegrub!
1312 	 */
1313 	if (netboot && mbi->drives_length != 0) {
1314 		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1315 		if (sip->sn_infotype == SN_TYPE_BOOTP)
1316 			bsetprop("bootp-response", sizeof ("bootp-response"),
1317 			    (void *)(uintptr_t)mbi->drives_addr,
1318 			    mbi->drives_length);
1319 		else if (sip->sn_infotype == SN_TYPE_RARP)
1320 			setup_rarp_props(sip);
1321 	}
1322 	bsetprop("stdout", strlen("stdout"),
1323 	    &stdout_val, sizeof (stdout_val));
1324 #endif /* __xpv */
1325 
1326 	/*
1327 	 * more conjured up values for made up things....
1328 	 */
1329 #if defined(__xpv)
1330 	bsetprops("mfg-name", "i86xpv");
1331 	bsetprops("impl-arch-name", "i86xpv");
1332 #else
1333 	bsetprops("mfg-name", "i86pc");
1334 	bsetprops("impl-arch-name", "i86pc");
1335 #endif
1336 
1337 	/*
1338 	 * Build firmware-provided system properties
1339 	 */
1340 	build_firmware_properties();
1341 
1342 	/*
1343 	 * XXPV
1344 	 *
1345 	 * Find out what these are:
1346 	 * - cpuid_feature_ecx_include
1347 	 * - cpuid_feature_ecx_exclude
1348 	 * - cpuid_feature_edx_include
1349 	 * - cpuid_feature_edx_exclude
1350 	 *
1351 	 * Find out what these are in multiboot:
1352 	 * - netdev-path
1353 	 * - fstype
1354 	 */
1355 }
1356 
1357 #ifdef __xpv
1358 /*
1359  * Under the Hypervisor, memory usable for DMA may be scarce. One
1360  * very likely large pool of DMA friendly memory is occupied by
1361  * the boot_archive, as it was loaded by grub into low MFNs.
1362  *
1363  * Here we free up that memory by copying the boot archive to what are
1364  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1365  */
1366 #define	PFN_2GIG	0x80000
1367 static void
1368 relocate_boot_archive(void)
1369 {
1370 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1371 	struct boot_modules *bm = xbootp->bi_modules;
1372 	uintptr_t va;
1373 	pfn_t va_pfn;
1374 	mfn_t va_mfn;
1375 	caddr_t copy;
1376 	pfn_t copy_pfn;
1377 	mfn_t copy_mfn;
1378 	size_t	len;
1379 	int slop;
1380 	int total = 0;
1381 	int relocated = 0;
1382 	int mmu_update_return;
1383 	mmu_update_t t[2];
1384 	x86pte_t pte;
1385 
1386 	/*
1387 	 * If all MFN's are below 2Gig, don't bother doing this.
1388 	 */
1389 	if (max_mfn < PFN_2GIG)
1390 		return;
1391 	if (xbootp->bi_module_cnt < 1) {
1392 		DBG_MSG("no boot_archive!");
1393 		return;
1394 	}
1395 
1396 	DBG_MSG("moving boot_archive to high MFN memory\n");
1397 	va = (uintptr_t)bm->bm_addr;
1398 	len = bm->bm_size;
1399 	slop = va & MMU_PAGEOFFSET;
1400 	if (slop) {
1401 		va += MMU_PAGESIZE - slop;
1402 		len -= MMU_PAGESIZE - slop;
1403 	}
1404 	len = P2ALIGN(len, MMU_PAGESIZE);
1405 
1406 	/*
1407 	 * Go through all boot_archive pages, swapping any low MFN pages
1408 	 * with memory at next_phys.
1409 	 */
1410 	while (len != 0) {
1411 		++total;
1412 		va_pfn = mmu_btop(va - ONE_GIG);
1413 		va_mfn = mfn_list[va_pfn];
1414 		if (mfn_list[va_pfn] < PFN_2GIG) {
1415 			copy = kbm_remap_window(next_phys, 1);
1416 			bcopy((void *)va, copy, MMU_PAGESIZE);
1417 			copy_pfn = mmu_btop(next_phys);
1418 			copy_mfn = mfn_list[copy_pfn];
1419 
1420 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1421 			if (HYPERVISOR_update_va_mapping(va, pte,
1422 			    UVMF_INVLPG | UVMF_LOCAL))
1423 				bop_panic("relocate_boot_archive():  "
1424 				    "HYPERVISOR_update_va_mapping() failed");
1425 
1426 			mfn_list[va_pfn] = copy_mfn;
1427 			mfn_list[copy_pfn] = va_mfn;
1428 
1429 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1430 			t[0].val = va_pfn;
1431 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1432 			t[1].val = copy_pfn;
1433 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1434 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1435 				bop_panic("relocate_boot_archive():  "
1436 				    "HYPERVISOR_mmu_update() failed");
1437 
1438 			next_phys += MMU_PAGESIZE;
1439 			++relocated;
1440 		}
1441 		len -= MMU_PAGESIZE;
1442 		va += MMU_PAGESIZE;
1443 	}
1444 	DBG_MSG("Relocated pages:\n");
1445 	DBG(relocated);
1446 	DBG_MSG("Out of total pages:\n");
1447 	DBG(total);
1448 }
1449 #endif /* __xpv */
1450 
1451 #if !defined(__xpv)
1452 /*
1453  * Install a temporary IDT that lets us catch errors in the boot time code.
1454  * We shouldn't get any faults at all while this is installed, so we'll
1455  * just generate a traceback and exit.
1456  */
1457 #ifdef __amd64
1458 static const int bcode_sel = B64CODE_SEL;
1459 #else
1460 static const int bcode_sel = B32CODE_SEL;
1461 #endif
1462 
1463 /*
1464  * simple description of a stack frame (args are 32 bit only currently)
1465  */
1466 typedef struct bop_frame {
1467 	struct bop_frame *old_frame;
1468 	pc_t retaddr;
1469 	long arg[1];
1470 } bop_frame_t;
1471 
1472 void
1473 bop_traceback(bop_frame_t *frame)
1474 {
1475 	pc_t pc;
1476 	int cnt;
1477 	int a;
1478 	char *ksym;
1479 	ulong_t off;
1480 
1481 	bop_printf(NULL, "Stack traceback:\n");
1482 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1483 		pc = frame->retaddr;
1484 		if (pc == 0)
1485 			break;
1486 		ksym = kobj_getsymname(pc, &off);
1487 		if (ksym)
1488 			bop_printf(NULL, "  %s+%lx", ksym, off);
1489 		else
1490 			bop_printf(NULL, "  0x%lx", pc);
1491 
1492 		frame = frame->old_frame;
1493 		if (frame == 0) {
1494 			bop_printf(NULL, "\n");
1495 			break;
1496 		}
1497 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1498 #if defined(__i386)
1499 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1500 				break;
1501 			if (a == 0)
1502 				bop_printf(NULL, "(");
1503 			else
1504 				bop_printf(NULL, ",");
1505 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1506 #endif
1507 		}
1508 		bop_printf(NULL, ")\n");
1509 	}
1510 }
1511 
1512 struct trapframe {
1513 	ulong_t frame_ptr;	/* %[er]bp pushed by our code */
1514 	ulong_t error_code;	/* optional */
1515 	ulong_t inst_ptr;
1516 	ulong_t code_seg;
1517 	ulong_t flags_reg;
1518 #ifdef __amd64
1519 	ulong_t stk_ptr;
1520 	ulong_t stk_seg;
1521 #endif
1522 };
1523 
1524 void
1525 bop_trap(struct trapframe *tf)
1526 {
1527 	bop_frame_t fakeframe;
1528 	static int depth = 0;
1529 
1530 	/*
1531 	 * Check for an infinite loop of traps.
1532 	 */
1533 	if (++depth > 2)
1534 		bop_panic("Nested trap");
1535 
1536 	/*
1537 	 * adjust the tf for optional error_code by detecting the code selector
1538 	 */
1539 	if (tf->code_seg != bcode_sel)
1540 		tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t));
1541 
1542 	bop_printf(NULL, "Unexpected trap\n");
1543 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1544 	bop_printf(NULL, "error code, optional 0x%lx\n",
1545 	    tf->error_code & 0xffffffff);
1546 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1547 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1548 #ifdef __amd64
1549 	bop_printf(NULL, "return %%rsp         0x%lx\n", tf->stk_ptr);
1550 	bop_printf(NULL, "return %%ss          0x%lx\n", tf->stk_seg & 0xffff);
1551 #endif
1552 	fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr;
1553 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1554 	bop_printf(NULL, "Attempting stack backtrace:\n");
1555 	bop_traceback(&fakeframe);
1556 	bop_panic("unexpected trap in early boot");
1557 }
1558 
1559 extern void bop_trap_handler(void);
1560 
1561 static gate_desc_t *bop_idt;
1562 
1563 static desctbr_t bop_idt_info;
1564 
1565 static void
1566 bop_idt_init(void)
1567 {
1568 	int t;
1569 
1570 	bop_idt = (gate_desc_t *)
1571 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1572 	bzero(bop_idt, MMU_PAGESIZE);
1573 	for (t = 0; t < NIDT; ++t) {
1574 		/*
1575 		 * Note that since boot runs without a TSS, the
1576 		 * double fault handler cannot use an alternate stack
1577 		 * (64-bit) or a task gate (32-bit).
1578 		 */
1579 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1580 		    SDT_SYSIGT, TRP_KPL, 0);
1581 	}
1582 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1583 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1584 	wr_idtr(&bop_idt_info);
1585 }
1586 #endif	/* !defined(__xpv) */
1587 
1588 /*
1589  * This is where we enter the kernel. It dummies up the boot_ops and
1590  * boot_syscalls vectors and jumps off to _kobj_boot()
1591  */
1592 void
1593 _start(struct xboot_info *xbp)
1594 {
1595 	bootops_t *bops = &bootop;
1596 	extern void _kobj_boot();
1597 
1598 	/*
1599 	 * 1st off - initialize the console for any error messages
1600 	 */
1601 	xbootp = xbp;
1602 #ifdef __xpv
1603 	HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1604 	xen_info = xbootp->bi_xen_start_info;
1605 #endif
1606 	bcons_init((void *)xbootp->bi_cmdline);
1607 	have_console = 1;
1608 
1609 #ifndef __xpv
1610 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1611 	    FASTBOOT_MAGIC) {
1612 		post_fastreboot = 1;
1613 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1614 	}
1615 #endif
1616 
1617 	/*
1618 	 * enable debugging
1619 	 */
1620 	if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1621 		kbm_debug = 1;
1622 
1623 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1624 	DBG_MSG((char *)xbootp->bi_cmdline);
1625 	DBG_MSG("\n\n\n");
1626 
1627 	/*
1628 	 * physavail is no longer used by startup
1629 	 */
1630 	bm.physinstalled = xbp->bi_phys_install;
1631 	bm.pcimem = xbp->bi_pcimem;
1632 	bm.physavail = NULL;
1633 
1634 	/*
1635 	 * initialize the boot time allocator
1636 	 */
1637 	next_phys = xbootp->bi_next_paddr;
1638 	DBG(next_phys);
1639 	next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1640 	DBG(next_virt);
1641 	DBG_MSG("Initializing boot time memory management...");
1642 #ifdef __xpv
1643 	{
1644 		xen_platform_parameters_t p;
1645 
1646 		/* This call shouldn't fail, dboot already did it once. */
1647 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1648 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1649 		DBG(xen_virt_start);
1650 	}
1651 #endif
1652 	kbm_init(xbootp);
1653 	DBG_MSG("done\n");
1654 
1655 	/*
1656 	 * Fill in the bootops vector
1657 	 */
1658 	bops->bsys_version = BO_VERSION;
1659 	bops->boot_mem = &bm;
1660 	bops->bsys_alloc = do_bsys_alloc;
1661 	bops->bsys_free = do_bsys_free;
1662 	bops->bsys_getproplen = do_bsys_getproplen;
1663 	bops->bsys_getprop = do_bsys_getprop;
1664 	bops->bsys_nextprop = do_bsys_nextprop;
1665 	bops->bsys_printf = bop_printf;
1666 	bops->bsys_doint = do_bsys_doint;
1667 
1668 	/*
1669 	 * BOP_EALLOC() is no longer needed
1670 	 */
1671 	bops->bsys_ealloc = do_bsys_ealloc;
1672 
1673 #ifdef __xpv
1674 	/*
1675 	 * On domain 0 we need to free up some physical memory that is
1676 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1677 	 * sitting in low MFN memory. We'll relocated the boot archive
1678 	 * pages to high PFN memory.
1679 	 */
1680 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1681 		relocate_boot_archive();
1682 #endif
1683 
1684 #ifndef __xpv
1685 	/*
1686 	 * Install an IDT to catch early pagefaults (shouldn't have any).
1687 	 * Also needed for kmdb.
1688 	 */
1689 	bop_idt_init();
1690 #endif
1691 
1692 	/*
1693 	 * Start building the boot properties from the command line
1694 	 */
1695 	DBG_MSG("Initializing boot properties:\n");
1696 	build_boot_properties();
1697 
1698 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1699 		char *name;
1700 		char *value;
1701 		char *cp;
1702 		int len;
1703 
1704 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1705 		bop_printf(NULL, "\nBoot properties:\n");
1706 		name = "";
1707 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1708 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1709 			(void) do_bsys_getprop(NULL, name, value);
1710 			len = do_bsys_getproplen(NULL, name);
1711 			bop_printf(NULL, "len=%d ", len);
1712 			value[len] = 0;
1713 			for (cp = value; *cp; ++cp) {
1714 				if (' ' <= *cp && *cp <= '~')
1715 					bop_printf(NULL, "%c", *cp);
1716 				else
1717 					bop_printf(NULL, "-0x%x-", *cp);
1718 			}
1719 			bop_printf(NULL, "\n");
1720 		}
1721 	}
1722 
1723 	/*
1724 	 * jump into krtld...
1725 	 */
1726 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1727 }
1728 
1729 
1730 /*ARGSUSED*/
1731 static caddr_t
1732 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1733 {
1734 	panic("Attempt to bsys_alloc() too late\n");
1735 	return (NULL);
1736 }
1737 
1738 /*ARGSUSED*/
1739 static void
1740 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1741 {
1742 	panic("Attempt to bsys_free() too late\n");
1743 }
1744 
1745 void
1746 bop_no_more_mem(void)
1747 {
1748 	DBG(total_bop_alloc_scratch);
1749 	DBG(total_bop_alloc_kernel);
1750 	bootops->bsys_alloc = no_more_alloc;
1751 	bootops->bsys_free = no_more_free;
1752 }
1753 
1754 
1755 #ifndef __xpv
1756 /*
1757  * Set ACPI firmware properties
1758  */
1759 
1760 static caddr_t
1761 vmap_phys(size_t length, paddr_t pa)
1762 {
1763 	paddr_t	start, end;
1764 	caddr_t	va;
1765 	size_t	len, page;
1766 
1767 	start = P2ALIGN(pa, MMU_PAGESIZE);
1768 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1769 	len = end - start;
1770 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1771 	for (page = 0; page < len; page += MMU_PAGESIZE)
1772 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1773 	return (va + (pa & MMU_PAGEOFFSET));
1774 }
1775 
1776 static uint8_t
1777 checksum_table(uint8_t *tp, size_t len)
1778 {
1779 	uint8_t sum = 0;
1780 
1781 	while (len-- > 0)
1782 		sum += *tp++;
1783 
1784 	return (sum);
1785 }
1786 
1787 static int
1788 valid_rsdp(struct rsdp *rp)
1789 {
1790 
1791 	/* validate the V1.x checksum */
1792 	if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1793 		return (0);
1794 
1795 	/* If pre-ACPI 2.0, this is a valid RSDP */
1796 	if (rp->v1.revision < 2)
1797 		return (1);
1798 
1799 	/* validate the V2.x checksum */
1800 	if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1801 		return (0);
1802 
1803 	return (1);
1804 }
1805 
1806 /*
1807  * Scan memory range for an RSDP;
1808  * see ACPI 3.0 Spec, 5.2.5.1
1809  */
1810 static struct rsdp *
1811 scan_rsdp(paddr_t start, paddr_t end)
1812 {
1813 	size_t len  = end - start + 1;
1814 	caddr_t ptr;
1815 
1816 	ptr = vmap_phys(len, start);
1817 	while (len > 0) {
1818 		if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1819 			if (valid_rsdp((struct rsdp *)ptr))
1820 				return ((struct rsdp *)ptr);
1821 		ptr += 16;
1822 		len -= 16;
1823 	}
1824 
1825 	return (NULL);
1826 }
1827 
1828 /*
1829  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1830  */
1831 static struct rsdp *
1832 find_rsdp() {
1833 	struct rsdp *rsdp;
1834 	uint16_t *ebda_seg;
1835 	paddr_t  ebda_addr;
1836 
1837 	/*
1838 	 * Get the EBDA segment and scan the first 1K
1839 	 */
1840 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1841 	ebda_addr = *ebda_seg << 4;
1842 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1843 	if (rsdp == NULL)
1844 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
1845 		rsdp = scan_rsdp(0xe0000, 0xfffff);
1846 	return (rsdp);
1847 }
1848 
1849 static struct table_header *
1850 map_fw_table(paddr_t table_addr)
1851 {
1852 	struct table_header *tp;
1853 	size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
1854 
1855 	/*
1856 	 * Map at least a page; if the table is larger than this, remap it
1857 	 */
1858 	tp = (struct table_header *)vmap_phys(len, table_addr);
1859 	if (tp->len > len)
1860 		tp = (struct table_header *)vmap_phys(tp->len, table_addr);
1861 	return (tp);
1862 }
1863 
1864 static struct table_header *
1865 find_fw_table(char *signature)
1866 {
1867 	static int revision = 0;
1868 	static struct xsdt *xsdt;
1869 	static int len;
1870 	paddr_t xsdt_addr;
1871 	struct rsdp *rsdp;
1872 	struct table_header *tp;
1873 	paddr_t table_addr;
1874 	int	n;
1875 
1876 	if (strlen(signature) != ACPI_TABLE_SIG_LEN)
1877 		return (NULL);
1878 
1879 	/*
1880 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
1881 	 * understand this code.  If we haven't already found the RSDT/XSDT,
1882 	 * revision will be 0. Find the RSDP and check the revision
1883 	 * to find out whether to use the RSDT or XSDT.  If revision is
1884 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
1885 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
1886 	 * revision 1 and use the RSDT.
1887 	 */
1888 	if (revision == 0) {
1889 		if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
1890 			revision = rsdp->v1.revision;
1891 			switch (revision) {
1892 			case 2:
1893 				/*
1894 				 * Use the XSDT unless BIOS is buggy and
1895 				 * claims to be rev 2 but has a null XSDT
1896 				 * address
1897 				 */
1898 				xsdt_addr = rsdp->xsdt;
1899 				if (xsdt_addr != 0)
1900 					break;
1901 				/* FALLTHROUGH */
1902 			case 0:
1903 				/* treat RSDP rev 0 as revision 1 internally */
1904 				revision = 1;
1905 				/* FALLTHROUGH */
1906 			case 1:
1907 				/* use the RSDT for rev 0/1 */
1908 				xsdt_addr = rsdp->v1.rsdt;
1909 				break;
1910 			default:
1911 				/* unknown revision */
1912 				revision = 0;
1913 				break;
1914 			}
1915 		}
1916 		if (revision == 0)
1917 			return (NULL);
1918 
1919 		/* cache the XSDT info */
1920 		xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
1921 		len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
1922 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
1923 	}
1924 
1925 	/*
1926 	 * Scan the table headers looking for a signature match
1927 	 */
1928 	for (n = 0; n < len; n++) {
1929 		table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
1930 		if (table_addr == 0)
1931 			continue;
1932 		tp = map_fw_table(table_addr);
1933 		if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
1934 			return (tp);
1935 		}
1936 	}
1937 	return (NULL);
1938 }
1939 
1940 static void
1941 process_madt(struct madt *tp)
1942 {
1943 	struct madt_processor *cpu, *end;
1944 	uint32_t cpu_count = 0;
1945 	uint8_t cpu_apicid_array[UINT8_MAX + 1];
1946 
1947 	if (tp != NULL) {
1948 		/*
1949 		 * Determine number of CPUs and keep track of "final" APIC ID
1950 		 * for each CPU by walking through ACPI MADT processor list
1951 		 */
1952 		end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
1953 		cpu = tp->list;
1954 		while (cpu < end) {
1955 			if (cpu->type == MADT_PROCESSOR) {
1956 				if (cpu->flags & 1) {
1957 					if (cpu_count < UINT8_MAX)
1958 						cpu_apicid_array[cpu_count] =
1959 						    cpu->apic_id;
1960 					cpu_count++;
1961 				}
1962 			}
1963 
1964 			cpu = (struct madt_processor *)
1965 			    (cpu->len + (uintptr_t)cpu);
1966 		}
1967 
1968 		/*
1969 		 * Make boot property for array of "final" APIC IDs for each
1970 		 * CPU
1971 		 */
1972 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
1973 		    cpu_apicid_array, cpu_count * sizeof (uint8_t));
1974 	}
1975 
1976 	/*
1977 	 * User-set boot-ncpus overrides firmware count
1978 	 */
1979 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
1980 		return;
1981 
1982 	/*
1983 	 * Set boot property for boot-ncpus to number of CPUs given in MADT
1984 	 * if user hasn't set the property already
1985 	 */
1986 	if (tp != NULL)
1987 		bsetpropsi("boot-ncpus", cpu_count);
1988 }
1989 
1990 static void
1991 process_srat(struct srat *tp)
1992 {
1993 	struct srat_item *item, *end;
1994 	int i;
1995 	int proc_num, mem_num;
1996 #pragma pack(1)
1997 	struct {
1998 		uint32_t domain;
1999 		uint32_t apic_id;
2000 		uint32_t sapic_id;
2001 	} processor;
2002 	struct {
2003 		uint32_t domain;
2004 		uint32_t x2apic_id;
2005 	} x2apic;
2006 	struct {
2007 		uint32_t domain;
2008 		uint64_t addr;
2009 		uint64_t length;
2010 		uint32_t flags;
2011 	} memory;
2012 #pragma pack()
2013 	char prop_name[30];
2014 
2015 	if (tp == NULL)
2016 		return;
2017 
2018 	proc_num = mem_num = 0;
2019 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2020 	item = tp->list;
2021 	while (item < end) {
2022 		switch (item->type) {
2023 		case SRAT_PROCESSOR:
2024 			if (!(item->i.p.flags & SRAT_ENABLED))
2025 				break;
2026 			processor.domain = item->i.p.domain1;
2027 			for (i = 0; i < 3; i++)
2028 				processor.domain +=
2029 				    item->i.p.domain2[i] << ((i + 1) * 8);
2030 			processor.apic_id = item->i.p.apic_id;
2031 			processor.sapic_id = item->i.p.local_sapic_eid;
2032 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2033 			    proc_num);
2034 			bsetprop(prop_name, strlen(prop_name), &processor,
2035 			    sizeof (processor));
2036 			proc_num++;
2037 			break;
2038 		case SRAT_MEMORY:
2039 			if (!(item->i.m.flags & SRAT_ENABLED))
2040 				break;
2041 			memory.domain = item->i.m.domain;
2042 			memory.addr = item->i.m.base_addr;
2043 			memory.length = item->i.m.len;
2044 			memory.flags = item->i.m.flags;
2045 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2046 			    mem_num);
2047 			bsetprop(prop_name, strlen(prop_name), &memory,
2048 			    sizeof (memory));
2049 			mem_num++;
2050 			break;
2051 		case SRAT_X2APIC:
2052 			if (!(item->i.xp.flags & SRAT_ENABLED))
2053 				break;
2054 			x2apic.domain = item->i.xp.domain;
2055 			x2apic.x2apic_id = item->i.xp.x2apic_id;
2056 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2057 			    proc_num);
2058 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2059 			    sizeof (x2apic));
2060 			proc_num++;
2061 			break;
2062 		}
2063 
2064 		item = (struct srat_item *)
2065 		    (item->len + (caddr_t)item);
2066 	}
2067 }
2068 
2069 static void
2070 process_slit(struct slit *tp)
2071 {
2072 
2073 	/*
2074 	 * Check the number of localities; if it's too huge, we just
2075 	 * return and locality enumeration code will handle this later,
2076 	 * if possible.
2077 	 *
2078 	 * Note that the size of the table is the square of the
2079 	 * number of localities; if the number of localities exceeds
2080 	 * UINT16_MAX, the table size may overflow an int when being
2081 	 * passed to bsetprop() below.
2082 	 */
2083 	if (tp->number >= SLIT_LOCALITIES_MAX)
2084 		return;
2085 
2086 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2087 	    sizeof (tp->number));
2088 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2089 	    tp->number * tp->number);
2090 }
2091 
2092 static void
2093 process_dmar(struct dmar *tp)
2094 {
2095 	bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME),
2096 	    tp, tp->hdr.len);
2097 }
2098 
2099 #else /* __xpv */
2100 static void
2101 enumerate_xen_cpus()
2102 {
2103 	processorid_t	id, max_id;
2104 
2105 	/*
2106 	 * User-set boot-ncpus overrides enumeration
2107 	 */
2108 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2109 		return;
2110 
2111 	/*
2112 	 * Probe every possible virtual CPU id and remember the
2113 	 * highest id present; the count of CPUs is one greater
2114 	 * than this.  This tacitly assumes at least cpu 0 is present.
2115 	 */
2116 	max_id = 0;
2117 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2118 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2119 			max_id = id;
2120 
2121 	bsetpropsi("boot-ncpus", max_id+1);
2122 
2123 }
2124 #endif /* __xpv */
2125 
2126 static void
2127 build_firmware_properties(void)
2128 {
2129 #ifndef __xpv
2130 	struct table_header *tp;
2131 
2132 	if ((tp = find_fw_table("APIC")) != NULL)
2133 		process_madt((struct madt *)tp);
2134 
2135 	if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2136 		process_srat(srat_ptr);
2137 
2138 	if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2139 		process_slit(slit_ptr);
2140 
2141 	if (tp = find_fw_table("DMAR"))
2142 		process_dmar((struct dmar *)tp);
2143 #else /* __xpv */
2144 	enumerate_xen_cpus();
2145 #endif /* __xpv */
2146 }
2147 
2148 /*
2149  * fake up a boot property for USB serial console early boot output
2150  */
2151 void *
2152 usbser_init(size_t size)
2153 {
2154 	static char *p = NULL;
2155 
2156 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2157 	*p = 0;
2158 	bsetprop("usb-serial-buf", strlen("usb-serial-buf") + 1,
2159 	    &p, sizeof (p));
2160 	return (p);
2161 }
2162 
2163 /*ARGSUSED*/
2164 int
2165 boot_compinfo(int fd, struct compinfo *cbp)
2166 {
2167 	cbp->iscmp = 0;
2168 	cbp->blksize = MAXBSIZE;
2169 	return (0);
2170 }
2171