1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2013 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/cmn_err.h> 54 #include <sys/systm.h> 55 #include <sys/promif.h> 56 #include <sys/archsystm.h> 57 #include <sys/x86_archext.h> 58 #include <sys/kobj.h> 59 #include <sys/privregs.h> 60 #include <sys/sysmacros.h> 61 #include <sys/ctype.h> 62 #include <sys/fastboot.h> 63 #ifdef __xpv 64 #include <sys/hypervisor.h> 65 #include <net/if.h> 66 #endif 67 #include <vm/kboot_mmu.h> 68 #include <vm/hat_pte.h> 69 #include <sys/kobj.h> 70 #include <sys/kobj_lex.h> 71 #include <sys/pci_cfgspace_impl.h> 72 #include <sys/fastboot_impl.h> 73 #include <sys/acpi/acconfig.h> 74 #include <sys/acpi/acpi.h> 75 76 static int have_console = 0; /* set once primitive console is initialized */ 77 static char *boot_args = ""; 78 79 /* 80 * Debugging macros 81 */ 82 static uint_t kbm_debug = 0; 83 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 84 #define DBG(x) { if (kbm_debug) \ 85 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 86 } 87 88 #define PUT_STRING(s) { \ 89 char *cp; \ 90 for (cp = (s); *cp; ++cp) \ 91 bcons_putchar(*cp); \ 92 } 93 94 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 95 struct bsys_mem bm; 96 97 /* 98 * Boot info from "glue" code in low memory. xbootp is used by: 99 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 100 */ 101 static struct xboot_info *xbootp; 102 static uintptr_t next_virt; /* next available virtual address */ 103 static paddr_t next_phys; /* next available physical address from dboot */ 104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 105 106 /* 107 * buffer for vsnprintf for console I/O 108 */ 109 #define BUFFERSIZE 512 110 static char buffer[BUFFERSIZE]; 111 112 /* 113 * stuff to store/report/manipulate boot property settings. 114 */ 115 typedef struct bootprop { 116 struct bootprop *bp_next; 117 char *bp_name; 118 uint_t bp_vlen; 119 char *bp_value; 120 } bootprop_t; 121 122 static bootprop_t *bprops = NULL; 123 static char *curr_page = NULL; /* ptr to avail bprop memory */ 124 static int curr_space = 0; /* amount of memory at curr_page */ 125 126 #ifdef __xpv 127 start_info_t *xen_info; 128 shared_info_t *HYPERVISOR_shared_info; 129 #endif 130 131 /* 132 * some allocator statistics 133 */ 134 static ulong_t total_bop_alloc_scratch = 0; 135 static ulong_t total_bop_alloc_kernel = 0; 136 137 static void build_firmware_properties(struct xboot_info *); 138 139 static int early_allocation = 1; 140 141 int force_fastreboot = 0; 142 volatile int fastreboot_onpanic = 0; 143 int post_fastreboot = 0; 144 #ifdef __xpv 145 volatile int fastreboot_capable = 0; 146 #else 147 volatile int fastreboot_capable = 1; 148 #endif 149 150 /* 151 * Information saved from current boot for fast reboot. 152 * If the information size exceeds what we have allocated, fast reboot 153 * will not be supported. 154 */ 155 multiboot_info_t saved_mbi; 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 159 int saved_cmdline_len = 0; 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 161 162 /* 163 * Turn off fastreboot_onpanic to avoid panic loop. 164 */ 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 167 168 /* 169 * Pointers to where System Resource Affinity Table (SRAT), System Locality 170 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 171 * are mapped into virtual memory 172 */ 173 ACPI_TABLE_SRAT *srat_ptr = NULL; 174 ACPI_TABLE_SLIT *slit_ptr = NULL; 175 ACPI_TABLE_MSCT *msct_ptr = NULL; 176 177 /* 178 * Arbitrary limit on number of localities we handle; if 179 * this limit is raised to more than UINT16_MAX, make sure 180 * process_slit() knows how to handle it. 181 */ 182 #define SLIT_LOCALITIES_MAX (4096) 183 184 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 185 #define SLIT_PROPNAME "acpi-slit" 186 187 /* 188 * Allocate aligned physical memory at boot time. This allocator allocates 189 * from the highest possible addresses. This avoids exhausting memory that 190 * would be useful for DMA buffers. 191 */ 192 paddr_t 193 do_bop_phys_alloc(uint64_t size, uint64_t align) 194 { 195 paddr_t pa = 0; 196 paddr_t start; 197 paddr_t end; 198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 199 200 /* 201 * Be careful if high memory usage is limited in startup.c 202 * Since there are holes in the low part of the physical address 203 * space we can treat physmem as a pfn (not just a pgcnt) and 204 * get a conservative upper limit. 205 */ 206 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 207 high_phys = pfn_to_pa(physmem); 208 209 /* 210 * find the lowest or highest available memory in physinstalled 211 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 212 */ 213 #if defined(__i386) 214 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 215 high_phys = FOUR_GIG; 216 #endif 217 218 /* 219 * find the highest available memory in physinstalled 220 */ 221 size = P2ROUNDUP(size, align); 222 for (; ml; ml = ml->ml_next) { 223 start = P2ROUNDUP(ml->ml_address, align); 224 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 225 if (start < next_phys) 226 start = P2ROUNDUP(next_phys, align); 227 if (end > high_phys) 228 end = P2ALIGN(high_phys, align); 229 230 if (end <= start) 231 continue; 232 if (end - start < size) 233 continue; 234 235 /* 236 * Early allocations need to use low memory, since 237 * physmem might be further limited by bootenv.rc 238 */ 239 if (early_allocation) { 240 if (pa == 0 || start < pa) 241 pa = start; 242 } else { 243 if (end - size > pa) 244 pa = end - size; 245 } 246 } 247 if (pa != 0) { 248 if (early_allocation) 249 next_phys = pa + size; 250 else 251 high_phys = pa; 252 return (pa); 253 } 254 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 255 ") Out of memory\n", size, align); 256 /*NOTREACHED*/ 257 } 258 259 uintptr_t 260 alloc_vaddr(size_t size, paddr_t align) 261 { 262 uintptr_t rv; 263 264 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 265 rv = (uintptr_t)next_virt; 266 next_virt += size; 267 return (rv); 268 } 269 270 /* 271 * Allocate virtual memory. The size is always rounded up to a multiple 272 * of base pagesize. 273 */ 274 275 /*ARGSUSED*/ 276 static caddr_t 277 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 278 { 279 paddr_t a = align; /* same type as pa for masking */ 280 uint_t pgsize; 281 paddr_t pa; 282 uintptr_t va; 283 ssize_t s; /* the aligned size */ 284 uint_t level; 285 uint_t is_kernel = (virthint != 0); 286 287 if (a < MMU_PAGESIZE) 288 a = MMU_PAGESIZE; 289 else if (!ISP2(a)) 290 prom_panic("do_bsys_alloc() incorrect alignment"); 291 size = P2ROUNDUP(size, MMU_PAGESIZE); 292 293 /* 294 * Use the next aligned virtual address if we weren't given one. 295 */ 296 if (virthint == NULL) { 297 virthint = (caddr_t)alloc_vaddr(size, a); 298 total_bop_alloc_scratch += size; 299 } else { 300 total_bop_alloc_kernel += size; 301 } 302 303 /* 304 * allocate the physical memory 305 */ 306 pa = do_bop_phys_alloc(size, a); 307 308 /* 309 * Add the mappings to the page tables, try large pages first. 310 */ 311 va = (uintptr_t)virthint; 312 s = size; 313 level = 1; 314 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 315 if (xbootp->bi_use_largepage && a == pgsize) { 316 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 317 s >= pgsize) { 318 kbm_map(va, pa, level, is_kernel); 319 va += pgsize; 320 pa += pgsize; 321 s -= pgsize; 322 } 323 } 324 325 /* 326 * Map remaining pages use small mappings 327 */ 328 level = 0; 329 pgsize = MMU_PAGESIZE; 330 while (s > 0) { 331 kbm_map(va, pa, level, is_kernel); 332 va += pgsize; 333 pa += pgsize; 334 s -= pgsize; 335 } 336 return (virthint); 337 } 338 339 /* 340 * Free virtual memory - we'll just ignore these. 341 */ 342 /*ARGSUSED*/ 343 static void 344 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 345 { 346 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 347 (void *)virt, size); 348 } 349 350 /* 351 * Old interface 352 */ 353 /*ARGSUSED*/ 354 static caddr_t 355 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 356 int align, int flags) 357 { 358 prom_panic("unsupported call to BOP_EALLOC()\n"); 359 return (0); 360 } 361 362 363 static void 364 bsetprop(char *name, int nlen, void *value, int vlen) 365 { 366 uint_t size; 367 uint_t need_size; 368 bootprop_t *b; 369 370 /* 371 * align the size to 16 byte boundary 372 */ 373 size = sizeof (bootprop_t) + nlen + 1 + vlen; 374 size = (size + 0xf) & ~0xf; 375 if (size > curr_space) { 376 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 377 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 378 curr_space = need_size; 379 } 380 381 /* 382 * use a bootprop_t at curr_page and link into list 383 */ 384 b = (bootprop_t *)curr_page; 385 curr_page += sizeof (bootprop_t); 386 curr_space -= sizeof (bootprop_t); 387 b->bp_next = bprops; 388 bprops = b; 389 390 /* 391 * follow by name and ending zero byte 392 */ 393 b->bp_name = curr_page; 394 bcopy(name, curr_page, nlen); 395 curr_page += nlen; 396 *curr_page++ = 0; 397 curr_space -= nlen + 1; 398 399 /* 400 * copy in value, but no ending zero byte 401 */ 402 b->bp_value = curr_page; 403 b->bp_vlen = vlen; 404 if (vlen > 0) { 405 bcopy(value, curr_page, vlen); 406 curr_page += vlen; 407 curr_space -= vlen; 408 } 409 410 /* 411 * align new values of curr_page, curr_space 412 */ 413 while (curr_space & 0xf) { 414 ++curr_page; 415 --curr_space; 416 } 417 } 418 419 static void 420 bsetprops(char *name, char *value) 421 { 422 bsetprop(name, strlen(name), value, strlen(value) + 1); 423 } 424 425 static void 426 bsetprop64(char *name, uint64_t value) 427 { 428 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 429 } 430 431 static void 432 bsetpropsi(char *name, int value) 433 { 434 char prop_val[32]; 435 436 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 437 bsetprops(name, prop_val); 438 } 439 440 /* 441 * to find the size of the buffer to allocate 442 */ 443 /*ARGSUSED*/ 444 int 445 do_bsys_getproplen(bootops_t *bop, const char *name) 446 { 447 bootprop_t *b; 448 449 for (b = bprops; b; b = b->bp_next) { 450 if (strcmp(name, b->bp_name) != 0) 451 continue; 452 return (b->bp_vlen); 453 } 454 return (-1); 455 } 456 457 /* 458 * get the value associated with this name 459 */ 460 /*ARGSUSED*/ 461 int 462 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 463 { 464 bootprop_t *b; 465 466 for (b = bprops; b; b = b->bp_next) { 467 if (strcmp(name, b->bp_name) != 0) 468 continue; 469 bcopy(b->bp_value, value, b->bp_vlen); 470 return (0); 471 } 472 return (-1); 473 } 474 475 /* 476 * get the name of the next property in succession from the standalone 477 */ 478 /*ARGSUSED*/ 479 static char * 480 do_bsys_nextprop(bootops_t *bop, char *name) 481 { 482 bootprop_t *b; 483 484 /* 485 * A null name is a special signal for the 1st boot property 486 */ 487 if (name == NULL || strlen(name) == 0) { 488 if (bprops == NULL) 489 return (NULL); 490 return (bprops->bp_name); 491 } 492 493 for (b = bprops; b; b = b->bp_next) { 494 if (name != b->bp_name) 495 continue; 496 b = b->bp_next; 497 if (b == NULL) 498 return (NULL); 499 return (b->bp_name); 500 } 501 return (NULL); 502 } 503 504 /* 505 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 506 */ 507 static int 508 parse_value(char *p, uint64_t *retval) 509 { 510 int adjust = 0; 511 uint64_t tmp = 0; 512 int digit; 513 int radix = 10; 514 515 *retval = 0; 516 if (*p == '-' || *p == '~') 517 adjust = *p++; 518 519 if (*p == '0') { 520 ++p; 521 if (*p == 0) 522 return (0); 523 if (*p == 'x' || *p == 'X') { 524 radix = 16; 525 ++p; 526 } else { 527 radix = 8; 528 ++p; 529 } 530 } 531 while (*p) { 532 if ('0' <= *p && *p <= '9') 533 digit = *p - '0'; 534 else if ('a' <= *p && *p <= 'f') 535 digit = 10 + *p - 'a'; 536 else if ('A' <= *p && *p <= 'F') 537 digit = 10 + *p - 'A'; 538 else 539 return (-1); 540 if (digit >= radix) 541 return (-1); 542 tmp = tmp * radix + digit; 543 ++p; 544 } 545 if (adjust == '-') 546 tmp = -tmp; 547 else if (adjust == '~') 548 tmp = ~tmp; 549 *retval = tmp; 550 return (0); 551 } 552 553 static boolean_t 554 unprintable(char *value, int size) 555 { 556 int i; 557 558 if (size <= 0 || value[0] == '\0') 559 return (B_TRUE); 560 561 for (i = 0; i < size; i++) { 562 if (value[i] == '\0') 563 return (i != (size - 1)); 564 565 if (!isprint(value[i])) 566 return (B_TRUE); 567 } 568 return (B_FALSE); 569 } 570 571 /* 572 * Print out information about all boot properties. 573 * buffer is pointer to pre-allocated space to be used as temporary 574 * space for property values. 575 */ 576 static void 577 boot_prop_display(char *buffer) 578 { 579 char *name = ""; 580 int i, len; 581 582 bop_printf(NULL, "\nBoot properties:\n"); 583 584 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 585 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 586 (void) do_bsys_getprop(NULL, name, buffer); 587 len = do_bsys_getproplen(NULL, name); 588 bop_printf(NULL, "len=%d ", len); 589 if (!unprintable(buffer, len)) { 590 buffer[len] = 0; 591 bop_printf(NULL, "%s\n", buffer); 592 continue; 593 } 594 for (i = 0; i < len; i++) { 595 bop_printf(NULL, "%02x", buffer[i] & 0xff); 596 if (i < len - 1) 597 bop_printf(NULL, "."); 598 } 599 bop_printf(NULL, "\n"); 600 } 601 } 602 603 /* 604 * 2nd part of building the table of boot properties. This includes: 605 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 606 * 607 * lines look like one of: 608 * ^$ 609 * ^# comment till end of line 610 * setprop name 'value' 611 * setprop name value 612 * setprop name "value" 613 * 614 * we do single character I/O since this is really just looking at memory 615 */ 616 void 617 boot_prop_finish(void) 618 { 619 int fd; 620 char *line; 621 int c; 622 int bytes_read; 623 char *name; 624 int n_len; 625 char *value; 626 int v_len; 627 char *inputdev; /* these override the command line if serial ports */ 628 char *outputdev; 629 char *consoledev; 630 uint64_t lvalue; 631 int use_xencons = 0; 632 633 #ifdef __xpv 634 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 635 use_xencons = 1; 636 #endif /* __xpv */ 637 638 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 639 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 640 DBG(fd); 641 642 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 643 while (fd >= 0) { 644 645 /* 646 * get a line 647 */ 648 for (c = 0; ; ++c) { 649 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 650 if (bytes_read == 0) { 651 if (c == 0) 652 goto done; 653 break; 654 } 655 if (line[c] == '\n') 656 break; 657 } 658 line[c] = 0; 659 660 /* 661 * ignore comment lines 662 */ 663 c = 0; 664 while (ISSPACE(line[c])) 665 ++c; 666 if (line[c] == '#' || line[c] == 0) 667 continue; 668 669 /* 670 * must have "setprop " or "setprop\t" 671 */ 672 if (strncmp(line + c, "setprop ", 8) != 0 && 673 strncmp(line + c, "setprop\t", 8) != 0) 674 continue; 675 c += 8; 676 while (ISSPACE(line[c])) 677 ++c; 678 if (line[c] == 0) 679 continue; 680 681 /* 682 * gather up the property name 683 */ 684 name = line + c; 685 n_len = 0; 686 while (line[c] && !ISSPACE(line[c])) 687 ++n_len, ++c; 688 689 /* 690 * gather up the value, if any 691 */ 692 value = ""; 693 v_len = 0; 694 while (ISSPACE(line[c])) 695 ++c; 696 if (line[c] != 0) { 697 value = line + c; 698 while (line[c] && !ISSPACE(line[c])) 699 ++v_len, ++c; 700 } 701 702 if (v_len >= 2 && value[0] == value[v_len - 1] && 703 (value[0] == '\'' || value[0] == '"')) { 704 ++value; 705 v_len -= 2; 706 } 707 name[n_len] = 0; 708 if (v_len > 0) 709 value[v_len] = 0; 710 else 711 continue; 712 713 /* 714 * ignore "boot-file" property, it's now meaningless 715 */ 716 if (strcmp(name, "boot-file") == 0) 717 continue; 718 if (strcmp(name, "boot-args") == 0 && 719 strlen(boot_args) > 0) 720 continue; 721 722 /* 723 * If a property was explicitly set on the command line 724 * it will override a setting in bootenv.rc 725 */ 726 if (do_bsys_getproplen(NULL, name) > 0) 727 continue; 728 729 bsetprop(name, n_len, value, v_len + 1); 730 } 731 done: 732 if (fd >= 0) 733 (void) BRD_CLOSE(bfs_ops, fd); 734 735 /* 736 * Check if we have to limit the boot time allocator 737 */ 738 if (do_bsys_getproplen(NULL, "physmem") != -1 && 739 do_bsys_getprop(NULL, "physmem", line) >= 0 && 740 parse_value(line, &lvalue) != -1) { 741 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 742 physmem = (pgcnt_t)lvalue; 743 DBG(physmem); 744 } 745 } 746 early_allocation = 0; 747 748 /* 749 * check to see if we have to override the default value of the console 750 */ 751 if (!use_xencons) { 752 inputdev = line; 753 v_len = do_bsys_getproplen(NULL, "input-device"); 754 if (v_len > 0) 755 (void) do_bsys_getprop(NULL, "input-device", inputdev); 756 else 757 v_len = 0; 758 inputdev[v_len] = 0; 759 760 outputdev = inputdev + v_len + 1; 761 v_len = do_bsys_getproplen(NULL, "output-device"); 762 if (v_len > 0) 763 (void) do_bsys_getprop(NULL, "output-device", 764 outputdev); 765 else 766 v_len = 0; 767 outputdev[v_len] = 0; 768 769 consoledev = outputdev + v_len + 1; 770 v_len = do_bsys_getproplen(NULL, "console"); 771 if (v_len > 0) { 772 (void) do_bsys_getprop(NULL, "console", consoledev); 773 if (post_fastreboot && 774 strcmp(consoledev, "graphics") == 0) { 775 bsetprops("console", "text"); 776 v_len = strlen("text"); 777 bcopy("text", consoledev, v_len); 778 } 779 } else { 780 v_len = 0; 781 } 782 consoledev[v_len] = 0; 783 bcons_init2(inputdev, outputdev, consoledev); 784 } else { 785 /* 786 * Ensure console property exists 787 * If not create it as "hypervisor" 788 */ 789 v_len = do_bsys_getproplen(NULL, "console"); 790 if (v_len < 0) 791 bsetprops("console", "hypervisor"); 792 inputdev = outputdev = consoledev = "hypervisor"; 793 bcons_init2(inputdev, outputdev, consoledev); 794 } 795 796 if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) 797 boot_prop_display(line); 798 } 799 800 /* 801 * print formatted output 802 */ 803 /*PRINTFLIKE2*/ 804 /*ARGSUSED*/ 805 void 806 bop_printf(bootops_t *bop, const char *fmt, ...) 807 { 808 va_list ap; 809 810 if (have_console == 0) 811 return; 812 813 va_start(ap, fmt); 814 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 815 va_end(ap); 816 PUT_STRING(buffer); 817 } 818 819 /* 820 * Another panic() variant; this one can be used even earlier during boot than 821 * prom_panic(). 822 */ 823 /*PRINTFLIKE1*/ 824 void 825 bop_panic(const char *fmt, ...) 826 { 827 va_list ap; 828 829 va_start(ap, fmt); 830 bop_printf(NULL, fmt, ap); 831 va_end(ap); 832 833 bop_printf(NULL, "\nPress any key to reboot.\n"); 834 (void) bcons_getchar(); 835 bop_printf(NULL, "Resetting...\n"); 836 pc_reset(); 837 } 838 839 /* 840 * Do a real mode interrupt BIOS call 841 */ 842 typedef struct bios_regs { 843 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 844 } bios_regs_t; 845 typedef int (*bios_func_t)(int, bios_regs_t *); 846 847 /*ARGSUSED*/ 848 static void 849 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 850 { 851 #if defined(__xpv) 852 prom_panic("unsupported call to BOP_DOINT()\n"); 853 #else /* __xpv */ 854 static int firsttime = 1; 855 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 856 bios_regs_t br; 857 858 /* 859 * The first time we do this, we have to copy the pre-packaged 860 * low memory bios call code image into place. 861 */ 862 if (firsttime) { 863 extern char bios_image[]; 864 extern uint32_t bios_size; 865 866 bcopy(bios_image, (void *)bios_func, bios_size); 867 firsttime = 0; 868 } 869 870 br.ax = rp->eax.word.ax; 871 br.bx = rp->ebx.word.bx; 872 br.cx = rp->ecx.word.cx; 873 br.dx = rp->edx.word.dx; 874 br.bp = rp->ebp.word.bp; 875 br.si = rp->esi.word.si; 876 br.di = rp->edi.word.di; 877 br.ds = rp->ds; 878 br.es = rp->es; 879 880 DBG_MSG("Doing BIOS call..."); 881 DBG(br.ax); 882 DBG(br.bx); 883 DBG(br.dx); 884 rp->eflags = bios_func(intnum, &br); 885 DBG_MSG("done\n"); 886 887 rp->eax.word.ax = br.ax; 888 rp->ebx.word.bx = br.bx; 889 rp->ecx.word.cx = br.cx; 890 rp->edx.word.dx = br.dx; 891 rp->ebp.word.bp = br.bp; 892 rp->esi.word.si = br.si; 893 rp->edi.word.di = br.di; 894 rp->ds = br.ds; 895 rp->es = br.es; 896 #endif /* __xpv */ 897 } 898 899 static struct boot_syscalls bop_sysp = { 900 bcons_getchar, 901 bcons_putchar, 902 bcons_ischar, 903 }; 904 905 static char *whoami; 906 907 #define BUFLEN 64 908 909 #if defined(__xpv) 910 911 static char namebuf[32]; 912 913 static void 914 xen_parse_props(char *s, char *prop_map[], int n_prop) 915 { 916 char **prop_name = prop_map; 917 char *cp = s, *scp; 918 919 do { 920 scp = cp; 921 while ((*cp != NULL) && (*cp != ':')) 922 cp++; 923 924 if ((scp != cp) && (*prop_name != NULL)) { 925 *cp = NULL; 926 bsetprops(*prop_name, scp); 927 } 928 929 cp++; 930 prop_name++; 931 n_prop--; 932 } while (n_prop > 0); 933 } 934 935 #define VBDPATHLEN 64 936 937 /* 938 * parse the 'xpv-root' property to create properties used by 939 * ufs_mountroot. 940 */ 941 static void 942 xen_vbdroot_props(char *s) 943 { 944 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 945 const char lnamefix[] = "/dev/dsk/c0d"; 946 char *pnp; 947 char *prop_p; 948 char mi; 949 short minor; 950 long addr = 0; 951 952 pnp = vbdpath + strlen(vbdpath); 953 prop_p = s + strlen(lnamefix); 954 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 955 addr = addr * 10 + *prop_p++ - '0'; 956 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 957 pnp = vbdpath + strlen(vbdpath); 958 if (*prop_p == 's') 959 mi = 'a'; 960 else if (*prop_p == 'p') 961 mi = 'q'; 962 else 963 ASSERT(0); /* shouldn't be here */ 964 prop_p++; 965 ASSERT(*prop_p != '\0'); 966 if (ISDIGIT(*prop_p)) { 967 minor = *prop_p - '0'; 968 prop_p++; 969 if (ISDIGIT(*prop_p)) { 970 minor = minor * 10 + *prop_p - '0'; 971 } 972 } else { 973 /* malformed root path, use 0 as default */ 974 minor = 0; 975 } 976 ASSERT(minor < 16); /* at most 16 partitions */ 977 mi += minor; 978 *pnp++ = ':'; 979 *pnp++ = mi; 980 *pnp++ = '\0'; 981 bsetprops("fstype", "ufs"); 982 bsetprops("bootpath", vbdpath); 983 984 DBG_MSG("VBD bootpath set to "); 985 DBG_MSG(vbdpath); 986 DBG_MSG("\n"); 987 } 988 989 /* 990 * parse the xpv-nfsroot property to create properties used by 991 * nfs_mountroot. 992 */ 993 static void 994 xen_nfsroot_props(char *s) 995 { 996 char *prop_map[] = { 997 BP_SERVER_IP, /* server IP address */ 998 BP_SERVER_NAME, /* server hostname */ 999 BP_SERVER_PATH, /* root path */ 1000 }; 1001 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1002 1003 bsetprop("fstype", 6, "nfs", 4); 1004 1005 xen_parse_props(s, prop_map, n_prop); 1006 1007 /* 1008 * If a server name wasn't specified, use a default. 1009 */ 1010 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1011 bsetprops(BP_SERVER_NAME, "unknown"); 1012 } 1013 1014 /* 1015 * Extract our IP address, etc. from the "xpv-ip" property. 1016 */ 1017 static void 1018 xen_ip_props(char *s) 1019 { 1020 char *prop_map[] = { 1021 BP_HOST_IP, /* IP address */ 1022 NULL, /* NFS server IP address (ignored in */ 1023 /* favour of xpv-nfsroot) */ 1024 BP_ROUTER_IP, /* IP gateway */ 1025 BP_SUBNET_MASK, /* IP subnet mask */ 1026 "xpv-hostname", /* hostname (ignored) */ 1027 BP_NETWORK_INTERFACE, /* interface name */ 1028 "xpv-hcp", /* host configuration protocol */ 1029 }; 1030 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1031 char ifname[IFNAMSIZ]; 1032 1033 xen_parse_props(s, prop_map, n_prop); 1034 1035 /* 1036 * A Linux dom0 administrator expects all interfaces to be 1037 * called "ethX", which is not the case here. 1038 * 1039 * If the interface name specified is "eth0", presume that 1040 * this is really intended to be "xnf0" (the first domU -> 1041 * dom0 interface for this domain). 1042 */ 1043 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1044 (strcmp("eth0", ifname) == 0)) { 1045 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1046 bop_printf(NULL, 1047 "network interface name 'eth0' replaced with 'xnf0'\n"); 1048 } 1049 } 1050 1051 #else /* __xpv */ 1052 1053 static void 1054 setup_rarp_props(struct sol_netinfo *sip) 1055 { 1056 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1057 uint8_t *val; 1058 1059 val = (uint8_t *)&sip->sn_ciaddr; 1060 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1061 val[0], val[1], val[2], val[3]); 1062 bsetprops(BP_HOST_IP, buf); 1063 1064 val = (uint8_t *)&sip->sn_siaddr; 1065 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1066 val[0], val[1], val[2], val[3]); 1067 bsetprops(BP_SERVER_IP, buf); 1068 1069 if (sip->sn_giaddr != 0) { 1070 val = (uint8_t *)&sip->sn_giaddr; 1071 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1072 val[0], val[1], val[2], val[3]); 1073 bsetprops(BP_ROUTER_IP, buf); 1074 } 1075 1076 if (sip->sn_netmask != 0) { 1077 val = (uint8_t *)&sip->sn_netmask; 1078 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1079 val[0], val[1], val[2], val[3]); 1080 bsetprops(BP_SUBNET_MASK, buf); 1081 } 1082 1083 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1084 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1085 sip->sn_mactype, sip->sn_maclen); 1086 } else { 1087 val = sip->sn_macaddr; 1088 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1089 val[0], val[1], val[2], val[3], val[4], val[5]); 1090 bsetprops(BP_BOOT_MAC, buf); 1091 } 1092 } 1093 1094 #endif /* __xpv */ 1095 1096 static void 1097 build_panic_cmdline(const char *cmd, int cmdlen) 1098 { 1099 int proplen; 1100 size_t arglen; 1101 1102 arglen = sizeof (fastreboot_onpanic_args); 1103 /* 1104 * If we allready have fastreboot-onpanic set to zero, 1105 * don't add them again. 1106 */ 1107 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1108 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1109 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1110 fastreboot_onpanic_cmdline); 1111 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1112 arglen = 1; 1113 } 1114 1115 /* 1116 * construct fastreboot_onpanic_cmdline 1117 */ 1118 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1119 DBG_MSG("Command line too long: clearing " 1120 FASTREBOOT_ONPANIC "\n"); 1121 fastreboot_onpanic = 0; 1122 } else { 1123 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1124 if (arglen != 1) 1125 bcopy(fastreboot_onpanic_args, 1126 fastreboot_onpanic_cmdline + cmdlen, arglen); 1127 else 1128 fastreboot_onpanic_cmdline[cmdlen] = 0; 1129 } 1130 } 1131 1132 1133 #ifndef __xpv 1134 /* 1135 * Construct boot command line for Fast Reboot. The saved_cmdline 1136 * is also reported by "eeprom bootcmd". 1137 */ 1138 static void 1139 build_fastboot_cmdline(struct xboot_info *xbp) 1140 { 1141 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1142 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1143 DBG(saved_cmdline_len); 1144 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1145 fastreboot_capable = 0; 1146 } else { 1147 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1148 saved_cmdline_len); 1149 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1150 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1151 } 1152 } 1153 1154 /* 1155 * Save memory layout, disk drive information, unix and boot archive sizes for 1156 * Fast Reboot. 1157 */ 1158 static void 1159 save_boot_info(struct xboot_info *xbi) 1160 { 1161 multiboot_info_t *mbi = xbi->bi_mb_info; 1162 struct boot_modules *modp; 1163 int i; 1164 1165 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1166 if (mbi->mmap_length > sizeof (saved_mmap)) { 1167 DBG_MSG("mbi->mmap_length too big: clearing " 1168 "fastreboot_capable\n"); 1169 fastreboot_capable = 0; 1170 } else { 1171 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1172 mbi->mmap_length); 1173 } 1174 1175 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1176 if (mbi->drives_length > sizeof (saved_drives)) { 1177 DBG(mbi->drives_length); 1178 DBG_MSG("mbi->drives_length too big: clearing " 1179 "fastreboot_capable\n"); 1180 fastreboot_capable = 0; 1181 } else { 1182 bcopy((void *)(uintptr_t)mbi->drives_addr, 1183 (void *)saved_drives, mbi->drives_length); 1184 } 1185 } else { 1186 saved_mbi.drives_length = 0; 1187 saved_mbi.drives_addr = NULL; 1188 } 1189 1190 /* 1191 * Current file sizes. Used by fastboot.c to figure out how much 1192 * memory to reserve for panic reboot. 1193 * Use the module list from the dboot-constructed xboot_info 1194 * instead of the list referenced by the multiboot structure 1195 * because that structure may not be addressable now. 1196 */ 1197 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1198 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1199 i < xbi->bi_module_cnt; i++, modp++) { 1200 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1201 } 1202 } 1203 #endif /* __xpv */ 1204 1205 1206 /* 1207 * 1st pass at building the table of boot properties. This includes: 1208 * - values set on the command line: -B a=x,b=y,c=z .... 1209 * - known values we just compute (ie. from xbp) 1210 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1211 * 1212 * the grub command line looked like: 1213 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1214 * 1215 * whoami is the same as boot-file 1216 */ 1217 static void 1218 build_boot_properties(struct xboot_info *xbp) 1219 { 1220 char *name; 1221 int name_len; 1222 char *value; 1223 int value_len; 1224 struct boot_modules *bm, *rdbm; 1225 char *propbuf; 1226 int quoted = 0; 1227 int boot_arg_len; 1228 uint_t i, midx; 1229 char modid[32]; 1230 #ifndef __xpv 1231 static int stdout_val = 0; 1232 uchar_t boot_device; 1233 char str[3]; 1234 #endif 1235 1236 /* 1237 * These have to be done first, so that kobj_mount_root() works 1238 */ 1239 DBG_MSG("Building boot properties\n"); 1240 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1241 DBG((uintptr_t)propbuf); 1242 if (xbp->bi_module_cnt > 0) { 1243 bm = xbp->bi_modules; 1244 rdbm = NULL; 1245 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1246 if (bm[i].bm_type == BMT_ROOTFS) { 1247 rdbm = &bm[i]; 1248 continue; 1249 } 1250 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1251 continue; 1252 1253 (void) snprintf(modid, sizeof (modid), 1254 "module-name-%u", midx); 1255 bsetprops(modid, (char *)bm[i].bm_name); 1256 (void) snprintf(modid, sizeof (modid), 1257 "module-addr-%u", midx); 1258 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1259 (void) snprintf(modid, sizeof (modid), 1260 "module-size-%u", midx); 1261 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1262 ++midx; 1263 } 1264 if (rdbm != NULL) { 1265 bsetprop64("ramdisk_start", 1266 (uint64_t)(uintptr_t)rdbm->bm_addr); 1267 bsetprop64("ramdisk_end", 1268 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1269 } 1270 } 1271 1272 /* 1273 * If there are any boot time modules or hashes present, then disable 1274 * fast reboot. 1275 */ 1276 if (xbp->bi_module_cnt > 1) { 1277 fastreboot_disable(FBNS_BOOTMOD); 1278 } 1279 1280 #ifndef __xpv 1281 /* 1282 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1283 * since we don't currently support MB2 info and module relocation. 1284 * Note that fast reboot will have already been disabled if multiple 1285 * modules are present, since the current implementation assumes that 1286 * we only have a single module, the boot_archive. 1287 */ 1288 if (xbp->bi_mb_version != 1) { 1289 fastreboot_disable(FBNS_MULTIBOOT2); 1290 } 1291 #endif 1292 1293 DBG_MSG("Parsing command line for boot properties\n"); 1294 value = xbp->bi_cmdline; 1295 1296 /* 1297 * allocate memory to collect boot_args into 1298 */ 1299 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1300 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1301 boot_args[0] = 0; 1302 boot_arg_len = 0; 1303 1304 #ifdef __xpv 1305 /* 1306 * Xen puts a lot of device information in front of the kernel name 1307 * let's grab them and make them boot properties. The first 1308 * string w/o an "=" in it will be the boot-file property. 1309 */ 1310 (void) strcpy(namebuf, "xpv-"); 1311 for (;;) { 1312 /* 1313 * get to next property 1314 */ 1315 while (ISSPACE(*value)) 1316 ++value; 1317 name = value; 1318 /* 1319 * look for an "=" 1320 */ 1321 while (*value && !ISSPACE(*value) && *value != '=') { 1322 value++; 1323 } 1324 if (*value != '=') { /* no "=" in the property */ 1325 value = name; 1326 break; 1327 } 1328 name_len = value - name; 1329 value_len = 0; 1330 /* 1331 * skip over the "=" 1332 */ 1333 value++; 1334 while (value[value_len] && !ISSPACE(value[value_len])) { 1335 ++value_len; 1336 } 1337 /* 1338 * build property name with "xpv-" prefix 1339 */ 1340 if (name_len + 4 > 32) { /* skip if name too long */ 1341 value += value_len; 1342 continue; 1343 } 1344 bcopy(name, &namebuf[4], name_len); 1345 name_len += 4; 1346 namebuf[name_len] = 0; 1347 bcopy(value, propbuf, value_len); 1348 propbuf[value_len] = 0; 1349 bsetprops(namebuf, propbuf); 1350 1351 /* 1352 * xpv-root is set to the logical disk name of the xen 1353 * VBD when booting from a disk-based filesystem. 1354 */ 1355 if (strcmp(namebuf, "xpv-root") == 0) 1356 xen_vbdroot_props(propbuf); 1357 /* 1358 * While we're here, if we have a "xpv-nfsroot" property 1359 * then we need to set "fstype" to "nfs" so we mount 1360 * our root from the nfs server. Also parse the xpv-nfsroot 1361 * property to create the properties that nfs_mountroot will 1362 * need to find the root and mount it. 1363 */ 1364 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1365 xen_nfsroot_props(propbuf); 1366 1367 if (strcmp(namebuf, "xpv-ip") == 0) 1368 xen_ip_props(propbuf); 1369 value += value_len; 1370 } 1371 #endif 1372 1373 while (ISSPACE(*value)) 1374 ++value; 1375 /* 1376 * value now points at the boot-file 1377 */ 1378 value_len = 0; 1379 while (value[value_len] && !ISSPACE(value[value_len])) 1380 ++value_len; 1381 if (value_len > 0) { 1382 whoami = propbuf; 1383 bcopy(value, whoami, value_len); 1384 whoami[value_len] = 0; 1385 bsetprops("boot-file", whoami); 1386 /* 1387 * strip leading path stuff from whoami, so running from 1388 * PXE/miniroot makes sense. 1389 */ 1390 if (strstr(whoami, "/platform/") != NULL) 1391 whoami = strstr(whoami, "/platform/"); 1392 bsetprops("whoami", whoami); 1393 } 1394 1395 /* 1396 * Values forcibly set boot properties on the command line via -B. 1397 * Allow use of quotes in values. Other stuff goes on kernel 1398 * command line. 1399 */ 1400 name = value + value_len; 1401 while (*name != 0) { 1402 /* 1403 * anything not " -B" is copied to the command line 1404 */ 1405 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1406 boot_args[boot_arg_len++] = *name; 1407 boot_args[boot_arg_len] = 0; 1408 ++name; 1409 continue; 1410 } 1411 1412 /* 1413 * skip the " -B" and following white space 1414 */ 1415 name += 3; 1416 while (ISSPACE(*name)) 1417 ++name; 1418 while (*name && !ISSPACE(*name)) { 1419 value = strstr(name, "="); 1420 if (value == NULL) 1421 break; 1422 name_len = value - name; 1423 ++value; 1424 value_len = 0; 1425 quoted = 0; 1426 for (; ; ++value_len) { 1427 if (!value[value_len]) 1428 break; 1429 1430 /* 1431 * is this value quoted? 1432 */ 1433 if (value_len == 0 && 1434 (value[0] == '\'' || value[0] == '"')) { 1435 quoted = value[0]; 1436 ++value_len; 1437 } 1438 1439 /* 1440 * In the quote accept any character, 1441 * but look for ending quote. 1442 */ 1443 if (quoted) { 1444 if (value[value_len] == quoted) 1445 quoted = 0; 1446 continue; 1447 } 1448 1449 /* 1450 * a comma or white space ends the value 1451 */ 1452 if (value[value_len] == ',' || 1453 ISSPACE(value[value_len])) 1454 break; 1455 } 1456 1457 if (value_len == 0) { 1458 bsetprop(name, name_len, "true", 5); 1459 } else { 1460 char *v = value; 1461 int l = value_len; 1462 if (v[0] == v[l - 1] && 1463 (v[0] == '\'' || v[0] == '"')) { 1464 ++v; 1465 l -= 2; 1466 } 1467 bcopy(v, propbuf, l); 1468 propbuf[l] = '\0'; 1469 bsetprop(name, name_len, propbuf, 1470 l + 1); 1471 } 1472 name = value + value_len; 1473 while (*name == ',') 1474 ++name; 1475 } 1476 } 1477 1478 /* 1479 * set boot-args property 1480 * 1275 name is bootargs, so set 1481 * that too 1482 */ 1483 bsetprops("boot-args", boot_args); 1484 bsetprops("bootargs", boot_args); 1485 1486 #ifndef __xpv 1487 /* 1488 * Build boot command line for Fast Reboot 1489 */ 1490 build_fastboot_cmdline(xbp); 1491 1492 if (xbp->bi_mb_version == 1) { 1493 multiboot_info_t *mbi = xbp->bi_mb_info; 1494 int netboot; 1495 struct sol_netinfo *sip; 1496 1497 /* 1498 * set the BIOS boot device from GRUB 1499 */ 1500 netboot = 0; 1501 1502 /* 1503 * Save various boot information for Fast Reboot 1504 */ 1505 save_boot_info(xbp); 1506 1507 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1508 boot_device = mbi->boot_device >> 24; 1509 if (boot_device == 0x20) 1510 netboot++; 1511 str[0] = (boot_device >> 4) + '0'; 1512 str[1] = (boot_device & 0xf) + '0'; 1513 str[2] = 0; 1514 bsetprops("bios-boot-device", str); 1515 } else { 1516 netboot = 1; 1517 } 1518 1519 /* 1520 * In the netboot case, drives_info is overloaded with the 1521 * dhcp ack. This is not multiboot compliant and requires 1522 * special pxegrub! 1523 */ 1524 if (netboot && mbi->drives_length != 0) { 1525 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1526 if (sip->sn_infotype == SN_TYPE_BOOTP) 1527 bsetprop("bootp-response", 1528 sizeof ("bootp-response"), 1529 (void *)(uintptr_t)mbi->drives_addr, 1530 mbi->drives_length); 1531 else if (sip->sn_infotype == SN_TYPE_RARP) 1532 setup_rarp_props(sip); 1533 } 1534 } else { 1535 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1536 multiboot_tag_bootdev_t *bootdev = NULL; 1537 multiboot_tag_network_t *netdev = NULL; 1538 1539 if (mbi != NULL) { 1540 bootdev = dboot_multiboot2_find_tag(mbi, 1541 MULTIBOOT_TAG_TYPE_BOOTDEV); 1542 netdev = dboot_multiboot2_find_tag(mbi, 1543 MULTIBOOT_TAG_TYPE_NETWORK); 1544 } 1545 if (bootdev != NULL) { 1546 DBG(bootdev->mb_biosdev); 1547 boot_device = bootdev->mb_biosdev; 1548 str[0] = (boot_device >> 4) + '0'; 1549 str[1] = (boot_device & 0xf) + '0'; 1550 str[2] = 0; 1551 bsetprops("bios-boot-device", str); 1552 } 1553 if (netdev != NULL) { 1554 bsetprop("bootp-response", sizeof ("bootp-response"), 1555 (void *)(uintptr_t)netdev->mb_dhcpack, 1556 netdev->mb_size - 1557 sizeof (multiboot_tag_network_t)); 1558 } 1559 } 1560 1561 bsetprop("stdout", strlen("stdout"), 1562 &stdout_val, sizeof (stdout_val)); 1563 #endif /* __xpv */ 1564 1565 /* 1566 * more conjured up values for made up things.... 1567 */ 1568 #if defined(__xpv) 1569 bsetprops("mfg-name", "i86xpv"); 1570 bsetprops("impl-arch-name", "i86xpv"); 1571 #else 1572 bsetprops("mfg-name", "i86pc"); 1573 bsetprops("impl-arch-name", "i86pc"); 1574 #endif 1575 1576 /* 1577 * Build firmware-provided system properties 1578 */ 1579 build_firmware_properties(xbp); 1580 1581 /* 1582 * XXPV 1583 * 1584 * Find out what these are: 1585 * - cpuid_feature_ecx_include 1586 * - cpuid_feature_ecx_exclude 1587 * - cpuid_feature_edx_include 1588 * - cpuid_feature_edx_exclude 1589 * 1590 * Find out what these are in multiboot: 1591 * - netdev-path 1592 * - fstype 1593 */ 1594 } 1595 1596 #ifdef __xpv 1597 /* 1598 * Under the Hypervisor, memory usable for DMA may be scarce. One 1599 * very likely large pool of DMA friendly memory is occupied by 1600 * the boot_archive, as it was loaded by grub into low MFNs. 1601 * 1602 * Here we free up that memory by copying the boot archive to what are 1603 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1604 */ 1605 #define PFN_2GIG 0x80000 1606 static void 1607 relocate_boot_archive(struct xboot_info *xbp) 1608 { 1609 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1610 struct boot_modules *bm = xbp->bi_modules; 1611 uintptr_t va; 1612 pfn_t va_pfn; 1613 mfn_t va_mfn; 1614 caddr_t copy; 1615 pfn_t copy_pfn; 1616 mfn_t copy_mfn; 1617 size_t len; 1618 int slop; 1619 int total = 0; 1620 int relocated = 0; 1621 int mmu_update_return; 1622 mmu_update_t t[2]; 1623 x86pte_t pte; 1624 1625 /* 1626 * If all MFN's are below 2Gig, don't bother doing this. 1627 */ 1628 if (max_mfn < PFN_2GIG) 1629 return; 1630 if (xbp->bi_module_cnt < 1) { 1631 DBG_MSG("no boot_archive!"); 1632 return; 1633 } 1634 1635 DBG_MSG("moving boot_archive to high MFN memory\n"); 1636 va = (uintptr_t)bm->bm_addr; 1637 len = bm->bm_size; 1638 slop = va & MMU_PAGEOFFSET; 1639 if (slop) { 1640 va += MMU_PAGESIZE - slop; 1641 len -= MMU_PAGESIZE - slop; 1642 } 1643 len = P2ALIGN(len, MMU_PAGESIZE); 1644 1645 /* 1646 * Go through all boot_archive pages, swapping any low MFN pages 1647 * with memory at next_phys. 1648 */ 1649 while (len != 0) { 1650 ++total; 1651 va_pfn = mmu_btop(va - ONE_GIG); 1652 va_mfn = mfn_list[va_pfn]; 1653 if (mfn_list[va_pfn] < PFN_2GIG) { 1654 copy = kbm_remap_window(next_phys, 1); 1655 bcopy((void *)va, copy, MMU_PAGESIZE); 1656 copy_pfn = mmu_btop(next_phys); 1657 copy_mfn = mfn_list[copy_pfn]; 1658 1659 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1660 if (HYPERVISOR_update_va_mapping(va, pte, 1661 UVMF_INVLPG | UVMF_LOCAL)) 1662 bop_panic("relocate_boot_archive(): " 1663 "HYPERVISOR_update_va_mapping() failed"); 1664 1665 mfn_list[va_pfn] = copy_mfn; 1666 mfn_list[copy_pfn] = va_mfn; 1667 1668 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1669 t[0].val = va_pfn; 1670 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1671 t[1].val = copy_pfn; 1672 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1673 DOMID_SELF) != 0 || mmu_update_return != 2) 1674 bop_panic("relocate_boot_archive(): " 1675 "HYPERVISOR_mmu_update() failed"); 1676 1677 next_phys += MMU_PAGESIZE; 1678 ++relocated; 1679 } 1680 len -= MMU_PAGESIZE; 1681 va += MMU_PAGESIZE; 1682 } 1683 DBG_MSG("Relocated pages:\n"); 1684 DBG(relocated); 1685 DBG_MSG("Out of total pages:\n"); 1686 DBG(total); 1687 } 1688 #endif /* __xpv */ 1689 1690 #if !defined(__xpv) 1691 /* 1692 * Install a temporary IDT that lets us catch errors in the boot time code. 1693 * We shouldn't get any faults at all while this is installed, so we'll 1694 * just generate a traceback and exit. 1695 */ 1696 #ifdef __amd64 1697 static const int bcode_sel = B64CODE_SEL; 1698 #else 1699 static const int bcode_sel = B32CODE_SEL; 1700 #endif 1701 1702 /* 1703 * simple description of a stack frame (args are 32 bit only currently) 1704 */ 1705 typedef struct bop_frame { 1706 struct bop_frame *old_frame; 1707 pc_t retaddr; 1708 long arg[1]; 1709 } bop_frame_t; 1710 1711 void 1712 bop_traceback(bop_frame_t *frame) 1713 { 1714 pc_t pc; 1715 int cnt; 1716 char *ksym; 1717 ulong_t off; 1718 #if defined(__i386) 1719 int a; 1720 #endif 1721 1722 bop_printf(NULL, "Stack traceback:\n"); 1723 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1724 pc = frame->retaddr; 1725 if (pc == 0) 1726 break; 1727 ksym = kobj_getsymname(pc, &off); 1728 if (ksym) 1729 bop_printf(NULL, " %s+%lx", ksym, off); 1730 else 1731 bop_printf(NULL, " 0x%lx", pc); 1732 1733 frame = frame->old_frame; 1734 if (frame == 0) { 1735 bop_printf(NULL, "\n"); 1736 break; 1737 } 1738 #if defined(__i386) 1739 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1740 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1741 break; 1742 if (a == 0) 1743 bop_printf(NULL, "("); 1744 else 1745 bop_printf(NULL, ","); 1746 bop_printf(NULL, "0x%lx", frame->arg[a]); 1747 } 1748 bop_printf(NULL, ")"); 1749 #endif 1750 bop_printf(NULL, "\n"); 1751 } 1752 } 1753 1754 struct trapframe { 1755 ulong_t error_code; /* optional */ 1756 ulong_t inst_ptr; 1757 ulong_t code_seg; 1758 ulong_t flags_reg; 1759 #ifdef __amd64 1760 ulong_t stk_ptr; 1761 ulong_t stk_seg; 1762 #endif 1763 }; 1764 1765 void 1766 bop_trap(ulong_t *tfp) 1767 { 1768 struct trapframe *tf = (struct trapframe *)tfp; 1769 bop_frame_t fakeframe; 1770 static int depth = 0; 1771 1772 /* 1773 * Check for an infinite loop of traps. 1774 */ 1775 if (++depth > 2) 1776 bop_panic("Nested trap"); 1777 1778 bop_printf(NULL, "Unexpected trap\n"); 1779 1780 /* 1781 * adjust the tf for optional error_code by detecting the code selector 1782 */ 1783 if (tf->code_seg != bcode_sel) 1784 tf = (struct trapframe *)(tfp - 1); 1785 else 1786 bop_printf(NULL, "error code 0x%lx\n", 1787 tf->error_code & 0xffffffff); 1788 1789 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1790 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1791 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1792 #ifdef __amd64 1793 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1794 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1795 #endif 1796 1797 /* grab %[er]bp pushed by our code from the stack */ 1798 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1799 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1800 bop_printf(NULL, "Attempting stack backtrace:\n"); 1801 bop_traceback(&fakeframe); 1802 bop_panic("unexpected trap in early boot"); 1803 } 1804 1805 extern void bop_trap_handler(void); 1806 1807 static gate_desc_t *bop_idt; 1808 1809 static desctbr_t bop_idt_info; 1810 1811 static void 1812 bop_idt_init(void) 1813 { 1814 int t; 1815 1816 bop_idt = (gate_desc_t *) 1817 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1818 bzero(bop_idt, MMU_PAGESIZE); 1819 for (t = 0; t < NIDT; ++t) { 1820 /* 1821 * Note that since boot runs without a TSS, the 1822 * double fault handler cannot use an alternate stack 1823 * (64-bit) or a task gate (32-bit). 1824 */ 1825 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1826 SDT_SYSIGT, TRP_KPL, 0); 1827 } 1828 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1829 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1830 wr_idtr(&bop_idt_info); 1831 } 1832 #endif /* !defined(__xpv) */ 1833 1834 /* 1835 * This is where we enter the kernel. It dummies up the boot_ops and 1836 * boot_syscalls vectors and jumps off to _kobj_boot() 1837 */ 1838 void 1839 _start(struct xboot_info *xbp) 1840 { 1841 bootops_t *bops = &bootop; 1842 extern void _kobj_boot(); 1843 1844 /* 1845 * 1st off - initialize the console for any error messages 1846 */ 1847 xbootp = xbp; 1848 #ifdef __xpv 1849 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1850 xen_info = xbp->bi_xen_start_info; 1851 #endif 1852 1853 #ifndef __xpv 1854 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1855 FASTBOOT_MAGIC) { 1856 post_fastreboot = 1; 1857 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1858 } 1859 #endif 1860 1861 bcons_init((void *)xbp->bi_cmdline); 1862 have_console = 1; 1863 1864 /* 1865 * enable debugging 1866 */ 1867 if (strstr((char *)xbp->bi_cmdline, "kbm_debug")) 1868 kbm_debug = 1; 1869 1870 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1871 DBG_MSG((char *)xbp->bi_cmdline); 1872 DBG_MSG("\n\n\n"); 1873 1874 /* 1875 * physavail is no longer used by startup 1876 */ 1877 bm.physinstalled = xbp->bi_phys_install; 1878 bm.pcimem = xbp->bi_pcimem; 1879 bm.rsvdmem = xbp->bi_rsvdmem; 1880 bm.physavail = NULL; 1881 1882 /* 1883 * initialize the boot time allocator 1884 */ 1885 next_phys = xbp->bi_next_paddr; 1886 DBG(next_phys); 1887 next_virt = (uintptr_t)xbp->bi_next_vaddr; 1888 DBG(next_virt); 1889 DBG_MSG("Initializing boot time memory management..."); 1890 #ifdef __xpv 1891 { 1892 xen_platform_parameters_t p; 1893 1894 /* This call shouldn't fail, dboot already did it once. */ 1895 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 1896 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 1897 DBG(xen_virt_start); 1898 } 1899 #endif 1900 kbm_init(xbp); 1901 DBG_MSG("done\n"); 1902 1903 /* 1904 * Fill in the bootops vector 1905 */ 1906 bops->bsys_version = BO_VERSION; 1907 bops->boot_mem = &bm; 1908 bops->bsys_alloc = do_bsys_alloc; 1909 bops->bsys_free = do_bsys_free; 1910 bops->bsys_getproplen = do_bsys_getproplen; 1911 bops->bsys_getprop = do_bsys_getprop; 1912 bops->bsys_nextprop = do_bsys_nextprop; 1913 bops->bsys_printf = bop_printf; 1914 bops->bsys_doint = do_bsys_doint; 1915 1916 /* 1917 * BOP_EALLOC() is no longer needed 1918 */ 1919 bops->bsys_ealloc = do_bsys_ealloc; 1920 1921 #ifdef __xpv 1922 /* 1923 * On domain 0 we need to free up some physical memory that is 1924 * usable for DMA. Since GRUB loaded the boot_archive, it is 1925 * sitting in low MFN memory. We'll relocated the boot archive 1926 * pages to high PFN memory. 1927 */ 1928 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1929 relocate_boot_archive(xbp); 1930 #endif 1931 1932 #ifndef __xpv 1933 /* 1934 * Install an IDT to catch early pagefaults (shouldn't have any). 1935 * Also needed for kmdb. 1936 */ 1937 bop_idt_init(); 1938 #endif 1939 1940 /* 1941 * Start building the boot properties from the command line 1942 */ 1943 DBG_MSG("Initializing boot properties:\n"); 1944 build_boot_properties(xbp); 1945 1946 if (strstr((char *)xbp->bi_cmdline, "prom_debug") || kbm_debug) { 1947 char *value; 1948 1949 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1950 boot_prop_display(value); 1951 } 1952 1953 /* 1954 * jump into krtld... 1955 */ 1956 _kobj_boot(&bop_sysp, NULL, bops, NULL); 1957 } 1958 1959 1960 /*ARGSUSED*/ 1961 static caddr_t 1962 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 1963 { 1964 panic("Attempt to bsys_alloc() too late\n"); 1965 return (NULL); 1966 } 1967 1968 /*ARGSUSED*/ 1969 static void 1970 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 1971 { 1972 panic("Attempt to bsys_free() too late\n"); 1973 } 1974 1975 void 1976 bop_no_more_mem(void) 1977 { 1978 DBG(total_bop_alloc_scratch); 1979 DBG(total_bop_alloc_kernel); 1980 bootops->bsys_alloc = no_more_alloc; 1981 bootops->bsys_free = no_more_free; 1982 } 1983 1984 1985 /* 1986 * Set ACPI firmware properties 1987 */ 1988 1989 static caddr_t 1990 vmap_phys(size_t length, paddr_t pa) 1991 { 1992 paddr_t start, end; 1993 caddr_t va; 1994 size_t len, page; 1995 1996 #ifdef __xpv 1997 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 1998 #endif 1999 start = P2ALIGN(pa, MMU_PAGESIZE); 2000 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2001 len = end - start; 2002 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2003 for (page = 0; page < len; page += MMU_PAGESIZE) 2004 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2005 return (va + (pa & MMU_PAGEOFFSET)); 2006 } 2007 2008 static uint8_t 2009 checksum_table(uint8_t *tp, size_t len) 2010 { 2011 uint8_t sum = 0; 2012 2013 while (len-- > 0) 2014 sum += *tp++; 2015 2016 return (sum); 2017 } 2018 2019 static int 2020 valid_rsdp(ACPI_TABLE_RSDP *rp) 2021 { 2022 2023 /* validate the V1.x checksum */ 2024 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2025 return (0); 2026 2027 /* If pre-ACPI 2.0, this is a valid RSDP */ 2028 if (rp->Revision < 2) 2029 return (1); 2030 2031 /* validate the V2.x checksum */ 2032 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2033 return (0); 2034 2035 return (1); 2036 } 2037 2038 /* 2039 * Scan memory range for an RSDP; 2040 * see ACPI 3.0 Spec, 5.2.5.1 2041 */ 2042 static ACPI_TABLE_RSDP * 2043 scan_rsdp(paddr_t start, paddr_t end) 2044 { 2045 ssize_t len = end - start; 2046 caddr_t ptr; 2047 2048 ptr = vmap_phys(len, start); 2049 while (len > 0) { 2050 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2051 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2052 return ((ACPI_TABLE_RSDP *)ptr); 2053 2054 ptr += ACPI_RSDP_SCAN_STEP; 2055 len -= ACPI_RSDP_SCAN_STEP; 2056 } 2057 2058 return (NULL); 2059 } 2060 2061 /* 2062 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2063 */ 2064 static ACPI_TABLE_RSDP * 2065 find_rsdp() 2066 { 2067 ACPI_TABLE_RSDP *rsdp; 2068 uint64_t rsdp_val = 0; 2069 uint16_t *ebda_seg; 2070 paddr_t ebda_addr; 2071 2072 /* check for "acpi-root-tab" property */ 2073 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2074 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2075 if (rsdp_val != 0) { 2076 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2077 if (rsdp != NULL) { 2078 if (kbm_debug) { 2079 bop_printf(NULL, 2080 "Using RSDP from bootloader: " 2081 "0x%p\n", (void *)rsdp); 2082 } 2083 return (rsdp); 2084 } 2085 } 2086 } 2087 2088 /* 2089 * Get the EBDA segment and scan the first 1K 2090 */ 2091 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2092 ACPI_EBDA_PTR_LOCATION); 2093 ebda_addr = *ebda_seg << 4; 2094 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2095 if (rsdp == NULL) 2096 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2097 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2098 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2099 return (rsdp); 2100 } 2101 2102 static ACPI_TABLE_HEADER * 2103 map_fw_table(paddr_t table_addr) 2104 { 2105 ACPI_TABLE_HEADER *tp; 2106 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2107 2108 /* 2109 * Map at least a page; if the table is larger than this, remap it 2110 */ 2111 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2112 if (tp->Length > len) 2113 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2114 return (tp); 2115 } 2116 2117 static ACPI_TABLE_HEADER * 2118 find_fw_table(char *signature) 2119 { 2120 static int revision = 0; 2121 static ACPI_TABLE_XSDT *xsdt; 2122 static int len; 2123 paddr_t xsdt_addr; 2124 ACPI_TABLE_RSDP *rsdp; 2125 ACPI_TABLE_HEADER *tp; 2126 paddr_t table_addr; 2127 int n; 2128 2129 if (strlen(signature) != ACPI_NAME_SIZE) 2130 return (NULL); 2131 2132 /* 2133 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2134 * understand this code. If we haven't already found the RSDT/XSDT, 2135 * revision will be 0. Find the RSDP and check the revision 2136 * to find out whether to use the RSDT or XSDT. If revision is 2137 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2138 * use the XSDT. If the XSDT address is 0, though, fall back to 2139 * revision 1 and use the RSDT. 2140 */ 2141 if (revision == 0) { 2142 if ((rsdp = find_rsdp()) != NULL) { 2143 revision = rsdp->Revision; 2144 /* 2145 * ACPI 6.0 states that current revision is 2 2146 * from acpi_table_rsdp definition: 2147 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2148 */ 2149 if (revision > 2) 2150 revision = 2; 2151 switch (revision) { 2152 case 2: 2153 /* 2154 * Use the XSDT unless BIOS is buggy and 2155 * claims to be rev 2 but has a null XSDT 2156 * address 2157 */ 2158 xsdt_addr = rsdp->XsdtPhysicalAddress; 2159 if (xsdt_addr != 0) 2160 break; 2161 /* FALLTHROUGH */ 2162 case 0: 2163 /* treat RSDP rev 0 as revision 1 internally */ 2164 revision = 1; 2165 /* FALLTHROUGH */ 2166 case 1: 2167 /* use the RSDT for rev 0/1 */ 2168 xsdt_addr = rsdp->RsdtPhysicalAddress; 2169 break; 2170 default: 2171 /* unknown revision */ 2172 revision = 0; 2173 break; 2174 } 2175 } 2176 if (revision == 0) 2177 return (NULL); 2178 2179 /* cache the XSDT info */ 2180 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2181 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2182 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2183 } 2184 2185 /* 2186 * Scan the table headers looking for a signature match 2187 */ 2188 for (n = 0; n < len; n++) { 2189 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2190 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2191 xsdt->TableOffsetEntry[n]; 2192 2193 if (table_addr == 0) 2194 continue; 2195 tp = map_fw_table(table_addr); 2196 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2197 return (tp); 2198 } 2199 } 2200 return (NULL); 2201 } 2202 2203 static void 2204 process_mcfg(ACPI_TABLE_MCFG *tp) 2205 { 2206 ACPI_MCFG_ALLOCATION *cfg_baap; 2207 char *cfg_baa_endp; 2208 int64_t ecfginfo[4]; 2209 2210 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2211 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2212 while ((char *)cfg_baap < cfg_baa_endp) { 2213 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2214 ecfginfo[0] = cfg_baap->Address; 2215 ecfginfo[1] = cfg_baap->PciSegment; 2216 ecfginfo[2] = cfg_baap->StartBusNumber; 2217 ecfginfo[3] = cfg_baap->EndBusNumber; 2218 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2219 ecfginfo, sizeof (ecfginfo)); 2220 break; 2221 } 2222 cfg_baap++; 2223 } 2224 } 2225 2226 #ifndef __xpv 2227 static void 2228 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2229 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2230 { 2231 ACPI_SUBTABLE_HEADER *item, *end; 2232 uint32_t cpu_count = 0; 2233 uint32_t cpu_possible_count = 0; 2234 2235 /* 2236 * Determine number of CPUs and keep track of "final" APIC ID 2237 * for each CPU by walking through ACPI MADT processor list 2238 */ 2239 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2240 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2241 2242 while (item < end) { 2243 switch (item->Type) { 2244 case ACPI_MADT_TYPE_LOCAL_APIC: { 2245 ACPI_MADT_LOCAL_APIC *cpu = 2246 (ACPI_MADT_LOCAL_APIC *) item; 2247 2248 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2249 if (cpu_apicid_array != NULL) 2250 cpu_apicid_array[cpu_count] = cpu->Id; 2251 cpu_count++; 2252 } 2253 cpu_possible_count++; 2254 break; 2255 } 2256 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2257 ACPI_MADT_LOCAL_X2APIC *cpu = 2258 (ACPI_MADT_LOCAL_X2APIC *) item; 2259 2260 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2261 if (cpu_apicid_array != NULL) 2262 cpu_apicid_array[cpu_count] = 2263 cpu->LocalApicId; 2264 cpu_count++; 2265 } 2266 cpu_possible_count++; 2267 break; 2268 } 2269 default: 2270 if (kbm_debug) 2271 bop_printf(NULL, "MADT type %d\n", item->Type); 2272 break; 2273 } 2274 2275 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2276 } 2277 if (cpu_countp) 2278 *cpu_countp = cpu_count; 2279 if (cpu_possible_countp) 2280 *cpu_possible_countp = cpu_possible_count; 2281 } 2282 2283 static void 2284 process_madt(ACPI_TABLE_MADT *tp) 2285 { 2286 uint32_t cpu_count = 0; 2287 uint32_t cpu_possible_count = 0; 2288 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2289 2290 if (tp != NULL) { 2291 /* count cpu's */ 2292 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2293 2294 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2295 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2296 if (cpu_apicid_array == NULL) 2297 bop_panic("Not enough memory for APIC ID array"); 2298 2299 /* copy IDs */ 2300 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2301 2302 /* 2303 * Make boot property for array of "final" APIC IDs for each 2304 * CPU 2305 */ 2306 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2307 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2308 } 2309 2310 /* 2311 * Check whether property plat-max-ncpus is already set. 2312 */ 2313 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2314 /* 2315 * Set plat-max-ncpus to number of maximum possible CPUs given 2316 * in MADT if it hasn't been set. 2317 * There's no formal way to detect max possible CPUs supported 2318 * by platform according to ACPI spec3.0b. So current CPU 2319 * hotplug implementation expects that all possible CPUs will 2320 * have an entry in MADT table and set plat-max-ncpus to number 2321 * of entries in MADT. 2322 * With introducing of ACPI4.0, Maximum System Capability Table 2323 * (MSCT) provides maximum number of CPUs supported by platform. 2324 * If MSCT is unavailable, fall back to old way. 2325 */ 2326 if (tp != NULL) 2327 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2328 } 2329 2330 /* 2331 * Set boot property boot-max-ncpus to number of CPUs existing at 2332 * boot time. boot-max-ncpus is mainly used for optimization. 2333 */ 2334 if (tp != NULL) 2335 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2336 2337 /* 2338 * User-set boot-ncpus overrides firmware count 2339 */ 2340 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2341 return; 2342 2343 /* 2344 * Set boot property boot-ncpus to number of active CPUs given in MADT 2345 * if it hasn't been set yet. 2346 */ 2347 if (tp != NULL) 2348 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2349 } 2350 2351 static void 2352 process_srat(ACPI_TABLE_SRAT *tp) 2353 { 2354 ACPI_SUBTABLE_HEADER *item, *end; 2355 int i; 2356 int proc_num, mem_num; 2357 #pragma pack(1) 2358 struct { 2359 uint32_t domain; 2360 uint32_t apic_id; 2361 uint32_t sapic_id; 2362 } processor; 2363 struct { 2364 uint32_t domain; 2365 uint32_t x2apic_id; 2366 } x2apic; 2367 struct { 2368 uint32_t domain; 2369 uint64_t addr; 2370 uint64_t length; 2371 uint32_t flags; 2372 } memory; 2373 #pragma pack() 2374 char prop_name[30]; 2375 uint64_t maxmem = 0; 2376 2377 if (tp == NULL) 2378 return; 2379 2380 proc_num = mem_num = 0; 2381 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2382 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2383 while (item < end) { 2384 switch (item->Type) { 2385 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2386 ACPI_SRAT_CPU_AFFINITY *cpu = 2387 (ACPI_SRAT_CPU_AFFINITY *) item; 2388 2389 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2390 break; 2391 processor.domain = cpu->ProximityDomainLo; 2392 for (i = 0; i < 3; i++) 2393 processor.domain += 2394 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2395 processor.apic_id = cpu->ApicId; 2396 processor.sapic_id = cpu->LocalSapicEid; 2397 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2398 proc_num); 2399 bsetprop(prop_name, strlen(prop_name), &processor, 2400 sizeof (processor)); 2401 proc_num++; 2402 break; 2403 } 2404 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2405 ACPI_SRAT_MEM_AFFINITY *mem = 2406 (ACPI_SRAT_MEM_AFFINITY *)item; 2407 2408 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2409 break; 2410 memory.domain = mem->ProximityDomain; 2411 memory.addr = mem->BaseAddress; 2412 memory.length = mem->Length; 2413 memory.flags = mem->Flags; 2414 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2415 mem_num); 2416 bsetprop(prop_name, strlen(prop_name), &memory, 2417 sizeof (memory)); 2418 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2419 (memory.addr + memory.length > maxmem)) { 2420 maxmem = memory.addr + memory.length; 2421 } 2422 mem_num++; 2423 break; 2424 } 2425 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2426 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2427 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2428 2429 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2430 break; 2431 x2apic.domain = x2cpu->ProximityDomain; 2432 x2apic.x2apic_id = x2cpu->ApicId; 2433 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2434 proc_num); 2435 bsetprop(prop_name, strlen(prop_name), &x2apic, 2436 sizeof (x2apic)); 2437 proc_num++; 2438 break; 2439 } 2440 default: 2441 if (kbm_debug) 2442 bop_printf(NULL, "SRAT type %d\n", item->Type); 2443 break; 2444 } 2445 2446 item = (ACPI_SUBTABLE_HEADER *) 2447 (item->Length + (uintptr_t)item); 2448 } 2449 2450 /* 2451 * The maximum physical address calculated from the SRAT table is more 2452 * accurate than that calculated from the MSCT table. 2453 */ 2454 if (maxmem != 0) { 2455 plat_dr_physmax = btop(maxmem); 2456 } 2457 } 2458 2459 static void 2460 process_slit(ACPI_TABLE_SLIT *tp) 2461 { 2462 2463 /* 2464 * Check the number of localities; if it's too huge, we just 2465 * return and locality enumeration code will handle this later, 2466 * if possible. 2467 * 2468 * Note that the size of the table is the square of the 2469 * number of localities; if the number of localities exceeds 2470 * UINT16_MAX, the table size may overflow an int when being 2471 * passed to bsetprop() below. 2472 */ 2473 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2474 return; 2475 2476 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2477 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2478 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2479 tp->LocalityCount * tp->LocalityCount); 2480 } 2481 2482 static ACPI_TABLE_MSCT * 2483 process_msct(ACPI_TABLE_MSCT *tp) 2484 { 2485 int last_seen = 0; 2486 int proc_num = 0; 2487 ACPI_MSCT_PROXIMITY *item, *end; 2488 extern uint64_t plat_dr_options; 2489 2490 ASSERT(tp != NULL); 2491 2492 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2493 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2494 item < end; 2495 item = (void *)(item->Length + (uintptr_t)item)) { 2496 /* 2497 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2498 * Revision 1 2499 * Length 22 2500 */ 2501 if (item->Revision != 1 || item->Length != 22) { 2502 cmn_err(CE_CONT, 2503 "?boot: unknown proximity domain structure in MSCT " 2504 "with Revision(%d), Length(%d).\n", 2505 (int)item->Revision, (int)item->Length); 2506 return (NULL); 2507 } else if (item->RangeStart > item->RangeEnd) { 2508 cmn_err(CE_CONT, 2509 "?boot: invalid proximity domain structure in MSCT " 2510 "with RangeStart(%u), RangeEnd(%u).\n", 2511 item->RangeStart, item->RangeEnd); 2512 return (NULL); 2513 } else if (item->RangeStart != last_seen) { 2514 /* 2515 * Items must be organized in ascending order of the 2516 * proximity domain enumerations. 2517 */ 2518 cmn_err(CE_CONT, 2519 "?boot: invalid proximity domain structure in MSCT," 2520 " items are not orginized in ascending order.\n"); 2521 return (NULL); 2522 } 2523 2524 /* 2525 * If ProcessorCapacity is 0 then there would be no CPUs in this 2526 * domain. 2527 */ 2528 if (item->ProcessorCapacity != 0) { 2529 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2530 item->ProcessorCapacity; 2531 } 2532 2533 last_seen = item->RangeEnd - item->RangeStart + 1; 2534 /* 2535 * Break out if all proximity domains have been processed. 2536 * Some BIOSes may have unused items at the end of MSCT table. 2537 */ 2538 if (last_seen > tp->MaxProximityDomains) { 2539 break; 2540 } 2541 } 2542 if (last_seen != tp->MaxProximityDomains + 1) { 2543 cmn_err(CE_CONT, 2544 "?boot: invalid proximity domain structure in MSCT, " 2545 "proximity domain count doesn't match.\n"); 2546 return (NULL); 2547 } 2548 2549 /* 2550 * Set plat-max-ncpus property if it hasn't been set yet. 2551 */ 2552 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2553 if (proc_num != 0) { 2554 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2555 } 2556 } 2557 2558 /* 2559 * Use Maximum Physical Address from the MSCT table as upper limit for 2560 * memory hot-adding by default. It may be overridden by value from 2561 * the SRAT table or the "plat-dr-physmax" boot option. 2562 */ 2563 plat_dr_physmax = btop(tp->MaxAddress + 1); 2564 2565 /* 2566 * Existence of MSCT implies CPU/memory hotplug-capability for the 2567 * platform. 2568 */ 2569 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2570 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2571 2572 return (tp); 2573 } 2574 2575 #else /* __xpv */ 2576 static void 2577 enumerate_xen_cpus() 2578 { 2579 processorid_t id, max_id; 2580 2581 /* 2582 * User-set boot-ncpus overrides enumeration 2583 */ 2584 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2585 return; 2586 2587 /* 2588 * Probe every possible virtual CPU id and remember the 2589 * highest id present; the count of CPUs is one greater 2590 * than this. This tacitly assumes at least cpu 0 is present. 2591 */ 2592 max_id = 0; 2593 for (id = 0; id < MAX_VIRT_CPUS; id++) 2594 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2595 max_id = id; 2596 2597 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2598 2599 } 2600 #endif /* __xpv */ 2601 2602 /*ARGSUSED*/ 2603 static void 2604 build_firmware_properties(struct xboot_info *xbp) 2605 { 2606 ACPI_TABLE_HEADER *tp = NULL; 2607 2608 #ifndef __xpv 2609 if (xbp->bi_acpi_rsdp) { 2610 bsetprop64("acpi-root-tab", 2611 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2612 } 2613 2614 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2615 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2616 else 2617 msct_ptr = NULL; 2618 2619 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2620 process_madt((ACPI_TABLE_MADT *)tp); 2621 2622 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2623 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2624 process_srat(srat_ptr); 2625 2626 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2627 process_slit(slit_ptr); 2628 2629 tp = find_fw_table(ACPI_SIG_MCFG); 2630 #else /* __xpv */ 2631 enumerate_xen_cpus(); 2632 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2633 tp = find_fw_table(ACPI_SIG_MCFG); 2634 #endif /* __xpv */ 2635 if (tp != NULL) 2636 process_mcfg((ACPI_TABLE_MCFG *)tp); 2637 } 2638 2639 /* 2640 * fake up a boot property for deferred early console output 2641 * this is used by both graphical boot and the (developer only) 2642 * USB serial console 2643 */ 2644 void * 2645 defcons_init(size_t size) 2646 { 2647 static char *p = NULL; 2648 2649 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2650 *p = 0; 2651 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2652 &p, sizeof (p)); 2653 return (p); 2654 } 2655 2656 /*ARGSUSED*/ 2657 int 2658 boot_compinfo(int fd, struct compinfo *cbp) 2659 { 2660 cbp->iscmp = 0; 2661 cbp->blksize = MAXBSIZE; 2662 return (0); 2663 } 2664 2665 #define BP_MAX_STRLEN 32 2666 2667 /* 2668 * Get value for given boot property 2669 */ 2670 int 2671 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2672 { 2673 int boot_prop_len; 2674 char str[BP_MAX_STRLEN]; 2675 u_longlong_t value; 2676 2677 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2678 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2679 BOP_GETPROP(bootops, prop_name, str) < 0 || 2680 kobj_getvalue(str, &value) == -1) 2681 return (-1); 2682 2683 if (prop_value) 2684 *prop_value = value; 2685 2686 return (0); 2687 } 2688