1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 Garrett D'Amore <garrett@damore.org> 25 * Copyright 2014 Pluribus Networks, Inc. 26 * Copyright 2016 Nexenta Systems, Inc. 27 */ 28 29 /* 30 * PC specific DDI implementation 31 */ 32 #include <sys/types.h> 33 #include <sys/autoconf.h> 34 #include <sys/avintr.h> 35 #include <sys/bootconf.h> 36 #include <sys/conf.h> 37 #include <sys/cpuvar.h> 38 #include <sys/ddi_impldefs.h> 39 #include <sys/ddi_subrdefs.h> 40 #include <sys/ethernet.h> 41 #include <sys/fp.h> 42 #include <sys/instance.h> 43 #include <sys/kmem.h> 44 #include <sys/machsystm.h> 45 #include <sys/modctl.h> 46 #include <sys/promif.h> 47 #include <sys/prom_plat.h> 48 #include <sys/sunndi.h> 49 #include <sys/ndi_impldefs.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/sysmacros.h> 52 #include <sys/systeminfo.h> 53 #include <sys/utsname.h> 54 #include <sys/atomic.h> 55 #include <sys/spl.h> 56 #include <sys/archsystm.h> 57 #include <vm/seg_kmem.h> 58 #include <sys/ontrap.h> 59 #include <sys/fm/protocol.h> 60 #include <sys/ramdisk.h> 61 #include <sys/sunndi.h> 62 #include <sys/vmem.h> 63 #include <sys/pci_impl.h> 64 #if defined(__xpv) 65 #include <sys/hypervisor.h> 66 #endif 67 #include <sys/mach_intr.h> 68 #include <vm/hat_i86.h> 69 #include <sys/x86_archext.h> 70 #include <sys/avl.h> 71 72 /* 73 * DDI Boot Configuration 74 */ 75 76 /* 77 * Platform drivers on this platform 78 */ 79 char *platform_module_list[] = { 80 "acpippm", 81 "ppm", 82 (char *)0 83 }; 84 85 /* pci bus resource maps */ 86 struct pci_bus_resource *pci_bus_res; 87 88 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 89 90 uint64_t ramdisk_start, ramdisk_end; 91 92 int pseudo_isa = 0; 93 94 /* 95 * Forward declarations 96 */ 97 static int getlongprop_buf(); 98 static void get_boot_properties(void); 99 static void impl_bus_initialprobe(void); 100 static void impl_bus_reprobe(void); 101 102 static int poke_mem(peekpoke_ctlops_t *in_args); 103 static int peek_mem(peekpoke_ctlops_t *in_args); 104 105 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 106 107 #if defined(__amd64) && !defined(__xpv) 108 extern void immu_init(void); 109 #endif 110 111 /* 112 * We use an AVL tree to store contiguous address allocations made with the 113 * kalloca() routine, so that we can return the size to free with kfreea(). 114 * Note that in the future it would be vastly faster if we could eliminate 115 * this lookup by insisting that all callers keep track of their own sizes, 116 * just as for kmem_alloc(). 117 */ 118 struct ctgas { 119 avl_node_t ctg_link; 120 void *ctg_addr; 121 size_t ctg_size; 122 }; 123 124 static avl_tree_t ctgtree; 125 126 static kmutex_t ctgmutex; 127 #define CTGLOCK() mutex_enter(&ctgmutex) 128 #define CTGUNLOCK() mutex_exit(&ctgmutex) 129 130 /* 131 * Minimum pfn value of page_t's put on the free list. This is to simplify 132 * support of ddi dma memory requests which specify small, non-zero addr_lo 133 * values. 134 * 135 * The default value of 2, which corresponds to the only known non-zero addr_lo 136 * value used, means a single page will be sacrificed (pfn typically starts 137 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 138 * otherwise mp startup panics. 139 */ 140 pfn_t ddiphysmin = 2; 141 142 static void 143 check_driver_disable(void) 144 { 145 int proplen = 128; 146 char *prop_name; 147 char *drv_name, *propval; 148 major_t major; 149 150 prop_name = kmem_alloc(proplen, KM_SLEEP); 151 for (major = 0; major < devcnt; major++) { 152 drv_name = ddi_major_to_name(major); 153 if (drv_name == NULL) 154 continue; 155 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 156 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 157 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 158 if (strcmp(propval, "true") == 0) { 159 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 160 cmn_err(CE_NOTE, "driver %s disabled", 161 drv_name); 162 } 163 ddi_prop_free(propval); 164 } 165 } 166 kmem_free(prop_name, proplen); 167 } 168 169 170 /* 171 * Configure the hardware on the system. 172 * Called before the rootfs is mounted 173 */ 174 void 175 configure(void) 176 { 177 extern void i_ddi_init_root(); 178 179 #if defined(__i386) 180 extern int fpu_pentium_fdivbug; 181 #endif /* __i386 */ 182 extern int fpu_ignored; 183 184 /* 185 * Determine if an FPU is attached 186 */ 187 188 fpu_probe(); 189 190 #if defined(__i386) 191 if (fpu_pentium_fdivbug) { 192 printf("\ 193 FP hardware exhibits Pentium floating point divide problem\n"); 194 } 195 #endif /* __i386 */ 196 197 if (fpu_ignored) { 198 printf("FP hardware will not be used\n"); 199 } else if (!fpu_exists) { 200 printf("No FPU in configuration\n"); 201 } 202 203 /* 204 * Initialize devices on the machine. 205 * Uses configuration tree built by the PROMs to determine what 206 * is present, and builds a tree of prototype dev_info nodes 207 * corresponding to the hardware which identified itself. 208 */ 209 210 /* 211 * Initialize root node. 212 */ 213 i_ddi_init_root(); 214 215 /* reprogram devices not set up by firmware (BIOS) */ 216 impl_bus_reprobe(); 217 218 #if defined(__amd64) && !defined(__xpv) 219 /* 220 * Setup but don't startup the IOMMU 221 * Startup happens later via a direct call 222 * to IOMMU code by boot code. 223 * At this point, all PCI bus renumbering 224 * is done, so safe to init the IMMU 225 * AKA Intel IOMMU. 226 */ 227 immu_init(); 228 #endif 229 230 /* 231 * attach the isa nexus to get ACPI resource usage 232 * isa is "kind of" a pseudo node 233 */ 234 #if defined(__xpv) 235 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 236 if (pseudo_isa) 237 (void) i_ddi_attach_pseudo_node("isa"); 238 else 239 (void) i_ddi_attach_hw_nodes("isa"); 240 } 241 #else 242 if (pseudo_isa) 243 (void) i_ddi_attach_pseudo_node("isa"); 244 else 245 (void) i_ddi_attach_hw_nodes("isa"); 246 #endif 247 } 248 249 /* 250 * The "status" property indicates the operational status of a device. 251 * If this property is present, the value is a string indicating the 252 * status of the device as follows: 253 * 254 * "okay" operational. 255 * "disabled" not operational, but might become operational. 256 * "fail" not operational because a fault has been detected, 257 * and it is unlikely that the device will become 258 * operational without repair. no additional details 259 * are available. 260 * "fail-xxx" not operational because a fault has been detected, 261 * and it is unlikely that the device will become 262 * operational without repair. "xxx" is additional 263 * human-readable information about the particular 264 * fault condition that was detected. 265 * 266 * The absence of this property means that the operational status is 267 * unknown or okay. 268 * 269 * This routine checks the status property of the specified device node 270 * and returns 0 if the operational status indicates failure, and 1 otherwise. 271 * 272 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 273 * And, in that case, the property may not even be a string. So we carefully 274 * check for the value "fail", in the beginning of the string, noting 275 * the property length. 276 */ 277 int 278 status_okay(int id, char *buf, int buflen) 279 { 280 char status_buf[OBP_MAXPROPNAME]; 281 char *bufp = buf; 282 int len = buflen; 283 int proplen; 284 static const char *status = "status"; 285 static const char *fail = "fail"; 286 int fail_len = (int)strlen(fail); 287 288 /* 289 * Get the proplen ... if it's smaller than "fail", 290 * or doesn't exist ... then we don't care, since 291 * the value can't begin with the char string "fail". 292 * 293 * NB: proplen, if it's a string, includes the NULL in the 294 * the size of the property, and fail_len does not. 295 */ 296 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 297 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 298 return (1); 299 300 /* 301 * if a buffer was provided, use it 302 */ 303 if ((buf == (char *)NULL) || (buflen <= 0)) { 304 bufp = status_buf; 305 len = sizeof (status_buf); 306 } 307 *bufp = (char)0; 308 309 /* 310 * Get the property into the buffer, to the extent of the buffer, 311 * and in case the buffer is smaller than the property size, 312 * NULL terminate the buffer. (This handles the case where 313 * a buffer was passed in and the caller wants to print the 314 * value, but the buffer was too small). 315 */ 316 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 317 (caddr_t)bufp, len); 318 *(bufp + len - 1) = (char)0; 319 320 /* 321 * If the value begins with the char string "fail", 322 * then it means the node is failed. We don't care 323 * about any other values. We assume the node is ok 324 * although it might be 'disabled'. 325 */ 326 if (strncmp(bufp, fail, fail_len) == 0) 327 return (0); 328 329 return (1); 330 } 331 332 /* 333 * Check the status of the device node passed as an argument. 334 * 335 * if ((status is OKAY) || (status is DISABLED)) 336 * return DDI_SUCCESS 337 * else 338 * print a warning and return DDI_FAILURE 339 */ 340 /*ARGSUSED1*/ 341 int 342 check_status(int id, char *name, dev_info_t *parent) 343 { 344 char status_buf[64]; 345 char devtype_buf[OBP_MAXPROPNAME]; 346 int retval = DDI_FAILURE; 347 348 /* 349 * is the status okay? 350 */ 351 if (status_okay(id, status_buf, sizeof (status_buf))) 352 return (DDI_SUCCESS); 353 354 /* 355 * a status property indicating bad memory will be associated 356 * with a node which has a "device_type" property with a value of 357 * "memory-controller". in this situation, return DDI_SUCCESS 358 */ 359 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 360 sizeof (devtype_buf)) > 0) { 361 if (strcmp(devtype_buf, "memory-controller") == 0) 362 retval = DDI_SUCCESS; 363 } 364 365 /* 366 * print the status property information 367 */ 368 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 369 return (retval); 370 } 371 372 /*ARGSUSED*/ 373 uint_t 374 softlevel1(caddr_t arg1, caddr_t arg2) 375 { 376 softint(); 377 return (1); 378 } 379 380 /* 381 * Allow for implementation specific correction of PROM property values. 382 */ 383 384 /*ARGSUSED*/ 385 void 386 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 387 caddr_t buffer) 388 { 389 /* 390 * There are no adjustments needed in this implementation. 391 */ 392 } 393 394 static int 395 getlongprop_buf(int id, char *name, char *buf, int maxlen) 396 { 397 int size; 398 399 size = prom_getproplen((pnode_t)id, name); 400 if (size <= 0 || (size > maxlen - 1)) 401 return (-1); 402 403 if (-1 == prom_getprop((pnode_t)id, name, buf)) 404 return (-1); 405 406 if (strcmp("name", name) == 0) { 407 if (buf[size - 1] != '\0') { 408 buf[size] = '\0'; 409 size += 1; 410 } 411 } 412 413 return (size); 414 } 415 416 static int 417 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 418 { 419 int ret; 420 421 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 422 DDI_PROP_DONTPASS, pname, pval, plen)) 423 == DDI_PROP_SUCCESS) { 424 *plen = (*plen) * (sizeof (int)); 425 } 426 return (ret); 427 } 428 429 430 /* 431 * Node Configuration 432 */ 433 434 struct prop_ispec { 435 uint_t pri, vec; 436 }; 437 438 /* 439 * For the x86, we're prepared to claim that the interrupt string 440 * is in the form of a list of <ipl,vec> specifications. 441 */ 442 443 #define VEC_MIN 1 444 #define VEC_MAX 255 445 446 static int 447 impl_xlate_intrs(dev_info_t *child, int *in, 448 struct ddi_parent_private_data *pdptr) 449 { 450 size_t size; 451 int n; 452 struct intrspec *new; 453 caddr_t got_prop; 454 int *inpri; 455 int got_len; 456 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 457 458 static char bad_intr_fmt[] = 459 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 460 461 /* 462 * determine if the driver is expecting the new style "interrupts" 463 * property which just contains the IRQ, or the old style which 464 * contains pairs of <IPL,IRQ>. if it is the new style, we always 465 * assign IPL 5 unless an "interrupt-priorities" property exists. 466 * in that case, the "interrupt-priorities" property contains the 467 * IPL values that match, one for one, the IRQ values in the 468 * "interrupts" property. 469 */ 470 inpri = NULL; 471 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 472 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 473 /* the old style "interrupts" property... */ 474 475 /* 476 * The list consists of <ipl,vec> elements 477 */ 478 if ((n = (*in++ >> 1)) < 1) 479 return (DDI_FAILURE); 480 481 pdptr->par_nintr = n; 482 size = n * sizeof (struct intrspec); 483 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 484 485 while (n--) { 486 int level = *in++; 487 int vec = *in++; 488 489 if (level < 1 || level > MAXIPL || 490 vec < VEC_MIN || vec > VEC_MAX) { 491 cmn_err(CE_CONT, bad_intr_fmt, 492 DEVI(child)->devi_name, 493 DEVI(child)->devi_instance, level, vec); 494 goto broken; 495 } 496 new->intrspec_pri = level; 497 if (vec != 2) 498 new->intrspec_vec = vec; 499 else 500 /* 501 * irq 2 on the PC bus is tied to irq 9 502 * on ISA, EISA and MicroChannel 503 */ 504 new->intrspec_vec = 9; 505 new++; 506 } 507 508 return (DDI_SUCCESS); 509 } else { 510 /* the new style "interrupts" property... */ 511 512 /* 513 * The list consists of <vec> elements 514 */ 515 if ((n = (*in++)) < 1) 516 return (DDI_FAILURE); 517 518 pdptr->par_nintr = n; 519 size = n * sizeof (struct intrspec); 520 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 521 522 /* XXX check for "interrupt-priorities" property... */ 523 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 524 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 525 == DDI_PROP_SUCCESS) { 526 if (n != (got_len / sizeof (int))) { 527 cmn_err(CE_CONT, 528 "bad interrupt-priorities length" 529 " from %s%d: expected %d, got %d\n", 530 DEVI(child)->devi_name, 531 DEVI(child)->devi_instance, n, 532 (int)(got_len / sizeof (int))); 533 goto broken; 534 } 535 inpri = (int *)got_prop; 536 } 537 538 while (n--) { 539 int level; 540 int vec = *in++; 541 542 if (inpri == NULL) 543 level = 5; 544 else 545 level = *inpri++; 546 547 if (level < 1 || level > MAXIPL || 548 vec < VEC_MIN || vec > VEC_MAX) { 549 cmn_err(CE_CONT, bad_intr_fmt, 550 DEVI(child)->devi_name, 551 DEVI(child)->devi_instance, level, vec); 552 goto broken; 553 } 554 new->intrspec_pri = level; 555 if (vec != 2) 556 new->intrspec_vec = vec; 557 else 558 /* 559 * irq 2 on the PC bus is tied to irq 9 560 * on ISA, EISA and MicroChannel 561 */ 562 new->intrspec_vec = 9; 563 new++; 564 } 565 566 if (inpri != NULL) 567 kmem_free(got_prop, got_len); 568 return (DDI_SUCCESS); 569 } 570 571 broken: 572 kmem_free(pdptr->par_intr, size); 573 pdptr->par_intr = NULL; 574 pdptr->par_nintr = 0; 575 if (inpri != NULL) 576 kmem_free(got_prop, got_len); 577 578 return (DDI_FAILURE); 579 } 580 581 /* 582 * Create a ddi_parent_private_data structure from the ddi properties of 583 * the dev_info node. 584 * 585 * The "reg" and either an "intr" or "interrupts" properties are required 586 * if the driver wishes to create mappings or field interrupts on behalf 587 * of the device. 588 * 589 * The "reg" property is assumed to be a list of at least one triple 590 * 591 * <bustype, address, size>*1 592 * 593 * The "intr" property is assumed to be a list of at least one duple 594 * 595 * <SPARC ipl, vector#>*1 596 * 597 * The "interrupts" property is assumed to be a list of at least one 598 * n-tuples that describes the interrupt capabilities of the bus the device 599 * is connected to. For SBus, this looks like 600 * 601 * <SBus-level>*1 602 * 603 * (This property obsoletes the 'intr' property). 604 * 605 * The "ranges" property is optional. 606 */ 607 void 608 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 609 { 610 struct ddi_parent_private_data *pdptr; 611 int n; 612 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 613 uint_t reg_len, rng_len, intr_len, irupts_len; 614 615 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 616 617 /* 618 * Handle the 'reg' property. 619 */ 620 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 621 DDI_PROP_SUCCESS) && (reg_len != 0)) { 622 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 623 pdptr->par_reg = (struct regspec *)reg_prop; 624 } 625 626 /* 627 * See if I have a range (adding one where needed - this 628 * means to add one for sbus node in sun4c, when romvec > 0, 629 * if no range is already defined in the PROM node. 630 * (Currently no sun4c PROMS define range properties, 631 * but they should and may in the future.) For the SBus 632 * node, the range is defined by the SBus reg property. 633 */ 634 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 635 == DDI_PROP_SUCCESS) { 636 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 637 pdptr->par_rng = (struct rangespec *)rng_prop; 638 } 639 640 /* 641 * Handle the 'intr' and 'interrupts' properties 642 */ 643 644 /* 645 * For backwards compatibility 646 * we first look for the 'intr' property for the device. 647 */ 648 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 649 != DDI_PROP_SUCCESS) { 650 intr_len = 0; 651 } 652 653 /* 654 * If we're to support bus adapters and future platforms cleanly, 655 * we need to support the generalized 'interrupts' property. 656 */ 657 if (get_prop_int_array(child, "interrupts", &irupts_prop, 658 &irupts_len) != DDI_PROP_SUCCESS) { 659 irupts_len = 0; 660 } else if (intr_len != 0) { 661 /* 662 * If both 'intr' and 'interrupts' are defined, 663 * then 'interrupts' wins and we toss the 'intr' away. 664 */ 665 ddi_prop_free((void *)intr_prop); 666 intr_len = 0; 667 } 668 669 if (intr_len != 0) { 670 671 /* 672 * Translate the 'intr' property into an array 673 * an array of struct intrspec's. There's not really 674 * very much to do here except copy what's out there. 675 */ 676 677 struct intrspec *new; 678 struct prop_ispec *l; 679 680 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 681 l = (struct prop_ispec *)intr_prop; 682 pdptr->par_intr = 683 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 684 while (n--) { 685 new->intrspec_pri = l->pri; 686 new->intrspec_vec = l->vec; 687 new++; 688 l++; 689 } 690 ddi_prop_free((void *)intr_prop); 691 692 } else if ((n = irupts_len) != 0) { 693 size_t size; 694 int *out; 695 696 /* 697 * Translate the 'interrupts' property into an array 698 * of intrspecs for the rest of the DDI framework to 699 * toy with. Only our ancestors really know how to 700 * do this, so ask 'em. We massage the 'interrupts' 701 * property so that it is pre-pended by a count of 702 * the number of integers in the argument. 703 */ 704 size = sizeof (int) + n; 705 out = kmem_alloc(size, KM_SLEEP); 706 *out = n / sizeof (int); 707 bcopy(irupts_prop, out + 1, (size_t)n); 708 ddi_prop_free((void *)irupts_prop); 709 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 710 cmn_err(CE_CONT, 711 "Unable to translate 'interrupts' for %s%d\n", 712 DEVI(child)->devi_binding_name, 713 DEVI(child)->devi_instance); 714 } 715 kmem_free(out, size); 716 } 717 } 718 719 /* 720 * Name a child 721 */ 722 static int 723 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 724 { 725 /* 726 * Fill in parent-private data and this function returns to us 727 * an indication if it used "registers" to fill in the data. 728 */ 729 if (ddi_get_parent_data(child) == NULL) { 730 struct ddi_parent_private_data *pdptr; 731 make_ddi_ppd(child, &pdptr); 732 ddi_set_parent_data(child, pdptr); 733 } 734 735 name[0] = '\0'; 736 if (sparc_pd_getnreg(child) > 0) { 737 (void) snprintf(name, namelen, "%x,%x", 738 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 739 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 740 } 741 742 return (DDI_SUCCESS); 743 } 744 745 /* 746 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 747 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 748 * the children of sun busses based on the reg spec. 749 * 750 * Handles the following properties (in make_ddi_ppd): 751 * Property value 752 * Name type 753 * reg register spec 754 * intr old-form interrupt spec 755 * interrupts new (bus-oriented) interrupt spec 756 * ranges range spec 757 */ 758 int 759 impl_ddi_sunbus_initchild(dev_info_t *child) 760 { 761 char name[MAXNAMELEN]; 762 void impl_ddi_sunbus_removechild(dev_info_t *); 763 764 /* 765 * Name the child, also makes parent private data 766 */ 767 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 768 ddi_set_name_addr(child, name); 769 770 /* 771 * Attempt to merge a .conf node; if successful, remove the 772 * .conf node. 773 */ 774 if ((ndi_dev_is_persistent_node(child) == 0) && 775 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 776 /* 777 * Return failure to remove node 778 */ 779 impl_ddi_sunbus_removechild(child); 780 return (DDI_FAILURE); 781 } 782 return (DDI_SUCCESS); 783 } 784 785 void 786 impl_free_ddi_ppd(dev_info_t *dip) 787 { 788 struct ddi_parent_private_data *pdptr; 789 size_t n; 790 791 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 792 return; 793 794 if ((n = (size_t)pdptr->par_nintr) != 0) 795 /* 796 * Note that kmem_free is used here (instead of 797 * ddi_prop_free) because the contents of the 798 * property were placed into a separate buffer and 799 * mucked with a bit before being stored in par_intr. 800 * The actual return value from the prop lookup 801 * was freed with ddi_prop_free previously. 802 */ 803 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 804 805 if ((n = (size_t)pdptr->par_nrng) != 0) 806 ddi_prop_free((void *)pdptr->par_rng); 807 808 if ((n = pdptr->par_nreg) != 0) 809 ddi_prop_free((void *)pdptr->par_reg); 810 811 kmem_free(pdptr, sizeof (*pdptr)); 812 ddi_set_parent_data(dip, NULL); 813 } 814 815 void 816 impl_ddi_sunbus_removechild(dev_info_t *dip) 817 { 818 impl_free_ddi_ppd(dip); 819 ddi_set_name_addr(dip, NULL); 820 /* 821 * Strip the node to properly convert it back to prototype form 822 */ 823 impl_rem_dev_props(dip); 824 } 825 826 /* 827 * DDI Interrupt 828 */ 829 830 /* 831 * turn this on to force isa, eisa, and mca device to ignore the new 832 * hardware nodes in the device tree (normally turned on only for 833 * drivers that need it by setting the property "ignore-hardware-nodes" 834 * in their driver.conf file). 835 * 836 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 837 * as safety valve. 838 */ 839 int ignore_hardware_nodes = 0; 840 841 /* 842 * Local data 843 */ 844 static struct impl_bus_promops *impl_busp; 845 846 847 /* 848 * New DDI interrupt framework 849 */ 850 851 /* 852 * i_ddi_intr_ops: 853 * 854 * This is the interrupt operator function wrapper for the bus function 855 * bus_intr_op. 856 */ 857 int 858 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 859 ddi_intr_handle_impl_t *hdlp, void * result) 860 { 861 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 862 int ret = DDI_FAILURE; 863 864 /* request parent to process this interrupt op */ 865 if (NEXUS_HAS_INTR_OP(pdip)) 866 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 867 pdip, rdip, op, hdlp, result); 868 else 869 cmn_err(CE_WARN, "Failed to process interrupt " 870 "for %s%d due to down-rev nexus driver %s%d", 871 ddi_get_name(rdip), ddi_get_instance(rdip), 872 ddi_get_name(pdip), ddi_get_instance(pdip)); 873 return (ret); 874 } 875 876 /* 877 * i_ddi_add_softint - allocate and add a soft interrupt to the system 878 */ 879 int 880 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 881 { 882 int ret; 883 884 /* add soft interrupt handler */ 885 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 886 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 887 return (ret ? DDI_SUCCESS : DDI_FAILURE); 888 } 889 890 891 void 892 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 893 { 894 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 895 } 896 897 898 extern void (*setsoftint)(int, struct av_softinfo *); 899 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 900 901 int 902 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 903 { 904 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 905 return (DDI_EPENDING); 906 907 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 908 909 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 910 return (DDI_SUCCESS); 911 } 912 913 /* 914 * i_ddi_set_softint_pri: 915 * 916 * The way this works is that it first tries to add a softint vector 917 * at the new priority in hdlp. If that succeeds; then it removes the 918 * existing softint vector at the old priority. 919 */ 920 int 921 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 922 { 923 int ret; 924 925 /* 926 * If a softint is pending at the old priority then fail the request. 927 */ 928 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 929 return (DDI_FAILURE); 930 931 ret = av_softint_movepri((void *)hdlp, old_pri); 932 return (ret ? DDI_SUCCESS : DDI_FAILURE); 933 } 934 935 void 936 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 937 { 938 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 939 } 940 941 void 942 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 943 { 944 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 945 hdlp->ih_private = NULL; 946 } 947 948 int 949 i_ddi_get_intx_nintrs(dev_info_t *dip) 950 { 951 struct ddi_parent_private_data *pdp; 952 953 if ((pdp = ddi_get_parent_data(dip)) == NULL) 954 return (0); 955 956 return (pdp->par_nintr); 957 } 958 959 /* 960 * DDI Memory/DMA 961 */ 962 963 /* 964 * Support for allocating DMAable memory to implement 965 * ddi_dma_mem_alloc(9F) interface. 966 */ 967 968 #define KA_ALIGN_SHIFT 7 969 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 970 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 971 972 /* 973 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 974 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 975 */ 976 977 static ddi_dma_attr_t kmem_io_attr = { 978 DMA_ATTR_V0, 979 0x0000000000000000ULL, /* dma_attr_addr_lo */ 980 0x0000000000000000ULL, /* dma_attr_addr_hi */ 981 0x00ffffff, 982 0x1000, /* dma_attr_align */ 983 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 984 }; 985 986 /* kmem io memory ranges and indices */ 987 enum { 988 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 989 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 990 }; 991 992 static struct { 993 vmem_t *kmem_io_arena; 994 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 995 ddi_dma_attr_t kmem_io_attr; 996 } kmem_io[MAX_MEM_RANGES]; 997 998 static int kmem_io_idx; /* index of first populated kmem_io[] */ 999 1000 static page_t * 1001 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 1002 { 1003 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1004 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1005 1006 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 1007 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 1008 } 1009 1010 #ifdef __xpv 1011 static void 1012 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 1013 { 1014 extern void page_destroy_io(page_t *); 1015 segkmem_xfree(vmp, ptr, size, page_destroy_io); 1016 } 1017 #endif 1018 1019 static void * 1020 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 1021 { 1022 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1023 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1024 } 1025 1026 static void * 1027 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1028 { 1029 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1030 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1031 } 1032 1033 static void * 1034 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1035 { 1036 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1037 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1038 } 1039 1040 static void * 1041 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1042 { 1043 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1044 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1045 } 1046 1047 static void * 1048 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1049 { 1050 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1051 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1052 } 1053 1054 static void * 1055 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1056 { 1057 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1058 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1059 } 1060 1061 static void * 1062 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1063 { 1064 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1065 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1066 } 1067 1068 static void * 1069 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1070 { 1071 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1072 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1073 } 1074 1075 static void * 1076 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1077 { 1078 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1079 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1080 } 1081 1082 static void * 1083 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1084 { 1085 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1086 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1087 } 1088 1089 static void * 1090 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1091 { 1092 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1093 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1094 } 1095 1096 struct { 1097 uint64_t io_limit; 1098 char *io_name; 1099 void *(*io_alloc)(vmem_t *, size_t, int); 1100 int io_initial; /* kmem_io_init during startup */ 1101 } io_arena_params[MAX_MEM_RANGES] = { 1102 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1103 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1104 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1105 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1106 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1107 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1108 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1109 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1110 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1111 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1112 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1113 }; 1114 1115 void 1116 kmem_io_init(int a) 1117 { 1118 int c; 1119 char name[40]; 1120 1121 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1122 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1123 #ifdef __xpv 1124 segkmem_free_io, 1125 #else 1126 segkmem_free, 1127 #endif 1128 heap_arena, 0, VM_SLEEP); 1129 1130 for (c = 0; c < KA_NCACHE; c++) { 1131 size_t size = KA_ALIGN << c; 1132 (void) sprintf(name, "%s_%lu", 1133 io_arena_params[a].io_name, size); 1134 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1135 size, size, NULL, NULL, NULL, NULL, 1136 kmem_io[a].kmem_io_arena, 0); 1137 } 1138 } 1139 1140 /* 1141 * Return the index of the highest memory range for addr. 1142 */ 1143 static int 1144 kmem_io_index(uint64_t addr) 1145 { 1146 int n; 1147 1148 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1149 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1150 if (kmem_io[n].kmem_io_arena == NULL) 1151 kmem_io_init(n); 1152 return (n); 1153 } 1154 } 1155 panic("kmem_io_index: invalid addr - must be at least 16m"); 1156 1157 /*NOTREACHED*/ 1158 } 1159 1160 /* 1161 * Return the index of the next kmem_io populated memory range 1162 * after curindex. 1163 */ 1164 static int 1165 kmem_io_index_next(int curindex) 1166 { 1167 int n; 1168 1169 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1170 if (kmem_io[n].kmem_io_arena) 1171 return (n); 1172 } 1173 return (-1); 1174 } 1175 1176 /* 1177 * allow kmem to be mapped in with different PTE cache attribute settings. 1178 * Used by i_ddi_mem_alloc() 1179 */ 1180 int 1181 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1182 { 1183 uint_t hat_flags; 1184 caddr_t kva_end; 1185 uint_t hat_attr; 1186 pfn_t pfn; 1187 1188 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1189 return (-1); 1190 } 1191 1192 hat_attr &= ~HAT_ORDER_MASK; 1193 hat_attr |= order | HAT_NOSYNC; 1194 hat_flags = HAT_LOAD_LOCK; 1195 1196 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1197 (uintptr_t)PAGEMASK); 1198 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1199 1200 while (kva < kva_end) { 1201 pfn = hat_getpfnum(kas.a_hat, kva); 1202 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1203 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1204 kva += MMU_PAGESIZE; 1205 } 1206 1207 return (0); 1208 } 1209 1210 static int 1211 ctgcompare(const void *a1, const void *a2) 1212 { 1213 /* we just want to compare virtual addresses */ 1214 a1 = ((struct ctgas *)a1)->ctg_addr; 1215 a2 = ((struct ctgas *)a2)->ctg_addr; 1216 return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1)); 1217 } 1218 1219 void 1220 ka_init(void) 1221 { 1222 int a; 1223 paddr_t maxphysaddr; 1224 #if !defined(__xpv) 1225 extern pfn_t physmax; 1226 1227 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1228 #else 1229 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1230 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1231 #endif 1232 1233 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1234 1235 for (a = 0; a < MAX_MEM_RANGES; a++) { 1236 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1237 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1238 io_arena_params[a].io_limit = maxphysaddr; 1239 else 1240 a++; 1241 break; 1242 } 1243 } 1244 kmem_io_idx = a; 1245 1246 for (; a < MAX_MEM_RANGES; a++) { 1247 kmem_io[a].kmem_io_attr = kmem_io_attr; 1248 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1249 io_arena_params[a].io_limit; 1250 /* 1251 * initialize kmem_io[] arena/cache corresponding to 1252 * maxphysaddr and to the "common" io memory ranges that 1253 * have io_initial set to a non-zero value. 1254 */ 1255 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1256 kmem_io_init(a); 1257 } 1258 1259 /* initialize ctgtree */ 1260 avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas), 1261 offsetof(struct ctgas, ctg_link)); 1262 } 1263 1264 /* 1265 * put contig address/size 1266 */ 1267 static void * 1268 putctgas(void *addr, size_t size) 1269 { 1270 struct ctgas *ctgp; 1271 if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) { 1272 ctgp->ctg_addr = addr; 1273 ctgp->ctg_size = size; 1274 CTGLOCK(); 1275 avl_add(&ctgtree, ctgp); 1276 CTGUNLOCK(); 1277 } 1278 return (ctgp); 1279 } 1280 1281 /* 1282 * get contig size by addr 1283 */ 1284 static size_t 1285 getctgsz(void *addr) 1286 { 1287 struct ctgas *ctgp; 1288 struct ctgas find; 1289 size_t sz = 0; 1290 1291 find.ctg_addr = addr; 1292 CTGLOCK(); 1293 if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) { 1294 avl_remove(&ctgtree, ctgp); 1295 } 1296 CTGUNLOCK(); 1297 1298 if (ctgp != NULL) { 1299 sz = ctgp->ctg_size; 1300 kmem_free(ctgp, sizeof (*ctgp)); 1301 } 1302 1303 return (sz); 1304 } 1305 1306 /* 1307 * contig_alloc: 1308 * 1309 * allocates contiguous memory to satisfy the 'size' and dma attributes 1310 * specified in 'attr'. 1311 * 1312 * Not all of memory need to be physically contiguous if the 1313 * scatter-gather list length is greater than 1. 1314 */ 1315 1316 /*ARGSUSED*/ 1317 void * 1318 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1319 { 1320 pgcnt_t pgcnt = btopr(size); 1321 size_t asize = pgcnt * PAGESIZE; 1322 page_t *ppl; 1323 int pflag; 1324 void *addr; 1325 1326 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1327 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1328 1329 /* segkmem_xalloc */ 1330 1331 if (align <= PAGESIZE) 1332 addr = vmem_alloc(heap_arena, asize, 1333 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1334 else 1335 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1336 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1337 if (addr) { 1338 ASSERT(!((uintptr_t)addr & (align - 1))); 1339 1340 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1341 vmem_free(heap_arena, addr, asize); 1342 return (NULL); 1343 } 1344 pflag = PG_EXCL; 1345 1346 if (cansleep) 1347 pflag |= PG_WAIT; 1348 1349 /* 4k req gets from freelists rather than pfn search */ 1350 if (pgcnt > 1 || align > PAGESIZE) 1351 pflag |= PG_PHYSCONTIG; 1352 1353 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1354 asize, pflag, &kas, (caddr_t)addr, attr); 1355 1356 if (!ppl) { 1357 vmem_free(heap_arena, addr, asize); 1358 page_unresv(pgcnt); 1359 return (NULL); 1360 } 1361 1362 while (ppl != NULL) { 1363 page_t *pp = ppl; 1364 page_sub(&ppl, pp); 1365 ASSERT(page_iolock_assert(pp)); 1366 page_io_unlock(pp); 1367 page_downgrade(pp); 1368 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1369 pp, (PROT_ALL & ~PROT_USER) | 1370 HAT_NOSYNC, HAT_LOAD_LOCK); 1371 } 1372 } 1373 return (addr); 1374 } 1375 1376 void 1377 contig_free(void *addr, size_t size) 1378 { 1379 pgcnt_t pgcnt = btopr(size); 1380 size_t asize = pgcnt * PAGESIZE; 1381 caddr_t a, ea; 1382 page_t *pp; 1383 1384 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1385 1386 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1387 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1388 if (!pp) 1389 panic("contig_free: contig pp not found"); 1390 1391 if (!page_tryupgrade(pp)) { 1392 page_unlock(pp); 1393 pp = page_lookup(&kvp, 1394 (u_offset_t)(uintptr_t)a, SE_EXCL); 1395 if (pp == NULL) 1396 panic("contig_free: page freed"); 1397 } 1398 page_destroy(pp, 0); 1399 } 1400 1401 page_unresv(pgcnt); 1402 vmem_free(heap_arena, addr, asize); 1403 } 1404 1405 /* 1406 * Allocate from the system, aligned on a specific boundary. 1407 * The alignment, if non-zero, must be a power of 2. 1408 */ 1409 static void * 1410 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1411 ddi_dma_attr_t *attr) 1412 { 1413 size_t *addr, *raddr, rsize; 1414 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1415 int a, i, c; 1416 vmem_t *vmp; 1417 kmem_cache_t *cp = NULL; 1418 1419 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1420 return (NULL); 1421 1422 align = MAX(align, hdrsize); 1423 ASSERT((align & (align - 1)) == 0); 1424 1425 /* 1426 * All of our allocators guarantee 16-byte alignment, so we don't 1427 * need to reserve additional space for the header. 1428 * To simplify picking the correct kmem_io_cache, we round up to 1429 * a multiple of KA_ALIGN. 1430 */ 1431 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1432 1433 if (physcontig && rsize > PAGESIZE) { 1434 if (addr = contig_alloc(size, attr, align, cansleep)) { 1435 if (!putctgas(addr, size)) 1436 contig_free(addr, size); 1437 else 1438 return (addr); 1439 } 1440 return (NULL); 1441 } 1442 1443 a = kmem_io_index(attr->dma_attr_addr_hi); 1444 1445 if (rsize > PAGESIZE) { 1446 vmp = kmem_io[a].kmem_io_arena; 1447 raddr = vmem_alloc(vmp, rsize, 1448 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1449 } else { 1450 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1451 cp = kmem_io[a].kmem_io_cache[c]; 1452 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1453 KM_NOSLEEP); 1454 } 1455 1456 if (raddr == NULL) { 1457 int na; 1458 1459 ASSERT(cansleep == 0); 1460 if (rsize > PAGESIZE) 1461 return (NULL); 1462 /* 1463 * System does not have memory in the requested range. 1464 * Try smaller kmem io ranges and larger cache sizes 1465 * to see if there might be memory available in 1466 * these other caches. 1467 */ 1468 1469 for (na = kmem_io_index_next(a); na >= 0; 1470 na = kmem_io_index_next(na)) { 1471 ASSERT(kmem_io[na].kmem_io_arena); 1472 cp = kmem_io[na].kmem_io_cache[c]; 1473 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1474 if (raddr) 1475 goto kallocdone; 1476 } 1477 /* now try the larger kmem io cache sizes */ 1478 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1479 for (i = c + 1; i < KA_NCACHE; i++) { 1480 cp = kmem_io[na].kmem_io_cache[i]; 1481 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1482 if (raddr) 1483 goto kallocdone; 1484 } 1485 } 1486 return (NULL); 1487 } 1488 1489 kallocdone: 1490 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1491 rsize > PAGESIZE); 1492 1493 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1494 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1495 1496 addr[-4] = (size_t)cp; 1497 addr[-3] = (size_t)vmp; 1498 addr[-2] = (size_t)raddr; 1499 addr[-1] = rsize; 1500 1501 return (addr); 1502 } 1503 1504 static void 1505 kfreea(void *addr) 1506 { 1507 size_t size; 1508 1509 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1510 contig_free(addr, size); 1511 } else { 1512 size_t *saddr = addr; 1513 if (saddr[-4] == 0) 1514 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1515 saddr[-1]); 1516 else 1517 kmem_cache_free((kmem_cache_t *)saddr[-4], 1518 (void *)saddr[-2]); 1519 } 1520 } 1521 1522 /*ARGSUSED*/ 1523 void 1524 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1525 { 1526 } 1527 1528 /* 1529 * Check if the specified cache attribute is supported on the platform. 1530 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1531 */ 1532 boolean_t 1533 i_ddi_check_cache_attr(uint_t flags) 1534 { 1535 /* 1536 * The cache attributes are mutually exclusive. Any combination of 1537 * the attributes leads to a failure. 1538 */ 1539 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1540 if ((cache_attr != 0) && !ISP2(cache_attr)) 1541 return (B_FALSE); 1542 1543 /* All cache attributes are supported on X86/X64 */ 1544 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1545 IOMEM_DATA_UC_WR_COMBINE)) 1546 return (B_TRUE); 1547 1548 /* undefined attributes */ 1549 return (B_FALSE); 1550 } 1551 1552 /* set HAT cache attributes from the cache attributes */ 1553 void 1554 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1555 { 1556 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1557 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1558 1559 /* 1560 * If write-combining is not supported, then it falls back 1561 * to uncacheable. 1562 */ 1563 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && 1564 !is_x86_feature(x86_featureset, X86FSET_PAT)) 1565 cache_attr = IOMEM_DATA_UNCACHED; 1566 1567 /* 1568 * set HAT attrs according to the cache attrs. 1569 */ 1570 switch (cache_attr) { 1571 case IOMEM_DATA_UNCACHED: 1572 *hataccp &= ~HAT_ORDER_MASK; 1573 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1574 break; 1575 case IOMEM_DATA_UC_WR_COMBINE: 1576 *hataccp &= ~HAT_ORDER_MASK; 1577 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1578 break; 1579 case IOMEM_DATA_CACHED: 1580 *hataccp &= ~HAT_ORDER_MASK; 1581 *hataccp |= HAT_UNORDERED_OK; 1582 break; 1583 /* 1584 * This case must not occur because the cache attribute is scrutinized 1585 * before this function is called. 1586 */ 1587 default: 1588 /* 1589 * set cacheable to hat attrs. 1590 */ 1591 *hataccp &= ~HAT_ORDER_MASK; 1592 *hataccp |= HAT_UNORDERED_OK; 1593 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1594 fname, cache_attr); 1595 } 1596 } 1597 1598 /* 1599 * This should actually be called i_ddi_dma_mem_alloc. There should 1600 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1601 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1602 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1603 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1604 * so far which is used for both, DMA and PIO, we have to use the DMA 1605 * ctl ops to make everybody happy. 1606 */ 1607 /*ARGSUSED*/ 1608 int 1609 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1610 size_t length, int cansleep, int flags, 1611 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1612 size_t *real_length, ddi_acc_hdl_t *ap) 1613 { 1614 caddr_t a; 1615 int iomin; 1616 ddi_acc_impl_t *iap; 1617 int physcontig = 0; 1618 pgcnt_t npages; 1619 pgcnt_t minctg; 1620 uint_t order; 1621 int e; 1622 1623 /* 1624 * Check legality of arguments 1625 */ 1626 if (length == 0 || kaddrp == NULL || attr == NULL) { 1627 return (DDI_FAILURE); 1628 } 1629 1630 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1631 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) { 1632 return (DDI_FAILURE); 1633 } 1634 1635 /* 1636 * figure out most restrictive alignment requirement 1637 */ 1638 iomin = attr->dma_attr_minxfer; 1639 iomin = maxbit(iomin, attr->dma_attr_align); 1640 if (iomin == 0) 1641 return (DDI_FAILURE); 1642 1643 ASSERT((iomin & (iomin - 1)) == 0); 1644 1645 /* 1646 * if we allocate memory with IOMEM_DATA_UNCACHED or 1647 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1648 * memory that ends on a page boundry. 1649 * Don't want to have to different cache mappings to the same 1650 * physical page. 1651 */ 1652 if (OVERRIDE_CACHE_ATTR(flags)) { 1653 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1654 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1655 } 1656 1657 /* 1658 * Determine if we need to satisfy the request for physically 1659 * contiguous memory or alignments larger than pagesize. 1660 */ 1661 npages = btopr(length + attr->dma_attr_align); 1662 minctg = howmany(npages, attr->dma_attr_sgllen); 1663 1664 if (minctg > 1) { 1665 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1666 /* 1667 * verify that the minimum contig requirement for the 1668 * actual length does not cross segment boundary. 1669 */ 1670 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1671 size_t); 1672 npages = btopr(length); 1673 minctg = howmany(npages, attr->dma_attr_sgllen); 1674 if (minctg > pfnseg + 1) 1675 return (DDI_FAILURE); 1676 physcontig = 1; 1677 } else { 1678 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1679 } 1680 1681 /* 1682 * Allocate the requested amount from the system. 1683 */ 1684 a = kalloca(length, iomin, cansleep, physcontig, attr); 1685 1686 if ((*kaddrp = a) == NULL) 1687 return (DDI_FAILURE); 1688 1689 /* 1690 * if we to modify the cache attributes, go back and muck with the 1691 * mappings. 1692 */ 1693 if (OVERRIDE_CACHE_ATTR(flags)) { 1694 order = 0; 1695 i_ddi_cacheattr_to_hatacc(flags, &order); 1696 e = kmem_override_cache_attrs(a, length, order); 1697 if (e != 0) { 1698 kfreea(a); 1699 return (DDI_FAILURE); 1700 } 1701 } 1702 1703 if (real_length) { 1704 *real_length = length; 1705 } 1706 if (ap) { 1707 /* 1708 * initialize access handle 1709 */ 1710 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1711 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1712 impl_acc_hdl_init(ap); 1713 } 1714 1715 return (DDI_SUCCESS); 1716 } 1717 1718 /* ARGSUSED */ 1719 void 1720 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1721 { 1722 if (ap != NULL) { 1723 /* 1724 * if we modified the cache attributes on alloc, go back and 1725 * fix them since this memory could be returned to the 1726 * general pool. 1727 */ 1728 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1729 uint_t order = 0; 1730 int e; 1731 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1732 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1733 if (e != 0) { 1734 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1735 "override cache attrs, memory leaked\n"); 1736 return; 1737 } 1738 } 1739 } 1740 kfreea(kaddr); 1741 } 1742 1743 /* 1744 * Access Barriers 1745 * 1746 */ 1747 /*ARGSUSED*/ 1748 int 1749 i_ddi_ontrap(ddi_acc_handle_t hp) 1750 { 1751 return (DDI_FAILURE); 1752 } 1753 1754 /*ARGSUSED*/ 1755 void 1756 i_ddi_notrap(ddi_acc_handle_t hp) 1757 { 1758 } 1759 1760 1761 /* 1762 * Misc Functions 1763 */ 1764 1765 /* 1766 * Implementation instance override functions 1767 * 1768 * No override on i86pc 1769 */ 1770 /*ARGSUSED*/ 1771 uint_t 1772 impl_assign_instance(dev_info_t *dip) 1773 { 1774 return ((uint_t)-1); 1775 } 1776 1777 /*ARGSUSED*/ 1778 int 1779 impl_keep_instance(dev_info_t *dip) 1780 { 1781 1782 #if defined(__xpv) 1783 /* 1784 * Do not persist instance numbers assigned to devices in dom0 1785 */ 1786 dev_info_t *pdip; 1787 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1788 if (((pdip = ddi_get_parent(dip)) != NULL) && 1789 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1790 return (DDI_SUCCESS); 1791 } 1792 #endif 1793 return (DDI_FAILURE); 1794 } 1795 1796 /*ARGSUSED*/ 1797 int 1798 impl_free_instance(dev_info_t *dip) 1799 { 1800 return (DDI_FAILURE); 1801 } 1802 1803 /*ARGSUSED*/ 1804 int 1805 impl_check_cpu(dev_info_t *devi) 1806 { 1807 return (DDI_SUCCESS); 1808 } 1809 1810 /* 1811 * Referenced in common/cpr_driver.c: Power off machine. 1812 * Don't know how to power off i86pc. 1813 */ 1814 void 1815 arch_power_down() 1816 {} 1817 1818 /* 1819 * Copy name to property_name, since name 1820 * is in the low address range below kernelbase. 1821 */ 1822 static void 1823 copy_boot_str(const char *boot_str, char *kern_str, int len) 1824 { 1825 int i = 0; 1826 1827 while (i < len - 1 && boot_str[i] != '\0') { 1828 kern_str[i] = boot_str[i]; 1829 i++; 1830 } 1831 1832 kern_str[i] = 0; /* null terminate */ 1833 if (boot_str[i] != '\0') 1834 cmn_err(CE_WARN, 1835 "boot property string is truncated to %s", kern_str); 1836 } 1837 1838 static void 1839 get_boot_properties(void) 1840 { 1841 extern char hw_provider[]; 1842 dev_info_t *devi; 1843 char *name; 1844 int length; 1845 char property_name[50], property_val[50]; 1846 void *bop_staging_area; 1847 1848 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1849 1850 /* 1851 * Import "root" properties from the boot. 1852 * 1853 * We do this by invoking BOP_NEXTPROP until the list 1854 * is completely copied in. 1855 */ 1856 1857 devi = ddi_root_node(); 1858 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1859 name; /* NULL => DONE */ 1860 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1861 1862 /* copy string to memory above kernelbase */ 1863 copy_boot_str(name, property_name, 50); 1864 1865 /* 1866 * Skip vga properties. They will be picked up later 1867 * by get_vga_properties. 1868 */ 1869 if (strcmp(property_name, "display-edif-block") == 0 || 1870 strcmp(property_name, "display-edif-id") == 0) { 1871 continue; 1872 } 1873 1874 length = BOP_GETPROPLEN(bootops, property_name); 1875 if (length == 0) 1876 continue; 1877 if (length > MMU_PAGESIZE) { 1878 cmn_err(CE_NOTE, 1879 "boot property %s longer than 0x%x, ignored\n", 1880 property_name, MMU_PAGESIZE); 1881 continue; 1882 } 1883 BOP_GETPROP(bootops, property_name, bop_staging_area); 1884 1885 /* 1886 * special properties: 1887 * si-machine, si-hw-provider 1888 * goes to kernel data structures. 1889 * bios-boot-device and stdout 1890 * goes to hardware property list so it may show up 1891 * in the prtconf -vp output. This is needed by 1892 * Install/Upgrade. Once we fix install upgrade, 1893 * this can be taken out. 1894 */ 1895 if (strcmp(name, "si-machine") == 0) { 1896 (void) strncpy(utsname.machine, bop_staging_area, 1897 SYS_NMLN); 1898 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1899 } else if (strcmp(name, "si-hw-provider") == 0) { 1900 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1901 hw_provider[SYS_NMLN - 1] = (char)NULL; 1902 } else if (strcmp(name, "bios-boot-device") == 0) { 1903 copy_boot_str(bop_staging_area, property_val, 50); 1904 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1905 property_name, property_val); 1906 } else if (strcmp(name, "acpi-root-tab") == 0) { 1907 (void) ndi_prop_update_int64(DDI_DEV_T_NONE, devi, 1908 property_name, *((int64_t *)bop_staging_area)); 1909 } else if (strcmp(name, "stdout") == 0) { 1910 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1911 property_name, *((int *)bop_staging_area)); 1912 } else { 1913 /* Property type unknown, use old prop interface */ 1914 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1915 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1916 length); 1917 } 1918 } 1919 1920 kmem_free(bop_staging_area, MMU_PAGESIZE); 1921 } 1922 1923 static void 1924 get_vga_properties(void) 1925 { 1926 dev_info_t *devi; 1927 major_t major; 1928 char *name; 1929 int length; 1930 char property_val[50]; 1931 void *bop_staging_area; 1932 1933 /* 1934 * XXXX Hack Allert! 1935 * There really needs to be a better way for identifying various 1936 * console framebuffers and their related issues. Till then, 1937 * check for this one as a replacement to vgatext. 1938 */ 1939 major = ddi_name_to_major("ragexl"); 1940 if (major == (major_t)-1) { 1941 major = ddi_name_to_major("vgatext"); 1942 if (major == (major_t)-1) 1943 return; 1944 } 1945 devi = devnamesp[major].dn_head; 1946 if (devi == NULL) 1947 return; 1948 1949 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1950 1951 /* 1952 * Import "vga" properties from the boot. 1953 */ 1954 name = "display-edif-block"; 1955 length = BOP_GETPROPLEN(bootops, name); 1956 if (length > 0 && length < MMU_PAGESIZE) { 1957 BOP_GETPROP(bootops, name, bop_staging_area); 1958 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1959 devi, name, bop_staging_area, length); 1960 } 1961 1962 /* 1963 * kdmconfig is also looking for display-type and 1964 * video-adapter-type. We default to color and svga. 1965 * 1966 * Could it be "monochrome", "vga"? 1967 * Nah, you've got to come to the 21st century... 1968 * And you can set monitor type manually in kdmconfig 1969 * if you are really an old junky. 1970 */ 1971 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1972 devi, "display-type", "color"); 1973 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1974 devi, "video-adapter-type", "svga"); 1975 1976 name = "display-edif-id"; 1977 length = BOP_GETPROPLEN(bootops, name); 1978 if (length > 0 && length < MMU_PAGESIZE) { 1979 BOP_GETPROP(bootops, name, bop_staging_area); 1980 copy_boot_str(bop_staging_area, property_val, length); 1981 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1982 devi, name, property_val); 1983 } 1984 1985 kmem_free(bop_staging_area, MMU_PAGESIZE); 1986 } 1987 1988 1989 /* 1990 * This is temporary, but absolutely necessary. If we are being 1991 * booted with a device tree created by the DevConf project's bootconf 1992 * program, then we have device information nodes that reflect 1993 * reality. At this point in time in the Solaris release schedule, the 1994 * kernel drivers aren't prepared for reality. They still depend on their 1995 * own ad-hoc interpretations of the properties created when their .conf 1996 * files were interpreted. These drivers use an "ignore-hardware-nodes" 1997 * property to prevent them from using the nodes passed up from the bootconf 1998 * device tree. 1999 * 2000 * Trying to assemble root file system drivers as we are booting from 2001 * devconf will fail if the kernel driver is basing its name_addr's on the 2002 * psuedo-node device info while the bootpath passed up from bootconf is using 2003 * reality-based name_addrs. We help the boot along in this case by 2004 * looking at the pre-bootconf bootpath and determining if we would have 2005 * successfully matched if that had been the bootpath we had chosen. 2006 * 2007 * Note that we only even perform this extra check if we've booted 2008 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2009 * we're trying to match the name_addr specified in the 1275 bootpath. 2010 */ 2011 2012 #define MAXCOMPONENTLEN 32 2013 2014 int 2015 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2016 { 2017 /* 2018 * There are multiple criteria to be met before we can even 2019 * consider allowing a name_addr match here. 2020 * 2021 * 1) We must have been booted such that the bootconf program 2022 * created device tree nodes and properties. This can be 2023 * determined by examining the 'bootpath' property. This 2024 * property will be a non-null string iff bootconf was 2025 * involved in the boot. 2026 * 2027 * 2) The module that we want to match must be the boot device. 2028 * 2029 * 3) The instance of the module we are thinking of letting be 2030 * our match must be ignoring hardware nodes. 2031 * 2032 * 4) The name_addr we want to match must be the name_addr 2033 * specified in the 1275 bootpath. 2034 */ 2035 static char bootdev_module[MAXCOMPONENTLEN]; 2036 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2037 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2038 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2039 static int quickexit; 2040 2041 char *daddr; 2042 int dlen; 2043 2044 char *lkupname; 2045 int rv = DDI_FAILURE; 2046 2047 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2048 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2049 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2050 "ignore-hardware-nodes", -1) != -1)) { 2051 if (strcmp(daddr, caddr) == 0) { 2052 return (DDI_SUCCESS); 2053 } 2054 } 2055 2056 if (quickexit) 2057 return (rv); 2058 2059 if (bootdev_module[0] == '\0') { 2060 char *addrp, *eoaddrp; 2061 char *busp, *modp, *atp; 2062 char *bp1275, *bp; 2063 int bp1275len, bplen; 2064 2065 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2066 2067 if (ddi_getlongprop(DDI_DEV_T_ANY, 2068 ddi_root_node(), 0, "bootpath", 2069 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2070 bp1275len <= 1) { 2071 /* 2072 * We didn't boot from bootconf so we never need to 2073 * do any special matches. 2074 */ 2075 quickexit = 1; 2076 if (bp1275) 2077 kmem_free(bp1275, bp1275len); 2078 return (rv); 2079 } 2080 2081 if (ddi_getlongprop(DDI_DEV_T_ANY, 2082 ddi_root_node(), 0, "boot-path", 2083 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2084 /* 2085 * No fallback position for matching. This is 2086 * certainly unexpected, but we'll handle it 2087 * just in case. 2088 */ 2089 quickexit = 1; 2090 kmem_free(bp1275, bp1275len); 2091 if (bp) 2092 kmem_free(bp, bplen); 2093 return (rv); 2094 } 2095 2096 /* 2097 * Determine boot device module and 1275 name_addr 2098 * 2099 * bootpath assumed to be of the form /bus/module@name_addr 2100 */ 2101 if (busp = strchr(bp1275, '/')) { 2102 if (modp = strchr(busp + 1, '/')) { 2103 if (atp = strchr(modp + 1, '@')) { 2104 *atp = '\0'; 2105 addrp = atp + 1; 2106 if (eoaddrp = strchr(addrp, '/')) 2107 *eoaddrp = '\0'; 2108 } 2109 } 2110 } 2111 2112 if (modp && addrp) { 2113 (void) strncpy(bootdev_module, modp + 1, 2114 MAXCOMPONENTLEN); 2115 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2116 2117 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2118 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2119 } else { 2120 quickexit = 1; 2121 kmem_free(bp1275, bp1275len); 2122 kmem_free(bp, bplen); 2123 return (rv); 2124 } 2125 2126 /* 2127 * Determine fallback name_addr 2128 * 2129 * 10/3/96 - Also save fallback module name because it 2130 * might actually be different than the current module 2131 * name. E.G., ISA pnp drivers have new names. 2132 * 2133 * bootpath assumed to be of the form /bus/module@name_addr 2134 */ 2135 addrp = NULL; 2136 if (busp = strchr(bp, '/')) { 2137 if (modp = strchr(busp + 1, '/')) { 2138 if (atp = strchr(modp + 1, '@')) { 2139 *atp = '\0'; 2140 addrp = atp + 1; 2141 if (eoaddrp = strchr(addrp, '/')) 2142 *eoaddrp = '\0'; 2143 } 2144 } 2145 } 2146 2147 if (modp && addrp) { 2148 (void) strncpy(bootdev_oldmod, modp + 1, 2149 MAXCOMPONENTLEN); 2150 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2151 2152 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2153 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2154 } 2155 2156 /* Free up the bootpath storage now that we're done with it. */ 2157 kmem_free(bp1275, bp1275len); 2158 kmem_free(bp, bplen); 2159 2160 if (bootdev_oldaddr[0] == '\0') { 2161 quickexit = 1; 2162 return (rv); 2163 } 2164 } 2165 2166 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2167 (strcmp(bootdev_module, lkupname) == 0 || 2168 strcmp(bootdev_oldmod, lkupname) == 0) && 2169 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2170 "ignore-hardware-nodes", -1) != -1) || 2171 ignore_hardware_nodes) && 2172 strcmp(bootdev_newaddr, caddr) == 0 && 2173 strcmp(bootdev_oldaddr, naddr) == 0) { 2174 rv = DDI_SUCCESS; 2175 } 2176 2177 return (rv); 2178 } 2179 2180 /* 2181 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2182 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2183 */ 2184 /*ARGSUSED*/ 2185 int 2186 e_ddi_copyfromdev(dev_info_t *devi, 2187 off_t off, const void *devaddr, void *kaddr, size_t len) 2188 { 2189 bcopy(devaddr, kaddr, len); 2190 return (0); 2191 } 2192 2193 /* 2194 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2195 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2196 */ 2197 /*ARGSUSED*/ 2198 int 2199 e_ddi_copytodev(dev_info_t *devi, 2200 off_t off, const void *kaddr, void *devaddr, size_t len) 2201 { 2202 bcopy(kaddr, devaddr, len); 2203 return (0); 2204 } 2205 2206 2207 static int 2208 poke_mem(peekpoke_ctlops_t *in_args) 2209 { 2210 int err = DDI_SUCCESS; 2211 on_trap_data_t otd; 2212 2213 /* Set up protected environment. */ 2214 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2215 switch (in_args->size) { 2216 case sizeof (uint8_t): 2217 *(uint8_t *)(in_args->dev_addr) = 2218 *(uint8_t *)in_args->host_addr; 2219 break; 2220 2221 case sizeof (uint16_t): 2222 *(uint16_t *)(in_args->dev_addr) = 2223 *(uint16_t *)in_args->host_addr; 2224 break; 2225 2226 case sizeof (uint32_t): 2227 *(uint32_t *)(in_args->dev_addr) = 2228 *(uint32_t *)in_args->host_addr; 2229 break; 2230 2231 case sizeof (uint64_t): 2232 *(uint64_t *)(in_args->dev_addr) = 2233 *(uint64_t *)in_args->host_addr; 2234 break; 2235 2236 default: 2237 err = DDI_FAILURE; 2238 break; 2239 } 2240 } else 2241 err = DDI_FAILURE; 2242 2243 /* Take down protected environment. */ 2244 no_trap(); 2245 2246 return (err); 2247 } 2248 2249 2250 static int 2251 peek_mem(peekpoke_ctlops_t *in_args) 2252 { 2253 int err = DDI_SUCCESS; 2254 on_trap_data_t otd; 2255 2256 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2257 switch (in_args->size) { 2258 case sizeof (uint8_t): 2259 *(uint8_t *)in_args->host_addr = 2260 *(uint8_t *)in_args->dev_addr; 2261 break; 2262 2263 case sizeof (uint16_t): 2264 *(uint16_t *)in_args->host_addr = 2265 *(uint16_t *)in_args->dev_addr; 2266 break; 2267 2268 case sizeof (uint32_t): 2269 *(uint32_t *)in_args->host_addr = 2270 *(uint32_t *)in_args->dev_addr; 2271 break; 2272 2273 case sizeof (uint64_t): 2274 *(uint64_t *)in_args->host_addr = 2275 *(uint64_t *)in_args->dev_addr; 2276 break; 2277 2278 default: 2279 err = DDI_FAILURE; 2280 break; 2281 } 2282 } else 2283 err = DDI_FAILURE; 2284 2285 no_trap(); 2286 return (err); 2287 } 2288 2289 2290 /* 2291 * This is called only to process peek/poke when the DIP is NULL. 2292 * Assume that this is for memory, as nexi take care of device safe accesses. 2293 */ 2294 int 2295 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2296 { 2297 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2298 } 2299 2300 /* 2301 * we've just done a cautious put/get. Check if it was successful by 2302 * calling pci_ereport_post() on all puts and for any gets that return -1 2303 */ 2304 static int 2305 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2306 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2307 { 2308 int rval = DDI_SUCCESS; 2309 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2310 ddi_fm_error_t de; 2311 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2312 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2313 int check_err = 0; 2314 int repcount = in_args->repcount; 2315 2316 if (ctlop == DDI_CTLOPS_POKE && 2317 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2318 return (DDI_SUCCESS); 2319 2320 if (ctlop == DDI_CTLOPS_PEEK && 2321 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2322 for (; repcount; repcount--) { 2323 switch (in_args->size) { 2324 case sizeof (uint8_t): 2325 if (*(uint8_t *)in_args->host_addr == 0xff) 2326 check_err = 1; 2327 break; 2328 case sizeof (uint16_t): 2329 if (*(uint16_t *)in_args->host_addr == 0xffff) 2330 check_err = 1; 2331 break; 2332 case sizeof (uint32_t): 2333 if (*(uint32_t *)in_args->host_addr == 2334 0xffffffff) 2335 check_err = 1; 2336 break; 2337 case sizeof (uint64_t): 2338 if (*(uint64_t *)in_args->host_addr == 2339 0xffffffffffffffff) 2340 check_err = 1; 2341 break; 2342 } 2343 } 2344 if (check_err == 0) 2345 return (DDI_SUCCESS); 2346 } 2347 /* 2348 * for a cautious put or get or a non-cautious get that returned -1 call 2349 * io framework to see if there really was an error 2350 */ 2351 bzero(&de, sizeof (ddi_fm_error_t)); 2352 de.fme_version = DDI_FME_VERSION; 2353 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2354 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2355 de.fme_flag = DDI_FM_ERR_EXPECTED; 2356 de.fme_acc_handle = in_args->handle; 2357 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2358 /* 2359 * We only get here with DDI_DEFAULT_ACC for config space gets. 2360 * Non-hardened drivers may be probing the hardware and 2361 * expecting -1 returned. So need to treat errors on 2362 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2363 */ 2364 de.fme_flag = DDI_FM_ERR_EXPECTED; 2365 de.fme_acc_handle = in_args->handle; 2366 } else { 2367 /* 2368 * Hardened driver doing protected accesses shouldn't 2369 * get errors unless there's a hardware problem. Treat 2370 * as nonfatal if there's an error, but set UNEXPECTED 2371 * so we raise ereports on any errors and potentially 2372 * fault the device 2373 */ 2374 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2375 } 2376 (void) scan(dip, &de); 2377 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2378 de.fme_status != DDI_FM_OK) { 2379 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2380 rval = DDI_FAILURE; 2381 errp->err_ena = de.fme_ena; 2382 errp->err_expected = de.fme_flag; 2383 errp->err_status = DDI_FM_NONFATAL; 2384 } 2385 return (rval); 2386 } 2387 2388 /* 2389 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2390 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2391 * recurse, so assume all puts are OK and gets have failed if they return -1 2392 */ 2393 static int 2394 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2395 { 2396 int rval = DDI_SUCCESS; 2397 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2398 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2399 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2400 int repcount = in_args->repcount; 2401 2402 if (ctlop == DDI_CTLOPS_POKE) 2403 return (rval); 2404 2405 for (; repcount; repcount--) { 2406 switch (in_args->size) { 2407 case sizeof (uint8_t): 2408 if (*(uint8_t *)in_args->host_addr == 0xff) 2409 rval = DDI_FAILURE; 2410 break; 2411 case sizeof (uint16_t): 2412 if (*(uint16_t *)in_args->host_addr == 0xffff) 2413 rval = DDI_FAILURE; 2414 break; 2415 case sizeof (uint32_t): 2416 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2417 rval = DDI_FAILURE; 2418 break; 2419 case sizeof (uint64_t): 2420 if (*(uint64_t *)in_args->host_addr == 2421 0xffffffffffffffff) 2422 rval = DDI_FAILURE; 2423 break; 2424 } 2425 } 2426 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2427 rval == DDI_FAILURE) { 2428 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2429 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2430 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2431 errp->err_status = DDI_FM_NONFATAL; 2432 } 2433 return (rval); 2434 } 2435 2436 int 2437 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2438 ddi_ctl_enum_t ctlop, void *arg, void *result, 2439 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2440 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2441 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2442 { 2443 int rval; 2444 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2445 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2446 2447 /* 2448 * this function only supports cautious accesses, not peeks/pokes 2449 * which don't have a handle 2450 */ 2451 if (hp == NULL) 2452 return (DDI_FAILURE); 2453 2454 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2455 if (!mutex_tryenter(err_mutexp)) { 2456 /* 2457 * As this may be a recursive call from within 2458 * pci_ereport_post() we can't wait for the mutexes. 2459 * Fortunately we know someone is already calling 2460 * pci_ereport_post() which will handle the error bits 2461 * for us, and as this is a config space access we can 2462 * just do the access and check return value for -1 2463 * using pci_peekpoke_check_nofma(). 2464 */ 2465 rval = handler(dip, rdip, ctlop, arg, result); 2466 if (rval == DDI_SUCCESS) 2467 rval = pci_peekpoke_check_nofma(arg, ctlop); 2468 return (rval); 2469 } 2470 /* 2471 * This can't be a recursive call. Drop the err_mutex and get 2472 * both mutexes in the right order. If an error hasn't already 2473 * been detected by the ontrap code, use pci_peekpoke_check_fma 2474 * which will call pci_ereport_post() to check error status. 2475 */ 2476 mutex_exit(err_mutexp); 2477 } 2478 mutex_enter(peek_poke_mutexp); 2479 rval = handler(dip, rdip, ctlop, arg, result); 2480 if (rval == DDI_SUCCESS) { 2481 mutex_enter(err_mutexp); 2482 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2483 mutex_exit(err_mutexp); 2484 } 2485 mutex_exit(peek_poke_mutexp); 2486 return (rval); 2487 } 2488 2489 void 2490 impl_setup_ddi(void) 2491 { 2492 #if !defined(__xpv) 2493 extern void startup_bios_disk(void); 2494 extern int post_fastreboot; 2495 #endif 2496 dev_info_t *xdip, *isa_dip; 2497 rd_existing_t rd_mem_prop; 2498 int err; 2499 2500 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2501 (pnode_t)DEVI_SID_NODEID, &xdip); 2502 2503 (void) BOP_GETPROP(bootops, 2504 "ramdisk_start", (void *)&ramdisk_start); 2505 (void) BOP_GETPROP(bootops, 2506 "ramdisk_end", (void *)&ramdisk_end); 2507 2508 #ifdef __xpv 2509 ramdisk_start -= ONE_GIG; 2510 ramdisk_end -= ONE_GIG; 2511 #endif 2512 rd_mem_prop.phys = ramdisk_start; 2513 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2514 2515 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2516 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2517 sizeof (rd_mem_prop)); 2518 err = ndi_devi_bind_driver(xdip, 0); 2519 ASSERT(err == 0); 2520 2521 /* isa node */ 2522 if (pseudo_isa) { 2523 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2524 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2525 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2526 "device_type", "isa"); 2527 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2528 "bus-type", "isa"); 2529 (void) ndi_devi_bind_driver(isa_dip, 0); 2530 } 2531 2532 /* 2533 * Read in the properties from the boot. 2534 */ 2535 get_boot_properties(); 2536 2537 /* not framebuffer should be enumerated, if present */ 2538 get_vga_properties(); 2539 2540 /* 2541 * Check for administratively disabled drivers. 2542 */ 2543 check_driver_disable(); 2544 2545 #if !defined(__xpv) 2546 if (!post_fastreboot) 2547 startup_bios_disk(); 2548 #endif 2549 /* do bus dependent probes. */ 2550 impl_bus_initialprobe(); 2551 } 2552 2553 dev_t 2554 getrootdev(void) 2555 { 2556 /* 2557 * Usually rootfs.bo_name is initialized by the 2558 * the bootpath property from bootenv.rc, but 2559 * defaults to "/ramdisk:a" otherwise. 2560 */ 2561 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2562 } 2563 2564 static struct bus_probe { 2565 struct bus_probe *next; 2566 void (*probe)(int); 2567 } *bus_probes; 2568 2569 void 2570 impl_bus_add_probe(void (*func)(int)) 2571 { 2572 struct bus_probe *probe; 2573 struct bus_probe *lastprobe = NULL; 2574 2575 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2576 probe->probe = func; 2577 probe->next = NULL; 2578 2579 if (!bus_probes) { 2580 bus_probes = probe; 2581 return; 2582 } 2583 2584 lastprobe = bus_probes; 2585 while (lastprobe->next) 2586 lastprobe = lastprobe->next; 2587 lastprobe->next = probe; 2588 } 2589 2590 /*ARGSUSED*/ 2591 void 2592 impl_bus_delete_probe(void (*func)(int)) 2593 { 2594 struct bus_probe *prev = NULL; 2595 struct bus_probe *probe = bus_probes; 2596 2597 while (probe) { 2598 if (probe->probe == func) 2599 break; 2600 prev = probe; 2601 probe = probe->next; 2602 } 2603 2604 if (probe == NULL) 2605 return; 2606 2607 if (prev) 2608 prev->next = probe->next; 2609 else 2610 bus_probes = probe->next; 2611 2612 kmem_free(probe, sizeof (struct bus_probe)); 2613 } 2614 2615 /* 2616 * impl_bus_initialprobe 2617 * Modload the prom simulator, then let it probe to verify existence 2618 * and type of PCI support. 2619 */ 2620 static void 2621 impl_bus_initialprobe(void) 2622 { 2623 struct bus_probe *probe; 2624 2625 /* load modules to install bus probes */ 2626 #if defined(__xpv) 2627 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2628 if (modload("misc", "pci_autoconfig") < 0) { 2629 panic("failed to load misc/pci_autoconfig"); 2630 } 2631 2632 if (modload("drv", "isa") < 0) 2633 panic("failed to load drv/isa"); 2634 } 2635 2636 (void) modload("misc", "xpv_autoconfig"); 2637 #else 2638 if (modload("misc", "pci_autoconfig") < 0) { 2639 panic("failed to load misc/pci_autoconfig"); 2640 } 2641 2642 (void) modload("misc", "acpidev"); 2643 2644 if (modload("drv", "isa") < 0) 2645 panic("failed to load drv/isa"); 2646 #endif 2647 2648 probe = bus_probes; 2649 while (probe) { 2650 /* run the probe functions */ 2651 (*probe->probe)(0); 2652 probe = probe->next; 2653 } 2654 } 2655 2656 /* 2657 * impl_bus_reprobe 2658 * Reprogram devices not set up by firmware. 2659 */ 2660 static void 2661 impl_bus_reprobe(void) 2662 { 2663 struct bus_probe *probe; 2664 2665 probe = bus_probes; 2666 while (probe) { 2667 /* run the probe function */ 2668 (*probe->probe)(1); 2669 probe = probe->next; 2670 } 2671 } 2672 2673 2674 /* 2675 * The following functions ready a cautious request to go up to the nexus 2676 * driver. It is up to the nexus driver to decide how to process the request. 2677 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2678 * differently. 2679 */ 2680 2681 static void 2682 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2683 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2684 ddi_ctl_enum_t cmd) 2685 { 2686 peekpoke_ctlops_t cautacc_ctlops_arg; 2687 2688 cautacc_ctlops_arg.size = size; 2689 cautacc_ctlops_arg.dev_addr = dev_addr; 2690 cautacc_ctlops_arg.host_addr = host_addr; 2691 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2692 cautacc_ctlops_arg.repcount = repcount; 2693 cautacc_ctlops_arg.flags = flags; 2694 2695 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2696 &cautacc_ctlops_arg, NULL); 2697 } 2698 2699 uint8_t 2700 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2701 { 2702 uint8_t value; 2703 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2704 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2705 2706 return (value); 2707 } 2708 2709 uint16_t 2710 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2711 { 2712 uint16_t value; 2713 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2714 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2715 2716 return (value); 2717 } 2718 2719 uint32_t 2720 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2721 { 2722 uint32_t value; 2723 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2724 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2725 2726 return (value); 2727 } 2728 2729 uint64_t 2730 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2731 { 2732 uint64_t value; 2733 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2734 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2735 2736 return (value); 2737 } 2738 2739 void 2740 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2741 { 2742 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2743 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2744 } 2745 2746 void 2747 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2748 { 2749 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2750 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2751 } 2752 2753 void 2754 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2755 { 2756 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2757 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2758 } 2759 2760 void 2761 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2762 { 2763 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2764 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2765 } 2766 2767 void 2768 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2769 size_t repcount, uint_t flags) 2770 { 2771 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2772 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2773 } 2774 2775 void 2776 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2777 uint16_t *dev_addr, size_t repcount, uint_t flags) 2778 { 2779 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2780 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2781 } 2782 2783 void 2784 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2785 uint32_t *dev_addr, size_t repcount, uint_t flags) 2786 { 2787 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2788 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2789 } 2790 2791 void 2792 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2793 uint64_t *dev_addr, size_t repcount, uint_t flags) 2794 { 2795 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2796 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2797 } 2798 2799 void 2800 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2801 size_t repcount, uint_t flags) 2802 { 2803 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2804 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2805 } 2806 2807 void 2808 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2809 uint16_t *dev_addr, size_t repcount, uint_t flags) 2810 { 2811 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2812 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2813 } 2814 2815 void 2816 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2817 uint32_t *dev_addr, size_t repcount, uint_t flags) 2818 { 2819 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2820 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2821 } 2822 2823 void 2824 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2825 uint64_t *dev_addr, size_t repcount, uint_t flags) 2826 { 2827 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2828 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2829 } 2830 2831 boolean_t 2832 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2833 { 2834 uint64_t hi_pa; 2835 2836 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2837 if (attrp->dma_attr_addr_hi < hi_pa) { 2838 return (B_TRUE); 2839 } 2840 2841 return (B_FALSE); 2842 } 2843 2844 size_t 2845 i_ddi_copybuf_size() 2846 { 2847 return (dma_max_copybuf_size); 2848 } 2849 2850 /* 2851 * i_ddi_dma_max() 2852 * returns the maximum DMA size which can be performed in a single DMA 2853 * window taking into account the devices DMA contraints (attrp), the 2854 * maximum copy buffer size (if applicable), and the worse case buffer 2855 * fragmentation. 2856 */ 2857 /*ARGSUSED*/ 2858 uint32_t 2859 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2860 { 2861 uint64_t maxxfer; 2862 2863 2864 /* 2865 * take the min of maxxfer and the the worse case fragementation 2866 * (e.g. every cookie <= 1 page) 2867 */ 2868 maxxfer = MIN(attrp->dma_attr_maxxfer, 2869 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2870 2871 /* 2872 * If the DMA engine can't reach all off memory, we also need to take 2873 * the max size of the copybuf into consideration. 2874 */ 2875 if (i_ddi_copybuf_required(attrp)) { 2876 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2877 } 2878 2879 /* 2880 * we only return a 32-bit value. Make sure it's not -1. Round to a 2881 * page so it won't be mistaken for an error value during debug. 2882 */ 2883 if (maxxfer >= 0xFFFFFFFF) { 2884 maxxfer = 0xFFFFF000; 2885 } 2886 2887 /* 2888 * make sure the value we return is a whole multiple of the 2889 * granlarity. 2890 */ 2891 if (attrp->dma_attr_granular > 1) { 2892 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2893 } 2894 2895 return ((uint32_t)maxxfer); 2896 } 2897 2898 /*ARGSUSED*/ 2899 void 2900 translate_devid(dev_info_t *dip) 2901 { 2902 } 2903 2904 pfn_t 2905 i_ddi_paddr_to_pfn(paddr_t paddr) 2906 { 2907 pfn_t pfn; 2908 2909 #ifdef __xpv 2910 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2911 pfn = xen_assign_pfn(mmu_btop(paddr)); 2912 } else { 2913 pfn = mmu_btop(paddr); 2914 } 2915 #else 2916 pfn = mmu_btop(paddr); 2917 #endif 2918 2919 return (pfn); 2920 } 2921