xref: /titanic_52/usr/src/uts/i86pc/os/cpupm/cpu_acpi.c (revision 9d12795f87b63c2e39e87bff369182edd34677d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/cpu_acpi.h>
26 #include <sys/cpu_idle.h>
27 #include <sys/dtrace.h>
28 #include <sys/sdt.h>
29 
30 /*
31  * List of the processor ACPI object types that are being used.
32  */
33 typedef enum cpu_acpi_obj {
34 	PDC_OBJ = 0,
35 	PCT_OBJ,
36 	PSS_OBJ,
37 	PSD_OBJ,
38 	PPC_OBJ,
39 	PTC_OBJ,
40 	TSS_OBJ,
41 	TSD_OBJ,
42 	TPC_OBJ,
43 	CST_OBJ,
44 	CSD_OBJ,
45 } cpu_acpi_obj_t;
46 
47 /*
48  * Container to store object name.
49  * Other attributes can be added in the future as necessary.
50  */
51 typedef struct cpu_acpi_obj_attr {
52 	char *name;
53 } cpu_acpi_obj_attr_t;
54 
55 /*
56  * List of object attributes.
57  * NOTE: Please keep the ordering of the list as same as cpu_acpi_obj_t.
58  */
59 static cpu_acpi_obj_attr_t cpu_acpi_obj_attrs[] = {
60 	{"_PDC"},
61 	{"_PCT"},
62 	{"_PSS"},
63 	{"_PSD"},
64 	{"_PPC"},
65 	{"_PTC"},
66 	{"_TSS"},
67 	{"_TSD"},
68 	{"_TPC"},
69 	{"_CST"},
70 	{"_CSD"}
71 };
72 
73 /*
74  * Cache the ACPI CPU control data objects.
75  */
76 static int
77 cpu_acpi_cache_ctrl_regs(cpu_acpi_handle_t handle, cpu_acpi_obj_t objtype,
78     cpu_acpi_ctrl_regs_t *regs)
79 {
80 	ACPI_STATUS astatus;
81 	ACPI_BUFFER abuf;
82 	ACPI_OBJECT *obj;
83 	AML_RESOURCE_GENERIC_REGISTER *greg;
84 	int ret = -1;
85 	int i;
86 
87 	/*
88 	 * Fetch the control registers (if present) for the CPU node.
89 	 * Since they are optional, non-existence is not a failure
90 	 * (we just consider it a fixed hardware case).
91 	 */
92 	abuf.Length = ACPI_ALLOCATE_BUFFER;
93 	abuf.Pointer = NULL;
94 	astatus = AcpiEvaluateObjectTyped(handle->cs_handle,
95 	    cpu_acpi_obj_attrs[objtype].name, NULL, &abuf, ACPI_TYPE_PACKAGE);
96 	if (ACPI_FAILURE(astatus)) {
97 		if (astatus == AE_NOT_FOUND) {
98 			DTRACE_PROBE3(cpu_acpi__eval__err, int, handle->cs_id,
99 			    int, objtype, int, astatus);
100 			regs[0].cr_addrspace_id = ACPI_ADR_SPACE_FIXED_HARDWARE;
101 			regs[1].cr_addrspace_id = ACPI_ADR_SPACE_FIXED_HARDWARE;
102 			return (1);
103 		}
104 		cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating %s package "
105 		    "for CPU %d.", astatus, cpu_acpi_obj_attrs[objtype].name,
106 		    handle->cs_id);
107 		goto out;
108 	}
109 
110 	obj = abuf.Pointer;
111 	if (obj->Package.Count != 2) {
112 		cmn_err(CE_NOTE, "!cpu_acpi: %s package bad count %d for "
113 		    "CPU %d.", cpu_acpi_obj_attrs[objtype].name,
114 		    obj->Package.Count, handle->cs_id);
115 		goto out;
116 	}
117 
118 	/*
119 	 * Does the package look coherent?
120 	 */
121 	for (i = 0; i < obj->Package.Count; i++) {
122 		if (obj->Package.Elements[i].Type != ACPI_TYPE_BUFFER) {
123 			cmn_err(CE_NOTE, "!cpu_acpi: Unexpected data in "
124 			    "%s package for CPU %d.",
125 			    cpu_acpi_obj_attrs[objtype].name,
126 			    handle->cs_id);
127 			goto out;
128 		}
129 
130 		greg = (AML_RESOURCE_GENERIC_REGISTER *)
131 		    obj->Package.Elements[i].Buffer.Pointer;
132 		if (greg->DescriptorType !=
133 		    ACPI_RESOURCE_NAME_GENERIC_REGISTER) {
134 			cmn_err(CE_NOTE, "!cpu_acpi: %s package has format "
135 			    "error for CPU %d.",
136 			    cpu_acpi_obj_attrs[objtype].name,
137 			    handle->cs_id);
138 			goto out;
139 		}
140 		if (greg->ResourceLength !=
141 		    ACPI_AML_SIZE_LARGE(AML_RESOURCE_GENERIC_REGISTER)) {
142 			cmn_err(CE_NOTE, "!cpu_acpi: %s package not right "
143 			    "size for CPU %d.",
144 			    cpu_acpi_obj_attrs[objtype].name,
145 			    handle->cs_id);
146 			goto out;
147 		}
148 		if (greg->AddressSpaceId != ACPI_ADR_SPACE_FIXED_HARDWARE &&
149 		    greg->AddressSpaceId != ACPI_ADR_SPACE_SYSTEM_IO) {
150 			cmn_err(CE_NOTE, "!cpu_apci: %s contains unsupported "
151 			    "address space type %x for CPU %d.",
152 			    cpu_acpi_obj_attrs[objtype].name,
153 			    greg->AddressSpaceId,
154 			    handle->cs_id);
155 			goto out;
156 		}
157 	}
158 
159 	/*
160 	 * Looks good!
161 	 */
162 	for (i = 0; i < obj->Package.Count; i++) {
163 		greg = (AML_RESOURCE_GENERIC_REGISTER *)
164 		    obj->Package.Elements[i].Buffer.Pointer;
165 		regs[i].cr_addrspace_id = greg->AddressSpaceId;
166 		regs[i].cr_width = greg->BitWidth;
167 		regs[i].cr_offset = greg->BitOffset;
168 		regs[i].cr_asize = greg->AccessSize;
169 		regs[i].cr_address = greg->Address;
170 	}
171 	ret = 0;
172 out:
173 	if (abuf.Pointer != NULL)
174 		AcpiOsFree(abuf.Pointer);
175 	return (ret);
176 }
177 
178 /*
179  * Cache the ACPI _PCT data. The _PCT data defines the interface to use
180  * when making power level transitions (i.e., system IO ports, fixed
181  * hardware port, etc).
182  */
183 static int
184 cpu_acpi_cache_pct(cpu_acpi_handle_t handle)
185 {
186 	cpu_acpi_pct_t *pct;
187 	int ret;
188 
189 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_PCT_CACHED);
190 	pct = &CPU_ACPI_PCT(handle)[0];
191 	if ((ret = cpu_acpi_cache_ctrl_regs(handle, PCT_OBJ, pct)) == 0)
192 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_PCT_CACHED);
193 	return (ret);
194 }
195 
196 /*
197  * Cache the ACPI _PTC data. The _PTC data defines the interface to use
198  * when making T-state transitions (i.e., system IO ports, fixed
199  * hardware port, etc).
200  */
201 static int
202 cpu_acpi_cache_ptc(cpu_acpi_handle_t handle)
203 {
204 	cpu_acpi_ptc_t *ptc;
205 	int ret;
206 
207 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_PTC_CACHED);
208 	ptc = &CPU_ACPI_PTC(handle)[0];
209 	if ((ret = cpu_acpi_cache_ctrl_regs(handle, PTC_OBJ, ptc)) == 0)
210 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_PTC_CACHED);
211 	return (ret);
212 }
213 
214 /*
215  * Cache the ACPI CPU state dependency data objects.
216  */
217 static int
218 cpu_acpi_cache_state_dependencies(cpu_acpi_handle_t handle,
219     cpu_acpi_obj_t objtype, cpu_acpi_state_dependency_t *sd)
220 {
221 	ACPI_STATUS astatus;
222 	ACPI_BUFFER abuf;
223 	ACPI_OBJECT *pkg, *elements;
224 	int number;
225 	int ret = -1;
226 
227 	if (objtype == CSD_OBJ) {
228 		number = 6;
229 	} else {
230 		number = 5;
231 	}
232 	/*
233 	 * Fetch the dependencies (if present) for the CPU node.
234 	 * Since they are optional, non-existence is not a failure
235 	 * (it's up to the caller to determine how to handle non-existence).
236 	 */
237 	abuf.Length = ACPI_ALLOCATE_BUFFER;
238 	abuf.Pointer = NULL;
239 	astatus = AcpiEvaluateObjectTyped(handle->cs_handle,
240 	    cpu_acpi_obj_attrs[objtype].name, NULL, &abuf, ACPI_TYPE_PACKAGE);
241 	if (ACPI_FAILURE(astatus)) {
242 		if (astatus == AE_NOT_FOUND) {
243 			DTRACE_PROBE3(cpu_acpi__eval__err, int, handle->cs_id,
244 			    int, objtype, int, astatus);
245 			return (1);
246 		}
247 		cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating %s package "
248 		    "for CPU %d.", astatus, cpu_acpi_obj_attrs[objtype].name,
249 		    handle->cs_id);
250 		goto out;
251 	}
252 
253 	pkg = abuf.Pointer;
254 
255 	if (((objtype != CSD_OBJ) && (pkg->Package.Count != 1)) ||
256 	    ((objtype == CSD_OBJ) && (pkg->Package.Count != 1) &&
257 	    (pkg->Package.Count != 2))) {
258 		cmn_err(CE_NOTE, "!cpu_acpi: %s unsupported package count %d "
259 		    "for CPU %d.", cpu_acpi_obj_attrs[objtype].name,
260 		    pkg->Package.Count, handle->cs_id);
261 		goto out;
262 	}
263 
264 	/*
265 	 * For C-state domain, we assume C2 and C3 have the same
266 	 * domain information
267 	 */
268 	if (pkg->Package.Elements[0].Type != ACPI_TYPE_PACKAGE ||
269 	    pkg->Package.Elements[0].Package.Count != number) {
270 		cmn_err(CE_NOTE, "!cpu_acpi: Unexpected data in %s package "
271 		    "for CPU %d.", cpu_acpi_obj_attrs[objtype].name,
272 		    handle->cs_id);
273 		goto out;
274 	}
275 	elements = pkg->Package.Elements[0].Package.Elements;
276 	if (elements[0].Integer.Value != number ||
277 	    elements[1].Integer.Value != 0) {
278 		cmn_err(CE_NOTE, "!cpu_acpi: Unexpected %s revision for "
279 		    "CPU %d.", cpu_acpi_obj_attrs[objtype].name,
280 		    handle->cs_id);
281 		goto out;
282 	}
283 
284 	sd->sd_entries = elements[0].Integer.Value;
285 	sd->sd_revision = elements[1].Integer.Value;
286 	sd->sd_domain = elements[2].Integer.Value;
287 	sd->sd_type = elements[3].Integer.Value;
288 	sd->sd_num = elements[4].Integer.Value;
289 	if (objtype == CSD_OBJ) {
290 		sd->sd_index = elements[5].Integer.Value;
291 	}
292 
293 	ret = 0;
294 out:
295 	if (abuf.Pointer != NULL)
296 		AcpiOsFree(abuf.Pointer);
297 	return (ret);
298 }
299 
300 /*
301  * Cache the ACPI _PSD data. The _PSD data defines P-state CPU dependencies
302  * (think CPU domains).
303  */
304 static int
305 cpu_acpi_cache_psd(cpu_acpi_handle_t handle)
306 {
307 	cpu_acpi_psd_t *psd;
308 	int ret;
309 
310 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_PSD_CACHED);
311 	psd = &CPU_ACPI_PSD(handle);
312 	ret = cpu_acpi_cache_state_dependencies(handle, PSD_OBJ, psd);
313 	if (ret == 0)
314 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_PSD_CACHED);
315 	return (ret);
316 
317 }
318 
319 /*
320  * Cache the ACPI _TSD data. The _TSD data defines T-state CPU dependencies
321  * (think CPU domains).
322  */
323 static int
324 cpu_acpi_cache_tsd(cpu_acpi_handle_t handle)
325 {
326 	cpu_acpi_tsd_t *tsd;
327 	int ret;
328 
329 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_TSD_CACHED);
330 	tsd = &CPU_ACPI_TSD(handle);
331 	ret = cpu_acpi_cache_state_dependencies(handle, TSD_OBJ, tsd);
332 	if (ret == 0)
333 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_TSD_CACHED);
334 	return (ret);
335 
336 }
337 
338 /*
339  * Cache the ACPI _CSD data. The _CSD data defines C-state CPU dependencies
340  * (think CPU domains).
341  */
342 static int
343 cpu_acpi_cache_csd(cpu_acpi_handle_t handle)
344 {
345 	cpu_acpi_csd_t *csd;
346 	int ret;
347 
348 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_CSD_CACHED);
349 	csd = &CPU_ACPI_CSD(handle);
350 	ret = cpu_acpi_cache_state_dependencies(handle, CSD_OBJ, csd);
351 	if (ret == 0)
352 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_CSD_CACHED);
353 	return (ret);
354 
355 }
356 
357 static void
358 cpu_acpi_cache_pstate(cpu_acpi_handle_t handle, ACPI_OBJECT *obj, int cnt)
359 {
360 	cpu_acpi_pstate_t *pstate;
361 	ACPI_OBJECT *q, *l;
362 	int i, j;
363 
364 	CPU_ACPI_PSTATES_COUNT(handle) = cnt;
365 	CPU_ACPI_PSTATES(handle) = kmem_zalloc(CPU_ACPI_PSTATES_SIZE(cnt),
366 	    KM_SLEEP);
367 	pstate = (cpu_acpi_pstate_t *)CPU_ACPI_PSTATES(handle);
368 	for (i = 0, l = NULL; i < obj->Package.Count && cnt > 0; i++, l = q) {
369 		uint32_t *up;
370 
371 		q = obj->Package.Elements[i].Package.Elements;
372 
373 		/*
374 		 * Skip duplicate entries.
375 		 */
376 		if (l != NULL && l[0].Integer.Value == q[0].Integer.Value)
377 			continue;
378 
379 		up = (uint32_t *)pstate;
380 		for (j = 0; j < CPU_ACPI_PSS_CNT; j++)
381 			up[j] = q[j].Integer.Value;
382 		pstate++;
383 		cnt--;
384 	}
385 }
386 
387 static void
388 cpu_acpi_cache_tstate(cpu_acpi_handle_t handle, ACPI_OBJECT *obj, int cnt)
389 {
390 	cpu_acpi_tstate_t *tstate;
391 	ACPI_OBJECT *q, *l;
392 	int i, j;
393 
394 	CPU_ACPI_TSTATES_COUNT(handle) = cnt;
395 	CPU_ACPI_TSTATES(handle) = kmem_zalloc(CPU_ACPI_TSTATES_SIZE(cnt),
396 	    KM_SLEEP);
397 	tstate = (cpu_acpi_tstate_t *)CPU_ACPI_TSTATES(handle);
398 	for (i = 0, l = NULL; i < obj->Package.Count && cnt > 0; i++, l = q) {
399 		uint32_t *up;
400 
401 		q = obj->Package.Elements[i].Package.Elements;
402 
403 		/*
404 		 * Skip duplicate entries.
405 		 */
406 		if (l != NULL && l[0].Integer.Value == q[0].Integer.Value)
407 			continue;
408 
409 		up = (uint32_t *)tstate;
410 		for (j = 0; j < CPU_ACPI_TSS_CNT; j++)
411 			up[j] = q[j].Integer.Value;
412 		tstate++;
413 		cnt--;
414 	}
415 }
416 
417 /*
418  * Cache the _PSS or _TSS data.
419  */
420 static int
421 cpu_acpi_cache_supported_states(cpu_acpi_handle_t handle,
422     cpu_acpi_obj_t objtype, int fcnt)
423 {
424 	ACPI_STATUS astatus;
425 	ACPI_BUFFER abuf;
426 	ACPI_OBJECT *obj, *q, *l;
427 	boolean_t eot = B_FALSE;
428 	int ret = -1;
429 	int cnt;
430 	int i, j;
431 
432 	/*
433 	 * Fetch the state data (if present) for the CPU node.
434 	 */
435 	abuf.Length = ACPI_ALLOCATE_BUFFER;
436 	abuf.Pointer = NULL;
437 	astatus = AcpiEvaluateObjectTyped(handle->cs_handle,
438 	    cpu_acpi_obj_attrs[objtype].name, NULL, &abuf,
439 	    ACPI_TYPE_PACKAGE);
440 	if (ACPI_FAILURE(astatus)) {
441 		if (astatus == AE_NOT_FOUND) {
442 			DTRACE_PROBE3(cpu_acpi__eval__err, int, handle->cs_id,
443 			    int, objtype, int, astatus);
444 			return (1);
445 		}
446 		cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating %s package "
447 		    "for CPU %d.", astatus, cpu_acpi_obj_attrs[objtype].name,
448 		    handle->cs_id);
449 		goto out;
450 	}
451 	obj = abuf.Pointer;
452 	if (obj->Package.Count < 2) {
453 		cmn_err(CE_NOTE, "!cpu_acpi: %s package bad count %d for "
454 		    "CPU %d.", cpu_acpi_obj_attrs[objtype].name,
455 		    obj->Package.Count, handle->cs_id);
456 		goto out;
457 	}
458 
459 	/*
460 	 * Does the package look coherent?
461 	 */
462 	cnt = 0;
463 	for (i = 0, l = NULL; i < obj->Package.Count; i++, l = q) {
464 		if (obj->Package.Elements[i].Type != ACPI_TYPE_PACKAGE ||
465 		    obj->Package.Elements[i].Package.Count != fcnt) {
466 			cmn_err(CE_NOTE, "!cpu_acpi: Unexpected data in "
467 			    "%s package for CPU %d.",
468 			    cpu_acpi_obj_attrs[objtype].name,
469 			    handle->cs_id);
470 			goto out;
471 		}
472 
473 		q = obj->Package.Elements[i].Package.Elements;
474 		for (j = 0; j < fcnt; j++) {
475 			if (q[j].Type != ACPI_TYPE_INTEGER) {
476 				cmn_err(CE_NOTE, "!cpu_acpi: %s element "
477 				    "invalid (type) for CPU %d.",
478 				    cpu_acpi_obj_attrs[objtype].name,
479 				    handle->cs_id);
480 				goto out;
481 			}
482 		}
483 
484 		/*
485 		 * Ignore duplicate entries.
486 		 */
487 		if (l != NULL && l[0].Integer.Value == q[0].Integer.Value)
488 			continue;
489 
490 		/*
491 		 * Some supported state tables are larger than required
492 		 * and unused elements are filled with patterns
493 		 * of 0xff.  Simply check here for frequency = 0xffff
494 		 * and stop counting if found.
495 		 */
496 		if (q[0].Integer.Value == 0xffff) {
497 			eot = B_TRUE;
498 			continue;
499 		}
500 
501 		/*
502 		 * We should never find a valid entry after we've hit
503 		 * an the end-of-table entry.
504 		 */
505 		if (eot) {
506 			cmn_err(CE_NOTE, "!cpu_acpi: Unexpected data in %s "
507 			    "package after eot for CPU %d.",
508 			    cpu_acpi_obj_attrs[objtype].name,
509 			    handle->cs_id);
510 			goto out;
511 		}
512 
513 		/*
514 		 * states must be defined in order from highest to lowest.
515 		 */
516 		if (l != NULL && l[0].Integer.Value < q[0].Integer.Value) {
517 			cmn_err(CE_NOTE, "!cpu_acpi: %s package state "
518 			    "definitions out of order for CPU %d.",
519 			    cpu_acpi_obj_attrs[objtype].name,
520 			    handle->cs_id);
521 			goto out;
522 		}
523 
524 		/*
525 		 * This entry passes.
526 		 */
527 		cnt++;
528 	}
529 	if (cnt == 0)
530 		goto out;
531 
532 	/*
533 	 * Yes, fill in the structure.
534 	 */
535 	ASSERT(objtype == PSS_OBJ || objtype == TSS_OBJ);
536 	(objtype == PSS_OBJ) ? cpu_acpi_cache_pstate(handle, obj, cnt) :
537 	    cpu_acpi_cache_tstate(handle, obj, cnt);
538 
539 	ret = 0;
540 out:
541 	if (abuf.Pointer != NULL)
542 		AcpiOsFree(abuf.Pointer);
543 	return (ret);
544 }
545 
546 /*
547  * Cache the _PSS data. The _PSS data defines the different power levels
548  * supported by the CPU and the attributes associated with each power level
549  * (i.e., frequency, voltage, etc.). The power levels are number from
550  * highest to lowest. That is, the highest power level is _PSS entry 0
551  * and the lowest power level is the last _PSS entry.
552  */
553 static int
554 cpu_acpi_cache_pstates(cpu_acpi_handle_t handle)
555 {
556 	int ret;
557 
558 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_PSS_CACHED);
559 	ret = cpu_acpi_cache_supported_states(handle, PSS_OBJ,
560 	    CPU_ACPI_PSS_CNT);
561 	if (ret == 0)
562 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_PSS_CACHED);
563 	return (ret);
564 }
565 
566 /*
567  * Cache the _TSS data. The _TSS data defines the different freq throttle
568  * levels supported by the CPU and the attributes associated with each
569  * throttle level (i.e., frequency throttle percentage, voltage, etc.).
570  * The throttle levels are number from highest to lowest.
571  */
572 static int
573 cpu_acpi_cache_tstates(cpu_acpi_handle_t handle)
574 {
575 	int ret;
576 
577 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_TSS_CACHED);
578 	ret = cpu_acpi_cache_supported_states(handle, TSS_OBJ,
579 	    CPU_ACPI_TSS_CNT);
580 	if (ret == 0)
581 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_TSS_CACHED);
582 	return (ret);
583 }
584 
585 /*
586  * Cache the ACPI CPU present capabilities data objects.
587  */
588 static int
589 cpu_acpi_cache_present_capabilities(cpu_acpi_handle_t handle,
590     cpu_acpi_obj_t objtype, cpu_acpi_present_capabilities_t *pc)
591 
592 {
593 	ACPI_STATUS astatus;
594 	ACPI_BUFFER abuf;
595 	ACPI_OBJECT *obj;
596 	int ret = -1;
597 
598 	/*
599 	 * Fetch the present capabilites object (if present) for the CPU node.
600 	 */
601 	abuf.Length = ACPI_ALLOCATE_BUFFER;
602 	abuf.Pointer = NULL;
603 	astatus = AcpiEvaluateObject(handle->cs_handle,
604 	    cpu_acpi_obj_attrs[objtype].name, NULL, &abuf);
605 	if (ACPI_FAILURE(astatus) && astatus != AE_NOT_FOUND) {
606 		cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating %s "
607 		    "package for CPU %d.", astatus,
608 		    cpu_acpi_obj_attrs[objtype].name, handle->cs_id);
609 		goto out;
610 	}
611 	if (astatus == AE_NOT_FOUND || abuf.Length == 0) {
612 		*pc = 0;
613 		return (1);
614 	}
615 
616 	obj = (ACPI_OBJECT *)abuf.Pointer;
617 	*pc = obj->Integer.Value;
618 
619 	ret = 0;
620 out:
621 	if (abuf.Pointer != NULL)
622 		AcpiOsFree(abuf.Pointer);
623 	return (ret);
624 }
625 
626 /*
627  * Cache the _PPC data. The _PPC simply contains an integer value which
628  * represents the highest power level that a CPU should transition to.
629  * That is, it's an index into the array of _PSS entries and will be
630  * greater than or equal to zero.
631  */
632 void
633 cpu_acpi_cache_ppc(cpu_acpi_handle_t handle)
634 {
635 	cpu_acpi_ppc_t *ppc;
636 	int ret;
637 
638 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_PPC_CACHED);
639 	ppc = &CPU_ACPI_PPC(handle);
640 	ret = cpu_acpi_cache_present_capabilities(handle, PPC_OBJ, ppc);
641 	if (ret == 0)
642 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_PPC_CACHED);
643 }
644 
645 /*
646  * Cache the _TPC data. The _TPC simply contains an integer value which
647  * represents the throttle level that a CPU should transition to.
648  * That is, it's an index into the array of _TSS entries and will be
649  * greater than or equal to zero.
650  */
651 void
652 cpu_acpi_cache_tpc(cpu_acpi_handle_t handle)
653 {
654 	cpu_acpi_tpc_t *tpc;
655 	int ret;
656 
657 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_TPC_CACHED);
658 	tpc = &CPU_ACPI_TPC(handle);
659 	ret = cpu_acpi_cache_present_capabilities(handle, TPC_OBJ, tpc);
660 	if (ret == 0)
661 		CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_TPC_CACHED);
662 }
663 
664 int
665 cpu_acpi_verify_cstate(cpu_acpi_cstate_t *cstate)
666 {
667 	uint32_t addrspaceid = cstate->cs_addrspace_id;
668 
669 	if ((addrspaceid != ACPI_ADR_SPACE_FIXED_HARDWARE) &&
670 	    (addrspaceid != ACPI_ADR_SPACE_SYSTEM_IO)) {
671 		cmn_err(CE_NOTE, "!cpu_acpi: _CST unsupported address space id"
672 		    ":C%d, type: %d\n", cstate->cs_type, addrspaceid);
673 		return (1);
674 	}
675 	return (0);
676 }
677 
678 int
679 cpu_acpi_cache_cst(cpu_acpi_handle_t handle)
680 {
681 	ACPI_STATUS astatus;
682 	ACPI_BUFFER abuf;
683 	ACPI_OBJECT *obj;
684 	ACPI_INTEGER cnt, old_cnt;
685 	cpu_acpi_cstate_t *cstate, *p;
686 	size_t alloc_size;
687 	int i, count;
688 	int ret = 1;
689 
690 	CPU_ACPI_OBJ_IS_NOT_CACHED(handle, CPU_ACPI_CST_CACHED);
691 
692 	abuf.Length = ACPI_ALLOCATE_BUFFER;
693 	abuf.Pointer = NULL;
694 
695 	/*
696 	 * Fetch the C-state data (if present) for the CPU node.
697 	 */
698 	astatus = AcpiEvaluateObjectTyped(handle->cs_handle, "_CST",
699 	    NULL, &abuf, ACPI_TYPE_PACKAGE);
700 	if (ACPI_FAILURE(astatus)) {
701 		if (astatus == AE_NOT_FOUND) {
702 			DTRACE_PROBE3(cpu_acpi__eval__err, int, handle->cs_id,
703 			    int, CST_OBJ, int, astatus);
704 			return (1);
705 		}
706 		cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating _CST package "
707 		    "for CPU %d.", astatus, handle->cs_id);
708 		goto out;
709 
710 	}
711 	obj = (ACPI_OBJECT *)abuf.Pointer;
712 	if (obj->Package.Count < 2) {
713 		cmn_err(CE_NOTE, "!cpu_acpi: _CST unsupported package "
714 		    "count %d for CPU %d.", obj->Package.Count, handle->cs_id);
715 		goto out;
716 	}
717 
718 	/*
719 	 * Does the package look coherent?
720 	 */
721 	cnt = obj->Package.Elements[0].Integer.Value;
722 	if (cnt < 1 || cnt != obj->Package.Count - 1) {
723 		cmn_err(CE_NOTE, "!cpu_acpi: _CST invalid element "
724 		    "count %d != Package count %d for CPU %d",
725 		    (int)cnt, (int)obj->Package.Count - 1, handle->cs_id);
726 		goto out;
727 	}
728 
729 	/*
730 	 * Reuse the old buffer if the number of C states is the same.
731 	 */
732 	if (CPU_ACPI_CSTATES(handle) &&
733 	    (old_cnt = CPU_ACPI_CSTATES_COUNT(handle)) != cnt) {
734 		kmem_free(CPU_ACPI_CSTATES(handle),
735 		    CPU_ACPI_CSTATES_SIZE(old_cnt));
736 		CPU_ACPI_CSTATES(handle) = NULL;
737 	}
738 
739 	CPU_ACPI_CSTATES_COUNT(handle) = (uint32_t)cnt;
740 	alloc_size = CPU_ACPI_CSTATES_SIZE(cnt);
741 	if (CPU_ACPI_CSTATES(handle) == NULL)
742 		CPU_ACPI_CSTATES(handle) = kmem_zalloc(alloc_size, KM_SLEEP);
743 	cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
744 	p = cstate;
745 
746 	for (i = 1, count = 1; i <= cnt; i++) {
747 		ACPI_OBJECT *pkg;
748 		AML_RESOURCE_GENERIC_REGISTER *reg;
749 		ACPI_OBJECT *element;
750 
751 		pkg = &(obj->Package.Elements[i]);
752 		reg = (AML_RESOURCE_GENERIC_REGISTER *)
753 		    pkg->Package.Elements[0].Buffer.Pointer;
754 		cstate->cs_addrspace_id = reg->AddressSpaceId;
755 		cstate->cs_address = reg->Address;
756 		element = &(pkg->Package.Elements[1]);
757 		cstate->cs_type = element->Integer.Value;
758 		element = &(pkg->Package.Elements[2]);
759 		cstate->cs_latency = element->Integer.Value;
760 		element = &(pkg->Package.Elements[3]);
761 		cstate->cs_power = element->Integer.Value;
762 
763 		if (cpu_acpi_verify_cstate(cstate)) {
764 			/*
765 			 * ignore this entry if it's not valid
766 			 */
767 			continue;
768 		}
769 		if (cstate == p) {
770 			cstate++;
771 		} else if (p->cs_type == cstate->cs_type) {
772 			/*
773 			 * if there are duplicate entries, we keep the
774 			 * last one. This fixes:
775 			 * 1) some buggy BIOS have total duplicate entries.
776 			 * 2) ACPI Spec allows the same cstate entry with
777 			 *    different power and latency, we use the one
778 			 *    with more power saving.
779 			 */
780 			(void) memcpy(p, cstate, sizeof (cpu_acpi_cstate_t));
781 		} else {
782 			/*
783 			 * we got a valid entry, cache it to the
784 			 * cstate structure
785 			 */
786 			p = cstate++;
787 			count++;
788 		}
789 	}
790 
791 	if (count < 2) {
792 		cmn_err(CE_NOTE, "!cpu_acpi: _CST invalid count %d < 2 for "
793 		    "CPU %d", count, handle->cs_id);
794 		kmem_free(CPU_ACPI_CSTATES(handle), alloc_size);
795 		CPU_ACPI_CSTATES(handle) = NULL;
796 		CPU_ACPI_CSTATES_COUNT(handle) = (uint32_t)0;
797 		goto out;
798 	}
799 	cstate = (cpu_acpi_cstate_t *)CPU_ACPI_CSTATES(handle);
800 	if (cstate[0].cs_type != CPU_ACPI_C1) {
801 		cmn_err(CE_NOTE, "!cpu_acpi: _CST first element type not "
802 		    "C1: %d for CPU %d", (int)cstate->cs_type, handle->cs_id);
803 		kmem_free(CPU_ACPI_CSTATES(handle), alloc_size);
804 		CPU_ACPI_CSTATES(handle) = NULL;
805 		CPU_ACPI_CSTATES_COUNT(handle) = (uint32_t)0;
806 		goto out;
807 	}
808 
809 	if (count != cnt) {
810 		void	*orig = CPU_ACPI_CSTATES(handle);
811 
812 		CPU_ACPI_CSTATES_COUNT(handle) = (uint32_t)count;
813 		CPU_ACPI_CSTATES(handle) = kmem_zalloc(
814 		    CPU_ACPI_CSTATES_SIZE(count), KM_SLEEP);
815 		(void) memcpy(CPU_ACPI_CSTATES(handle), orig,
816 		    CPU_ACPI_CSTATES_SIZE(count));
817 		kmem_free(orig, alloc_size);
818 	}
819 
820 	CPU_ACPI_OBJ_IS_CACHED(handle, CPU_ACPI_CST_CACHED);
821 
822 	ret = 0;
823 
824 out:
825 	if (abuf.Pointer != NULL)
826 		AcpiOsFree(abuf.Pointer);
827 	return (ret);
828 }
829 
830 /*
831  * Cache the _PCT, _PSS, _PSD and _PPC data.
832  */
833 int
834 cpu_acpi_cache_pstate_data(cpu_acpi_handle_t handle)
835 {
836 	if (cpu_acpi_cache_pct(handle) < 0) {
837 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
838 		    int, PCT_OBJ);
839 		return (-1);
840 	}
841 
842 	if (cpu_acpi_cache_pstates(handle) != 0) {
843 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
844 		    int, PSS_OBJ);
845 		return (-1);
846 	}
847 
848 	if (cpu_acpi_cache_psd(handle) < 0) {
849 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
850 		    int, PSD_OBJ);
851 		return (-1);
852 	}
853 
854 	cpu_acpi_cache_ppc(handle);
855 
856 	return (0);
857 }
858 
859 void
860 cpu_acpi_free_pstate_data(cpu_acpi_handle_t handle)
861 {
862 	if (handle != NULL) {
863 		if (CPU_ACPI_PSTATES(handle)) {
864 			kmem_free(CPU_ACPI_PSTATES(handle),
865 			    CPU_ACPI_PSTATES_SIZE(
866 			    CPU_ACPI_PSTATES_COUNT(handle)));
867 			CPU_ACPI_PSTATES(handle) = NULL;
868 		}
869 	}
870 }
871 
872 /*
873  * Cache the _PTC, _TSS, _TSD and _TPC data.
874  */
875 int
876 cpu_acpi_cache_tstate_data(cpu_acpi_handle_t handle)
877 {
878 	int ret;
879 
880 	if (cpu_acpi_cache_ptc(handle) < 0) {
881 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
882 		    int, PTC_OBJ);
883 		return (-1);
884 	}
885 
886 	if ((ret = cpu_acpi_cache_tstates(handle)) != 0) {
887 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
888 		    int, TSS_OBJ);
889 		return (ret);
890 	}
891 
892 	if (cpu_acpi_cache_tsd(handle) < 0) {
893 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
894 		    int, TSD_OBJ);
895 		return (-1);
896 	}
897 
898 	cpu_acpi_cache_tpc(handle);
899 
900 	return (0);
901 }
902 
903 void
904 cpu_acpi_free_tstate_data(cpu_acpi_handle_t handle)
905 {
906 	if (handle != NULL) {
907 		if (CPU_ACPI_TSTATES(handle)) {
908 			kmem_free(CPU_ACPI_TSTATES(handle),
909 			    CPU_ACPI_TSTATES_SIZE(
910 			    CPU_ACPI_TSTATES_COUNT(handle)));
911 			CPU_ACPI_TSTATES(handle) = NULL;
912 		}
913 	}
914 }
915 
916 /*
917  * Cache the _CST data.
918  */
919 int
920 cpu_acpi_cache_cstate_data(cpu_acpi_handle_t handle)
921 {
922 	int ret;
923 
924 	if ((ret = cpu_acpi_cache_cst(handle)) != 0) {
925 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
926 		    int, CST_OBJ);
927 		return (ret);
928 	}
929 
930 	if (cpu_acpi_cache_csd(handle) < 0) {
931 		DTRACE_PROBE2(cpu_acpi__cache__err, int, handle->cs_id,
932 		    int, CSD_OBJ);
933 		return (-1);
934 	}
935 
936 	return (0);
937 }
938 
939 void
940 cpu_acpi_free_cstate_data(cpu_acpi_handle_t handle)
941 {
942 	if (handle != NULL) {
943 		if (CPU_ACPI_CSTATES(handle)) {
944 			kmem_free(CPU_ACPI_CSTATES(handle),
945 			    CPU_ACPI_CSTATES_SIZE(
946 			    CPU_ACPI_CSTATES_COUNT(handle)));
947 			CPU_ACPI_CSTATES(handle) = NULL;
948 		}
949 	}
950 }
951 
952 /*
953  * Register a handler for processor change notifications.
954  */
955 void
956 cpu_acpi_install_notify_handler(cpu_acpi_handle_t handle,
957     ACPI_NOTIFY_HANDLER handler, void *ctx)
958 {
959 	if (ACPI_FAILURE(AcpiInstallNotifyHandler(handle->cs_handle,
960 	    ACPI_DEVICE_NOTIFY, handler, ctx)))
961 		cmn_err(CE_NOTE, "!cpu_acpi: Unable to register "
962 		    "notify handler for CPU %d.", handle->cs_id);
963 }
964 
965 /*
966  * Remove a handler for processor change notifications.
967  */
968 void
969 cpu_acpi_remove_notify_handler(cpu_acpi_handle_t handle,
970     ACPI_NOTIFY_HANDLER handler)
971 {
972 	if (ACPI_FAILURE(AcpiRemoveNotifyHandler(handle->cs_handle,
973 	    ACPI_DEVICE_NOTIFY, handler)))
974 		cmn_err(CE_NOTE, "!cpu_acpi: Unable to remove "
975 		    "notify handler for CPU %d.", handle->cs_id);
976 }
977 
978 /*
979  * Write _PDC.
980  */
981 int
982 cpu_acpi_write_pdc(cpu_acpi_handle_t handle, uint32_t revision, uint32_t count,
983     uint32_t *capabilities)
984 {
985 	ACPI_STATUS astatus;
986 	ACPI_OBJECT obj;
987 	ACPI_OBJECT_LIST list = { 1, &obj};
988 	uint32_t *buffer;
989 	uint32_t *bufptr;
990 	uint32_t bufsize;
991 	int i;
992 	int ret = 0;
993 
994 	bufsize = (count + 2) * sizeof (uint32_t);
995 	buffer = kmem_zalloc(bufsize, KM_SLEEP);
996 	buffer[0] = revision;
997 	buffer[1] = count;
998 	bufptr = &buffer[2];
999 	for (i = 0; i < count; i++)
1000 		*bufptr++ = *capabilities++;
1001 
1002 	obj.Type = ACPI_TYPE_BUFFER;
1003 	obj.Buffer.Length = bufsize;
1004 	obj.Buffer.Pointer = (void *)buffer;
1005 
1006 	/*
1007 	 * Fetch the ??? (if present) for the CPU node.
1008 	 */
1009 	astatus = AcpiEvaluateObject(handle->cs_handle, "_PDC", &list, NULL);
1010 	if (ACPI_FAILURE(astatus)) {
1011 		if (astatus == AE_NOT_FOUND) {
1012 			DTRACE_PROBE3(cpu_acpi__eval__err, int, handle->cs_id,
1013 			    int, PDC_OBJ, int, astatus);
1014 			ret = 1;
1015 		} else {
1016 			cmn_err(CE_NOTE, "!cpu_acpi: error %d evaluating _PDC "
1017 			    "package for CPU %d.", astatus, handle->cs_id);
1018 			ret = -1;
1019 		}
1020 	}
1021 
1022 	kmem_free(buffer, bufsize);
1023 	return (ret);
1024 }
1025 
1026 /*
1027  * Write to system IO port.
1028  */
1029 int
1030 cpu_acpi_write_port(ACPI_IO_ADDRESS address, uint32_t value, uint32_t width)
1031 {
1032 	if (ACPI_FAILURE(AcpiOsWritePort(address, value, width))) {
1033 		cmn_err(CE_NOTE, "!cpu_acpi: error writing system IO port "
1034 		    "%lx.", (long)address);
1035 		return (-1);
1036 	}
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Read from a system IO port.
1042  */
1043 int
1044 cpu_acpi_read_port(ACPI_IO_ADDRESS address, uint32_t *value, uint32_t width)
1045 {
1046 	if (ACPI_FAILURE(AcpiOsReadPort(address, value, width))) {
1047 		cmn_err(CE_NOTE, "!cpu_acpi: error reading system IO port "
1048 		    "%lx.", (long)address);
1049 		return (-1);
1050 	}
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Return supported frequencies.
1056  */
1057 uint_t
1058 cpu_acpi_get_speeds(cpu_acpi_handle_t handle, int **speeds)
1059 {
1060 	cpu_acpi_pstate_t *pstate;
1061 	int *hspeeds;
1062 	uint_t nspeeds;
1063 	int i;
1064 
1065 	nspeeds = CPU_ACPI_PSTATES_COUNT(handle);
1066 	pstate = (cpu_acpi_pstate_t *)CPU_ACPI_PSTATES(handle);
1067 	hspeeds = kmem_zalloc(nspeeds * sizeof (int), KM_SLEEP);
1068 	for (i = 0; i < nspeeds; i++) {
1069 		hspeeds[i] = CPU_ACPI_FREQ(pstate);
1070 		pstate++;
1071 	}
1072 	*speeds = hspeeds;
1073 	return (nspeeds);
1074 }
1075 
1076 /*
1077  * Free resources allocated by cpu_acpi_get_speeds().
1078  */
1079 void
1080 cpu_acpi_free_speeds(int *speeds, uint_t nspeeds)
1081 {
1082 	kmem_free(speeds, nspeeds * sizeof (int));
1083 }
1084 
1085 uint_t
1086 cpu_acpi_get_max_cstates(cpu_acpi_handle_t handle)
1087 {
1088 	if (CPU_ACPI_CSTATES(handle))
1089 		return (CPU_ACPI_CSTATES_COUNT(handle));
1090 	else
1091 		return (1);
1092 }
1093 
1094 void
1095 cpu_acpi_set_register(uint32_t bitreg, uint32_t value)
1096 {
1097 	(void) AcpiWriteBitRegister(bitreg, value);
1098 }
1099 
1100 void
1101 cpu_acpi_get_register(uint32_t bitreg, uint32_t *value)
1102 {
1103 	(void) AcpiReadBitRegister(bitreg, value);
1104 }
1105 
1106 /*
1107  * Map the dip to an ACPI handle for the device.
1108  */
1109 cpu_acpi_handle_t
1110 cpu_acpi_init(cpu_t *cp)
1111 {
1112 	cpu_acpi_handle_t handle;
1113 
1114 	handle = kmem_zalloc(sizeof (cpu_acpi_state_t), KM_SLEEP);
1115 
1116 	if (ACPI_FAILURE(acpica_get_handle_cpu(cp->cpu_id,
1117 	    &handle->cs_handle))) {
1118 		kmem_free(handle, sizeof (cpu_acpi_state_t));
1119 		return (NULL);
1120 	}
1121 	handle->cs_id = cp->cpu_id;
1122 	return (handle);
1123 }
1124 
1125 /*
1126  * Free any resources.
1127  */
1128 void
1129 cpu_acpi_fini(cpu_acpi_handle_t handle)
1130 {
1131 	if (handle)
1132 		kmem_free(handle, sizeof (cpu_acpi_state_t));
1133 }
1134