xref: /titanic_52/usr/src/uts/i86pc/os/cpuid.c (revision c70a8a3b92fb0488ef2ca1ae9e282c8b86ffa6d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/chip.h>
44 #include <sys/fp.h>
45 #include <sys/controlregs.h>
46 #include <sys/auxv_386.h>
47 #include <sys/bitmap.h>
48 #include <sys/controlregs.h>
49 #include <sys/memnode.h>
50 
51 /*
52  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
53  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
54  * them accordingly. For most modern processors, feature detection occurs here
55  * in pass 1.
56  *
57  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
58  * for the boot CPU and does the basic analysis that the early kernel needs.
59  * x86_feature is set based on the return value of cpuid_pass1() of the boot
60  * CPU.
61  *
62  * Pass 1 includes:
63  *
64  *	o Determining vendor/model/family/stepping and setting x86_type and
65  *	  x86_vendor accordingly.
66  *	o Processing the feature flags returned by the cpuid instruction while
67  *	  applying any workarounds or tricks for the specific processor.
68  *	o Mapping the feature flags into Solaris feature bits (X86_*).
69  *	o Processing extended feature flags if supported by the processor,
70  *	  again while applying specific processor knowledge.
71  *	o Determining the CMT characteristics of the system.
72  *
73  * Pass 1 is done on non-boot CPUs during their initialization and the results
74  * are used only as a meager attempt at ensuring that all processors within the
75  * system support the same features.
76  *
77  * Pass 2 of cpuid feature analysis happens just at the beginning
78  * of startup().  It just copies in and corrects the remainder
79  * of the cpuid data we depend on: standard cpuid functions that we didn't
80  * need for pass1 feature analysis, and extended cpuid functions beyond the
81  * simple feature processing done in pass1.
82  *
83  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
84  * particular kernel memory allocation has been made available. It creates a
85  * readable brand string based on the data collected in the first two passes.
86  *
87  * Pass 4 of cpuid analysis is invoked after post_startup() when all
88  * the support infrastructure for various hardware features has been
89  * initialized. It determines which processor features will be reported
90  * to userland via the aux vector.
91  *
92  * All passes are executed on all CPUs, but only the boot CPU determines what
93  * features the kernel will use.
94  *
95  * Much of the worst junk in this file is for the support of processors
96  * that didn't really implement the cpuid instruction properly.
97  *
98  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
99  * the pass numbers.  Accordingly, changes to the pass code may require changes
100  * to the accessor code.
101  */
102 
103 uint_t x86_feature = 0;
104 uint_t x86_vendor = X86_VENDOR_IntelClone;
105 uint_t x86_type = X86_TYPE_OTHER;
106 
107 ulong_t cr4_value;
108 uint_t pentiumpro_bug4046376;
109 uint_t pentiumpro_bug4064495;
110 
111 uint_t enable486;
112 
113 /*
114  * This set of strings are for processors rumored to support the cpuid
115  * instruction, and is used by locore.s to figure out how to set x86_vendor
116  */
117 const char CyrixInstead[] = "CyrixInstead";
118 
119 /*
120  * These constants determine how many of the elements of the
121  * cpuid we cache in the cpuid_info data structure; the
122  * remaining elements are accessible via the cpuid instruction.
123  */
124 
125 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
126 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
127 
128 struct cpuid_info {
129 	uint_t cpi_pass;		/* last pass completed */
130 	/*
131 	 * standard function information
132 	 */
133 	uint_t cpi_maxeax;		/* fn 0: %eax */
134 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
135 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
136 
137 	uint_t cpi_family;		/* fn 1: extended family */
138 	uint_t cpi_model;		/* fn 1: extended model */
139 	uint_t cpi_step;		/* fn 1: stepping */
140 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
141 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
142 	int cpi_clogid;			/* fn 1: %ebx: thread # */
143 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
144 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
145 	uint_t cpi_ncache;		/* fn 2: number of elements */
146 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
147 	/*
148 	 * extended function information
149 	 */
150 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
151 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
152 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
153 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
154 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
155 	id_t cpi_coreid;
156 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
157 					/* Intel: fn 4: %eax[31-26] */
158 	/*
159 	 * supported feature information
160 	 */
161 	uint32_t cpi_support[4];
162 #define	STD_EDX_FEATURES	0
163 #define	AMD_EDX_FEATURES	1
164 #define	TM_EDX_FEATURES		2
165 #define	STD_ECX_FEATURES	3
166 
167 	/*
168 	 * Synthesized information, where known.
169 	 */
170 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
171 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
172 	uint32_t cpi_socket;		/* Chip package/socket type */
173 };
174 
175 
176 static struct cpuid_info cpuid_info0;
177 
178 /*
179  * These bit fields are defined by the Intel Application Note AP-485
180  * "Intel Processor Identification and the CPUID Instruction"
181  */
182 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
183 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
184 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
185 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
186 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
187 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
188 
189 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
190 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
191 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
192 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
193 
194 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
195 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
196 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
197 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
198 
199 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
200 #define	CPI_XMAXEAX_MAX		0x80000100
201 
202 /*
203  * A couple of shorthand macros to identify "later" P6-family chips
204  * like the Pentium M and Core.  First, the "older" P6-based stuff
205  * (loosely defined as "pre-Pentium-4"):
206  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
207  */
208 
209 #define	IS_LEGACY_P6(cpi) (			\
210 	cpi->cpi_family == 6 && 		\
211 		(cpi->cpi_model == 1 ||		\
212 		cpi->cpi_model == 3 ||		\
213 		cpi->cpi_model == 5 ||		\
214 		cpi->cpi_model == 6 ||		\
215 		cpi->cpi_model == 7 ||		\
216 		cpi->cpi_model == 8 ||		\
217 		cpi->cpi_model == 0xA ||	\
218 		cpi->cpi_model == 0xB)		\
219 )
220 
221 /* A "new F6" is everything with family 6 that's not the above */
222 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
223 
224 /*
225  * AMD family 0xf socket types.
226  * First index is 0 for revs B thru E, 1 for F and G.
227  * Second index by (model & 0x3)
228  */
229 static uint32_t amd_skts[2][4] = {
230 	{
231 		X86_SOCKET_754,		/* 0b00 */
232 		X86_SOCKET_940,		/* 0b01 */
233 		X86_SOCKET_754,		/* 0b10 */
234 		X86_SOCKET_939		/* 0b11 */
235 	},
236 	{
237 		X86_SOCKET_S1g1,	/* 0b00 */
238 		X86_SOCKET_F1207,	/* 0b01 */
239 		X86_SOCKET_UNKNOWN,	/* 0b10 */
240 		X86_SOCKET_AM2		/* 0b11 */
241 	}
242 };
243 
244 /*
245  * Table for mapping AMD Family 0xf model/stepping combination to
246  * chip "revision" and socket type.  Only rm_family 0xf is used at the
247  * moment, but AMD family 0x10 will extend the exsiting revision names
248  * so will likely also use this table.
249  *
250  * The first member of this array that matches a given family, extended model
251  * plus model range, and stepping range will be considered a match.
252  */
253 static const struct amd_rev_mapent {
254 	uint_t rm_family;
255 	uint_t rm_modello;
256 	uint_t rm_modelhi;
257 	uint_t rm_steplo;
258 	uint_t rm_stephi;
259 	uint32_t rm_chiprev;
260 	const char *rm_chiprevstr;
261 	int rm_sktidx;
262 } amd_revmap[] = {
263 	/*
264 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
265 	 */
266 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
267 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
268 	/*
269 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
270 	 */
271 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
272 	/*
273 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
274 	 * but the rev B and C0 combinations covered above.
275 	 */
276 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
277 	/*
278 	 * Rev D has extended model 0x1.
279 	 */
280 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
281 	/*
282 	 * Rev E has extended model 0x2.
283 	 * Extended model 0x3 is unused but available to grow into.
284 	 */
285 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
286 	/*
287 	 * Rev F has extended models 0x4 and 0x5.
288 	 */
289 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
290 	/*
291 	 * Rev G has extended model 0x6.
292 	 */
293 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
294 };
295 
296 static void
297 synth_amd_info(struct cpuid_info *cpi)
298 {
299 	const struct amd_rev_mapent *rmp;
300 	uint_t family, model, step;
301 	int i;
302 
303 	/*
304 	 * Currently only AMD family 0xf uses these fields.
305 	 */
306 	if (cpi->cpi_family != 0xf)
307 		return;
308 
309 	family = cpi->cpi_family;
310 	model = cpi->cpi_model;
311 	step = cpi->cpi_step;
312 
313 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
314 	    i++, rmp++) {
315 		if (family == rmp->rm_family &&
316 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
317 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
318 			cpi->cpi_chiprev = rmp->rm_chiprev;
319 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
320 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
321 			return;
322 		}
323 	}
324 }
325 
326 static void
327 synth_info(struct cpuid_info *cpi)
328 {
329 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
330 	cpi->cpi_chiprevstr = "Unknown";
331 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
332 
333 	switch (cpi->cpi_vendor) {
334 	case X86_VENDOR_AMD:
335 		synth_amd_info(cpi);
336 		break;
337 
338 	default:
339 		break;
340 
341 	}
342 }
343 
344 /*
345  *  Some undocumented ways of patching the results of the cpuid
346  *  instruction to permit running Solaris 10 on future cpus that
347  *  we don't currently support.  Could be set to non-zero values
348  *  via settings in eeprom.
349  */
350 
351 uint32_t cpuid_feature_ecx_include;
352 uint32_t cpuid_feature_ecx_exclude;
353 uint32_t cpuid_feature_edx_include;
354 uint32_t cpuid_feature_edx_exclude;
355 
356 uint_t
357 cpuid_pass1(cpu_t *cpu)
358 {
359 	uint32_t mask_ecx, mask_edx;
360 	uint_t feature = X86_CPUID;
361 	struct cpuid_info *cpi;
362 	struct cpuid_regs *cp;
363 	int xcpuid;
364 
365 	/*
366 	 * By convention, cpu0 is the boot cpu, which is called
367 	 * before memory allocation is available.  Other cpus are
368 	 * initialized when memory becomes available.
369 	 */
370 	if (cpu->cpu_id == 0)
371 		cpu->cpu_m.mcpu_cpi = cpi = &cpuid_info0;
372 	else
373 		cpu->cpu_m.mcpu_cpi = cpi =
374 		    kmem_zalloc(sizeof (*cpi), KM_SLEEP);
375 
376 	cp = &cpi->cpi_std[0];
377 	cp->cp_eax = 0;
378 	cpi->cpi_maxeax = __cpuid_insn(cp);
379 	{
380 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
381 		*iptr++ = cp->cp_ebx;
382 		*iptr++ = cp->cp_edx;
383 		*iptr++ = cp->cp_ecx;
384 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
385 	}
386 
387 	/*
388 	 * Map the vendor string to a type code
389 	 */
390 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
391 		cpi->cpi_vendor = X86_VENDOR_Intel;
392 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
393 		cpi->cpi_vendor = X86_VENDOR_AMD;
394 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
395 		cpi->cpi_vendor = X86_VENDOR_TM;
396 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
397 		/*
398 		 * CyrixInstead is a variable used by the Cyrix detection code
399 		 * in locore.
400 		 */
401 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
402 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
403 		cpi->cpi_vendor = X86_VENDOR_UMC;
404 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
405 		cpi->cpi_vendor = X86_VENDOR_NexGen;
406 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
407 		cpi->cpi_vendor = X86_VENDOR_Centaur;
408 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
409 		cpi->cpi_vendor = X86_VENDOR_Rise;
410 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
411 		cpi->cpi_vendor = X86_VENDOR_SiS;
412 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
413 		cpi->cpi_vendor = X86_VENDOR_NSC;
414 	else
415 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
416 
417 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
418 
419 	/*
420 	 * Limit the range in case of weird hardware
421 	 */
422 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
423 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
424 	if (cpi->cpi_maxeax < 1)
425 		goto pass1_done;
426 
427 	cp = &cpi->cpi_std[1];
428 	cp->cp_eax = 1;
429 	(void) __cpuid_insn(cp);
430 
431 	/*
432 	 * Extract identifying constants for easy access.
433 	 */
434 	cpi->cpi_model = CPI_MODEL(cpi);
435 	cpi->cpi_family = CPI_FAMILY(cpi);
436 
437 	if (cpi->cpi_family == 0xf)
438 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
439 
440 	/*
441 	 * Beware: AMD uses "extended model" iff *FAMILY* == 0xf.
442 	 * Intel, and presumably everyone else, uses model == 0xf, as
443 	 * one would expect (max value means possible overflow).  Sigh.
444 	 */
445 
446 	switch (cpi->cpi_vendor) {
447 	case X86_VENDOR_AMD:
448 		if (cpi->cpi_family == 0xf)
449 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
450 		break;
451 	default:
452 		if (cpi->cpi_model == 0xf)
453 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
454 		break;
455 	}
456 
457 	cpi->cpi_step = CPI_STEP(cpi);
458 	cpi->cpi_brandid = CPI_BRANDID(cpi);
459 
460 	/*
461 	 * *default* assumptions:
462 	 * - believe %edx feature word
463 	 * - ignore %ecx feature word
464 	 * - 32-bit virtual and physical addressing
465 	 */
466 	mask_edx = 0xffffffff;
467 	mask_ecx = 0;
468 
469 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
470 
471 	switch (cpi->cpi_vendor) {
472 	case X86_VENDOR_Intel:
473 		if (cpi->cpi_family == 5)
474 			x86_type = X86_TYPE_P5;
475 		else if (IS_LEGACY_P6(cpi)) {
476 			x86_type = X86_TYPE_P6;
477 			pentiumpro_bug4046376 = 1;
478 			pentiumpro_bug4064495 = 1;
479 			/*
480 			 * Clear the SEP bit when it was set erroneously
481 			 */
482 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
483 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
484 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
485 			x86_type = X86_TYPE_P4;
486 			/*
487 			 * We don't currently depend on any of the %ecx
488 			 * features until Prescott, so we'll only check
489 			 * this from P4 onwards.  We might want to revisit
490 			 * that idea later.
491 			 */
492 			mask_ecx = 0xffffffff;
493 		} else if (cpi->cpi_family > 0xf)
494 			mask_ecx = 0xffffffff;
495 		break;
496 	case X86_VENDOR_IntelClone:
497 	default:
498 		break;
499 	case X86_VENDOR_AMD:
500 #if defined(OPTERON_ERRATUM_108)
501 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
502 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
503 			cpi->cpi_model = 0xc;
504 		} else
505 #endif
506 		if (cpi->cpi_family == 5) {
507 			/*
508 			 * AMD K5 and K6
509 			 *
510 			 * These CPUs have an incomplete implementation
511 			 * of MCA/MCE which we mask away.
512 			 */
513 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
514 
515 			/*
516 			 * Model 0 uses the wrong (APIC) bit
517 			 * to indicate PGE.  Fix it here.
518 			 */
519 			if (cpi->cpi_model == 0) {
520 				if (cp->cp_edx & 0x200) {
521 					cp->cp_edx &= ~0x200;
522 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
523 				}
524 			}
525 
526 			/*
527 			 * Early models had problems w/ MMX; disable.
528 			 */
529 			if (cpi->cpi_model < 6)
530 				mask_edx &= ~CPUID_INTC_EDX_MMX;
531 		}
532 
533 		/*
534 		 * For newer families, SSE3 and CX16, at least, are valid;
535 		 * enable all
536 		 */
537 		if (cpi->cpi_family >= 0xf)
538 			mask_ecx = 0xffffffff;
539 		break;
540 	case X86_VENDOR_TM:
541 		/*
542 		 * workaround the NT workaround in CMS 4.1
543 		 */
544 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
545 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
546 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
547 		break;
548 	case X86_VENDOR_Centaur:
549 		/*
550 		 * workaround the NT workarounds again
551 		 */
552 		if (cpi->cpi_family == 6)
553 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
554 		break;
555 	case X86_VENDOR_Cyrix:
556 		/*
557 		 * We rely heavily on the probing in locore
558 		 * to actually figure out what parts, if any,
559 		 * of the Cyrix cpuid instruction to believe.
560 		 */
561 		switch (x86_type) {
562 		case X86_TYPE_CYRIX_486:
563 			mask_edx = 0;
564 			break;
565 		case X86_TYPE_CYRIX_6x86:
566 			mask_edx = 0;
567 			break;
568 		case X86_TYPE_CYRIX_6x86L:
569 			mask_edx =
570 			    CPUID_INTC_EDX_DE |
571 			    CPUID_INTC_EDX_CX8;
572 			break;
573 		case X86_TYPE_CYRIX_6x86MX:
574 			mask_edx =
575 			    CPUID_INTC_EDX_DE |
576 			    CPUID_INTC_EDX_MSR |
577 			    CPUID_INTC_EDX_CX8 |
578 			    CPUID_INTC_EDX_PGE |
579 			    CPUID_INTC_EDX_CMOV |
580 			    CPUID_INTC_EDX_MMX;
581 			break;
582 		case X86_TYPE_CYRIX_GXm:
583 			mask_edx =
584 			    CPUID_INTC_EDX_MSR |
585 			    CPUID_INTC_EDX_CX8 |
586 			    CPUID_INTC_EDX_CMOV |
587 			    CPUID_INTC_EDX_MMX;
588 			break;
589 		case X86_TYPE_CYRIX_MediaGX:
590 			break;
591 		case X86_TYPE_CYRIX_MII:
592 		case X86_TYPE_VIA_CYRIX_III:
593 			mask_edx =
594 			    CPUID_INTC_EDX_DE |
595 			    CPUID_INTC_EDX_TSC |
596 			    CPUID_INTC_EDX_MSR |
597 			    CPUID_INTC_EDX_CX8 |
598 			    CPUID_INTC_EDX_PGE |
599 			    CPUID_INTC_EDX_CMOV |
600 			    CPUID_INTC_EDX_MMX;
601 			break;
602 		default:
603 			break;
604 		}
605 		break;
606 	}
607 
608 	/*
609 	 * Now we've figured out the masks that determine
610 	 * which bits we choose to believe, apply the masks
611 	 * to the feature words, then map the kernel's view
612 	 * of these feature words into its feature word.
613 	 */
614 	cp->cp_edx &= mask_edx;
615 	cp->cp_ecx &= mask_ecx;
616 
617 	/*
618 	 * fold in fix ups
619 	 */
620 
621 	cp->cp_edx |= cpuid_feature_edx_include;
622 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
623 
624 
625 	cp->cp_ecx |= cpuid_feature_ecx_include;
626 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
627 
628 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
629 		feature |= X86_LARGEPAGE;
630 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
631 		feature |= X86_TSC;
632 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
633 		feature |= X86_MSR;
634 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
635 		feature |= X86_MTRR;
636 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
637 		feature |= X86_PGE;
638 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
639 		feature |= X86_CMOV;
640 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
641 		feature |= X86_MMX;
642 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
643 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
644 		feature |= X86_MCA;
645 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
646 		feature |= X86_PAE;
647 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
648 		feature |= X86_CX8;
649 	/*
650 	 * Once this bit was thought questionable, but it looks like it's
651 	 * back, as of Application Note 485 March 2005 (24161829.pdf)
652 	 */
653 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
654 		feature |= X86_CX16;
655 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
656 		feature |= X86_PAT;
657 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
658 		feature |= X86_SEP;
659 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
660 		/*
661 		 * In our implementation, fxsave/fxrstor
662 		 * are prerequisites before we'll even
663 		 * try and do SSE things.
664 		 */
665 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
666 			feature |= X86_SSE;
667 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
668 			feature |= X86_SSE2;
669 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
670 			feature |= X86_SSE3;
671 	}
672 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
673 		cr4_value |= CR4_DE;
674 
675 	if (feature & X86_PAE)
676 		cpi->cpi_pabits = 36;
677 
678 	/*
679 	 * Hyperthreading configuration is slightly tricky on Intel
680 	 * and pure clones, and even trickier on AMD.
681 	 *
682 	 * (AMD chose to set the HTT bit on their CMP processors,
683 	 * even though they're not actually hyperthreaded.  Thus it
684 	 * takes a bit more work to figure out what's really going
685 	 * on ... see the handling of the CMP_LEGACY bit below)
686 	 */
687 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
688 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
689 		if (cpi->cpi_ncpu_per_chip > 1)
690 			feature |= X86_HTT;
691 	} else {
692 		cpi->cpi_ncpu_per_chip = 1;
693 	}
694 
695 	/*
696 	 * Work on the "extended" feature information, doing
697 	 * some basic initialization for cpuid_pass2()
698 	 */
699 	xcpuid = 0;
700 	switch (cpi->cpi_vendor) {
701 	case X86_VENDOR_Intel:
702 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
703 			xcpuid++;
704 		break;
705 	case X86_VENDOR_AMD:
706 		if (cpi->cpi_family > 5 ||
707 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
708 			xcpuid++;
709 		break;
710 	case X86_VENDOR_Cyrix:
711 		/*
712 		 * Only these Cyrix CPUs are -known- to support
713 		 * extended cpuid operations.
714 		 */
715 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
716 		    x86_type == X86_TYPE_CYRIX_GXm)
717 			xcpuid++;
718 		break;
719 	case X86_VENDOR_Centaur:
720 	case X86_VENDOR_TM:
721 	default:
722 		xcpuid++;
723 		break;
724 	}
725 
726 	if (xcpuid) {
727 		cp = &cpi->cpi_extd[0];
728 		cp->cp_eax = 0x80000000;
729 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
730 	}
731 
732 	if (cpi->cpi_xmaxeax & 0x80000000) {
733 
734 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
735 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
736 
737 		switch (cpi->cpi_vendor) {
738 		case X86_VENDOR_Intel:
739 		case X86_VENDOR_AMD:
740 			if (cpi->cpi_xmaxeax < 0x80000001)
741 				break;
742 			cp = &cpi->cpi_extd[1];
743 			cp->cp_eax = 0x80000001;
744 			(void) __cpuid_insn(cp);
745 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
746 			    cpi->cpi_family == 5 &&
747 			    cpi->cpi_model == 6 &&
748 			    cpi->cpi_step == 6) {
749 				/*
750 				 * K6 model 6 uses bit 10 to indicate SYSC
751 				 * Later models use bit 11. Fix it here.
752 				 */
753 				if (cp->cp_edx & 0x400) {
754 					cp->cp_edx &= ~0x400;
755 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
756 				}
757 			}
758 
759 			/*
760 			 * Compute the additions to the kernel's feature word.
761 			 */
762 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
763 				feature |= X86_NX;
764 
765 			/*
766 			 * If both the HTT and CMP_LEGACY bits are set,
767 			 * then we're not actually HyperThreaded.  Read
768 			 * "AMD CPUID Specification" for more details.
769 			 */
770 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
771 			    (feature & X86_HTT) &&
772 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LEGACY)) {
773 				feature &= ~X86_HTT;
774 				feature |= X86_CMP;
775 			}
776 #if defined(_LP64)
777 			/*
778 			 * It's really tricky to support syscall/sysret in
779 			 * the i386 kernel; we rely on sysenter/sysexit
780 			 * instead.  In the amd64 kernel, things are -way-
781 			 * better.
782 			 */
783 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
784 				feature |= X86_ASYSC;
785 
786 			/*
787 			 * While we're thinking about system calls, note
788 			 * that AMD processors don't support sysenter
789 			 * in long mode at all, so don't try to program them.
790 			 */
791 			if (x86_vendor == X86_VENDOR_AMD)
792 				feature &= ~X86_SEP;
793 #endif
794 			break;
795 		default:
796 			break;
797 		}
798 
799 		/*
800 		 * Get CPUID data about processor cores and hyperthreads.
801 		 */
802 		switch (cpi->cpi_vendor) {
803 		case X86_VENDOR_Intel:
804 			if (cpi->cpi_maxeax >= 4) {
805 				cp = &cpi->cpi_std[4];
806 				cp->cp_eax = 4;
807 				cp->cp_ecx = 0;
808 				(void) __cpuid_insn(cp);
809 			}
810 			/*FALLTHROUGH*/
811 		case X86_VENDOR_AMD:
812 			if (cpi->cpi_xmaxeax < 0x80000008)
813 				break;
814 			cp = &cpi->cpi_extd[8];
815 			cp->cp_eax = 0x80000008;
816 			(void) __cpuid_insn(cp);
817 			/*
818 			 * Virtual and physical address limits from
819 			 * cpuid override previously guessed values.
820 			 */
821 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
822 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
823 			break;
824 		default:
825 			break;
826 		}
827 
828 		switch (cpi->cpi_vendor) {
829 		case X86_VENDOR_Intel:
830 			if (cpi->cpi_maxeax < 4) {
831 				cpi->cpi_ncore_per_chip = 1;
832 				break;
833 			} else {
834 				cpi->cpi_ncore_per_chip =
835 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
836 			}
837 			break;
838 		case X86_VENDOR_AMD:
839 			if (cpi->cpi_xmaxeax < 0x80000008) {
840 				cpi->cpi_ncore_per_chip = 1;
841 				break;
842 			} else {
843 				cpi->cpi_ncore_per_chip =
844 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
845 			}
846 			break;
847 		default:
848 			cpi->cpi_ncore_per_chip = 1;
849 			break;
850 		}
851 
852 	}
853 
854 	/*
855 	 * If more than one core, then this processor is CMP.
856 	 */
857 	if (cpi->cpi_ncore_per_chip > 1)
858 		feature |= X86_CMP;
859 	/*
860 	 * If the number of cores is the same as the number
861 	 * of CPUs, then we cannot have HyperThreading.
862 	 */
863 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
864 		feature &= ~X86_HTT;
865 
866 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
867 		/*
868 		 * Single-core single-threaded processors.
869 		 */
870 		cpi->cpi_chipid = -1;
871 		cpi->cpi_clogid = 0;
872 		cpi->cpi_coreid = cpu->cpu_id;
873 	} else if (cpi->cpi_ncpu_per_chip > 1) {
874 		uint_t i;
875 		uint_t chipid_shift = 0;
876 		uint_t coreid_shift = 0;
877 		uint_t apic_id = CPI_APIC_ID(cpi);
878 
879 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
880 			chipid_shift++;
881 		cpi->cpi_chipid = apic_id >> chipid_shift;
882 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
883 
884 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
885 			if (feature & X86_CMP) {
886 				/*
887 				 * Multi-core (and possibly multi-threaded)
888 				 * processors.
889 				 */
890 				uint_t ncpu_per_core;
891 				if (cpi->cpi_ncore_per_chip == 1)
892 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
893 				else if (cpi->cpi_ncore_per_chip > 1)
894 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
895 					    cpi->cpi_ncore_per_chip;
896 				/*
897 				 * 8bit APIC IDs on dual core Pentiums
898 				 * look like this:
899 				 *
900 				 * +-----------------------+------+------+
901 				 * | Physical Package ID   |  MC  |  HT  |
902 				 * +-----------------------+------+------+
903 				 * <------- chipid -------->
904 				 * <------- coreid --------------->
905 				 *			   <--- clogid -->
906 				 *
907 				 * Where the number of bits necessary to
908 				 * represent MC and HT fields together equals
909 				 * to the minimum number of bits necessary to
910 				 * store the value of cpi->cpi_ncpu_per_chip.
911 				 * Of those bits, the MC part uses the number
912 				 * of bits necessary to store the value of
913 				 * cpi->cpi_ncore_per_chip.
914 				 */
915 				for (i = 1; i < ncpu_per_core; i <<= 1)
916 					coreid_shift++;
917 				cpi->cpi_coreid = apic_id >> coreid_shift;
918 			} else if (feature & X86_HTT) {
919 				/*
920 				 * Single-core multi-threaded processors.
921 				 */
922 				cpi->cpi_coreid = cpi->cpi_chipid;
923 			}
924 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
925 			/*
926 			 * AMD currently only has dual-core processors with
927 			 * single-threaded cores.  If they ever release
928 			 * multi-threaded processors, then this code
929 			 * will have to be updated.
930 			 */
931 			cpi->cpi_coreid = cpu->cpu_id;
932 		} else {
933 			/*
934 			 * All other processors are currently
935 			 * assumed to have single cores.
936 			 */
937 			cpi->cpi_coreid = cpi->cpi_chipid;
938 		}
939 	}
940 
941 	/*
942 	 * Synthesize chip "revision" and socket type
943 	 */
944 	synth_info(cpi);
945 
946 pass1_done:
947 	cpi->cpi_pass = 1;
948 	return (feature);
949 }
950 
951 /*
952  * Make copies of the cpuid table entries we depend on, in
953  * part for ease of parsing now, in part so that we have only
954  * one place to correct any of it, in part for ease of
955  * later export to userland, and in part so we can look at
956  * this stuff in a crash dump.
957  */
958 
959 /*ARGSUSED*/
960 void
961 cpuid_pass2(cpu_t *cpu)
962 {
963 	uint_t n, nmax;
964 	int i;
965 	struct cpuid_regs *cp;
966 	uint8_t *dp;
967 	uint32_t *iptr;
968 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
969 
970 	ASSERT(cpi->cpi_pass == 1);
971 
972 	if (cpi->cpi_maxeax < 1)
973 		goto pass2_done;
974 
975 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
976 		nmax = NMAX_CPI_STD;
977 	/*
978 	 * (We already handled n == 0 and n == 1 in pass 1)
979 	 */
980 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
981 		cp->cp_eax = n;
982 		(void) __cpuid_insn(cp);
983 		switch (n) {
984 		case 2:
985 			/*
986 			 * "the lower 8 bits of the %eax register
987 			 * contain a value that identifies the number
988 			 * of times the cpuid [instruction] has to be
989 			 * executed to obtain a complete image of the
990 			 * processor's caching systems."
991 			 *
992 			 * How *do* they make this stuff up?
993 			 */
994 			cpi->cpi_ncache = sizeof (*cp) *
995 			    BITX(cp->cp_eax, 7, 0);
996 			if (cpi->cpi_ncache == 0)
997 				break;
998 			cpi->cpi_ncache--;	/* skip count byte */
999 
1000 			/*
1001 			 * Well, for now, rather than attempt to implement
1002 			 * this slightly dubious algorithm, we just look
1003 			 * at the first 15 ..
1004 			 */
1005 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1006 				cpi->cpi_ncache = sizeof (*cp) - 1;
1007 
1008 			dp = cpi->cpi_cacheinfo;
1009 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1010 				uint8_t *p = (void *)&cp->cp_eax;
1011 				for (i = 1; i < 3; i++)
1012 					if (p[i] != 0)
1013 						*dp++ = p[i];
1014 			}
1015 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1016 				uint8_t *p = (void *)&cp->cp_ebx;
1017 				for (i = 0; i < 4; i++)
1018 					if (p[i] != 0)
1019 						*dp++ = p[i];
1020 			}
1021 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1022 				uint8_t *p = (void *)&cp->cp_ecx;
1023 				for (i = 0; i < 4; i++)
1024 					if (p[i] != 0)
1025 						*dp++ = p[i];
1026 			}
1027 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1028 				uint8_t *p = (void *)&cp->cp_edx;
1029 				for (i = 0; i < 4; i++)
1030 					if (p[i] != 0)
1031 						*dp++ = p[i];
1032 			}
1033 			break;
1034 		case 3:	/* Processor serial number, if PSN supported */
1035 		case 4:	/* Deterministic cache parameters */
1036 		case 5:	/* Monitor/Mwait parameters */
1037 		default:
1038 			break;
1039 		}
1040 	}
1041 
1042 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1043 		goto pass2_done;
1044 
1045 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1046 		nmax = NMAX_CPI_EXTD;
1047 	/*
1048 	 * Copy the extended properties, fixing them as we go.
1049 	 * (We already handled n == 0 and n == 1 in pass 1)
1050 	 */
1051 	iptr = (void *)cpi->cpi_brandstr;
1052 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1053 		cp->cp_eax = 0x80000000 + n;
1054 		(void) __cpuid_insn(cp);
1055 		switch (n) {
1056 		case 2:
1057 		case 3:
1058 		case 4:
1059 			/*
1060 			 * Extract the brand string
1061 			 */
1062 			*iptr++ = cp->cp_eax;
1063 			*iptr++ = cp->cp_ebx;
1064 			*iptr++ = cp->cp_ecx;
1065 			*iptr++ = cp->cp_edx;
1066 			break;
1067 		case 5:
1068 			switch (cpi->cpi_vendor) {
1069 			case X86_VENDOR_AMD:
1070 				/*
1071 				 * The Athlon and Duron were the first
1072 				 * parts to report the sizes of the
1073 				 * TLB for large pages. Before then,
1074 				 * we don't trust the data.
1075 				 */
1076 				if (cpi->cpi_family < 6 ||
1077 				    (cpi->cpi_family == 6 &&
1078 				    cpi->cpi_model < 1))
1079 					cp->cp_eax = 0;
1080 				break;
1081 			default:
1082 				break;
1083 			}
1084 			break;
1085 		case 6:
1086 			switch (cpi->cpi_vendor) {
1087 			case X86_VENDOR_AMD:
1088 				/*
1089 				 * The Athlon and Duron were the first
1090 				 * AMD parts with L2 TLB's.
1091 				 * Before then, don't trust the data.
1092 				 */
1093 				if (cpi->cpi_family < 6 ||
1094 				    cpi->cpi_family == 6 &&
1095 				    cpi->cpi_model < 1)
1096 					cp->cp_eax = cp->cp_ebx = 0;
1097 				/*
1098 				 * AMD Duron rev A0 reports L2
1099 				 * cache size incorrectly as 1K
1100 				 * when it is really 64K
1101 				 */
1102 				if (cpi->cpi_family == 6 &&
1103 				    cpi->cpi_model == 3 &&
1104 				    cpi->cpi_step == 0) {
1105 					cp->cp_ecx &= 0xffff;
1106 					cp->cp_ecx |= 0x400000;
1107 				}
1108 				break;
1109 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1110 				/*
1111 				 * VIA C3 processors are a bit messed
1112 				 * up w.r.t. encoding cache sizes in %ecx
1113 				 */
1114 				if (cpi->cpi_family != 6)
1115 					break;
1116 				/*
1117 				 * model 7 and 8 were incorrectly encoded
1118 				 *
1119 				 * xxx is model 8 really broken?
1120 				 */
1121 				if (cpi->cpi_model == 7 ||
1122 				    cpi->cpi_model == 8)
1123 					cp->cp_ecx =
1124 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1125 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1126 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1127 					    BITX(cp->cp_ecx, 7, 0);
1128 				/*
1129 				 * model 9 stepping 1 has wrong associativity
1130 				 */
1131 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1132 					cp->cp_ecx |= 8 << 12;
1133 				break;
1134 			case X86_VENDOR_Intel:
1135 				/*
1136 				 * Extended L2 Cache features function.
1137 				 * First appeared on Prescott.
1138 				 */
1139 			default:
1140 				break;
1141 			}
1142 			break;
1143 		default:
1144 			break;
1145 		}
1146 	}
1147 
1148 pass2_done:
1149 	cpi->cpi_pass = 2;
1150 }
1151 
1152 static const char *
1153 intel_cpubrand(const struct cpuid_info *cpi)
1154 {
1155 	int i;
1156 
1157 	if ((x86_feature & X86_CPUID) == 0 ||
1158 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1159 		return ("i486");
1160 
1161 	switch (cpi->cpi_family) {
1162 	case 5:
1163 		return ("Intel Pentium(r)");
1164 	case 6:
1165 		switch (cpi->cpi_model) {
1166 			uint_t celeron, xeon;
1167 			const struct cpuid_regs *cp;
1168 		case 0:
1169 		case 1:
1170 		case 2:
1171 			return ("Intel Pentium(r) Pro");
1172 		case 3:
1173 		case 4:
1174 			return ("Intel Pentium(r) II");
1175 		case 6:
1176 			return ("Intel Celeron(r)");
1177 		case 5:
1178 		case 7:
1179 			celeron = xeon = 0;
1180 			cp = &cpi->cpi_std[2];	/* cache info */
1181 
1182 			for (i = 1; i < 3; i++) {
1183 				uint_t tmp;
1184 
1185 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1186 				if (tmp == 0x40)
1187 					celeron++;
1188 				if (tmp >= 0x44 && tmp <= 0x45)
1189 					xeon++;
1190 			}
1191 
1192 			for (i = 0; i < 2; i++) {
1193 				uint_t tmp;
1194 
1195 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1196 				if (tmp == 0x40)
1197 					celeron++;
1198 				else if (tmp >= 0x44 && tmp <= 0x45)
1199 					xeon++;
1200 			}
1201 
1202 			for (i = 0; i < 4; i++) {
1203 				uint_t tmp;
1204 
1205 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1206 				if (tmp == 0x40)
1207 					celeron++;
1208 				else if (tmp >= 0x44 && tmp <= 0x45)
1209 					xeon++;
1210 			}
1211 
1212 			for (i = 0; i < 4; i++) {
1213 				uint_t tmp;
1214 
1215 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1216 				if (tmp == 0x40)
1217 					celeron++;
1218 				else if (tmp >= 0x44 && tmp <= 0x45)
1219 					xeon++;
1220 			}
1221 
1222 			if (celeron)
1223 				return ("Intel Celeron(r)");
1224 			if (xeon)
1225 				return (cpi->cpi_model == 5 ?
1226 				    "Intel Pentium(r) II Xeon(tm)" :
1227 				    "Intel Pentium(r) III Xeon(tm)");
1228 			return (cpi->cpi_model == 5 ?
1229 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1230 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1231 		default:
1232 			break;
1233 		}
1234 	default:
1235 		break;
1236 	}
1237 
1238 	/* BrandID is present if the field is nonzero */
1239 	if (cpi->cpi_brandid != 0) {
1240 		static const struct {
1241 			uint_t bt_bid;
1242 			const char *bt_str;
1243 		} brand_tbl[] = {
1244 			{ 0x1,	"Intel(r) Celeron(r)" },
1245 			{ 0x2,	"Intel(r) Pentium(r) III" },
1246 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1247 			{ 0x4,	"Intel(r) Pentium(r) III" },
1248 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1249 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1250 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1251 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1252 			{ 0xa,	"Intel(r) Celeron(r)" },
1253 			{ 0xb,	"Intel(r) Xeon(tm)" },
1254 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1255 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1256 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1257 			{ 0x11, "Mobile Genuine Intel(r)" },
1258 			{ 0x12, "Intel(r) Celeron(r) M" },
1259 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1260 			{ 0x14, "Intel(r) Celeron(r)" },
1261 			{ 0x15, "Mobile Genuine Intel(r)" },
1262 			{ 0x16,	"Intel(r) Pentium(r) M" },
1263 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1264 		};
1265 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1266 		uint_t sgn;
1267 
1268 		sgn = (cpi->cpi_family << 8) |
1269 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1270 
1271 		for (i = 0; i < btblmax; i++)
1272 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1273 				break;
1274 		if (i < btblmax) {
1275 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1276 				return ("Intel(r) Celeron(r)");
1277 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1278 				return ("Intel(r) Xeon(tm) MP");
1279 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1280 				return ("Intel(r) Xeon(tm)");
1281 			return (brand_tbl[i].bt_str);
1282 		}
1283 	}
1284 
1285 	return (NULL);
1286 }
1287 
1288 static const char *
1289 amd_cpubrand(const struct cpuid_info *cpi)
1290 {
1291 	if ((x86_feature & X86_CPUID) == 0 ||
1292 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1293 		return ("i486 compatible");
1294 
1295 	switch (cpi->cpi_family) {
1296 	case 5:
1297 		switch (cpi->cpi_model) {
1298 		case 0:
1299 		case 1:
1300 		case 2:
1301 		case 3:
1302 		case 4:
1303 		case 5:
1304 			return ("AMD-K5(r)");
1305 		case 6:
1306 		case 7:
1307 			return ("AMD-K6(r)");
1308 		case 8:
1309 			return ("AMD-K6(r)-2");
1310 		case 9:
1311 			return ("AMD-K6(r)-III");
1312 		default:
1313 			return ("AMD (family 5)");
1314 		}
1315 	case 6:
1316 		switch (cpi->cpi_model) {
1317 		case 1:
1318 			return ("AMD-K7(tm)");
1319 		case 0:
1320 		case 2:
1321 		case 4:
1322 			return ("AMD Athlon(tm)");
1323 		case 3:
1324 		case 7:
1325 			return ("AMD Duron(tm)");
1326 		case 6:
1327 		case 8:
1328 		case 10:
1329 			/*
1330 			 * Use the L2 cache size to distinguish
1331 			 */
1332 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1333 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1334 		default:
1335 			return ("AMD (family 6)");
1336 		}
1337 	default:
1338 		break;
1339 	}
1340 
1341 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1342 	    cpi->cpi_brandid != 0) {
1343 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1344 		case 3:
1345 			return ("AMD Opteron(tm) UP 1xx");
1346 		case 4:
1347 			return ("AMD Opteron(tm) DP 2xx");
1348 		case 5:
1349 			return ("AMD Opteron(tm) MP 8xx");
1350 		default:
1351 			return ("AMD Opteron(tm)");
1352 		}
1353 	}
1354 
1355 	return (NULL);
1356 }
1357 
1358 static const char *
1359 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1360 {
1361 	if ((x86_feature & X86_CPUID) == 0 ||
1362 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1363 	    type == X86_TYPE_CYRIX_486)
1364 		return ("i486 compatible");
1365 
1366 	switch (type) {
1367 	case X86_TYPE_CYRIX_6x86:
1368 		return ("Cyrix 6x86");
1369 	case X86_TYPE_CYRIX_6x86L:
1370 		return ("Cyrix 6x86L");
1371 	case X86_TYPE_CYRIX_6x86MX:
1372 		return ("Cyrix 6x86MX");
1373 	case X86_TYPE_CYRIX_GXm:
1374 		return ("Cyrix GXm");
1375 	case X86_TYPE_CYRIX_MediaGX:
1376 		return ("Cyrix MediaGX");
1377 	case X86_TYPE_CYRIX_MII:
1378 		return ("Cyrix M2");
1379 	case X86_TYPE_VIA_CYRIX_III:
1380 		return ("VIA Cyrix M3");
1381 	default:
1382 		/*
1383 		 * Have another wild guess ..
1384 		 */
1385 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1386 			return ("Cyrix 5x86");
1387 		else if (cpi->cpi_family == 5) {
1388 			switch (cpi->cpi_model) {
1389 			case 2:
1390 				return ("Cyrix 6x86");	/* Cyrix M1 */
1391 			case 4:
1392 				return ("Cyrix MediaGX");
1393 			default:
1394 				break;
1395 			}
1396 		} else if (cpi->cpi_family == 6) {
1397 			switch (cpi->cpi_model) {
1398 			case 0:
1399 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1400 			case 5:
1401 			case 6:
1402 			case 7:
1403 			case 8:
1404 			case 9:
1405 				return ("VIA C3");
1406 			default:
1407 				break;
1408 			}
1409 		}
1410 		break;
1411 	}
1412 	return (NULL);
1413 }
1414 
1415 /*
1416  * This only gets called in the case that the CPU extended
1417  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1418  * aren't available, or contain null bytes for some reason.
1419  */
1420 static void
1421 fabricate_brandstr(struct cpuid_info *cpi)
1422 {
1423 	const char *brand = NULL;
1424 
1425 	switch (cpi->cpi_vendor) {
1426 	case X86_VENDOR_Intel:
1427 		brand = intel_cpubrand(cpi);
1428 		break;
1429 	case X86_VENDOR_AMD:
1430 		brand = amd_cpubrand(cpi);
1431 		break;
1432 	case X86_VENDOR_Cyrix:
1433 		brand = cyrix_cpubrand(cpi, x86_type);
1434 		break;
1435 	case X86_VENDOR_NexGen:
1436 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1437 			brand = "NexGen Nx586";
1438 		break;
1439 	case X86_VENDOR_Centaur:
1440 		if (cpi->cpi_family == 5)
1441 			switch (cpi->cpi_model) {
1442 			case 4:
1443 				brand = "Centaur C6";
1444 				break;
1445 			case 8:
1446 				brand = "Centaur C2";
1447 				break;
1448 			case 9:
1449 				brand = "Centaur C3";
1450 				break;
1451 			default:
1452 				break;
1453 			}
1454 		break;
1455 	case X86_VENDOR_Rise:
1456 		if (cpi->cpi_family == 5 &&
1457 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1458 			brand = "Rise mP6";
1459 		break;
1460 	case X86_VENDOR_SiS:
1461 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1462 			brand = "SiS 55x";
1463 		break;
1464 	case X86_VENDOR_TM:
1465 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1466 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1467 		break;
1468 	case X86_VENDOR_NSC:
1469 	case X86_VENDOR_UMC:
1470 	default:
1471 		break;
1472 	}
1473 	if (brand) {
1474 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1475 		return;
1476 	}
1477 
1478 	/*
1479 	 * If all else fails ...
1480 	 */
1481 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1482 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1483 	    cpi->cpi_model, cpi->cpi_step);
1484 }
1485 
1486 /*
1487  * This routine is called just after kernel memory allocation
1488  * becomes available on cpu0, and as part of mp_startup() on
1489  * the other cpus.
1490  *
1491  * Fixup the brand string.
1492  */
1493 /*ARGSUSED*/
1494 void
1495 cpuid_pass3(cpu_t *cpu)
1496 {
1497 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1498 
1499 	ASSERT(cpi->cpi_pass == 2);
1500 
1501 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1502 		fabricate_brandstr(cpi);
1503 		goto pass3_done;
1504 	}
1505 
1506 	/*
1507 	 * If we successfully extracted a brand string from the cpuid
1508 	 * instruction, clean it up by removing leading spaces and
1509 	 * similar junk.
1510 	 */
1511 	if (cpi->cpi_brandstr[0]) {
1512 		size_t maxlen = sizeof (cpi->cpi_brandstr);
1513 		char *src, *dst;
1514 
1515 		dst = src = (char *)cpi->cpi_brandstr;
1516 		src[maxlen - 1] = '\0';
1517 		/*
1518 		 * strip leading spaces
1519 		 */
1520 		while (*src == ' ')
1521 			src++;
1522 		/*
1523 		 * Remove any 'Genuine' or "Authentic" prefixes
1524 		 */
1525 		if (strncmp(src, "Genuine ", 8) == 0)
1526 			src += 8;
1527 		if (strncmp(src, "Authentic ", 10) == 0)
1528 			src += 10;
1529 
1530 		/*
1531 		 * Now do an in-place copy.
1532 		 * Map (R) to (r) and (TM) to (tm).
1533 		 * The era of teletypes is long gone, and there's
1534 		 * -really- no need to shout.
1535 		 */
1536 		while (*src != '\0') {
1537 			if (src[0] == '(') {
1538 				if (strncmp(src + 1, "R)", 2) == 0) {
1539 					(void) strncpy(dst, "(r)", 3);
1540 					src += 3;
1541 					dst += 3;
1542 					continue;
1543 				}
1544 				if (strncmp(src + 1, "TM)", 3) == 0) {
1545 					(void) strncpy(dst, "(tm)", 4);
1546 					src += 4;
1547 					dst += 4;
1548 					continue;
1549 				}
1550 			}
1551 			*dst++ = *src++;
1552 		}
1553 		*dst = '\0';
1554 
1555 		/*
1556 		 * Finally, remove any trailing spaces
1557 		 */
1558 		while (--dst > cpi->cpi_brandstr)
1559 			if (*dst == ' ')
1560 				*dst = '\0';
1561 			else
1562 				break;
1563 	} else
1564 		fabricate_brandstr(cpi);
1565 
1566 pass3_done:
1567 	cpi->cpi_pass = 3;
1568 }
1569 
1570 /*
1571  * This routine is called out of bind_hwcap() much later in the life
1572  * of the kernel (post_startup()).  The job of this routine is to resolve
1573  * the hardware feature support and kernel support for those features into
1574  * what we're actually going to tell applications via the aux vector.
1575  */
1576 uint_t
1577 cpuid_pass4(cpu_t *cpu)
1578 {
1579 	struct cpuid_info *cpi;
1580 	uint_t hwcap_flags = 0;
1581 
1582 	if (cpu == NULL)
1583 		cpu = CPU;
1584 	cpi = cpu->cpu_m.mcpu_cpi;
1585 
1586 	ASSERT(cpi->cpi_pass == 3);
1587 
1588 	if (cpi->cpi_maxeax >= 1) {
1589 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1590 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1591 
1592 		*edx = CPI_FEATURES_EDX(cpi);
1593 		*ecx = CPI_FEATURES_ECX(cpi);
1594 
1595 		/*
1596 		 * [these require explicit kernel support]
1597 		 */
1598 		if ((x86_feature & X86_SEP) == 0)
1599 			*edx &= ~CPUID_INTC_EDX_SEP;
1600 
1601 		if ((x86_feature & X86_SSE) == 0)
1602 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1603 		if ((x86_feature & X86_SSE2) == 0)
1604 			*edx &= ~CPUID_INTC_EDX_SSE2;
1605 
1606 		if ((x86_feature & X86_HTT) == 0)
1607 			*edx &= ~CPUID_INTC_EDX_HTT;
1608 
1609 		if ((x86_feature & X86_SSE3) == 0)
1610 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1611 
1612 		/*
1613 		 * [no explicit support required beyond x87 fp context]
1614 		 */
1615 		if (!fpu_exists)
1616 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1617 
1618 		/*
1619 		 * Now map the supported feature vector to things that we
1620 		 * think userland will care about.
1621 		 */
1622 		if (*edx & CPUID_INTC_EDX_SEP)
1623 			hwcap_flags |= AV_386_SEP;
1624 		if (*edx & CPUID_INTC_EDX_SSE)
1625 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1626 		if (*edx & CPUID_INTC_EDX_SSE2)
1627 			hwcap_flags |= AV_386_SSE2;
1628 		if (*ecx & CPUID_INTC_ECX_SSE3)
1629 			hwcap_flags |= AV_386_SSE3;
1630 
1631 		if (*edx & CPUID_INTC_EDX_FPU)
1632 			hwcap_flags |= AV_386_FPU;
1633 		if (*edx & CPUID_INTC_EDX_MMX)
1634 			hwcap_flags |= AV_386_MMX;
1635 
1636 		if (*edx & CPUID_INTC_EDX_TSC)
1637 			hwcap_flags |= AV_386_TSC;
1638 		if (*edx & CPUID_INTC_EDX_CX8)
1639 			hwcap_flags |= AV_386_CX8;
1640 		if (*edx & CPUID_INTC_EDX_CMOV)
1641 			hwcap_flags |= AV_386_CMOV;
1642 		if (*ecx & CPUID_INTC_ECX_MON)
1643 			hwcap_flags |= AV_386_MON;
1644 #if defined(CPUID_INTC_ECX_CX16)
1645 		if (*ecx & CPUID_INTC_ECX_CX16)
1646 			hwcap_flags |= AV_386_CX16;
1647 #endif
1648 	}
1649 
1650 	if (x86_feature & X86_HTT)
1651 		hwcap_flags |= AV_386_PAUSE;
1652 
1653 	if (cpi->cpi_xmaxeax < 0x80000001)
1654 		goto pass4_done;
1655 
1656 	switch (cpi->cpi_vendor) {
1657 		struct cpuid_regs cp;
1658 		uint32_t *edx;
1659 
1660 	case X86_VENDOR_Intel:	/* sigh */
1661 	case X86_VENDOR_AMD:
1662 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1663 
1664 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1665 
1666 		/*
1667 		 * [no explicit support required beyond
1668 		 * x87 fp context and exception handlers]
1669 		 */
1670 		if (!fpu_exists)
1671 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1672 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1673 
1674 		if ((x86_feature & X86_ASYSC) == 0)
1675 			*edx &= ~CPUID_AMD_EDX_SYSC;
1676 		if ((x86_feature & X86_NX) == 0)
1677 			*edx &= ~CPUID_AMD_EDX_NX;
1678 #if !defined(_LP64)
1679 		*edx &= ~CPUID_AMD_EDX_LM;
1680 #endif
1681 		/*
1682 		 * Now map the supported feature vector to
1683 		 * things that we think userland will care about.
1684 		 */
1685 		if (*edx & CPUID_AMD_EDX_SYSC)
1686 			hwcap_flags |= AV_386_AMD_SYSC;
1687 		if (*edx & CPUID_AMD_EDX_MMXamd)
1688 			hwcap_flags |= AV_386_AMD_MMX;
1689 		if (*edx & CPUID_AMD_EDX_3DNow)
1690 			hwcap_flags |= AV_386_AMD_3DNow;
1691 		if (*edx & CPUID_AMD_EDX_3DNowx)
1692 			hwcap_flags |= AV_386_AMD_3DNowx;
1693 		break;
1694 
1695 	case X86_VENDOR_TM:
1696 		cp.cp_eax = 0x80860001;
1697 		(void) __cpuid_insn(&cp);
1698 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
1699 		break;
1700 
1701 	default:
1702 		break;
1703 	}
1704 
1705 pass4_done:
1706 	cpi->cpi_pass = 4;
1707 	return (hwcap_flags);
1708 }
1709 
1710 
1711 /*
1712  * Simulate the cpuid instruction using the data we previously
1713  * captured about this CPU.  We try our best to return the truth
1714  * about the hardware, independently of kernel support.
1715  */
1716 uint32_t
1717 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
1718 {
1719 	struct cpuid_info *cpi;
1720 	struct cpuid_regs *xcp;
1721 
1722 	if (cpu == NULL)
1723 		cpu = CPU;
1724 	cpi = cpu->cpu_m.mcpu_cpi;
1725 
1726 	ASSERT(cpuid_checkpass(cpu, 3));
1727 
1728 	/*
1729 	 * CPUID data is cached in two separate places: cpi_std for standard
1730 	 * CPUID functions, and cpi_extd for extended CPUID functions.
1731 	 */
1732 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
1733 		xcp = &cpi->cpi_std[cp->cp_eax];
1734 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
1735 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
1736 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
1737 	else
1738 		/*
1739 		 * The caller is asking for data from an input parameter which
1740 		 * the kernel has not cached.  In this case we go fetch from
1741 		 * the hardware and return the data directly to the user.
1742 		 */
1743 		return (__cpuid_insn(cp));
1744 
1745 	cp->cp_eax = xcp->cp_eax;
1746 	cp->cp_ebx = xcp->cp_ebx;
1747 	cp->cp_ecx = xcp->cp_ecx;
1748 	cp->cp_edx = xcp->cp_edx;
1749 	return (cp->cp_eax);
1750 }
1751 
1752 int
1753 cpuid_checkpass(cpu_t *cpu, int pass)
1754 {
1755 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
1756 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
1757 }
1758 
1759 int
1760 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
1761 {
1762 	ASSERT(cpuid_checkpass(cpu, 3));
1763 
1764 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
1765 }
1766 
1767 int
1768 cpuid_is_cmt(cpu_t *cpu)
1769 {
1770 	if (cpu == NULL)
1771 		cpu = CPU;
1772 
1773 	ASSERT(cpuid_checkpass(cpu, 1));
1774 
1775 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
1776 }
1777 
1778 /*
1779  * AMD and Intel both implement the 64-bit variant of the syscall
1780  * instruction (syscallq), so if there's -any- support for syscall,
1781  * cpuid currently says "yes, we support this".
1782  *
1783  * However, Intel decided to -not- implement the 32-bit variant of the
1784  * syscall instruction, so we provide a predicate to allow our caller
1785  * to test that subtlety here.
1786  */
1787 /*ARGSUSED*/
1788 int
1789 cpuid_syscall32_insn(cpu_t *cpu)
1790 {
1791 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
1792 
1793 	if (x86_feature & X86_ASYSC)
1794 		return (x86_vendor != X86_VENDOR_Intel);
1795 	return (0);
1796 }
1797 
1798 int
1799 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
1800 {
1801 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1802 
1803 	static const char fmt[] =
1804 	    "x86 (%s family %d model %d step %d clock %d MHz)";
1805 	static const char fmt_ht[] =
1806 	    "x86 (chipid 0x%x %s family %d model %d step %d clock %d MHz)";
1807 
1808 	ASSERT(cpuid_checkpass(cpu, 1));
1809 
1810 	if (cpuid_is_cmt(cpu))
1811 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
1812 		    cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model,
1813 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1814 	return (snprintf(s, n, fmt,
1815 	    cpi->cpi_vendorstr, cpi->cpi_family, cpi->cpi_model,
1816 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
1817 }
1818 
1819 const char *
1820 cpuid_getvendorstr(cpu_t *cpu)
1821 {
1822 	ASSERT(cpuid_checkpass(cpu, 1));
1823 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
1824 }
1825 
1826 uint_t
1827 cpuid_getvendor(cpu_t *cpu)
1828 {
1829 	ASSERT(cpuid_checkpass(cpu, 1));
1830 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
1831 }
1832 
1833 uint_t
1834 cpuid_getfamily(cpu_t *cpu)
1835 {
1836 	ASSERT(cpuid_checkpass(cpu, 1));
1837 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
1838 }
1839 
1840 uint_t
1841 cpuid_getmodel(cpu_t *cpu)
1842 {
1843 	ASSERT(cpuid_checkpass(cpu, 1));
1844 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
1845 }
1846 
1847 uint_t
1848 cpuid_get_ncpu_per_chip(cpu_t *cpu)
1849 {
1850 	ASSERT(cpuid_checkpass(cpu, 1));
1851 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
1852 }
1853 
1854 uint_t
1855 cpuid_get_ncore_per_chip(cpu_t *cpu)
1856 {
1857 	ASSERT(cpuid_checkpass(cpu, 1));
1858 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
1859 }
1860 
1861 uint_t
1862 cpuid_getstep(cpu_t *cpu)
1863 {
1864 	ASSERT(cpuid_checkpass(cpu, 1));
1865 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
1866 }
1867 
1868 uint32_t
1869 cpuid_getchiprev(struct cpu *cpu)
1870 {
1871 	ASSERT(cpuid_checkpass(cpu, 1));
1872 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
1873 }
1874 
1875 const char *
1876 cpuid_getchiprevstr(struct cpu *cpu)
1877 {
1878 	ASSERT(cpuid_checkpass(cpu, 1));
1879 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
1880 }
1881 
1882 uint32_t
1883 cpuid_getsockettype(struct cpu *cpu)
1884 {
1885 	ASSERT(cpuid_checkpass(cpu, 1));
1886 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
1887 }
1888 
1889 chipid_t
1890 chip_plat_get_chipid(cpu_t *cpu)
1891 {
1892 	ASSERT(cpuid_checkpass(cpu, 1));
1893 
1894 	if (cpuid_is_cmt(cpu))
1895 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
1896 	return (cpu->cpu_id);
1897 }
1898 
1899 id_t
1900 chip_plat_get_coreid(cpu_t *cpu)
1901 {
1902 	ASSERT(cpuid_checkpass(cpu, 1));
1903 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
1904 }
1905 
1906 int
1907 chip_plat_get_clogid(cpu_t *cpu)
1908 {
1909 	ASSERT(cpuid_checkpass(cpu, 1));
1910 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
1911 }
1912 
1913 void
1914 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
1915 {
1916 	struct cpuid_info *cpi;
1917 
1918 	if (cpu == NULL)
1919 		cpu = CPU;
1920 	cpi = cpu->cpu_m.mcpu_cpi;
1921 
1922 	ASSERT(cpuid_checkpass(cpu, 1));
1923 
1924 	if (pabits)
1925 		*pabits = cpi->cpi_pabits;
1926 	if (vabits)
1927 		*vabits = cpi->cpi_vabits;
1928 }
1929 
1930 /*
1931  * Returns the number of data TLB entries for a corresponding
1932  * pagesize.  If it can't be computed, or isn't known, the
1933  * routine returns zero.  If you ask about an architecturally
1934  * impossible pagesize, the routine will panic (so that the
1935  * hat implementor knows that things are inconsistent.)
1936  */
1937 uint_t
1938 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
1939 {
1940 	struct cpuid_info *cpi;
1941 	uint_t dtlb_nent = 0;
1942 
1943 	if (cpu == NULL)
1944 		cpu = CPU;
1945 	cpi = cpu->cpu_m.mcpu_cpi;
1946 
1947 	ASSERT(cpuid_checkpass(cpu, 1));
1948 
1949 	/*
1950 	 * Check the L2 TLB info
1951 	 */
1952 	if (cpi->cpi_xmaxeax >= 0x80000006) {
1953 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
1954 
1955 		switch (pagesize) {
1956 
1957 		case 4 * 1024:
1958 			/*
1959 			 * All zero in the top 16 bits of the register
1960 			 * indicates a unified TLB. Size is in low 16 bits.
1961 			 */
1962 			if ((cp->cp_ebx & 0xffff0000) == 0)
1963 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
1964 			else
1965 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
1966 			break;
1967 
1968 		case 2 * 1024 * 1024:
1969 			if ((cp->cp_eax & 0xffff0000) == 0)
1970 				dtlb_nent = cp->cp_eax & 0x0000ffff;
1971 			else
1972 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
1973 			break;
1974 
1975 		default:
1976 			panic("unknown L2 pagesize");
1977 			/*NOTREACHED*/
1978 		}
1979 	}
1980 
1981 	if (dtlb_nent != 0)
1982 		return (dtlb_nent);
1983 
1984 	/*
1985 	 * No L2 TLB support for this size, try L1.
1986 	 */
1987 	if (cpi->cpi_xmaxeax >= 0x80000005) {
1988 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
1989 
1990 		switch (pagesize) {
1991 		case 4 * 1024:
1992 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
1993 			break;
1994 		case 2 * 1024 * 1024:
1995 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
1996 			break;
1997 		default:
1998 			panic("unknown L1 d-TLB pagesize");
1999 			/*NOTREACHED*/
2000 		}
2001 	}
2002 
2003 	return (dtlb_nent);
2004 }
2005 
2006 /*
2007  * Return 0 if the erratum is not present or not applicable, positive
2008  * if it is, and negative if the status of the erratum is unknown.
2009  *
2010  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2011  * Processors" #25759, Rev 3.57, August 2005
2012  */
2013 int
2014 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2015 {
2016 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2017 	uint_t eax;
2018 
2019 	/*
2020 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2021 	 * a legacy (32-bit) AMD CPU.
2022 	 */
2023 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2024 	    CPI_FAMILY(cpi) == 4 || CPI_FAMILY(cpi) == 5 ||
2025 	    CPI_FAMILY(cpi) == 6)
2026 
2027 		return (0);
2028 
2029 	eax = cpi->cpi_std[1].cp_eax;
2030 
2031 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2032 #define	SH_B3(eax) 	(eax == 0xf51)
2033 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2034 
2035 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2036 
2037 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2038 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2039 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2040 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2041 
2042 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2043 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2044 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2045 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2046 
2047 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2048 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2049 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2050 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2051 #define	BH_E4(eax)	(eax == 0x20fb1)
2052 #define	SH_E5(eax)	(eax == 0x20f42)
2053 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2054 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2055 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2056 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2057 			    DH_E6(eax) || JH_E6(eax))
2058 
2059 	switch (erratum) {
2060 	case 1:
2061 		return (1);
2062 	case 51:	/* what does the asterisk mean? */
2063 		return (B(eax) || SH_C0(eax) || CG(eax));
2064 	case 52:
2065 		return (B(eax));
2066 	case 57:
2067 		return (1);
2068 	case 58:
2069 		return (B(eax));
2070 	case 60:
2071 		return (1);
2072 	case 61:
2073 	case 62:
2074 	case 63:
2075 	case 64:
2076 	case 65:
2077 	case 66:
2078 	case 68:
2079 	case 69:
2080 	case 70:
2081 	case 71:
2082 		return (B(eax));
2083 	case 72:
2084 		return (SH_B0(eax));
2085 	case 74:
2086 		return (B(eax));
2087 	case 75:
2088 		return (1);
2089 	case 76:
2090 		return (B(eax));
2091 	case 77:
2092 		return (1);
2093 	case 78:
2094 		return (B(eax) || SH_C0(eax));
2095 	case 79:
2096 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2097 	case 80:
2098 	case 81:
2099 	case 82:
2100 		return (B(eax));
2101 	case 83:
2102 		return (B(eax) || SH_C0(eax) || CG(eax));
2103 	case 85:
2104 		return (1);
2105 	case 86:
2106 		return (SH_C0(eax) || CG(eax));
2107 	case 88:
2108 #if !defined(__amd64)
2109 		return (0);
2110 #else
2111 		return (B(eax) || SH_C0(eax));
2112 #endif
2113 	case 89:
2114 		return (1);
2115 	case 90:
2116 		return (B(eax) || SH_C0(eax) || CG(eax));
2117 	case 91:
2118 	case 92:
2119 		return (B(eax) || SH_C0(eax));
2120 	case 93:
2121 		return (SH_C0(eax));
2122 	case 94:
2123 		return (B(eax) || SH_C0(eax) || CG(eax));
2124 	case 95:
2125 #if !defined(__amd64)
2126 		return (0);
2127 #else
2128 		return (B(eax) || SH_C0(eax));
2129 #endif
2130 	case 96:
2131 		return (B(eax) || SH_C0(eax) || CG(eax));
2132 	case 97:
2133 	case 98:
2134 		return (SH_C0(eax) || CG(eax));
2135 	case 99:
2136 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2137 	case 100:
2138 		return (B(eax) || SH_C0(eax));
2139 	case 101:
2140 	case 103:
2141 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2142 	case 104:
2143 		return (SH_C0(eax) || CG(eax) || D0(eax));
2144 	case 105:
2145 	case 106:
2146 	case 107:
2147 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2148 	case 108:
2149 		return (DH_CG(eax));
2150 	case 109:
2151 		return (SH_C0(eax) || CG(eax) || D0(eax));
2152 	case 110:
2153 		return (D0(eax) || EX(eax));
2154 	case 111:
2155 		return (CG(eax));
2156 	case 112:
2157 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2158 	case 113:
2159 		return (eax == 0x20fc0);
2160 	case 114:
2161 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2162 	case 115:
2163 		return (SH_E0(eax) || JH_E1(eax));
2164 	case 116:
2165 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2166 	case 117:
2167 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2168 	case 118:
2169 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2170 		    JH_E6(eax));
2171 	case 121:
2172 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2173 	case 122:
2174 		return (1);
2175 	case 123:
2176 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2177 	case 131:
2178 		return (1);
2179 	case 6336786:
2180 		/*
2181 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2182 		 * if this is a K8 family processor
2183 		 */
2184 		if (CPI_FAMILY(cpi) == 0xf) {
2185 			struct cpuid_regs regs;
2186 			regs.cp_eax = 0x80000007;
2187 			(void) __cpuid_insn(&regs);
2188 			return (!(regs.cp_edx & 0x100));
2189 		}
2190 		return (0);
2191 	case 6323525:
2192 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2193 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2194 
2195 	default:
2196 		return (-1);
2197 	}
2198 }
2199 
2200 static const char assoc_str[] = "associativity";
2201 static const char line_str[] = "line-size";
2202 static const char size_str[] = "size";
2203 
2204 static void
2205 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2206     uint32_t val)
2207 {
2208 	char buf[128];
2209 
2210 	/*
2211 	 * ndi_prop_update_int() is used because it is desirable for
2212 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2213 	 */
2214 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2215 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2216 }
2217 
2218 /*
2219  * Intel-style cache/tlb description
2220  *
2221  * Standard cpuid level 2 gives a randomly ordered
2222  * selection of tags that index into a table that describes
2223  * cache and tlb properties.
2224  */
2225 
2226 static const char l1_icache_str[] = "l1-icache";
2227 static const char l1_dcache_str[] = "l1-dcache";
2228 static const char l2_cache_str[] = "l2-cache";
2229 static const char itlb4k_str[] = "itlb-4K";
2230 static const char dtlb4k_str[] = "dtlb-4K";
2231 static const char itlb4M_str[] = "itlb-4M";
2232 static const char dtlb4M_str[] = "dtlb-4M";
2233 static const char itlb424_str[] = "itlb-4K-2M-4M";
2234 static const char dtlb44_str[] = "dtlb-4K-4M";
2235 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2236 static const char sl2_cache_str[] = "sectored-l2-cache";
2237 static const char itrace_str[] = "itrace-cache";
2238 static const char sl3_cache_str[] = "sectored-l3-cache";
2239 
2240 static const struct cachetab {
2241 	uint8_t 	ct_code;
2242 	uint8_t		ct_assoc;
2243 	uint16_t 	ct_line_size;
2244 	size_t		ct_size;
2245 	const char	*ct_label;
2246 } intel_ctab[] = {
2247 	/* maintain descending order! */
2248 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2249 	{ 0xb0, 4, 0, 128, itlb4k_str },
2250 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2251 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2252 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2253 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2254 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2255 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2256 	{ 0x81, 8, 32, 128*1024, l2_cache_str},		/* suspect! */
2257 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2258 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2259 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2260 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2261 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2262 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2263 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2264 	{ 0x72, 8, 0, 32*1024, itrace_str},
2265 	{ 0x71, 8, 0, 16*1024, itrace_str},
2266 	{ 0x70, 8, 0, 12*1024, itrace_str},
2267 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2268 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2269 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2270 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2271 	{ 0x5d, 0, 0, 256, dtlb44_str},
2272 	{ 0x5c, 0, 0, 128, dtlb44_str},
2273 	{ 0x5b, 0, 0, 64, dtlb44_str},
2274 	{ 0x52, 0, 0, 256, itlb424_str},
2275 	{ 0x51, 0, 0, 128, itlb424_str},
2276 	{ 0x50, 0, 0, 64, itlb424_str},
2277 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2278 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2279 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2280 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2281 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2282 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2283 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2284 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2285 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2286 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2287 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2288 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2289 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2290 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2291 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2292 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2293 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2294 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2295 	{ 0x04, 4, 0, 8, dtlb4M_str},
2296 	{ 0x03, 4, 0, 64, dtlb4k_str},
2297 	{ 0x02, 4, 0, 2, itlb4M_str},
2298 	{ 0x01, 4, 0, 32, itlb4k_str},
2299 	{ 0 }
2300 };
2301 
2302 static const struct cachetab cyrix_ctab[] = {
2303 	{ 0x70, 4, 0, 32, "tlb-4K" },
2304 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2305 	{ 0 }
2306 };
2307 
2308 /*
2309  * Search a cache table for a matching entry
2310  */
2311 static const struct cachetab *
2312 find_cacheent(const struct cachetab *ct, uint_t code)
2313 {
2314 	if (code != 0) {
2315 		for (; ct->ct_code != 0; ct++)
2316 			if (ct->ct_code <= code)
2317 				break;
2318 		if (ct->ct_code == code)
2319 			return (ct);
2320 	}
2321 	return (NULL);
2322 }
2323 
2324 /*
2325  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2326  * The walk is terminated if the walker returns non-zero.
2327  */
2328 static void
2329 intel_walk_cacheinfo(struct cpuid_info *cpi,
2330     void *arg, int (*func)(void *, const struct cachetab *))
2331 {
2332 	const struct cachetab *ct;
2333 	uint8_t *dp;
2334 	int i;
2335 
2336 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2337 		return;
2338 	for (i = 0; i < cpi->cpi_ncache; i++, dp++)
2339 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2340 			if (func(arg, ct) != 0)
2341 				break;
2342 		}
2343 }
2344 
2345 /*
2346  * (Like the Intel one, except for Cyrix CPUs)
2347  */
2348 static void
2349 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2350     void *arg, int (*func)(void *, const struct cachetab *))
2351 {
2352 	const struct cachetab *ct;
2353 	uint8_t *dp;
2354 	int i;
2355 
2356 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2357 		return;
2358 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2359 		/*
2360 		 * Search Cyrix-specific descriptor table first ..
2361 		 */
2362 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2363 			if (func(arg, ct) != 0)
2364 				break;
2365 			continue;
2366 		}
2367 		/*
2368 		 * .. else fall back to the Intel one
2369 		 */
2370 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2371 			if (func(arg, ct) != 0)
2372 				break;
2373 			continue;
2374 		}
2375 	}
2376 }
2377 
2378 /*
2379  * A cacheinfo walker that adds associativity, line-size, and size properties
2380  * to the devinfo node it is passed as an argument.
2381  */
2382 static int
2383 add_cacheent_props(void *arg, const struct cachetab *ct)
2384 {
2385 	dev_info_t *devi = arg;
2386 
2387 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2388 	if (ct->ct_line_size != 0)
2389 		add_cache_prop(devi, ct->ct_label, line_str,
2390 		    ct->ct_line_size);
2391 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2392 	return (0);
2393 }
2394 
2395 static const char fully_assoc[] = "fully-associative?";
2396 
2397 /*
2398  * AMD style cache/tlb description
2399  *
2400  * Extended functions 5 and 6 directly describe properties of
2401  * tlbs and various cache levels.
2402  */
2403 static void
2404 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2405 {
2406 	switch (assoc) {
2407 	case 0:	/* reserved; ignore */
2408 		break;
2409 	default:
2410 		add_cache_prop(devi, label, assoc_str, assoc);
2411 		break;
2412 	case 0xff:
2413 		add_cache_prop(devi, label, fully_assoc, 1);
2414 		break;
2415 	}
2416 }
2417 
2418 static void
2419 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2420 {
2421 	if (size == 0)
2422 		return;
2423 	add_cache_prop(devi, label, size_str, size);
2424 	add_amd_assoc(devi, label, assoc);
2425 }
2426 
2427 static void
2428 add_amd_cache(dev_info_t *devi, const char *label,
2429     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2430 {
2431 	if (size == 0 || line_size == 0)
2432 		return;
2433 	add_amd_assoc(devi, label, assoc);
2434 	/*
2435 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2436 	 * associated with each tag. A sector consists of all cache lines
2437 	 * associated with a tag. For example, the AMD K6-III has a sector
2438 	 * size of 2 cache lines per tag.
2439 	 */
2440 	if (lines_per_tag != 0)
2441 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2442 	add_cache_prop(devi, label, line_str, line_size);
2443 	add_cache_prop(devi, label, size_str, size * 1024);
2444 }
2445 
2446 static void
2447 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2448 {
2449 	switch (assoc) {
2450 	case 0:	/* off */
2451 		break;
2452 	case 1:
2453 	case 2:
2454 	case 4:
2455 		add_cache_prop(devi, label, assoc_str, assoc);
2456 		break;
2457 	case 6:
2458 		add_cache_prop(devi, label, assoc_str, 8);
2459 		break;
2460 	case 8:
2461 		add_cache_prop(devi, label, assoc_str, 16);
2462 		break;
2463 	case 0xf:
2464 		add_cache_prop(devi, label, fully_assoc, 1);
2465 		break;
2466 	default: /* reserved; ignore */
2467 		break;
2468 	}
2469 }
2470 
2471 static void
2472 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2473 {
2474 	if (size == 0 || assoc == 0)
2475 		return;
2476 	add_amd_l2_assoc(devi, label, assoc);
2477 	add_cache_prop(devi, label, size_str, size);
2478 }
2479 
2480 static void
2481 add_amd_l2_cache(dev_info_t *devi, const char *label,
2482     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2483 {
2484 	if (size == 0 || assoc == 0 || line_size == 0)
2485 		return;
2486 	add_amd_l2_assoc(devi, label, assoc);
2487 	if (lines_per_tag != 0)
2488 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2489 	add_cache_prop(devi, label, line_str, line_size);
2490 	add_cache_prop(devi, label, size_str, size * 1024);
2491 }
2492 
2493 static void
2494 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2495 {
2496 	struct cpuid_regs *cp;
2497 
2498 	if (cpi->cpi_xmaxeax < 0x80000005)
2499 		return;
2500 	cp = &cpi->cpi_extd[5];
2501 
2502 	/*
2503 	 * 4M/2M L1 TLB configuration
2504 	 *
2505 	 * We report the size for 2M pages because AMD uses two
2506 	 * TLB entries for one 4M page.
2507 	 */
2508 	add_amd_tlb(devi, "dtlb-2M",
2509 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2510 	add_amd_tlb(devi, "itlb-2M",
2511 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2512 
2513 	/*
2514 	 * 4K L1 TLB configuration
2515 	 */
2516 
2517 	switch (cpi->cpi_vendor) {
2518 		uint_t nentries;
2519 	case X86_VENDOR_TM:
2520 		if (cpi->cpi_family >= 5) {
2521 			/*
2522 			 * Crusoe processors have 256 TLB entries, but
2523 			 * cpuid data format constrains them to only
2524 			 * reporting 255 of them.
2525 			 */
2526 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2527 				nentries = 256;
2528 			/*
2529 			 * Crusoe processors also have a unified TLB
2530 			 */
2531 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2532 			    nentries);
2533 			break;
2534 		}
2535 		/*FALLTHROUGH*/
2536 	default:
2537 		add_amd_tlb(devi, itlb4k_str,
2538 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2539 		add_amd_tlb(devi, dtlb4k_str,
2540 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2541 		break;
2542 	}
2543 
2544 	/*
2545 	 * data L1 cache configuration
2546 	 */
2547 
2548 	add_amd_cache(devi, l1_dcache_str,
2549 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2550 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2551 
2552 	/*
2553 	 * code L1 cache configuration
2554 	 */
2555 
2556 	add_amd_cache(devi, l1_icache_str,
2557 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
2558 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
2559 
2560 	if (cpi->cpi_xmaxeax < 0x80000006)
2561 		return;
2562 	cp = &cpi->cpi_extd[6];
2563 
2564 	/* Check for a unified L2 TLB for large pages */
2565 
2566 	if (BITX(cp->cp_eax, 31, 16) == 0)
2567 		add_amd_l2_tlb(devi, "l2-tlb-2M",
2568 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2569 	else {
2570 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
2571 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2572 		add_amd_l2_tlb(devi, "l2-itlb-2M",
2573 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2574 	}
2575 
2576 	/* Check for a unified L2 TLB for 4K pages */
2577 
2578 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
2579 		add_amd_l2_tlb(devi, "l2-tlb-4K",
2580 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2581 	} else {
2582 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
2583 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2584 		add_amd_l2_tlb(devi, "l2-itlb-4K",
2585 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2586 	}
2587 
2588 	add_amd_l2_cache(devi, l2_cache_str,
2589 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
2590 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
2591 }
2592 
2593 /*
2594  * There are two basic ways that the x86 world describes it cache
2595  * and tlb architecture - Intel's way and AMD's way.
2596  *
2597  * Return which flavor of cache architecture we should use
2598  */
2599 static int
2600 x86_which_cacheinfo(struct cpuid_info *cpi)
2601 {
2602 	switch (cpi->cpi_vendor) {
2603 	case X86_VENDOR_Intel:
2604 		if (cpi->cpi_maxeax >= 2)
2605 			return (X86_VENDOR_Intel);
2606 		break;
2607 	case X86_VENDOR_AMD:
2608 		/*
2609 		 * The K5 model 1 was the first part from AMD that reported
2610 		 * cache sizes via extended cpuid functions.
2611 		 */
2612 		if (cpi->cpi_family > 5 ||
2613 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
2614 			return (X86_VENDOR_AMD);
2615 		break;
2616 	case X86_VENDOR_TM:
2617 		if (cpi->cpi_family >= 5)
2618 			return (X86_VENDOR_AMD);
2619 		/*FALLTHROUGH*/
2620 	default:
2621 		/*
2622 		 * If they have extended CPU data for 0x80000005
2623 		 * then we assume they have AMD-format cache
2624 		 * information.
2625 		 *
2626 		 * If not, and the vendor happens to be Cyrix,
2627 		 * then try our-Cyrix specific handler.
2628 		 *
2629 		 * If we're not Cyrix, then assume we're using Intel's
2630 		 * table-driven format instead.
2631 		 */
2632 		if (cpi->cpi_xmaxeax >= 0x80000005)
2633 			return (X86_VENDOR_AMD);
2634 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
2635 			return (X86_VENDOR_Cyrix);
2636 		else if (cpi->cpi_maxeax >= 2)
2637 			return (X86_VENDOR_Intel);
2638 		break;
2639 	}
2640 	return (-1);
2641 }
2642 
2643 /*
2644  * create a node for the given cpu under the prom root node.
2645  * Also, create a cpu node in the device tree.
2646  */
2647 static dev_info_t *cpu_nex_devi = NULL;
2648 static kmutex_t cpu_node_lock;
2649 
2650 /*
2651  * Called from post_startup() and mp_startup()
2652  */
2653 void
2654 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
2655 {
2656 	dev_info_t *cpu_devi;
2657 	int create;
2658 
2659 	mutex_enter(&cpu_node_lock);
2660 
2661 	/*
2662 	 * create a nexus node for all cpus identified as 'cpu_id' under
2663 	 * the root node.
2664 	 */
2665 	if (cpu_nex_devi == NULL) {
2666 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
2667 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
2668 			mutex_exit(&cpu_node_lock);
2669 			return;
2670 		}
2671 		(void) ndi_devi_online(cpu_nex_devi, 0);
2672 	}
2673 
2674 	/*
2675 	 * create a child node for cpu identified as 'cpu_id'
2676 	 */
2677 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
2678 		cpu_id);
2679 	if (cpu_devi == NULL) {
2680 		mutex_exit(&cpu_node_lock);
2681 		return;
2682 	}
2683 
2684 	/* device_type */
2685 
2686 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2687 	    "device_type", "cpu");
2688 
2689 	/* reg */
2690 
2691 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2692 	    "reg", cpu_id);
2693 
2694 	/* cpu-mhz, and clock-frequency */
2695 
2696 	if (cpu_freq > 0) {
2697 		long long mul;
2698 
2699 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2700 		    "cpu-mhz", cpu_freq);
2701 
2702 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
2703 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2704 			    "clock-frequency", (int)mul);
2705 	}
2706 
2707 	(void) ndi_devi_online(cpu_devi, 0);
2708 
2709 	if ((x86_feature & X86_CPUID) == 0) {
2710 		mutex_exit(&cpu_node_lock);
2711 		return;
2712 	}
2713 
2714 	/* vendor-id */
2715 
2716 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2717 		"vendor-id", cpi->cpi_vendorstr);
2718 
2719 	if (cpi->cpi_maxeax == 0) {
2720 		mutex_exit(&cpu_node_lock);
2721 		return;
2722 	}
2723 
2724 	/*
2725 	 * family, model, and step
2726 	 */
2727 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2728 		"family", CPI_FAMILY(cpi));
2729 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2730 		"cpu-model", CPI_MODEL(cpi));
2731 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2732 		"stepping-id", CPI_STEP(cpi));
2733 
2734 	/* type */
2735 
2736 	switch (cpi->cpi_vendor) {
2737 	case X86_VENDOR_Intel:
2738 		create = 1;
2739 		break;
2740 	default:
2741 		create = 0;
2742 		break;
2743 	}
2744 	if (create)
2745 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2746 			"type", CPI_TYPE(cpi));
2747 
2748 	/* ext-family */
2749 
2750 	switch (cpi->cpi_vendor) {
2751 	case X86_VENDOR_Intel:
2752 	case X86_VENDOR_AMD:
2753 		create = cpi->cpi_family >= 0xf;
2754 		break;
2755 	default:
2756 		create = 0;
2757 		break;
2758 	}
2759 	if (create)
2760 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2761 		    "ext-family", CPI_FAMILY_XTD(cpi));
2762 
2763 	/* ext-model */
2764 
2765 	switch (cpi->cpi_vendor) {
2766 	case X86_VENDOR_Intel:
2767 		create = CPI_MODEL(cpi) == 0xf;
2768 		break;
2769 	case X86_VENDOR_AMD:
2770 		create = CPI_FAMILY(cpi) == 0xf;
2771 		break;
2772 	default:
2773 		create = 0;
2774 		break;
2775 	}
2776 	if (create)
2777 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2778 			"ext-model", CPI_MODEL_XTD(cpi));
2779 
2780 	/* generation */
2781 
2782 	switch (cpi->cpi_vendor) {
2783 	case X86_VENDOR_AMD:
2784 		/*
2785 		 * AMD K5 model 1 was the first part to support this
2786 		 */
2787 		create = cpi->cpi_xmaxeax >= 0x80000001;
2788 		break;
2789 	default:
2790 		create = 0;
2791 		break;
2792 	}
2793 	if (create)
2794 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2795 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
2796 
2797 	/* brand-id */
2798 
2799 	switch (cpi->cpi_vendor) {
2800 	case X86_VENDOR_Intel:
2801 		/*
2802 		 * brand id first appeared on Pentium III Xeon model 8,
2803 		 * and Celeron model 8 processors and Opteron
2804 		 */
2805 		create = cpi->cpi_family > 6 ||
2806 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
2807 		break;
2808 	case X86_VENDOR_AMD:
2809 		create = cpi->cpi_family >= 0xf;
2810 		break;
2811 	default:
2812 		create = 0;
2813 		break;
2814 	}
2815 	if (create && cpi->cpi_brandid != 0) {
2816 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2817 		    "brand-id", cpi->cpi_brandid);
2818 	}
2819 
2820 	/* chunks, and apic-id */
2821 
2822 	switch (cpi->cpi_vendor) {
2823 		/*
2824 		 * first available on Pentium IV and Opteron (K8)
2825 		 */
2826 	case X86_VENDOR_Intel:
2827 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
2828 		break;
2829 	case X86_VENDOR_AMD:
2830 		create = cpi->cpi_family >= 0xf;
2831 		break;
2832 	default:
2833 		create = 0;
2834 		break;
2835 	}
2836 	if (create) {
2837 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2838 			"chunks", CPI_CHUNKS(cpi));
2839 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2840 			"apic-id", CPI_APIC_ID(cpi));
2841 		if (cpi->cpi_chipid >= 0) {
2842 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2843 			    "chip#", cpi->cpi_chipid);
2844 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2845 			    "clog#", cpi->cpi_clogid);
2846 		}
2847 	}
2848 
2849 	/* cpuid-features */
2850 
2851 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2852 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
2853 
2854 
2855 	/* cpuid-features-ecx */
2856 
2857 	switch (cpi->cpi_vendor) {
2858 	case X86_VENDOR_Intel:
2859 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
2860 		break;
2861 	default:
2862 		create = 0;
2863 		break;
2864 	}
2865 	if (create)
2866 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2867 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
2868 
2869 	/* ext-cpuid-features */
2870 
2871 	switch (cpi->cpi_vendor) {
2872 	case X86_VENDOR_Intel:
2873 	case X86_VENDOR_AMD:
2874 	case X86_VENDOR_Cyrix:
2875 	case X86_VENDOR_TM:
2876 	case X86_VENDOR_Centaur:
2877 		create = cpi->cpi_xmaxeax >= 0x80000001;
2878 		break;
2879 	default:
2880 		create = 0;
2881 		break;
2882 	}
2883 	if (create) {
2884 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2885 			"ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
2886 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
2887 			"ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
2888 	}
2889 
2890 	/*
2891 	 * Brand String first appeared in Intel Pentium IV, AMD K5
2892 	 * model 1, and Cyrix GXm.  On earlier models we try and
2893 	 * simulate something similar .. so this string should always
2894 	 * same -something- about the processor, however lame.
2895 	 */
2896 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
2897 	    "brand-string", cpi->cpi_brandstr);
2898 
2899 	/*
2900 	 * Finally, cache and tlb information
2901 	 */
2902 	switch (x86_which_cacheinfo(cpi)) {
2903 	case X86_VENDOR_Intel:
2904 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
2905 		break;
2906 	case X86_VENDOR_Cyrix:
2907 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
2908 		break;
2909 	case X86_VENDOR_AMD:
2910 		amd_cache_info(cpi, cpu_devi);
2911 		break;
2912 	default:
2913 		break;
2914 	}
2915 
2916 	mutex_exit(&cpu_node_lock);
2917 }
2918 
2919 struct l2info {
2920 	int *l2i_csz;
2921 	int *l2i_lsz;
2922 	int *l2i_assoc;
2923 	int l2i_ret;
2924 };
2925 
2926 /*
2927  * A cacheinfo walker that fetches the size, line-size and associativity
2928  * of the L2 cache
2929  */
2930 static int
2931 intel_l2cinfo(void *arg, const struct cachetab *ct)
2932 {
2933 	struct l2info *l2i = arg;
2934 	int *ip;
2935 
2936 	if (ct->ct_label != l2_cache_str &&
2937 	    ct->ct_label != sl2_cache_str)
2938 		return (0);	/* not an L2 -- keep walking */
2939 
2940 	if ((ip = l2i->l2i_csz) != NULL)
2941 		*ip = ct->ct_size;
2942 	if ((ip = l2i->l2i_lsz) != NULL)
2943 		*ip = ct->ct_line_size;
2944 	if ((ip = l2i->l2i_assoc) != NULL)
2945 		*ip = ct->ct_assoc;
2946 	l2i->l2i_ret = ct->ct_size;
2947 	return (1);		/* was an L2 -- terminate walk */
2948 }
2949 
2950 static void
2951 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
2952 {
2953 	struct cpuid_regs *cp;
2954 	uint_t size, assoc;
2955 	int *ip;
2956 
2957 	if (cpi->cpi_xmaxeax < 0x80000006)
2958 		return;
2959 	cp = &cpi->cpi_extd[6];
2960 
2961 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
2962 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
2963 		uint_t cachesz = size * 1024;
2964 
2965 
2966 		if ((ip = l2i->l2i_csz) != NULL)
2967 			*ip = cachesz;
2968 		if ((ip = l2i->l2i_lsz) != NULL)
2969 			*ip = BITX(cp->cp_ecx, 7, 0);
2970 		if ((ip = l2i->l2i_assoc) != NULL)
2971 			*ip = assoc;
2972 		l2i->l2i_ret = cachesz;
2973 	}
2974 }
2975 
2976 int
2977 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
2978 {
2979 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2980 	struct l2info __l2info, *l2i = &__l2info;
2981 
2982 	l2i->l2i_csz = csz;
2983 	l2i->l2i_lsz = lsz;
2984 	l2i->l2i_assoc = assoc;
2985 	l2i->l2i_ret = -1;
2986 
2987 	switch (x86_which_cacheinfo(cpi)) {
2988 	case X86_VENDOR_Intel:
2989 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
2990 		break;
2991 	case X86_VENDOR_Cyrix:
2992 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
2993 		break;
2994 	case X86_VENDOR_AMD:
2995 		amd_l2cacheinfo(cpi, l2i);
2996 		break;
2997 	default:
2998 		break;
2999 	}
3000 	return (l2i->l2i_ret);
3001 }
3002