xref: /titanic_52/usr/src/uts/i86pc/os/cpuid.c (revision aa52b40e638e124bfdc5d2a65d512955e606cab1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Various routines to handle identification
30  * and classification of x86 processors.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/archsystm.h>
35 #include <sys/x86_archext.h>
36 #include <sys/kmem.h>
37 #include <sys/systm.h>
38 #include <sys/cmn_err.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunndi.h>
41 #include <sys/cpuvar.h>
42 #include <sys/processor.h>
43 #include <sys/pg.h>
44 #include <sys/fp.h>
45 #include <sys/controlregs.h>
46 #include <sys/auxv_386.h>
47 #include <sys/bitmap.h>
48 #include <sys/memnode.h>
49 
50 /*
51  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
52  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
53  * them accordingly. For most modern processors, feature detection occurs here
54  * in pass 1.
55  *
56  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
57  * for the boot CPU and does the basic analysis that the early kernel needs.
58  * x86_feature is set based on the return value of cpuid_pass1() of the boot
59  * CPU.
60  *
61  * Pass 1 includes:
62  *
63  *	o Determining vendor/model/family/stepping and setting x86_type and
64  *	  x86_vendor accordingly.
65  *	o Processing the feature flags returned by the cpuid instruction while
66  *	  applying any workarounds or tricks for the specific processor.
67  *	o Mapping the feature flags into Solaris feature bits (X86_*).
68  *	o Processing extended feature flags if supported by the processor,
69  *	  again while applying specific processor knowledge.
70  *	o Determining the CMT characteristics of the system.
71  *
72  * Pass 1 is done on non-boot CPUs during their initialization and the results
73  * are used only as a meager attempt at ensuring that all processors within the
74  * system support the same features.
75  *
76  * Pass 2 of cpuid feature analysis happens just at the beginning
77  * of startup().  It just copies in and corrects the remainder
78  * of the cpuid data we depend on: standard cpuid functions that we didn't
79  * need for pass1 feature analysis, and extended cpuid functions beyond the
80  * simple feature processing done in pass1.
81  *
82  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
83  * particular kernel memory allocation has been made available. It creates a
84  * readable brand string based on the data collected in the first two passes.
85  *
86  * Pass 4 of cpuid analysis is invoked after post_startup() when all
87  * the support infrastructure for various hardware features has been
88  * initialized. It determines which processor features will be reported
89  * to userland via the aux vector.
90  *
91  * All passes are executed on all CPUs, but only the boot CPU determines what
92  * features the kernel will use.
93  *
94  * Much of the worst junk in this file is for the support of processors
95  * that didn't really implement the cpuid instruction properly.
96  *
97  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
98  * the pass numbers.  Accordingly, changes to the pass code may require changes
99  * to the accessor code.
100  */
101 
102 uint_t x86_feature = 0;
103 uint_t x86_vendor = X86_VENDOR_IntelClone;
104 uint_t x86_type = X86_TYPE_OTHER;
105 
106 uint_t pentiumpro_bug4046376;
107 uint_t pentiumpro_bug4064495;
108 
109 uint_t enable486;
110 
111 /*
112  * This set of strings are for processors rumored to support the cpuid
113  * instruction, and is used by locore.s to figure out how to set x86_vendor
114  */
115 const char CyrixInstead[] = "CyrixInstead";
116 
117 /*
118  * monitor/mwait info.
119  */
120 struct mwait_info {
121 	size_t		mon_min;	/* min size to avoid missed wakeups */
122 	size_t		mon_max;	/* size to avoid false wakeups */
123 	uint32_t	support;	/* processor support of monitor/mwait */
124 };
125 
126 /*
127  * These constants determine how many of the elements of the
128  * cpuid we cache in the cpuid_info data structure; the
129  * remaining elements are accessible via the cpuid instruction.
130  */
131 
132 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
133 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
134 
135 struct cpuid_info {
136 	uint_t cpi_pass;		/* last pass completed */
137 	/*
138 	 * standard function information
139 	 */
140 	uint_t cpi_maxeax;		/* fn 0: %eax */
141 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
142 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
143 
144 	uint_t cpi_family;		/* fn 1: extended family */
145 	uint_t cpi_model;		/* fn 1: extended model */
146 	uint_t cpi_step;		/* fn 1: stepping */
147 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
148 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
149 	int cpi_clogid;			/* fn 1: %ebx: thread # */
150 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
151 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
152 	uint_t cpi_ncache;		/* fn 2: number of elements */
153 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
154 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
155 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
156 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
157 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
158 	/*
159 	 * extended function information
160 	 */
161 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
162 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
163 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
164 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
165 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
166 	id_t cpi_coreid;
167 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
168 					/* Intel: fn 4: %eax[31-26] */
169 	/*
170 	 * supported feature information
171 	 */
172 	uint32_t cpi_support[5];
173 #define	STD_EDX_FEATURES	0
174 #define	AMD_EDX_FEATURES	1
175 #define	TM_EDX_FEATURES		2
176 #define	STD_ECX_FEATURES	3
177 #define	AMD_ECX_FEATURES	4
178 	/*
179 	 * Synthesized information, where known.
180 	 */
181 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
182 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
183 	uint32_t cpi_socket;		/* Chip package/socket type */
184 
185 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
186 };
187 
188 
189 static struct cpuid_info cpuid_info0;
190 
191 /*
192  * These bit fields are defined by the Intel Application Note AP-485
193  * "Intel Processor Identification and the CPUID Instruction"
194  */
195 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
196 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
197 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
198 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
199 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
200 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
201 
202 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
203 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
204 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
205 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
206 
207 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
208 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
209 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
210 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
211 
212 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
213 #define	CPI_XMAXEAX_MAX		0x80000100
214 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
215 
216 /*
217  * Function 4 (Deterministic Cache Parameters) macros
218  * Defined by Intel Application Note AP-485
219  */
220 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
221 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
222 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
223 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
224 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
225 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
226 
227 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
228 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
229 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
230 
231 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
232 
233 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
234 
235 
236 /*
237  * A couple of shorthand macros to identify "later" P6-family chips
238  * like the Pentium M and Core.  First, the "older" P6-based stuff
239  * (loosely defined as "pre-Pentium-4"):
240  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
241  */
242 
243 #define	IS_LEGACY_P6(cpi) (			\
244 	cpi->cpi_family == 6 && 		\
245 		(cpi->cpi_model == 1 ||		\
246 		cpi->cpi_model == 3 ||		\
247 		cpi->cpi_model == 5 ||		\
248 		cpi->cpi_model == 6 ||		\
249 		cpi->cpi_model == 7 ||		\
250 		cpi->cpi_model == 8 ||		\
251 		cpi->cpi_model == 0xA ||	\
252 		cpi->cpi_model == 0xB)		\
253 )
254 
255 /* A "new F6" is everything with family 6 that's not the above */
256 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
257 
258 /*
259  * AMD family 0xf socket types.
260  * First index is 0 for revs B thru E, 1 for F and G.
261  * Second index by (model & 0x3)
262  */
263 static uint32_t amd_skts[2][4] = {
264 	{
265 		X86_SOCKET_754,		/* 0b00 */
266 		X86_SOCKET_940,		/* 0b01 */
267 		X86_SOCKET_754,		/* 0b10 */
268 		X86_SOCKET_939		/* 0b11 */
269 	},
270 	{
271 		X86_SOCKET_S1g1,	/* 0b00 */
272 		X86_SOCKET_F1207,	/* 0b01 */
273 		X86_SOCKET_UNKNOWN,	/* 0b10 */
274 		X86_SOCKET_AM2		/* 0b11 */
275 	}
276 };
277 
278 /*
279  * Table for mapping AMD Family 0xf model/stepping combination to
280  * chip "revision" and socket type.  Only rm_family 0xf is used at the
281  * moment, but AMD family 0x10 will extend the exsiting revision names
282  * so will likely also use this table.
283  *
284  * The first member of this array that matches a given family, extended model
285  * plus model range, and stepping range will be considered a match.
286  */
287 static const struct amd_rev_mapent {
288 	uint_t rm_family;
289 	uint_t rm_modello;
290 	uint_t rm_modelhi;
291 	uint_t rm_steplo;
292 	uint_t rm_stephi;
293 	uint32_t rm_chiprev;
294 	const char *rm_chiprevstr;
295 	int rm_sktidx;
296 } amd_revmap[] = {
297 	/*
298 	 * Rev B includes model 0x4 stepping 0 and model 0x5 stepping 0 and 1.
299 	 */
300 	{ 0xf, 0x04, 0x04, 0x0, 0x0, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
301 	{ 0xf, 0x05, 0x05, 0x0, 0x1, X86_CHIPREV_AMD_F_REV_B, "B", 0 },
302 	/*
303 	 * Rev C0 includes model 0x4 stepping 8 and model 0x5 stepping 8
304 	 */
305 	{ 0xf, 0x04, 0x05, 0x8, 0x8, X86_CHIPREV_AMD_F_REV_C0, "C0", 0 },
306 	/*
307 	 * Rev CG is the rest of extended model 0x0 - i.e., everything
308 	 * but the rev B and C0 combinations covered above.
309 	 */
310 	{ 0xf, 0x00, 0x0f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_CG, "CG", 0 },
311 	/*
312 	 * Rev D has extended model 0x1.
313 	 */
314 	{ 0xf, 0x10, 0x1f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_D, "D", 0 },
315 	/*
316 	 * Rev E has extended model 0x2.
317 	 * Extended model 0x3 is unused but available to grow into.
318 	 */
319 	{ 0xf, 0x20, 0x3f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_E, "E", 0 },
320 	/*
321 	 * Rev F has extended models 0x4 and 0x5.
322 	 */
323 	{ 0xf, 0x40, 0x5f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_F, "F", 1 },
324 	/*
325 	 * Rev G has extended model 0x6.
326 	 */
327 	{ 0xf, 0x60, 0x6f, 0x0, 0xf, X86_CHIPREV_AMD_F_REV_G, "G", 1 },
328 };
329 
330 /*
331  * Info for monitor/mwait idle loop.
332  *
333  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
334  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
335  * 2006.
336  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
337  * Documentation Updates" #33633, Rev 2.05, December 2006.
338  */
339 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
340 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
341 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
342 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
343 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
344 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
345 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
346 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
347 /*
348  * Number of sub-cstates for a given c-state.
349  */
350 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
351 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
352 
353 static void intel_cpuid_4_cache_info(void *, struct cpuid_info *);
354 
355 static void
356 synth_amd_info(struct cpuid_info *cpi)
357 {
358 	const struct amd_rev_mapent *rmp;
359 	uint_t family, model, step;
360 	int i;
361 
362 	/*
363 	 * Currently only AMD family 0xf uses these fields.
364 	 */
365 	if (cpi->cpi_family != 0xf)
366 		return;
367 
368 	family = cpi->cpi_family;
369 	model = cpi->cpi_model;
370 	step = cpi->cpi_step;
371 
372 	for (i = 0, rmp = amd_revmap; i < sizeof (amd_revmap) / sizeof (*rmp);
373 	    i++, rmp++) {
374 		if (family == rmp->rm_family &&
375 		    model >= rmp->rm_modello && model <= rmp->rm_modelhi &&
376 		    step >= rmp->rm_steplo && step <= rmp->rm_stephi) {
377 			cpi->cpi_chiprev = rmp->rm_chiprev;
378 			cpi->cpi_chiprevstr = rmp->rm_chiprevstr;
379 			cpi->cpi_socket = amd_skts[rmp->rm_sktidx][model & 0x3];
380 			return;
381 		}
382 	}
383 }
384 
385 static void
386 synth_info(struct cpuid_info *cpi)
387 {
388 	cpi->cpi_chiprev = X86_CHIPREV_UNKNOWN;
389 	cpi->cpi_chiprevstr = "Unknown";
390 	cpi->cpi_socket = X86_SOCKET_UNKNOWN;
391 
392 	switch (cpi->cpi_vendor) {
393 	case X86_VENDOR_AMD:
394 		synth_amd_info(cpi);
395 		break;
396 
397 	default:
398 		break;
399 
400 	}
401 }
402 
403 /*
404  * Apply up various platform-dependent restrictions where the
405  * underlying platform restrictions mean the CPU can be marked
406  * as less capable than its cpuid instruction would imply.
407  */
408 
409 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
410 
411 /*
412  *  Some undocumented ways of patching the results of the cpuid
413  *  instruction to permit running Solaris 10 on future cpus that
414  *  we don't currently support.  Could be set to non-zero values
415  *  via settings in eeprom.
416  */
417 
418 uint32_t cpuid_feature_ecx_include;
419 uint32_t cpuid_feature_ecx_exclude;
420 uint32_t cpuid_feature_edx_include;
421 uint32_t cpuid_feature_edx_exclude;
422 
423 void
424 cpuid_alloc_space(cpu_t *cpu)
425 {
426 	/*
427 	 * By convention, cpu0 is the boot cpu, which is set up
428 	 * before memory allocation is available.  All other cpus get
429 	 * their cpuid_info struct allocated here.
430 	 */
431 	ASSERT(cpu->cpu_id != 0);
432 	cpu->cpu_m.mcpu_cpi =
433 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
434 }
435 
436 void
437 cpuid_free_space(cpu_t *cpu)
438 {
439 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
440 	int i;
441 
442 	ASSERT(cpu->cpu_id != 0);
443 
444 	/*
445 	 * Free up any function 4 related dynamic storage
446 	 */
447 	for (i = 1; i < cpi->cpi_std_4_size; i++)
448 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
449 	if (cpi->cpi_std_4_size > 0)
450 		kmem_free(cpi->cpi_std_4,
451 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
452 
453 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
454 }
455 
456 uint_t
457 cpuid_pass1(cpu_t *cpu)
458 {
459 	uint32_t mask_ecx, mask_edx;
460 	uint_t feature = X86_CPUID;
461 	struct cpuid_info *cpi;
462 	struct cpuid_regs *cp;
463 	int xcpuid;
464 
465 
466 	/*
467 	 * Space statically allocated for cpu0, ensure pointer is set
468 	 */
469 	if (cpu->cpu_id == 0)
470 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
471 	cpi = cpu->cpu_m.mcpu_cpi;
472 	ASSERT(cpi != NULL);
473 	cp = &cpi->cpi_std[0];
474 	cp->cp_eax = 0;
475 	cpi->cpi_maxeax = __cpuid_insn(cp);
476 	{
477 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
478 		*iptr++ = cp->cp_ebx;
479 		*iptr++ = cp->cp_edx;
480 		*iptr++ = cp->cp_ecx;
481 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
482 	}
483 
484 	/*
485 	 * Map the vendor string to a type code
486 	 */
487 	if (strcmp(cpi->cpi_vendorstr, "GenuineIntel") == 0)
488 		cpi->cpi_vendor = X86_VENDOR_Intel;
489 	else if (strcmp(cpi->cpi_vendorstr, "AuthenticAMD") == 0)
490 		cpi->cpi_vendor = X86_VENDOR_AMD;
491 	else if (strcmp(cpi->cpi_vendorstr, "GenuineTMx86") == 0)
492 		cpi->cpi_vendor = X86_VENDOR_TM;
493 	else if (strcmp(cpi->cpi_vendorstr, CyrixInstead) == 0)
494 		/*
495 		 * CyrixInstead is a variable used by the Cyrix detection code
496 		 * in locore.
497 		 */
498 		cpi->cpi_vendor = X86_VENDOR_Cyrix;
499 	else if (strcmp(cpi->cpi_vendorstr, "UMC UMC UMC ") == 0)
500 		cpi->cpi_vendor = X86_VENDOR_UMC;
501 	else if (strcmp(cpi->cpi_vendorstr, "NexGenDriven") == 0)
502 		cpi->cpi_vendor = X86_VENDOR_NexGen;
503 	else if (strcmp(cpi->cpi_vendorstr, "CentaurHauls") == 0)
504 		cpi->cpi_vendor = X86_VENDOR_Centaur;
505 	else if (strcmp(cpi->cpi_vendorstr, "RiseRiseRise") == 0)
506 		cpi->cpi_vendor = X86_VENDOR_Rise;
507 	else if (strcmp(cpi->cpi_vendorstr, "SiS SiS SiS ") == 0)
508 		cpi->cpi_vendor = X86_VENDOR_SiS;
509 	else if (strcmp(cpi->cpi_vendorstr, "Geode by NSC") == 0)
510 		cpi->cpi_vendor = X86_VENDOR_NSC;
511 	else
512 		cpi->cpi_vendor = X86_VENDOR_IntelClone;
513 
514 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
515 
516 	/*
517 	 * Limit the range in case of weird hardware
518 	 */
519 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
520 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
521 	if (cpi->cpi_maxeax < 1)
522 		goto pass1_done;
523 
524 	cp = &cpi->cpi_std[1];
525 	cp->cp_eax = 1;
526 	(void) __cpuid_insn(cp);
527 
528 	/*
529 	 * Extract identifying constants for easy access.
530 	 */
531 	cpi->cpi_model = CPI_MODEL(cpi);
532 	cpi->cpi_family = CPI_FAMILY(cpi);
533 
534 	if (cpi->cpi_family == 0xf)
535 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
536 
537 	/*
538 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
539 	 * Intel, and presumably everyone else, uses model == 0xf, as
540 	 * one would expect (max value means possible overflow).  Sigh.
541 	 */
542 
543 	switch (cpi->cpi_vendor) {
544 	case X86_VENDOR_AMD:
545 		if (CPI_FAMILY(cpi) == 0xf)
546 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
547 		break;
548 	default:
549 		if (cpi->cpi_model == 0xf)
550 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
551 		break;
552 	}
553 
554 	cpi->cpi_step = CPI_STEP(cpi);
555 	cpi->cpi_brandid = CPI_BRANDID(cpi);
556 
557 	/*
558 	 * *default* assumptions:
559 	 * - believe %edx feature word
560 	 * - ignore %ecx feature word
561 	 * - 32-bit virtual and physical addressing
562 	 */
563 	mask_edx = 0xffffffff;
564 	mask_ecx = 0;
565 
566 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
567 
568 	switch (cpi->cpi_vendor) {
569 	case X86_VENDOR_Intel:
570 		if (cpi->cpi_family == 5)
571 			x86_type = X86_TYPE_P5;
572 		else if (IS_LEGACY_P6(cpi)) {
573 			x86_type = X86_TYPE_P6;
574 			pentiumpro_bug4046376 = 1;
575 			pentiumpro_bug4064495 = 1;
576 			/*
577 			 * Clear the SEP bit when it was set erroneously
578 			 */
579 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
580 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
581 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
582 			x86_type = X86_TYPE_P4;
583 			/*
584 			 * We don't currently depend on any of the %ecx
585 			 * features until Prescott, so we'll only check
586 			 * this from P4 onwards.  We might want to revisit
587 			 * that idea later.
588 			 */
589 			mask_ecx = 0xffffffff;
590 		} else if (cpi->cpi_family > 0xf)
591 			mask_ecx = 0xffffffff;
592 		/*
593 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
594 		 * to obtain the monitor linesize.
595 		 */
596 		if (cpi->cpi_maxeax < 5)
597 			mask_ecx &= ~CPUID_INTC_ECX_MON;
598 		break;
599 	case X86_VENDOR_IntelClone:
600 	default:
601 		break;
602 	case X86_VENDOR_AMD:
603 #if defined(OPTERON_ERRATUM_108)
604 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
605 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
606 			cpi->cpi_model = 0xc;
607 		} else
608 #endif
609 		if (cpi->cpi_family == 5) {
610 			/*
611 			 * AMD K5 and K6
612 			 *
613 			 * These CPUs have an incomplete implementation
614 			 * of MCA/MCE which we mask away.
615 			 */
616 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
617 
618 			/*
619 			 * Model 0 uses the wrong (APIC) bit
620 			 * to indicate PGE.  Fix it here.
621 			 */
622 			if (cpi->cpi_model == 0) {
623 				if (cp->cp_edx & 0x200) {
624 					cp->cp_edx &= ~0x200;
625 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
626 				}
627 			}
628 
629 			/*
630 			 * Early models had problems w/ MMX; disable.
631 			 */
632 			if (cpi->cpi_model < 6)
633 				mask_edx &= ~CPUID_INTC_EDX_MMX;
634 		}
635 
636 		/*
637 		 * For newer families, SSE3 and CX16, at least, are valid;
638 		 * enable all
639 		 */
640 		if (cpi->cpi_family >= 0xf)
641 			mask_ecx = 0xffffffff;
642 		/*
643 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
644 		 * to obtain the monitor linesize.
645 		 */
646 		if (cpi->cpi_maxeax < 5)
647 			mask_ecx &= ~CPUID_INTC_ECX_MON;
648 		break;
649 	case X86_VENDOR_TM:
650 		/*
651 		 * workaround the NT workaround in CMS 4.1
652 		 */
653 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
654 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
655 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
656 		break;
657 	case X86_VENDOR_Centaur:
658 		/*
659 		 * workaround the NT workarounds again
660 		 */
661 		if (cpi->cpi_family == 6)
662 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
663 		break;
664 	case X86_VENDOR_Cyrix:
665 		/*
666 		 * We rely heavily on the probing in locore
667 		 * to actually figure out what parts, if any,
668 		 * of the Cyrix cpuid instruction to believe.
669 		 */
670 		switch (x86_type) {
671 		case X86_TYPE_CYRIX_486:
672 			mask_edx = 0;
673 			break;
674 		case X86_TYPE_CYRIX_6x86:
675 			mask_edx = 0;
676 			break;
677 		case X86_TYPE_CYRIX_6x86L:
678 			mask_edx =
679 			    CPUID_INTC_EDX_DE |
680 			    CPUID_INTC_EDX_CX8;
681 			break;
682 		case X86_TYPE_CYRIX_6x86MX:
683 			mask_edx =
684 			    CPUID_INTC_EDX_DE |
685 			    CPUID_INTC_EDX_MSR |
686 			    CPUID_INTC_EDX_CX8 |
687 			    CPUID_INTC_EDX_PGE |
688 			    CPUID_INTC_EDX_CMOV |
689 			    CPUID_INTC_EDX_MMX;
690 			break;
691 		case X86_TYPE_CYRIX_GXm:
692 			mask_edx =
693 			    CPUID_INTC_EDX_MSR |
694 			    CPUID_INTC_EDX_CX8 |
695 			    CPUID_INTC_EDX_CMOV |
696 			    CPUID_INTC_EDX_MMX;
697 			break;
698 		case X86_TYPE_CYRIX_MediaGX:
699 			break;
700 		case X86_TYPE_CYRIX_MII:
701 		case X86_TYPE_VIA_CYRIX_III:
702 			mask_edx =
703 			    CPUID_INTC_EDX_DE |
704 			    CPUID_INTC_EDX_TSC |
705 			    CPUID_INTC_EDX_MSR |
706 			    CPUID_INTC_EDX_CX8 |
707 			    CPUID_INTC_EDX_PGE |
708 			    CPUID_INTC_EDX_CMOV |
709 			    CPUID_INTC_EDX_MMX;
710 			break;
711 		default:
712 			break;
713 		}
714 		break;
715 	}
716 
717 	/*
718 	 * Now we've figured out the masks that determine
719 	 * which bits we choose to believe, apply the masks
720 	 * to the feature words, then map the kernel's view
721 	 * of these feature words into its feature word.
722 	 */
723 	cp->cp_edx &= mask_edx;
724 	cp->cp_ecx &= mask_ecx;
725 
726 	/*
727 	 * apply any platform restrictions (we don't call this
728 	 * immediately after __cpuid_insn here, because we need the
729 	 * workarounds applied above first)
730 	 */
731 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
732 
733 	/*
734 	 * fold in overrides from the "eeprom" mechanism
735 	 */
736 	cp->cp_edx |= cpuid_feature_edx_include;
737 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
738 
739 	cp->cp_ecx |= cpuid_feature_ecx_include;
740 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
741 
742 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
743 		feature |= X86_LARGEPAGE;
744 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
745 		feature |= X86_TSC;
746 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
747 		feature |= X86_MSR;
748 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
749 		feature |= X86_MTRR;
750 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
751 		feature |= X86_PGE;
752 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
753 		feature |= X86_CMOV;
754 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
755 		feature |= X86_MMX;
756 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
757 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
758 		feature |= X86_MCA;
759 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
760 		feature |= X86_PAE;
761 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
762 		feature |= X86_CX8;
763 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
764 		feature |= X86_CX16;
765 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
766 		feature |= X86_PAT;
767 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
768 		feature |= X86_SEP;
769 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
770 		/*
771 		 * In our implementation, fxsave/fxrstor
772 		 * are prerequisites before we'll even
773 		 * try and do SSE things.
774 		 */
775 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
776 			feature |= X86_SSE;
777 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
778 			feature |= X86_SSE2;
779 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
780 			feature |= X86_SSE3;
781 	}
782 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
783 		feature |= X86_DE;
784 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
785 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
786 		feature |= X86_MWAIT;
787 	}
788 
789 	if (feature & X86_PAE)
790 		cpi->cpi_pabits = 36;
791 
792 	/*
793 	 * Hyperthreading configuration is slightly tricky on Intel
794 	 * and pure clones, and even trickier on AMD.
795 	 *
796 	 * (AMD chose to set the HTT bit on their CMP processors,
797 	 * even though they're not actually hyperthreaded.  Thus it
798 	 * takes a bit more work to figure out what's really going
799 	 * on ... see the handling of the CMP_LGCY bit below)
800 	 */
801 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
802 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
803 		if (cpi->cpi_ncpu_per_chip > 1)
804 			feature |= X86_HTT;
805 	} else {
806 		cpi->cpi_ncpu_per_chip = 1;
807 	}
808 
809 	/*
810 	 * Work on the "extended" feature information, doing
811 	 * some basic initialization for cpuid_pass2()
812 	 */
813 	xcpuid = 0;
814 	switch (cpi->cpi_vendor) {
815 	case X86_VENDOR_Intel:
816 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
817 			xcpuid++;
818 		break;
819 	case X86_VENDOR_AMD:
820 		if (cpi->cpi_family > 5 ||
821 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
822 			xcpuid++;
823 		break;
824 	case X86_VENDOR_Cyrix:
825 		/*
826 		 * Only these Cyrix CPUs are -known- to support
827 		 * extended cpuid operations.
828 		 */
829 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
830 		    x86_type == X86_TYPE_CYRIX_GXm)
831 			xcpuid++;
832 		break;
833 	case X86_VENDOR_Centaur:
834 	case X86_VENDOR_TM:
835 	default:
836 		xcpuid++;
837 		break;
838 	}
839 
840 	if (xcpuid) {
841 		cp = &cpi->cpi_extd[0];
842 		cp->cp_eax = 0x80000000;
843 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
844 	}
845 
846 	if (cpi->cpi_xmaxeax & 0x80000000) {
847 
848 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
849 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
850 
851 		switch (cpi->cpi_vendor) {
852 		case X86_VENDOR_Intel:
853 		case X86_VENDOR_AMD:
854 			if (cpi->cpi_xmaxeax < 0x80000001)
855 				break;
856 			cp = &cpi->cpi_extd[1];
857 			cp->cp_eax = 0x80000001;
858 			(void) __cpuid_insn(cp);
859 
860 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
861 			    cpi->cpi_family == 5 &&
862 			    cpi->cpi_model == 6 &&
863 			    cpi->cpi_step == 6) {
864 				/*
865 				 * K6 model 6 uses bit 10 to indicate SYSC
866 				 * Later models use bit 11. Fix it here.
867 				 */
868 				if (cp->cp_edx & 0x400) {
869 					cp->cp_edx &= ~0x400;
870 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
871 				}
872 			}
873 
874 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
875 
876 			/*
877 			 * Compute the additions to the kernel's feature word.
878 			 */
879 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
880 				feature |= X86_NX;
881 
882 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
883 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
884 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
885 				feature |= X86_SSE4A;
886 
887 			/*
888 			 * If both the HTT and CMP_LGCY bits are set,
889 			 * then we're not actually HyperThreaded.  Read
890 			 * "AMD CPUID Specification" for more details.
891 			 */
892 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
893 			    (feature & X86_HTT) &&
894 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
895 				feature &= ~X86_HTT;
896 				feature |= X86_CMP;
897 			}
898 #if defined(__amd64)
899 			/*
900 			 * It's really tricky to support syscall/sysret in
901 			 * the i386 kernel; we rely on sysenter/sysexit
902 			 * instead.  In the amd64 kernel, things are -way-
903 			 * better.
904 			 */
905 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
906 				feature |= X86_ASYSC;
907 
908 			/*
909 			 * While we're thinking about system calls, note
910 			 * that AMD processors don't support sysenter
911 			 * in long mode at all, so don't try to program them.
912 			 */
913 			if (x86_vendor == X86_VENDOR_AMD)
914 				feature &= ~X86_SEP;
915 #endif
916 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
917 				feature |= X86_TSCP;
918 			break;
919 		default:
920 			break;
921 		}
922 
923 		/*
924 		 * Get CPUID data about processor cores and hyperthreads.
925 		 */
926 		switch (cpi->cpi_vendor) {
927 		case X86_VENDOR_Intel:
928 			if (cpi->cpi_maxeax >= 4) {
929 				cp = &cpi->cpi_std[4];
930 				cp->cp_eax = 4;
931 				cp->cp_ecx = 0;
932 				(void) __cpuid_insn(cp);
933 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
934 			}
935 			/*FALLTHROUGH*/
936 		case X86_VENDOR_AMD:
937 			if (cpi->cpi_xmaxeax < 0x80000008)
938 				break;
939 			cp = &cpi->cpi_extd[8];
940 			cp->cp_eax = 0x80000008;
941 			(void) __cpuid_insn(cp);
942 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
943 
944 			/*
945 			 * Virtual and physical address limits from
946 			 * cpuid override previously guessed values.
947 			 */
948 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
949 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
950 			break;
951 		default:
952 			break;
953 		}
954 
955 		/*
956 		 * Derive the number of cores per chip
957 		 */
958 		switch (cpi->cpi_vendor) {
959 		case X86_VENDOR_Intel:
960 			if (cpi->cpi_maxeax < 4) {
961 				cpi->cpi_ncore_per_chip = 1;
962 				break;
963 			} else {
964 				cpi->cpi_ncore_per_chip =
965 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
966 			}
967 			break;
968 		case X86_VENDOR_AMD:
969 			if (cpi->cpi_xmaxeax < 0x80000008) {
970 				cpi->cpi_ncore_per_chip = 1;
971 				break;
972 			} else {
973 				cpi->cpi_ncore_per_chip =
974 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
975 			}
976 			break;
977 		default:
978 			cpi->cpi_ncore_per_chip = 1;
979 			break;
980 		}
981 	}
982 
983 	/*
984 	 * If more than one core, then this processor is CMP.
985 	 */
986 	if (cpi->cpi_ncore_per_chip > 1)
987 		feature |= X86_CMP;
988 
989 	/*
990 	 * If the number of cores is the same as the number
991 	 * of CPUs, then we cannot have HyperThreading.
992 	 */
993 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
994 		feature &= ~X86_HTT;
995 
996 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
997 		/*
998 		 * Single-core single-threaded processors.
999 		 */
1000 		cpi->cpi_chipid = -1;
1001 		cpi->cpi_clogid = 0;
1002 		cpi->cpi_coreid = cpu->cpu_id;
1003 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1004 		uint_t i;
1005 		uint_t chipid_shift = 0;
1006 		uint_t coreid_shift = 0;
1007 		uint_t apic_id = CPI_APIC_ID(cpi);
1008 
1009 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1010 			chipid_shift++;
1011 		cpi->cpi_chipid = apic_id >> chipid_shift;
1012 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1013 
1014 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1015 			if (feature & X86_CMP) {
1016 				/*
1017 				 * Multi-core (and possibly multi-threaded)
1018 				 * processors.
1019 				 */
1020 				uint_t ncpu_per_core;
1021 				if (cpi->cpi_ncore_per_chip == 1)
1022 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1023 				else if (cpi->cpi_ncore_per_chip > 1)
1024 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1025 					    cpi->cpi_ncore_per_chip;
1026 				/*
1027 				 * 8bit APIC IDs on dual core Pentiums
1028 				 * look like this:
1029 				 *
1030 				 * +-----------------------+------+------+
1031 				 * | Physical Package ID   |  MC  |  HT  |
1032 				 * +-----------------------+------+------+
1033 				 * <------- chipid -------->
1034 				 * <------- coreid --------------->
1035 				 *			   <--- clogid -->
1036 				 *
1037 				 * Where the number of bits necessary to
1038 				 * represent MC and HT fields together equals
1039 				 * to the minimum number of bits necessary to
1040 				 * store the value of cpi->cpi_ncpu_per_chip.
1041 				 * Of those bits, the MC part uses the number
1042 				 * of bits necessary to store the value of
1043 				 * cpi->cpi_ncore_per_chip.
1044 				 */
1045 				for (i = 1; i < ncpu_per_core; i <<= 1)
1046 					coreid_shift++;
1047 				cpi->cpi_coreid = apic_id >> coreid_shift;
1048 			} else if (feature & X86_HTT) {
1049 				/*
1050 				 * Single-core multi-threaded processors.
1051 				 */
1052 				cpi->cpi_coreid = cpi->cpi_chipid;
1053 			}
1054 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1055 			/*
1056 			 * AMD currently only has dual-core processors with
1057 			 * single-threaded cores.  If they ever release
1058 			 * multi-threaded processors, then this code
1059 			 * will have to be updated.
1060 			 */
1061 			cpi->cpi_coreid = cpu->cpu_id;
1062 		} else {
1063 			/*
1064 			 * All other processors are currently
1065 			 * assumed to have single cores.
1066 			 */
1067 			cpi->cpi_coreid = cpi->cpi_chipid;
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * Synthesize chip "revision" and socket type
1073 	 */
1074 	synth_info(cpi);
1075 
1076 pass1_done:
1077 	cpi->cpi_pass = 1;
1078 	return (feature);
1079 }
1080 
1081 /*
1082  * Make copies of the cpuid table entries we depend on, in
1083  * part for ease of parsing now, in part so that we have only
1084  * one place to correct any of it, in part for ease of
1085  * later export to userland, and in part so we can look at
1086  * this stuff in a crash dump.
1087  */
1088 
1089 /*ARGSUSED*/
1090 void
1091 cpuid_pass2(cpu_t *cpu)
1092 {
1093 	uint_t n, nmax;
1094 	int i;
1095 	struct cpuid_regs *cp;
1096 	uint8_t *dp;
1097 	uint32_t *iptr;
1098 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1099 
1100 	ASSERT(cpi->cpi_pass == 1);
1101 
1102 	if (cpi->cpi_maxeax < 1)
1103 		goto pass2_done;
1104 
1105 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1106 		nmax = NMAX_CPI_STD;
1107 	/*
1108 	 * (We already handled n == 0 and n == 1 in pass 1)
1109 	 */
1110 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1111 		cp->cp_eax = n;
1112 
1113 		/*
1114 		 * CPUID function 4 expects %ecx to be initialized
1115 		 * with an index which indicates which cache to return
1116 		 * information about. The OS is expected to call function 4
1117 		 * with %ecx set to 0, 1, 2, ... until it returns with
1118 		 * EAX[4:0] set to 0, which indicates there are no more
1119 		 * caches.
1120 		 *
1121 		 * Here, populate cpi_std[4] with the information returned by
1122 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1123 		 * when dynamic memory allocation becomes available.
1124 		 *
1125 		 * Note: we need to explicitly initialize %ecx here, since
1126 		 * function 4 may have been previously invoked.
1127 		 */
1128 		if (n == 4)
1129 			cp->cp_ecx = 0;
1130 
1131 		(void) __cpuid_insn(cp);
1132 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1133 		switch (n) {
1134 		case 2:
1135 			/*
1136 			 * "the lower 8 bits of the %eax register
1137 			 * contain a value that identifies the number
1138 			 * of times the cpuid [instruction] has to be
1139 			 * executed to obtain a complete image of the
1140 			 * processor's caching systems."
1141 			 *
1142 			 * How *do* they make this stuff up?
1143 			 */
1144 			cpi->cpi_ncache = sizeof (*cp) *
1145 			    BITX(cp->cp_eax, 7, 0);
1146 			if (cpi->cpi_ncache == 0)
1147 				break;
1148 			cpi->cpi_ncache--;	/* skip count byte */
1149 
1150 			/*
1151 			 * Well, for now, rather than attempt to implement
1152 			 * this slightly dubious algorithm, we just look
1153 			 * at the first 15 ..
1154 			 */
1155 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1156 				cpi->cpi_ncache = sizeof (*cp) - 1;
1157 
1158 			dp = cpi->cpi_cacheinfo;
1159 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1160 				uint8_t *p = (void *)&cp->cp_eax;
1161 				for (i = 1; i < 3; i++)
1162 					if (p[i] != 0)
1163 						*dp++ = p[i];
1164 			}
1165 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1166 				uint8_t *p = (void *)&cp->cp_ebx;
1167 				for (i = 0; i < 4; i++)
1168 					if (p[i] != 0)
1169 						*dp++ = p[i];
1170 			}
1171 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1172 				uint8_t *p = (void *)&cp->cp_ecx;
1173 				for (i = 0; i < 4; i++)
1174 					if (p[i] != 0)
1175 						*dp++ = p[i];
1176 			}
1177 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1178 				uint8_t *p = (void *)&cp->cp_edx;
1179 				for (i = 0; i < 4; i++)
1180 					if (p[i] != 0)
1181 						*dp++ = p[i];
1182 			}
1183 			break;
1184 
1185 		case 3:	/* Processor serial number, if PSN supported */
1186 			break;
1187 
1188 		case 4:	/* Deterministic cache parameters */
1189 			break;
1190 
1191 		case 5:	/* Monitor/Mwait parameters */
1192 
1193 			/*
1194 			 * check cpi_mwait.support which was set in cpuid_pass1
1195 			 */
1196 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1197 				break;
1198 
1199 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1200 			cpi->cpi_mwait.mon_max = (size_t)MWAIT_SIZE_MAX(cpi);
1201 			if (MWAIT_EXTENSION(cpi)) {
1202 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1203 				if (MWAIT_INT_ENABLE(cpi))
1204 					cpi->cpi_mwait.support |=
1205 					    MWAIT_ECX_INT_ENABLE;
1206 			}
1207 			break;
1208 		default:
1209 			break;
1210 		}
1211 	}
1212 
1213 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1214 		goto pass2_done;
1215 
1216 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1217 		nmax = NMAX_CPI_EXTD;
1218 	/*
1219 	 * Copy the extended properties, fixing them as we go.
1220 	 * (We already handled n == 0 and n == 1 in pass 1)
1221 	 */
1222 	iptr = (void *)cpi->cpi_brandstr;
1223 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1224 		cp->cp_eax = 0x80000000 + n;
1225 		(void) __cpuid_insn(cp);
1226 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1227 		switch (n) {
1228 		case 2:
1229 		case 3:
1230 		case 4:
1231 			/*
1232 			 * Extract the brand string
1233 			 */
1234 			*iptr++ = cp->cp_eax;
1235 			*iptr++ = cp->cp_ebx;
1236 			*iptr++ = cp->cp_ecx;
1237 			*iptr++ = cp->cp_edx;
1238 			break;
1239 		case 5:
1240 			switch (cpi->cpi_vendor) {
1241 			case X86_VENDOR_AMD:
1242 				/*
1243 				 * The Athlon and Duron were the first
1244 				 * parts to report the sizes of the
1245 				 * TLB for large pages. Before then,
1246 				 * we don't trust the data.
1247 				 */
1248 				if (cpi->cpi_family < 6 ||
1249 				    (cpi->cpi_family == 6 &&
1250 				    cpi->cpi_model < 1))
1251 					cp->cp_eax = 0;
1252 				break;
1253 			default:
1254 				break;
1255 			}
1256 			break;
1257 		case 6:
1258 			switch (cpi->cpi_vendor) {
1259 			case X86_VENDOR_AMD:
1260 				/*
1261 				 * The Athlon and Duron were the first
1262 				 * AMD parts with L2 TLB's.
1263 				 * Before then, don't trust the data.
1264 				 */
1265 				if (cpi->cpi_family < 6 ||
1266 				    cpi->cpi_family == 6 &&
1267 				    cpi->cpi_model < 1)
1268 					cp->cp_eax = cp->cp_ebx = 0;
1269 				/*
1270 				 * AMD Duron rev A0 reports L2
1271 				 * cache size incorrectly as 1K
1272 				 * when it is really 64K
1273 				 */
1274 				if (cpi->cpi_family == 6 &&
1275 				    cpi->cpi_model == 3 &&
1276 				    cpi->cpi_step == 0) {
1277 					cp->cp_ecx &= 0xffff;
1278 					cp->cp_ecx |= 0x400000;
1279 				}
1280 				break;
1281 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1282 				/*
1283 				 * VIA C3 processors are a bit messed
1284 				 * up w.r.t. encoding cache sizes in %ecx
1285 				 */
1286 				if (cpi->cpi_family != 6)
1287 					break;
1288 				/*
1289 				 * model 7 and 8 were incorrectly encoded
1290 				 *
1291 				 * xxx is model 8 really broken?
1292 				 */
1293 				if (cpi->cpi_model == 7 ||
1294 				    cpi->cpi_model == 8)
1295 					cp->cp_ecx =
1296 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1297 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1298 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1299 					    BITX(cp->cp_ecx, 7, 0);
1300 				/*
1301 				 * model 9 stepping 1 has wrong associativity
1302 				 */
1303 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1304 					cp->cp_ecx |= 8 << 12;
1305 				break;
1306 			case X86_VENDOR_Intel:
1307 				/*
1308 				 * Extended L2 Cache features function.
1309 				 * First appeared on Prescott.
1310 				 */
1311 			default:
1312 				break;
1313 			}
1314 			break;
1315 		default:
1316 			break;
1317 		}
1318 	}
1319 
1320 pass2_done:
1321 	cpi->cpi_pass = 2;
1322 }
1323 
1324 static const char *
1325 intel_cpubrand(const struct cpuid_info *cpi)
1326 {
1327 	int i;
1328 
1329 	if ((x86_feature & X86_CPUID) == 0 ||
1330 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1331 		return ("i486");
1332 
1333 	switch (cpi->cpi_family) {
1334 	case 5:
1335 		return ("Intel Pentium(r)");
1336 	case 6:
1337 		switch (cpi->cpi_model) {
1338 			uint_t celeron, xeon;
1339 			const struct cpuid_regs *cp;
1340 		case 0:
1341 		case 1:
1342 		case 2:
1343 			return ("Intel Pentium(r) Pro");
1344 		case 3:
1345 		case 4:
1346 			return ("Intel Pentium(r) II");
1347 		case 6:
1348 			return ("Intel Celeron(r)");
1349 		case 5:
1350 		case 7:
1351 			celeron = xeon = 0;
1352 			cp = &cpi->cpi_std[2];	/* cache info */
1353 
1354 			for (i = 1; i < 3; i++) {
1355 				uint_t tmp;
1356 
1357 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1358 				if (tmp == 0x40)
1359 					celeron++;
1360 				if (tmp >= 0x44 && tmp <= 0x45)
1361 					xeon++;
1362 			}
1363 
1364 			for (i = 0; i < 2; i++) {
1365 				uint_t tmp;
1366 
1367 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1368 				if (tmp == 0x40)
1369 					celeron++;
1370 				else if (tmp >= 0x44 && tmp <= 0x45)
1371 					xeon++;
1372 			}
1373 
1374 			for (i = 0; i < 4; i++) {
1375 				uint_t tmp;
1376 
1377 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1378 				if (tmp == 0x40)
1379 					celeron++;
1380 				else if (tmp >= 0x44 && tmp <= 0x45)
1381 					xeon++;
1382 			}
1383 
1384 			for (i = 0; i < 4; i++) {
1385 				uint_t tmp;
1386 
1387 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1388 				if (tmp == 0x40)
1389 					celeron++;
1390 				else if (tmp >= 0x44 && tmp <= 0x45)
1391 					xeon++;
1392 			}
1393 
1394 			if (celeron)
1395 				return ("Intel Celeron(r)");
1396 			if (xeon)
1397 				return (cpi->cpi_model == 5 ?
1398 				    "Intel Pentium(r) II Xeon(tm)" :
1399 				    "Intel Pentium(r) III Xeon(tm)");
1400 			return (cpi->cpi_model == 5 ?
1401 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1402 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1403 		default:
1404 			break;
1405 		}
1406 	default:
1407 		break;
1408 	}
1409 
1410 	/* BrandID is present if the field is nonzero */
1411 	if (cpi->cpi_brandid != 0) {
1412 		static const struct {
1413 			uint_t bt_bid;
1414 			const char *bt_str;
1415 		} brand_tbl[] = {
1416 			{ 0x1,	"Intel(r) Celeron(r)" },
1417 			{ 0x2,	"Intel(r) Pentium(r) III" },
1418 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1419 			{ 0x4,	"Intel(r) Pentium(r) III" },
1420 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1421 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1422 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1423 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1424 			{ 0xa,	"Intel(r) Celeron(r)" },
1425 			{ 0xb,	"Intel(r) Xeon(tm)" },
1426 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1427 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1428 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1429 			{ 0x11, "Mobile Genuine Intel(r)" },
1430 			{ 0x12, "Intel(r) Celeron(r) M" },
1431 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1432 			{ 0x14, "Intel(r) Celeron(r)" },
1433 			{ 0x15, "Mobile Genuine Intel(r)" },
1434 			{ 0x16,	"Intel(r) Pentium(r) M" },
1435 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1436 		};
1437 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1438 		uint_t sgn;
1439 
1440 		sgn = (cpi->cpi_family << 8) |
1441 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1442 
1443 		for (i = 0; i < btblmax; i++)
1444 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1445 				break;
1446 		if (i < btblmax) {
1447 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1448 				return ("Intel(r) Celeron(r)");
1449 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1450 				return ("Intel(r) Xeon(tm) MP");
1451 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1452 				return ("Intel(r) Xeon(tm)");
1453 			return (brand_tbl[i].bt_str);
1454 		}
1455 	}
1456 
1457 	return (NULL);
1458 }
1459 
1460 static const char *
1461 amd_cpubrand(const struct cpuid_info *cpi)
1462 {
1463 	if ((x86_feature & X86_CPUID) == 0 ||
1464 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1465 		return ("i486 compatible");
1466 
1467 	switch (cpi->cpi_family) {
1468 	case 5:
1469 		switch (cpi->cpi_model) {
1470 		case 0:
1471 		case 1:
1472 		case 2:
1473 		case 3:
1474 		case 4:
1475 		case 5:
1476 			return ("AMD-K5(r)");
1477 		case 6:
1478 		case 7:
1479 			return ("AMD-K6(r)");
1480 		case 8:
1481 			return ("AMD-K6(r)-2");
1482 		case 9:
1483 			return ("AMD-K6(r)-III");
1484 		default:
1485 			return ("AMD (family 5)");
1486 		}
1487 	case 6:
1488 		switch (cpi->cpi_model) {
1489 		case 1:
1490 			return ("AMD-K7(tm)");
1491 		case 0:
1492 		case 2:
1493 		case 4:
1494 			return ("AMD Athlon(tm)");
1495 		case 3:
1496 		case 7:
1497 			return ("AMD Duron(tm)");
1498 		case 6:
1499 		case 8:
1500 		case 10:
1501 			/*
1502 			 * Use the L2 cache size to distinguish
1503 			 */
1504 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1505 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1506 		default:
1507 			return ("AMD (family 6)");
1508 		}
1509 	default:
1510 		break;
1511 	}
1512 
1513 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1514 	    cpi->cpi_brandid != 0) {
1515 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1516 		case 3:
1517 			return ("AMD Opteron(tm) UP 1xx");
1518 		case 4:
1519 			return ("AMD Opteron(tm) DP 2xx");
1520 		case 5:
1521 			return ("AMD Opteron(tm) MP 8xx");
1522 		default:
1523 			return ("AMD Opteron(tm)");
1524 		}
1525 	}
1526 
1527 	return (NULL);
1528 }
1529 
1530 static const char *
1531 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1532 {
1533 	if ((x86_feature & X86_CPUID) == 0 ||
1534 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1535 	    type == X86_TYPE_CYRIX_486)
1536 		return ("i486 compatible");
1537 
1538 	switch (type) {
1539 	case X86_TYPE_CYRIX_6x86:
1540 		return ("Cyrix 6x86");
1541 	case X86_TYPE_CYRIX_6x86L:
1542 		return ("Cyrix 6x86L");
1543 	case X86_TYPE_CYRIX_6x86MX:
1544 		return ("Cyrix 6x86MX");
1545 	case X86_TYPE_CYRIX_GXm:
1546 		return ("Cyrix GXm");
1547 	case X86_TYPE_CYRIX_MediaGX:
1548 		return ("Cyrix MediaGX");
1549 	case X86_TYPE_CYRIX_MII:
1550 		return ("Cyrix M2");
1551 	case X86_TYPE_VIA_CYRIX_III:
1552 		return ("VIA Cyrix M3");
1553 	default:
1554 		/*
1555 		 * Have another wild guess ..
1556 		 */
1557 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1558 			return ("Cyrix 5x86");
1559 		else if (cpi->cpi_family == 5) {
1560 			switch (cpi->cpi_model) {
1561 			case 2:
1562 				return ("Cyrix 6x86");	/* Cyrix M1 */
1563 			case 4:
1564 				return ("Cyrix MediaGX");
1565 			default:
1566 				break;
1567 			}
1568 		} else if (cpi->cpi_family == 6) {
1569 			switch (cpi->cpi_model) {
1570 			case 0:
1571 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1572 			case 5:
1573 			case 6:
1574 			case 7:
1575 			case 8:
1576 			case 9:
1577 				return ("VIA C3");
1578 			default:
1579 				break;
1580 			}
1581 		}
1582 		break;
1583 	}
1584 	return (NULL);
1585 }
1586 
1587 /*
1588  * This only gets called in the case that the CPU extended
1589  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1590  * aren't available, or contain null bytes for some reason.
1591  */
1592 static void
1593 fabricate_brandstr(struct cpuid_info *cpi)
1594 {
1595 	const char *brand = NULL;
1596 
1597 	switch (cpi->cpi_vendor) {
1598 	case X86_VENDOR_Intel:
1599 		brand = intel_cpubrand(cpi);
1600 		break;
1601 	case X86_VENDOR_AMD:
1602 		brand = amd_cpubrand(cpi);
1603 		break;
1604 	case X86_VENDOR_Cyrix:
1605 		brand = cyrix_cpubrand(cpi, x86_type);
1606 		break;
1607 	case X86_VENDOR_NexGen:
1608 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1609 			brand = "NexGen Nx586";
1610 		break;
1611 	case X86_VENDOR_Centaur:
1612 		if (cpi->cpi_family == 5)
1613 			switch (cpi->cpi_model) {
1614 			case 4:
1615 				brand = "Centaur C6";
1616 				break;
1617 			case 8:
1618 				brand = "Centaur C2";
1619 				break;
1620 			case 9:
1621 				brand = "Centaur C3";
1622 				break;
1623 			default:
1624 				break;
1625 			}
1626 		break;
1627 	case X86_VENDOR_Rise:
1628 		if (cpi->cpi_family == 5 &&
1629 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1630 			brand = "Rise mP6";
1631 		break;
1632 	case X86_VENDOR_SiS:
1633 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1634 			brand = "SiS 55x";
1635 		break;
1636 	case X86_VENDOR_TM:
1637 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1638 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1639 		break;
1640 	case X86_VENDOR_NSC:
1641 	case X86_VENDOR_UMC:
1642 	default:
1643 		break;
1644 	}
1645 	if (brand) {
1646 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1647 		return;
1648 	}
1649 
1650 	/*
1651 	 * If all else fails ...
1652 	 */
1653 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1654 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1655 	    cpi->cpi_model, cpi->cpi_step);
1656 }
1657 
1658 /*
1659  * This routine is called just after kernel memory allocation
1660  * becomes available on cpu0, and as part of mp_startup() on
1661  * the other cpus.
1662  *
1663  * Fixup the brand string, and collect any information from cpuid
1664  * that requires dynamicically allocated storage to represent.
1665  */
1666 /*ARGSUSED*/
1667 void
1668 cpuid_pass3(cpu_t *cpu)
1669 {
1670 	int	i, max, shft, level, size;
1671 	struct cpuid_regs regs;
1672 	struct cpuid_regs *cp;
1673 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1674 
1675 	ASSERT(cpi->cpi_pass == 2);
1676 
1677 	/*
1678 	 * Function 4: Deterministic cache parameters
1679 	 *
1680 	 * Take this opportunity to detect the number of threads
1681 	 * sharing the last level cache, and construct a corresponding
1682 	 * cache id. The respective cpuid_info members are initialized
1683 	 * to the default case of "no last level cache sharing".
1684 	 */
1685 	cpi->cpi_ncpu_shr_last_cache = 1;
1686 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1687 
1688 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1689 
1690 		/*
1691 		 * Find the # of elements (size) returned by fn 4, and along
1692 		 * the way detect last level cache sharing details.
1693 		 */
1694 		bzero(&regs, sizeof (regs));
1695 		cp = &regs;
1696 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1697 			cp->cp_eax = 4;
1698 			cp->cp_ecx = i;
1699 
1700 			(void) __cpuid_insn(cp);
1701 
1702 			if (CPI_CACHE_TYPE(cp) == 0)
1703 				break;
1704 			level = CPI_CACHE_LVL(cp);
1705 			if (level > max) {
1706 				max = level;
1707 				cpi->cpi_ncpu_shr_last_cache =
1708 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1709 			}
1710 		}
1711 		cpi->cpi_std_4_size = size = i;
1712 
1713 		/*
1714 		 * Allocate the cpi_std_4 array. The first element
1715 		 * references the regs for fn 4, %ecx == 0, which
1716 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1717 		 */
1718 		if (size > 0) {
1719 			cpi->cpi_std_4 =
1720 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1721 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1722 
1723 			/*
1724 			 * Allocate storage to hold the additional regs
1725 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1726 			 *
1727 			 * The regs for fn 4, %ecx == 0 has already
1728 			 * been allocated as indicated above.
1729 			 */
1730 			for (i = 1; i < size; i++) {
1731 				cp = cpi->cpi_std_4[i] =
1732 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1733 				cp->cp_eax = 4;
1734 				cp->cp_ecx = i;
1735 
1736 				(void) __cpuid_insn(cp);
1737 			}
1738 		}
1739 		/*
1740 		 * Determine the number of bits needed to represent
1741 		 * the number of CPUs sharing the last level cache.
1742 		 *
1743 		 * Shift off that number of bits from the APIC id to
1744 		 * derive the cache id.
1745 		 */
1746 		shft = 0;
1747 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1748 			shft++;
1749 		cpi->cpi_last_lvl_cacheid = CPI_APIC_ID(cpi) >> shft;
1750 	}
1751 
1752 	/*
1753 	 * Now fixup the brand string
1754 	 */
1755 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1756 		fabricate_brandstr(cpi);
1757 	} else {
1758 
1759 		/*
1760 		 * If we successfully extracted a brand string from the cpuid
1761 		 * instruction, clean it up by removing leading spaces and
1762 		 * similar junk.
1763 		 */
1764 		if (cpi->cpi_brandstr[0]) {
1765 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1766 			char *src, *dst;
1767 
1768 			dst = src = (char *)cpi->cpi_brandstr;
1769 			src[maxlen - 1] = '\0';
1770 			/*
1771 			 * strip leading spaces
1772 			 */
1773 			while (*src == ' ')
1774 				src++;
1775 			/*
1776 			 * Remove any 'Genuine' or "Authentic" prefixes
1777 			 */
1778 			if (strncmp(src, "Genuine ", 8) == 0)
1779 				src += 8;
1780 			if (strncmp(src, "Authentic ", 10) == 0)
1781 				src += 10;
1782 
1783 			/*
1784 			 * Now do an in-place copy.
1785 			 * Map (R) to (r) and (TM) to (tm).
1786 			 * The era of teletypes is long gone, and there's
1787 			 * -really- no need to shout.
1788 			 */
1789 			while (*src != '\0') {
1790 				if (src[0] == '(') {
1791 					if (strncmp(src + 1, "R)", 2) == 0) {
1792 						(void) strncpy(dst, "(r)", 3);
1793 						src += 3;
1794 						dst += 3;
1795 						continue;
1796 					}
1797 					if (strncmp(src + 1, "TM)", 3) == 0) {
1798 						(void) strncpy(dst, "(tm)", 4);
1799 						src += 4;
1800 						dst += 4;
1801 						continue;
1802 					}
1803 				}
1804 				*dst++ = *src++;
1805 			}
1806 			*dst = '\0';
1807 
1808 			/*
1809 			 * Finally, remove any trailing spaces
1810 			 */
1811 			while (--dst > cpi->cpi_brandstr)
1812 				if (*dst == ' ')
1813 					*dst = '\0';
1814 				else
1815 					break;
1816 		} else
1817 			fabricate_brandstr(cpi);
1818 	}
1819 	cpi->cpi_pass = 3;
1820 }
1821 
1822 /*
1823  * This routine is called out of bind_hwcap() much later in the life
1824  * of the kernel (post_startup()).  The job of this routine is to resolve
1825  * the hardware feature support and kernel support for those features into
1826  * what we're actually going to tell applications via the aux vector.
1827  */
1828 uint_t
1829 cpuid_pass4(cpu_t *cpu)
1830 {
1831 	struct cpuid_info *cpi;
1832 	uint_t hwcap_flags = 0;
1833 
1834 	if (cpu == NULL)
1835 		cpu = CPU;
1836 	cpi = cpu->cpu_m.mcpu_cpi;
1837 
1838 	ASSERT(cpi->cpi_pass == 3);
1839 
1840 	if (cpi->cpi_maxeax >= 1) {
1841 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1842 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1843 
1844 		*edx = CPI_FEATURES_EDX(cpi);
1845 		*ecx = CPI_FEATURES_ECX(cpi);
1846 
1847 		/*
1848 		 * [these require explicit kernel support]
1849 		 */
1850 		if ((x86_feature & X86_SEP) == 0)
1851 			*edx &= ~CPUID_INTC_EDX_SEP;
1852 
1853 		if ((x86_feature & X86_SSE) == 0)
1854 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
1855 		if ((x86_feature & X86_SSE2) == 0)
1856 			*edx &= ~CPUID_INTC_EDX_SSE2;
1857 
1858 		if ((x86_feature & X86_HTT) == 0)
1859 			*edx &= ~CPUID_INTC_EDX_HTT;
1860 
1861 		if ((x86_feature & X86_SSE3) == 0)
1862 			*ecx &= ~CPUID_INTC_ECX_SSE3;
1863 
1864 		/*
1865 		 * [no explicit support required beyond x87 fp context]
1866 		 */
1867 		if (!fpu_exists)
1868 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
1869 
1870 		/*
1871 		 * Now map the supported feature vector to things that we
1872 		 * think userland will care about.
1873 		 */
1874 		if (*edx & CPUID_INTC_EDX_SEP)
1875 			hwcap_flags |= AV_386_SEP;
1876 		if (*edx & CPUID_INTC_EDX_SSE)
1877 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
1878 		if (*edx & CPUID_INTC_EDX_SSE2)
1879 			hwcap_flags |= AV_386_SSE2;
1880 		if (*ecx & CPUID_INTC_ECX_SSE3)
1881 			hwcap_flags |= AV_386_SSE3;
1882 		if (*ecx & CPUID_INTC_ECX_POPCNT)
1883 			hwcap_flags |= AV_386_POPCNT;
1884 		if (*edx & CPUID_INTC_EDX_FPU)
1885 			hwcap_flags |= AV_386_FPU;
1886 		if (*edx & CPUID_INTC_EDX_MMX)
1887 			hwcap_flags |= AV_386_MMX;
1888 
1889 		if (*edx & CPUID_INTC_EDX_TSC)
1890 			hwcap_flags |= AV_386_TSC;
1891 		if (*edx & CPUID_INTC_EDX_CX8)
1892 			hwcap_flags |= AV_386_CX8;
1893 		if (*edx & CPUID_INTC_EDX_CMOV)
1894 			hwcap_flags |= AV_386_CMOV;
1895 		if (*ecx & CPUID_INTC_ECX_MON)
1896 			hwcap_flags |= AV_386_MON;
1897 		if (*ecx & CPUID_INTC_ECX_CX16)
1898 			hwcap_flags |= AV_386_CX16;
1899 	}
1900 
1901 	if (x86_feature & X86_HTT)
1902 		hwcap_flags |= AV_386_PAUSE;
1903 
1904 	if (cpi->cpi_xmaxeax < 0x80000001)
1905 		goto pass4_done;
1906 
1907 	switch (cpi->cpi_vendor) {
1908 		struct cpuid_regs cp;
1909 		uint32_t *edx, *ecx;
1910 
1911 	case X86_VENDOR_Intel:
1912 		/*
1913 		 * Seems like Intel duplicated what we necessary
1914 		 * here to make the initial crop of 64-bit OS's work.
1915 		 * Hopefully, those are the only "extended" bits
1916 		 * they'll add.
1917 		 */
1918 		/*FALLTHROUGH*/
1919 
1920 	case X86_VENDOR_AMD:
1921 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
1922 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
1923 
1924 		*edx = CPI_FEATURES_XTD_EDX(cpi);
1925 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
1926 
1927 		/*
1928 		 * [these features require explicit kernel support]
1929 		 */
1930 		switch (cpi->cpi_vendor) {
1931 		case X86_VENDOR_Intel:
1932 			break;
1933 
1934 		case X86_VENDOR_AMD:
1935 			if ((x86_feature & X86_TSCP) == 0)
1936 				*edx &= ~CPUID_AMD_EDX_TSCP;
1937 			if ((x86_feature & X86_SSE4A) == 0)
1938 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
1939 			break;
1940 
1941 		default:
1942 			break;
1943 		}
1944 
1945 		/*
1946 		 * [no explicit support required beyond
1947 		 * x87 fp context and exception handlers]
1948 		 */
1949 		if (!fpu_exists)
1950 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
1951 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
1952 
1953 		if ((x86_feature & X86_NX) == 0)
1954 			*edx &= ~CPUID_AMD_EDX_NX;
1955 #if !defined(__amd64)
1956 		*edx &= ~CPUID_AMD_EDX_LM;
1957 #endif
1958 		/*
1959 		 * Now map the supported feature vector to
1960 		 * things that we think userland will care about.
1961 		 */
1962 #if defined(__amd64)
1963 		if (*edx & CPUID_AMD_EDX_SYSC)
1964 			hwcap_flags |= AV_386_AMD_SYSC;
1965 #endif
1966 		if (*edx & CPUID_AMD_EDX_MMXamd)
1967 			hwcap_flags |= AV_386_AMD_MMX;
1968 		if (*edx & CPUID_AMD_EDX_3DNow)
1969 			hwcap_flags |= AV_386_AMD_3DNow;
1970 		if (*edx & CPUID_AMD_EDX_3DNowx)
1971 			hwcap_flags |= AV_386_AMD_3DNowx;
1972 
1973 		switch (cpi->cpi_vendor) {
1974 		case X86_VENDOR_AMD:
1975 			if (*edx & CPUID_AMD_EDX_TSCP)
1976 				hwcap_flags |= AV_386_TSCP;
1977 			if (*ecx & CPUID_AMD_ECX_AHF64)
1978 				hwcap_flags |= AV_386_AHF;
1979 			if (*ecx & CPUID_AMD_ECX_SSE4A)
1980 				hwcap_flags |= AV_386_AMD_SSE4A;
1981 			if (*ecx & CPUID_AMD_ECX_LZCNT)
1982 				hwcap_flags |= AV_386_AMD_LZCNT;
1983 			break;
1984 
1985 		case X86_VENDOR_Intel:
1986 			/*
1987 			 * Aarrgh.
1988 			 * Intel uses a different bit in the same word.
1989 			 */
1990 			if (*ecx & CPUID_INTC_ECX_AHF64)
1991 				hwcap_flags |= AV_386_AHF;
1992 			break;
1993 
1994 		default:
1995 			break;
1996 		}
1997 		break;
1998 
1999 	case X86_VENDOR_TM:
2000 		cp.cp_eax = 0x80860001;
2001 		(void) __cpuid_insn(&cp);
2002 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2003 		break;
2004 
2005 	default:
2006 		break;
2007 	}
2008 
2009 pass4_done:
2010 	cpi->cpi_pass = 4;
2011 	return (hwcap_flags);
2012 }
2013 
2014 
2015 /*
2016  * Simulate the cpuid instruction using the data we previously
2017  * captured about this CPU.  We try our best to return the truth
2018  * about the hardware, independently of kernel support.
2019  */
2020 uint32_t
2021 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2022 {
2023 	struct cpuid_info *cpi;
2024 	struct cpuid_regs *xcp;
2025 
2026 	if (cpu == NULL)
2027 		cpu = CPU;
2028 	cpi = cpu->cpu_m.mcpu_cpi;
2029 
2030 	ASSERT(cpuid_checkpass(cpu, 3));
2031 
2032 	/*
2033 	 * CPUID data is cached in two separate places: cpi_std for standard
2034 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2035 	 */
2036 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2037 		xcp = &cpi->cpi_std[cp->cp_eax];
2038 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2039 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2040 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2041 	else
2042 		/*
2043 		 * The caller is asking for data from an input parameter which
2044 		 * the kernel has not cached.  In this case we go fetch from
2045 		 * the hardware and return the data directly to the user.
2046 		 */
2047 		return (__cpuid_insn(cp));
2048 
2049 	cp->cp_eax = xcp->cp_eax;
2050 	cp->cp_ebx = xcp->cp_ebx;
2051 	cp->cp_ecx = xcp->cp_ecx;
2052 	cp->cp_edx = xcp->cp_edx;
2053 	return (cp->cp_eax);
2054 }
2055 
2056 int
2057 cpuid_checkpass(cpu_t *cpu, int pass)
2058 {
2059 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2060 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2061 }
2062 
2063 int
2064 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2065 {
2066 	ASSERT(cpuid_checkpass(cpu, 3));
2067 
2068 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2069 }
2070 
2071 int
2072 cpuid_is_cmt(cpu_t *cpu)
2073 {
2074 	if (cpu == NULL)
2075 		cpu = CPU;
2076 
2077 	ASSERT(cpuid_checkpass(cpu, 1));
2078 
2079 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2080 }
2081 
2082 /*
2083  * AMD and Intel both implement the 64-bit variant of the syscall
2084  * instruction (syscallq), so if there's -any- support for syscall,
2085  * cpuid currently says "yes, we support this".
2086  *
2087  * However, Intel decided to -not- implement the 32-bit variant of the
2088  * syscall instruction, so we provide a predicate to allow our caller
2089  * to test that subtlety here.
2090  */
2091 /*ARGSUSED*/
2092 int
2093 cpuid_syscall32_insn(cpu_t *cpu)
2094 {
2095 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2096 
2097 	if (cpu == NULL)
2098 		cpu = CPU;
2099 
2100 	/*CSTYLED*/
2101 	{
2102 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2103 
2104 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2105 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2106 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2107 			return (1);
2108 	}
2109 	return (0);
2110 }
2111 
2112 int
2113 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2114 {
2115 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2116 
2117 	static const char fmt[] =
2118 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2119 	static const char fmt_ht[] =
2120 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2121 
2122 	ASSERT(cpuid_checkpass(cpu, 1));
2123 
2124 	if (cpuid_is_cmt(cpu))
2125 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2126 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2127 		    cpi->cpi_family, cpi->cpi_model,
2128 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2129 	return (snprintf(s, n, fmt,
2130 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2131 	    cpi->cpi_family, cpi->cpi_model,
2132 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2133 }
2134 
2135 const char *
2136 cpuid_getvendorstr(cpu_t *cpu)
2137 {
2138 	ASSERT(cpuid_checkpass(cpu, 1));
2139 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2140 }
2141 
2142 uint_t
2143 cpuid_getvendor(cpu_t *cpu)
2144 {
2145 	ASSERT(cpuid_checkpass(cpu, 1));
2146 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2147 }
2148 
2149 uint_t
2150 cpuid_getfamily(cpu_t *cpu)
2151 {
2152 	ASSERT(cpuid_checkpass(cpu, 1));
2153 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2154 }
2155 
2156 uint_t
2157 cpuid_getmodel(cpu_t *cpu)
2158 {
2159 	ASSERT(cpuid_checkpass(cpu, 1));
2160 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2161 }
2162 
2163 uint_t
2164 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2165 {
2166 	ASSERT(cpuid_checkpass(cpu, 1));
2167 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2168 }
2169 
2170 uint_t
2171 cpuid_get_ncore_per_chip(cpu_t *cpu)
2172 {
2173 	ASSERT(cpuid_checkpass(cpu, 1));
2174 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2175 }
2176 
2177 uint_t
2178 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2179 {
2180 	ASSERT(cpuid_checkpass(cpu, 2));
2181 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2182 }
2183 
2184 id_t
2185 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2186 {
2187 	ASSERT(cpuid_checkpass(cpu, 2));
2188 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2189 }
2190 
2191 uint_t
2192 cpuid_getstep(cpu_t *cpu)
2193 {
2194 	ASSERT(cpuid_checkpass(cpu, 1));
2195 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2196 }
2197 
2198 uint_t
2199 cpuid_getsig(struct cpu *cpu)
2200 {
2201 	ASSERT(cpuid_checkpass(cpu, 1));
2202 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2203 }
2204 
2205 uint32_t
2206 cpuid_getchiprev(struct cpu *cpu)
2207 {
2208 	ASSERT(cpuid_checkpass(cpu, 1));
2209 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2210 }
2211 
2212 const char *
2213 cpuid_getchiprevstr(struct cpu *cpu)
2214 {
2215 	ASSERT(cpuid_checkpass(cpu, 1));
2216 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2217 }
2218 
2219 uint32_t
2220 cpuid_getsockettype(struct cpu *cpu)
2221 {
2222 	ASSERT(cpuid_checkpass(cpu, 1));
2223 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2224 }
2225 
2226 int
2227 cpuid_get_chipid(cpu_t *cpu)
2228 {
2229 	ASSERT(cpuid_checkpass(cpu, 1));
2230 
2231 	if (cpuid_is_cmt(cpu))
2232 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2233 	return (cpu->cpu_id);
2234 }
2235 
2236 id_t
2237 cpuid_get_coreid(cpu_t *cpu)
2238 {
2239 	ASSERT(cpuid_checkpass(cpu, 1));
2240 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2241 }
2242 
2243 int
2244 cpuid_get_clogid(cpu_t *cpu)
2245 {
2246 	ASSERT(cpuid_checkpass(cpu, 1));
2247 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2248 }
2249 
2250 void
2251 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2252 {
2253 	struct cpuid_info *cpi;
2254 
2255 	if (cpu == NULL)
2256 		cpu = CPU;
2257 	cpi = cpu->cpu_m.mcpu_cpi;
2258 
2259 	ASSERT(cpuid_checkpass(cpu, 1));
2260 
2261 	if (pabits)
2262 		*pabits = cpi->cpi_pabits;
2263 	if (vabits)
2264 		*vabits = cpi->cpi_vabits;
2265 }
2266 
2267 /*
2268  * Returns the number of data TLB entries for a corresponding
2269  * pagesize.  If it can't be computed, or isn't known, the
2270  * routine returns zero.  If you ask about an architecturally
2271  * impossible pagesize, the routine will panic (so that the
2272  * hat implementor knows that things are inconsistent.)
2273  */
2274 uint_t
2275 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2276 {
2277 	struct cpuid_info *cpi;
2278 	uint_t dtlb_nent = 0;
2279 
2280 	if (cpu == NULL)
2281 		cpu = CPU;
2282 	cpi = cpu->cpu_m.mcpu_cpi;
2283 
2284 	ASSERT(cpuid_checkpass(cpu, 1));
2285 
2286 	/*
2287 	 * Check the L2 TLB info
2288 	 */
2289 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2290 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2291 
2292 		switch (pagesize) {
2293 
2294 		case 4 * 1024:
2295 			/*
2296 			 * All zero in the top 16 bits of the register
2297 			 * indicates a unified TLB. Size is in low 16 bits.
2298 			 */
2299 			if ((cp->cp_ebx & 0xffff0000) == 0)
2300 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2301 			else
2302 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2303 			break;
2304 
2305 		case 2 * 1024 * 1024:
2306 			if ((cp->cp_eax & 0xffff0000) == 0)
2307 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2308 			else
2309 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2310 			break;
2311 
2312 		default:
2313 			panic("unknown L2 pagesize");
2314 			/*NOTREACHED*/
2315 		}
2316 	}
2317 
2318 	if (dtlb_nent != 0)
2319 		return (dtlb_nent);
2320 
2321 	/*
2322 	 * No L2 TLB support for this size, try L1.
2323 	 */
2324 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2325 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2326 
2327 		switch (pagesize) {
2328 		case 4 * 1024:
2329 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2330 			break;
2331 		case 2 * 1024 * 1024:
2332 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2333 			break;
2334 		default:
2335 			panic("unknown L1 d-TLB pagesize");
2336 			/*NOTREACHED*/
2337 		}
2338 	}
2339 
2340 	return (dtlb_nent);
2341 }
2342 
2343 /*
2344  * Return 0 if the erratum is not present or not applicable, positive
2345  * if it is, and negative if the status of the erratum is unknown.
2346  *
2347  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2348  * Processors" #25759, Rev 3.57, August 2005
2349  */
2350 int
2351 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2352 {
2353 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2354 	uint_t eax;
2355 
2356 	/*
2357 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2358 	 * a legacy (32-bit) AMD CPU.
2359 	 */
2360 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2361 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2362 	    cpi->cpi_family == 6)
2363 
2364 		return (0);
2365 
2366 	eax = cpi->cpi_std[1].cp_eax;
2367 
2368 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2369 #define	SH_B3(eax) 	(eax == 0xf51)
2370 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2371 
2372 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2373 
2374 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2375 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2376 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2377 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2378 
2379 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2380 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2381 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2382 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2383 
2384 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2385 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2386 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2387 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2388 #define	BH_E4(eax)	(eax == 0x20fb1)
2389 #define	SH_E5(eax)	(eax == 0x20f42)
2390 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2391 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2392 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2393 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2394 			    DH_E6(eax) || JH_E6(eax))
2395 
2396 	switch (erratum) {
2397 	case 1:
2398 		return (cpi->cpi_family < 0x10);
2399 	case 51:	/* what does the asterisk mean? */
2400 		return (B(eax) || SH_C0(eax) || CG(eax));
2401 	case 52:
2402 		return (B(eax));
2403 	case 57:
2404 		return (cpi->cpi_family <= 0x10);
2405 	case 58:
2406 		return (B(eax));
2407 	case 60:
2408 		return (cpi->cpi_family <= 0x10);
2409 	case 61:
2410 	case 62:
2411 	case 63:
2412 	case 64:
2413 	case 65:
2414 	case 66:
2415 	case 68:
2416 	case 69:
2417 	case 70:
2418 	case 71:
2419 		return (B(eax));
2420 	case 72:
2421 		return (SH_B0(eax));
2422 	case 74:
2423 		return (B(eax));
2424 	case 75:
2425 		return (cpi->cpi_family < 0x10);
2426 	case 76:
2427 		return (B(eax));
2428 	case 77:
2429 		return (cpi->cpi_family <= 0x10);
2430 	case 78:
2431 		return (B(eax) || SH_C0(eax));
2432 	case 79:
2433 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2434 	case 80:
2435 	case 81:
2436 	case 82:
2437 		return (B(eax));
2438 	case 83:
2439 		return (B(eax) || SH_C0(eax) || CG(eax));
2440 	case 85:
2441 		return (cpi->cpi_family < 0x10);
2442 	case 86:
2443 		return (SH_C0(eax) || CG(eax));
2444 	case 88:
2445 #if !defined(__amd64)
2446 		return (0);
2447 #else
2448 		return (B(eax) || SH_C0(eax));
2449 #endif
2450 	case 89:
2451 		return (cpi->cpi_family < 0x10);
2452 	case 90:
2453 		return (B(eax) || SH_C0(eax) || CG(eax));
2454 	case 91:
2455 	case 92:
2456 		return (B(eax) || SH_C0(eax));
2457 	case 93:
2458 		return (SH_C0(eax));
2459 	case 94:
2460 		return (B(eax) || SH_C0(eax) || CG(eax));
2461 	case 95:
2462 #if !defined(__amd64)
2463 		return (0);
2464 #else
2465 		return (B(eax) || SH_C0(eax));
2466 #endif
2467 	case 96:
2468 		return (B(eax) || SH_C0(eax) || CG(eax));
2469 	case 97:
2470 	case 98:
2471 		return (SH_C0(eax) || CG(eax));
2472 	case 99:
2473 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2474 	case 100:
2475 		return (B(eax) || SH_C0(eax));
2476 	case 101:
2477 	case 103:
2478 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2479 	case 104:
2480 		return (SH_C0(eax) || CG(eax) || D0(eax));
2481 	case 105:
2482 	case 106:
2483 	case 107:
2484 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2485 	case 108:
2486 		return (DH_CG(eax));
2487 	case 109:
2488 		return (SH_C0(eax) || CG(eax) || D0(eax));
2489 	case 110:
2490 		return (D0(eax) || EX(eax));
2491 	case 111:
2492 		return (CG(eax));
2493 	case 112:
2494 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2495 	case 113:
2496 		return (eax == 0x20fc0);
2497 	case 114:
2498 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2499 	case 115:
2500 		return (SH_E0(eax) || JH_E1(eax));
2501 	case 116:
2502 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2503 	case 117:
2504 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2505 	case 118:
2506 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2507 		    JH_E6(eax));
2508 	case 121:
2509 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2510 	case 122:
2511 		return (cpi->cpi_family < 0x10);
2512 	case 123:
2513 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2514 	case 131:
2515 		return (cpi->cpi_family < 0x10);
2516 	case 6336786:
2517 		/*
2518 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2519 		 * if this is a K8 family or newer processor
2520 		 */
2521 		if (CPI_FAMILY(cpi) == 0xf) {
2522 			struct cpuid_regs regs;
2523 			regs.cp_eax = 0x80000007;
2524 			(void) __cpuid_insn(&regs);
2525 			return (!(regs.cp_edx & 0x100));
2526 		}
2527 		return (0);
2528 	case 6323525:
2529 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2530 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2531 
2532 	default:
2533 		return (-1);
2534 	}
2535 }
2536 
2537 static const char assoc_str[] = "associativity";
2538 static const char line_str[] = "line-size";
2539 static const char size_str[] = "size";
2540 
2541 static void
2542 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2543     uint32_t val)
2544 {
2545 	char buf[128];
2546 
2547 	/*
2548 	 * ndi_prop_update_int() is used because it is desirable for
2549 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2550 	 */
2551 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2552 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2553 }
2554 
2555 /*
2556  * Intel-style cache/tlb description
2557  *
2558  * Standard cpuid level 2 gives a randomly ordered
2559  * selection of tags that index into a table that describes
2560  * cache and tlb properties.
2561  */
2562 
2563 static const char l1_icache_str[] = "l1-icache";
2564 static const char l1_dcache_str[] = "l1-dcache";
2565 static const char l2_cache_str[] = "l2-cache";
2566 static const char l3_cache_str[] = "l3-cache";
2567 static const char itlb4k_str[] = "itlb-4K";
2568 static const char dtlb4k_str[] = "dtlb-4K";
2569 static const char itlb4M_str[] = "itlb-4M";
2570 static const char dtlb4M_str[] = "dtlb-4M";
2571 static const char itlb424_str[] = "itlb-4K-2M-4M";
2572 static const char dtlb44_str[] = "dtlb-4K-4M";
2573 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2574 static const char sl2_cache_str[] = "sectored-l2-cache";
2575 static const char itrace_str[] = "itrace-cache";
2576 static const char sl3_cache_str[] = "sectored-l3-cache";
2577 
2578 static const struct cachetab {
2579 	uint8_t 	ct_code;
2580 	uint8_t		ct_assoc;
2581 	uint16_t 	ct_line_size;
2582 	size_t		ct_size;
2583 	const char	*ct_label;
2584 } intel_ctab[] = {
2585 	/* maintain descending order! */
2586 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2587 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2588 	{ 0xb0, 4, 0, 128, itlb4k_str },
2589 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2590 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2591 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2592 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2593 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2594 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2595 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2596 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2597 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2598 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2599 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2600 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2601 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2602 	{ 0x73, 8, 0, 64*1024, itrace_str},
2603 	{ 0x72, 8, 0, 32*1024, itrace_str},
2604 	{ 0x71, 8, 0, 16*1024, itrace_str},
2605 	{ 0x70, 8, 0, 12*1024, itrace_str},
2606 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2607 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2608 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2609 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2610 	{ 0x5d, 0, 0, 256, dtlb44_str},
2611 	{ 0x5c, 0, 0, 128, dtlb44_str},
2612 	{ 0x5b, 0, 0, 64, dtlb44_str},
2613 	{ 0x52, 0, 0, 256, itlb424_str},
2614 	{ 0x51, 0, 0, 128, itlb424_str},
2615 	{ 0x50, 0, 0, 64, itlb424_str},
2616 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2617 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2618 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2619 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2620 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2621 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2622 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2623 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2624 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2625 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2626 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2627 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2628 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2629 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2630 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2631 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2632 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2633 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2634 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2635 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2636 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2637 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2638 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2639 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2640 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2641 	{ 0x0b, 4, 0, 4, itlb4M_str},
2642 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2643 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2644 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2645 	{ 0x04, 4, 0, 8, dtlb4M_str},
2646 	{ 0x03, 4, 0, 64, dtlb4k_str},
2647 	{ 0x02, 4, 0, 2, itlb4M_str},
2648 	{ 0x01, 4, 0, 32, itlb4k_str},
2649 	{ 0 }
2650 };
2651 
2652 static const struct cachetab cyrix_ctab[] = {
2653 	{ 0x70, 4, 0, 32, "tlb-4K" },
2654 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2655 	{ 0 }
2656 };
2657 
2658 /*
2659  * Search a cache table for a matching entry
2660  */
2661 static const struct cachetab *
2662 find_cacheent(const struct cachetab *ct, uint_t code)
2663 {
2664 	if (code != 0) {
2665 		for (; ct->ct_code != 0; ct++)
2666 			if (ct->ct_code <= code)
2667 				break;
2668 		if (ct->ct_code == code)
2669 			return (ct);
2670 	}
2671 	return (NULL);
2672 }
2673 
2674 /*
2675  * Walk the cacheinfo descriptor, applying 'func' to every valid element
2676  * The walk is terminated if the walker returns non-zero.
2677  */
2678 static void
2679 intel_walk_cacheinfo(struct cpuid_info *cpi,
2680     void *arg, int (*func)(void *, const struct cachetab *))
2681 {
2682 	const struct cachetab *ct;
2683 	uint8_t *dp;
2684 	int i;
2685 
2686 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2687 		return;
2688 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2689 		/*
2690 		 * For overloaded descriptor 0x49 we use cpuid function 4
2691 		 * if supported by the current processor, to update
2692 		 * cache information.
2693 		 */
2694 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4) {
2695 			intel_cpuid_4_cache_info(arg, cpi);
2696 			continue;
2697 		}
2698 
2699 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2700 			if (func(arg, ct) != 0)
2701 				break;
2702 		}
2703 	}
2704 }
2705 
2706 /*
2707  * (Like the Intel one, except for Cyrix CPUs)
2708  */
2709 static void
2710 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
2711     void *arg, int (*func)(void *, const struct cachetab *))
2712 {
2713 	const struct cachetab *ct;
2714 	uint8_t *dp;
2715 	int i;
2716 
2717 	if ((dp = cpi->cpi_cacheinfo) == NULL)
2718 		return;
2719 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
2720 		/*
2721 		 * Search Cyrix-specific descriptor table first ..
2722 		 */
2723 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
2724 			if (func(arg, ct) != 0)
2725 				break;
2726 			continue;
2727 		}
2728 		/*
2729 		 * .. else fall back to the Intel one
2730 		 */
2731 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
2732 			if (func(arg, ct) != 0)
2733 				break;
2734 			continue;
2735 		}
2736 	}
2737 }
2738 
2739 /*
2740  * A cacheinfo walker that adds associativity, line-size, and size properties
2741  * to the devinfo node it is passed as an argument.
2742  */
2743 static int
2744 add_cacheent_props(void *arg, const struct cachetab *ct)
2745 {
2746 	dev_info_t *devi = arg;
2747 
2748 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
2749 	if (ct->ct_line_size != 0)
2750 		add_cache_prop(devi, ct->ct_label, line_str,
2751 		    ct->ct_line_size);
2752 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
2753 	return (0);
2754 }
2755 
2756 /*
2757  * Add L2 or L3 cache-information using cpuid function 4. This
2758  * function is called from intel_walk_cacheinfo() when descriptor
2759  * 0x49 is encountered.
2760  */
2761 static void
2762 intel_cpuid_4_cache_info(void *arg, struct cpuid_info *cpi)
2763 {
2764 	uint32_t level, i;
2765 
2766 	struct cachetab ct;
2767 
2768 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2769 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2770 
2771 		if (level == 2 || level == 3) {
2772 			ct.ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2773 			ct.ct_line_size =
2774 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2775 			ct.ct_size = ct.ct_assoc *
2776 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2777 			    ct.ct_line_size *
2778 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2779 
2780 			if (level == 2) {
2781 				ct.ct_label = l2_cache_str;
2782 			} else if (level == 3) {
2783 				ct.ct_label = l3_cache_str;
2784 			}
2785 
2786 			(void) add_cacheent_props(arg,
2787 			    (const struct cachetab *) (&ct));
2788 		}
2789 	}
2790 }
2791 
2792 static const char fully_assoc[] = "fully-associative?";
2793 
2794 /*
2795  * AMD style cache/tlb description
2796  *
2797  * Extended functions 5 and 6 directly describe properties of
2798  * tlbs and various cache levels.
2799  */
2800 static void
2801 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2802 {
2803 	switch (assoc) {
2804 	case 0:	/* reserved; ignore */
2805 		break;
2806 	default:
2807 		add_cache_prop(devi, label, assoc_str, assoc);
2808 		break;
2809 	case 0xff:
2810 		add_cache_prop(devi, label, fully_assoc, 1);
2811 		break;
2812 	}
2813 }
2814 
2815 static void
2816 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2817 {
2818 	if (size == 0)
2819 		return;
2820 	add_cache_prop(devi, label, size_str, size);
2821 	add_amd_assoc(devi, label, assoc);
2822 }
2823 
2824 static void
2825 add_amd_cache(dev_info_t *devi, const char *label,
2826     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2827 {
2828 	if (size == 0 || line_size == 0)
2829 		return;
2830 	add_amd_assoc(devi, label, assoc);
2831 	/*
2832 	 * Most AMD parts have a sectored cache. Multiple cache lines are
2833 	 * associated with each tag. A sector consists of all cache lines
2834 	 * associated with a tag. For example, the AMD K6-III has a sector
2835 	 * size of 2 cache lines per tag.
2836 	 */
2837 	if (lines_per_tag != 0)
2838 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2839 	add_cache_prop(devi, label, line_str, line_size);
2840 	add_cache_prop(devi, label, size_str, size * 1024);
2841 }
2842 
2843 static void
2844 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
2845 {
2846 	switch (assoc) {
2847 	case 0:	/* off */
2848 		break;
2849 	case 1:
2850 	case 2:
2851 	case 4:
2852 		add_cache_prop(devi, label, assoc_str, assoc);
2853 		break;
2854 	case 6:
2855 		add_cache_prop(devi, label, assoc_str, 8);
2856 		break;
2857 	case 8:
2858 		add_cache_prop(devi, label, assoc_str, 16);
2859 		break;
2860 	case 0xf:
2861 		add_cache_prop(devi, label, fully_assoc, 1);
2862 		break;
2863 	default: /* reserved; ignore */
2864 		break;
2865 	}
2866 }
2867 
2868 static void
2869 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
2870 {
2871 	if (size == 0 || assoc == 0)
2872 		return;
2873 	add_amd_l2_assoc(devi, label, assoc);
2874 	add_cache_prop(devi, label, size_str, size);
2875 }
2876 
2877 static void
2878 add_amd_l2_cache(dev_info_t *devi, const char *label,
2879     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
2880 {
2881 	if (size == 0 || assoc == 0 || line_size == 0)
2882 		return;
2883 	add_amd_l2_assoc(devi, label, assoc);
2884 	if (lines_per_tag != 0)
2885 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
2886 	add_cache_prop(devi, label, line_str, line_size);
2887 	add_cache_prop(devi, label, size_str, size * 1024);
2888 }
2889 
2890 static void
2891 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
2892 {
2893 	struct cpuid_regs *cp;
2894 
2895 	if (cpi->cpi_xmaxeax < 0x80000005)
2896 		return;
2897 	cp = &cpi->cpi_extd[5];
2898 
2899 	/*
2900 	 * 4M/2M L1 TLB configuration
2901 	 *
2902 	 * We report the size for 2M pages because AMD uses two
2903 	 * TLB entries for one 4M page.
2904 	 */
2905 	add_amd_tlb(devi, "dtlb-2M",
2906 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
2907 	add_amd_tlb(devi, "itlb-2M",
2908 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
2909 
2910 	/*
2911 	 * 4K L1 TLB configuration
2912 	 */
2913 
2914 	switch (cpi->cpi_vendor) {
2915 		uint_t nentries;
2916 	case X86_VENDOR_TM:
2917 		if (cpi->cpi_family >= 5) {
2918 			/*
2919 			 * Crusoe processors have 256 TLB entries, but
2920 			 * cpuid data format constrains them to only
2921 			 * reporting 255 of them.
2922 			 */
2923 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
2924 				nentries = 256;
2925 			/*
2926 			 * Crusoe processors also have a unified TLB
2927 			 */
2928 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
2929 			    nentries);
2930 			break;
2931 		}
2932 		/*FALLTHROUGH*/
2933 	default:
2934 		add_amd_tlb(devi, itlb4k_str,
2935 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
2936 		add_amd_tlb(devi, dtlb4k_str,
2937 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
2938 		break;
2939 	}
2940 
2941 	/*
2942 	 * data L1 cache configuration
2943 	 */
2944 
2945 	add_amd_cache(devi, l1_dcache_str,
2946 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
2947 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
2948 
2949 	/*
2950 	 * code L1 cache configuration
2951 	 */
2952 
2953 	add_amd_cache(devi, l1_icache_str,
2954 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
2955 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
2956 
2957 	if (cpi->cpi_xmaxeax < 0x80000006)
2958 		return;
2959 	cp = &cpi->cpi_extd[6];
2960 
2961 	/* Check for a unified L2 TLB for large pages */
2962 
2963 	if (BITX(cp->cp_eax, 31, 16) == 0)
2964 		add_amd_l2_tlb(devi, "l2-tlb-2M",
2965 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2966 	else {
2967 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
2968 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2969 		add_amd_l2_tlb(devi, "l2-itlb-2M",
2970 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2971 	}
2972 
2973 	/* Check for a unified L2 TLB for 4K pages */
2974 
2975 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
2976 		add_amd_l2_tlb(devi, "l2-tlb-4K",
2977 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2978 	} else {
2979 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
2980 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
2981 		add_amd_l2_tlb(devi, "l2-itlb-4K",
2982 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
2983 	}
2984 
2985 	add_amd_l2_cache(devi, l2_cache_str,
2986 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
2987 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
2988 }
2989 
2990 /*
2991  * There are two basic ways that the x86 world describes it cache
2992  * and tlb architecture - Intel's way and AMD's way.
2993  *
2994  * Return which flavor of cache architecture we should use
2995  */
2996 static int
2997 x86_which_cacheinfo(struct cpuid_info *cpi)
2998 {
2999 	switch (cpi->cpi_vendor) {
3000 	case X86_VENDOR_Intel:
3001 		if (cpi->cpi_maxeax >= 2)
3002 			return (X86_VENDOR_Intel);
3003 		break;
3004 	case X86_VENDOR_AMD:
3005 		/*
3006 		 * The K5 model 1 was the first part from AMD that reported
3007 		 * cache sizes via extended cpuid functions.
3008 		 */
3009 		if (cpi->cpi_family > 5 ||
3010 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3011 			return (X86_VENDOR_AMD);
3012 		break;
3013 	case X86_VENDOR_TM:
3014 		if (cpi->cpi_family >= 5)
3015 			return (X86_VENDOR_AMD);
3016 		/*FALLTHROUGH*/
3017 	default:
3018 		/*
3019 		 * If they have extended CPU data for 0x80000005
3020 		 * then we assume they have AMD-format cache
3021 		 * information.
3022 		 *
3023 		 * If not, and the vendor happens to be Cyrix,
3024 		 * then try our-Cyrix specific handler.
3025 		 *
3026 		 * If we're not Cyrix, then assume we're using Intel's
3027 		 * table-driven format instead.
3028 		 */
3029 		if (cpi->cpi_xmaxeax >= 0x80000005)
3030 			return (X86_VENDOR_AMD);
3031 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3032 			return (X86_VENDOR_Cyrix);
3033 		else if (cpi->cpi_maxeax >= 2)
3034 			return (X86_VENDOR_Intel);
3035 		break;
3036 	}
3037 	return (-1);
3038 }
3039 
3040 /*
3041  * create a node for the given cpu under the prom root node.
3042  * Also, create a cpu node in the device tree.
3043  */
3044 static dev_info_t *cpu_nex_devi = NULL;
3045 static kmutex_t cpu_node_lock;
3046 
3047 /*
3048  * Called from post_startup() and mp_startup()
3049  */
3050 void
3051 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3052 {
3053 	dev_info_t *cpu_devi;
3054 	int create;
3055 
3056 	mutex_enter(&cpu_node_lock);
3057 
3058 	/*
3059 	 * create a nexus node for all cpus identified as 'cpu_id' under
3060 	 * the root node.
3061 	 */
3062 	if (cpu_nex_devi == NULL) {
3063 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3064 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3065 			mutex_exit(&cpu_node_lock);
3066 			return;
3067 		}
3068 		(void) ndi_devi_online(cpu_nex_devi, 0);
3069 	}
3070 
3071 	/*
3072 	 * create a child node for cpu identified as 'cpu_id'
3073 	 */
3074 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3075 	    cpu_id);
3076 	if (cpu_devi == NULL) {
3077 		mutex_exit(&cpu_node_lock);
3078 		return;
3079 	}
3080 
3081 	/* device_type */
3082 
3083 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3084 	    "device_type", "cpu");
3085 
3086 	/* reg */
3087 
3088 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3089 	    "reg", cpu_id);
3090 
3091 	/* cpu-mhz, and clock-frequency */
3092 
3093 	if (cpu_freq > 0) {
3094 		long long mul;
3095 
3096 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3097 		    "cpu-mhz", cpu_freq);
3098 
3099 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3100 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3101 			    "clock-frequency", (int)mul);
3102 	}
3103 
3104 	(void) ndi_devi_online(cpu_devi, 0);
3105 
3106 	if ((x86_feature & X86_CPUID) == 0) {
3107 		mutex_exit(&cpu_node_lock);
3108 		return;
3109 	}
3110 
3111 	/* vendor-id */
3112 
3113 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3114 	    "vendor-id", cpi->cpi_vendorstr);
3115 
3116 	if (cpi->cpi_maxeax == 0) {
3117 		mutex_exit(&cpu_node_lock);
3118 		return;
3119 	}
3120 
3121 	/*
3122 	 * family, model, and step
3123 	 */
3124 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3125 	    "family", CPI_FAMILY(cpi));
3126 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3127 	    "cpu-model", CPI_MODEL(cpi));
3128 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3129 	    "stepping-id", CPI_STEP(cpi));
3130 
3131 	/* type */
3132 
3133 	switch (cpi->cpi_vendor) {
3134 	case X86_VENDOR_Intel:
3135 		create = 1;
3136 		break;
3137 	default:
3138 		create = 0;
3139 		break;
3140 	}
3141 	if (create)
3142 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3143 		    "type", CPI_TYPE(cpi));
3144 
3145 	/* ext-family */
3146 
3147 	switch (cpi->cpi_vendor) {
3148 	case X86_VENDOR_Intel:
3149 	case X86_VENDOR_AMD:
3150 		create = cpi->cpi_family >= 0xf;
3151 		break;
3152 	default:
3153 		create = 0;
3154 		break;
3155 	}
3156 	if (create)
3157 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3158 		    "ext-family", CPI_FAMILY_XTD(cpi));
3159 
3160 	/* ext-model */
3161 
3162 	switch (cpi->cpi_vendor) {
3163 	case X86_VENDOR_Intel:
3164 		create = CPI_MODEL(cpi) == 0xf;
3165 		break;
3166 	case X86_VENDOR_AMD:
3167 		create = CPI_FAMILY(cpi) == 0xf;
3168 		break;
3169 	default:
3170 		create = 0;
3171 		break;
3172 	}
3173 	if (create)
3174 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3175 		    "ext-model", CPI_MODEL_XTD(cpi));
3176 
3177 	/* generation */
3178 
3179 	switch (cpi->cpi_vendor) {
3180 	case X86_VENDOR_AMD:
3181 		/*
3182 		 * AMD K5 model 1 was the first part to support this
3183 		 */
3184 		create = cpi->cpi_xmaxeax >= 0x80000001;
3185 		break;
3186 	default:
3187 		create = 0;
3188 		break;
3189 	}
3190 	if (create)
3191 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3192 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3193 
3194 	/* brand-id */
3195 
3196 	switch (cpi->cpi_vendor) {
3197 	case X86_VENDOR_Intel:
3198 		/*
3199 		 * brand id first appeared on Pentium III Xeon model 8,
3200 		 * and Celeron model 8 processors and Opteron
3201 		 */
3202 		create = cpi->cpi_family > 6 ||
3203 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3204 		break;
3205 	case X86_VENDOR_AMD:
3206 		create = cpi->cpi_family >= 0xf;
3207 		break;
3208 	default:
3209 		create = 0;
3210 		break;
3211 	}
3212 	if (create && cpi->cpi_brandid != 0) {
3213 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3214 		    "brand-id", cpi->cpi_brandid);
3215 	}
3216 
3217 	/* chunks, and apic-id */
3218 
3219 	switch (cpi->cpi_vendor) {
3220 		/*
3221 		 * first available on Pentium IV and Opteron (K8)
3222 		 */
3223 	case X86_VENDOR_Intel:
3224 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3225 		break;
3226 	case X86_VENDOR_AMD:
3227 		create = cpi->cpi_family >= 0xf;
3228 		break;
3229 	default:
3230 		create = 0;
3231 		break;
3232 	}
3233 	if (create) {
3234 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3235 		    "chunks", CPI_CHUNKS(cpi));
3236 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3237 		    "apic-id", CPI_APIC_ID(cpi));
3238 		if (cpi->cpi_chipid >= 0) {
3239 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3240 			    "chip#", cpi->cpi_chipid);
3241 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3242 			    "clog#", cpi->cpi_clogid);
3243 		}
3244 	}
3245 
3246 	/* cpuid-features */
3247 
3248 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3249 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3250 
3251 
3252 	/* cpuid-features-ecx */
3253 
3254 	switch (cpi->cpi_vendor) {
3255 	case X86_VENDOR_Intel:
3256 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3257 		break;
3258 	default:
3259 		create = 0;
3260 		break;
3261 	}
3262 	if (create)
3263 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3264 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3265 
3266 	/* ext-cpuid-features */
3267 
3268 	switch (cpi->cpi_vendor) {
3269 	case X86_VENDOR_Intel:
3270 	case X86_VENDOR_AMD:
3271 	case X86_VENDOR_Cyrix:
3272 	case X86_VENDOR_TM:
3273 	case X86_VENDOR_Centaur:
3274 		create = cpi->cpi_xmaxeax >= 0x80000001;
3275 		break;
3276 	default:
3277 		create = 0;
3278 		break;
3279 	}
3280 	if (create) {
3281 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3282 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3283 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3284 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3285 	}
3286 
3287 	/*
3288 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3289 	 * model 1, and Cyrix GXm.  On earlier models we try and
3290 	 * simulate something similar .. so this string should always
3291 	 * same -something- about the processor, however lame.
3292 	 */
3293 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3294 	    "brand-string", cpi->cpi_brandstr);
3295 
3296 	/*
3297 	 * Finally, cache and tlb information
3298 	 */
3299 	switch (x86_which_cacheinfo(cpi)) {
3300 	case X86_VENDOR_Intel:
3301 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3302 		break;
3303 	case X86_VENDOR_Cyrix:
3304 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3305 		break;
3306 	case X86_VENDOR_AMD:
3307 		amd_cache_info(cpi, cpu_devi);
3308 		break;
3309 	default:
3310 		break;
3311 	}
3312 
3313 	mutex_exit(&cpu_node_lock);
3314 }
3315 
3316 struct l2info {
3317 	int *l2i_csz;
3318 	int *l2i_lsz;
3319 	int *l2i_assoc;
3320 	int l2i_ret;
3321 };
3322 
3323 /*
3324  * A cacheinfo walker that fetches the size, line-size and associativity
3325  * of the L2 cache
3326  */
3327 static int
3328 intel_l2cinfo(void *arg, const struct cachetab *ct)
3329 {
3330 	struct l2info *l2i = arg;
3331 	int *ip;
3332 
3333 	if (ct->ct_label != l2_cache_str &&
3334 	    ct->ct_label != sl2_cache_str)
3335 		return (0);	/* not an L2 -- keep walking */
3336 
3337 	if ((ip = l2i->l2i_csz) != NULL)
3338 		*ip = ct->ct_size;
3339 	if ((ip = l2i->l2i_lsz) != NULL)
3340 		*ip = ct->ct_line_size;
3341 	if ((ip = l2i->l2i_assoc) != NULL)
3342 		*ip = ct->ct_assoc;
3343 	l2i->l2i_ret = ct->ct_size;
3344 	return (1);		/* was an L2 -- terminate walk */
3345 }
3346 
3347 static void
3348 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3349 {
3350 	struct cpuid_regs *cp;
3351 	uint_t size, assoc;
3352 	int *ip;
3353 
3354 	if (cpi->cpi_xmaxeax < 0x80000006)
3355 		return;
3356 	cp = &cpi->cpi_extd[6];
3357 
3358 	if ((assoc = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3359 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3360 		uint_t cachesz = size * 1024;
3361 
3362 
3363 		if ((ip = l2i->l2i_csz) != NULL)
3364 			*ip = cachesz;
3365 		if ((ip = l2i->l2i_lsz) != NULL)
3366 			*ip = BITX(cp->cp_ecx, 7, 0);
3367 		if ((ip = l2i->l2i_assoc) != NULL)
3368 			*ip = assoc;
3369 		l2i->l2i_ret = cachesz;
3370 	}
3371 }
3372 
3373 int
3374 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3375 {
3376 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3377 	struct l2info __l2info, *l2i = &__l2info;
3378 
3379 	l2i->l2i_csz = csz;
3380 	l2i->l2i_lsz = lsz;
3381 	l2i->l2i_assoc = assoc;
3382 	l2i->l2i_ret = -1;
3383 
3384 	switch (x86_which_cacheinfo(cpi)) {
3385 	case X86_VENDOR_Intel:
3386 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3387 		break;
3388 	case X86_VENDOR_Cyrix:
3389 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3390 		break;
3391 	case X86_VENDOR_AMD:
3392 		amd_l2cacheinfo(cpi, l2i);
3393 		break;
3394 	default:
3395 		break;
3396 	}
3397 	return (l2i->l2i_ret);
3398 }
3399 
3400 size_t
3401 cpuid_get_mwait_size(cpu_t *cpu)
3402 {
3403 	ASSERT(cpuid_checkpass(cpu, 2));
3404 	return (cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max);
3405 }
3406