1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011 by Delphix. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Portions Copyright 2009 Advanced Micro Devices, Inc. 31 */ 32 /* 33 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 34 */ 35 /* 36 * Various routines to handle identification 37 * and classification of x86 processors. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/archsystm.h> 42 #include <sys/x86_archext.h> 43 #include <sys/kmem.h> 44 #include <sys/systm.h> 45 #include <sys/cmn_err.h> 46 #include <sys/sunddi.h> 47 #include <sys/sunndi.h> 48 #include <sys/cpuvar.h> 49 #include <sys/processor.h> 50 #include <sys/sysmacros.h> 51 #include <sys/pg.h> 52 #include <sys/fp.h> 53 #include <sys/controlregs.h> 54 #include <sys/bitmap.h> 55 #include <sys/auxv_386.h> 56 #include <sys/memnode.h> 57 #include <sys/pci_cfgspace.h> 58 59 #ifdef __xpv 60 #include <sys/hypervisor.h> 61 #else 62 #include <sys/ontrap.h> 63 #endif 64 65 /* 66 * Pass 0 of cpuid feature analysis happens in locore. It contains special code 67 * to recognize Cyrix processors that are not cpuid-compliant, and to deal with 68 * them accordingly. For most modern processors, feature detection occurs here 69 * in pass 1. 70 * 71 * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup() 72 * for the boot CPU and does the basic analysis that the early kernel needs. 73 * x86_featureset is set based on the return value of cpuid_pass1() of the boot 74 * CPU. 75 * 76 * Pass 1 includes: 77 * 78 * o Determining vendor/model/family/stepping and setting x86_type and 79 * x86_vendor accordingly. 80 * o Processing the feature flags returned by the cpuid instruction while 81 * applying any workarounds or tricks for the specific processor. 82 * o Mapping the feature flags into Solaris feature bits (X86_*). 83 * o Processing extended feature flags if supported by the processor, 84 * again while applying specific processor knowledge. 85 * o Determining the CMT characteristics of the system. 86 * 87 * Pass 1 is done on non-boot CPUs during their initialization and the results 88 * are used only as a meager attempt at ensuring that all processors within the 89 * system support the same features. 90 * 91 * Pass 2 of cpuid feature analysis happens just at the beginning 92 * of startup(). It just copies in and corrects the remainder 93 * of the cpuid data we depend on: standard cpuid functions that we didn't 94 * need for pass1 feature analysis, and extended cpuid functions beyond the 95 * simple feature processing done in pass1. 96 * 97 * Pass 3 of cpuid analysis is invoked after basic kernel services; in 98 * particular kernel memory allocation has been made available. It creates a 99 * readable brand string based on the data collected in the first two passes. 100 * 101 * Pass 4 of cpuid analysis is invoked after post_startup() when all 102 * the support infrastructure for various hardware features has been 103 * initialized. It determines which processor features will be reported 104 * to userland via the aux vector. 105 * 106 * All passes are executed on all CPUs, but only the boot CPU determines what 107 * features the kernel will use. 108 * 109 * Much of the worst junk in this file is for the support of processors 110 * that didn't really implement the cpuid instruction properly. 111 * 112 * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon, 113 * the pass numbers. Accordingly, changes to the pass code may require changes 114 * to the accessor code. 115 */ 116 117 uint_t x86_vendor = X86_VENDOR_IntelClone; 118 uint_t x86_type = X86_TYPE_OTHER; 119 uint_t x86_clflush_size = 0; 120 121 uint_t pentiumpro_bug4046376; 122 uint_t pentiumpro_bug4064495; 123 124 uchar_t x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 125 126 static char *x86_feature_names[NUM_X86_FEATURES] = { 127 "lgpg", 128 "tsc", 129 "msr", 130 "mtrr", 131 "pge", 132 "de", 133 "cmov", 134 "mmx", 135 "mca", 136 "pae", 137 "cv8", 138 "pat", 139 "sep", 140 "sse", 141 "sse2", 142 "htt", 143 "asysc", 144 "nx", 145 "sse3", 146 "cx16", 147 "cmp", 148 "tscp", 149 "mwait", 150 "sse4a", 151 "cpuid", 152 "ssse3", 153 "sse4_1", 154 "sse4_2", 155 "1gpg", 156 "clfsh", 157 "64", 158 "aes", 159 "pclmulqdq", 160 "xsave", 161 "avx", 162 "vmx", 163 "svm" 164 }; 165 166 boolean_t 167 is_x86_feature(void *featureset, uint_t feature) 168 { 169 ASSERT(feature < NUM_X86_FEATURES); 170 return (BT_TEST((ulong_t *)featureset, feature)); 171 } 172 173 void 174 add_x86_feature(void *featureset, uint_t feature) 175 { 176 ASSERT(feature < NUM_X86_FEATURES); 177 BT_SET((ulong_t *)featureset, feature); 178 } 179 180 void 181 remove_x86_feature(void *featureset, uint_t feature) 182 { 183 ASSERT(feature < NUM_X86_FEATURES); 184 BT_CLEAR((ulong_t *)featureset, feature); 185 } 186 187 boolean_t 188 compare_x86_featureset(void *setA, void *setB) 189 { 190 /* 191 * We assume that the unused bits of the bitmap are always zero. 192 */ 193 if (memcmp(setA, setB, BT_SIZEOFMAP(NUM_X86_FEATURES)) == 0) { 194 return (B_TRUE); 195 } else { 196 return (B_FALSE); 197 } 198 } 199 200 void 201 print_x86_featureset(void *featureset) 202 { 203 uint_t i; 204 205 for (i = 0; i < NUM_X86_FEATURES; i++) { 206 if (is_x86_feature(featureset, i)) { 207 cmn_err(CE_CONT, "?x86_feature: %s\n", 208 x86_feature_names[i]); 209 } 210 } 211 } 212 213 uint_t enable486; 214 215 static size_t xsave_state_size = 0; 216 uint64_t xsave_bv_all = (XFEATURE_LEGACY_FP | XFEATURE_SSE); 217 boolean_t xsave_force_disable = B_FALSE; 218 219 /* 220 * This is set to platform type Solaris is running on. 221 */ 222 static int platform_type = -1; 223 224 #if !defined(__xpv) 225 /* 226 * Variable to patch if hypervisor platform detection needs to be 227 * disabled (e.g. platform_type will always be HW_NATIVE if this is 0). 228 */ 229 int enable_platform_detection = 1; 230 #endif 231 232 /* 233 * monitor/mwait info. 234 * 235 * size_actual and buf_actual are the real address and size allocated to get 236 * proper mwait_buf alignement. buf_actual and size_actual should be passed 237 * to kmem_free(). Currently kmem_alloc() and mwait happen to both use 238 * processor cache-line alignment, but this is not guarantied in the furture. 239 */ 240 struct mwait_info { 241 size_t mon_min; /* min size to avoid missed wakeups */ 242 size_t mon_max; /* size to avoid false wakeups */ 243 size_t size_actual; /* size actually allocated */ 244 void *buf_actual; /* memory actually allocated */ 245 uint32_t support; /* processor support of monitor/mwait */ 246 }; 247 248 /* 249 * xsave/xrestor info. 250 * 251 * This structure contains HW feature bits and size of the xsave save area. 252 * Note: the kernel will use the maximum size required for all hardware 253 * features. It is not optimize for potential memory savings if features at 254 * the end of the save area are not enabled. 255 */ 256 struct xsave_info { 257 uint32_t xsav_hw_features_low; /* Supported HW features */ 258 uint32_t xsav_hw_features_high; /* Supported HW features */ 259 size_t xsav_max_size; /* max size save area for HW features */ 260 size_t ymm_size; /* AVX: size of ymm save area */ 261 size_t ymm_offset; /* AVX: offset for ymm save area */ 262 }; 263 264 265 /* 266 * These constants determine how many of the elements of the 267 * cpuid we cache in the cpuid_info data structure; the 268 * remaining elements are accessible via the cpuid instruction. 269 */ 270 271 #define NMAX_CPI_STD 6 /* eax = 0 .. 5 */ 272 #define NMAX_CPI_EXTD 0x1c /* eax = 0x80000000 .. 0x8000001b */ 273 274 /* 275 * Some terminology needs to be explained: 276 * - Socket: Something that can be plugged into a motherboard. 277 * - Package: Same as socket 278 * - Chip: Same as socket. Note that AMD's documentation uses term "chip" 279 * differently: there, chip is the same as processor node (below) 280 * - Processor node: Some AMD processors have more than one 281 * "subprocessor" embedded in a package. These subprocessors (nodes) 282 * are fully-functional processors themselves with cores, caches, 283 * memory controllers, PCI configuration spaces. They are connected 284 * inside the package with Hypertransport links. On single-node 285 * processors, processor node is equivalent to chip/socket/package. 286 */ 287 288 struct cpuid_info { 289 uint_t cpi_pass; /* last pass completed */ 290 /* 291 * standard function information 292 */ 293 uint_t cpi_maxeax; /* fn 0: %eax */ 294 char cpi_vendorstr[13]; /* fn 0: %ebx:%ecx:%edx */ 295 uint_t cpi_vendor; /* enum of cpi_vendorstr */ 296 297 uint_t cpi_family; /* fn 1: extended family */ 298 uint_t cpi_model; /* fn 1: extended model */ 299 uint_t cpi_step; /* fn 1: stepping */ 300 chipid_t cpi_chipid; /* fn 1: %ebx: Intel: chip # */ 301 /* AMD: package/socket # */ 302 uint_t cpi_brandid; /* fn 1: %ebx: brand ID */ 303 int cpi_clogid; /* fn 1: %ebx: thread # */ 304 uint_t cpi_ncpu_per_chip; /* fn 1: %ebx: logical cpu count */ 305 uint8_t cpi_cacheinfo[16]; /* fn 2: intel-style cache desc */ 306 uint_t cpi_ncache; /* fn 2: number of elements */ 307 uint_t cpi_ncpu_shr_last_cache; /* fn 4: %eax: ncpus sharing cache */ 308 id_t cpi_last_lvl_cacheid; /* fn 4: %eax: derived cache id */ 309 uint_t cpi_std_4_size; /* fn 4: number of fn 4 elements */ 310 struct cpuid_regs **cpi_std_4; /* fn 4: %ecx == 0 .. fn4_size */ 311 struct cpuid_regs cpi_std[NMAX_CPI_STD]; /* 0 .. 5 */ 312 /* 313 * extended function information 314 */ 315 uint_t cpi_xmaxeax; /* fn 0x80000000: %eax */ 316 char cpi_brandstr[49]; /* fn 0x8000000[234] */ 317 uint8_t cpi_pabits; /* fn 0x80000006: %eax */ 318 uint8_t cpi_vabits; /* fn 0x80000006: %eax */ 319 struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x800000XX */ 320 321 id_t cpi_coreid; /* same coreid => strands share core */ 322 int cpi_pkgcoreid; /* core number within single package */ 323 uint_t cpi_ncore_per_chip; /* AMD: fn 0x80000008: %ecx[7-0] */ 324 /* Intel: fn 4: %eax[31-26] */ 325 /* 326 * supported feature information 327 */ 328 uint32_t cpi_support[5]; 329 #define STD_EDX_FEATURES 0 330 #define AMD_EDX_FEATURES 1 331 #define TM_EDX_FEATURES 2 332 #define STD_ECX_FEATURES 3 333 #define AMD_ECX_FEATURES 4 334 /* 335 * Synthesized information, where known. 336 */ 337 uint32_t cpi_chiprev; /* See X86_CHIPREV_* in x86_archext.h */ 338 const char *cpi_chiprevstr; /* May be NULL if chiprev unknown */ 339 uint32_t cpi_socket; /* Chip package/socket type */ 340 341 struct mwait_info cpi_mwait; /* fn 5: monitor/mwait info */ 342 uint32_t cpi_apicid; 343 uint_t cpi_procnodeid; /* AMD: nodeID on HT, Intel: chipid */ 344 uint_t cpi_procnodes_per_pkg; /* AMD: # of nodes in the package */ 345 /* Intel: 1 */ 346 347 struct xsave_info cpi_xsave; /* fn D: xsave/xrestor info */ 348 }; 349 350 351 static struct cpuid_info cpuid_info0; 352 353 /* 354 * These bit fields are defined by the Intel Application Note AP-485 355 * "Intel Processor Identification and the CPUID Instruction" 356 */ 357 #define CPI_FAMILY_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 27, 20) 358 #define CPI_MODEL_XTD(cpi) BITX((cpi)->cpi_std[1].cp_eax, 19, 16) 359 #define CPI_TYPE(cpi) BITX((cpi)->cpi_std[1].cp_eax, 13, 12) 360 #define CPI_FAMILY(cpi) BITX((cpi)->cpi_std[1].cp_eax, 11, 8) 361 #define CPI_STEP(cpi) BITX((cpi)->cpi_std[1].cp_eax, 3, 0) 362 #define CPI_MODEL(cpi) BITX((cpi)->cpi_std[1].cp_eax, 7, 4) 363 364 #define CPI_FEATURES_EDX(cpi) ((cpi)->cpi_std[1].cp_edx) 365 #define CPI_FEATURES_ECX(cpi) ((cpi)->cpi_std[1].cp_ecx) 366 #define CPI_FEATURES_XTD_EDX(cpi) ((cpi)->cpi_extd[1].cp_edx) 367 #define CPI_FEATURES_XTD_ECX(cpi) ((cpi)->cpi_extd[1].cp_ecx) 368 369 #define CPI_BRANDID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 7, 0) 370 #define CPI_CHUNKS(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 15, 7) 371 #define CPI_CPU_COUNT(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 23, 16) 372 #define CPI_APIC_ID(cpi) BITX((cpi)->cpi_std[1].cp_ebx, 31, 24) 373 374 #define CPI_MAXEAX_MAX 0x100 /* sanity control */ 375 #define CPI_XMAXEAX_MAX 0x80000100 376 #define CPI_FN4_ECX_MAX 0x20 /* sanity: max fn 4 levels */ 377 #define CPI_FNB_ECX_MAX 0x20 /* sanity: max fn B levels */ 378 379 /* 380 * Function 4 (Deterministic Cache Parameters) macros 381 * Defined by Intel Application Note AP-485 382 */ 383 #define CPI_NUM_CORES(regs) BITX((regs)->cp_eax, 31, 26) 384 #define CPI_NTHR_SHR_CACHE(regs) BITX((regs)->cp_eax, 25, 14) 385 #define CPI_FULL_ASSOC_CACHE(regs) BITX((regs)->cp_eax, 9, 9) 386 #define CPI_SELF_INIT_CACHE(regs) BITX((regs)->cp_eax, 8, 8) 387 #define CPI_CACHE_LVL(regs) BITX((regs)->cp_eax, 7, 5) 388 #define CPI_CACHE_TYPE(regs) BITX((regs)->cp_eax, 4, 0) 389 #define CPI_CPU_LEVEL_TYPE(regs) BITX((regs)->cp_ecx, 15, 8) 390 391 #define CPI_CACHE_WAYS(regs) BITX((regs)->cp_ebx, 31, 22) 392 #define CPI_CACHE_PARTS(regs) BITX((regs)->cp_ebx, 21, 12) 393 #define CPI_CACHE_COH_LN_SZ(regs) BITX((regs)->cp_ebx, 11, 0) 394 395 #define CPI_CACHE_SETS(regs) BITX((regs)->cp_ecx, 31, 0) 396 397 #define CPI_PREFCH_STRIDE(regs) BITX((regs)->cp_edx, 9, 0) 398 399 400 /* 401 * A couple of shorthand macros to identify "later" P6-family chips 402 * like the Pentium M and Core. First, the "older" P6-based stuff 403 * (loosely defined as "pre-Pentium-4"): 404 * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon 405 */ 406 407 #define IS_LEGACY_P6(cpi) ( \ 408 cpi->cpi_family == 6 && \ 409 (cpi->cpi_model == 1 || \ 410 cpi->cpi_model == 3 || \ 411 cpi->cpi_model == 5 || \ 412 cpi->cpi_model == 6 || \ 413 cpi->cpi_model == 7 || \ 414 cpi->cpi_model == 8 || \ 415 cpi->cpi_model == 0xA || \ 416 cpi->cpi_model == 0xB) \ 417 ) 418 419 /* A "new F6" is everything with family 6 that's not the above */ 420 #define IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi)) 421 422 /* Extended family/model support */ 423 #define IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \ 424 cpi->cpi_family >= 0xf) 425 426 /* 427 * Info for monitor/mwait idle loop. 428 * 429 * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's 430 * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November 431 * 2006. 432 * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual 433 * Documentation Updates" #33633, Rev 2.05, December 2006. 434 */ 435 #define MWAIT_SUPPORT (0x00000001) /* mwait supported */ 436 #define MWAIT_EXTENSIONS (0x00000002) /* extenstion supported */ 437 #define MWAIT_ECX_INT_ENABLE (0x00000004) /* ecx 1 extension supported */ 438 #define MWAIT_SUPPORTED(cpi) ((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON) 439 #define MWAIT_INT_ENABLE(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x2) 440 #define MWAIT_EXTENSION(cpi) ((cpi)->cpi_std[5].cp_ecx & 0x1) 441 #define MWAIT_SIZE_MIN(cpi) BITX((cpi)->cpi_std[5].cp_eax, 15, 0) 442 #define MWAIT_SIZE_MAX(cpi) BITX((cpi)->cpi_std[5].cp_ebx, 15, 0) 443 /* 444 * Number of sub-cstates for a given c-state. 445 */ 446 #define MWAIT_NUM_SUBC_STATES(cpi, c_state) \ 447 BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state) 448 449 /* 450 * XSAVE leaf 0xD enumeration 451 */ 452 #define CPUID_LEAFD_2_YMM_OFFSET 576 453 #define CPUID_LEAFD_2_YMM_SIZE 256 454 455 /* 456 * Functions we consune from cpuid_subr.c; don't publish these in a header 457 * file to try and keep people using the expected cpuid_* interfaces. 458 */ 459 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t); 460 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t); 461 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t); 462 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t); 463 extern uint_t _cpuid_vendorstr_to_vendorcode(char *); 464 465 /* 466 * Apply up various platform-dependent restrictions where the 467 * underlying platform restrictions mean the CPU can be marked 468 * as less capable than its cpuid instruction would imply. 469 */ 470 #if defined(__xpv) 471 static void 472 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp) 473 { 474 switch (eax) { 475 case 1: { 476 uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ? 477 0 : CPUID_INTC_EDX_MCA; 478 cp->cp_edx &= 479 ~(mcamask | 480 CPUID_INTC_EDX_PSE | 481 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 482 CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR | 483 CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT | 484 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 485 CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT); 486 break; 487 } 488 489 case 0x80000001: 490 cp->cp_edx &= 491 ~(CPUID_AMD_EDX_PSE | 492 CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE | 493 CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE | 494 CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 | 495 CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP | 496 CPUID_AMD_EDX_TSCP); 497 cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY; 498 break; 499 default: 500 break; 501 } 502 503 switch (vendor) { 504 case X86_VENDOR_Intel: 505 switch (eax) { 506 case 4: 507 /* 508 * Zero out the (ncores-per-chip - 1) field 509 */ 510 cp->cp_eax &= 0x03fffffff; 511 break; 512 default: 513 break; 514 } 515 break; 516 case X86_VENDOR_AMD: 517 switch (eax) { 518 519 case 0x80000001: 520 cp->cp_ecx &= ~CPUID_AMD_ECX_CR8D; 521 break; 522 523 case 0x80000008: 524 /* 525 * Zero out the (ncores-per-chip - 1) field 526 */ 527 cp->cp_ecx &= 0xffffff00; 528 break; 529 default: 530 break; 531 } 532 break; 533 default: 534 break; 535 } 536 } 537 #else 538 #define platform_cpuid_mangle(vendor, eax, cp) /* nothing */ 539 #endif 540 541 /* 542 * Some undocumented ways of patching the results of the cpuid 543 * instruction to permit running Solaris 10 on future cpus that 544 * we don't currently support. Could be set to non-zero values 545 * via settings in eeprom. 546 */ 547 548 uint32_t cpuid_feature_ecx_include; 549 uint32_t cpuid_feature_ecx_exclude; 550 uint32_t cpuid_feature_edx_include; 551 uint32_t cpuid_feature_edx_exclude; 552 553 /* 554 * Allocate space for mcpu_cpi in the machcpu structure for all non-boot CPUs. 555 */ 556 void 557 cpuid_alloc_space(cpu_t *cpu) 558 { 559 /* 560 * By convention, cpu0 is the boot cpu, which is set up 561 * before memory allocation is available. All other cpus get 562 * their cpuid_info struct allocated here. 563 */ 564 ASSERT(cpu->cpu_id != 0); 565 ASSERT(cpu->cpu_m.mcpu_cpi == NULL); 566 cpu->cpu_m.mcpu_cpi = 567 kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP); 568 } 569 570 void 571 cpuid_free_space(cpu_t *cpu) 572 { 573 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 574 int i; 575 576 ASSERT(cpi != NULL); 577 ASSERT(cpi != &cpuid_info0); 578 579 /* 580 * Free up any function 4 related dynamic storage 581 */ 582 for (i = 1; i < cpi->cpi_std_4_size; i++) 583 kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs)); 584 if (cpi->cpi_std_4_size > 0) 585 kmem_free(cpi->cpi_std_4, 586 cpi->cpi_std_4_size * sizeof (struct cpuid_regs *)); 587 588 kmem_free(cpi, sizeof (*cpi)); 589 cpu->cpu_m.mcpu_cpi = NULL; 590 } 591 592 #if !defined(__xpv) 593 594 /* 595 * Determine the type of the underlying platform. This is used to customize 596 * initialization of various subsystems (e.g. TSC). determine_platform() must 597 * only ever be called once to prevent two processors from seeing different 598 * values of platform_type, it must be called before cpuid_pass1(), the 599 * earliest consumer to execute. 600 */ 601 void 602 determine_platform(void) 603 { 604 struct cpuid_regs cp; 605 char *xen_str; 606 uint32_t xen_signature[4], base; 607 608 ASSERT(platform_type == -1); 609 610 platform_type = HW_NATIVE; 611 612 if (!enable_platform_detection) 613 return; 614 615 /* 616 * In a fully virtualized domain, Xen's pseudo-cpuid function 617 * returns a string representing the Xen signature in %ebx, %ecx, 618 * and %edx. %eax contains the maximum supported cpuid function. 619 * We need at least a (base + 2) leaf value to do what we want 620 * to do. Try different base values, since the hypervisor might 621 * use a different one depending on whether hyper-v emulation 622 * is switched on by default or not. 623 */ 624 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 625 cp.cp_eax = base; 626 (void) __cpuid_insn(&cp); 627 xen_signature[0] = cp.cp_ebx; 628 xen_signature[1] = cp.cp_ecx; 629 xen_signature[2] = cp.cp_edx; 630 xen_signature[3] = 0; 631 xen_str = (char *)xen_signature; 632 if (strcmp("XenVMMXenVMM", xen_str) == 0 && 633 cp.cp_eax >= (base + 2)) { 634 platform_type = HW_XEN_HVM; 635 return; 636 } 637 } 638 639 if (vmware_platform()) /* running under vmware hypervisor? */ 640 platform_type = HW_VMWARE; 641 } 642 643 int 644 get_hwenv(void) 645 { 646 ASSERT(platform_type != -1); 647 return (platform_type); 648 } 649 650 int 651 is_controldom(void) 652 { 653 return (0); 654 } 655 656 #else 657 658 int 659 get_hwenv(void) 660 { 661 return (HW_XEN_PV); 662 } 663 664 int 665 is_controldom(void) 666 { 667 return (DOMAIN_IS_INITDOMAIN(xen_info)); 668 } 669 670 #endif /* __xpv */ 671 672 static void 673 cpuid_intel_getids(cpu_t *cpu, void *feature) 674 { 675 uint_t i; 676 uint_t chipid_shift = 0; 677 uint_t coreid_shift = 0; 678 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 679 680 for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1) 681 chipid_shift++; 682 683 cpi->cpi_chipid = cpi->cpi_apicid >> chipid_shift; 684 cpi->cpi_clogid = cpi->cpi_apicid & ((1 << chipid_shift) - 1); 685 686 if (is_x86_feature(feature, X86FSET_CMP)) { 687 /* 688 * Multi-core (and possibly multi-threaded) 689 * processors. 690 */ 691 uint_t ncpu_per_core; 692 if (cpi->cpi_ncore_per_chip == 1) 693 ncpu_per_core = cpi->cpi_ncpu_per_chip; 694 else if (cpi->cpi_ncore_per_chip > 1) 695 ncpu_per_core = cpi->cpi_ncpu_per_chip / 696 cpi->cpi_ncore_per_chip; 697 /* 698 * 8bit APIC IDs on dual core Pentiums 699 * look like this: 700 * 701 * +-----------------------+------+------+ 702 * | Physical Package ID | MC | HT | 703 * +-----------------------+------+------+ 704 * <------- chipid --------> 705 * <------- coreid ---------------> 706 * <--- clogid --> 707 * <------> 708 * pkgcoreid 709 * 710 * Where the number of bits necessary to 711 * represent MC and HT fields together equals 712 * to the minimum number of bits necessary to 713 * store the value of cpi->cpi_ncpu_per_chip. 714 * Of those bits, the MC part uses the number 715 * of bits necessary to store the value of 716 * cpi->cpi_ncore_per_chip. 717 */ 718 for (i = 1; i < ncpu_per_core; i <<= 1) 719 coreid_shift++; 720 cpi->cpi_coreid = cpi->cpi_apicid >> coreid_shift; 721 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 722 } else if (is_x86_feature(feature, X86FSET_HTT)) { 723 /* 724 * Single-core multi-threaded processors. 725 */ 726 cpi->cpi_coreid = cpi->cpi_chipid; 727 cpi->cpi_pkgcoreid = 0; 728 } 729 cpi->cpi_procnodeid = cpi->cpi_chipid; 730 } 731 732 static void 733 cpuid_amd_getids(cpu_t *cpu) 734 { 735 int i, first_half, coreidsz; 736 uint32_t nb_caps_reg; 737 uint_t node2_1; 738 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 739 740 /* 741 * AMD CMP chips currently have a single thread per core. 742 * 743 * Since no two cpus share a core we must assign a distinct coreid 744 * per cpu, and we do this by using the cpu_id. This scheme does not, 745 * however, guarantee that sibling cores of a chip will have sequential 746 * coreids starting at a multiple of the number of cores per chip - 747 * that is usually the case, but if the ACPI MADT table is presented 748 * in a different order then we need to perform a few more gymnastics 749 * for the pkgcoreid. 750 * 751 * All processors in the system have the same number of enabled 752 * cores. Cores within a processor are always numbered sequentially 753 * from 0 regardless of how many or which are disabled, and there 754 * is no way for operating system to discover the real core id when some 755 * are disabled. 756 */ 757 758 cpi->cpi_coreid = cpu->cpu_id; 759 760 if (cpi->cpi_xmaxeax >= 0x80000008) { 761 762 coreidsz = BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12); 763 764 /* 765 * In AMD parlance chip is really a node while Solaris 766 * sees chip as equivalent to socket/package. 767 */ 768 cpi->cpi_ncore_per_chip = 769 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 770 if (coreidsz == 0) { 771 /* Use legacy method */ 772 for (i = 1; i < cpi->cpi_ncore_per_chip; i <<= 1) 773 coreidsz++; 774 if (coreidsz == 0) 775 coreidsz = 1; 776 } 777 } else { 778 /* Assume single-core part */ 779 cpi->cpi_ncore_per_chip = 1; 780 coreidsz = 1; 781 } 782 783 cpi->cpi_clogid = cpi->cpi_pkgcoreid = 784 cpi->cpi_apicid & ((1<<coreidsz) - 1); 785 cpi->cpi_ncpu_per_chip = cpi->cpi_ncore_per_chip; 786 787 /* Get nodeID */ 788 if (cpi->cpi_family == 0xf) { 789 cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7; 790 cpi->cpi_chipid = cpi->cpi_procnodeid; 791 } else if (cpi->cpi_family == 0x10) { 792 /* 793 * See if we are a multi-node processor. 794 * All processors in the system have the same number of nodes 795 */ 796 nb_caps_reg = pci_getl_func(0, 24, 3, 0xe8); 797 if ((cpi->cpi_model < 8) || BITX(nb_caps_reg, 29, 29) == 0) { 798 /* Single-node */ 799 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 5, 800 coreidsz); 801 cpi->cpi_chipid = cpi->cpi_procnodeid; 802 } else { 803 804 /* 805 * Multi-node revision D (2 nodes per package 806 * are supported) 807 */ 808 cpi->cpi_procnodes_per_pkg = 2; 809 810 first_half = (cpi->cpi_pkgcoreid <= 811 (cpi->cpi_ncore_per_chip/2 - 1)); 812 813 if (cpi->cpi_apicid == cpi->cpi_pkgcoreid) { 814 /* We are BSP */ 815 cpi->cpi_procnodeid = (first_half ? 0 : 1); 816 cpi->cpi_chipid = cpi->cpi_procnodeid >> 1; 817 } else { 818 819 /* We are AP */ 820 /* NodeId[2:1] bits to use for reading F3xe8 */ 821 node2_1 = BITX(cpi->cpi_apicid, 5, 4) << 1; 822 823 nb_caps_reg = 824 pci_getl_func(0, 24 + node2_1, 3, 0xe8); 825 826 /* 827 * Check IntNodeNum bit (31:30, but bit 31 is 828 * always 0 on dual-node processors) 829 */ 830 if (BITX(nb_caps_reg, 30, 30) == 0) 831 cpi->cpi_procnodeid = node2_1 + 832 !first_half; 833 else 834 cpi->cpi_procnodeid = node2_1 + 835 first_half; 836 837 cpi->cpi_chipid = cpi->cpi_procnodeid >> 1; 838 } 839 } 840 } else if (cpi->cpi_family >= 0x11) { 841 cpi->cpi_procnodeid = (cpi->cpi_apicid >> coreidsz) & 7; 842 cpi->cpi_chipid = cpi->cpi_procnodeid; 843 } else { 844 cpi->cpi_procnodeid = 0; 845 cpi->cpi_chipid = cpi->cpi_procnodeid; 846 } 847 } 848 849 /* 850 * Setup XFeature_Enabled_Mask register. Required by xsave feature. 851 */ 852 void 853 setup_xfem(void) 854 { 855 uint64_t flags = XFEATURE_LEGACY_FP; 856 857 ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE)); 858 859 if (is_x86_feature(x86_featureset, X86FSET_SSE)) 860 flags |= XFEATURE_SSE; 861 862 if (is_x86_feature(x86_featureset, X86FSET_AVX)) 863 flags |= XFEATURE_AVX; 864 865 set_xcr(XFEATURE_ENABLED_MASK, flags); 866 867 xsave_bv_all = flags; 868 } 869 870 void 871 cpuid_pass1(cpu_t *cpu, uchar_t *featureset) 872 { 873 uint32_t mask_ecx, mask_edx; 874 struct cpuid_info *cpi; 875 struct cpuid_regs *cp; 876 int xcpuid; 877 #if !defined(__xpv) 878 extern int idle_cpu_prefer_mwait; 879 #endif 880 881 /* 882 * Space statically allocated for BSP, ensure pointer is set 883 */ 884 if (cpu->cpu_id == 0) { 885 if (cpu->cpu_m.mcpu_cpi == NULL) 886 cpu->cpu_m.mcpu_cpi = &cpuid_info0; 887 } 888 889 add_x86_feature(featureset, X86FSET_CPUID); 890 891 cpi = cpu->cpu_m.mcpu_cpi; 892 ASSERT(cpi != NULL); 893 cp = &cpi->cpi_std[0]; 894 cp->cp_eax = 0; 895 cpi->cpi_maxeax = __cpuid_insn(cp); 896 { 897 uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr; 898 *iptr++ = cp->cp_ebx; 899 *iptr++ = cp->cp_edx; 900 *iptr++ = cp->cp_ecx; 901 *(char *)&cpi->cpi_vendorstr[12] = '\0'; 902 } 903 904 cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr); 905 x86_vendor = cpi->cpi_vendor; /* for compatibility */ 906 907 /* 908 * Limit the range in case of weird hardware 909 */ 910 if (cpi->cpi_maxeax > CPI_MAXEAX_MAX) 911 cpi->cpi_maxeax = CPI_MAXEAX_MAX; 912 if (cpi->cpi_maxeax < 1) 913 goto pass1_done; 914 915 cp = &cpi->cpi_std[1]; 916 cp->cp_eax = 1; 917 (void) __cpuid_insn(cp); 918 919 /* 920 * Extract identifying constants for easy access. 921 */ 922 cpi->cpi_model = CPI_MODEL(cpi); 923 cpi->cpi_family = CPI_FAMILY(cpi); 924 925 if (cpi->cpi_family == 0xf) 926 cpi->cpi_family += CPI_FAMILY_XTD(cpi); 927 928 /* 929 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf. 930 * Intel, and presumably everyone else, uses model == 0xf, as 931 * one would expect (max value means possible overflow). Sigh. 932 */ 933 934 switch (cpi->cpi_vendor) { 935 case X86_VENDOR_Intel: 936 if (IS_EXTENDED_MODEL_INTEL(cpi)) 937 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 938 break; 939 case X86_VENDOR_AMD: 940 if (CPI_FAMILY(cpi) == 0xf) 941 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 942 break; 943 default: 944 if (cpi->cpi_model == 0xf) 945 cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4; 946 break; 947 } 948 949 cpi->cpi_step = CPI_STEP(cpi); 950 cpi->cpi_brandid = CPI_BRANDID(cpi); 951 952 /* 953 * *default* assumptions: 954 * - believe %edx feature word 955 * - ignore %ecx feature word 956 * - 32-bit virtual and physical addressing 957 */ 958 mask_edx = 0xffffffff; 959 mask_ecx = 0; 960 961 cpi->cpi_pabits = cpi->cpi_vabits = 32; 962 963 switch (cpi->cpi_vendor) { 964 case X86_VENDOR_Intel: 965 if (cpi->cpi_family == 5) 966 x86_type = X86_TYPE_P5; 967 else if (IS_LEGACY_P6(cpi)) { 968 x86_type = X86_TYPE_P6; 969 pentiumpro_bug4046376 = 1; 970 pentiumpro_bug4064495 = 1; 971 /* 972 * Clear the SEP bit when it was set erroneously 973 */ 974 if (cpi->cpi_model < 3 && cpi->cpi_step < 3) 975 cp->cp_edx &= ~CPUID_INTC_EDX_SEP; 976 } else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) { 977 x86_type = X86_TYPE_P4; 978 /* 979 * We don't currently depend on any of the %ecx 980 * features until Prescott, so we'll only check 981 * this from P4 onwards. We might want to revisit 982 * that idea later. 983 */ 984 mask_ecx = 0xffffffff; 985 } else if (cpi->cpi_family > 0xf) 986 mask_ecx = 0xffffffff; 987 /* 988 * We don't support MONITOR/MWAIT if leaf 5 is not available 989 * to obtain the monitor linesize. 990 */ 991 if (cpi->cpi_maxeax < 5) 992 mask_ecx &= ~CPUID_INTC_ECX_MON; 993 break; 994 case X86_VENDOR_IntelClone: 995 default: 996 break; 997 case X86_VENDOR_AMD: 998 #if defined(OPTERON_ERRATUM_108) 999 if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) { 1000 cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0; 1001 cpi->cpi_model = 0xc; 1002 } else 1003 #endif 1004 if (cpi->cpi_family == 5) { 1005 /* 1006 * AMD K5 and K6 1007 * 1008 * These CPUs have an incomplete implementation 1009 * of MCA/MCE which we mask away. 1010 */ 1011 mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA); 1012 1013 /* 1014 * Model 0 uses the wrong (APIC) bit 1015 * to indicate PGE. Fix it here. 1016 */ 1017 if (cpi->cpi_model == 0) { 1018 if (cp->cp_edx & 0x200) { 1019 cp->cp_edx &= ~0x200; 1020 cp->cp_edx |= CPUID_INTC_EDX_PGE; 1021 } 1022 } 1023 1024 /* 1025 * Early models had problems w/ MMX; disable. 1026 */ 1027 if (cpi->cpi_model < 6) 1028 mask_edx &= ~CPUID_INTC_EDX_MMX; 1029 } 1030 1031 /* 1032 * For newer families, SSE3 and CX16, at least, are valid; 1033 * enable all 1034 */ 1035 if (cpi->cpi_family >= 0xf) 1036 mask_ecx = 0xffffffff; 1037 /* 1038 * We don't support MONITOR/MWAIT if leaf 5 is not available 1039 * to obtain the monitor linesize. 1040 */ 1041 if (cpi->cpi_maxeax < 5) 1042 mask_ecx &= ~CPUID_INTC_ECX_MON; 1043 1044 #if !defined(__xpv) 1045 /* 1046 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD 1047 * processors. AMD does not intend MWAIT to be used in the cpu 1048 * idle loop on current and future processors. 10h and future 1049 * AMD processors use more power in MWAIT than HLT. 1050 * Pre-family-10h Opterons do not have the MWAIT instruction. 1051 */ 1052 idle_cpu_prefer_mwait = 0; 1053 #endif 1054 1055 break; 1056 case X86_VENDOR_TM: 1057 /* 1058 * workaround the NT workaround in CMS 4.1 1059 */ 1060 if (cpi->cpi_family == 5 && cpi->cpi_model == 4 && 1061 (cpi->cpi_step == 2 || cpi->cpi_step == 3)) 1062 cp->cp_edx |= CPUID_INTC_EDX_CX8; 1063 break; 1064 case X86_VENDOR_Centaur: 1065 /* 1066 * workaround the NT workarounds again 1067 */ 1068 if (cpi->cpi_family == 6) 1069 cp->cp_edx |= CPUID_INTC_EDX_CX8; 1070 break; 1071 case X86_VENDOR_Cyrix: 1072 /* 1073 * We rely heavily on the probing in locore 1074 * to actually figure out what parts, if any, 1075 * of the Cyrix cpuid instruction to believe. 1076 */ 1077 switch (x86_type) { 1078 case X86_TYPE_CYRIX_486: 1079 mask_edx = 0; 1080 break; 1081 case X86_TYPE_CYRIX_6x86: 1082 mask_edx = 0; 1083 break; 1084 case X86_TYPE_CYRIX_6x86L: 1085 mask_edx = 1086 CPUID_INTC_EDX_DE | 1087 CPUID_INTC_EDX_CX8; 1088 break; 1089 case X86_TYPE_CYRIX_6x86MX: 1090 mask_edx = 1091 CPUID_INTC_EDX_DE | 1092 CPUID_INTC_EDX_MSR | 1093 CPUID_INTC_EDX_CX8 | 1094 CPUID_INTC_EDX_PGE | 1095 CPUID_INTC_EDX_CMOV | 1096 CPUID_INTC_EDX_MMX; 1097 break; 1098 case X86_TYPE_CYRIX_GXm: 1099 mask_edx = 1100 CPUID_INTC_EDX_MSR | 1101 CPUID_INTC_EDX_CX8 | 1102 CPUID_INTC_EDX_CMOV | 1103 CPUID_INTC_EDX_MMX; 1104 break; 1105 case X86_TYPE_CYRIX_MediaGX: 1106 break; 1107 case X86_TYPE_CYRIX_MII: 1108 case X86_TYPE_VIA_CYRIX_III: 1109 mask_edx = 1110 CPUID_INTC_EDX_DE | 1111 CPUID_INTC_EDX_TSC | 1112 CPUID_INTC_EDX_MSR | 1113 CPUID_INTC_EDX_CX8 | 1114 CPUID_INTC_EDX_PGE | 1115 CPUID_INTC_EDX_CMOV | 1116 CPUID_INTC_EDX_MMX; 1117 break; 1118 default: 1119 break; 1120 } 1121 break; 1122 } 1123 1124 #if defined(__xpv) 1125 /* 1126 * Do not support MONITOR/MWAIT under a hypervisor 1127 */ 1128 mask_ecx &= ~CPUID_INTC_ECX_MON; 1129 /* 1130 * Do not support XSAVE under a hypervisor for now 1131 */ 1132 xsave_force_disable = B_TRUE; 1133 1134 #endif /* __xpv */ 1135 1136 if (xsave_force_disable) { 1137 mask_ecx &= ~CPUID_INTC_ECX_XSAVE; 1138 mask_ecx &= ~CPUID_INTC_ECX_AVX; 1139 } 1140 1141 /* 1142 * Now we've figured out the masks that determine 1143 * which bits we choose to believe, apply the masks 1144 * to the feature words, then map the kernel's view 1145 * of these feature words into its feature word. 1146 */ 1147 cp->cp_edx &= mask_edx; 1148 cp->cp_ecx &= mask_ecx; 1149 1150 /* 1151 * apply any platform restrictions (we don't call this 1152 * immediately after __cpuid_insn here, because we need the 1153 * workarounds applied above first) 1154 */ 1155 platform_cpuid_mangle(cpi->cpi_vendor, 1, cp); 1156 1157 /* 1158 * fold in overrides from the "eeprom" mechanism 1159 */ 1160 cp->cp_edx |= cpuid_feature_edx_include; 1161 cp->cp_edx &= ~cpuid_feature_edx_exclude; 1162 1163 cp->cp_ecx |= cpuid_feature_ecx_include; 1164 cp->cp_ecx &= ~cpuid_feature_ecx_exclude; 1165 1166 if (cp->cp_edx & CPUID_INTC_EDX_PSE) { 1167 add_x86_feature(featureset, X86FSET_LARGEPAGE); 1168 } 1169 if (cp->cp_edx & CPUID_INTC_EDX_TSC) { 1170 add_x86_feature(featureset, X86FSET_TSC); 1171 } 1172 if (cp->cp_edx & CPUID_INTC_EDX_MSR) { 1173 add_x86_feature(featureset, X86FSET_MSR); 1174 } 1175 if (cp->cp_edx & CPUID_INTC_EDX_MTRR) { 1176 add_x86_feature(featureset, X86FSET_MTRR); 1177 } 1178 if (cp->cp_edx & CPUID_INTC_EDX_PGE) { 1179 add_x86_feature(featureset, X86FSET_PGE); 1180 } 1181 if (cp->cp_edx & CPUID_INTC_EDX_CMOV) { 1182 add_x86_feature(featureset, X86FSET_CMOV); 1183 } 1184 if (cp->cp_edx & CPUID_INTC_EDX_MMX) { 1185 add_x86_feature(featureset, X86FSET_MMX); 1186 } 1187 if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 && 1188 (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0) { 1189 add_x86_feature(featureset, X86FSET_MCA); 1190 } 1191 if (cp->cp_edx & CPUID_INTC_EDX_PAE) { 1192 add_x86_feature(featureset, X86FSET_PAE); 1193 } 1194 if (cp->cp_edx & CPUID_INTC_EDX_CX8) { 1195 add_x86_feature(featureset, X86FSET_CX8); 1196 } 1197 if (cp->cp_ecx & CPUID_INTC_ECX_CX16) { 1198 add_x86_feature(featureset, X86FSET_CX16); 1199 } 1200 if (cp->cp_edx & CPUID_INTC_EDX_PAT) { 1201 add_x86_feature(featureset, X86FSET_PAT); 1202 } 1203 if (cp->cp_edx & CPUID_INTC_EDX_SEP) { 1204 add_x86_feature(featureset, X86FSET_SEP); 1205 } 1206 if (cp->cp_edx & CPUID_INTC_EDX_FXSR) { 1207 /* 1208 * In our implementation, fxsave/fxrstor 1209 * are prerequisites before we'll even 1210 * try and do SSE things. 1211 */ 1212 if (cp->cp_edx & CPUID_INTC_EDX_SSE) { 1213 add_x86_feature(featureset, X86FSET_SSE); 1214 } 1215 if (cp->cp_edx & CPUID_INTC_EDX_SSE2) { 1216 add_x86_feature(featureset, X86FSET_SSE2); 1217 } 1218 if (cp->cp_ecx & CPUID_INTC_ECX_SSE3) { 1219 add_x86_feature(featureset, X86FSET_SSE3); 1220 } 1221 if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3) { 1222 add_x86_feature(featureset, X86FSET_SSSE3); 1223 } 1224 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1) { 1225 add_x86_feature(featureset, X86FSET_SSE4_1); 1226 } 1227 if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2) { 1228 add_x86_feature(featureset, X86FSET_SSE4_2); 1229 } 1230 if (cp->cp_ecx & CPUID_INTC_ECX_AES) { 1231 add_x86_feature(featureset, X86FSET_AES); 1232 } 1233 if (cp->cp_ecx & CPUID_INTC_ECX_PCLMULQDQ) { 1234 add_x86_feature(featureset, X86FSET_PCLMULQDQ); 1235 } 1236 1237 if (cp->cp_ecx & CPUID_INTC_ECX_XSAVE) { 1238 add_x86_feature(featureset, X86FSET_XSAVE); 1239 /* We only test AVX when there is XSAVE */ 1240 if (cp->cp_ecx & CPUID_INTC_ECX_AVX) { 1241 add_x86_feature(featureset, 1242 X86FSET_AVX); 1243 } 1244 } 1245 } 1246 if (cp->cp_edx & CPUID_INTC_EDX_DE) { 1247 add_x86_feature(featureset, X86FSET_DE); 1248 } 1249 #if !defined(__xpv) 1250 if (cp->cp_ecx & CPUID_INTC_ECX_MON) { 1251 1252 /* 1253 * We require the CLFLUSH instruction for erratum workaround 1254 * to use MONITOR/MWAIT. 1255 */ 1256 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 1257 cpi->cpi_mwait.support |= MWAIT_SUPPORT; 1258 add_x86_feature(featureset, X86FSET_MWAIT); 1259 } else { 1260 extern int idle_cpu_assert_cflush_monitor; 1261 1262 /* 1263 * All processors we are aware of which have 1264 * MONITOR/MWAIT also have CLFLUSH. 1265 */ 1266 if (idle_cpu_assert_cflush_monitor) { 1267 ASSERT((cp->cp_ecx & CPUID_INTC_ECX_MON) && 1268 (cp->cp_edx & CPUID_INTC_EDX_CLFSH)); 1269 } 1270 } 1271 } 1272 #endif /* __xpv */ 1273 1274 if (cp->cp_ecx & CPUID_INTC_ECX_VMX) { 1275 add_x86_feature(featureset, X86FSET_VMX); 1276 } 1277 1278 /* 1279 * Only need it first time, rest of the cpus would follow suit. 1280 * we only capture this for the bootcpu. 1281 */ 1282 if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) { 1283 add_x86_feature(featureset, X86FSET_CLFSH); 1284 x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8); 1285 } 1286 if (is_x86_feature(featureset, X86FSET_PAE)) 1287 cpi->cpi_pabits = 36; 1288 1289 /* 1290 * Hyperthreading configuration is slightly tricky on Intel 1291 * and pure clones, and even trickier on AMD. 1292 * 1293 * (AMD chose to set the HTT bit on their CMP processors, 1294 * even though they're not actually hyperthreaded. Thus it 1295 * takes a bit more work to figure out what's really going 1296 * on ... see the handling of the CMP_LGCY bit below) 1297 */ 1298 if (cp->cp_edx & CPUID_INTC_EDX_HTT) { 1299 cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi); 1300 if (cpi->cpi_ncpu_per_chip > 1) 1301 add_x86_feature(featureset, X86FSET_HTT); 1302 } else { 1303 cpi->cpi_ncpu_per_chip = 1; 1304 } 1305 1306 /* 1307 * Work on the "extended" feature information, doing 1308 * some basic initialization for cpuid_pass2() 1309 */ 1310 xcpuid = 0; 1311 switch (cpi->cpi_vendor) { 1312 case X86_VENDOR_Intel: 1313 if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf) 1314 xcpuid++; 1315 break; 1316 case X86_VENDOR_AMD: 1317 if (cpi->cpi_family > 5 || 1318 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 1319 xcpuid++; 1320 break; 1321 case X86_VENDOR_Cyrix: 1322 /* 1323 * Only these Cyrix CPUs are -known- to support 1324 * extended cpuid operations. 1325 */ 1326 if (x86_type == X86_TYPE_VIA_CYRIX_III || 1327 x86_type == X86_TYPE_CYRIX_GXm) 1328 xcpuid++; 1329 break; 1330 case X86_VENDOR_Centaur: 1331 case X86_VENDOR_TM: 1332 default: 1333 xcpuid++; 1334 break; 1335 } 1336 1337 if (xcpuid) { 1338 cp = &cpi->cpi_extd[0]; 1339 cp->cp_eax = 0x80000000; 1340 cpi->cpi_xmaxeax = __cpuid_insn(cp); 1341 } 1342 1343 if (cpi->cpi_xmaxeax & 0x80000000) { 1344 1345 if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX) 1346 cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX; 1347 1348 switch (cpi->cpi_vendor) { 1349 case X86_VENDOR_Intel: 1350 case X86_VENDOR_AMD: 1351 if (cpi->cpi_xmaxeax < 0x80000001) 1352 break; 1353 cp = &cpi->cpi_extd[1]; 1354 cp->cp_eax = 0x80000001; 1355 (void) __cpuid_insn(cp); 1356 1357 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1358 cpi->cpi_family == 5 && 1359 cpi->cpi_model == 6 && 1360 cpi->cpi_step == 6) { 1361 /* 1362 * K6 model 6 uses bit 10 to indicate SYSC 1363 * Later models use bit 11. Fix it here. 1364 */ 1365 if (cp->cp_edx & 0x400) { 1366 cp->cp_edx &= ~0x400; 1367 cp->cp_edx |= CPUID_AMD_EDX_SYSC; 1368 } 1369 } 1370 1371 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp); 1372 1373 /* 1374 * Compute the additions to the kernel's feature word. 1375 */ 1376 if (cp->cp_edx & CPUID_AMD_EDX_NX) { 1377 add_x86_feature(featureset, X86FSET_NX); 1378 } 1379 1380 /* 1381 * Regardless whether or not we boot 64-bit, 1382 * we should have a way to identify whether 1383 * the CPU is capable of running 64-bit. 1384 */ 1385 if (cp->cp_edx & CPUID_AMD_EDX_LM) { 1386 add_x86_feature(featureset, X86FSET_64); 1387 } 1388 1389 #if defined(__amd64) 1390 /* 1 GB large page - enable only for 64 bit kernel */ 1391 if (cp->cp_edx & CPUID_AMD_EDX_1GPG) { 1392 add_x86_feature(featureset, X86FSET_1GPG); 1393 } 1394 #endif 1395 1396 if ((cpi->cpi_vendor == X86_VENDOR_AMD) && 1397 (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) && 1398 (cp->cp_ecx & CPUID_AMD_ECX_SSE4A)) { 1399 add_x86_feature(featureset, X86FSET_SSE4A); 1400 } 1401 1402 /* 1403 * If both the HTT and CMP_LGCY bits are set, 1404 * then we're not actually HyperThreaded. Read 1405 * "AMD CPUID Specification" for more details. 1406 */ 1407 if (cpi->cpi_vendor == X86_VENDOR_AMD && 1408 is_x86_feature(featureset, X86FSET_HTT) && 1409 (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) { 1410 remove_x86_feature(featureset, X86FSET_HTT); 1411 add_x86_feature(featureset, X86FSET_CMP); 1412 } 1413 #if defined(__amd64) 1414 /* 1415 * It's really tricky to support syscall/sysret in 1416 * the i386 kernel; we rely on sysenter/sysexit 1417 * instead. In the amd64 kernel, things are -way- 1418 * better. 1419 */ 1420 if (cp->cp_edx & CPUID_AMD_EDX_SYSC) { 1421 add_x86_feature(featureset, X86FSET_ASYSC); 1422 } 1423 1424 /* 1425 * While we're thinking about system calls, note 1426 * that AMD processors don't support sysenter 1427 * in long mode at all, so don't try to program them. 1428 */ 1429 if (x86_vendor == X86_VENDOR_AMD) { 1430 remove_x86_feature(featureset, X86FSET_SEP); 1431 } 1432 #endif 1433 if (cp->cp_edx & CPUID_AMD_EDX_TSCP) { 1434 add_x86_feature(featureset, X86FSET_TSCP); 1435 } 1436 1437 if (cp->cp_ecx & CPUID_AMD_ECX_SVM) { 1438 add_x86_feature(featureset, X86FSET_SVM); 1439 } 1440 break; 1441 default: 1442 break; 1443 } 1444 1445 /* 1446 * Get CPUID data about processor cores and hyperthreads. 1447 */ 1448 switch (cpi->cpi_vendor) { 1449 case X86_VENDOR_Intel: 1450 if (cpi->cpi_maxeax >= 4) { 1451 cp = &cpi->cpi_std[4]; 1452 cp->cp_eax = 4; 1453 cp->cp_ecx = 0; 1454 (void) __cpuid_insn(cp); 1455 platform_cpuid_mangle(cpi->cpi_vendor, 4, cp); 1456 } 1457 /*FALLTHROUGH*/ 1458 case X86_VENDOR_AMD: 1459 if (cpi->cpi_xmaxeax < 0x80000008) 1460 break; 1461 cp = &cpi->cpi_extd[8]; 1462 cp->cp_eax = 0x80000008; 1463 (void) __cpuid_insn(cp); 1464 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp); 1465 1466 /* 1467 * Virtual and physical address limits from 1468 * cpuid override previously guessed values. 1469 */ 1470 cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0); 1471 cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8); 1472 break; 1473 default: 1474 break; 1475 } 1476 1477 /* 1478 * Derive the number of cores per chip 1479 */ 1480 switch (cpi->cpi_vendor) { 1481 case X86_VENDOR_Intel: 1482 if (cpi->cpi_maxeax < 4) { 1483 cpi->cpi_ncore_per_chip = 1; 1484 break; 1485 } else { 1486 cpi->cpi_ncore_per_chip = 1487 BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1; 1488 } 1489 break; 1490 case X86_VENDOR_AMD: 1491 if (cpi->cpi_xmaxeax < 0x80000008) { 1492 cpi->cpi_ncore_per_chip = 1; 1493 break; 1494 } else { 1495 /* 1496 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is 1497 * 1 less than the number of physical cores on 1498 * the chip. In family 0x10 this value can 1499 * be affected by "downcoring" - it reflects 1500 * 1 less than the number of cores actually 1501 * enabled on this node. 1502 */ 1503 cpi->cpi_ncore_per_chip = 1504 BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1; 1505 } 1506 break; 1507 default: 1508 cpi->cpi_ncore_per_chip = 1; 1509 break; 1510 } 1511 1512 /* 1513 * Get CPUID data about TSC Invariance in Deep C-State. 1514 */ 1515 switch (cpi->cpi_vendor) { 1516 case X86_VENDOR_Intel: 1517 if (cpi->cpi_maxeax >= 7) { 1518 cp = &cpi->cpi_extd[7]; 1519 cp->cp_eax = 0x80000007; 1520 cp->cp_ecx = 0; 1521 (void) __cpuid_insn(cp); 1522 } 1523 break; 1524 default: 1525 break; 1526 } 1527 } else { 1528 cpi->cpi_ncore_per_chip = 1; 1529 } 1530 1531 /* 1532 * If more than one core, then this processor is CMP. 1533 */ 1534 if (cpi->cpi_ncore_per_chip > 1) { 1535 add_x86_feature(featureset, X86FSET_CMP); 1536 } 1537 1538 /* 1539 * If the number of cores is the same as the number 1540 * of CPUs, then we cannot have HyperThreading. 1541 */ 1542 if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip) { 1543 remove_x86_feature(featureset, X86FSET_HTT); 1544 } 1545 1546 cpi->cpi_apicid = CPI_APIC_ID(cpi); 1547 cpi->cpi_procnodes_per_pkg = 1; 1548 if (is_x86_feature(featureset, X86FSET_HTT) == B_FALSE && 1549 is_x86_feature(featureset, X86FSET_CMP) == B_FALSE) { 1550 /* 1551 * Single-core single-threaded processors. 1552 */ 1553 cpi->cpi_chipid = -1; 1554 cpi->cpi_clogid = 0; 1555 cpi->cpi_coreid = cpu->cpu_id; 1556 cpi->cpi_pkgcoreid = 0; 1557 if (cpi->cpi_vendor == X86_VENDOR_AMD) 1558 cpi->cpi_procnodeid = BITX(cpi->cpi_apicid, 3, 0); 1559 else 1560 cpi->cpi_procnodeid = cpi->cpi_chipid; 1561 } else if (cpi->cpi_ncpu_per_chip > 1) { 1562 if (cpi->cpi_vendor == X86_VENDOR_Intel) 1563 cpuid_intel_getids(cpu, featureset); 1564 else if (cpi->cpi_vendor == X86_VENDOR_AMD) 1565 cpuid_amd_getids(cpu); 1566 else { 1567 /* 1568 * All other processors are currently 1569 * assumed to have single cores. 1570 */ 1571 cpi->cpi_coreid = cpi->cpi_chipid; 1572 cpi->cpi_pkgcoreid = 0; 1573 cpi->cpi_procnodeid = cpi->cpi_chipid; 1574 } 1575 } 1576 1577 /* 1578 * Synthesize chip "revision" and socket type 1579 */ 1580 cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family, 1581 cpi->cpi_model, cpi->cpi_step); 1582 cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor, 1583 cpi->cpi_family, cpi->cpi_model, cpi->cpi_step); 1584 cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family, 1585 cpi->cpi_model, cpi->cpi_step); 1586 1587 pass1_done: 1588 cpi->cpi_pass = 1; 1589 } 1590 1591 /* 1592 * Make copies of the cpuid table entries we depend on, in 1593 * part for ease of parsing now, in part so that we have only 1594 * one place to correct any of it, in part for ease of 1595 * later export to userland, and in part so we can look at 1596 * this stuff in a crash dump. 1597 */ 1598 1599 /*ARGSUSED*/ 1600 void 1601 cpuid_pass2(cpu_t *cpu) 1602 { 1603 uint_t n, nmax; 1604 int i; 1605 struct cpuid_regs *cp; 1606 uint8_t *dp; 1607 uint32_t *iptr; 1608 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 1609 1610 ASSERT(cpi->cpi_pass == 1); 1611 1612 if (cpi->cpi_maxeax < 1) 1613 goto pass2_done; 1614 1615 if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD) 1616 nmax = NMAX_CPI_STD; 1617 /* 1618 * (We already handled n == 0 and n == 1 in pass 1) 1619 */ 1620 for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) { 1621 cp->cp_eax = n; 1622 1623 /* 1624 * CPUID function 4 expects %ecx to be initialized 1625 * with an index which indicates which cache to return 1626 * information about. The OS is expected to call function 4 1627 * with %ecx set to 0, 1, 2, ... until it returns with 1628 * EAX[4:0] set to 0, which indicates there are no more 1629 * caches. 1630 * 1631 * Here, populate cpi_std[4] with the information returned by 1632 * function 4 when %ecx == 0, and do the rest in cpuid_pass3() 1633 * when dynamic memory allocation becomes available. 1634 * 1635 * Note: we need to explicitly initialize %ecx here, since 1636 * function 4 may have been previously invoked. 1637 */ 1638 if (n == 4) 1639 cp->cp_ecx = 0; 1640 1641 (void) __cpuid_insn(cp); 1642 platform_cpuid_mangle(cpi->cpi_vendor, n, cp); 1643 switch (n) { 1644 case 2: 1645 /* 1646 * "the lower 8 bits of the %eax register 1647 * contain a value that identifies the number 1648 * of times the cpuid [instruction] has to be 1649 * executed to obtain a complete image of the 1650 * processor's caching systems." 1651 * 1652 * How *do* they make this stuff up? 1653 */ 1654 cpi->cpi_ncache = sizeof (*cp) * 1655 BITX(cp->cp_eax, 7, 0); 1656 if (cpi->cpi_ncache == 0) 1657 break; 1658 cpi->cpi_ncache--; /* skip count byte */ 1659 1660 /* 1661 * Well, for now, rather than attempt to implement 1662 * this slightly dubious algorithm, we just look 1663 * at the first 15 .. 1664 */ 1665 if (cpi->cpi_ncache > (sizeof (*cp) - 1)) 1666 cpi->cpi_ncache = sizeof (*cp) - 1; 1667 1668 dp = cpi->cpi_cacheinfo; 1669 if (BITX(cp->cp_eax, 31, 31) == 0) { 1670 uint8_t *p = (void *)&cp->cp_eax; 1671 for (i = 1; i < 4; i++) 1672 if (p[i] != 0) 1673 *dp++ = p[i]; 1674 } 1675 if (BITX(cp->cp_ebx, 31, 31) == 0) { 1676 uint8_t *p = (void *)&cp->cp_ebx; 1677 for (i = 0; i < 4; i++) 1678 if (p[i] != 0) 1679 *dp++ = p[i]; 1680 } 1681 if (BITX(cp->cp_ecx, 31, 31) == 0) { 1682 uint8_t *p = (void *)&cp->cp_ecx; 1683 for (i = 0; i < 4; i++) 1684 if (p[i] != 0) 1685 *dp++ = p[i]; 1686 } 1687 if (BITX(cp->cp_edx, 31, 31) == 0) { 1688 uint8_t *p = (void *)&cp->cp_edx; 1689 for (i = 0; i < 4; i++) 1690 if (p[i] != 0) 1691 *dp++ = p[i]; 1692 } 1693 break; 1694 1695 case 3: /* Processor serial number, if PSN supported */ 1696 break; 1697 1698 case 4: /* Deterministic cache parameters */ 1699 break; 1700 1701 case 5: /* Monitor/Mwait parameters */ 1702 { 1703 size_t mwait_size; 1704 1705 /* 1706 * check cpi_mwait.support which was set in cpuid_pass1 1707 */ 1708 if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT)) 1709 break; 1710 1711 /* 1712 * Protect ourself from insane mwait line size. 1713 * Workaround for incomplete hardware emulator(s). 1714 */ 1715 mwait_size = (size_t)MWAIT_SIZE_MAX(cpi); 1716 if (mwait_size < sizeof (uint32_t) || 1717 !ISP2(mwait_size)) { 1718 #if DEBUG 1719 cmn_err(CE_NOTE, "Cannot handle cpu %d mwait " 1720 "size %ld", cpu->cpu_id, (long)mwait_size); 1721 #endif 1722 break; 1723 } 1724 1725 cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi); 1726 cpi->cpi_mwait.mon_max = mwait_size; 1727 if (MWAIT_EXTENSION(cpi)) { 1728 cpi->cpi_mwait.support |= MWAIT_EXTENSIONS; 1729 if (MWAIT_INT_ENABLE(cpi)) 1730 cpi->cpi_mwait.support |= 1731 MWAIT_ECX_INT_ENABLE; 1732 } 1733 break; 1734 } 1735 default: 1736 break; 1737 } 1738 } 1739 1740 if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) { 1741 struct cpuid_regs regs; 1742 1743 cp = ®s; 1744 cp->cp_eax = 0xB; 1745 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 1746 1747 (void) __cpuid_insn(cp); 1748 1749 /* 1750 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which 1751 * indicates that the extended topology enumeration leaf is 1752 * available. 1753 */ 1754 if (cp->cp_ebx) { 1755 uint32_t x2apic_id; 1756 uint_t coreid_shift = 0; 1757 uint_t ncpu_per_core = 1; 1758 uint_t chipid_shift = 0; 1759 uint_t ncpu_per_chip = 1; 1760 uint_t i; 1761 uint_t level; 1762 1763 for (i = 0; i < CPI_FNB_ECX_MAX; i++) { 1764 cp->cp_eax = 0xB; 1765 cp->cp_ecx = i; 1766 1767 (void) __cpuid_insn(cp); 1768 level = CPI_CPU_LEVEL_TYPE(cp); 1769 1770 if (level == 1) { 1771 x2apic_id = cp->cp_edx; 1772 coreid_shift = BITX(cp->cp_eax, 4, 0); 1773 ncpu_per_core = BITX(cp->cp_ebx, 15, 0); 1774 } else if (level == 2) { 1775 x2apic_id = cp->cp_edx; 1776 chipid_shift = BITX(cp->cp_eax, 4, 0); 1777 ncpu_per_chip = BITX(cp->cp_ebx, 15, 0); 1778 } 1779 } 1780 1781 cpi->cpi_apicid = x2apic_id; 1782 cpi->cpi_ncpu_per_chip = ncpu_per_chip; 1783 cpi->cpi_ncore_per_chip = ncpu_per_chip / 1784 ncpu_per_core; 1785 cpi->cpi_chipid = x2apic_id >> chipid_shift; 1786 cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1); 1787 cpi->cpi_coreid = x2apic_id >> coreid_shift; 1788 cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift; 1789 } 1790 1791 /* Make cp NULL so that we don't stumble on others */ 1792 cp = NULL; 1793 } 1794 1795 /* 1796 * XSAVE enumeration 1797 */ 1798 if (cpi->cpi_maxeax >= 0xD) { 1799 struct cpuid_regs regs; 1800 boolean_t cpuid_d_valid = B_TRUE; 1801 1802 cp = ®s; 1803 cp->cp_eax = 0xD; 1804 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 1805 1806 (void) __cpuid_insn(cp); 1807 1808 /* 1809 * Sanity checks for debug 1810 */ 1811 if ((cp->cp_eax & XFEATURE_LEGACY_FP) == 0 || 1812 (cp->cp_eax & XFEATURE_SSE) == 0) { 1813 cpuid_d_valid = B_FALSE; 1814 } 1815 1816 cpi->cpi_xsave.xsav_hw_features_low = cp->cp_eax; 1817 cpi->cpi_xsave.xsav_hw_features_high = cp->cp_edx; 1818 cpi->cpi_xsave.xsav_max_size = cp->cp_ecx; 1819 1820 /* 1821 * If the hw supports AVX, get the size and offset in the save 1822 * area for the ymm state. 1823 */ 1824 if (cpi->cpi_xsave.xsav_hw_features_low & XFEATURE_AVX) { 1825 cp->cp_eax = 0xD; 1826 cp->cp_ecx = 2; 1827 cp->cp_edx = cp->cp_ebx = 0; 1828 1829 (void) __cpuid_insn(cp); 1830 1831 if (cp->cp_ebx != CPUID_LEAFD_2_YMM_OFFSET || 1832 cp->cp_eax != CPUID_LEAFD_2_YMM_SIZE) { 1833 cpuid_d_valid = B_FALSE; 1834 } 1835 1836 cpi->cpi_xsave.ymm_size = cp->cp_eax; 1837 cpi->cpi_xsave.ymm_offset = cp->cp_ebx; 1838 } 1839 1840 if (is_x86_feature(x86_featureset, X86FSET_XSAVE)) { 1841 xsave_state_size = 0; 1842 } else if (cpuid_d_valid) { 1843 xsave_state_size = cpi->cpi_xsave.xsav_max_size; 1844 } else { 1845 /* Broken CPUID 0xD, probably in HVM */ 1846 cmn_err(CE_WARN, "cpu%d: CPUID.0xD returns invalid " 1847 "value: hw_low = %d, hw_high = %d, xsave_size = %d" 1848 ", ymm_size = %d, ymm_offset = %d\n", 1849 cpu->cpu_id, cpi->cpi_xsave.xsav_hw_features_low, 1850 cpi->cpi_xsave.xsav_hw_features_high, 1851 (int)cpi->cpi_xsave.xsav_max_size, 1852 (int)cpi->cpi_xsave.ymm_size, 1853 (int)cpi->cpi_xsave.ymm_offset); 1854 1855 if (xsave_state_size != 0) { 1856 /* 1857 * This must be a non-boot CPU. We cannot 1858 * continue, because boot cpu has already 1859 * enabled XSAVE. 1860 */ 1861 ASSERT(cpu->cpu_id != 0); 1862 cmn_err(CE_PANIC, "cpu%d: we have already " 1863 "enabled XSAVE on boot cpu, cannot " 1864 "continue.", cpu->cpu_id); 1865 } else { 1866 /* 1867 * Must be from boot CPU, OK to disable XSAVE. 1868 */ 1869 ASSERT(cpu->cpu_id == 0); 1870 remove_x86_feature(x86_featureset, 1871 X86FSET_XSAVE); 1872 remove_x86_feature(x86_featureset, X86FSET_AVX); 1873 CPI_FEATURES_ECX(cpi) &= ~CPUID_INTC_ECX_XSAVE; 1874 CPI_FEATURES_ECX(cpi) &= ~CPUID_INTC_ECX_AVX; 1875 xsave_force_disable = B_TRUE; 1876 } 1877 } 1878 } 1879 1880 1881 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) 1882 goto pass2_done; 1883 1884 if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD) 1885 nmax = NMAX_CPI_EXTD; 1886 /* 1887 * Copy the extended properties, fixing them as we go. 1888 * (We already handled n == 0 and n == 1 in pass 1) 1889 */ 1890 iptr = (void *)cpi->cpi_brandstr; 1891 for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) { 1892 cp->cp_eax = 0x80000000 + n; 1893 (void) __cpuid_insn(cp); 1894 platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp); 1895 switch (n) { 1896 case 2: 1897 case 3: 1898 case 4: 1899 /* 1900 * Extract the brand string 1901 */ 1902 *iptr++ = cp->cp_eax; 1903 *iptr++ = cp->cp_ebx; 1904 *iptr++ = cp->cp_ecx; 1905 *iptr++ = cp->cp_edx; 1906 break; 1907 case 5: 1908 switch (cpi->cpi_vendor) { 1909 case X86_VENDOR_AMD: 1910 /* 1911 * The Athlon and Duron were the first 1912 * parts to report the sizes of the 1913 * TLB for large pages. Before then, 1914 * we don't trust the data. 1915 */ 1916 if (cpi->cpi_family < 6 || 1917 (cpi->cpi_family == 6 && 1918 cpi->cpi_model < 1)) 1919 cp->cp_eax = 0; 1920 break; 1921 default: 1922 break; 1923 } 1924 break; 1925 case 6: 1926 switch (cpi->cpi_vendor) { 1927 case X86_VENDOR_AMD: 1928 /* 1929 * The Athlon and Duron were the first 1930 * AMD parts with L2 TLB's. 1931 * Before then, don't trust the data. 1932 */ 1933 if (cpi->cpi_family < 6 || 1934 cpi->cpi_family == 6 && 1935 cpi->cpi_model < 1) 1936 cp->cp_eax = cp->cp_ebx = 0; 1937 /* 1938 * AMD Duron rev A0 reports L2 1939 * cache size incorrectly as 1K 1940 * when it is really 64K 1941 */ 1942 if (cpi->cpi_family == 6 && 1943 cpi->cpi_model == 3 && 1944 cpi->cpi_step == 0) { 1945 cp->cp_ecx &= 0xffff; 1946 cp->cp_ecx |= 0x400000; 1947 } 1948 break; 1949 case X86_VENDOR_Cyrix: /* VIA C3 */ 1950 /* 1951 * VIA C3 processors are a bit messed 1952 * up w.r.t. encoding cache sizes in %ecx 1953 */ 1954 if (cpi->cpi_family != 6) 1955 break; 1956 /* 1957 * model 7 and 8 were incorrectly encoded 1958 * 1959 * xxx is model 8 really broken? 1960 */ 1961 if (cpi->cpi_model == 7 || 1962 cpi->cpi_model == 8) 1963 cp->cp_ecx = 1964 BITX(cp->cp_ecx, 31, 24) << 16 | 1965 BITX(cp->cp_ecx, 23, 16) << 12 | 1966 BITX(cp->cp_ecx, 15, 8) << 8 | 1967 BITX(cp->cp_ecx, 7, 0); 1968 /* 1969 * model 9 stepping 1 has wrong associativity 1970 */ 1971 if (cpi->cpi_model == 9 && cpi->cpi_step == 1) 1972 cp->cp_ecx |= 8 << 12; 1973 break; 1974 case X86_VENDOR_Intel: 1975 /* 1976 * Extended L2 Cache features function. 1977 * First appeared on Prescott. 1978 */ 1979 default: 1980 break; 1981 } 1982 break; 1983 default: 1984 break; 1985 } 1986 } 1987 1988 pass2_done: 1989 cpi->cpi_pass = 2; 1990 } 1991 1992 static const char * 1993 intel_cpubrand(const struct cpuid_info *cpi) 1994 { 1995 int i; 1996 1997 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 1998 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 1999 return ("i486"); 2000 2001 switch (cpi->cpi_family) { 2002 case 5: 2003 return ("Intel Pentium(r)"); 2004 case 6: 2005 switch (cpi->cpi_model) { 2006 uint_t celeron, xeon; 2007 const struct cpuid_regs *cp; 2008 case 0: 2009 case 1: 2010 case 2: 2011 return ("Intel Pentium(r) Pro"); 2012 case 3: 2013 case 4: 2014 return ("Intel Pentium(r) II"); 2015 case 6: 2016 return ("Intel Celeron(r)"); 2017 case 5: 2018 case 7: 2019 celeron = xeon = 0; 2020 cp = &cpi->cpi_std[2]; /* cache info */ 2021 2022 for (i = 1; i < 4; i++) { 2023 uint_t tmp; 2024 2025 tmp = (cp->cp_eax >> (8 * i)) & 0xff; 2026 if (tmp == 0x40) 2027 celeron++; 2028 if (tmp >= 0x44 && tmp <= 0x45) 2029 xeon++; 2030 } 2031 2032 for (i = 0; i < 2; i++) { 2033 uint_t tmp; 2034 2035 tmp = (cp->cp_ebx >> (8 * i)) & 0xff; 2036 if (tmp == 0x40) 2037 celeron++; 2038 else if (tmp >= 0x44 && tmp <= 0x45) 2039 xeon++; 2040 } 2041 2042 for (i = 0; i < 4; i++) { 2043 uint_t tmp; 2044 2045 tmp = (cp->cp_ecx >> (8 * i)) & 0xff; 2046 if (tmp == 0x40) 2047 celeron++; 2048 else if (tmp >= 0x44 && tmp <= 0x45) 2049 xeon++; 2050 } 2051 2052 for (i = 0; i < 4; i++) { 2053 uint_t tmp; 2054 2055 tmp = (cp->cp_edx >> (8 * i)) & 0xff; 2056 if (tmp == 0x40) 2057 celeron++; 2058 else if (tmp >= 0x44 && tmp <= 0x45) 2059 xeon++; 2060 } 2061 2062 if (celeron) 2063 return ("Intel Celeron(r)"); 2064 if (xeon) 2065 return (cpi->cpi_model == 5 ? 2066 "Intel Pentium(r) II Xeon(tm)" : 2067 "Intel Pentium(r) III Xeon(tm)"); 2068 return (cpi->cpi_model == 5 ? 2069 "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" : 2070 "Intel Pentium(r) III or Pentium(r) III Xeon(tm)"); 2071 default: 2072 break; 2073 } 2074 default: 2075 break; 2076 } 2077 2078 /* BrandID is present if the field is nonzero */ 2079 if (cpi->cpi_brandid != 0) { 2080 static const struct { 2081 uint_t bt_bid; 2082 const char *bt_str; 2083 } brand_tbl[] = { 2084 { 0x1, "Intel(r) Celeron(r)" }, 2085 { 0x2, "Intel(r) Pentium(r) III" }, 2086 { 0x3, "Intel(r) Pentium(r) III Xeon(tm)" }, 2087 { 0x4, "Intel(r) Pentium(r) III" }, 2088 { 0x6, "Mobile Intel(r) Pentium(r) III" }, 2089 { 0x7, "Mobile Intel(r) Celeron(r)" }, 2090 { 0x8, "Intel(r) Pentium(r) 4" }, 2091 { 0x9, "Intel(r) Pentium(r) 4" }, 2092 { 0xa, "Intel(r) Celeron(r)" }, 2093 { 0xb, "Intel(r) Xeon(tm)" }, 2094 { 0xc, "Intel(r) Xeon(tm) MP" }, 2095 { 0xe, "Mobile Intel(r) Pentium(r) 4" }, 2096 { 0xf, "Mobile Intel(r) Celeron(r)" }, 2097 { 0x11, "Mobile Genuine Intel(r)" }, 2098 { 0x12, "Intel(r) Celeron(r) M" }, 2099 { 0x13, "Mobile Intel(r) Celeron(r)" }, 2100 { 0x14, "Intel(r) Celeron(r)" }, 2101 { 0x15, "Mobile Genuine Intel(r)" }, 2102 { 0x16, "Intel(r) Pentium(r) M" }, 2103 { 0x17, "Mobile Intel(r) Celeron(r)" } 2104 }; 2105 uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]); 2106 uint_t sgn; 2107 2108 sgn = (cpi->cpi_family << 8) | 2109 (cpi->cpi_model << 4) | cpi->cpi_step; 2110 2111 for (i = 0; i < btblmax; i++) 2112 if (brand_tbl[i].bt_bid == cpi->cpi_brandid) 2113 break; 2114 if (i < btblmax) { 2115 if (sgn == 0x6b1 && cpi->cpi_brandid == 3) 2116 return ("Intel(r) Celeron(r)"); 2117 if (sgn < 0xf13 && cpi->cpi_brandid == 0xb) 2118 return ("Intel(r) Xeon(tm) MP"); 2119 if (sgn < 0xf13 && cpi->cpi_brandid == 0xe) 2120 return ("Intel(r) Xeon(tm)"); 2121 return (brand_tbl[i].bt_str); 2122 } 2123 } 2124 2125 return (NULL); 2126 } 2127 2128 static const char * 2129 amd_cpubrand(const struct cpuid_info *cpi) 2130 { 2131 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 2132 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5) 2133 return ("i486 compatible"); 2134 2135 switch (cpi->cpi_family) { 2136 case 5: 2137 switch (cpi->cpi_model) { 2138 case 0: 2139 case 1: 2140 case 2: 2141 case 3: 2142 case 4: 2143 case 5: 2144 return ("AMD-K5(r)"); 2145 case 6: 2146 case 7: 2147 return ("AMD-K6(r)"); 2148 case 8: 2149 return ("AMD-K6(r)-2"); 2150 case 9: 2151 return ("AMD-K6(r)-III"); 2152 default: 2153 return ("AMD (family 5)"); 2154 } 2155 case 6: 2156 switch (cpi->cpi_model) { 2157 case 1: 2158 return ("AMD-K7(tm)"); 2159 case 0: 2160 case 2: 2161 case 4: 2162 return ("AMD Athlon(tm)"); 2163 case 3: 2164 case 7: 2165 return ("AMD Duron(tm)"); 2166 case 6: 2167 case 8: 2168 case 10: 2169 /* 2170 * Use the L2 cache size to distinguish 2171 */ 2172 return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ? 2173 "AMD Athlon(tm)" : "AMD Duron(tm)"); 2174 default: 2175 return ("AMD (family 6)"); 2176 } 2177 default: 2178 break; 2179 } 2180 2181 if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 && 2182 cpi->cpi_brandid != 0) { 2183 switch (BITX(cpi->cpi_brandid, 7, 5)) { 2184 case 3: 2185 return ("AMD Opteron(tm) UP 1xx"); 2186 case 4: 2187 return ("AMD Opteron(tm) DP 2xx"); 2188 case 5: 2189 return ("AMD Opteron(tm) MP 8xx"); 2190 default: 2191 return ("AMD Opteron(tm)"); 2192 } 2193 } 2194 2195 return (NULL); 2196 } 2197 2198 static const char * 2199 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type) 2200 { 2201 if (!is_x86_feature(x86_featureset, X86FSET_CPUID) || 2202 cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 || 2203 type == X86_TYPE_CYRIX_486) 2204 return ("i486 compatible"); 2205 2206 switch (type) { 2207 case X86_TYPE_CYRIX_6x86: 2208 return ("Cyrix 6x86"); 2209 case X86_TYPE_CYRIX_6x86L: 2210 return ("Cyrix 6x86L"); 2211 case X86_TYPE_CYRIX_6x86MX: 2212 return ("Cyrix 6x86MX"); 2213 case X86_TYPE_CYRIX_GXm: 2214 return ("Cyrix GXm"); 2215 case X86_TYPE_CYRIX_MediaGX: 2216 return ("Cyrix MediaGX"); 2217 case X86_TYPE_CYRIX_MII: 2218 return ("Cyrix M2"); 2219 case X86_TYPE_VIA_CYRIX_III: 2220 return ("VIA Cyrix M3"); 2221 default: 2222 /* 2223 * Have another wild guess .. 2224 */ 2225 if (cpi->cpi_family == 4 && cpi->cpi_model == 9) 2226 return ("Cyrix 5x86"); 2227 else if (cpi->cpi_family == 5) { 2228 switch (cpi->cpi_model) { 2229 case 2: 2230 return ("Cyrix 6x86"); /* Cyrix M1 */ 2231 case 4: 2232 return ("Cyrix MediaGX"); 2233 default: 2234 break; 2235 } 2236 } else if (cpi->cpi_family == 6) { 2237 switch (cpi->cpi_model) { 2238 case 0: 2239 return ("Cyrix 6x86MX"); /* Cyrix M2? */ 2240 case 5: 2241 case 6: 2242 case 7: 2243 case 8: 2244 case 9: 2245 return ("VIA C3"); 2246 default: 2247 break; 2248 } 2249 } 2250 break; 2251 } 2252 return (NULL); 2253 } 2254 2255 /* 2256 * This only gets called in the case that the CPU extended 2257 * feature brand string (0x80000002, 0x80000003, 0x80000004) 2258 * aren't available, or contain null bytes for some reason. 2259 */ 2260 static void 2261 fabricate_brandstr(struct cpuid_info *cpi) 2262 { 2263 const char *brand = NULL; 2264 2265 switch (cpi->cpi_vendor) { 2266 case X86_VENDOR_Intel: 2267 brand = intel_cpubrand(cpi); 2268 break; 2269 case X86_VENDOR_AMD: 2270 brand = amd_cpubrand(cpi); 2271 break; 2272 case X86_VENDOR_Cyrix: 2273 brand = cyrix_cpubrand(cpi, x86_type); 2274 break; 2275 case X86_VENDOR_NexGen: 2276 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 2277 brand = "NexGen Nx586"; 2278 break; 2279 case X86_VENDOR_Centaur: 2280 if (cpi->cpi_family == 5) 2281 switch (cpi->cpi_model) { 2282 case 4: 2283 brand = "Centaur C6"; 2284 break; 2285 case 8: 2286 brand = "Centaur C2"; 2287 break; 2288 case 9: 2289 brand = "Centaur C3"; 2290 break; 2291 default: 2292 break; 2293 } 2294 break; 2295 case X86_VENDOR_Rise: 2296 if (cpi->cpi_family == 5 && 2297 (cpi->cpi_model == 0 || cpi->cpi_model == 2)) 2298 brand = "Rise mP6"; 2299 break; 2300 case X86_VENDOR_SiS: 2301 if (cpi->cpi_family == 5 && cpi->cpi_model == 0) 2302 brand = "SiS 55x"; 2303 break; 2304 case X86_VENDOR_TM: 2305 if (cpi->cpi_family == 5 && cpi->cpi_model == 4) 2306 brand = "Transmeta Crusoe TM3x00 or TM5x00"; 2307 break; 2308 case X86_VENDOR_NSC: 2309 case X86_VENDOR_UMC: 2310 default: 2311 break; 2312 } 2313 if (brand) { 2314 (void) strcpy((char *)cpi->cpi_brandstr, brand); 2315 return; 2316 } 2317 2318 /* 2319 * If all else fails ... 2320 */ 2321 (void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr), 2322 "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family, 2323 cpi->cpi_model, cpi->cpi_step); 2324 } 2325 2326 /* 2327 * This routine is called just after kernel memory allocation 2328 * becomes available on cpu0, and as part of mp_startup() on 2329 * the other cpus. 2330 * 2331 * Fixup the brand string, and collect any information from cpuid 2332 * that requires dynamicically allocated storage to represent. 2333 */ 2334 /*ARGSUSED*/ 2335 void 2336 cpuid_pass3(cpu_t *cpu) 2337 { 2338 int i, max, shft, level, size; 2339 struct cpuid_regs regs; 2340 struct cpuid_regs *cp; 2341 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2342 2343 ASSERT(cpi->cpi_pass == 2); 2344 2345 /* 2346 * Function 4: Deterministic cache parameters 2347 * 2348 * Take this opportunity to detect the number of threads 2349 * sharing the last level cache, and construct a corresponding 2350 * cache id. The respective cpuid_info members are initialized 2351 * to the default case of "no last level cache sharing". 2352 */ 2353 cpi->cpi_ncpu_shr_last_cache = 1; 2354 cpi->cpi_last_lvl_cacheid = cpu->cpu_id; 2355 2356 if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) { 2357 2358 /* 2359 * Find the # of elements (size) returned by fn 4, and along 2360 * the way detect last level cache sharing details. 2361 */ 2362 bzero(®s, sizeof (regs)); 2363 cp = ®s; 2364 for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) { 2365 cp->cp_eax = 4; 2366 cp->cp_ecx = i; 2367 2368 (void) __cpuid_insn(cp); 2369 2370 if (CPI_CACHE_TYPE(cp) == 0) 2371 break; 2372 level = CPI_CACHE_LVL(cp); 2373 if (level > max) { 2374 max = level; 2375 cpi->cpi_ncpu_shr_last_cache = 2376 CPI_NTHR_SHR_CACHE(cp) + 1; 2377 } 2378 } 2379 cpi->cpi_std_4_size = size = i; 2380 2381 /* 2382 * Allocate the cpi_std_4 array. The first element 2383 * references the regs for fn 4, %ecx == 0, which 2384 * cpuid_pass2() stashed in cpi->cpi_std[4]. 2385 */ 2386 if (size > 0) { 2387 cpi->cpi_std_4 = 2388 kmem_alloc(size * sizeof (cp), KM_SLEEP); 2389 cpi->cpi_std_4[0] = &cpi->cpi_std[4]; 2390 2391 /* 2392 * Allocate storage to hold the additional regs 2393 * for function 4, %ecx == 1 .. cpi_std_4_size. 2394 * 2395 * The regs for fn 4, %ecx == 0 has already 2396 * been allocated as indicated above. 2397 */ 2398 for (i = 1; i < size; i++) { 2399 cp = cpi->cpi_std_4[i] = 2400 kmem_zalloc(sizeof (regs), KM_SLEEP); 2401 cp->cp_eax = 4; 2402 cp->cp_ecx = i; 2403 2404 (void) __cpuid_insn(cp); 2405 } 2406 } 2407 /* 2408 * Determine the number of bits needed to represent 2409 * the number of CPUs sharing the last level cache. 2410 * 2411 * Shift off that number of bits from the APIC id to 2412 * derive the cache id. 2413 */ 2414 shft = 0; 2415 for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1) 2416 shft++; 2417 cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft; 2418 } 2419 2420 /* 2421 * Now fixup the brand string 2422 */ 2423 if ((cpi->cpi_xmaxeax & 0x80000000) == 0) { 2424 fabricate_brandstr(cpi); 2425 } else { 2426 2427 /* 2428 * If we successfully extracted a brand string from the cpuid 2429 * instruction, clean it up by removing leading spaces and 2430 * similar junk. 2431 */ 2432 if (cpi->cpi_brandstr[0]) { 2433 size_t maxlen = sizeof (cpi->cpi_brandstr); 2434 char *src, *dst; 2435 2436 dst = src = (char *)cpi->cpi_brandstr; 2437 src[maxlen - 1] = '\0'; 2438 /* 2439 * strip leading spaces 2440 */ 2441 while (*src == ' ') 2442 src++; 2443 /* 2444 * Remove any 'Genuine' or "Authentic" prefixes 2445 */ 2446 if (strncmp(src, "Genuine ", 8) == 0) 2447 src += 8; 2448 if (strncmp(src, "Authentic ", 10) == 0) 2449 src += 10; 2450 2451 /* 2452 * Now do an in-place copy. 2453 * Map (R) to (r) and (TM) to (tm). 2454 * The era of teletypes is long gone, and there's 2455 * -really- no need to shout. 2456 */ 2457 while (*src != '\0') { 2458 if (src[0] == '(') { 2459 if (strncmp(src + 1, "R)", 2) == 0) { 2460 (void) strncpy(dst, "(r)", 3); 2461 src += 3; 2462 dst += 3; 2463 continue; 2464 } 2465 if (strncmp(src + 1, "TM)", 3) == 0) { 2466 (void) strncpy(dst, "(tm)", 4); 2467 src += 4; 2468 dst += 4; 2469 continue; 2470 } 2471 } 2472 *dst++ = *src++; 2473 } 2474 *dst = '\0'; 2475 2476 /* 2477 * Finally, remove any trailing spaces 2478 */ 2479 while (--dst > cpi->cpi_brandstr) 2480 if (*dst == ' ') 2481 *dst = '\0'; 2482 else 2483 break; 2484 } else 2485 fabricate_brandstr(cpi); 2486 } 2487 cpi->cpi_pass = 3; 2488 } 2489 2490 /* 2491 * This routine is called out of bind_hwcap() much later in the life 2492 * of the kernel (post_startup()). The job of this routine is to resolve 2493 * the hardware feature support and kernel support for those features into 2494 * what we're actually going to tell applications via the aux vector. 2495 */ 2496 uint_t 2497 cpuid_pass4(cpu_t *cpu) 2498 { 2499 struct cpuid_info *cpi; 2500 uint_t hwcap_flags = 0; 2501 2502 if (cpu == NULL) 2503 cpu = CPU; 2504 cpi = cpu->cpu_m.mcpu_cpi; 2505 2506 ASSERT(cpi->cpi_pass == 3); 2507 2508 if (cpi->cpi_maxeax >= 1) { 2509 uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES]; 2510 uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES]; 2511 2512 *edx = CPI_FEATURES_EDX(cpi); 2513 *ecx = CPI_FEATURES_ECX(cpi); 2514 2515 /* 2516 * [these require explicit kernel support] 2517 */ 2518 if (!is_x86_feature(x86_featureset, X86FSET_SEP)) 2519 *edx &= ~CPUID_INTC_EDX_SEP; 2520 2521 if (!is_x86_feature(x86_featureset, X86FSET_SSE)) 2522 *edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE); 2523 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 2524 *edx &= ~CPUID_INTC_EDX_SSE2; 2525 2526 if (!is_x86_feature(x86_featureset, X86FSET_HTT)) 2527 *edx &= ~CPUID_INTC_EDX_HTT; 2528 2529 if (!is_x86_feature(x86_featureset, X86FSET_SSE3)) 2530 *ecx &= ~CPUID_INTC_ECX_SSE3; 2531 2532 if (!is_x86_feature(x86_featureset, X86FSET_SSSE3)) 2533 *ecx &= ~CPUID_INTC_ECX_SSSE3; 2534 if (!is_x86_feature(x86_featureset, X86FSET_SSE4_1)) 2535 *ecx &= ~CPUID_INTC_ECX_SSE4_1; 2536 if (!is_x86_feature(x86_featureset, X86FSET_SSE4_2)) 2537 *ecx &= ~CPUID_INTC_ECX_SSE4_2; 2538 if (!is_x86_feature(x86_featureset, X86FSET_AES)) 2539 *ecx &= ~CPUID_INTC_ECX_AES; 2540 if (!is_x86_feature(x86_featureset, X86FSET_PCLMULQDQ)) 2541 *ecx &= ~CPUID_INTC_ECX_PCLMULQDQ; 2542 if (!is_x86_feature(x86_featureset, X86FSET_XSAVE)) 2543 *ecx &= ~(CPUID_INTC_ECX_XSAVE | 2544 CPUID_INTC_ECX_OSXSAVE); 2545 if (!is_x86_feature(x86_featureset, X86FSET_AVX)) 2546 *ecx &= ~CPUID_INTC_ECX_AVX; 2547 2548 /* 2549 * [no explicit support required beyond x87 fp context] 2550 */ 2551 if (!fpu_exists) 2552 *edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX); 2553 2554 /* 2555 * Now map the supported feature vector to things that we 2556 * think userland will care about. 2557 */ 2558 if (*edx & CPUID_INTC_EDX_SEP) 2559 hwcap_flags |= AV_386_SEP; 2560 if (*edx & CPUID_INTC_EDX_SSE) 2561 hwcap_flags |= AV_386_FXSR | AV_386_SSE; 2562 if (*edx & CPUID_INTC_EDX_SSE2) 2563 hwcap_flags |= AV_386_SSE2; 2564 if (*ecx & CPUID_INTC_ECX_SSE3) 2565 hwcap_flags |= AV_386_SSE3; 2566 if (*ecx & CPUID_INTC_ECX_SSSE3) 2567 hwcap_flags |= AV_386_SSSE3; 2568 if (*ecx & CPUID_INTC_ECX_SSE4_1) 2569 hwcap_flags |= AV_386_SSE4_1; 2570 if (*ecx & CPUID_INTC_ECX_SSE4_2) 2571 hwcap_flags |= AV_386_SSE4_2; 2572 if (*ecx & CPUID_INTC_ECX_MOVBE) 2573 hwcap_flags |= AV_386_MOVBE; 2574 if (*ecx & CPUID_INTC_ECX_AES) 2575 hwcap_flags |= AV_386_AES; 2576 if (*ecx & CPUID_INTC_ECX_PCLMULQDQ) 2577 hwcap_flags |= AV_386_PCLMULQDQ; 2578 if ((*ecx & CPUID_INTC_ECX_XSAVE) && 2579 (*ecx & CPUID_INTC_ECX_OSXSAVE)) 2580 hwcap_flags |= AV_386_XSAVE; 2581 if (*ecx & CPUID_INTC_ECX_VMX) 2582 hwcap_flags |= AV_386_VMX; 2583 if (*ecx & CPUID_INTC_ECX_POPCNT) 2584 hwcap_flags |= AV_386_POPCNT; 2585 if (*edx & CPUID_INTC_EDX_FPU) 2586 hwcap_flags |= AV_386_FPU; 2587 if (*edx & CPUID_INTC_EDX_MMX) 2588 hwcap_flags |= AV_386_MMX; 2589 2590 if (*edx & CPUID_INTC_EDX_TSC) 2591 hwcap_flags |= AV_386_TSC; 2592 if (*edx & CPUID_INTC_EDX_CX8) 2593 hwcap_flags |= AV_386_CX8; 2594 if (*edx & CPUID_INTC_EDX_CMOV) 2595 hwcap_flags |= AV_386_CMOV; 2596 if (*ecx & CPUID_INTC_ECX_CX16) 2597 hwcap_flags |= AV_386_CX16; 2598 } 2599 2600 if (cpi->cpi_xmaxeax < 0x80000001) 2601 goto pass4_done; 2602 2603 switch (cpi->cpi_vendor) { 2604 struct cpuid_regs cp; 2605 uint32_t *edx, *ecx; 2606 2607 case X86_VENDOR_Intel: 2608 /* 2609 * Seems like Intel duplicated what we necessary 2610 * here to make the initial crop of 64-bit OS's work. 2611 * Hopefully, those are the only "extended" bits 2612 * they'll add. 2613 */ 2614 /*FALLTHROUGH*/ 2615 2616 case X86_VENDOR_AMD: 2617 edx = &cpi->cpi_support[AMD_EDX_FEATURES]; 2618 ecx = &cpi->cpi_support[AMD_ECX_FEATURES]; 2619 2620 *edx = CPI_FEATURES_XTD_EDX(cpi); 2621 *ecx = CPI_FEATURES_XTD_ECX(cpi); 2622 2623 /* 2624 * [these features require explicit kernel support] 2625 */ 2626 switch (cpi->cpi_vendor) { 2627 case X86_VENDOR_Intel: 2628 if (!is_x86_feature(x86_featureset, X86FSET_TSCP)) 2629 *edx &= ~CPUID_AMD_EDX_TSCP; 2630 break; 2631 2632 case X86_VENDOR_AMD: 2633 if (!is_x86_feature(x86_featureset, X86FSET_TSCP)) 2634 *edx &= ~CPUID_AMD_EDX_TSCP; 2635 if (!is_x86_feature(x86_featureset, X86FSET_SSE4A)) 2636 *ecx &= ~CPUID_AMD_ECX_SSE4A; 2637 break; 2638 2639 default: 2640 break; 2641 } 2642 2643 /* 2644 * [no explicit support required beyond 2645 * x87 fp context and exception handlers] 2646 */ 2647 if (!fpu_exists) 2648 *edx &= ~(CPUID_AMD_EDX_MMXamd | 2649 CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx); 2650 2651 if (!is_x86_feature(x86_featureset, X86FSET_NX)) 2652 *edx &= ~CPUID_AMD_EDX_NX; 2653 #if !defined(__amd64) 2654 *edx &= ~CPUID_AMD_EDX_LM; 2655 #endif 2656 /* 2657 * Now map the supported feature vector to 2658 * things that we think userland will care about. 2659 */ 2660 #if defined(__amd64) 2661 if (*edx & CPUID_AMD_EDX_SYSC) 2662 hwcap_flags |= AV_386_AMD_SYSC; 2663 #endif 2664 if (*edx & CPUID_AMD_EDX_MMXamd) 2665 hwcap_flags |= AV_386_AMD_MMX; 2666 if (*edx & CPUID_AMD_EDX_3DNow) 2667 hwcap_flags |= AV_386_AMD_3DNow; 2668 if (*edx & CPUID_AMD_EDX_3DNowx) 2669 hwcap_flags |= AV_386_AMD_3DNowx; 2670 if (*ecx & CPUID_AMD_ECX_SVM) 2671 hwcap_flags |= AV_386_AMD_SVM; 2672 2673 switch (cpi->cpi_vendor) { 2674 case X86_VENDOR_AMD: 2675 if (*edx & CPUID_AMD_EDX_TSCP) 2676 hwcap_flags |= AV_386_TSCP; 2677 if (*ecx & CPUID_AMD_ECX_AHF64) 2678 hwcap_flags |= AV_386_AHF; 2679 if (*ecx & CPUID_AMD_ECX_SSE4A) 2680 hwcap_flags |= AV_386_AMD_SSE4A; 2681 if (*ecx & CPUID_AMD_ECX_LZCNT) 2682 hwcap_flags |= AV_386_AMD_LZCNT; 2683 break; 2684 2685 case X86_VENDOR_Intel: 2686 if (*edx & CPUID_AMD_EDX_TSCP) 2687 hwcap_flags |= AV_386_TSCP; 2688 /* 2689 * Aarrgh. 2690 * Intel uses a different bit in the same word. 2691 */ 2692 if (*ecx & CPUID_INTC_ECX_AHF64) 2693 hwcap_flags |= AV_386_AHF; 2694 break; 2695 2696 default: 2697 break; 2698 } 2699 break; 2700 2701 case X86_VENDOR_TM: 2702 cp.cp_eax = 0x80860001; 2703 (void) __cpuid_insn(&cp); 2704 cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx; 2705 break; 2706 2707 default: 2708 break; 2709 } 2710 2711 pass4_done: 2712 cpi->cpi_pass = 4; 2713 return (hwcap_flags); 2714 } 2715 2716 2717 /* 2718 * Simulate the cpuid instruction using the data we previously 2719 * captured about this CPU. We try our best to return the truth 2720 * about the hardware, independently of kernel support. 2721 */ 2722 uint32_t 2723 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp) 2724 { 2725 struct cpuid_info *cpi; 2726 struct cpuid_regs *xcp; 2727 2728 if (cpu == NULL) 2729 cpu = CPU; 2730 cpi = cpu->cpu_m.mcpu_cpi; 2731 2732 ASSERT(cpuid_checkpass(cpu, 3)); 2733 2734 /* 2735 * CPUID data is cached in two separate places: cpi_std for standard 2736 * CPUID functions, and cpi_extd for extended CPUID functions. 2737 */ 2738 if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD) 2739 xcp = &cpi->cpi_std[cp->cp_eax]; 2740 else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax && 2741 cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD) 2742 xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000]; 2743 else 2744 /* 2745 * The caller is asking for data from an input parameter which 2746 * the kernel has not cached. In this case we go fetch from 2747 * the hardware and return the data directly to the user. 2748 */ 2749 return (__cpuid_insn(cp)); 2750 2751 cp->cp_eax = xcp->cp_eax; 2752 cp->cp_ebx = xcp->cp_ebx; 2753 cp->cp_ecx = xcp->cp_ecx; 2754 cp->cp_edx = xcp->cp_edx; 2755 return (cp->cp_eax); 2756 } 2757 2758 int 2759 cpuid_checkpass(cpu_t *cpu, int pass) 2760 { 2761 return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL && 2762 cpu->cpu_m.mcpu_cpi->cpi_pass >= pass); 2763 } 2764 2765 int 2766 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n) 2767 { 2768 ASSERT(cpuid_checkpass(cpu, 3)); 2769 2770 return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr)); 2771 } 2772 2773 int 2774 cpuid_is_cmt(cpu_t *cpu) 2775 { 2776 if (cpu == NULL) 2777 cpu = CPU; 2778 2779 ASSERT(cpuid_checkpass(cpu, 1)); 2780 2781 return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0); 2782 } 2783 2784 /* 2785 * AMD and Intel both implement the 64-bit variant of the syscall 2786 * instruction (syscallq), so if there's -any- support for syscall, 2787 * cpuid currently says "yes, we support this". 2788 * 2789 * However, Intel decided to -not- implement the 32-bit variant of the 2790 * syscall instruction, so we provide a predicate to allow our caller 2791 * to test that subtlety here. 2792 * 2793 * XXPV Currently, 32-bit syscall instructions don't work via the hypervisor, 2794 * even in the case where the hardware would in fact support it. 2795 */ 2796 /*ARGSUSED*/ 2797 int 2798 cpuid_syscall32_insn(cpu_t *cpu) 2799 { 2800 ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1)); 2801 2802 #if !defined(__xpv) 2803 if (cpu == NULL) 2804 cpu = CPU; 2805 2806 /*CSTYLED*/ 2807 { 2808 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2809 2810 if (cpi->cpi_vendor == X86_VENDOR_AMD && 2811 cpi->cpi_xmaxeax >= 0x80000001 && 2812 (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC)) 2813 return (1); 2814 } 2815 #endif 2816 return (0); 2817 } 2818 2819 int 2820 cpuid_getidstr(cpu_t *cpu, char *s, size_t n) 2821 { 2822 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 2823 2824 static const char fmt[] = 2825 "x86 (%s %X family %d model %d step %d clock %d MHz)"; 2826 static const char fmt_ht[] = 2827 "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)"; 2828 2829 ASSERT(cpuid_checkpass(cpu, 1)); 2830 2831 if (cpuid_is_cmt(cpu)) 2832 return (snprintf(s, n, fmt_ht, cpi->cpi_chipid, 2833 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2834 cpi->cpi_family, cpi->cpi_model, 2835 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2836 return (snprintf(s, n, fmt, 2837 cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax, 2838 cpi->cpi_family, cpi->cpi_model, 2839 cpi->cpi_step, cpu->cpu_type_info.pi_clock)); 2840 } 2841 2842 const char * 2843 cpuid_getvendorstr(cpu_t *cpu) 2844 { 2845 ASSERT(cpuid_checkpass(cpu, 1)); 2846 return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr); 2847 } 2848 2849 uint_t 2850 cpuid_getvendor(cpu_t *cpu) 2851 { 2852 ASSERT(cpuid_checkpass(cpu, 1)); 2853 return (cpu->cpu_m.mcpu_cpi->cpi_vendor); 2854 } 2855 2856 uint_t 2857 cpuid_getfamily(cpu_t *cpu) 2858 { 2859 ASSERT(cpuid_checkpass(cpu, 1)); 2860 return (cpu->cpu_m.mcpu_cpi->cpi_family); 2861 } 2862 2863 uint_t 2864 cpuid_getmodel(cpu_t *cpu) 2865 { 2866 ASSERT(cpuid_checkpass(cpu, 1)); 2867 return (cpu->cpu_m.mcpu_cpi->cpi_model); 2868 } 2869 2870 uint_t 2871 cpuid_get_ncpu_per_chip(cpu_t *cpu) 2872 { 2873 ASSERT(cpuid_checkpass(cpu, 1)); 2874 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip); 2875 } 2876 2877 uint_t 2878 cpuid_get_ncore_per_chip(cpu_t *cpu) 2879 { 2880 ASSERT(cpuid_checkpass(cpu, 1)); 2881 return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip); 2882 } 2883 2884 uint_t 2885 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu) 2886 { 2887 ASSERT(cpuid_checkpass(cpu, 2)); 2888 return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache); 2889 } 2890 2891 id_t 2892 cpuid_get_last_lvl_cacheid(cpu_t *cpu) 2893 { 2894 ASSERT(cpuid_checkpass(cpu, 2)); 2895 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 2896 } 2897 2898 uint_t 2899 cpuid_getstep(cpu_t *cpu) 2900 { 2901 ASSERT(cpuid_checkpass(cpu, 1)); 2902 return (cpu->cpu_m.mcpu_cpi->cpi_step); 2903 } 2904 2905 uint_t 2906 cpuid_getsig(struct cpu *cpu) 2907 { 2908 ASSERT(cpuid_checkpass(cpu, 1)); 2909 return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax); 2910 } 2911 2912 uint32_t 2913 cpuid_getchiprev(struct cpu *cpu) 2914 { 2915 ASSERT(cpuid_checkpass(cpu, 1)); 2916 return (cpu->cpu_m.mcpu_cpi->cpi_chiprev); 2917 } 2918 2919 const char * 2920 cpuid_getchiprevstr(struct cpu *cpu) 2921 { 2922 ASSERT(cpuid_checkpass(cpu, 1)); 2923 return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr); 2924 } 2925 2926 uint32_t 2927 cpuid_getsockettype(struct cpu *cpu) 2928 { 2929 ASSERT(cpuid_checkpass(cpu, 1)); 2930 return (cpu->cpu_m.mcpu_cpi->cpi_socket); 2931 } 2932 2933 const char * 2934 cpuid_getsocketstr(cpu_t *cpu) 2935 { 2936 static const char *socketstr = NULL; 2937 struct cpuid_info *cpi; 2938 2939 ASSERT(cpuid_checkpass(cpu, 1)); 2940 cpi = cpu->cpu_m.mcpu_cpi; 2941 2942 /* Assume that socket types are the same across the system */ 2943 if (socketstr == NULL) 2944 socketstr = _cpuid_sktstr(cpi->cpi_vendor, cpi->cpi_family, 2945 cpi->cpi_model, cpi->cpi_step); 2946 2947 2948 return (socketstr); 2949 } 2950 2951 int 2952 cpuid_get_chipid(cpu_t *cpu) 2953 { 2954 ASSERT(cpuid_checkpass(cpu, 1)); 2955 2956 if (cpuid_is_cmt(cpu)) 2957 return (cpu->cpu_m.mcpu_cpi->cpi_chipid); 2958 return (cpu->cpu_id); 2959 } 2960 2961 id_t 2962 cpuid_get_coreid(cpu_t *cpu) 2963 { 2964 ASSERT(cpuid_checkpass(cpu, 1)); 2965 return (cpu->cpu_m.mcpu_cpi->cpi_coreid); 2966 } 2967 2968 int 2969 cpuid_get_pkgcoreid(cpu_t *cpu) 2970 { 2971 ASSERT(cpuid_checkpass(cpu, 1)); 2972 return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid); 2973 } 2974 2975 int 2976 cpuid_get_clogid(cpu_t *cpu) 2977 { 2978 ASSERT(cpuid_checkpass(cpu, 1)); 2979 return (cpu->cpu_m.mcpu_cpi->cpi_clogid); 2980 } 2981 2982 int 2983 cpuid_get_cacheid(cpu_t *cpu) 2984 { 2985 ASSERT(cpuid_checkpass(cpu, 1)); 2986 return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid); 2987 } 2988 2989 uint_t 2990 cpuid_get_procnodeid(cpu_t *cpu) 2991 { 2992 ASSERT(cpuid_checkpass(cpu, 1)); 2993 return (cpu->cpu_m.mcpu_cpi->cpi_procnodeid); 2994 } 2995 2996 uint_t 2997 cpuid_get_procnodes_per_pkg(cpu_t *cpu) 2998 { 2999 ASSERT(cpuid_checkpass(cpu, 1)); 3000 return (cpu->cpu_m.mcpu_cpi->cpi_procnodes_per_pkg); 3001 } 3002 3003 /*ARGSUSED*/ 3004 int 3005 cpuid_have_cr8access(cpu_t *cpu) 3006 { 3007 #if defined(__amd64) 3008 return (1); 3009 #else 3010 struct cpuid_info *cpi; 3011 3012 ASSERT(cpu != NULL); 3013 cpi = cpu->cpu_m.mcpu_cpi; 3014 if (cpi->cpi_vendor == X86_VENDOR_AMD && cpi->cpi_maxeax >= 1 && 3015 (CPI_FEATURES_XTD_ECX(cpi) & CPUID_AMD_ECX_CR8D) != 0) 3016 return (1); 3017 return (0); 3018 #endif 3019 } 3020 3021 uint32_t 3022 cpuid_get_apicid(cpu_t *cpu) 3023 { 3024 ASSERT(cpuid_checkpass(cpu, 1)); 3025 if (cpu->cpu_m.mcpu_cpi->cpi_maxeax < 1) { 3026 return (UINT32_MAX); 3027 } else { 3028 return (cpu->cpu_m.mcpu_cpi->cpi_apicid); 3029 } 3030 } 3031 3032 void 3033 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits) 3034 { 3035 struct cpuid_info *cpi; 3036 3037 if (cpu == NULL) 3038 cpu = CPU; 3039 cpi = cpu->cpu_m.mcpu_cpi; 3040 3041 ASSERT(cpuid_checkpass(cpu, 1)); 3042 3043 if (pabits) 3044 *pabits = cpi->cpi_pabits; 3045 if (vabits) 3046 *vabits = cpi->cpi_vabits; 3047 } 3048 3049 /* 3050 * Returns the number of data TLB entries for a corresponding 3051 * pagesize. If it can't be computed, or isn't known, the 3052 * routine returns zero. If you ask about an architecturally 3053 * impossible pagesize, the routine will panic (so that the 3054 * hat implementor knows that things are inconsistent.) 3055 */ 3056 uint_t 3057 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize) 3058 { 3059 struct cpuid_info *cpi; 3060 uint_t dtlb_nent = 0; 3061 3062 if (cpu == NULL) 3063 cpu = CPU; 3064 cpi = cpu->cpu_m.mcpu_cpi; 3065 3066 ASSERT(cpuid_checkpass(cpu, 1)); 3067 3068 /* 3069 * Check the L2 TLB info 3070 */ 3071 if (cpi->cpi_xmaxeax >= 0x80000006) { 3072 struct cpuid_regs *cp = &cpi->cpi_extd[6]; 3073 3074 switch (pagesize) { 3075 3076 case 4 * 1024: 3077 /* 3078 * All zero in the top 16 bits of the register 3079 * indicates a unified TLB. Size is in low 16 bits. 3080 */ 3081 if ((cp->cp_ebx & 0xffff0000) == 0) 3082 dtlb_nent = cp->cp_ebx & 0x0000ffff; 3083 else 3084 dtlb_nent = BITX(cp->cp_ebx, 27, 16); 3085 break; 3086 3087 case 2 * 1024 * 1024: 3088 if ((cp->cp_eax & 0xffff0000) == 0) 3089 dtlb_nent = cp->cp_eax & 0x0000ffff; 3090 else 3091 dtlb_nent = BITX(cp->cp_eax, 27, 16); 3092 break; 3093 3094 default: 3095 panic("unknown L2 pagesize"); 3096 /*NOTREACHED*/ 3097 } 3098 } 3099 3100 if (dtlb_nent != 0) 3101 return (dtlb_nent); 3102 3103 /* 3104 * No L2 TLB support for this size, try L1. 3105 */ 3106 if (cpi->cpi_xmaxeax >= 0x80000005) { 3107 struct cpuid_regs *cp = &cpi->cpi_extd[5]; 3108 3109 switch (pagesize) { 3110 case 4 * 1024: 3111 dtlb_nent = BITX(cp->cp_ebx, 23, 16); 3112 break; 3113 case 2 * 1024 * 1024: 3114 dtlb_nent = BITX(cp->cp_eax, 23, 16); 3115 break; 3116 default: 3117 panic("unknown L1 d-TLB pagesize"); 3118 /*NOTREACHED*/ 3119 } 3120 } 3121 3122 return (dtlb_nent); 3123 } 3124 3125 /* 3126 * Return 0 if the erratum is not present or not applicable, positive 3127 * if it is, and negative if the status of the erratum is unknown. 3128 * 3129 * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm) 3130 * Processors" #25759, Rev 3.57, August 2005 3131 */ 3132 int 3133 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum) 3134 { 3135 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 3136 uint_t eax; 3137 3138 /* 3139 * Bail out if this CPU isn't an AMD CPU, or if it's 3140 * a legacy (32-bit) AMD CPU. 3141 */ 3142 if (cpi->cpi_vendor != X86_VENDOR_AMD || 3143 cpi->cpi_family == 4 || cpi->cpi_family == 5 || 3144 cpi->cpi_family == 6) 3145 3146 return (0); 3147 3148 eax = cpi->cpi_std[1].cp_eax; 3149 3150 #define SH_B0(eax) (eax == 0xf40 || eax == 0xf50) 3151 #define SH_B3(eax) (eax == 0xf51) 3152 #define B(eax) (SH_B0(eax) || SH_B3(eax)) 3153 3154 #define SH_C0(eax) (eax == 0xf48 || eax == 0xf58) 3155 3156 #define SH_CG(eax) (eax == 0xf4a || eax == 0xf5a || eax == 0xf7a) 3157 #define DH_CG(eax) (eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0) 3158 #define CH_CG(eax) (eax == 0xf82 || eax == 0xfb2) 3159 #define CG(eax) (SH_CG(eax) || DH_CG(eax) || CH_CG(eax)) 3160 3161 #define SH_D0(eax) (eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70) 3162 #define DH_D0(eax) (eax == 0x10fc0 || eax == 0x10ff0) 3163 #define CH_D0(eax) (eax == 0x10f80 || eax == 0x10fb0) 3164 #define D0(eax) (SH_D0(eax) || DH_D0(eax) || CH_D0(eax)) 3165 3166 #define SH_E0(eax) (eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70) 3167 #define JH_E1(eax) (eax == 0x20f10) /* JH8_E0 had 0x20f30 */ 3168 #define DH_E3(eax) (eax == 0x20fc0 || eax == 0x20ff0) 3169 #define SH_E4(eax) (eax == 0x20f51 || eax == 0x20f71) 3170 #define BH_E4(eax) (eax == 0x20fb1) 3171 #define SH_E5(eax) (eax == 0x20f42) 3172 #define DH_E6(eax) (eax == 0x20ff2 || eax == 0x20fc2) 3173 #define JH_E6(eax) (eax == 0x20f12 || eax == 0x20f32) 3174 #define EX(eax) (SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \ 3175 SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \ 3176 DH_E6(eax) || JH_E6(eax)) 3177 3178 #define DR_AX(eax) (eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02) 3179 #define DR_B0(eax) (eax == 0x100f20) 3180 #define DR_B1(eax) (eax == 0x100f21) 3181 #define DR_BA(eax) (eax == 0x100f2a) 3182 #define DR_B2(eax) (eax == 0x100f22) 3183 #define DR_B3(eax) (eax == 0x100f23) 3184 #define RB_C0(eax) (eax == 0x100f40) 3185 3186 switch (erratum) { 3187 case 1: 3188 return (cpi->cpi_family < 0x10); 3189 case 51: /* what does the asterisk mean? */ 3190 return (B(eax) || SH_C0(eax) || CG(eax)); 3191 case 52: 3192 return (B(eax)); 3193 case 57: 3194 return (cpi->cpi_family <= 0x11); 3195 case 58: 3196 return (B(eax)); 3197 case 60: 3198 return (cpi->cpi_family <= 0x11); 3199 case 61: 3200 case 62: 3201 case 63: 3202 case 64: 3203 case 65: 3204 case 66: 3205 case 68: 3206 case 69: 3207 case 70: 3208 case 71: 3209 return (B(eax)); 3210 case 72: 3211 return (SH_B0(eax)); 3212 case 74: 3213 return (B(eax)); 3214 case 75: 3215 return (cpi->cpi_family < 0x10); 3216 case 76: 3217 return (B(eax)); 3218 case 77: 3219 return (cpi->cpi_family <= 0x11); 3220 case 78: 3221 return (B(eax) || SH_C0(eax)); 3222 case 79: 3223 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 3224 case 80: 3225 case 81: 3226 case 82: 3227 return (B(eax)); 3228 case 83: 3229 return (B(eax) || SH_C0(eax) || CG(eax)); 3230 case 85: 3231 return (cpi->cpi_family < 0x10); 3232 case 86: 3233 return (SH_C0(eax) || CG(eax)); 3234 case 88: 3235 #if !defined(__amd64) 3236 return (0); 3237 #else 3238 return (B(eax) || SH_C0(eax)); 3239 #endif 3240 case 89: 3241 return (cpi->cpi_family < 0x10); 3242 case 90: 3243 return (B(eax) || SH_C0(eax) || CG(eax)); 3244 case 91: 3245 case 92: 3246 return (B(eax) || SH_C0(eax)); 3247 case 93: 3248 return (SH_C0(eax)); 3249 case 94: 3250 return (B(eax) || SH_C0(eax) || CG(eax)); 3251 case 95: 3252 #if !defined(__amd64) 3253 return (0); 3254 #else 3255 return (B(eax) || SH_C0(eax)); 3256 #endif 3257 case 96: 3258 return (B(eax) || SH_C0(eax) || CG(eax)); 3259 case 97: 3260 case 98: 3261 return (SH_C0(eax) || CG(eax)); 3262 case 99: 3263 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 3264 case 100: 3265 return (B(eax) || SH_C0(eax)); 3266 case 101: 3267 case 103: 3268 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 3269 case 104: 3270 return (SH_C0(eax) || CG(eax) || D0(eax)); 3271 case 105: 3272 case 106: 3273 case 107: 3274 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 3275 case 108: 3276 return (DH_CG(eax)); 3277 case 109: 3278 return (SH_C0(eax) || CG(eax) || D0(eax)); 3279 case 110: 3280 return (D0(eax) || EX(eax)); 3281 case 111: 3282 return (CG(eax)); 3283 case 112: 3284 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 3285 case 113: 3286 return (eax == 0x20fc0); 3287 case 114: 3288 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 3289 case 115: 3290 return (SH_E0(eax) || JH_E1(eax)); 3291 case 116: 3292 return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax)); 3293 case 117: 3294 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax)); 3295 case 118: 3296 return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) || 3297 JH_E6(eax)); 3298 case 121: 3299 return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax)); 3300 case 122: 3301 return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11); 3302 case 123: 3303 return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax)); 3304 case 131: 3305 return (cpi->cpi_family < 0x10); 3306 case 6336786: 3307 /* 3308 * Test for AdvPowerMgmtInfo.TscPStateInvariant 3309 * if this is a K8 family or newer processor 3310 */ 3311 if (CPI_FAMILY(cpi) == 0xf) { 3312 struct cpuid_regs regs; 3313 regs.cp_eax = 0x80000007; 3314 (void) __cpuid_insn(®s); 3315 return (!(regs.cp_edx & 0x100)); 3316 } 3317 return (0); 3318 case 6323525: 3319 return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) | 3320 (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40); 3321 3322 case 6671130: 3323 /* 3324 * check for processors (pre-Shanghai) that do not provide 3325 * optimal management of 1gb ptes in its tlb. 3326 */ 3327 return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4); 3328 3329 case 298: 3330 return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) || 3331 DR_B2(eax) || RB_C0(eax)); 3332 3333 case 721: 3334 #if defined(__amd64) 3335 return (cpi->cpi_family == 0x10 || cpi->cpi_family == 0x12); 3336 #else 3337 return (0); 3338 #endif 3339 3340 default: 3341 return (-1); 3342 3343 } 3344 } 3345 3346 /* 3347 * Determine if specified erratum is present via OSVW (OS Visible Workaround). 3348 * Return 1 if erratum is present, 0 if not present and -1 if indeterminate. 3349 */ 3350 int 3351 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum) 3352 { 3353 struct cpuid_info *cpi; 3354 uint_t osvwid; 3355 static int osvwfeature = -1; 3356 uint64_t osvwlength; 3357 3358 3359 cpi = cpu->cpu_m.mcpu_cpi; 3360 3361 /* confirm OSVW supported */ 3362 if (osvwfeature == -1) { 3363 osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW; 3364 } else { 3365 /* assert that osvw feature setting is consistent on all cpus */ 3366 ASSERT(osvwfeature == 3367 (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW)); 3368 } 3369 if (!osvwfeature) 3370 return (-1); 3371 3372 osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK; 3373 3374 switch (erratum) { 3375 case 298: /* osvwid is 0 */ 3376 osvwid = 0; 3377 if (osvwlength <= (uint64_t)osvwid) { 3378 /* osvwid 0 is unknown */ 3379 return (-1); 3380 } 3381 3382 /* 3383 * Check the OSVW STATUS MSR to determine the state 3384 * of the erratum where: 3385 * 0 - fixed by HW 3386 * 1 - BIOS has applied the workaround when BIOS 3387 * workaround is available. (Or for other errata, 3388 * OS workaround is required.) 3389 * For a value of 1, caller will confirm that the 3390 * erratum 298 workaround has indeed been applied by BIOS. 3391 * 3392 * A 1 may be set in cpus that have a HW fix 3393 * in a mixed cpu system. Regarding erratum 298: 3394 * In a multiprocessor platform, the workaround above 3395 * should be applied to all processors regardless of 3396 * silicon revision when an affected processor is 3397 * present. 3398 */ 3399 3400 return (rdmsr(MSR_AMD_OSVW_STATUS + 3401 (osvwid / OSVW_ID_CNT_PER_MSR)) & 3402 (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR))); 3403 3404 default: 3405 return (-1); 3406 } 3407 } 3408 3409 static const char assoc_str[] = "associativity"; 3410 static const char line_str[] = "line-size"; 3411 static const char size_str[] = "size"; 3412 3413 static void 3414 add_cache_prop(dev_info_t *devi, const char *label, const char *type, 3415 uint32_t val) 3416 { 3417 char buf[128]; 3418 3419 /* 3420 * ndi_prop_update_int() is used because it is desirable for 3421 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set. 3422 */ 3423 if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf)) 3424 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val); 3425 } 3426 3427 /* 3428 * Intel-style cache/tlb description 3429 * 3430 * Standard cpuid level 2 gives a randomly ordered 3431 * selection of tags that index into a table that describes 3432 * cache and tlb properties. 3433 */ 3434 3435 static const char l1_icache_str[] = "l1-icache"; 3436 static const char l1_dcache_str[] = "l1-dcache"; 3437 static const char l2_cache_str[] = "l2-cache"; 3438 static const char l3_cache_str[] = "l3-cache"; 3439 static const char itlb4k_str[] = "itlb-4K"; 3440 static const char dtlb4k_str[] = "dtlb-4K"; 3441 static const char itlb2M_str[] = "itlb-2M"; 3442 static const char itlb4M_str[] = "itlb-4M"; 3443 static const char dtlb4M_str[] = "dtlb-4M"; 3444 static const char dtlb24_str[] = "dtlb0-2M-4M"; 3445 static const char itlb424_str[] = "itlb-4K-2M-4M"; 3446 static const char itlb24_str[] = "itlb-2M-4M"; 3447 static const char dtlb44_str[] = "dtlb-4K-4M"; 3448 static const char sl1_dcache_str[] = "sectored-l1-dcache"; 3449 static const char sl2_cache_str[] = "sectored-l2-cache"; 3450 static const char itrace_str[] = "itrace-cache"; 3451 static const char sl3_cache_str[] = "sectored-l3-cache"; 3452 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k"; 3453 3454 static const struct cachetab { 3455 uint8_t ct_code; 3456 uint8_t ct_assoc; 3457 uint16_t ct_line_size; 3458 size_t ct_size; 3459 const char *ct_label; 3460 } intel_ctab[] = { 3461 /* 3462 * maintain descending order! 3463 * 3464 * Codes ignored - Reason 3465 * ---------------------- 3466 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache 3467 * f0H/f1H - Currently we do not interpret prefetch size by design 3468 */ 3469 { 0xe4, 16, 64, 8*1024*1024, l3_cache_str}, 3470 { 0xe3, 16, 64, 4*1024*1024, l3_cache_str}, 3471 { 0xe2, 16, 64, 2*1024*1024, l3_cache_str}, 3472 { 0xde, 12, 64, 6*1024*1024, l3_cache_str}, 3473 { 0xdd, 12, 64, 3*1024*1024, l3_cache_str}, 3474 { 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str}, 3475 { 0xd8, 8, 64, 4*1024*1024, l3_cache_str}, 3476 { 0xd7, 8, 64, 2*1024*1024, l3_cache_str}, 3477 { 0xd6, 8, 64, 1*1024*1024, l3_cache_str}, 3478 { 0xd2, 4, 64, 2*1024*1024, l3_cache_str}, 3479 { 0xd1, 4, 64, 1*1024*1024, l3_cache_str}, 3480 { 0xd0, 4, 64, 512*1024, l3_cache_str}, 3481 { 0xca, 4, 0, 512, sh_l2_tlb4k_str}, 3482 { 0xc0, 4, 0, 8, dtlb44_str }, 3483 { 0xba, 4, 0, 64, dtlb4k_str }, 3484 { 0xb4, 4, 0, 256, dtlb4k_str }, 3485 { 0xb3, 4, 0, 128, dtlb4k_str }, 3486 { 0xb2, 4, 0, 64, itlb4k_str }, 3487 { 0xb0, 4, 0, 128, itlb4k_str }, 3488 { 0x87, 8, 64, 1024*1024, l2_cache_str}, 3489 { 0x86, 4, 64, 512*1024, l2_cache_str}, 3490 { 0x85, 8, 32, 2*1024*1024, l2_cache_str}, 3491 { 0x84, 8, 32, 1024*1024, l2_cache_str}, 3492 { 0x83, 8, 32, 512*1024, l2_cache_str}, 3493 { 0x82, 8, 32, 256*1024, l2_cache_str}, 3494 { 0x80, 8, 64, 512*1024, l2_cache_str}, 3495 { 0x7f, 2, 64, 512*1024, l2_cache_str}, 3496 { 0x7d, 8, 64, 2*1024*1024, sl2_cache_str}, 3497 { 0x7c, 8, 64, 1024*1024, sl2_cache_str}, 3498 { 0x7b, 8, 64, 512*1024, sl2_cache_str}, 3499 { 0x7a, 8, 64, 256*1024, sl2_cache_str}, 3500 { 0x79, 8, 64, 128*1024, sl2_cache_str}, 3501 { 0x78, 8, 64, 1024*1024, l2_cache_str}, 3502 { 0x73, 8, 0, 64*1024, itrace_str}, 3503 { 0x72, 8, 0, 32*1024, itrace_str}, 3504 { 0x71, 8, 0, 16*1024, itrace_str}, 3505 { 0x70, 8, 0, 12*1024, itrace_str}, 3506 { 0x68, 4, 64, 32*1024, sl1_dcache_str}, 3507 { 0x67, 4, 64, 16*1024, sl1_dcache_str}, 3508 { 0x66, 4, 64, 8*1024, sl1_dcache_str}, 3509 { 0x60, 8, 64, 16*1024, sl1_dcache_str}, 3510 { 0x5d, 0, 0, 256, dtlb44_str}, 3511 { 0x5c, 0, 0, 128, dtlb44_str}, 3512 { 0x5b, 0, 0, 64, dtlb44_str}, 3513 { 0x5a, 4, 0, 32, dtlb24_str}, 3514 { 0x59, 0, 0, 16, dtlb4k_str}, 3515 { 0x57, 4, 0, 16, dtlb4k_str}, 3516 { 0x56, 4, 0, 16, dtlb4M_str}, 3517 { 0x55, 0, 0, 7, itlb24_str}, 3518 { 0x52, 0, 0, 256, itlb424_str}, 3519 { 0x51, 0, 0, 128, itlb424_str}, 3520 { 0x50, 0, 0, 64, itlb424_str}, 3521 { 0x4f, 0, 0, 32, itlb4k_str}, 3522 { 0x4e, 24, 64, 6*1024*1024, l2_cache_str}, 3523 { 0x4d, 16, 64, 16*1024*1024, l3_cache_str}, 3524 { 0x4c, 12, 64, 12*1024*1024, l3_cache_str}, 3525 { 0x4b, 16, 64, 8*1024*1024, l3_cache_str}, 3526 { 0x4a, 12, 64, 6*1024*1024, l3_cache_str}, 3527 { 0x49, 16, 64, 4*1024*1024, l3_cache_str}, 3528 { 0x48, 12, 64, 3*1024*1024, l2_cache_str}, 3529 { 0x47, 8, 64, 8*1024*1024, l3_cache_str}, 3530 { 0x46, 4, 64, 4*1024*1024, l3_cache_str}, 3531 { 0x45, 4, 32, 2*1024*1024, l2_cache_str}, 3532 { 0x44, 4, 32, 1024*1024, l2_cache_str}, 3533 { 0x43, 4, 32, 512*1024, l2_cache_str}, 3534 { 0x42, 4, 32, 256*1024, l2_cache_str}, 3535 { 0x41, 4, 32, 128*1024, l2_cache_str}, 3536 { 0x3e, 4, 64, 512*1024, sl2_cache_str}, 3537 { 0x3d, 6, 64, 384*1024, sl2_cache_str}, 3538 { 0x3c, 4, 64, 256*1024, sl2_cache_str}, 3539 { 0x3b, 2, 64, 128*1024, sl2_cache_str}, 3540 { 0x3a, 6, 64, 192*1024, sl2_cache_str}, 3541 { 0x39, 4, 64, 128*1024, sl2_cache_str}, 3542 { 0x30, 8, 64, 32*1024, l1_icache_str}, 3543 { 0x2c, 8, 64, 32*1024, l1_dcache_str}, 3544 { 0x29, 8, 64, 4096*1024, sl3_cache_str}, 3545 { 0x25, 8, 64, 2048*1024, sl3_cache_str}, 3546 { 0x23, 8, 64, 1024*1024, sl3_cache_str}, 3547 { 0x22, 4, 64, 512*1024, sl3_cache_str}, 3548 { 0x0e, 6, 64, 24*1024, l1_dcache_str}, 3549 { 0x0d, 4, 32, 16*1024, l1_dcache_str}, 3550 { 0x0c, 4, 32, 16*1024, l1_dcache_str}, 3551 { 0x0b, 4, 0, 4, itlb4M_str}, 3552 { 0x0a, 2, 32, 8*1024, l1_dcache_str}, 3553 { 0x08, 4, 32, 16*1024, l1_icache_str}, 3554 { 0x06, 4, 32, 8*1024, l1_icache_str}, 3555 { 0x05, 4, 0, 32, dtlb4M_str}, 3556 { 0x04, 4, 0, 8, dtlb4M_str}, 3557 { 0x03, 4, 0, 64, dtlb4k_str}, 3558 { 0x02, 4, 0, 2, itlb4M_str}, 3559 { 0x01, 4, 0, 32, itlb4k_str}, 3560 { 0 } 3561 }; 3562 3563 static const struct cachetab cyrix_ctab[] = { 3564 { 0x70, 4, 0, 32, "tlb-4K" }, 3565 { 0x80, 4, 16, 16*1024, "l1-cache" }, 3566 { 0 } 3567 }; 3568 3569 /* 3570 * Search a cache table for a matching entry 3571 */ 3572 static const struct cachetab * 3573 find_cacheent(const struct cachetab *ct, uint_t code) 3574 { 3575 if (code != 0) { 3576 for (; ct->ct_code != 0; ct++) 3577 if (ct->ct_code <= code) 3578 break; 3579 if (ct->ct_code == code) 3580 return (ct); 3581 } 3582 return (NULL); 3583 } 3584 3585 /* 3586 * Populate cachetab entry with L2 or L3 cache-information using 3587 * cpuid function 4. This function is called from intel_walk_cacheinfo() 3588 * when descriptor 0x49 is encountered. It returns 0 if no such cache 3589 * information is found. 3590 */ 3591 static int 3592 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi) 3593 { 3594 uint32_t level, i; 3595 int ret = 0; 3596 3597 for (i = 0; i < cpi->cpi_std_4_size; i++) { 3598 level = CPI_CACHE_LVL(cpi->cpi_std_4[i]); 3599 3600 if (level == 2 || level == 3) { 3601 ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1; 3602 ct->ct_line_size = 3603 CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1; 3604 ct->ct_size = ct->ct_assoc * 3605 (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) * 3606 ct->ct_line_size * 3607 (cpi->cpi_std_4[i]->cp_ecx + 1); 3608 3609 if (level == 2) { 3610 ct->ct_label = l2_cache_str; 3611 } else if (level == 3) { 3612 ct->ct_label = l3_cache_str; 3613 } 3614 ret = 1; 3615 } 3616 } 3617 3618 return (ret); 3619 } 3620 3621 /* 3622 * Walk the cacheinfo descriptor, applying 'func' to every valid element 3623 * The walk is terminated if the walker returns non-zero. 3624 */ 3625 static void 3626 intel_walk_cacheinfo(struct cpuid_info *cpi, 3627 void *arg, int (*func)(void *, const struct cachetab *)) 3628 { 3629 const struct cachetab *ct; 3630 struct cachetab des_49_ct, des_b1_ct; 3631 uint8_t *dp; 3632 int i; 3633 3634 if ((dp = cpi->cpi_cacheinfo) == NULL) 3635 return; 3636 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 3637 /* 3638 * For overloaded descriptor 0x49 we use cpuid function 4 3639 * if supported by the current processor, to create 3640 * cache information. 3641 * For overloaded descriptor 0xb1 we use X86_PAE flag 3642 * to disambiguate the cache information. 3643 */ 3644 if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 && 3645 intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) { 3646 ct = &des_49_ct; 3647 } else if (*dp == 0xb1) { 3648 des_b1_ct.ct_code = 0xb1; 3649 des_b1_ct.ct_assoc = 4; 3650 des_b1_ct.ct_line_size = 0; 3651 if (is_x86_feature(x86_featureset, X86FSET_PAE)) { 3652 des_b1_ct.ct_size = 8; 3653 des_b1_ct.ct_label = itlb2M_str; 3654 } else { 3655 des_b1_ct.ct_size = 4; 3656 des_b1_ct.ct_label = itlb4M_str; 3657 } 3658 ct = &des_b1_ct; 3659 } else { 3660 if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) { 3661 continue; 3662 } 3663 } 3664 3665 if (func(arg, ct) != 0) { 3666 break; 3667 } 3668 } 3669 } 3670 3671 /* 3672 * (Like the Intel one, except for Cyrix CPUs) 3673 */ 3674 static void 3675 cyrix_walk_cacheinfo(struct cpuid_info *cpi, 3676 void *arg, int (*func)(void *, const struct cachetab *)) 3677 { 3678 const struct cachetab *ct; 3679 uint8_t *dp; 3680 int i; 3681 3682 if ((dp = cpi->cpi_cacheinfo) == NULL) 3683 return; 3684 for (i = 0; i < cpi->cpi_ncache; i++, dp++) { 3685 /* 3686 * Search Cyrix-specific descriptor table first .. 3687 */ 3688 if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) { 3689 if (func(arg, ct) != 0) 3690 break; 3691 continue; 3692 } 3693 /* 3694 * .. else fall back to the Intel one 3695 */ 3696 if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) { 3697 if (func(arg, ct) != 0) 3698 break; 3699 continue; 3700 } 3701 } 3702 } 3703 3704 /* 3705 * A cacheinfo walker that adds associativity, line-size, and size properties 3706 * to the devinfo node it is passed as an argument. 3707 */ 3708 static int 3709 add_cacheent_props(void *arg, const struct cachetab *ct) 3710 { 3711 dev_info_t *devi = arg; 3712 3713 add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc); 3714 if (ct->ct_line_size != 0) 3715 add_cache_prop(devi, ct->ct_label, line_str, 3716 ct->ct_line_size); 3717 add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size); 3718 return (0); 3719 } 3720 3721 3722 static const char fully_assoc[] = "fully-associative?"; 3723 3724 /* 3725 * AMD style cache/tlb description 3726 * 3727 * Extended functions 5 and 6 directly describe properties of 3728 * tlbs and various cache levels. 3729 */ 3730 static void 3731 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3732 { 3733 switch (assoc) { 3734 case 0: /* reserved; ignore */ 3735 break; 3736 default: 3737 add_cache_prop(devi, label, assoc_str, assoc); 3738 break; 3739 case 0xff: 3740 add_cache_prop(devi, label, fully_assoc, 1); 3741 break; 3742 } 3743 } 3744 3745 static void 3746 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3747 { 3748 if (size == 0) 3749 return; 3750 add_cache_prop(devi, label, size_str, size); 3751 add_amd_assoc(devi, label, assoc); 3752 } 3753 3754 static void 3755 add_amd_cache(dev_info_t *devi, const char *label, 3756 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3757 { 3758 if (size == 0 || line_size == 0) 3759 return; 3760 add_amd_assoc(devi, label, assoc); 3761 /* 3762 * Most AMD parts have a sectored cache. Multiple cache lines are 3763 * associated with each tag. A sector consists of all cache lines 3764 * associated with a tag. For example, the AMD K6-III has a sector 3765 * size of 2 cache lines per tag. 3766 */ 3767 if (lines_per_tag != 0) 3768 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3769 add_cache_prop(devi, label, line_str, line_size); 3770 add_cache_prop(devi, label, size_str, size * 1024); 3771 } 3772 3773 static void 3774 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc) 3775 { 3776 switch (assoc) { 3777 case 0: /* off */ 3778 break; 3779 case 1: 3780 case 2: 3781 case 4: 3782 add_cache_prop(devi, label, assoc_str, assoc); 3783 break; 3784 case 6: 3785 add_cache_prop(devi, label, assoc_str, 8); 3786 break; 3787 case 8: 3788 add_cache_prop(devi, label, assoc_str, 16); 3789 break; 3790 case 0xf: 3791 add_cache_prop(devi, label, fully_assoc, 1); 3792 break; 3793 default: /* reserved; ignore */ 3794 break; 3795 } 3796 } 3797 3798 static void 3799 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size) 3800 { 3801 if (size == 0 || assoc == 0) 3802 return; 3803 add_amd_l2_assoc(devi, label, assoc); 3804 add_cache_prop(devi, label, size_str, size); 3805 } 3806 3807 static void 3808 add_amd_l2_cache(dev_info_t *devi, const char *label, 3809 uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size) 3810 { 3811 if (size == 0 || assoc == 0 || line_size == 0) 3812 return; 3813 add_amd_l2_assoc(devi, label, assoc); 3814 if (lines_per_tag != 0) 3815 add_cache_prop(devi, label, "lines-per-tag", lines_per_tag); 3816 add_cache_prop(devi, label, line_str, line_size); 3817 add_cache_prop(devi, label, size_str, size * 1024); 3818 } 3819 3820 static void 3821 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi) 3822 { 3823 struct cpuid_regs *cp; 3824 3825 if (cpi->cpi_xmaxeax < 0x80000005) 3826 return; 3827 cp = &cpi->cpi_extd[5]; 3828 3829 /* 3830 * 4M/2M L1 TLB configuration 3831 * 3832 * We report the size for 2M pages because AMD uses two 3833 * TLB entries for one 4M page. 3834 */ 3835 add_amd_tlb(devi, "dtlb-2M", 3836 BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16)); 3837 add_amd_tlb(devi, "itlb-2M", 3838 BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0)); 3839 3840 /* 3841 * 4K L1 TLB configuration 3842 */ 3843 3844 switch (cpi->cpi_vendor) { 3845 uint_t nentries; 3846 case X86_VENDOR_TM: 3847 if (cpi->cpi_family >= 5) { 3848 /* 3849 * Crusoe processors have 256 TLB entries, but 3850 * cpuid data format constrains them to only 3851 * reporting 255 of them. 3852 */ 3853 if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255) 3854 nentries = 256; 3855 /* 3856 * Crusoe processors also have a unified TLB 3857 */ 3858 add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24), 3859 nentries); 3860 break; 3861 } 3862 /*FALLTHROUGH*/ 3863 default: 3864 add_amd_tlb(devi, itlb4k_str, 3865 BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16)); 3866 add_amd_tlb(devi, dtlb4k_str, 3867 BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0)); 3868 break; 3869 } 3870 3871 /* 3872 * data L1 cache configuration 3873 */ 3874 3875 add_amd_cache(devi, l1_dcache_str, 3876 BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16), 3877 BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0)); 3878 3879 /* 3880 * code L1 cache configuration 3881 */ 3882 3883 add_amd_cache(devi, l1_icache_str, 3884 BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16), 3885 BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0)); 3886 3887 if (cpi->cpi_xmaxeax < 0x80000006) 3888 return; 3889 cp = &cpi->cpi_extd[6]; 3890 3891 /* Check for a unified L2 TLB for large pages */ 3892 3893 if (BITX(cp->cp_eax, 31, 16) == 0) 3894 add_amd_l2_tlb(devi, "l2-tlb-2M", 3895 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3896 else { 3897 add_amd_l2_tlb(devi, "l2-dtlb-2M", 3898 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3899 add_amd_l2_tlb(devi, "l2-itlb-2M", 3900 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3901 } 3902 3903 /* Check for a unified L2 TLB for 4K pages */ 3904 3905 if (BITX(cp->cp_ebx, 31, 16) == 0) { 3906 add_amd_l2_tlb(devi, "l2-tlb-4K", 3907 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3908 } else { 3909 add_amd_l2_tlb(devi, "l2-dtlb-4K", 3910 BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16)); 3911 add_amd_l2_tlb(devi, "l2-itlb-4K", 3912 BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0)); 3913 } 3914 3915 add_amd_l2_cache(devi, l2_cache_str, 3916 BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12), 3917 BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0)); 3918 } 3919 3920 /* 3921 * There are two basic ways that the x86 world describes it cache 3922 * and tlb architecture - Intel's way and AMD's way. 3923 * 3924 * Return which flavor of cache architecture we should use 3925 */ 3926 static int 3927 x86_which_cacheinfo(struct cpuid_info *cpi) 3928 { 3929 switch (cpi->cpi_vendor) { 3930 case X86_VENDOR_Intel: 3931 if (cpi->cpi_maxeax >= 2) 3932 return (X86_VENDOR_Intel); 3933 break; 3934 case X86_VENDOR_AMD: 3935 /* 3936 * The K5 model 1 was the first part from AMD that reported 3937 * cache sizes via extended cpuid functions. 3938 */ 3939 if (cpi->cpi_family > 5 || 3940 (cpi->cpi_family == 5 && cpi->cpi_model >= 1)) 3941 return (X86_VENDOR_AMD); 3942 break; 3943 case X86_VENDOR_TM: 3944 if (cpi->cpi_family >= 5) 3945 return (X86_VENDOR_AMD); 3946 /*FALLTHROUGH*/ 3947 default: 3948 /* 3949 * If they have extended CPU data for 0x80000005 3950 * then we assume they have AMD-format cache 3951 * information. 3952 * 3953 * If not, and the vendor happens to be Cyrix, 3954 * then try our-Cyrix specific handler. 3955 * 3956 * If we're not Cyrix, then assume we're using Intel's 3957 * table-driven format instead. 3958 */ 3959 if (cpi->cpi_xmaxeax >= 0x80000005) 3960 return (X86_VENDOR_AMD); 3961 else if (cpi->cpi_vendor == X86_VENDOR_Cyrix) 3962 return (X86_VENDOR_Cyrix); 3963 else if (cpi->cpi_maxeax >= 2) 3964 return (X86_VENDOR_Intel); 3965 break; 3966 } 3967 return (-1); 3968 } 3969 3970 void 3971 cpuid_set_cpu_properties(void *dip, processorid_t cpu_id, 3972 struct cpuid_info *cpi) 3973 { 3974 dev_info_t *cpu_devi; 3975 int create; 3976 3977 cpu_devi = (dev_info_t *)dip; 3978 3979 /* device_type */ 3980 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 3981 "device_type", "cpu"); 3982 3983 /* reg */ 3984 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3985 "reg", cpu_id); 3986 3987 /* cpu-mhz, and clock-frequency */ 3988 if (cpu_freq > 0) { 3989 long long mul; 3990 3991 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3992 "cpu-mhz", cpu_freq); 3993 if ((mul = cpu_freq * 1000000LL) <= INT_MAX) 3994 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 3995 "clock-frequency", (int)mul); 3996 } 3997 3998 if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) { 3999 return; 4000 } 4001 4002 /* vendor-id */ 4003 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 4004 "vendor-id", cpi->cpi_vendorstr); 4005 4006 if (cpi->cpi_maxeax == 0) { 4007 return; 4008 } 4009 4010 /* 4011 * family, model, and step 4012 */ 4013 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4014 "family", CPI_FAMILY(cpi)); 4015 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4016 "cpu-model", CPI_MODEL(cpi)); 4017 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4018 "stepping-id", CPI_STEP(cpi)); 4019 4020 /* type */ 4021 switch (cpi->cpi_vendor) { 4022 case X86_VENDOR_Intel: 4023 create = 1; 4024 break; 4025 default: 4026 create = 0; 4027 break; 4028 } 4029 if (create) 4030 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4031 "type", CPI_TYPE(cpi)); 4032 4033 /* ext-family */ 4034 switch (cpi->cpi_vendor) { 4035 case X86_VENDOR_Intel: 4036 case X86_VENDOR_AMD: 4037 create = cpi->cpi_family >= 0xf; 4038 break; 4039 default: 4040 create = 0; 4041 break; 4042 } 4043 if (create) 4044 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4045 "ext-family", CPI_FAMILY_XTD(cpi)); 4046 4047 /* ext-model */ 4048 switch (cpi->cpi_vendor) { 4049 case X86_VENDOR_Intel: 4050 create = IS_EXTENDED_MODEL_INTEL(cpi); 4051 break; 4052 case X86_VENDOR_AMD: 4053 create = CPI_FAMILY(cpi) == 0xf; 4054 break; 4055 default: 4056 create = 0; 4057 break; 4058 } 4059 if (create) 4060 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4061 "ext-model", CPI_MODEL_XTD(cpi)); 4062 4063 /* generation */ 4064 switch (cpi->cpi_vendor) { 4065 case X86_VENDOR_AMD: 4066 /* 4067 * AMD K5 model 1 was the first part to support this 4068 */ 4069 create = cpi->cpi_xmaxeax >= 0x80000001; 4070 break; 4071 default: 4072 create = 0; 4073 break; 4074 } 4075 if (create) 4076 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4077 "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8)); 4078 4079 /* brand-id */ 4080 switch (cpi->cpi_vendor) { 4081 case X86_VENDOR_Intel: 4082 /* 4083 * brand id first appeared on Pentium III Xeon model 8, 4084 * and Celeron model 8 processors and Opteron 4085 */ 4086 create = cpi->cpi_family > 6 || 4087 (cpi->cpi_family == 6 && cpi->cpi_model >= 8); 4088 break; 4089 case X86_VENDOR_AMD: 4090 create = cpi->cpi_family >= 0xf; 4091 break; 4092 default: 4093 create = 0; 4094 break; 4095 } 4096 if (create && cpi->cpi_brandid != 0) { 4097 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4098 "brand-id", cpi->cpi_brandid); 4099 } 4100 4101 /* chunks, and apic-id */ 4102 switch (cpi->cpi_vendor) { 4103 /* 4104 * first available on Pentium IV and Opteron (K8) 4105 */ 4106 case X86_VENDOR_Intel: 4107 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 4108 break; 4109 case X86_VENDOR_AMD: 4110 create = cpi->cpi_family >= 0xf; 4111 break; 4112 default: 4113 create = 0; 4114 break; 4115 } 4116 if (create) { 4117 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4118 "chunks", CPI_CHUNKS(cpi)); 4119 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4120 "apic-id", cpi->cpi_apicid); 4121 if (cpi->cpi_chipid >= 0) { 4122 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4123 "chip#", cpi->cpi_chipid); 4124 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4125 "clog#", cpi->cpi_clogid); 4126 } 4127 } 4128 4129 /* cpuid-features */ 4130 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4131 "cpuid-features", CPI_FEATURES_EDX(cpi)); 4132 4133 4134 /* cpuid-features-ecx */ 4135 switch (cpi->cpi_vendor) { 4136 case X86_VENDOR_Intel: 4137 create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf; 4138 break; 4139 case X86_VENDOR_AMD: 4140 create = cpi->cpi_family >= 0xf; 4141 break; 4142 default: 4143 create = 0; 4144 break; 4145 } 4146 if (create) 4147 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4148 "cpuid-features-ecx", CPI_FEATURES_ECX(cpi)); 4149 4150 /* ext-cpuid-features */ 4151 switch (cpi->cpi_vendor) { 4152 case X86_VENDOR_Intel: 4153 case X86_VENDOR_AMD: 4154 case X86_VENDOR_Cyrix: 4155 case X86_VENDOR_TM: 4156 case X86_VENDOR_Centaur: 4157 create = cpi->cpi_xmaxeax >= 0x80000001; 4158 break; 4159 default: 4160 create = 0; 4161 break; 4162 } 4163 if (create) { 4164 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4165 "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi)); 4166 (void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi, 4167 "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi)); 4168 } 4169 4170 /* 4171 * Brand String first appeared in Intel Pentium IV, AMD K5 4172 * model 1, and Cyrix GXm. On earlier models we try and 4173 * simulate something similar .. so this string should always 4174 * same -something- about the processor, however lame. 4175 */ 4176 (void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi, 4177 "brand-string", cpi->cpi_brandstr); 4178 4179 /* 4180 * Finally, cache and tlb information 4181 */ 4182 switch (x86_which_cacheinfo(cpi)) { 4183 case X86_VENDOR_Intel: 4184 intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 4185 break; 4186 case X86_VENDOR_Cyrix: 4187 cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props); 4188 break; 4189 case X86_VENDOR_AMD: 4190 amd_cache_info(cpi, cpu_devi); 4191 break; 4192 default: 4193 break; 4194 } 4195 } 4196 4197 struct l2info { 4198 int *l2i_csz; 4199 int *l2i_lsz; 4200 int *l2i_assoc; 4201 int l2i_ret; 4202 }; 4203 4204 /* 4205 * A cacheinfo walker that fetches the size, line-size and associativity 4206 * of the L2 cache 4207 */ 4208 static int 4209 intel_l2cinfo(void *arg, const struct cachetab *ct) 4210 { 4211 struct l2info *l2i = arg; 4212 int *ip; 4213 4214 if (ct->ct_label != l2_cache_str && 4215 ct->ct_label != sl2_cache_str) 4216 return (0); /* not an L2 -- keep walking */ 4217 4218 if ((ip = l2i->l2i_csz) != NULL) 4219 *ip = ct->ct_size; 4220 if ((ip = l2i->l2i_lsz) != NULL) 4221 *ip = ct->ct_line_size; 4222 if ((ip = l2i->l2i_assoc) != NULL) 4223 *ip = ct->ct_assoc; 4224 l2i->l2i_ret = ct->ct_size; 4225 return (1); /* was an L2 -- terminate walk */ 4226 } 4227 4228 /* 4229 * AMD L2/L3 Cache and TLB Associativity Field Definition: 4230 * 4231 * Unlike the associativity for the L1 cache and tlb where the 8 bit 4232 * value is the associativity, the associativity for the L2 cache and 4233 * tlb is encoded in the following table. The 4 bit L2 value serves as 4234 * an index into the amd_afd[] array to determine the associativity. 4235 * -1 is undefined. 0 is fully associative. 4236 */ 4237 4238 static int amd_afd[] = 4239 {-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0}; 4240 4241 static void 4242 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i) 4243 { 4244 struct cpuid_regs *cp; 4245 uint_t size, assoc; 4246 int i; 4247 int *ip; 4248 4249 if (cpi->cpi_xmaxeax < 0x80000006) 4250 return; 4251 cp = &cpi->cpi_extd[6]; 4252 4253 if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 && 4254 (size = BITX(cp->cp_ecx, 31, 16)) != 0) { 4255 uint_t cachesz = size * 1024; 4256 assoc = amd_afd[i]; 4257 4258 ASSERT(assoc != -1); 4259 4260 if ((ip = l2i->l2i_csz) != NULL) 4261 *ip = cachesz; 4262 if ((ip = l2i->l2i_lsz) != NULL) 4263 *ip = BITX(cp->cp_ecx, 7, 0); 4264 if ((ip = l2i->l2i_assoc) != NULL) 4265 *ip = assoc; 4266 l2i->l2i_ret = cachesz; 4267 } 4268 } 4269 4270 int 4271 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc) 4272 { 4273 struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi; 4274 struct l2info __l2info, *l2i = &__l2info; 4275 4276 l2i->l2i_csz = csz; 4277 l2i->l2i_lsz = lsz; 4278 l2i->l2i_assoc = assoc; 4279 l2i->l2i_ret = -1; 4280 4281 switch (x86_which_cacheinfo(cpi)) { 4282 case X86_VENDOR_Intel: 4283 intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 4284 break; 4285 case X86_VENDOR_Cyrix: 4286 cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo); 4287 break; 4288 case X86_VENDOR_AMD: 4289 amd_l2cacheinfo(cpi, l2i); 4290 break; 4291 default: 4292 break; 4293 } 4294 return (l2i->l2i_ret); 4295 } 4296 4297 #if !defined(__xpv) 4298 4299 uint32_t * 4300 cpuid_mwait_alloc(cpu_t *cpu) 4301 { 4302 uint32_t *ret; 4303 size_t mwait_size; 4304 4305 ASSERT(cpuid_checkpass(CPU, 2)); 4306 4307 mwait_size = CPU->cpu_m.mcpu_cpi->cpi_mwait.mon_max; 4308 if (mwait_size == 0) 4309 return (NULL); 4310 4311 /* 4312 * kmem_alloc() returns cache line size aligned data for mwait_size 4313 * allocations. mwait_size is currently cache line sized. Neither 4314 * of these implementation details are guarantied to be true in the 4315 * future. 4316 * 4317 * First try allocating mwait_size as kmem_alloc() currently returns 4318 * correctly aligned memory. If kmem_alloc() does not return 4319 * mwait_size aligned memory, then use mwait_size ROUNDUP. 4320 * 4321 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we 4322 * decide to free this memory. 4323 */ 4324 ret = kmem_zalloc(mwait_size, KM_SLEEP); 4325 if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) { 4326 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 4327 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size; 4328 *ret = MWAIT_RUNNING; 4329 return (ret); 4330 } else { 4331 kmem_free(ret, mwait_size); 4332 ret = kmem_zalloc(mwait_size * 2, KM_SLEEP); 4333 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret; 4334 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2; 4335 ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size); 4336 *ret = MWAIT_RUNNING; 4337 return (ret); 4338 } 4339 } 4340 4341 void 4342 cpuid_mwait_free(cpu_t *cpu) 4343 { 4344 if (cpu->cpu_m.mcpu_cpi == NULL) { 4345 return; 4346 } 4347 4348 if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL && 4349 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) { 4350 kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual, 4351 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual); 4352 } 4353 4354 cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL; 4355 cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0; 4356 } 4357 4358 void 4359 patch_tsc_read(int flag) 4360 { 4361 size_t cnt; 4362 4363 switch (flag) { 4364 case X86_NO_TSC: 4365 cnt = &_no_rdtsc_end - &_no_rdtsc_start; 4366 (void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt); 4367 break; 4368 case X86_HAVE_TSCP: 4369 cnt = &_tscp_end - &_tscp_start; 4370 (void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt); 4371 break; 4372 case X86_TSC_MFENCE: 4373 cnt = &_tsc_mfence_end - &_tsc_mfence_start; 4374 (void) memcpy((void *)tsc_read, 4375 (void *)&_tsc_mfence_start, cnt); 4376 break; 4377 case X86_TSC_LFENCE: 4378 cnt = &_tsc_lfence_end - &_tsc_lfence_start; 4379 (void) memcpy((void *)tsc_read, 4380 (void *)&_tsc_lfence_start, cnt); 4381 break; 4382 default: 4383 break; 4384 } 4385 } 4386 4387 int 4388 cpuid_deep_cstates_supported(void) 4389 { 4390 struct cpuid_info *cpi; 4391 struct cpuid_regs regs; 4392 4393 ASSERT(cpuid_checkpass(CPU, 1)); 4394 4395 cpi = CPU->cpu_m.mcpu_cpi; 4396 4397 if (!is_x86_feature(x86_featureset, X86FSET_CPUID)) 4398 return (0); 4399 4400 switch (cpi->cpi_vendor) { 4401 case X86_VENDOR_Intel: 4402 if (cpi->cpi_xmaxeax < 0x80000007) 4403 return (0); 4404 4405 /* 4406 * TSC run at a constant rate in all ACPI C-states? 4407 */ 4408 regs.cp_eax = 0x80000007; 4409 (void) __cpuid_insn(®s); 4410 return (regs.cp_edx & CPUID_TSC_CSTATE_INVARIANCE); 4411 4412 default: 4413 return (0); 4414 } 4415 } 4416 4417 #endif /* !__xpv */ 4418 4419 void 4420 post_startup_cpu_fixups(void) 4421 { 4422 #ifndef __xpv 4423 /* 4424 * Some AMD processors support C1E state. Entering this state will 4425 * cause the local APIC timer to stop, which we can't deal with at 4426 * this time. 4427 */ 4428 if (cpuid_getvendor(CPU) == X86_VENDOR_AMD) { 4429 on_trap_data_t otd; 4430 uint64_t reg; 4431 4432 if (!on_trap(&otd, OT_DATA_ACCESS)) { 4433 reg = rdmsr(MSR_AMD_INT_PENDING_CMP_HALT); 4434 /* Disable C1E state if it is enabled by BIOS */ 4435 if ((reg >> AMD_ACTONCMPHALT_SHIFT) & 4436 AMD_ACTONCMPHALT_MASK) { 4437 reg &= ~(AMD_ACTONCMPHALT_MASK << 4438 AMD_ACTONCMPHALT_SHIFT); 4439 wrmsr(MSR_AMD_INT_PENDING_CMP_HALT, reg); 4440 } 4441 } 4442 no_trap(); 4443 } 4444 #endif /* !__xpv */ 4445 } 4446 4447 /* 4448 * Setup necessary registers to enable XSAVE feature on this processor. 4449 * This function needs to be called early enough, so that no xsave/xrstor 4450 * ops will execute on the processor before the MSRs are properly set up. 4451 * 4452 * Current implementation has the following assumption: 4453 * - cpuid_pass1() is done, so that X86 features are known. 4454 * - fpu_probe() is done, so that fp_save_mech is chosen. 4455 */ 4456 void 4457 xsave_setup_msr(cpu_t *cpu) 4458 { 4459 ASSERT(fp_save_mech == FP_XSAVE); 4460 ASSERT(is_x86_feature(x86_featureset, X86FSET_XSAVE)); 4461 4462 /* Enable OSXSAVE in CR4. */ 4463 setcr4(getcr4() | CR4_OSXSAVE); 4464 /* 4465 * Update SW copy of ECX, so that /dev/cpu/self/cpuid will report 4466 * correct value. 4467 */ 4468 cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_ecx |= CPUID_INTC_ECX_OSXSAVE; 4469 setup_xfem(); 4470 } 4471 4472 /* 4473 * Starting with the Westmere processor the local 4474 * APIC timer will continue running in all C-states, 4475 * including the deepest C-states. 4476 */ 4477 int 4478 cpuid_arat_supported(void) 4479 { 4480 struct cpuid_info *cpi; 4481 struct cpuid_regs regs; 4482 4483 ASSERT(cpuid_checkpass(CPU, 1)); 4484 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID)); 4485 4486 cpi = CPU->cpu_m.mcpu_cpi; 4487 4488 switch (cpi->cpi_vendor) { 4489 case X86_VENDOR_Intel: 4490 /* 4491 * Always-running Local APIC Timer is 4492 * indicated by CPUID.6.EAX[2]. 4493 */ 4494 if (cpi->cpi_maxeax >= 6) { 4495 regs.cp_eax = 6; 4496 (void) cpuid_insn(NULL, ®s); 4497 return (regs.cp_eax & CPUID_CSTATE_ARAT); 4498 } else { 4499 return (0); 4500 } 4501 default: 4502 return (0); 4503 } 4504 } 4505 4506 /* 4507 * Check support for Intel ENERGY_PERF_BIAS feature 4508 */ 4509 int 4510 cpuid_iepb_supported(struct cpu *cp) 4511 { 4512 struct cpuid_info *cpi = cp->cpu_m.mcpu_cpi; 4513 struct cpuid_regs regs; 4514 4515 ASSERT(cpuid_checkpass(cp, 1)); 4516 4517 if (!(is_x86_feature(x86_featureset, X86FSET_CPUID)) || 4518 !(is_x86_feature(x86_featureset, X86FSET_MSR))) { 4519 return (0); 4520 } 4521 4522 /* 4523 * Intel ENERGY_PERF_BIAS MSR is indicated by 4524 * capability bit CPUID.6.ECX.3 4525 */ 4526 if ((cpi->cpi_vendor != X86_VENDOR_Intel) || (cpi->cpi_maxeax < 6)) 4527 return (0); 4528 4529 regs.cp_eax = 0x6; 4530 (void) cpuid_insn(NULL, ®s); 4531 return (regs.cp_ecx & CPUID_EPB_SUPPORT); 4532 } 4533 4534 /* 4535 * Check support for TSC deadline timer 4536 * 4537 * TSC deadline timer provides a superior software programming 4538 * model over local APIC timer that eliminates "time drifts". 4539 * Instead of specifying a relative time, software specifies an 4540 * absolute time as the target at which the processor should 4541 * generate a timer event. 4542 */ 4543 int 4544 cpuid_deadline_tsc_supported(void) 4545 { 4546 struct cpuid_info *cpi = CPU->cpu_m.mcpu_cpi; 4547 struct cpuid_regs regs; 4548 4549 ASSERT(cpuid_checkpass(CPU, 1)); 4550 ASSERT(is_x86_feature(x86_featureset, X86FSET_CPUID)); 4551 4552 switch (cpi->cpi_vendor) { 4553 case X86_VENDOR_Intel: 4554 if (cpi->cpi_maxeax >= 1) { 4555 regs.cp_eax = 1; 4556 (void) cpuid_insn(NULL, ®s); 4557 return (regs.cp_ecx & CPUID_DEADLINE_TSC); 4558 } else { 4559 return (0); 4560 } 4561 default: 4562 return (0); 4563 } 4564 } 4565 4566 #if defined(__amd64) && !defined(__xpv) 4567 /* 4568 * Patch in versions of bcopy for high performance Intel Nhm processors 4569 * and later... 4570 */ 4571 void 4572 patch_memops(uint_t vendor) 4573 { 4574 size_t cnt, i; 4575 caddr_t to, from; 4576 4577 if ((vendor == X86_VENDOR_Intel) && 4578 is_x86_feature(x86_featureset, X86FSET_SSE4_2)) { 4579 cnt = &bcopy_patch_end - &bcopy_patch_start; 4580 to = &bcopy_ck_size; 4581 from = &bcopy_patch_start; 4582 for (i = 0; i < cnt; i++) { 4583 *to++ = *from++; 4584 } 4585 } 4586 } 4587 #endif /* __amd64 && !__xpv */ 4588 4589 /* 4590 * This function finds the number of bits to represent the number of cores per 4591 * chip and the number of strands per core for the Intel platforms. 4592 * It re-uses the x2APIC cpuid code of the cpuid_pass2(). 4593 */ 4594 void 4595 cpuid_get_ext_topo(uint_t vendor, uint_t *core_nbits, uint_t *strand_nbits) 4596 { 4597 struct cpuid_regs regs; 4598 struct cpuid_regs *cp = ®s; 4599 4600 if (vendor != X86_VENDOR_Intel) { 4601 return; 4602 } 4603 4604 /* if the cpuid level is 0xB, extended topo is available. */ 4605 cp->cp_eax = 0; 4606 if (__cpuid_insn(cp) >= 0xB) { 4607 4608 cp->cp_eax = 0xB; 4609 cp->cp_edx = cp->cp_ebx = cp->cp_ecx = 0; 4610 (void) __cpuid_insn(cp); 4611 4612 /* 4613 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which 4614 * indicates that the extended topology enumeration leaf is 4615 * available. 4616 */ 4617 if (cp->cp_ebx) { 4618 uint_t coreid_shift = 0; 4619 uint_t chipid_shift = 0; 4620 uint_t i; 4621 uint_t level; 4622 4623 for (i = 0; i < CPI_FNB_ECX_MAX; i++) { 4624 cp->cp_eax = 0xB; 4625 cp->cp_ecx = i; 4626 4627 (void) __cpuid_insn(cp); 4628 level = CPI_CPU_LEVEL_TYPE(cp); 4629 4630 if (level == 1) { 4631 /* 4632 * Thread level processor topology 4633 * Number of bits shift right APIC ID 4634 * to get the coreid. 4635 */ 4636 coreid_shift = BITX(cp->cp_eax, 4, 0); 4637 } else if (level == 2) { 4638 /* 4639 * Core level processor topology 4640 * Number of bits shift right APIC ID 4641 * to get the chipid. 4642 */ 4643 chipid_shift = BITX(cp->cp_eax, 4, 0); 4644 } 4645 } 4646 4647 if (coreid_shift > 0 && chipid_shift > coreid_shift) { 4648 *strand_nbits = coreid_shift; 4649 *core_nbits = chipid_shift - coreid_shift; 4650 } 4651 } 4652 } 4653 } 4654