xref: /titanic_52/usr/src/uts/i86pc/os/cpuid.c (revision 30588217a56ff2c9137248fb2e5065c4f0101459)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Various routines to handle identification
28  * and classification of x86 processors.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/archsystm.h>
33 #include <sys/x86_archext.h>
34 #include <sys/kmem.h>
35 #include <sys/systm.h>
36 #include <sys/cmn_err.h>
37 #include <sys/sunddi.h>
38 #include <sys/sunndi.h>
39 #include <sys/cpuvar.h>
40 #include <sys/processor.h>
41 #include <sys/sysmacros.h>
42 #include <sys/pg.h>
43 #include <sys/fp.h>
44 #include <sys/controlregs.h>
45 #include <sys/auxv_386.h>
46 #include <sys/bitmap.h>
47 #include <sys/memnode.h>
48 
49 #ifdef __xpv
50 #include <sys/hypervisor.h>
51 #endif
52 
53 /*
54  * Pass 0 of cpuid feature analysis happens in locore. It contains special code
55  * to recognize Cyrix processors that are not cpuid-compliant, and to deal with
56  * them accordingly. For most modern processors, feature detection occurs here
57  * in pass 1.
58  *
59  * Pass 1 of cpuid feature analysis happens just at the beginning of mlsetup()
60  * for the boot CPU and does the basic analysis that the early kernel needs.
61  * x86_feature is set based on the return value of cpuid_pass1() of the boot
62  * CPU.
63  *
64  * Pass 1 includes:
65  *
66  *	o Determining vendor/model/family/stepping and setting x86_type and
67  *	  x86_vendor accordingly.
68  *	o Processing the feature flags returned by the cpuid instruction while
69  *	  applying any workarounds or tricks for the specific processor.
70  *	o Mapping the feature flags into Solaris feature bits (X86_*).
71  *	o Processing extended feature flags if supported by the processor,
72  *	  again while applying specific processor knowledge.
73  *	o Determining the CMT characteristics of the system.
74  *
75  * Pass 1 is done on non-boot CPUs during their initialization and the results
76  * are used only as a meager attempt at ensuring that all processors within the
77  * system support the same features.
78  *
79  * Pass 2 of cpuid feature analysis happens just at the beginning
80  * of startup().  It just copies in and corrects the remainder
81  * of the cpuid data we depend on: standard cpuid functions that we didn't
82  * need for pass1 feature analysis, and extended cpuid functions beyond the
83  * simple feature processing done in pass1.
84  *
85  * Pass 3 of cpuid analysis is invoked after basic kernel services; in
86  * particular kernel memory allocation has been made available. It creates a
87  * readable brand string based on the data collected in the first two passes.
88  *
89  * Pass 4 of cpuid analysis is invoked after post_startup() when all
90  * the support infrastructure for various hardware features has been
91  * initialized. It determines which processor features will be reported
92  * to userland via the aux vector.
93  *
94  * All passes are executed on all CPUs, but only the boot CPU determines what
95  * features the kernel will use.
96  *
97  * Much of the worst junk in this file is for the support of processors
98  * that didn't really implement the cpuid instruction properly.
99  *
100  * NOTE: The accessor functions (cpuid_get*) are aware of, and ASSERT upon,
101  * the pass numbers.  Accordingly, changes to the pass code may require changes
102  * to the accessor code.
103  */
104 
105 uint_t x86_feature = 0;
106 uint_t x86_vendor = X86_VENDOR_IntelClone;
107 uint_t x86_type = X86_TYPE_OTHER;
108 uint_t x86_clflush_size = 0;
109 
110 uint_t pentiumpro_bug4046376;
111 uint_t pentiumpro_bug4064495;
112 
113 uint_t enable486;
114 
115 /*
116  * monitor/mwait info.
117  *
118  * size_actual and buf_actual are the real address and size allocated to get
119  * proper mwait_buf alignement.  buf_actual and size_actual should be passed
120  * to kmem_free().  Currently kmem_alloc() and mwait happen to both use
121  * processor cache-line alignment, but this is not guarantied in the furture.
122  */
123 struct mwait_info {
124 	size_t		mon_min;	/* min size to avoid missed wakeups */
125 	size_t		mon_max;	/* size to avoid false wakeups */
126 	size_t		size_actual;	/* size actually allocated */
127 	void		*buf_actual;	/* memory actually allocated */
128 	uint32_t	support;	/* processor support of monitor/mwait */
129 };
130 
131 /*
132  * These constants determine how many of the elements of the
133  * cpuid we cache in the cpuid_info data structure; the
134  * remaining elements are accessible via the cpuid instruction.
135  */
136 
137 #define	NMAX_CPI_STD	6		/* eax = 0 .. 5 */
138 #define	NMAX_CPI_EXTD	9		/* eax = 0x80000000 .. 0x80000008 */
139 
140 struct cpuid_info {
141 	uint_t cpi_pass;		/* last pass completed */
142 	/*
143 	 * standard function information
144 	 */
145 	uint_t cpi_maxeax;		/* fn 0: %eax */
146 	char cpi_vendorstr[13];		/* fn 0: %ebx:%ecx:%edx */
147 	uint_t cpi_vendor;		/* enum of cpi_vendorstr */
148 
149 	uint_t cpi_family;		/* fn 1: extended family */
150 	uint_t cpi_model;		/* fn 1: extended model */
151 	uint_t cpi_step;		/* fn 1: stepping */
152 	chipid_t cpi_chipid;		/* fn 1: %ebx: chip # on ht cpus */
153 	uint_t cpi_brandid;		/* fn 1: %ebx: brand ID */
154 	int cpi_clogid;			/* fn 1: %ebx: thread # */
155 	uint_t cpi_ncpu_per_chip;	/* fn 1: %ebx: logical cpu count */
156 	uint8_t cpi_cacheinfo[16];	/* fn 2: intel-style cache desc */
157 	uint_t cpi_ncache;		/* fn 2: number of elements */
158 	uint_t cpi_ncpu_shr_last_cache;	/* fn 4: %eax: ncpus sharing cache */
159 	id_t cpi_last_lvl_cacheid;	/* fn 4: %eax: derived cache id */
160 	uint_t cpi_std_4_size;		/* fn 4: number of fn 4 elements */
161 	struct cpuid_regs **cpi_std_4;	/* fn 4: %ecx == 0 .. fn4_size */
162 	struct cpuid_regs cpi_std[NMAX_CPI_STD];	/* 0 .. 5 */
163 	/*
164 	 * extended function information
165 	 */
166 	uint_t cpi_xmaxeax;		/* fn 0x80000000: %eax */
167 	char cpi_brandstr[49];		/* fn 0x8000000[234] */
168 	uint8_t cpi_pabits;		/* fn 0x80000006: %eax */
169 	uint8_t cpi_vabits;		/* fn 0x80000006: %eax */
170 	struct cpuid_regs cpi_extd[NMAX_CPI_EXTD]; /* 0x8000000[0-8] */
171 	id_t cpi_coreid;		/* same coreid => strands share core */
172 	int cpi_pkgcoreid;		/* core number within single package */
173 	uint_t cpi_ncore_per_chip;	/* AMD: fn 0x80000008: %ecx[7-0] */
174 					/* Intel: fn 4: %eax[31-26] */
175 	/*
176 	 * supported feature information
177 	 */
178 	uint32_t cpi_support[5];
179 #define	STD_EDX_FEATURES	0
180 #define	AMD_EDX_FEATURES	1
181 #define	TM_EDX_FEATURES		2
182 #define	STD_ECX_FEATURES	3
183 #define	AMD_ECX_FEATURES	4
184 	/*
185 	 * Synthesized information, where known.
186 	 */
187 	uint32_t cpi_chiprev;		/* See X86_CHIPREV_* in x86_archext.h */
188 	const char *cpi_chiprevstr;	/* May be NULL if chiprev unknown */
189 	uint32_t cpi_socket;		/* Chip package/socket type */
190 
191 	struct mwait_info cpi_mwait;	/* fn 5: monitor/mwait info */
192 	uint32_t cpi_apicid;
193 };
194 
195 
196 static struct cpuid_info cpuid_info0;
197 
198 /*
199  * These bit fields are defined by the Intel Application Note AP-485
200  * "Intel Processor Identification and the CPUID Instruction"
201  */
202 #define	CPI_FAMILY_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 27, 20)
203 #define	CPI_MODEL_XTD(cpi)	BITX((cpi)->cpi_std[1].cp_eax, 19, 16)
204 #define	CPI_TYPE(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 13, 12)
205 #define	CPI_FAMILY(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 11, 8)
206 #define	CPI_STEP(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 3, 0)
207 #define	CPI_MODEL(cpi)		BITX((cpi)->cpi_std[1].cp_eax, 7, 4)
208 
209 #define	CPI_FEATURES_EDX(cpi)		((cpi)->cpi_std[1].cp_edx)
210 #define	CPI_FEATURES_ECX(cpi)		((cpi)->cpi_std[1].cp_ecx)
211 #define	CPI_FEATURES_XTD_EDX(cpi)	((cpi)->cpi_extd[1].cp_edx)
212 #define	CPI_FEATURES_XTD_ECX(cpi)	((cpi)->cpi_extd[1].cp_ecx)
213 
214 #define	CPI_BRANDID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 7, 0)
215 #define	CPI_CHUNKS(cpi)		BITX((cpi)->cpi_std[1].cp_ebx, 15, 7)
216 #define	CPI_CPU_COUNT(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 23, 16)
217 #define	CPI_APIC_ID(cpi)	BITX((cpi)->cpi_std[1].cp_ebx, 31, 24)
218 
219 #define	CPI_MAXEAX_MAX		0x100		/* sanity control */
220 #define	CPI_XMAXEAX_MAX		0x80000100
221 #define	CPI_FN4_ECX_MAX		0x20		/* sanity: max fn 4 levels */
222 #define	CPI_FNB_ECX_MAX		0x20		/* sanity: max fn B levels */
223 
224 /*
225  * Function 4 (Deterministic Cache Parameters) macros
226  * Defined by Intel Application Note AP-485
227  */
228 #define	CPI_NUM_CORES(regs)		BITX((regs)->cp_eax, 31, 26)
229 #define	CPI_NTHR_SHR_CACHE(regs)	BITX((regs)->cp_eax, 25, 14)
230 #define	CPI_FULL_ASSOC_CACHE(regs)	BITX((regs)->cp_eax, 9, 9)
231 #define	CPI_SELF_INIT_CACHE(regs)	BITX((regs)->cp_eax, 8, 8)
232 #define	CPI_CACHE_LVL(regs)		BITX((regs)->cp_eax, 7, 5)
233 #define	CPI_CACHE_TYPE(regs)		BITX((regs)->cp_eax, 4, 0)
234 #define	CPI_CPU_LEVEL_TYPE(regs)	BITX((regs)->cp_ecx, 15, 8)
235 
236 #define	CPI_CACHE_WAYS(regs)		BITX((regs)->cp_ebx, 31, 22)
237 #define	CPI_CACHE_PARTS(regs)		BITX((regs)->cp_ebx, 21, 12)
238 #define	CPI_CACHE_COH_LN_SZ(regs)	BITX((regs)->cp_ebx, 11, 0)
239 
240 #define	CPI_CACHE_SETS(regs)		BITX((regs)->cp_ecx, 31, 0)
241 
242 #define	CPI_PREFCH_STRIDE(regs)		BITX((regs)->cp_edx, 9, 0)
243 
244 
245 /*
246  * A couple of shorthand macros to identify "later" P6-family chips
247  * like the Pentium M and Core.  First, the "older" P6-based stuff
248  * (loosely defined as "pre-Pentium-4"):
249  * P6, PII, Mobile PII, PII Xeon, PIII, Mobile PIII, PIII Xeon
250  */
251 
252 #define	IS_LEGACY_P6(cpi) (			\
253 	cpi->cpi_family == 6 && 		\
254 		(cpi->cpi_model == 1 ||		\
255 		cpi->cpi_model == 3 ||		\
256 		cpi->cpi_model == 5 ||		\
257 		cpi->cpi_model == 6 ||		\
258 		cpi->cpi_model == 7 ||		\
259 		cpi->cpi_model == 8 ||		\
260 		cpi->cpi_model == 0xA ||	\
261 		cpi->cpi_model == 0xB)		\
262 )
263 
264 /* A "new F6" is everything with family 6 that's not the above */
265 #define	IS_NEW_F6(cpi) ((cpi->cpi_family == 6) && !IS_LEGACY_P6(cpi))
266 
267 /* Extended family/model support */
268 #define	IS_EXTENDED_MODEL_INTEL(cpi) (cpi->cpi_family == 0x6 || \
269 	cpi->cpi_family >= 0xf)
270 
271 /*
272  * Info for monitor/mwait idle loop.
273  *
274  * See cpuid section of "Intel 64 and IA-32 Architectures Software Developer's
275  * Manual Volume 2A: Instruction Set Reference, A-M" #25366-022US, November
276  * 2006.
277  * See MONITOR/MWAIT section of "AMD64 Architecture Programmer's Manual
278  * Documentation Updates" #33633, Rev 2.05, December 2006.
279  */
280 #define	MWAIT_SUPPORT		(0x00000001)	/* mwait supported */
281 #define	MWAIT_EXTENSIONS	(0x00000002)	/* extenstion supported */
282 #define	MWAIT_ECX_INT_ENABLE	(0x00000004)	/* ecx 1 extension supported */
283 #define	MWAIT_SUPPORTED(cpi)	((cpi)->cpi_std[1].cp_ecx & CPUID_INTC_ECX_MON)
284 #define	MWAIT_INT_ENABLE(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x2)
285 #define	MWAIT_EXTENSION(cpi)	((cpi)->cpi_std[5].cp_ecx & 0x1)
286 #define	MWAIT_SIZE_MIN(cpi)	BITX((cpi)->cpi_std[5].cp_eax, 15, 0)
287 #define	MWAIT_SIZE_MAX(cpi)	BITX((cpi)->cpi_std[5].cp_ebx, 15, 0)
288 /*
289  * Number of sub-cstates for a given c-state.
290  */
291 #define	MWAIT_NUM_SUBC_STATES(cpi, c_state)			\
292 	BITX((cpi)->cpi_std[5].cp_edx, c_state + 3, c_state)
293 
294 /*
295  * Functions we consune from cpuid_subr.c;  don't publish these in a header
296  * file to try and keep people using the expected cpuid_* interfaces.
297  */
298 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
299 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
300 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
301 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
302 
303 /*
304  * Apply up various platform-dependent restrictions where the
305  * underlying platform restrictions mean the CPU can be marked
306  * as less capable than its cpuid instruction would imply.
307  */
308 #if defined(__xpv)
309 static void
310 platform_cpuid_mangle(uint_t vendor, uint32_t eax, struct cpuid_regs *cp)
311 {
312 	switch (eax) {
313 	case 1: {
314 		uint32_t mcamask = DOMAIN_IS_INITDOMAIN(xen_info) ?
315 		    0 : CPUID_INTC_EDX_MCA;
316 		cp->cp_edx &=
317 		    ~(mcamask |
318 		    CPUID_INTC_EDX_PSE |
319 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
320 		    CPUID_INTC_EDX_SEP | CPUID_INTC_EDX_MTRR |
321 		    CPUID_INTC_EDX_PGE | CPUID_INTC_EDX_PAT |
322 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
323 		    CPUID_INTC_EDX_PSE36 | CPUID_INTC_EDX_HTT);
324 		break;
325 	}
326 
327 	case 0x80000001:
328 		cp->cp_edx &=
329 		    ~(CPUID_AMD_EDX_PSE |
330 		    CPUID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
331 		    CPUID_AMD_EDX_MTRR | CPUID_AMD_EDX_PGE |
332 		    CPUID_AMD_EDX_PAT | CPUID_AMD_EDX_PSE36 |
333 		    CPUID_AMD_EDX_SYSC | CPUID_INTC_EDX_SEP |
334 		    CPUID_AMD_EDX_TSCP);
335 		cp->cp_ecx &= ~CPUID_AMD_ECX_CMP_LGCY;
336 		break;
337 	default:
338 		break;
339 	}
340 
341 	switch (vendor) {
342 	case X86_VENDOR_Intel:
343 		switch (eax) {
344 		case 4:
345 			/*
346 			 * Zero out the (ncores-per-chip - 1) field
347 			 */
348 			cp->cp_eax &= 0x03fffffff;
349 			break;
350 		default:
351 			break;
352 		}
353 		break;
354 	case X86_VENDOR_AMD:
355 		switch (eax) {
356 		case 0x80000008:
357 			/*
358 			 * Zero out the (ncores-per-chip - 1) field
359 			 */
360 			cp->cp_ecx &= 0xffffff00;
361 			break;
362 		default:
363 			break;
364 		}
365 		break;
366 	default:
367 		break;
368 	}
369 }
370 #else
371 #define	platform_cpuid_mangle(vendor, eax, cp)	/* nothing */
372 #endif
373 
374 /*
375  *  Some undocumented ways of patching the results of the cpuid
376  *  instruction to permit running Solaris 10 on future cpus that
377  *  we don't currently support.  Could be set to non-zero values
378  *  via settings in eeprom.
379  */
380 
381 uint32_t cpuid_feature_ecx_include;
382 uint32_t cpuid_feature_ecx_exclude;
383 uint32_t cpuid_feature_edx_include;
384 uint32_t cpuid_feature_edx_exclude;
385 
386 void
387 cpuid_alloc_space(cpu_t *cpu)
388 {
389 	/*
390 	 * By convention, cpu0 is the boot cpu, which is set up
391 	 * before memory allocation is available.  All other cpus get
392 	 * their cpuid_info struct allocated here.
393 	 */
394 	ASSERT(cpu->cpu_id != 0);
395 	cpu->cpu_m.mcpu_cpi =
396 	    kmem_zalloc(sizeof (*cpu->cpu_m.mcpu_cpi), KM_SLEEP);
397 }
398 
399 void
400 cpuid_free_space(cpu_t *cpu)
401 {
402 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
403 	int i;
404 
405 	ASSERT(cpu->cpu_id != 0);
406 
407 	/*
408 	 * Free up any function 4 related dynamic storage
409 	 */
410 	for (i = 1; i < cpi->cpi_std_4_size; i++)
411 		kmem_free(cpi->cpi_std_4[i], sizeof (struct cpuid_regs));
412 	if (cpi->cpi_std_4_size > 0)
413 		kmem_free(cpi->cpi_std_4,
414 		    cpi->cpi_std_4_size * sizeof (struct cpuid_regs *));
415 
416 	kmem_free(cpu->cpu_m.mcpu_cpi, sizeof (*cpu->cpu_m.mcpu_cpi));
417 }
418 
419 #if !defined(__xpv)
420 
421 static void
422 check_for_hvm()
423 {
424 	struct cpuid_regs cp;
425 	char *xen_str;
426 	uint32_t xen_signature[4];
427 	extern int xpv_is_hvm;
428 
429 	/*
430 	 * In a fully virtualized domain, Xen's pseudo-cpuid function
431 	 * 0x40000000 returns a string representing the Xen signature in
432 	 * %ebx, %ecx, and %edx.  %eax contains the maximum supported cpuid
433 	 * function.
434 	 */
435 	cp.cp_eax = 0x40000000;
436 	(void) __cpuid_insn(&cp);
437 	xen_signature[0] = cp.cp_ebx;
438 	xen_signature[1] = cp.cp_ecx;
439 	xen_signature[2] = cp.cp_edx;
440 	xen_signature[3] = 0;
441 	xen_str = (char *)xen_signature;
442 	if (strcmp("XenVMMXenVMM", xen_str) == 0 && cp.cp_eax <= 0x40000002)
443 		xpv_is_hvm = 1;
444 }
445 #endif	/* __xpv */
446 
447 uint_t
448 cpuid_pass1(cpu_t *cpu)
449 {
450 	uint32_t mask_ecx, mask_edx;
451 	uint_t feature = X86_CPUID;
452 	struct cpuid_info *cpi;
453 	struct cpuid_regs *cp;
454 	int xcpuid;
455 #if !defined(__xpv)
456 	extern int idle_cpu_prefer_mwait;
457 #endif
458 
459 	/*
460 	 * Space statically allocated for cpu0, ensure pointer is set
461 	 */
462 	if (cpu->cpu_id == 0)
463 		cpu->cpu_m.mcpu_cpi = &cpuid_info0;
464 	cpi = cpu->cpu_m.mcpu_cpi;
465 	ASSERT(cpi != NULL);
466 	cp = &cpi->cpi_std[0];
467 	cp->cp_eax = 0;
468 	cpi->cpi_maxeax = __cpuid_insn(cp);
469 	{
470 		uint32_t *iptr = (uint32_t *)cpi->cpi_vendorstr;
471 		*iptr++ = cp->cp_ebx;
472 		*iptr++ = cp->cp_edx;
473 		*iptr++ = cp->cp_ecx;
474 		*(char *)&cpi->cpi_vendorstr[12] = '\0';
475 	}
476 
477 	cpi->cpi_vendor = _cpuid_vendorstr_to_vendorcode(cpi->cpi_vendorstr);
478 	x86_vendor = cpi->cpi_vendor; /* for compatibility */
479 
480 	/*
481 	 * Limit the range in case of weird hardware
482 	 */
483 	if (cpi->cpi_maxeax > CPI_MAXEAX_MAX)
484 		cpi->cpi_maxeax = CPI_MAXEAX_MAX;
485 	if (cpi->cpi_maxeax < 1)
486 		goto pass1_done;
487 
488 	cp = &cpi->cpi_std[1];
489 	cp->cp_eax = 1;
490 	(void) __cpuid_insn(cp);
491 
492 	/*
493 	 * Extract identifying constants for easy access.
494 	 */
495 	cpi->cpi_model = CPI_MODEL(cpi);
496 	cpi->cpi_family = CPI_FAMILY(cpi);
497 
498 	if (cpi->cpi_family == 0xf)
499 		cpi->cpi_family += CPI_FAMILY_XTD(cpi);
500 
501 	/*
502 	 * Beware: AMD uses "extended model" iff base *FAMILY* == 0xf.
503 	 * Intel, and presumably everyone else, uses model == 0xf, as
504 	 * one would expect (max value means possible overflow).  Sigh.
505 	 */
506 
507 	switch (cpi->cpi_vendor) {
508 	case X86_VENDOR_Intel:
509 		if (IS_EXTENDED_MODEL_INTEL(cpi))
510 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
511 		break;
512 	case X86_VENDOR_AMD:
513 		if (CPI_FAMILY(cpi) == 0xf)
514 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
515 		break;
516 	default:
517 		if (cpi->cpi_model == 0xf)
518 			cpi->cpi_model += CPI_MODEL_XTD(cpi) << 4;
519 		break;
520 	}
521 
522 	cpi->cpi_step = CPI_STEP(cpi);
523 	cpi->cpi_brandid = CPI_BRANDID(cpi);
524 
525 	/*
526 	 * *default* assumptions:
527 	 * - believe %edx feature word
528 	 * - ignore %ecx feature word
529 	 * - 32-bit virtual and physical addressing
530 	 */
531 	mask_edx = 0xffffffff;
532 	mask_ecx = 0;
533 
534 	cpi->cpi_pabits = cpi->cpi_vabits = 32;
535 
536 	switch (cpi->cpi_vendor) {
537 	case X86_VENDOR_Intel:
538 		if (cpi->cpi_family == 5)
539 			x86_type = X86_TYPE_P5;
540 		else if (IS_LEGACY_P6(cpi)) {
541 			x86_type = X86_TYPE_P6;
542 			pentiumpro_bug4046376 = 1;
543 			pentiumpro_bug4064495 = 1;
544 			/*
545 			 * Clear the SEP bit when it was set erroneously
546 			 */
547 			if (cpi->cpi_model < 3 && cpi->cpi_step < 3)
548 				cp->cp_edx &= ~CPUID_INTC_EDX_SEP;
549 		} else if (IS_NEW_F6(cpi) || cpi->cpi_family == 0xf) {
550 			x86_type = X86_TYPE_P4;
551 			/*
552 			 * We don't currently depend on any of the %ecx
553 			 * features until Prescott, so we'll only check
554 			 * this from P4 onwards.  We might want to revisit
555 			 * that idea later.
556 			 */
557 			mask_ecx = 0xffffffff;
558 		} else if (cpi->cpi_family > 0xf)
559 			mask_ecx = 0xffffffff;
560 		/*
561 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
562 		 * to obtain the monitor linesize.
563 		 */
564 		if (cpi->cpi_maxeax < 5)
565 			mask_ecx &= ~CPUID_INTC_ECX_MON;
566 		break;
567 	case X86_VENDOR_IntelClone:
568 	default:
569 		break;
570 	case X86_VENDOR_AMD:
571 #if defined(OPTERON_ERRATUM_108)
572 		if (cpi->cpi_family == 0xf && cpi->cpi_model == 0xe) {
573 			cp->cp_eax = (0xf0f & cp->cp_eax) | 0xc0;
574 			cpi->cpi_model = 0xc;
575 		} else
576 #endif
577 		if (cpi->cpi_family == 5) {
578 			/*
579 			 * AMD K5 and K6
580 			 *
581 			 * These CPUs have an incomplete implementation
582 			 * of MCA/MCE which we mask away.
583 			 */
584 			mask_edx &= ~(CPUID_INTC_EDX_MCE | CPUID_INTC_EDX_MCA);
585 
586 			/*
587 			 * Model 0 uses the wrong (APIC) bit
588 			 * to indicate PGE.  Fix it here.
589 			 */
590 			if (cpi->cpi_model == 0) {
591 				if (cp->cp_edx & 0x200) {
592 					cp->cp_edx &= ~0x200;
593 					cp->cp_edx |= CPUID_INTC_EDX_PGE;
594 				}
595 			}
596 
597 			/*
598 			 * Early models had problems w/ MMX; disable.
599 			 */
600 			if (cpi->cpi_model < 6)
601 				mask_edx &= ~CPUID_INTC_EDX_MMX;
602 		}
603 
604 		/*
605 		 * For newer families, SSE3 and CX16, at least, are valid;
606 		 * enable all
607 		 */
608 		if (cpi->cpi_family >= 0xf)
609 			mask_ecx = 0xffffffff;
610 		/*
611 		 * We don't support MONITOR/MWAIT if leaf 5 is not available
612 		 * to obtain the monitor linesize.
613 		 */
614 		if (cpi->cpi_maxeax < 5)
615 			mask_ecx &= ~CPUID_INTC_ECX_MON;
616 
617 #if !defined(__xpv)
618 		/*
619 		 * Do not use MONITOR/MWAIT to halt in the idle loop on any AMD
620 		 * processors.  AMD does not intend MWAIT to be used in the cpu
621 		 * idle loop on current and future processors.  10h and future
622 		 * AMD processors use more power in MWAIT than HLT.
623 		 * Pre-family-10h Opterons do not have the MWAIT instruction.
624 		 */
625 		idle_cpu_prefer_mwait = 0;
626 #endif
627 
628 		break;
629 	case X86_VENDOR_TM:
630 		/*
631 		 * workaround the NT workaround in CMS 4.1
632 		 */
633 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4 &&
634 		    (cpi->cpi_step == 2 || cpi->cpi_step == 3))
635 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
636 		break;
637 	case X86_VENDOR_Centaur:
638 		/*
639 		 * workaround the NT workarounds again
640 		 */
641 		if (cpi->cpi_family == 6)
642 			cp->cp_edx |= CPUID_INTC_EDX_CX8;
643 		break;
644 	case X86_VENDOR_Cyrix:
645 		/*
646 		 * We rely heavily on the probing in locore
647 		 * to actually figure out what parts, if any,
648 		 * of the Cyrix cpuid instruction to believe.
649 		 */
650 		switch (x86_type) {
651 		case X86_TYPE_CYRIX_486:
652 			mask_edx = 0;
653 			break;
654 		case X86_TYPE_CYRIX_6x86:
655 			mask_edx = 0;
656 			break;
657 		case X86_TYPE_CYRIX_6x86L:
658 			mask_edx =
659 			    CPUID_INTC_EDX_DE |
660 			    CPUID_INTC_EDX_CX8;
661 			break;
662 		case X86_TYPE_CYRIX_6x86MX:
663 			mask_edx =
664 			    CPUID_INTC_EDX_DE |
665 			    CPUID_INTC_EDX_MSR |
666 			    CPUID_INTC_EDX_CX8 |
667 			    CPUID_INTC_EDX_PGE |
668 			    CPUID_INTC_EDX_CMOV |
669 			    CPUID_INTC_EDX_MMX;
670 			break;
671 		case X86_TYPE_CYRIX_GXm:
672 			mask_edx =
673 			    CPUID_INTC_EDX_MSR |
674 			    CPUID_INTC_EDX_CX8 |
675 			    CPUID_INTC_EDX_CMOV |
676 			    CPUID_INTC_EDX_MMX;
677 			break;
678 		case X86_TYPE_CYRIX_MediaGX:
679 			break;
680 		case X86_TYPE_CYRIX_MII:
681 		case X86_TYPE_VIA_CYRIX_III:
682 			mask_edx =
683 			    CPUID_INTC_EDX_DE |
684 			    CPUID_INTC_EDX_TSC |
685 			    CPUID_INTC_EDX_MSR |
686 			    CPUID_INTC_EDX_CX8 |
687 			    CPUID_INTC_EDX_PGE |
688 			    CPUID_INTC_EDX_CMOV |
689 			    CPUID_INTC_EDX_MMX;
690 			break;
691 		default:
692 			break;
693 		}
694 		break;
695 	}
696 
697 #if defined(__xpv)
698 	/*
699 	 * Do not support MONITOR/MWAIT under a hypervisor
700 	 */
701 	mask_ecx &= ~CPUID_INTC_ECX_MON;
702 #endif	/* __xpv */
703 
704 	/*
705 	 * Now we've figured out the masks that determine
706 	 * which bits we choose to believe, apply the masks
707 	 * to the feature words, then map the kernel's view
708 	 * of these feature words into its feature word.
709 	 */
710 	cp->cp_edx &= mask_edx;
711 	cp->cp_ecx &= mask_ecx;
712 
713 	/*
714 	 * apply any platform restrictions (we don't call this
715 	 * immediately after __cpuid_insn here, because we need the
716 	 * workarounds applied above first)
717 	 */
718 	platform_cpuid_mangle(cpi->cpi_vendor, 1, cp);
719 
720 	/*
721 	 * fold in overrides from the "eeprom" mechanism
722 	 */
723 	cp->cp_edx |= cpuid_feature_edx_include;
724 	cp->cp_edx &= ~cpuid_feature_edx_exclude;
725 
726 	cp->cp_ecx |= cpuid_feature_ecx_include;
727 	cp->cp_ecx &= ~cpuid_feature_ecx_exclude;
728 
729 	if (cp->cp_edx & CPUID_INTC_EDX_PSE)
730 		feature |= X86_LARGEPAGE;
731 	if (cp->cp_edx & CPUID_INTC_EDX_TSC)
732 		feature |= X86_TSC;
733 	if (cp->cp_edx & CPUID_INTC_EDX_MSR)
734 		feature |= X86_MSR;
735 	if (cp->cp_edx & CPUID_INTC_EDX_MTRR)
736 		feature |= X86_MTRR;
737 	if (cp->cp_edx & CPUID_INTC_EDX_PGE)
738 		feature |= X86_PGE;
739 	if (cp->cp_edx & CPUID_INTC_EDX_CMOV)
740 		feature |= X86_CMOV;
741 	if (cp->cp_edx & CPUID_INTC_EDX_MMX)
742 		feature |= X86_MMX;
743 	if ((cp->cp_edx & CPUID_INTC_EDX_MCE) != 0 &&
744 	    (cp->cp_edx & CPUID_INTC_EDX_MCA) != 0)
745 		feature |= X86_MCA;
746 	if (cp->cp_edx & CPUID_INTC_EDX_PAE)
747 		feature |= X86_PAE;
748 	if (cp->cp_edx & CPUID_INTC_EDX_CX8)
749 		feature |= X86_CX8;
750 	if (cp->cp_ecx & CPUID_INTC_ECX_CX16)
751 		feature |= X86_CX16;
752 	if (cp->cp_edx & CPUID_INTC_EDX_PAT)
753 		feature |= X86_PAT;
754 	if (cp->cp_edx & CPUID_INTC_EDX_SEP)
755 		feature |= X86_SEP;
756 	if (cp->cp_edx & CPUID_INTC_EDX_FXSR) {
757 		/*
758 		 * In our implementation, fxsave/fxrstor
759 		 * are prerequisites before we'll even
760 		 * try and do SSE things.
761 		 */
762 		if (cp->cp_edx & CPUID_INTC_EDX_SSE)
763 			feature |= X86_SSE;
764 		if (cp->cp_edx & CPUID_INTC_EDX_SSE2)
765 			feature |= X86_SSE2;
766 		if (cp->cp_ecx & CPUID_INTC_ECX_SSE3)
767 			feature |= X86_SSE3;
768 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
769 			if (cp->cp_ecx & CPUID_INTC_ECX_SSSE3)
770 				feature |= X86_SSSE3;
771 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_1)
772 				feature |= X86_SSE4_1;
773 			if (cp->cp_ecx & CPUID_INTC_ECX_SSE4_2)
774 				feature |= X86_SSE4_2;
775 		}
776 	}
777 	if (cp->cp_edx & CPUID_INTC_EDX_DE)
778 		feature |= X86_DE;
779 	if (cp->cp_ecx & CPUID_INTC_ECX_MON) {
780 		cpi->cpi_mwait.support |= MWAIT_SUPPORT;
781 		feature |= X86_MWAIT;
782 	}
783 
784 	/*
785 	 * Only need it first time, rest of the cpus would follow suite.
786 	 * we only capture this for the bootcpu.
787 	 */
788 	if (cp->cp_edx & CPUID_INTC_EDX_CLFSH) {
789 		feature |= X86_CLFSH;
790 		x86_clflush_size = (BITX(cp->cp_ebx, 15, 8) * 8);
791 	}
792 
793 	if (feature & X86_PAE)
794 		cpi->cpi_pabits = 36;
795 
796 	/*
797 	 * Hyperthreading configuration is slightly tricky on Intel
798 	 * and pure clones, and even trickier on AMD.
799 	 *
800 	 * (AMD chose to set the HTT bit on their CMP processors,
801 	 * even though they're not actually hyperthreaded.  Thus it
802 	 * takes a bit more work to figure out what's really going
803 	 * on ... see the handling of the CMP_LGCY bit below)
804 	 */
805 	if (cp->cp_edx & CPUID_INTC_EDX_HTT) {
806 		cpi->cpi_ncpu_per_chip = CPI_CPU_COUNT(cpi);
807 		if (cpi->cpi_ncpu_per_chip > 1)
808 			feature |= X86_HTT;
809 	} else {
810 		cpi->cpi_ncpu_per_chip = 1;
811 	}
812 
813 	/*
814 	 * Work on the "extended" feature information, doing
815 	 * some basic initialization for cpuid_pass2()
816 	 */
817 	xcpuid = 0;
818 	switch (cpi->cpi_vendor) {
819 	case X86_VENDOR_Intel:
820 		if (IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf)
821 			xcpuid++;
822 		break;
823 	case X86_VENDOR_AMD:
824 		if (cpi->cpi_family > 5 ||
825 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
826 			xcpuid++;
827 		break;
828 	case X86_VENDOR_Cyrix:
829 		/*
830 		 * Only these Cyrix CPUs are -known- to support
831 		 * extended cpuid operations.
832 		 */
833 		if (x86_type == X86_TYPE_VIA_CYRIX_III ||
834 		    x86_type == X86_TYPE_CYRIX_GXm)
835 			xcpuid++;
836 		break;
837 	case X86_VENDOR_Centaur:
838 	case X86_VENDOR_TM:
839 	default:
840 		xcpuid++;
841 		break;
842 	}
843 
844 	if (xcpuid) {
845 		cp = &cpi->cpi_extd[0];
846 		cp->cp_eax = 0x80000000;
847 		cpi->cpi_xmaxeax = __cpuid_insn(cp);
848 	}
849 
850 	if (cpi->cpi_xmaxeax & 0x80000000) {
851 
852 		if (cpi->cpi_xmaxeax > CPI_XMAXEAX_MAX)
853 			cpi->cpi_xmaxeax = CPI_XMAXEAX_MAX;
854 
855 		switch (cpi->cpi_vendor) {
856 		case X86_VENDOR_Intel:
857 		case X86_VENDOR_AMD:
858 			if (cpi->cpi_xmaxeax < 0x80000001)
859 				break;
860 			cp = &cpi->cpi_extd[1];
861 			cp->cp_eax = 0x80000001;
862 			(void) __cpuid_insn(cp);
863 
864 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
865 			    cpi->cpi_family == 5 &&
866 			    cpi->cpi_model == 6 &&
867 			    cpi->cpi_step == 6) {
868 				/*
869 				 * K6 model 6 uses bit 10 to indicate SYSC
870 				 * Later models use bit 11. Fix it here.
871 				 */
872 				if (cp->cp_edx & 0x400) {
873 					cp->cp_edx &= ~0x400;
874 					cp->cp_edx |= CPUID_AMD_EDX_SYSC;
875 				}
876 			}
877 
878 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000001, cp);
879 
880 			/*
881 			 * Compute the additions to the kernel's feature word.
882 			 */
883 			if (cp->cp_edx & CPUID_AMD_EDX_NX)
884 				feature |= X86_NX;
885 
886 			/*
887 			 * Regardless whether or not we boot 64-bit,
888 			 * we should have a way to identify whether
889 			 * the CPU is capable of running 64-bit.
890 			 */
891 			if (cp->cp_edx & CPUID_AMD_EDX_LM)
892 				feature |= X86_64;
893 
894 #if defined(__amd64)
895 			/* 1 GB large page - enable only for 64 bit kernel */
896 			if (cp->cp_edx & CPUID_AMD_EDX_1GPG)
897 				feature |= X86_1GPG;
898 #endif
899 
900 			if ((cpi->cpi_vendor == X86_VENDOR_AMD) &&
901 			    (cpi->cpi_std[1].cp_edx & CPUID_INTC_EDX_FXSR) &&
902 			    (cp->cp_ecx & CPUID_AMD_ECX_SSE4A))
903 				feature |= X86_SSE4A;
904 
905 			/*
906 			 * If both the HTT and CMP_LGCY bits are set,
907 			 * then we're not actually HyperThreaded.  Read
908 			 * "AMD CPUID Specification" for more details.
909 			 */
910 			if (cpi->cpi_vendor == X86_VENDOR_AMD &&
911 			    (feature & X86_HTT) &&
912 			    (cp->cp_ecx & CPUID_AMD_ECX_CMP_LGCY)) {
913 				feature &= ~X86_HTT;
914 				feature |= X86_CMP;
915 			}
916 #if defined(__amd64)
917 			/*
918 			 * It's really tricky to support syscall/sysret in
919 			 * the i386 kernel; we rely on sysenter/sysexit
920 			 * instead.  In the amd64 kernel, things are -way-
921 			 * better.
922 			 */
923 			if (cp->cp_edx & CPUID_AMD_EDX_SYSC)
924 				feature |= X86_ASYSC;
925 
926 			/*
927 			 * While we're thinking about system calls, note
928 			 * that AMD processors don't support sysenter
929 			 * in long mode at all, so don't try to program them.
930 			 */
931 			if (x86_vendor == X86_VENDOR_AMD)
932 				feature &= ~X86_SEP;
933 #endif
934 			if (cp->cp_edx & CPUID_AMD_EDX_TSCP)
935 				feature |= X86_TSCP;
936 			break;
937 		default:
938 			break;
939 		}
940 
941 		/*
942 		 * Get CPUID data about processor cores and hyperthreads.
943 		 */
944 		switch (cpi->cpi_vendor) {
945 		case X86_VENDOR_Intel:
946 			if (cpi->cpi_maxeax >= 4) {
947 				cp = &cpi->cpi_std[4];
948 				cp->cp_eax = 4;
949 				cp->cp_ecx = 0;
950 				(void) __cpuid_insn(cp);
951 				platform_cpuid_mangle(cpi->cpi_vendor, 4, cp);
952 			}
953 			/*FALLTHROUGH*/
954 		case X86_VENDOR_AMD:
955 			if (cpi->cpi_xmaxeax < 0x80000008)
956 				break;
957 			cp = &cpi->cpi_extd[8];
958 			cp->cp_eax = 0x80000008;
959 			(void) __cpuid_insn(cp);
960 			platform_cpuid_mangle(cpi->cpi_vendor, 0x80000008, cp);
961 
962 			/*
963 			 * Virtual and physical address limits from
964 			 * cpuid override previously guessed values.
965 			 */
966 			cpi->cpi_pabits = BITX(cp->cp_eax, 7, 0);
967 			cpi->cpi_vabits = BITX(cp->cp_eax, 15, 8);
968 			break;
969 		default:
970 			break;
971 		}
972 
973 		/*
974 		 * Derive the number of cores per chip
975 		 */
976 		switch (cpi->cpi_vendor) {
977 		case X86_VENDOR_Intel:
978 			if (cpi->cpi_maxeax < 4) {
979 				cpi->cpi_ncore_per_chip = 1;
980 				break;
981 			} else {
982 				cpi->cpi_ncore_per_chip =
983 				    BITX((cpi)->cpi_std[4].cp_eax, 31, 26) + 1;
984 			}
985 			break;
986 		case X86_VENDOR_AMD:
987 			if (cpi->cpi_xmaxeax < 0x80000008) {
988 				cpi->cpi_ncore_per_chip = 1;
989 				break;
990 			} else {
991 				/*
992 				 * On family 0xf cpuid fn 2 ECX[7:0] "NC" is
993 				 * 1 less than the number of physical cores on
994 				 * the chip.  In family 0x10 this value can
995 				 * be affected by "downcoring" - it reflects
996 				 * 1 less than the number of cores actually
997 				 * enabled on this node.
998 				 */
999 				cpi->cpi_ncore_per_chip =
1000 				    BITX((cpi)->cpi_extd[8].cp_ecx, 7, 0) + 1;
1001 			}
1002 			break;
1003 		default:
1004 			cpi->cpi_ncore_per_chip = 1;
1005 			break;
1006 		}
1007 	} else {
1008 		cpi->cpi_ncore_per_chip = 1;
1009 	}
1010 
1011 	/*
1012 	 * If more than one core, then this processor is CMP.
1013 	 */
1014 	if (cpi->cpi_ncore_per_chip > 1)
1015 		feature |= X86_CMP;
1016 
1017 	/*
1018 	 * If the number of cores is the same as the number
1019 	 * of CPUs, then we cannot have HyperThreading.
1020 	 */
1021 	if (cpi->cpi_ncpu_per_chip == cpi->cpi_ncore_per_chip)
1022 		feature &= ~X86_HTT;
1023 
1024 	if ((feature & (X86_HTT | X86_CMP)) == 0) {
1025 		/*
1026 		 * Single-core single-threaded processors.
1027 		 */
1028 		cpi->cpi_chipid = -1;
1029 		cpi->cpi_clogid = 0;
1030 		cpi->cpi_coreid = cpu->cpu_id;
1031 		cpi->cpi_pkgcoreid = 0;
1032 	} else if (cpi->cpi_ncpu_per_chip > 1) {
1033 		uint_t i;
1034 		uint_t chipid_shift = 0;
1035 		uint_t coreid_shift = 0;
1036 		uint_t apic_id = CPI_APIC_ID(cpi);
1037 
1038 		for (i = 1; i < cpi->cpi_ncpu_per_chip; i <<= 1)
1039 			chipid_shift++;
1040 		cpi->cpi_chipid = apic_id >> chipid_shift;
1041 		cpi->cpi_clogid = apic_id & ((1 << chipid_shift) - 1);
1042 
1043 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
1044 			if (feature & X86_CMP) {
1045 				/*
1046 				 * Multi-core (and possibly multi-threaded)
1047 				 * processors.
1048 				 */
1049 				uint_t ncpu_per_core;
1050 				if (cpi->cpi_ncore_per_chip == 1)
1051 					ncpu_per_core = cpi->cpi_ncpu_per_chip;
1052 				else if (cpi->cpi_ncore_per_chip > 1)
1053 					ncpu_per_core = cpi->cpi_ncpu_per_chip /
1054 					    cpi->cpi_ncore_per_chip;
1055 				/*
1056 				 * 8bit APIC IDs on dual core Pentiums
1057 				 * look like this:
1058 				 *
1059 				 * +-----------------------+------+------+
1060 				 * | Physical Package ID   |  MC  |  HT  |
1061 				 * +-----------------------+------+------+
1062 				 * <------- chipid -------->
1063 				 * <------- coreid --------------->
1064 				 *			   <--- clogid -->
1065 				 *			   <------>
1066 				 *			   pkgcoreid
1067 				 *
1068 				 * Where the number of bits necessary to
1069 				 * represent MC and HT fields together equals
1070 				 * to the minimum number of bits necessary to
1071 				 * store the value of cpi->cpi_ncpu_per_chip.
1072 				 * Of those bits, the MC part uses the number
1073 				 * of bits necessary to store the value of
1074 				 * cpi->cpi_ncore_per_chip.
1075 				 */
1076 				for (i = 1; i < ncpu_per_core; i <<= 1)
1077 					coreid_shift++;
1078 				cpi->cpi_coreid = apic_id >> coreid_shift;
1079 				cpi->cpi_pkgcoreid = cpi->cpi_clogid >>
1080 				    coreid_shift;
1081 			} else if (feature & X86_HTT) {
1082 				/*
1083 				 * Single-core multi-threaded processors.
1084 				 */
1085 				cpi->cpi_coreid = cpi->cpi_chipid;
1086 				cpi->cpi_pkgcoreid = 0;
1087 			}
1088 		} else if (cpi->cpi_vendor == X86_VENDOR_AMD) {
1089 			/*
1090 			 * AMD CMP chips currently have a single thread per
1091 			 * core, with 2 cores on family 0xf and 2, 3 or 4
1092 			 * cores on family 0x10.
1093 			 *
1094 			 * Since no two cpus share a core we must assign a
1095 			 * distinct coreid per cpu, and we do this by using
1096 			 * the cpu_id.  This scheme does not, however,
1097 			 * guarantee that sibling cores of a chip will have
1098 			 * sequential coreids starting at a multiple of the
1099 			 * number of cores per chip - that is usually the
1100 			 * case, but if the ACPI MADT table is presented
1101 			 * in a different order then we need to perform a
1102 			 * few more gymnastics for the pkgcoreid.
1103 			 *
1104 			 * In family 0xf CMPs there are 2 cores on all nodes
1105 			 * present - no mixing of single and dual core parts.
1106 			 *
1107 			 * In family 0x10 CMPs cpuid fn 2 ECX[15:12]
1108 			 * "ApicIdCoreIdSize[3:0]" tells us how
1109 			 * many least-significant bits in the ApicId
1110 			 * are used to represent the core number
1111 			 * within the node.  Cores are always
1112 			 * numbered sequentially from 0 regardless
1113 			 * of how many or which are disabled, and
1114 			 * there seems to be no way to discover the
1115 			 * real core id when some are disabled.
1116 			 */
1117 			cpi->cpi_coreid = cpu->cpu_id;
1118 
1119 			if (cpi->cpi_family == 0x10 &&
1120 			    cpi->cpi_xmaxeax >= 0x80000008) {
1121 				int coreidsz =
1122 				    BITX((cpi)->cpi_extd[8].cp_ecx, 15, 12);
1123 
1124 				cpi->cpi_pkgcoreid =
1125 				    apic_id & ((1 << coreidsz) - 1);
1126 			} else {
1127 				cpi->cpi_pkgcoreid = cpi->cpi_clogid;
1128 			}
1129 		} else {
1130 			/*
1131 			 * All other processors are currently
1132 			 * assumed to have single cores.
1133 			 */
1134 			cpi->cpi_coreid = cpi->cpi_chipid;
1135 			cpi->cpi_pkgcoreid = 0;
1136 		}
1137 	}
1138 
1139 	cpi->cpi_apicid = CPI_APIC_ID(cpi);
1140 
1141 	/*
1142 	 * Synthesize chip "revision" and socket type
1143 	 */
1144 	cpi->cpi_chiprev = _cpuid_chiprev(cpi->cpi_vendor, cpi->cpi_family,
1145 	    cpi->cpi_model, cpi->cpi_step);
1146 	cpi->cpi_chiprevstr = _cpuid_chiprevstr(cpi->cpi_vendor,
1147 	    cpi->cpi_family, cpi->cpi_model, cpi->cpi_step);
1148 	cpi->cpi_socket = _cpuid_skt(cpi->cpi_vendor, cpi->cpi_family,
1149 	    cpi->cpi_model, cpi->cpi_step);
1150 
1151 pass1_done:
1152 #if !defined(__xpv)
1153 	check_for_hvm();
1154 #endif
1155 	cpi->cpi_pass = 1;
1156 	return (feature);
1157 }
1158 
1159 /*
1160  * Make copies of the cpuid table entries we depend on, in
1161  * part for ease of parsing now, in part so that we have only
1162  * one place to correct any of it, in part for ease of
1163  * later export to userland, and in part so we can look at
1164  * this stuff in a crash dump.
1165  */
1166 
1167 /*ARGSUSED*/
1168 void
1169 cpuid_pass2(cpu_t *cpu)
1170 {
1171 	uint_t n, nmax;
1172 	int i;
1173 	struct cpuid_regs *cp;
1174 	uint8_t *dp;
1175 	uint32_t *iptr;
1176 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1177 
1178 	ASSERT(cpi->cpi_pass == 1);
1179 
1180 	if (cpi->cpi_maxeax < 1)
1181 		goto pass2_done;
1182 
1183 	if ((nmax = cpi->cpi_maxeax + 1) > NMAX_CPI_STD)
1184 		nmax = NMAX_CPI_STD;
1185 	/*
1186 	 * (We already handled n == 0 and n == 1 in pass 1)
1187 	 */
1188 	for (n = 2, cp = &cpi->cpi_std[2]; n < nmax; n++, cp++) {
1189 		cp->cp_eax = n;
1190 
1191 		/*
1192 		 * CPUID function 4 expects %ecx to be initialized
1193 		 * with an index which indicates which cache to return
1194 		 * information about. The OS is expected to call function 4
1195 		 * with %ecx set to 0, 1, 2, ... until it returns with
1196 		 * EAX[4:0] set to 0, which indicates there are no more
1197 		 * caches.
1198 		 *
1199 		 * Here, populate cpi_std[4] with the information returned by
1200 		 * function 4 when %ecx == 0, and do the rest in cpuid_pass3()
1201 		 * when dynamic memory allocation becomes available.
1202 		 *
1203 		 * Note: we need to explicitly initialize %ecx here, since
1204 		 * function 4 may have been previously invoked.
1205 		 */
1206 		if (n == 4)
1207 			cp->cp_ecx = 0;
1208 
1209 		(void) __cpuid_insn(cp);
1210 		platform_cpuid_mangle(cpi->cpi_vendor, n, cp);
1211 		switch (n) {
1212 		case 2:
1213 			/*
1214 			 * "the lower 8 bits of the %eax register
1215 			 * contain a value that identifies the number
1216 			 * of times the cpuid [instruction] has to be
1217 			 * executed to obtain a complete image of the
1218 			 * processor's caching systems."
1219 			 *
1220 			 * How *do* they make this stuff up?
1221 			 */
1222 			cpi->cpi_ncache = sizeof (*cp) *
1223 			    BITX(cp->cp_eax, 7, 0);
1224 			if (cpi->cpi_ncache == 0)
1225 				break;
1226 			cpi->cpi_ncache--;	/* skip count byte */
1227 
1228 			/*
1229 			 * Well, for now, rather than attempt to implement
1230 			 * this slightly dubious algorithm, we just look
1231 			 * at the first 15 ..
1232 			 */
1233 			if (cpi->cpi_ncache > (sizeof (*cp) - 1))
1234 				cpi->cpi_ncache = sizeof (*cp) - 1;
1235 
1236 			dp = cpi->cpi_cacheinfo;
1237 			if (BITX(cp->cp_eax, 31, 31) == 0) {
1238 				uint8_t *p = (void *)&cp->cp_eax;
1239 				for (i = 1; i < 4; i++)
1240 					if (p[i] != 0)
1241 						*dp++ = p[i];
1242 			}
1243 			if (BITX(cp->cp_ebx, 31, 31) == 0) {
1244 				uint8_t *p = (void *)&cp->cp_ebx;
1245 				for (i = 0; i < 4; i++)
1246 					if (p[i] != 0)
1247 						*dp++ = p[i];
1248 			}
1249 			if (BITX(cp->cp_ecx, 31, 31) == 0) {
1250 				uint8_t *p = (void *)&cp->cp_ecx;
1251 				for (i = 0; i < 4; i++)
1252 					if (p[i] != 0)
1253 						*dp++ = p[i];
1254 			}
1255 			if (BITX(cp->cp_edx, 31, 31) == 0) {
1256 				uint8_t *p = (void *)&cp->cp_edx;
1257 				for (i = 0; i < 4; i++)
1258 					if (p[i] != 0)
1259 						*dp++ = p[i];
1260 			}
1261 			break;
1262 
1263 		case 3:	/* Processor serial number, if PSN supported */
1264 			break;
1265 
1266 		case 4:	/* Deterministic cache parameters */
1267 			break;
1268 
1269 		case 5:	/* Monitor/Mwait parameters */
1270 		{
1271 			size_t mwait_size;
1272 
1273 			/*
1274 			 * check cpi_mwait.support which was set in cpuid_pass1
1275 			 */
1276 			if (!(cpi->cpi_mwait.support & MWAIT_SUPPORT))
1277 				break;
1278 
1279 			/*
1280 			 * Protect ourself from insane mwait line size.
1281 			 * Workaround for incomplete hardware emulator(s).
1282 			 */
1283 			mwait_size = (size_t)MWAIT_SIZE_MAX(cpi);
1284 			if (mwait_size < sizeof (uint32_t) ||
1285 			    !ISP2(mwait_size)) {
1286 #if DEBUG
1287 				cmn_err(CE_NOTE, "Cannot handle cpu %d mwait "
1288 				    "size %ld",
1289 				    cpu->cpu_id, (long)mwait_size);
1290 #endif
1291 				break;
1292 			}
1293 
1294 			cpi->cpi_mwait.mon_min = (size_t)MWAIT_SIZE_MIN(cpi);
1295 			cpi->cpi_mwait.mon_max = mwait_size;
1296 			if (MWAIT_EXTENSION(cpi)) {
1297 				cpi->cpi_mwait.support |= MWAIT_EXTENSIONS;
1298 				if (MWAIT_INT_ENABLE(cpi))
1299 					cpi->cpi_mwait.support |=
1300 					    MWAIT_ECX_INT_ENABLE;
1301 			}
1302 			break;
1303 		}
1304 		default:
1305 			break;
1306 		}
1307 	}
1308 
1309 	if (cpi->cpi_maxeax >= 0xB && cpi->cpi_vendor == X86_VENDOR_Intel) {
1310 		cp->cp_eax = 0xB;
1311 		cp->cp_ecx = 0;
1312 
1313 		(void) __cpuid_insn(cp);
1314 
1315 		/*
1316 		 * Check CPUID.EAX=0BH, ECX=0H:EBX is non-zero, which
1317 		 * indicates that the extended topology enumeration leaf is
1318 		 * available.
1319 		 */
1320 		if (cp->cp_ebx) {
1321 			uint32_t x2apic_id;
1322 			uint_t coreid_shift = 0;
1323 			uint_t ncpu_per_core = 1;
1324 			uint_t chipid_shift = 0;
1325 			uint_t ncpu_per_chip = 1;
1326 			uint_t i;
1327 			uint_t level;
1328 
1329 			for (i = 0; i < CPI_FNB_ECX_MAX; i++) {
1330 				cp->cp_eax = 0xB;
1331 				cp->cp_ecx = i;
1332 
1333 				(void) __cpuid_insn(cp);
1334 				level = CPI_CPU_LEVEL_TYPE(cp);
1335 
1336 				if (level == 1) {
1337 					x2apic_id = cp->cp_edx;
1338 					coreid_shift = BITX(cp->cp_eax, 4, 0);
1339 					ncpu_per_core = BITX(cp->cp_ebx, 15, 0);
1340 				} else if (level == 2) {
1341 					x2apic_id = cp->cp_edx;
1342 					chipid_shift = BITX(cp->cp_eax, 4, 0);
1343 					ncpu_per_chip = BITX(cp->cp_ebx, 15, 0);
1344 				}
1345 			}
1346 
1347 			cpi->cpi_apicid = x2apic_id;
1348 			cpi->cpi_ncpu_per_chip = ncpu_per_chip;
1349 			cpi->cpi_ncore_per_chip = ncpu_per_chip /
1350 			    ncpu_per_core;
1351 			cpi->cpi_chipid = x2apic_id >> chipid_shift;
1352 			cpi->cpi_clogid = x2apic_id & ((1 << chipid_shift) - 1);
1353 			cpi->cpi_coreid = x2apic_id >> coreid_shift;
1354 			cpi->cpi_pkgcoreid = cpi->cpi_clogid >> coreid_shift;
1355 		}
1356 	}
1357 
1358 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0)
1359 		goto pass2_done;
1360 
1361 	if ((nmax = cpi->cpi_xmaxeax - 0x80000000 + 1) > NMAX_CPI_EXTD)
1362 		nmax = NMAX_CPI_EXTD;
1363 	/*
1364 	 * Copy the extended properties, fixing them as we go.
1365 	 * (We already handled n == 0 and n == 1 in pass 1)
1366 	 */
1367 	iptr = (void *)cpi->cpi_brandstr;
1368 	for (n = 2, cp = &cpi->cpi_extd[2]; n < nmax; cp++, n++) {
1369 		cp->cp_eax = 0x80000000 + n;
1370 		(void) __cpuid_insn(cp);
1371 		platform_cpuid_mangle(cpi->cpi_vendor, 0x80000000 + n, cp);
1372 		switch (n) {
1373 		case 2:
1374 		case 3:
1375 		case 4:
1376 			/*
1377 			 * Extract the brand string
1378 			 */
1379 			*iptr++ = cp->cp_eax;
1380 			*iptr++ = cp->cp_ebx;
1381 			*iptr++ = cp->cp_ecx;
1382 			*iptr++ = cp->cp_edx;
1383 			break;
1384 		case 5:
1385 			switch (cpi->cpi_vendor) {
1386 			case X86_VENDOR_AMD:
1387 				/*
1388 				 * The Athlon and Duron were the first
1389 				 * parts to report the sizes of the
1390 				 * TLB for large pages. Before then,
1391 				 * we don't trust the data.
1392 				 */
1393 				if (cpi->cpi_family < 6 ||
1394 				    (cpi->cpi_family == 6 &&
1395 				    cpi->cpi_model < 1))
1396 					cp->cp_eax = 0;
1397 				break;
1398 			default:
1399 				break;
1400 			}
1401 			break;
1402 		case 6:
1403 			switch (cpi->cpi_vendor) {
1404 			case X86_VENDOR_AMD:
1405 				/*
1406 				 * The Athlon and Duron were the first
1407 				 * AMD parts with L2 TLB's.
1408 				 * Before then, don't trust the data.
1409 				 */
1410 				if (cpi->cpi_family < 6 ||
1411 				    cpi->cpi_family == 6 &&
1412 				    cpi->cpi_model < 1)
1413 					cp->cp_eax = cp->cp_ebx = 0;
1414 				/*
1415 				 * AMD Duron rev A0 reports L2
1416 				 * cache size incorrectly as 1K
1417 				 * when it is really 64K
1418 				 */
1419 				if (cpi->cpi_family == 6 &&
1420 				    cpi->cpi_model == 3 &&
1421 				    cpi->cpi_step == 0) {
1422 					cp->cp_ecx &= 0xffff;
1423 					cp->cp_ecx |= 0x400000;
1424 				}
1425 				break;
1426 			case X86_VENDOR_Cyrix:	/* VIA C3 */
1427 				/*
1428 				 * VIA C3 processors are a bit messed
1429 				 * up w.r.t. encoding cache sizes in %ecx
1430 				 */
1431 				if (cpi->cpi_family != 6)
1432 					break;
1433 				/*
1434 				 * model 7 and 8 were incorrectly encoded
1435 				 *
1436 				 * xxx is model 8 really broken?
1437 				 */
1438 				if (cpi->cpi_model == 7 ||
1439 				    cpi->cpi_model == 8)
1440 					cp->cp_ecx =
1441 					    BITX(cp->cp_ecx, 31, 24) << 16 |
1442 					    BITX(cp->cp_ecx, 23, 16) << 12 |
1443 					    BITX(cp->cp_ecx, 15, 8) << 8 |
1444 					    BITX(cp->cp_ecx, 7, 0);
1445 				/*
1446 				 * model 9 stepping 1 has wrong associativity
1447 				 */
1448 				if (cpi->cpi_model == 9 && cpi->cpi_step == 1)
1449 					cp->cp_ecx |= 8 << 12;
1450 				break;
1451 			case X86_VENDOR_Intel:
1452 				/*
1453 				 * Extended L2 Cache features function.
1454 				 * First appeared on Prescott.
1455 				 */
1456 			default:
1457 				break;
1458 			}
1459 			break;
1460 		default:
1461 			break;
1462 		}
1463 	}
1464 
1465 pass2_done:
1466 	cpi->cpi_pass = 2;
1467 }
1468 
1469 static const char *
1470 intel_cpubrand(const struct cpuid_info *cpi)
1471 {
1472 	int i;
1473 
1474 	if ((x86_feature & X86_CPUID) == 0 ||
1475 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1476 		return ("i486");
1477 
1478 	switch (cpi->cpi_family) {
1479 	case 5:
1480 		return ("Intel Pentium(r)");
1481 	case 6:
1482 		switch (cpi->cpi_model) {
1483 			uint_t celeron, xeon;
1484 			const struct cpuid_regs *cp;
1485 		case 0:
1486 		case 1:
1487 		case 2:
1488 			return ("Intel Pentium(r) Pro");
1489 		case 3:
1490 		case 4:
1491 			return ("Intel Pentium(r) II");
1492 		case 6:
1493 			return ("Intel Celeron(r)");
1494 		case 5:
1495 		case 7:
1496 			celeron = xeon = 0;
1497 			cp = &cpi->cpi_std[2];	/* cache info */
1498 
1499 			for (i = 1; i < 4; i++) {
1500 				uint_t tmp;
1501 
1502 				tmp = (cp->cp_eax >> (8 * i)) & 0xff;
1503 				if (tmp == 0x40)
1504 					celeron++;
1505 				if (tmp >= 0x44 && tmp <= 0x45)
1506 					xeon++;
1507 			}
1508 
1509 			for (i = 0; i < 2; i++) {
1510 				uint_t tmp;
1511 
1512 				tmp = (cp->cp_ebx >> (8 * i)) & 0xff;
1513 				if (tmp == 0x40)
1514 					celeron++;
1515 				else if (tmp >= 0x44 && tmp <= 0x45)
1516 					xeon++;
1517 			}
1518 
1519 			for (i = 0; i < 4; i++) {
1520 				uint_t tmp;
1521 
1522 				tmp = (cp->cp_ecx >> (8 * i)) & 0xff;
1523 				if (tmp == 0x40)
1524 					celeron++;
1525 				else if (tmp >= 0x44 && tmp <= 0x45)
1526 					xeon++;
1527 			}
1528 
1529 			for (i = 0; i < 4; i++) {
1530 				uint_t tmp;
1531 
1532 				tmp = (cp->cp_edx >> (8 * i)) & 0xff;
1533 				if (tmp == 0x40)
1534 					celeron++;
1535 				else if (tmp >= 0x44 && tmp <= 0x45)
1536 					xeon++;
1537 			}
1538 
1539 			if (celeron)
1540 				return ("Intel Celeron(r)");
1541 			if (xeon)
1542 				return (cpi->cpi_model == 5 ?
1543 				    "Intel Pentium(r) II Xeon(tm)" :
1544 				    "Intel Pentium(r) III Xeon(tm)");
1545 			return (cpi->cpi_model == 5 ?
1546 			    "Intel Pentium(r) II or Pentium(r) II Xeon(tm)" :
1547 			    "Intel Pentium(r) III or Pentium(r) III Xeon(tm)");
1548 		default:
1549 			break;
1550 		}
1551 	default:
1552 		break;
1553 	}
1554 
1555 	/* BrandID is present if the field is nonzero */
1556 	if (cpi->cpi_brandid != 0) {
1557 		static const struct {
1558 			uint_t bt_bid;
1559 			const char *bt_str;
1560 		} brand_tbl[] = {
1561 			{ 0x1,	"Intel(r) Celeron(r)" },
1562 			{ 0x2,	"Intel(r) Pentium(r) III" },
1563 			{ 0x3,	"Intel(r) Pentium(r) III Xeon(tm)" },
1564 			{ 0x4,	"Intel(r) Pentium(r) III" },
1565 			{ 0x6,	"Mobile Intel(r) Pentium(r) III" },
1566 			{ 0x7,	"Mobile Intel(r) Celeron(r)" },
1567 			{ 0x8,	"Intel(r) Pentium(r) 4" },
1568 			{ 0x9,	"Intel(r) Pentium(r) 4" },
1569 			{ 0xa,	"Intel(r) Celeron(r)" },
1570 			{ 0xb,	"Intel(r) Xeon(tm)" },
1571 			{ 0xc,	"Intel(r) Xeon(tm) MP" },
1572 			{ 0xe,	"Mobile Intel(r) Pentium(r) 4" },
1573 			{ 0xf,	"Mobile Intel(r) Celeron(r)" },
1574 			{ 0x11, "Mobile Genuine Intel(r)" },
1575 			{ 0x12, "Intel(r) Celeron(r) M" },
1576 			{ 0x13, "Mobile Intel(r) Celeron(r)" },
1577 			{ 0x14, "Intel(r) Celeron(r)" },
1578 			{ 0x15, "Mobile Genuine Intel(r)" },
1579 			{ 0x16,	"Intel(r) Pentium(r) M" },
1580 			{ 0x17, "Mobile Intel(r) Celeron(r)" }
1581 		};
1582 		uint_t btblmax = sizeof (brand_tbl) / sizeof (brand_tbl[0]);
1583 		uint_t sgn;
1584 
1585 		sgn = (cpi->cpi_family << 8) |
1586 		    (cpi->cpi_model << 4) | cpi->cpi_step;
1587 
1588 		for (i = 0; i < btblmax; i++)
1589 			if (brand_tbl[i].bt_bid == cpi->cpi_brandid)
1590 				break;
1591 		if (i < btblmax) {
1592 			if (sgn == 0x6b1 && cpi->cpi_brandid == 3)
1593 				return ("Intel(r) Celeron(r)");
1594 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xb)
1595 				return ("Intel(r) Xeon(tm) MP");
1596 			if (sgn < 0xf13 && cpi->cpi_brandid == 0xe)
1597 				return ("Intel(r) Xeon(tm)");
1598 			return (brand_tbl[i].bt_str);
1599 		}
1600 	}
1601 
1602 	return (NULL);
1603 }
1604 
1605 static const char *
1606 amd_cpubrand(const struct cpuid_info *cpi)
1607 {
1608 	if ((x86_feature & X86_CPUID) == 0 ||
1609 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5)
1610 		return ("i486 compatible");
1611 
1612 	switch (cpi->cpi_family) {
1613 	case 5:
1614 		switch (cpi->cpi_model) {
1615 		case 0:
1616 		case 1:
1617 		case 2:
1618 		case 3:
1619 		case 4:
1620 		case 5:
1621 			return ("AMD-K5(r)");
1622 		case 6:
1623 		case 7:
1624 			return ("AMD-K6(r)");
1625 		case 8:
1626 			return ("AMD-K6(r)-2");
1627 		case 9:
1628 			return ("AMD-K6(r)-III");
1629 		default:
1630 			return ("AMD (family 5)");
1631 		}
1632 	case 6:
1633 		switch (cpi->cpi_model) {
1634 		case 1:
1635 			return ("AMD-K7(tm)");
1636 		case 0:
1637 		case 2:
1638 		case 4:
1639 			return ("AMD Athlon(tm)");
1640 		case 3:
1641 		case 7:
1642 			return ("AMD Duron(tm)");
1643 		case 6:
1644 		case 8:
1645 		case 10:
1646 			/*
1647 			 * Use the L2 cache size to distinguish
1648 			 */
1649 			return ((cpi->cpi_extd[6].cp_ecx >> 16) >= 256 ?
1650 			    "AMD Athlon(tm)" : "AMD Duron(tm)");
1651 		default:
1652 			return ("AMD (family 6)");
1653 		}
1654 	default:
1655 		break;
1656 	}
1657 
1658 	if (cpi->cpi_family == 0xf && cpi->cpi_model == 5 &&
1659 	    cpi->cpi_brandid != 0) {
1660 		switch (BITX(cpi->cpi_brandid, 7, 5)) {
1661 		case 3:
1662 			return ("AMD Opteron(tm) UP 1xx");
1663 		case 4:
1664 			return ("AMD Opteron(tm) DP 2xx");
1665 		case 5:
1666 			return ("AMD Opteron(tm) MP 8xx");
1667 		default:
1668 			return ("AMD Opteron(tm)");
1669 		}
1670 	}
1671 
1672 	return (NULL);
1673 }
1674 
1675 static const char *
1676 cyrix_cpubrand(struct cpuid_info *cpi, uint_t type)
1677 {
1678 	if ((x86_feature & X86_CPUID) == 0 ||
1679 	    cpi->cpi_maxeax < 1 || cpi->cpi_family < 5 ||
1680 	    type == X86_TYPE_CYRIX_486)
1681 		return ("i486 compatible");
1682 
1683 	switch (type) {
1684 	case X86_TYPE_CYRIX_6x86:
1685 		return ("Cyrix 6x86");
1686 	case X86_TYPE_CYRIX_6x86L:
1687 		return ("Cyrix 6x86L");
1688 	case X86_TYPE_CYRIX_6x86MX:
1689 		return ("Cyrix 6x86MX");
1690 	case X86_TYPE_CYRIX_GXm:
1691 		return ("Cyrix GXm");
1692 	case X86_TYPE_CYRIX_MediaGX:
1693 		return ("Cyrix MediaGX");
1694 	case X86_TYPE_CYRIX_MII:
1695 		return ("Cyrix M2");
1696 	case X86_TYPE_VIA_CYRIX_III:
1697 		return ("VIA Cyrix M3");
1698 	default:
1699 		/*
1700 		 * Have another wild guess ..
1701 		 */
1702 		if (cpi->cpi_family == 4 && cpi->cpi_model == 9)
1703 			return ("Cyrix 5x86");
1704 		else if (cpi->cpi_family == 5) {
1705 			switch (cpi->cpi_model) {
1706 			case 2:
1707 				return ("Cyrix 6x86");	/* Cyrix M1 */
1708 			case 4:
1709 				return ("Cyrix MediaGX");
1710 			default:
1711 				break;
1712 			}
1713 		} else if (cpi->cpi_family == 6) {
1714 			switch (cpi->cpi_model) {
1715 			case 0:
1716 				return ("Cyrix 6x86MX"); /* Cyrix M2? */
1717 			case 5:
1718 			case 6:
1719 			case 7:
1720 			case 8:
1721 			case 9:
1722 				return ("VIA C3");
1723 			default:
1724 				break;
1725 			}
1726 		}
1727 		break;
1728 	}
1729 	return (NULL);
1730 }
1731 
1732 /*
1733  * This only gets called in the case that the CPU extended
1734  * feature brand string (0x80000002, 0x80000003, 0x80000004)
1735  * aren't available, or contain null bytes for some reason.
1736  */
1737 static void
1738 fabricate_brandstr(struct cpuid_info *cpi)
1739 {
1740 	const char *brand = NULL;
1741 
1742 	switch (cpi->cpi_vendor) {
1743 	case X86_VENDOR_Intel:
1744 		brand = intel_cpubrand(cpi);
1745 		break;
1746 	case X86_VENDOR_AMD:
1747 		brand = amd_cpubrand(cpi);
1748 		break;
1749 	case X86_VENDOR_Cyrix:
1750 		brand = cyrix_cpubrand(cpi, x86_type);
1751 		break;
1752 	case X86_VENDOR_NexGen:
1753 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1754 			brand = "NexGen Nx586";
1755 		break;
1756 	case X86_VENDOR_Centaur:
1757 		if (cpi->cpi_family == 5)
1758 			switch (cpi->cpi_model) {
1759 			case 4:
1760 				brand = "Centaur C6";
1761 				break;
1762 			case 8:
1763 				brand = "Centaur C2";
1764 				break;
1765 			case 9:
1766 				brand = "Centaur C3";
1767 				break;
1768 			default:
1769 				break;
1770 			}
1771 		break;
1772 	case X86_VENDOR_Rise:
1773 		if (cpi->cpi_family == 5 &&
1774 		    (cpi->cpi_model == 0 || cpi->cpi_model == 2))
1775 			brand = "Rise mP6";
1776 		break;
1777 	case X86_VENDOR_SiS:
1778 		if (cpi->cpi_family == 5 && cpi->cpi_model == 0)
1779 			brand = "SiS 55x";
1780 		break;
1781 	case X86_VENDOR_TM:
1782 		if (cpi->cpi_family == 5 && cpi->cpi_model == 4)
1783 			brand = "Transmeta Crusoe TM3x00 or TM5x00";
1784 		break;
1785 	case X86_VENDOR_NSC:
1786 	case X86_VENDOR_UMC:
1787 	default:
1788 		break;
1789 	}
1790 	if (brand) {
1791 		(void) strcpy((char *)cpi->cpi_brandstr, brand);
1792 		return;
1793 	}
1794 
1795 	/*
1796 	 * If all else fails ...
1797 	 */
1798 	(void) snprintf(cpi->cpi_brandstr, sizeof (cpi->cpi_brandstr),
1799 	    "%s %d.%d.%d", cpi->cpi_vendorstr, cpi->cpi_family,
1800 	    cpi->cpi_model, cpi->cpi_step);
1801 }
1802 
1803 /*
1804  * This routine is called just after kernel memory allocation
1805  * becomes available on cpu0, and as part of mp_startup() on
1806  * the other cpus.
1807  *
1808  * Fixup the brand string, and collect any information from cpuid
1809  * that requires dynamicically allocated storage to represent.
1810  */
1811 /*ARGSUSED*/
1812 void
1813 cpuid_pass3(cpu_t *cpu)
1814 {
1815 	int	i, max, shft, level, size;
1816 	struct cpuid_regs regs;
1817 	struct cpuid_regs *cp;
1818 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
1819 
1820 	ASSERT(cpi->cpi_pass == 2);
1821 
1822 	/*
1823 	 * Function 4: Deterministic cache parameters
1824 	 *
1825 	 * Take this opportunity to detect the number of threads
1826 	 * sharing the last level cache, and construct a corresponding
1827 	 * cache id. The respective cpuid_info members are initialized
1828 	 * to the default case of "no last level cache sharing".
1829 	 */
1830 	cpi->cpi_ncpu_shr_last_cache = 1;
1831 	cpi->cpi_last_lvl_cacheid = cpu->cpu_id;
1832 
1833 	if (cpi->cpi_maxeax >= 4 && cpi->cpi_vendor == X86_VENDOR_Intel) {
1834 
1835 		/*
1836 		 * Find the # of elements (size) returned by fn 4, and along
1837 		 * the way detect last level cache sharing details.
1838 		 */
1839 		bzero(&regs, sizeof (regs));
1840 		cp = &regs;
1841 		for (i = 0, max = 0; i < CPI_FN4_ECX_MAX; i++) {
1842 			cp->cp_eax = 4;
1843 			cp->cp_ecx = i;
1844 
1845 			(void) __cpuid_insn(cp);
1846 
1847 			if (CPI_CACHE_TYPE(cp) == 0)
1848 				break;
1849 			level = CPI_CACHE_LVL(cp);
1850 			if (level > max) {
1851 				max = level;
1852 				cpi->cpi_ncpu_shr_last_cache =
1853 				    CPI_NTHR_SHR_CACHE(cp) + 1;
1854 			}
1855 		}
1856 		cpi->cpi_std_4_size = size = i;
1857 
1858 		/*
1859 		 * Allocate the cpi_std_4 array. The first element
1860 		 * references the regs for fn 4, %ecx == 0, which
1861 		 * cpuid_pass2() stashed in cpi->cpi_std[4].
1862 		 */
1863 		if (size > 0) {
1864 			cpi->cpi_std_4 =
1865 			    kmem_alloc(size * sizeof (cp), KM_SLEEP);
1866 			cpi->cpi_std_4[0] = &cpi->cpi_std[4];
1867 
1868 			/*
1869 			 * Allocate storage to hold the additional regs
1870 			 * for function 4, %ecx == 1 .. cpi_std_4_size.
1871 			 *
1872 			 * The regs for fn 4, %ecx == 0 has already
1873 			 * been allocated as indicated above.
1874 			 */
1875 			for (i = 1; i < size; i++) {
1876 				cp = cpi->cpi_std_4[i] =
1877 				    kmem_zalloc(sizeof (regs), KM_SLEEP);
1878 				cp->cp_eax = 4;
1879 				cp->cp_ecx = i;
1880 
1881 				(void) __cpuid_insn(cp);
1882 			}
1883 		}
1884 		/*
1885 		 * Determine the number of bits needed to represent
1886 		 * the number of CPUs sharing the last level cache.
1887 		 *
1888 		 * Shift off that number of bits from the APIC id to
1889 		 * derive the cache id.
1890 		 */
1891 		shft = 0;
1892 		for (i = 1; i < cpi->cpi_ncpu_shr_last_cache; i <<= 1)
1893 			shft++;
1894 		cpi->cpi_last_lvl_cacheid = cpi->cpi_apicid >> shft;
1895 	}
1896 
1897 	/*
1898 	 * Now fixup the brand string
1899 	 */
1900 	if ((cpi->cpi_xmaxeax & 0x80000000) == 0) {
1901 		fabricate_brandstr(cpi);
1902 	} else {
1903 
1904 		/*
1905 		 * If we successfully extracted a brand string from the cpuid
1906 		 * instruction, clean it up by removing leading spaces and
1907 		 * similar junk.
1908 		 */
1909 		if (cpi->cpi_brandstr[0]) {
1910 			size_t maxlen = sizeof (cpi->cpi_brandstr);
1911 			char *src, *dst;
1912 
1913 			dst = src = (char *)cpi->cpi_brandstr;
1914 			src[maxlen - 1] = '\0';
1915 			/*
1916 			 * strip leading spaces
1917 			 */
1918 			while (*src == ' ')
1919 				src++;
1920 			/*
1921 			 * Remove any 'Genuine' or "Authentic" prefixes
1922 			 */
1923 			if (strncmp(src, "Genuine ", 8) == 0)
1924 				src += 8;
1925 			if (strncmp(src, "Authentic ", 10) == 0)
1926 				src += 10;
1927 
1928 			/*
1929 			 * Now do an in-place copy.
1930 			 * Map (R) to (r) and (TM) to (tm).
1931 			 * The era of teletypes is long gone, and there's
1932 			 * -really- no need to shout.
1933 			 */
1934 			while (*src != '\0') {
1935 				if (src[0] == '(') {
1936 					if (strncmp(src + 1, "R)", 2) == 0) {
1937 						(void) strncpy(dst, "(r)", 3);
1938 						src += 3;
1939 						dst += 3;
1940 						continue;
1941 					}
1942 					if (strncmp(src + 1, "TM)", 3) == 0) {
1943 						(void) strncpy(dst, "(tm)", 4);
1944 						src += 4;
1945 						dst += 4;
1946 						continue;
1947 					}
1948 				}
1949 				*dst++ = *src++;
1950 			}
1951 			*dst = '\0';
1952 
1953 			/*
1954 			 * Finally, remove any trailing spaces
1955 			 */
1956 			while (--dst > cpi->cpi_brandstr)
1957 				if (*dst == ' ')
1958 					*dst = '\0';
1959 				else
1960 					break;
1961 		} else
1962 			fabricate_brandstr(cpi);
1963 	}
1964 	cpi->cpi_pass = 3;
1965 }
1966 
1967 /*
1968  * This routine is called out of bind_hwcap() much later in the life
1969  * of the kernel (post_startup()).  The job of this routine is to resolve
1970  * the hardware feature support and kernel support for those features into
1971  * what we're actually going to tell applications via the aux vector.
1972  */
1973 uint_t
1974 cpuid_pass4(cpu_t *cpu)
1975 {
1976 	struct cpuid_info *cpi;
1977 	uint_t hwcap_flags = 0;
1978 
1979 	if (cpu == NULL)
1980 		cpu = CPU;
1981 	cpi = cpu->cpu_m.mcpu_cpi;
1982 
1983 	ASSERT(cpi->cpi_pass == 3);
1984 
1985 	if (cpi->cpi_maxeax >= 1) {
1986 		uint32_t *edx = &cpi->cpi_support[STD_EDX_FEATURES];
1987 		uint32_t *ecx = &cpi->cpi_support[STD_ECX_FEATURES];
1988 
1989 		*edx = CPI_FEATURES_EDX(cpi);
1990 		*ecx = CPI_FEATURES_ECX(cpi);
1991 
1992 		/*
1993 		 * [these require explicit kernel support]
1994 		 */
1995 		if ((x86_feature & X86_SEP) == 0)
1996 			*edx &= ~CPUID_INTC_EDX_SEP;
1997 
1998 		if ((x86_feature & X86_SSE) == 0)
1999 			*edx &= ~(CPUID_INTC_EDX_FXSR|CPUID_INTC_EDX_SSE);
2000 		if ((x86_feature & X86_SSE2) == 0)
2001 			*edx &= ~CPUID_INTC_EDX_SSE2;
2002 
2003 		if ((x86_feature & X86_HTT) == 0)
2004 			*edx &= ~CPUID_INTC_EDX_HTT;
2005 
2006 		if ((x86_feature & X86_SSE3) == 0)
2007 			*ecx &= ~CPUID_INTC_ECX_SSE3;
2008 
2009 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2010 			if ((x86_feature & X86_SSSE3) == 0)
2011 				*ecx &= ~CPUID_INTC_ECX_SSSE3;
2012 			if ((x86_feature & X86_SSE4_1) == 0)
2013 				*ecx &= ~CPUID_INTC_ECX_SSE4_1;
2014 			if ((x86_feature & X86_SSE4_2) == 0)
2015 				*ecx &= ~CPUID_INTC_ECX_SSE4_2;
2016 		}
2017 
2018 		/*
2019 		 * [no explicit support required beyond x87 fp context]
2020 		 */
2021 		if (!fpu_exists)
2022 			*edx &= ~(CPUID_INTC_EDX_FPU | CPUID_INTC_EDX_MMX);
2023 
2024 		/*
2025 		 * Now map the supported feature vector to things that we
2026 		 * think userland will care about.
2027 		 */
2028 		if (*edx & CPUID_INTC_EDX_SEP)
2029 			hwcap_flags |= AV_386_SEP;
2030 		if (*edx & CPUID_INTC_EDX_SSE)
2031 			hwcap_flags |= AV_386_FXSR | AV_386_SSE;
2032 		if (*edx & CPUID_INTC_EDX_SSE2)
2033 			hwcap_flags |= AV_386_SSE2;
2034 		if (*ecx & CPUID_INTC_ECX_SSE3)
2035 			hwcap_flags |= AV_386_SSE3;
2036 		if (cpi->cpi_vendor == X86_VENDOR_Intel) {
2037 			if (*ecx & CPUID_INTC_ECX_SSSE3)
2038 				hwcap_flags |= AV_386_SSSE3;
2039 			if (*ecx & CPUID_INTC_ECX_SSE4_1)
2040 				hwcap_flags |= AV_386_SSE4_1;
2041 			if (*ecx & CPUID_INTC_ECX_SSE4_2)
2042 				hwcap_flags |= AV_386_SSE4_2;
2043 		}
2044 		if (*ecx & CPUID_INTC_ECX_POPCNT)
2045 			hwcap_flags |= AV_386_POPCNT;
2046 		if (*edx & CPUID_INTC_EDX_FPU)
2047 			hwcap_flags |= AV_386_FPU;
2048 		if (*edx & CPUID_INTC_EDX_MMX)
2049 			hwcap_flags |= AV_386_MMX;
2050 
2051 		if (*edx & CPUID_INTC_EDX_TSC)
2052 			hwcap_flags |= AV_386_TSC;
2053 		if (*edx & CPUID_INTC_EDX_CX8)
2054 			hwcap_flags |= AV_386_CX8;
2055 		if (*edx & CPUID_INTC_EDX_CMOV)
2056 			hwcap_flags |= AV_386_CMOV;
2057 		if (*ecx & CPUID_INTC_ECX_MON)
2058 			hwcap_flags |= AV_386_MON;
2059 		if (*ecx & CPUID_INTC_ECX_CX16)
2060 			hwcap_flags |= AV_386_CX16;
2061 	}
2062 
2063 	if (x86_feature & X86_HTT)
2064 		hwcap_flags |= AV_386_PAUSE;
2065 
2066 	if (cpi->cpi_xmaxeax < 0x80000001)
2067 		goto pass4_done;
2068 
2069 	switch (cpi->cpi_vendor) {
2070 		struct cpuid_regs cp;
2071 		uint32_t *edx, *ecx;
2072 
2073 	case X86_VENDOR_Intel:
2074 		/*
2075 		 * Seems like Intel duplicated what we necessary
2076 		 * here to make the initial crop of 64-bit OS's work.
2077 		 * Hopefully, those are the only "extended" bits
2078 		 * they'll add.
2079 		 */
2080 		/*FALLTHROUGH*/
2081 
2082 	case X86_VENDOR_AMD:
2083 		edx = &cpi->cpi_support[AMD_EDX_FEATURES];
2084 		ecx = &cpi->cpi_support[AMD_ECX_FEATURES];
2085 
2086 		*edx = CPI_FEATURES_XTD_EDX(cpi);
2087 		*ecx = CPI_FEATURES_XTD_ECX(cpi);
2088 
2089 		/*
2090 		 * [these features require explicit kernel support]
2091 		 */
2092 		switch (cpi->cpi_vendor) {
2093 		case X86_VENDOR_Intel:
2094 			if ((x86_feature & X86_TSCP) == 0)
2095 				*edx &= ~CPUID_AMD_EDX_TSCP;
2096 			break;
2097 
2098 		case X86_VENDOR_AMD:
2099 			if ((x86_feature & X86_TSCP) == 0)
2100 				*edx &= ~CPUID_AMD_EDX_TSCP;
2101 			if ((x86_feature & X86_SSE4A) == 0)
2102 				*ecx &= ~CPUID_AMD_ECX_SSE4A;
2103 			break;
2104 
2105 		default:
2106 			break;
2107 		}
2108 
2109 		/*
2110 		 * [no explicit support required beyond
2111 		 * x87 fp context and exception handlers]
2112 		 */
2113 		if (!fpu_exists)
2114 			*edx &= ~(CPUID_AMD_EDX_MMXamd |
2115 			    CPUID_AMD_EDX_3DNow | CPUID_AMD_EDX_3DNowx);
2116 
2117 		if ((x86_feature & X86_NX) == 0)
2118 			*edx &= ~CPUID_AMD_EDX_NX;
2119 #if !defined(__amd64)
2120 		*edx &= ~CPUID_AMD_EDX_LM;
2121 #endif
2122 		/*
2123 		 * Now map the supported feature vector to
2124 		 * things that we think userland will care about.
2125 		 */
2126 #if defined(__amd64)
2127 		if (*edx & CPUID_AMD_EDX_SYSC)
2128 			hwcap_flags |= AV_386_AMD_SYSC;
2129 #endif
2130 		if (*edx & CPUID_AMD_EDX_MMXamd)
2131 			hwcap_flags |= AV_386_AMD_MMX;
2132 		if (*edx & CPUID_AMD_EDX_3DNow)
2133 			hwcap_flags |= AV_386_AMD_3DNow;
2134 		if (*edx & CPUID_AMD_EDX_3DNowx)
2135 			hwcap_flags |= AV_386_AMD_3DNowx;
2136 
2137 		switch (cpi->cpi_vendor) {
2138 		case X86_VENDOR_AMD:
2139 			if (*edx & CPUID_AMD_EDX_TSCP)
2140 				hwcap_flags |= AV_386_TSCP;
2141 			if (*ecx & CPUID_AMD_ECX_AHF64)
2142 				hwcap_flags |= AV_386_AHF;
2143 			if (*ecx & CPUID_AMD_ECX_SSE4A)
2144 				hwcap_flags |= AV_386_AMD_SSE4A;
2145 			if (*ecx & CPUID_AMD_ECX_LZCNT)
2146 				hwcap_flags |= AV_386_AMD_LZCNT;
2147 			break;
2148 
2149 		case X86_VENDOR_Intel:
2150 			if (*edx & CPUID_AMD_EDX_TSCP)
2151 				hwcap_flags |= AV_386_TSCP;
2152 			/*
2153 			 * Aarrgh.
2154 			 * Intel uses a different bit in the same word.
2155 			 */
2156 			if (*ecx & CPUID_INTC_ECX_AHF64)
2157 				hwcap_flags |= AV_386_AHF;
2158 			break;
2159 
2160 		default:
2161 			break;
2162 		}
2163 		break;
2164 
2165 	case X86_VENDOR_TM:
2166 		cp.cp_eax = 0x80860001;
2167 		(void) __cpuid_insn(&cp);
2168 		cpi->cpi_support[TM_EDX_FEATURES] = cp.cp_edx;
2169 		break;
2170 
2171 	default:
2172 		break;
2173 	}
2174 
2175 pass4_done:
2176 	cpi->cpi_pass = 4;
2177 	return (hwcap_flags);
2178 }
2179 
2180 
2181 /*
2182  * Simulate the cpuid instruction using the data we previously
2183  * captured about this CPU.  We try our best to return the truth
2184  * about the hardware, independently of kernel support.
2185  */
2186 uint32_t
2187 cpuid_insn(cpu_t *cpu, struct cpuid_regs *cp)
2188 {
2189 	struct cpuid_info *cpi;
2190 	struct cpuid_regs *xcp;
2191 
2192 	if (cpu == NULL)
2193 		cpu = CPU;
2194 	cpi = cpu->cpu_m.mcpu_cpi;
2195 
2196 	ASSERT(cpuid_checkpass(cpu, 3));
2197 
2198 	/*
2199 	 * CPUID data is cached in two separate places: cpi_std for standard
2200 	 * CPUID functions, and cpi_extd for extended CPUID functions.
2201 	 */
2202 	if (cp->cp_eax <= cpi->cpi_maxeax && cp->cp_eax < NMAX_CPI_STD)
2203 		xcp = &cpi->cpi_std[cp->cp_eax];
2204 	else if (cp->cp_eax >= 0x80000000 && cp->cp_eax <= cpi->cpi_xmaxeax &&
2205 	    cp->cp_eax < 0x80000000 + NMAX_CPI_EXTD)
2206 		xcp = &cpi->cpi_extd[cp->cp_eax - 0x80000000];
2207 	else
2208 		/*
2209 		 * The caller is asking for data from an input parameter which
2210 		 * the kernel has not cached.  In this case we go fetch from
2211 		 * the hardware and return the data directly to the user.
2212 		 */
2213 		return (__cpuid_insn(cp));
2214 
2215 	cp->cp_eax = xcp->cp_eax;
2216 	cp->cp_ebx = xcp->cp_ebx;
2217 	cp->cp_ecx = xcp->cp_ecx;
2218 	cp->cp_edx = xcp->cp_edx;
2219 	return (cp->cp_eax);
2220 }
2221 
2222 int
2223 cpuid_checkpass(cpu_t *cpu, int pass)
2224 {
2225 	return (cpu != NULL && cpu->cpu_m.mcpu_cpi != NULL &&
2226 	    cpu->cpu_m.mcpu_cpi->cpi_pass >= pass);
2227 }
2228 
2229 int
2230 cpuid_getbrandstr(cpu_t *cpu, char *s, size_t n)
2231 {
2232 	ASSERT(cpuid_checkpass(cpu, 3));
2233 
2234 	return (snprintf(s, n, "%s", cpu->cpu_m.mcpu_cpi->cpi_brandstr));
2235 }
2236 
2237 int
2238 cpuid_is_cmt(cpu_t *cpu)
2239 {
2240 	if (cpu == NULL)
2241 		cpu = CPU;
2242 
2243 	ASSERT(cpuid_checkpass(cpu, 1));
2244 
2245 	return (cpu->cpu_m.mcpu_cpi->cpi_chipid >= 0);
2246 }
2247 
2248 /*
2249  * AMD and Intel both implement the 64-bit variant of the syscall
2250  * instruction (syscallq), so if there's -any- support for syscall,
2251  * cpuid currently says "yes, we support this".
2252  *
2253  * However, Intel decided to -not- implement the 32-bit variant of the
2254  * syscall instruction, so we provide a predicate to allow our caller
2255  * to test that subtlety here.
2256  *
2257  * XXPV	Currently, 32-bit syscall instructions don't work via the hypervisor,
2258  *	even in the case where the hardware would in fact support it.
2259  */
2260 /*ARGSUSED*/
2261 int
2262 cpuid_syscall32_insn(cpu_t *cpu)
2263 {
2264 	ASSERT(cpuid_checkpass((cpu == NULL ? CPU : cpu), 1));
2265 
2266 #if !defined(__xpv)
2267 	if (cpu == NULL)
2268 		cpu = CPU;
2269 
2270 	/*CSTYLED*/
2271 	{
2272 		struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2273 
2274 		if (cpi->cpi_vendor == X86_VENDOR_AMD &&
2275 		    cpi->cpi_xmaxeax >= 0x80000001 &&
2276 		    (CPI_FEATURES_XTD_EDX(cpi) & CPUID_AMD_EDX_SYSC))
2277 			return (1);
2278 	}
2279 #endif
2280 	return (0);
2281 }
2282 
2283 int
2284 cpuid_getidstr(cpu_t *cpu, char *s, size_t n)
2285 {
2286 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2287 
2288 	static const char fmt[] =
2289 	    "x86 (%s %X family %d model %d step %d clock %d MHz)";
2290 	static const char fmt_ht[] =
2291 	    "x86 (chipid 0x%x %s %X family %d model %d step %d clock %d MHz)";
2292 
2293 	ASSERT(cpuid_checkpass(cpu, 1));
2294 
2295 	if (cpuid_is_cmt(cpu))
2296 		return (snprintf(s, n, fmt_ht, cpi->cpi_chipid,
2297 		    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2298 		    cpi->cpi_family, cpi->cpi_model,
2299 		    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2300 	return (snprintf(s, n, fmt,
2301 	    cpi->cpi_vendorstr, cpi->cpi_std[1].cp_eax,
2302 	    cpi->cpi_family, cpi->cpi_model,
2303 	    cpi->cpi_step, cpu->cpu_type_info.pi_clock));
2304 }
2305 
2306 const char *
2307 cpuid_getvendorstr(cpu_t *cpu)
2308 {
2309 	ASSERT(cpuid_checkpass(cpu, 1));
2310 	return ((const char *)cpu->cpu_m.mcpu_cpi->cpi_vendorstr);
2311 }
2312 
2313 uint_t
2314 cpuid_getvendor(cpu_t *cpu)
2315 {
2316 	ASSERT(cpuid_checkpass(cpu, 1));
2317 	return (cpu->cpu_m.mcpu_cpi->cpi_vendor);
2318 }
2319 
2320 uint_t
2321 cpuid_getfamily(cpu_t *cpu)
2322 {
2323 	ASSERT(cpuid_checkpass(cpu, 1));
2324 	return (cpu->cpu_m.mcpu_cpi->cpi_family);
2325 }
2326 
2327 uint_t
2328 cpuid_getmodel(cpu_t *cpu)
2329 {
2330 	ASSERT(cpuid_checkpass(cpu, 1));
2331 	return (cpu->cpu_m.mcpu_cpi->cpi_model);
2332 }
2333 
2334 uint_t
2335 cpuid_get_ncpu_per_chip(cpu_t *cpu)
2336 {
2337 	ASSERT(cpuid_checkpass(cpu, 1));
2338 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_per_chip);
2339 }
2340 
2341 uint_t
2342 cpuid_get_ncore_per_chip(cpu_t *cpu)
2343 {
2344 	ASSERT(cpuid_checkpass(cpu, 1));
2345 	return (cpu->cpu_m.mcpu_cpi->cpi_ncore_per_chip);
2346 }
2347 
2348 uint_t
2349 cpuid_get_ncpu_sharing_last_cache(cpu_t *cpu)
2350 {
2351 	ASSERT(cpuid_checkpass(cpu, 2));
2352 	return (cpu->cpu_m.mcpu_cpi->cpi_ncpu_shr_last_cache);
2353 }
2354 
2355 id_t
2356 cpuid_get_last_lvl_cacheid(cpu_t *cpu)
2357 {
2358 	ASSERT(cpuid_checkpass(cpu, 2));
2359 	return (cpu->cpu_m.mcpu_cpi->cpi_last_lvl_cacheid);
2360 }
2361 
2362 uint_t
2363 cpuid_getstep(cpu_t *cpu)
2364 {
2365 	ASSERT(cpuid_checkpass(cpu, 1));
2366 	return (cpu->cpu_m.mcpu_cpi->cpi_step);
2367 }
2368 
2369 uint_t
2370 cpuid_getsig(struct cpu *cpu)
2371 {
2372 	ASSERT(cpuid_checkpass(cpu, 1));
2373 	return (cpu->cpu_m.mcpu_cpi->cpi_std[1].cp_eax);
2374 }
2375 
2376 uint32_t
2377 cpuid_getchiprev(struct cpu *cpu)
2378 {
2379 	ASSERT(cpuid_checkpass(cpu, 1));
2380 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprev);
2381 }
2382 
2383 const char *
2384 cpuid_getchiprevstr(struct cpu *cpu)
2385 {
2386 	ASSERT(cpuid_checkpass(cpu, 1));
2387 	return (cpu->cpu_m.mcpu_cpi->cpi_chiprevstr);
2388 }
2389 
2390 uint32_t
2391 cpuid_getsockettype(struct cpu *cpu)
2392 {
2393 	ASSERT(cpuid_checkpass(cpu, 1));
2394 	return (cpu->cpu_m.mcpu_cpi->cpi_socket);
2395 }
2396 
2397 int
2398 cpuid_get_chipid(cpu_t *cpu)
2399 {
2400 	ASSERT(cpuid_checkpass(cpu, 1));
2401 
2402 	if (cpuid_is_cmt(cpu))
2403 		return (cpu->cpu_m.mcpu_cpi->cpi_chipid);
2404 	return (cpu->cpu_id);
2405 }
2406 
2407 id_t
2408 cpuid_get_coreid(cpu_t *cpu)
2409 {
2410 	ASSERT(cpuid_checkpass(cpu, 1));
2411 	return (cpu->cpu_m.mcpu_cpi->cpi_coreid);
2412 }
2413 
2414 int
2415 cpuid_get_pkgcoreid(cpu_t *cpu)
2416 {
2417 	ASSERT(cpuid_checkpass(cpu, 1));
2418 	return (cpu->cpu_m.mcpu_cpi->cpi_pkgcoreid);
2419 }
2420 
2421 int
2422 cpuid_get_clogid(cpu_t *cpu)
2423 {
2424 	ASSERT(cpuid_checkpass(cpu, 1));
2425 	return (cpu->cpu_m.mcpu_cpi->cpi_clogid);
2426 }
2427 
2428 void
2429 cpuid_get_addrsize(cpu_t *cpu, uint_t *pabits, uint_t *vabits)
2430 {
2431 	struct cpuid_info *cpi;
2432 
2433 	if (cpu == NULL)
2434 		cpu = CPU;
2435 	cpi = cpu->cpu_m.mcpu_cpi;
2436 
2437 	ASSERT(cpuid_checkpass(cpu, 1));
2438 
2439 	if (pabits)
2440 		*pabits = cpi->cpi_pabits;
2441 	if (vabits)
2442 		*vabits = cpi->cpi_vabits;
2443 }
2444 
2445 /*
2446  * Returns the number of data TLB entries for a corresponding
2447  * pagesize.  If it can't be computed, or isn't known, the
2448  * routine returns zero.  If you ask about an architecturally
2449  * impossible pagesize, the routine will panic (so that the
2450  * hat implementor knows that things are inconsistent.)
2451  */
2452 uint_t
2453 cpuid_get_dtlb_nent(cpu_t *cpu, size_t pagesize)
2454 {
2455 	struct cpuid_info *cpi;
2456 	uint_t dtlb_nent = 0;
2457 
2458 	if (cpu == NULL)
2459 		cpu = CPU;
2460 	cpi = cpu->cpu_m.mcpu_cpi;
2461 
2462 	ASSERT(cpuid_checkpass(cpu, 1));
2463 
2464 	/*
2465 	 * Check the L2 TLB info
2466 	 */
2467 	if (cpi->cpi_xmaxeax >= 0x80000006) {
2468 		struct cpuid_regs *cp = &cpi->cpi_extd[6];
2469 
2470 		switch (pagesize) {
2471 
2472 		case 4 * 1024:
2473 			/*
2474 			 * All zero in the top 16 bits of the register
2475 			 * indicates a unified TLB. Size is in low 16 bits.
2476 			 */
2477 			if ((cp->cp_ebx & 0xffff0000) == 0)
2478 				dtlb_nent = cp->cp_ebx & 0x0000ffff;
2479 			else
2480 				dtlb_nent = BITX(cp->cp_ebx, 27, 16);
2481 			break;
2482 
2483 		case 2 * 1024 * 1024:
2484 			if ((cp->cp_eax & 0xffff0000) == 0)
2485 				dtlb_nent = cp->cp_eax & 0x0000ffff;
2486 			else
2487 				dtlb_nent = BITX(cp->cp_eax, 27, 16);
2488 			break;
2489 
2490 		default:
2491 			panic("unknown L2 pagesize");
2492 			/*NOTREACHED*/
2493 		}
2494 	}
2495 
2496 	if (dtlb_nent != 0)
2497 		return (dtlb_nent);
2498 
2499 	/*
2500 	 * No L2 TLB support for this size, try L1.
2501 	 */
2502 	if (cpi->cpi_xmaxeax >= 0x80000005) {
2503 		struct cpuid_regs *cp = &cpi->cpi_extd[5];
2504 
2505 		switch (pagesize) {
2506 		case 4 * 1024:
2507 			dtlb_nent = BITX(cp->cp_ebx, 23, 16);
2508 			break;
2509 		case 2 * 1024 * 1024:
2510 			dtlb_nent = BITX(cp->cp_eax, 23, 16);
2511 			break;
2512 		default:
2513 			panic("unknown L1 d-TLB pagesize");
2514 			/*NOTREACHED*/
2515 		}
2516 	}
2517 
2518 	return (dtlb_nent);
2519 }
2520 
2521 /*
2522  * Return 0 if the erratum is not present or not applicable, positive
2523  * if it is, and negative if the status of the erratum is unknown.
2524  *
2525  * See "Revision Guide for AMD Athlon(tm) 64 and AMD Opteron(tm)
2526  * Processors" #25759, Rev 3.57, August 2005
2527  */
2528 int
2529 cpuid_opteron_erratum(cpu_t *cpu, uint_t erratum)
2530 {
2531 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
2532 	uint_t eax;
2533 
2534 	/*
2535 	 * Bail out if this CPU isn't an AMD CPU, or if it's
2536 	 * a legacy (32-bit) AMD CPU.
2537 	 */
2538 	if (cpi->cpi_vendor != X86_VENDOR_AMD ||
2539 	    cpi->cpi_family == 4 || cpi->cpi_family == 5 ||
2540 	    cpi->cpi_family == 6)
2541 
2542 		return (0);
2543 
2544 	eax = cpi->cpi_std[1].cp_eax;
2545 
2546 #define	SH_B0(eax)	(eax == 0xf40 || eax == 0xf50)
2547 #define	SH_B3(eax) 	(eax == 0xf51)
2548 #define	B(eax)		(SH_B0(eax) || SH_B3(eax))
2549 
2550 #define	SH_C0(eax)	(eax == 0xf48 || eax == 0xf58)
2551 
2552 #define	SH_CG(eax)	(eax == 0xf4a || eax == 0xf5a || eax == 0xf7a)
2553 #define	DH_CG(eax)	(eax == 0xfc0 || eax == 0xfe0 || eax == 0xff0)
2554 #define	CH_CG(eax)	(eax == 0xf82 || eax == 0xfb2)
2555 #define	CG(eax)		(SH_CG(eax) || DH_CG(eax) || CH_CG(eax))
2556 
2557 #define	SH_D0(eax)	(eax == 0x10f40 || eax == 0x10f50 || eax == 0x10f70)
2558 #define	DH_D0(eax)	(eax == 0x10fc0 || eax == 0x10ff0)
2559 #define	CH_D0(eax)	(eax == 0x10f80 || eax == 0x10fb0)
2560 #define	D0(eax)		(SH_D0(eax) || DH_D0(eax) || CH_D0(eax))
2561 
2562 #define	SH_E0(eax)	(eax == 0x20f50 || eax == 0x20f40 || eax == 0x20f70)
2563 #define	JH_E1(eax)	(eax == 0x20f10)	/* JH8_E0 had 0x20f30 */
2564 #define	DH_E3(eax)	(eax == 0x20fc0 || eax == 0x20ff0)
2565 #define	SH_E4(eax)	(eax == 0x20f51 || eax == 0x20f71)
2566 #define	BH_E4(eax)	(eax == 0x20fb1)
2567 #define	SH_E5(eax)	(eax == 0x20f42)
2568 #define	DH_E6(eax)	(eax == 0x20ff2 || eax == 0x20fc2)
2569 #define	JH_E6(eax)	(eax == 0x20f12 || eax == 0x20f32)
2570 #define	EX(eax)		(SH_E0(eax) || JH_E1(eax) || DH_E3(eax) || \
2571 			    SH_E4(eax) || BH_E4(eax) || SH_E5(eax) || \
2572 			    DH_E6(eax) || JH_E6(eax))
2573 
2574 #define	DR_AX(eax)	(eax == 0x100f00 || eax == 0x100f01 || eax == 0x100f02)
2575 #define	DR_B0(eax)	(eax == 0x100f20)
2576 #define	DR_B1(eax)	(eax == 0x100f21)
2577 #define	DR_BA(eax)	(eax == 0x100f2a)
2578 #define	DR_B2(eax)	(eax == 0x100f22)
2579 #define	DR_B3(eax)	(eax == 0x100f23)
2580 #define	RB_C0(eax)	(eax == 0x100f40)
2581 
2582 	switch (erratum) {
2583 	case 1:
2584 		return (cpi->cpi_family < 0x10);
2585 	case 51:	/* what does the asterisk mean? */
2586 		return (B(eax) || SH_C0(eax) || CG(eax));
2587 	case 52:
2588 		return (B(eax));
2589 	case 57:
2590 		return (cpi->cpi_family <= 0x11);
2591 	case 58:
2592 		return (B(eax));
2593 	case 60:
2594 		return (cpi->cpi_family <= 0x11);
2595 	case 61:
2596 	case 62:
2597 	case 63:
2598 	case 64:
2599 	case 65:
2600 	case 66:
2601 	case 68:
2602 	case 69:
2603 	case 70:
2604 	case 71:
2605 		return (B(eax));
2606 	case 72:
2607 		return (SH_B0(eax));
2608 	case 74:
2609 		return (B(eax));
2610 	case 75:
2611 		return (cpi->cpi_family < 0x10);
2612 	case 76:
2613 		return (B(eax));
2614 	case 77:
2615 		return (cpi->cpi_family <= 0x11);
2616 	case 78:
2617 		return (B(eax) || SH_C0(eax));
2618 	case 79:
2619 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2620 	case 80:
2621 	case 81:
2622 	case 82:
2623 		return (B(eax));
2624 	case 83:
2625 		return (B(eax) || SH_C0(eax) || CG(eax));
2626 	case 85:
2627 		return (cpi->cpi_family < 0x10);
2628 	case 86:
2629 		return (SH_C0(eax) || CG(eax));
2630 	case 88:
2631 #if !defined(__amd64)
2632 		return (0);
2633 #else
2634 		return (B(eax) || SH_C0(eax));
2635 #endif
2636 	case 89:
2637 		return (cpi->cpi_family < 0x10);
2638 	case 90:
2639 		return (B(eax) || SH_C0(eax) || CG(eax));
2640 	case 91:
2641 	case 92:
2642 		return (B(eax) || SH_C0(eax));
2643 	case 93:
2644 		return (SH_C0(eax));
2645 	case 94:
2646 		return (B(eax) || SH_C0(eax) || CG(eax));
2647 	case 95:
2648 #if !defined(__amd64)
2649 		return (0);
2650 #else
2651 		return (B(eax) || SH_C0(eax));
2652 #endif
2653 	case 96:
2654 		return (B(eax) || SH_C0(eax) || CG(eax));
2655 	case 97:
2656 	case 98:
2657 		return (SH_C0(eax) || CG(eax));
2658 	case 99:
2659 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2660 	case 100:
2661 		return (B(eax) || SH_C0(eax));
2662 	case 101:
2663 	case 103:
2664 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2665 	case 104:
2666 		return (SH_C0(eax) || CG(eax) || D0(eax));
2667 	case 105:
2668 	case 106:
2669 	case 107:
2670 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2671 	case 108:
2672 		return (DH_CG(eax));
2673 	case 109:
2674 		return (SH_C0(eax) || CG(eax) || D0(eax));
2675 	case 110:
2676 		return (D0(eax) || EX(eax));
2677 	case 111:
2678 		return (CG(eax));
2679 	case 112:
2680 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2681 	case 113:
2682 		return (eax == 0x20fc0);
2683 	case 114:
2684 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2685 	case 115:
2686 		return (SH_E0(eax) || JH_E1(eax));
2687 	case 116:
2688 		return (SH_E0(eax) || JH_E1(eax) || DH_E3(eax));
2689 	case 117:
2690 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax));
2691 	case 118:
2692 		return (SH_E0(eax) || JH_E1(eax) || SH_E4(eax) || BH_E4(eax) ||
2693 		    JH_E6(eax));
2694 	case 121:
2695 		return (B(eax) || SH_C0(eax) || CG(eax) || D0(eax) || EX(eax));
2696 	case 122:
2697 		return (cpi->cpi_family < 0x10 || cpi->cpi_family == 0x11);
2698 	case 123:
2699 		return (JH_E1(eax) || BH_E4(eax) || JH_E6(eax));
2700 	case 131:
2701 		return (cpi->cpi_family < 0x10);
2702 	case 6336786:
2703 		/*
2704 		 * Test for AdvPowerMgmtInfo.TscPStateInvariant
2705 		 * if this is a K8 family or newer processor
2706 		 */
2707 		if (CPI_FAMILY(cpi) == 0xf) {
2708 			struct cpuid_regs regs;
2709 			regs.cp_eax = 0x80000007;
2710 			(void) __cpuid_insn(&regs);
2711 			return (!(regs.cp_edx & 0x100));
2712 		}
2713 		return (0);
2714 	case 6323525:
2715 		return (((((eax >> 12) & 0xff00) + (eax & 0xf00)) |
2716 		    (((eax >> 4) & 0xf) | ((eax >> 12) & 0xf0))) < 0xf40);
2717 
2718 	case 6671130:
2719 		/*
2720 		 * check for processors (pre-Shanghai) that do not provide
2721 		 * optimal management of 1gb ptes in its tlb.
2722 		 */
2723 		return (cpi->cpi_family == 0x10 && cpi->cpi_model < 4);
2724 
2725 	case 298:
2726 		return (DR_AX(eax) || DR_B0(eax) || DR_B1(eax) || DR_BA(eax) ||
2727 		    DR_B2(eax) || RB_C0(eax));
2728 
2729 	default:
2730 		return (-1);
2731 
2732 	}
2733 }
2734 
2735 /*
2736  * Determine if specified erratum is present via OSVW (OS Visible Workaround).
2737  * Return 1 if erratum is present, 0 if not present and -1 if indeterminate.
2738  */
2739 int
2740 osvw_opteron_erratum(cpu_t *cpu, uint_t erratum)
2741 {
2742 	struct cpuid_info	*cpi;
2743 	uint_t			osvwid;
2744 	static int		osvwfeature = -1;
2745 	uint64_t		osvwlength;
2746 
2747 
2748 	cpi = cpu->cpu_m.mcpu_cpi;
2749 
2750 	/* confirm OSVW supported */
2751 	if (osvwfeature == -1) {
2752 		osvwfeature = cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW;
2753 	} else {
2754 		/* assert that osvw feature setting is consistent on all cpus */
2755 		ASSERT(osvwfeature ==
2756 		    (cpi->cpi_extd[1].cp_ecx & CPUID_AMD_ECX_OSVW));
2757 	}
2758 	if (!osvwfeature)
2759 		return (-1);
2760 
2761 	osvwlength = rdmsr(MSR_AMD_OSVW_ID_LEN) & OSVW_ID_LEN_MASK;
2762 
2763 	switch (erratum) {
2764 	case 298:	/* osvwid is 0 */
2765 		osvwid = 0;
2766 		if (osvwlength <= (uint64_t)osvwid) {
2767 			/* osvwid 0 is unknown */
2768 			return (-1);
2769 		}
2770 
2771 		/*
2772 		 * Check the OSVW STATUS MSR to determine the state
2773 		 * of the erratum where:
2774 		 *   0 - fixed by HW
2775 		 *   1 - BIOS has applied the workaround when BIOS
2776 		 *   workaround is available. (Or for other errata,
2777 		 *   OS workaround is required.)
2778 		 * For a value of 1, caller will confirm that the
2779 		 * erratum 298 workaround has indeed been applied by BIOS.
2780 		 *
2781 		 * A 1 may be set in cpus that have a HW fix
2782 		 * in a mixed cpu system. Regarding erratum 298:
2783 		 *   In a multiprocessor platform, the workaround above
2784 		 *   should be applied to all processors regardless of
2785 		 *   silicon revision when an affected processor is
2786 		 *   present.
2787 		 */
2788 
2789 		return (rdmsr(MSR_AMD_OSVW_STATUS +
2790 		    (osvwid / OSVW_ID_CNT_PER_MSR)) &
2791 		    (1ULL << (osvwid % OSVW_ID_CNT_PER_MSR)));
2792 
2793 	default:
2794 		return (-1);
2795 	}
2796 }
2797 
2798 static const char assoc_str[] = "associativity";
2799 static const char line_str[] = "line-size";
2800 static const char size_str[] = "size";
2801 
2802 static void
2803 add_cache_prop(dev_info_t *devi, const char *label, const char *type,
2804     uint32_t val)
2805 {
2806 	char buf[128];
2807 
2808 	/*
2809 	 * ndi_prop_update_int() is used because it is desirable for
2810 	 * DDI_PROP_HW_DEF and DDI_PROP_DONTSLEEP to be set.
2811 	 */
2812 	if (snprintf(buf, sizeof (buf), "%s-%s", label, type) < sizeof (buf))
2813 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, buf, val);
2814 }
2815 
2816 /*
2817  * Intel-style cache/tlb description
2818  *
2819  * Standard cpuid level 2 gives a randomly ordered
2820  * selection of tags that index into a table that describes
2821  * cache and tlb properties.
2822  */
2823 
2824 static const char l1_icache_str[] = "l1-icache";
2825 static const char l1_dcache_str[] = "l1-dcache";
2826 static const char l2_cache_str[] = "l2-cache";
2827 static const char l3_cache_str[] = "l3-cache";
2828 static const char itlb4k_str[] = "itlb-4K";
2829 static const char dtlb4k_str[] = "dtlb-4K";
2830 static const char itlb2M_str[] = "itlb-2M";
2831 static const char itlb4M_str[] = "itlb-4M";
2832 static const char dtlb4M_str[] = "dtlb-4M";
2833 static const char dtlb24_str[] = "dtlb0-2M-4M";
2834 static const char itlb424_str[] = "itlb-4K-2M-4M";
2835 static const char itlb24_str[] = "itlb-2M-4M";
2836 static const char dtlb44_str[] = "dtlb-4K-4M";
2837 static const char sl1_dcache_str[] = "sectored-l1-dcache";
2838 static const char sl2_cache_str[] = "sectored-l2-cache";
2839 static const char itrace_str[] = "itrace-cache";
2840 static const char sl3_cache_str[] = "sectored-l3-cache";
2841 static const char sh_l2_tlb4k_str[] = "shared-l2-tlb-4k";
2842 
2843 static const struct cachetab {
2844 	uint8_t 	ct_code;
2845 	uint8_t		ct_assoc;
2846 	uint16_t 	ct_line_size;
2847 	size_t		ct_size;
2848 	const char	*ct_label;
2849 } intel_ctab[] = {
2850 	/*
2851 	 * maintain descending order!
2852 	 *
2853 	 * Codes ignored - Reason
2854 	 * ----------------------
2855 	 * 40H - intel_cpuid_4_cache_info() disambiguates l2/l3 cache
2856 	 * f0H/f1H - Currently we do not interpret prefetch size by design
2857 	 */
2858 	{ 0xe4, 16, 64, 8*1024*1024, l3_cache_str},
2859 	{ 0xe3, 16, 64, 4*1024*1024, l3_cache_str},
2860 	{ 0xe2, 16, 64, 2*1024*1024, l3_cache_str},
2861 	{ 0xde, 12, 64, 6*1024*1024, l3_cache_str},
2862 	{ 0xdd, 12, 64, 3*1024*1024, l3_cache_str},
2863 	{ 0xdc, 12, 64, ((1*1024*1024)+(512*1024)), l3_cache_str},
2864 	{ 0xd8, 8, 64, 4*1024*1024, l3_cache_str},
2865 	{ 0xd7, 8, 64, 2*1024*1024, l3_cache_str},
2866 	{ 0xd6, 8, 64, 1*1024*1024, l3_cache_str},
2867 	{ 0xd2, 4, 64, 2*1024*1024, l3_cache_str},
2868 	{ 0xd1, 4, 64, 1*1024*1024, l3_cache_str},
2869 	{ 0xd0, 4, 64, 512*1024, l3_cache_str},
2870 	{ 0xca, 4, 0, 512, sh_l2_tlb4k_str},
2871 	{ 0xc0, 4, 0, 8, dtlb44_str },
2872 	{ 0xba, 4, 0, 64, dtlb4k_str },
2873 	{ 0xb4, 4, 0, 256, dtlb4k_str },
2874 	{ 0xb3, 4, 0, 128, dtlb4k_str },
2875 	{ 0xb2, 4, 0, 64, itlb4k_str },
2876 	{ 0xb0, 4, 0, 128, itlb4k_str },
2877 	{ 0x87, 8, 64, 1024*1024, l2_cache_str},
2878 	{ 0x86, 4, 64, 512*1024, l2_cache_str},
2879 	{ 0x85, 8, 32, 2*1024*1024, l2_cache_str},
2880 	{ 0x84, 8, 32, 1024*1024, l2_cache_str},
2881 	{ 0x83, 8, 32, 512*1024, l2_cache_str},
2882 	{ 0x82, 8, 32, 256*1024, l2_cache_str},
2883 	{ 0x80, 8, 64, 512*1024, l2_cache_str},
2884 	{ 0x7f, 2, 64, 512*1024, l2_cache_str},
2885 	{ 0x7d, 8, 64, 2*1024*1024, sl2_cache_str},
2886 	{ 0x7c, 8, 64, 1024*1024, sl2_cache_str},
2887 	{ 0x7b, 8, 64, 512*1024, sl2_cache_str},
2888 	{ 0x7a, 8, 64, 256*1024, sl2_cache_str},
2889 	{ 0x79, 8, 64, 128*1024, sl2_cache_str},
2890 	{ 0x78, 8, 64, 1024*1024, l2_cache_str},
2891 	{ 0x73, 8, 0, 64*1024, itrace_str},
2892 	{ 0x72, 8, 0, 32*1024, itrace_str},
2893 	{ 0x71, 8, 0, 16*1024, itrace_str},
2894 	{ 0x70, 8, 0, 12*1024, itrace_str},
2895 	{ 0x68, 4, 64, 32*1024, sl1_dcache_str},
2896 	{ 0x67, 4, 64, 16*1024, sl1_dcache_str},
2897 	{ 0x66, 4, 64, 8*1024, sl1_dcache_str},
2898 	{ 0x60, 8, 64, 16*1024, sl1_dcache_str},
2899 	{ 0x5d, 0, 0, 256, dtlb44_str},
2900 	{ 0x5c, 0, 0, 128, dtlb44_str},
2901 	{ 0x5b, 0, 0, 64, dtlb44_str},
2902 	{ 0x5a, 4, 0, 32, dtlb24_str},
2903 	{ 0x59, 0, 0, 16, dtlb4k_str},
2904 	{ 0x57, 4, 0, 16, dtlb4k_str},
2905 	{ 0x56, 4, 0, 16, dtlb4M_str},
2906 	{ 0x55, 0, 0, 7, itlb24_str},
2907 	{ 0x52, 0, 0, 256, itlb424_str},
2908 	{ 0x51, 0, 0, 128, itlb424_str},
2909 	{ 0x50, 0, 0, 64, itlb424_str},
2910 	{ 0x4f, 0, 0, 32, itlb4k_str},
2911 	{ 0x4e, 24, 64, 6*1024*1024, l2_cache_str},
2912 	{ 0x4d, 16, 64, 16*1024*1024, l3_cache_str},
2913 	{ 0x4c, 12, 64, 12*1024*1024, l3_cache_str},
2914 	{ 0x4b, 16, 64, 8*1024*1024, l3_cache_str},
2915 	{ 0x4a, 12, 64, 6*1024*1024, l3_cache_str},
2916 	{ 0x49, 16, 64, 4*1024*1024, l3_cache_str},
2917 	{ 0x48, 12, 64, 3*1024*1024, l2_cache_str},
2918 	{ 0x47, 8, 64, 8*1024*1024, l3_cache_str},
2919 	{ 0x46, 4, 64, 4*1024*1024, l3_cache_str},
2920 	{ 0x45, 4, 32, 2*1024*1024, l2_cache_str},
2921 	{ 0x44, 4, 32, 1024*1024, l2_cache_str},
2922 	{ 0x43, 4, 32, 512*1024, l2_cache_str},
2923 	{ 0x42, 4, 32, 256*1024, l2_cache_str},
2924 	{ 0x41, 4, 32, 128*1024, l2_cache_str},
2925 	{ 0x3e, 4, 64, 512*1024, sl2_cache_str},
2926 	{ 0x3d, 6, 64, 384*1024, sl2_cache_str},
2927 	{ 0x3c, 4, 64, 256*1024, sl2_cache_str},
2928 	{ 0x3b, 2, 64, 128*1024, sl2_cache_str},
2929 	{ 0x3a, 6, 64, 192*1024, sl2_cache_str},
2930 	{ 0x39, 4, 64, 128*1024, sl2_cache_str},
2931 	{ 0x30, 8, 64, 32*1024, l1_icache_str},
2932 	{ 0x2c, 8, 64, 32*1024, l1_dcache_str},
2933 	{ 0x29, 8, 64, 4096*1024, sl3_cache_str},
2934 	{ 0x25, 8, 64, 2048*1024, sl3_cache_str},
2935 	{ 0x23, 8, 64, 1024*1024, sl3_cache_str},
2936 	{ 0x22, 4, 64, 512*1024, sl3_cache_str},
2937 	{ 0x0e, 6, 64, 24*1024, l1_dcache_str},
2938 	{ 0x0d, 4, 32, 16*1024, l1_dcache_str},
2939 	{ 0x0c, 4, 32, 16*1024, l1_dcache_str},
2940 	{ 0x0b, 4, 0, 4, itlb4M_str},
2941 	{ 0x0a, 2, 32, 8*1024, l1_dcache_str},
2942 	{ 0x08, 4, 32, 16*1024, l1_icache_str},
2943 	{ 0x06, 4, 32, 8*1024, l1_icache_str},
2944 	{ 0x05, 4, 0, 32, dtlb4M_str},
2945 	{ 0x04, 4, 0, 8, dtlb4M_str},
2946 	{ 0x03, 4, 0, 64, dtlb4k_str},
2947 	{ 0x02, 4, 0, 2, itlb4M_str},
2948 	{ 0x01, 4, 0, 32, itlb4k_str},
2949 	{ 0 }
2950 };
2951 
2952 static const struct cachetab cyrix_ctab[] = {
2953 	{ 0x70, 4, 0, 32, "tlb-4K" },
2954 	{ 0x80, 4, 16, 16*1024, "l1-cache" },
2955 	{ 0 }
2956 };
2957 
2958 /*
2959  * Search a cache table for a matching entry
2960  */
2961 static const struct cachetab *
2962 find_cacheent(const struct cachetab *ct, uint_t code)
2963 {
2964 	if (code != 0) {
2965 		for (; ct->ct_code != 0; ct++)
2966 			if (ct->ct_code <= code)
2967 				break;
2968 		if (ct->ct_code == code)
2969 			return (ct);
2970 	}
2971 	return (NULL);
2972 }
2973 
2974 /*
2975  * Populate cachetab entry with L2 or L3 cache-information using
2976  * cpuid function 4. This function is called from intel_walk_cacheinfo()
2977  * when descriptor 0x49 is encountered. It returns 0 if no such cache
2978  * information is found.
2979  */
2980 static int
2981 intel_cpuid_4_cache_info(struct cachetab *ct, struct cpuid_info *cpi)
2982 {
2983 	uint32_t level, i;
2984 	int ret = 0;
2985 
2986 	for (i = 0; i < cpi->cpi_std_4_size; i++) {
2987 		level = CPI_CACHE_LVL(cpi->cpi_std_4[i]);
2988 
2989 		if (level == 2 || level == 3) {
2990 			ct->ct_assoc = CPI_CACHE_WAYS(cpi->cpi_std_4[i]) + 1;
2991 			ct->ct_line_size =
2992 			    CPI_CACHE_COH_LN_SZ(cpi->cpi_std_4[i]) + 1;
2993 			ct->ct_size = ct->ct_assoc *
2994 			    (CPI_CACHE_PARTS(cpi->cpi_std_4[i]) + 1) *
2995 			    ct->ct_line_size *
2996 			    (cpi->cpi_std_4[i]->cp_ecx + 1);
2997 
2998 			if (level == 2) {
2999 				ct->ct_label = l2_cache_str;
3000 			} else if (level == 3) {
3001 				ct->ct_label = l3_cache_str;
3002 			}
3003 			ret = 1;
3004 		}
3005 	}
3006 
3007 	return (ret);
3008 }
3009 
3010 /*
3011  * Walk the cacheinfo descriptor, applying 'func' to every valid element
3012  * The walk is terminated if the walker returns non-zero.
3013  */
3014 static void
3015 intel_walk_cacheinfo(struct cpuid_info *cpi,
3016     void *arg, int (*func)(void *, const struct cachetab *))
3017 {
3018 	const struct cachetab *ct;
3019 	struct cachetab des_49_ct, des_b1_ct;
3020 	uint8_t *dp;
3021 	int i;
3022 
3023 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3024 		return;
3025 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3026 		/*
3027 		 * For overloaded descriptor 0x49 we use cpuid function 4
3028 		 * if supported by the current processor, to create
3029 		 * cache information.
3030 		 * For overloaded descriptor 0xb1 we use X86_PAE flag
3031 		 * to disambiguate the cache information.
3032 		 */
3033 		if (*dp == 0x49 && cpi->cpi_maxeax >= 0x4 &&
3034 		    intel_cpuid_4_cache_info(&des_49_ct, cpi) == 1) {
3035 				ct = &des_49_ct;
3036 		} else if (*dp == 0xb1) {
3037 			des_b1_ct.ct_code = 0xb1;
3038 			des_b1_ct.ct_assoc = 4;
3039 			des_b1_ct.ct_line_size = 0;
3040 			if (x86_feature & X86_PAE) {
3041 				des_b1_ct.ct_size = 8;
3042 				des_b1_ct.ct_label = itlb2M_str;
3043 			} else {
3044 				des_b1_ct.ct_size = 4;
3045 				des_b1_ct.ct_label = itlb4M_str;
3046 			}
3047 			ct = &des_b1_ct;
3048 		} else {
3049 			if ((ct = find_cacheent(intel_ctab, *dp)) == NULL) {
3050 				continue;
3051 			}
3052 		}
3053 
3054 		if (func(arg, ct) != 0) {
3055 			break;
3056 		}
3057 	}
3058 }
3059 
3060 /*
3061  * (Like the Intel one, except for Cyrix CPUs)
3062  */
3063 static void
3064 cyrix_walk_cacheinfo(struct cpuid_info *cpi,
3065     void *arg, int (*func)(void *, const struct cachetab *))
3066 {
3067 	const struct cachetab *ct;
3068 	uint8_t *dp;
3069 	int i;
3070 
3071 	if ((dp = cpi->cpi_cacheinfo) == NULL)
3072 		return;
3073 	for (i = 0; i < cpi->cpi_ncache; i++, dp++) {
3074 		/*
3075 		 * Search Cyrix-specific descriptor table first ..
3076 		 */
3077 		if ((ct = find_cacheent(cyrix_ctab, *dp)) != NULL) {
3078 			if (func(arg, ct) != 0)
3079 				break;
3080 			continue;
3081 		}
3082 		/*
3083 		 * .. else fall back to the Intel one
3084 		 */
3085 		if ((ct = find_cacheent(intel_ctab, *dp)) != NULL) {
3086 			if (func(arg, ct) != 0)
3087 				break;
3088 			continue;
3089 		}
3090 	}
3091 }
3092 
3093 /*
3094  * A cacheinfo walker that adds associativity, line-size, and size properties
3095  * to the devinfo node it is passed as an argument.
3096  */
3097 static int
3098 add_cacheent_props(void *arg, const struct cachetab *ct)
3099 {
3100 	dev_info_t *devi = arg;
3101 
3102 	add_cache_prop(devi, ct->ct_label, assoc_str, ct->ct_assoc);
3103 	if (ct->ct_line_size != 0)
3104 		add_cache_prop(devi, ct->ct_label, line_str,
3105 		    ct->ct_line_size);
3106 	add_cache_prop(devi, ct->ct_label, size_str, ct->ct_size);
3107 	return (0);
3108 }
3109 
3110 
3111 static const char fully_assoc[] = "fully-associative?";
3112 
3113 /*
3114  * AMD style cache/tlb description
3115  *
3116  * Extended functions 5 and 6 directly describe properties of
3117  * tlbs and various cache levels.
3118  */
3119 static void
3120 add_amd_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3121 {
3122 	switch (assoc) {
3123 	case 0:	/* reserved; ignore */
3124 		break;
3125 	default:
3126 		add_cache_prop(devi, label, assoc_str, assoc);
3127 		break;
3128 	case 0xff:
3129 		add_cache_prop(devi, label, fully_assoc, 1);
3130 		break;
3131 	}
3132 }
3133 
3134 static void
3135 add_amd_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3136 {
3137 	if (size == 0)
3138 		return;
3139 	add_cache_prop(devi, label, size_str, size);
3140 	add_amd_assoc(devi, label, assoc);
3141 }
3142 
3143 static void
3144 add_amd_cache(dev_info_t *devi, const char *label,
3145     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3146 {
3147 	if (size == 0 || line_size == 0)
3148 		return;
3149 	add_amd_assoc(devi, label, assoc);
3150 	/*
3151 	 * Most AMD parts have a sectored cache. Multiple cache lines are
3152 	 * associated with each tag. A sector consists of all cache lines
3153 	 * associated with a tag. For example, the AMD K6-III has a sector
3154 	 * size of 2 cache lines per tag.
3155 	 */
3156 	if (lines_per_tag != 0)
3157 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3158 	add_cache_prop(devi, label, line_str, line_size);
3159 	add_cache_prop(devi, label, size_str, size * 1024);
3160 }
3161 
3162 static void
3163 add_amd_l2_assoc(dev_info_t *devi, const char *label, uint_t assoc)
3164 {
3165 	switch (assoc) {
3166 	case 0:	/* off */
3167 		break;
3168 	case 1:
3169 	case 2:
3170 	case 4:
3171 		add_cache_prop(devi, label, assoc_str, assoc);
3172 		break;
3173 	case 6:
3174 		add_cache_prop(devi, label, assoc_str, 8);
3175 		break;
3176 	case 8:
3177 		add_cache_prop(devi, label, assoc_str, 16);
3178 		break;
3179 	case 0xf:
3180 		add_cache_prop(devi, label, fully_assoc, 1);
3181 		break;
3182 	default: /* reserved; ignore */
3183 		break;
3184 	}
3185 }
3186 
3187 static void
3188 add_amd_l2_tlb(dev_info_t *devi, const char *label, uint_t assoc, uint_t size)
3189 {
3190 	if (size == 0 || assoc == 0)
3191 		return;
3192 	add_amd_l2_assoc(devi, label, assoc);
3193 	add_cache_prop(devi, label, size_str, size);
3194 }
3195 
3196 static void
3197 add_amd_l2_cache(dev_info_t *devi, const char *label,
3198     uint_t size, uint_t assoc, uint_t lines_per_tag, uint_t line_size)
3199 {
3200 	if (size == 0 || assoc == 0 || line_size == 0)
3201 		return;
3202 	add_amd_l2_assoc(devi, label, assoc);
3203 	if (lines_per_tag != 0)
3204 		add_cache_prop(devi, label, "lines-per-tag", lines_per_tag);
3205 	add_cache_prop(devi, label, line_str, line_size);
3206 	add_cache_prop(devi, label, size_str, size * 1024);
3207 }
3208 
3209 static void
3210 amd_cache_info(struct cpuid_info *cpi, dev_info_t *devi)
3211 {
3212 	struct cpuid_regs *cp;
3213 
3214 	if (cpi->cpi_xmaxeax < 0x80000005)
3215 		return;
3216 	cp = &cpi->cpi_extd[5];
3217 
3218 	/*
3219 	 * 4M/2M L1 TLB configuration
3220 	 *
3221 	 * We report the size for 2M pages because AMD uses two
3222 	 * TLB entries for one 4M page.
3223 	 */
3224 	add_amd_tlb(devi, "dtlb-2M",
3225 	    BITX(cp->cp_eax, 31, 24), BITX(cp->cp_eax, 23, 16));
3226 	add_amd_tlb(devi, "itlb-2M",
3227 	    BITX(cp->cp_eax, 15, 8), BITX(cp->cp_eax, 7, 0));
3228 
3229 	/*
3230 	 * 4K L1 TLB configuration
3231 	 */
3232 
3233 	switch (cpi->cpi_vendor) {
3234 		uint_t nentries;
3235 	case X86_VENDOR_TM:
3236 		if (cpi->cpi_family >= 5) {
3237 			/*
3238 			 * Crusoe processors have 256 TLB entries, but
3239 			 * cpuid data format constrains them to only
3240 			 * reporting 255 of them.
3241 			 */
3242 			if ((nentries = BITX(cp->cp_ebx, 23, 16)) == 255)
3243 				nentries = 256;
3244 			/*
3245 			 * Crusoe processors also have a unified TLB
3246 			 */
3247 			add_amd_tlb(devi, "tlb-4K", BITX(cp->cp_ebx, 31, 24),
3248 			    nentries);
3249 			break;
3250 		}
3251 		/*FALLTHROUGH*/
3252 	default:
3253 		add_amd_tlb(devi, itlb4k_str,
3254 		    BITX(cp->cp_ebx, 31, 24), BITX(cp->cp_ebx, 23, 16));
3255 		add_amd_tlb(devi, dtlb4k_str,
3256 		    BITX(cp->cp_ebx, 15, 8), BITX(cp->cp_ebx, 7, 0));
3257 		break;
3258 	}
3259 
3260 	/*
3261 	 * data L1 cache configuration
3262 	 */
3263 
3264 	add_amd_cache(devi, l1_dcache_str,
3265 	    BITX(cp->cp_ecx, 31, 24), BITX(cp->cp_ecx, 23, 16),
3266 	    BITX(cp->cp_ecx, 15, 8), BITX(cp->cp_ecx, 7, 0));
3267 
3268 	/*
3269 	 * code L1 cache configuration
3270 	 */
3271 
3272 	add_amd_cache(devi, l1_icache_str,
3273 	    BITX(cp->cp_edx, 31, 24), BITX(cp->cp_edx, 23, 16),
3274 	    BITX(cp->cp_edx, 15, 8), BITX(cp->cp_edx, 7, 0));
3275 
3276 	if (cpi->cpi_xmaxeax < 0x80000006)
3277 		return;
3278 	cp = &cpi->cpi_extd[6];
3279 
3280 	/* Check for a unified L2 TLB for large pages */
3281 
3282 	if (BITX(cp->cp_eax, 31, 16) == 0)
3283 		add_amd_l2_tlb(devi, "l2-tlb-2M",
3284 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3285 	else {
3286 		add_amd_l2_tlb(devi, "l2-dtlb-2M",
3287 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3288 		add_amd_l2_tlb(devi, "l2-itlb-2M",
3289 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3290 	}
3291 
3292 	/* Check for a unified L2 TLB for 4K pages */
3293 
3294 	if (BITX(cp->cp_ebx, 31, 16) == 0) {
3295 		add_amd_l2_tlb(devi, "l2-tlb-4K",
3296 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3297 	} else {
3298 		add_amd_l2_tlb(devi, "l2-dtlb-4K",
3299 		    BITX(cp->cp_eax, 31, 28), BITX(cp->cp_eax, 27, 16));
3300 		add_amd_l2_tlb(devi, "l2-itlb-4K",
3301 		    BITX(cp->cp_eax, 15, 12), BITX(cp->cp_eax, 11, 0));
3302 	}
3303 
3304 	add_amd_l2_cache(devi, l2_cache_str,
3305 	    BITX(cp->cp_ecx, 31, 16), BITX(cp->cp_ecx, 15, 12),
3306 	    BITX(cp->cp_ecx, 11, 8), BITX(cp->cp_ecx, 7, 0));
3307 }
3308 
3309 /*
3310  * There are two basic ways that the x86 world describes it cache
3311  * and tlb architecture - Intel's way and AMD's way.
3312  *
3313  * Return which flavor of cache architecture we should use
3314  */
3315 static int
3316 x86_which_cacheinfo(struct cpuid_info *cpi)
3317 {
3318 	switch (cpi->cpi_vendor) {
3319 	case X86_VENDOR_Intel:
3320 		if (cpi->cpi_maxeax >= 2)
3321 			return (X86_VENDOR_Intel);
3322 		break;
3323 	case X86_VENDOR_AMD:
3324 		/*
3325 		 * The K5 model 1 was the first part from AMD that reported
3326 		 * cache sizes via extended cpuid functions.
3327 		 */
3328 		if (cpi->cpi_family > 5 ||
3329 		    (cpi->cpi_family == 5 && cpi->cpi_model >= 1))
3330 			return (X86_VENDOR_AMD);
3331 		break;
3332 	case X86_VENDOR_TM:
3333 		if (cpi->cpi_family >= 5)
3334 			return (X86_VENDOR_AMD);
3335 		/*FALLTHROUGH*/
3336 	default:
3337 		/*
3338 		 * If they have extended CPU data for 0x80000005
3339 		 * then we assume they have AMD-format cache
3340 		 * information.
3341 		 *
3342 		 * If not, and the vendor happens to be Cyrix,
3343 		 * then try our-Cyrix specific handler.
3344 		 *
3345 		 * If we're not Cyrix, then assume we're using Intel's
3346 		 * table-driven format instead.
3347 		 */
3348 		if (cpi->cpi_xmaxeax >= 0x80000005)
3349 			return (X86_VENDOR_AMD);
3350 		else if (cpi->cpi_vendor == X86_VENDOR_Cyrix)
3351 			return (X86_VENDOR_Cyrix);
3352 		else if (cpi->cpi_maxeax >= 2)
3353 			return (X86_VENDOR_Intel);
3354 		break;
3355 	}
3356 	return (-1);
3357 }
3358 
3359 /*
3360  * create a node for the given cpu under the prom root node.
3361  * Also, create a cpu node in the device tree.
3362  */
3363 static dev_info_t *cpu_nex_devi = NULL;
3364 static kmutex_t cpu_node_lock;
3365 
3366 /*
3367  * Called from post_startup() and mp_startup()
3368  */
3369 void
3370 add_cpunode2devtree(processorid_t cpu_id, struct cpuid_info *cpi)
3371 {
3372 	dev_info_t *cpu_devi;
3373 	int create;
3374 
3375 	mutex_enter(&cpu_node_lock);
3376 
3377 	/*
3378 	 * create a nexus node for all cpus identified as 'cpu_id' under
3379 	 * the root node.
3380 	 */
3381 	if (cpu_nex_devi == NULL) {
3382 		if (ndi_devi_alloc(ddi_root_node(), "cpus",
3383 		    (pnode_t)DEVI_SID_NODEID, &cpu_nex_devi) != NDI_SUCCESS) {
3384 			mutex_exit(&cpu_node_lock);
3385 			return;
3386 		}
3387 		(void) ndi_devi_online(cpu_nex_devi, 0);
3388 	}
3389 
3390 	/*
3391 	 * create a child node for cpu identified as 'cpu_id'
3392 	 */
3393 	cpu_devi = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID,
3394 	    cpu_id);
3395 	if (cpu_devi == NULL) {
3396 		mutex_exit(&cpu_node_lock);
3397 		return;
3398 	}
3399 
3400 	/* device_type */
3401 
3402 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3403 	    "device_type", "cpu");
3404 
3405 	/* reg */
3406 
3407 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3408 	    "reg", cpu_id);
3409 
3410 	/* cpu-mhz, and clock-frequency */
3411 
3412 	if (cpu_freq > 0) {
3413 		long long mul;
3414 
3415 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3416 		    "cpu-mhz", cpu_freq);
3417 
3418 		if ((mul = cpu_freq * 1000000LL) <= INT_MAX)
3419 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3420 			    "clock-frequency", (int)mul);
3421 	}
3422 
3423 	(void) ndi_devi_online(cpu_devi, 0);
3424 
3425 	if ((x86_feature & X86_CPUID) == 0) {
3426 		mutex_exit(&cpu_node_lock);
3427 		return;
3428 	}
3429 
3430 	/* vendor-id */
3431 
3432 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3433 	    "vendor-id", cpi->cpi_vendorstr);
3434 
3435 	if (cpi->cpi_maxeax == 0) {
3436 		mutex_exit(&cpu_node_lock);
3437 		return;
3438 	}
3439 
3440 	/*
3441 	 * family, model, and step
3442 	 */
3443 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3444 	    "family", CPI_FAMILY(cpi));
3445 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3446 	    "cpu-model", CPI_MODEL(cpi));
3447 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3448 	    "stepping-id", CPI_STEP(cpi));
3449 
3450 	/* type */
3451 
3452 	switch (cpi->cpi_vendor) {
3453 	case X86_VENDOR_Intel:
3454 		create = 1;
3455 		break;
3456 	default:
3457 		create = 0;
3458 		break;
3459 	}
3460 	if (create)
3461 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3462 		    "type", CPI_TYPE(cpi));
3463 
3464 	/* ext-family */
3465 
3466 	switch (cpi->cpi_vendor) {
3467 	case X86_VENDOR_Intel:
3468 	case X86_VENDOR_AMD:
3469 		create = cpi->cpi_family >= 0xf;
3470 		break;
3471 	default:
3472 		create = 0;
3473 		break;
3474 	}
3475 	if (create)
3476 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3477 		    "ext-family", CPI_FAMILY_XTD(cpi));
3478 
3479 	/* ext-model */
3480 
3481 	switch (cpi->cpi_vendor) {
3482 	case X86_VENDOR_Intel:
3483 		create = IS_EXTENDED_MODEL_INTEL(cpi);
3484 		break;
3485 	case X86_VENDOR_AMD:
3486 		create = CPI_FAMILY(cpi) == 0xf;
3487 		break;
3488 	default:
3489 		create = 0;
3490 		break;
3491 	}
3492 	if (create)
3493 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3494 		    "ext-model", CPI_MODEL_XTD(cpi));
3495 
3496 	/* generation */
3497 
3498 	switch (cpi->cpi_vendor) {
3499 	case X86_VENDOR_AMD:
3500 		/*
3501 		 * AMD K5 model 1 was the first part to support this
3502 		 */
3503 		create = cpi->cpi_xmaxeax >= 0x80000001;
3504 		break;
3505 	default:
3506 		create = 0;
3507 		break;
3508 	}
3509 	if (create)
3510 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3511 		    "generation", BITX((cpi)->cpi_extd[1].cp_eax, 11, 8));
3512 
3513 	/* brand-id */
3514 
3515 	switch (cpi->cpi_vendor) {
3516 	case X86_VENDOR_Intel:
3517 		/*
3518 		 * brand id first appeared on Pentium III Xeon model 8,
3519 		 * and Celeron model 8 processors and Opteron
3520 		 */
3521 		create = cpi->cpi_family > 6 ||
3522 		    (cpi->cpi_family == 6 && cpi->cpi_model >= 8);
3523 		break;
3524 	case X86_VENDOR_AMD:
3525 		create = cpi->cpi_family >= 0xf;
3526 		break;
3527 	default:
3528 		create = 0;
3529 		break;
3530 	}
3531 	if (create && cpi->cpi_brandid != 0) {
3532 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3533 		    "brand-id", cpi->cpi_brandid);
3534 	}
3535 
3536 	/* chunks, and apic-id */
3537 
3538 	switch (cpi->cpi_vendor) {
3539 		/*
3540 		 * first available on Pentium IV and Opteron (K8)
3541 		 */
3542 	case X86_VENDOR_Intel:
3543 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3544 		break;
3545 	case X86_VENDOR_AMD:
3546 		create = cpi->cpi_family >= 0xf;
3547 		break;
3548 	default:
3549 		create = 0;
3550 		break;
3551 	}
3552 	if (create) {
3553 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3554 		    "chunks", CPI_CHUNKS(cpi));
3555 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3556 		    "apic-id", cpi->cpi_apicid);
3557 		if (cpi->cpi_chipid >= 0) {
3558 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3559 			    "chip#", cpi->cpi_chipid);
3560 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3561 			    "clog#", cpi->cpi_clogid);
3562 		}
3563 	}
3564 
3565 	/* cpuid-features */
3566 
3567 	(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3568 	    "cpuid-features", CPI_FEATURES_EDX(cpi));
3569 
3570 
3571 	/* cpuid-features-ecx */
3572 
3573 	switch (cpi->cpi_vendor) {
3574 	case X86_VENDOR_Intel:
3575 		create = IS_NEW_F6(cpi) || cpi->cpi_family >= 0xf;
3576 		break;
3577 	default:
3578 		create = 0;
3579 		break;
3580 	}
3581 	if (create)
3582 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3583 		    "cpuid-features-ecx", CPI_FEATURES_ECX(cpi));
3584 
3585 	/* ext-cpuid-features */
3586 
3587 	switch (cpi->cpi_vendor) {
3588 	case X86_VENDOR_Intel:
3589 	case X86_VENDOR_AMD:
3590 	case X86_VENDOR_Cyrix:
3591 	case X86_VENDOR_TM:
3592 	case X86_VENDOR_Centaur:
3593 		create = cpi->cpi_xmaxeax >= 0x80000001;
3594 		break;
3595 	default:
3596 		create = 0;
3597 		break;
3598 	}
3599 	if (create) {
3600 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3601 		    "ext-cpuid-features", CPI_FEATURES_XTD_EDX(cpi));
3602 		(void) ndi_prop_update_int(DDI_DEV_T_NONE, cpu_devi,
3603 		    "ext-cpuid-features-ecx", CPI_FEATURES_XTD_ECX(cpi));
3604 	}
3605 
3606 	/*
3607 	 * Brand String first appeared in Intel Pentium IV, AMD K5
3608 	 * model 1, and Cyrix GXm.  On earlier models we try and
3609 	 * simulate something similar .. so this string should always
3610 	 * same -something- about the processor, however lame.
3611 	 */
3612 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, cpu_devi,
3613 	    "brand-string", cpi->cpi_brandstr);
3614 
3615 	/*
3616 	 * Finally, cache and tlb information
3617 	 */
3618 	switch (x86_which_cacheinfo(cpi)) {
3619 	case X86_VENDOR_Intel:
3620 		intel_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3621 		break;
3622 	case X86_VENDOR_Cyrix:
3623 		cyrix_walk_cacheinfo(cpi, cpu_devi, add_cacheent_props);
3624 		break;
3625 	case X86_VENDOR_AMD:
3626 		amd_cache_info(cpi, cpu_devi);
3627 		break;
3628 	default:
3629 		break;
3630 	}
3631 
3632 	mutex_exit(&cpu_node_lock);
3633 }
3634 
3635 struct l2info {
3636 	int *l2i_csz;
3637 	int *l2i_lsz;
3638 	int *l2i_assoc;
3639 	int l2i_ret;
3640 };
3641 
3642 /*
3643  * A cacheinfo walker that fetches the size, line-size and associativity
3644  * of the L2 cache
3645  */
3646 static int
3647 intel_l2cinfo(void *arg, const struct cachetab *ct)
3648 {
3649 	struct l2info *l2i = arg;
3650 	int *ip;
3651 
3652 	if (ct->ct_label != l2_cache_str &&
3653 	    ct->ct_label != sl2_cache_str)
3654 		return (0);	/* not an L2 -- keep walking */
3655 
3656 	if ((ip = l2i->l2i_csz) != NULL)
3657 		*ip = ct->ct_size;
3658 	if ((ip = l2i->l2i_lsz) != NULL)
3659 		*ip = ct->ct_line_size;
3660 	if ((ip = l2i->l2i_assoc) != NULL)
3661 		*ip = ct->ct_assoc;
3662 	l2i->l2i_ret = ct->ct_size;
3663 	return (1);		/* was an L2 -- terminate walk */
3664 }
3665 
3666 /*
3667  * AMD L2/L3 Cache and TLB Associativity Field Definition:
3668  *
3669  *	Unlike the associativity for the L1 cache and tlb where the 8 bit
3670  *	value is the associativity, the associativity for the L2 cache and
3671  *	tlb is encoded in the following table. The 4 bit L2 value serves as
3672  *	an index into the amd_afd[] array to determine the associativity.
3673  *	-1 is undefined. 0 is fully associative.
3674  */
3675 
3676 static int amd_afd[] =
3677 	{-1, 1, 2, -1, 4, -1, 8, -1, 16, -1, 32, 48, 64, 96, 128, 0};
3678 
3679 static void
3680 amd_l2cacheinfo(struct cpuid_info *cpi, struct l2info *l2i)
3681 {
3682 	struct cpuid_regs *cp;
3683 	uint_t size, assoc;
3684 	int i;
3685 	int *ip;
3686 
3687 	if (cpi->cpi_xmaxeax < 0x80000006)
3688 		return;
3689 	cp = &cpi->cpi_extd[6];
3690 
3691 	if ((i = BITX(cp->cp_ecx, 15, 12)) != 0 &&
3692 	    (size = BITX(cp->cp_ecx, 31, 16)) != 0) {
3693 		uint_t cachesz = size * 1024;
3694 		assoc = amd_afd[i];
3695 
3696 		ASSERT(assoc != -1);
3697 
3698 		if ((ip = l2i->l2i_csz) != NULL)
3699 			*ip = cachesz;
3700 		if ((ip = l2i->l2i_lsz) != NULL)
3701 			*ip = BITX(cp->cp_ecx, 7, 0);
3702 		if ((ip = l2i->l2i_assoc) != NULL)
3703 			*ip = assoc;
3704 		l2i->l2i_ret = cachesz;
3705 	}
3706 }
3707 
3708 int
3709 getl2cacheinfo(cpu_t *cpu, int *csz, int *lsz, int *assoc)
3710 {
3711 	struct cpuid_info *cpi = cpu->cpu_m.mcpu_cpi;
3712 	struct l2info __l2info, *l2i = &__l2info;
3713 
3714 	l2i->l2i_csz = csz;
3715 	l2i->l2i_lsz = lsz;
3716 	l2i->l2i_assoc = assoc;
3717 	l2i->l2i_ret = -1;
3718 
3719 	switch (x86_which_cacheinfo(cpi)) {
3720 	case X86_VENDOR_Intel:
3721 		intel_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3722 		break;
3723 	case X86_VENDOR_Cyrix:
3724 		cyrix_walk_cacheinfo(cpi, l2i, intel_l2cinfo);
3725 		break;
3726 	case X86_VENDOR_AMD:
3727 		amd_l2cacheinfo(cpi, l2i);
3728 		break;
3729 	default:
3730 		break;
3731 	}
3732 	return (l2i->l2i_ret);
3733 }
3734 
3735 #if !defined(__xpv)
3736 
3737 uint32_t *
3738 cpuid_mwait_alloc(cpu_t *cpu)
3739 {
3740 	uint32_t	*ret;
3741 	size_t		mwait_size;
3742 
3743 	ASSERT(cpuid_checkpass(cpu, 2));
3744 
3745 	mwait_size = cpu->cpu_m.mcpu_cpi->cpi_mwait.mon_max;
3746 	if (mwait_size == 0)
3747 		return (NULL);
3748 
3749 	/*
3750 	 * kmem_alloc() returns cache line size aligned data for mwait_size
3751 	 * allocations.  mwait_size is currently cache line sized.  Neither
3752 	 * of these implementation details are guarantied to be true in the
3753 	 * future.
3754 	 *
3755 	 * First try allocating mwait_size as kmem_alloc() currently returns
3756 	 * correctly aligned memory.  If kmem_alloc() does not return
3757 	 * mwait_size aligned memory, then use mwait_size ROUNDUP.
3758 	 *
3759 	 * Set cpi_mwait.buf_actual and cpi_mwait.size_actual in case we
3760 	 * decide to free this memory.
3761 	 */
3762 	ret = kmem_zalloc(mwait_size, KM_SLEEP);
3763 	if (ret == (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size)) {
3764 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3765 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size;
3766 		*ret = MWAIT_RUNNING;
3767 		return (ret);
3768 	} else {
3769 		kmem_free(ret, mwait_size);
3770 		ret = kmem_zalloc(mwait_size * 2, KM_SLEEP);
3771 		cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = ret;
3772 		cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = mwait_size * 2;
3773 		ret = (uint32_t *)P2ROUNDUP((uintptr_t)ret, mwait_size);
3774 		*ret = MWAIT_RUNNING;
3775 		return (ret);
3776 	}
3777 }
3778 
3779 void
3780 cpuid_mwait_free(cpu_t *cpu)
3781 {
3782 	ASSERT(cpuid_checkpass(cpu, 2));
3783 
3784 	if (cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual != NULL &&
3785 	    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual > 0) {
3786 		kmem_free(cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual,
3787 		    cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual);
3788 	}
3789 
3790 	cpu->cpu_m.mcpu_cpi->cpi_mwait.buf_actual = NULL;
3791 	cpu->cpu_m.mcpu_cpi->cpi_mwait.size_actual = 0;
3792 }
3793 
3794 void
3795 patch_tsc_read(int flag)
3796 {
3797 	size_t cnt;
3798 
3799 	switch (flag) {
3800 	case X86_NO_TSC:
3801 		cnt = &_no_rdtsc_end - &_no_rdtsc_start;
3802 		(void) memcpy((void *)tsc_read, (void *)&_no_rdtsc_start, cnt);
3803 		break;
3804 	case X86_HAVE_TSCP:
3805 		cnt = &_tscp_end - &_tscp_start;
3806 		(void) memcpy((void *)tsc_read, (void *)&_tscp_start, cnt);
3807 		break;
3808 	case X86_TSC_MFENCE:
3809 		cnt = &_tsc_mfence_end - &_tsc_mfence_start;
3810 		(void) memcpy((void *)tsc_read,
3811 		    (void *)&_tsc_mfence_start, cnt);
3812 		break;
3813 	case X86_TSC_LFENCE:
3814 		cnt = &_tsc_lfence_end - &_tsc_lfence_start;
3815 		(void) memcpy((void *)tsc_read,
3816 		    (void *)&_tsc_lfence_start, cnt);
3817 		break;
3818 	default:
3819 		break;
3820 	}
3821 }
3822 
3823 #endif	/* !__xpv */
3824