xref: /titanic_52/usr/src/uts/i86pc/io/rootnex.c (revision f64ca10231919db05e806441ccd6186ea9c6e734)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright 2012 Garrett D'Amore <garrett@damore.org>.  All rights reserved.
28  */
29 
30 /*
31  * x86 root nexus driver
32  */
33 
34 #include <sys/sysmacros.h>
35 #include <sys/conf.h>
36 #include <sys/autoconf.h>
37 #include <sys/sysmacros.h>
38 #include <sys/debug.h>
39 #include <sys/psw.h>
40 #include <sys/ddidmareq.h>
41 #include <sys/promif.h>
42 #include <sys/devops.h>
43 #include <sys/kmem.h>
44 #include <sys/cmn_err.h>
45 #include <vm/seg.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_dev.h>
48 #include <sys/vmem.h>
49 #include <sys/mman.h>
50 #include <vm/hat.h>
51 #include <vm/as.h>
52 #include <vm/page.h>
53 #include <sys/avintr.h>
54 #include <sys/errno.h>
55 #include <sys/modctl.h>
56 #include <sys/ddi_impldefs.h>
57 #include <sys/sunddi.h>
58 #include <sys/sunndi.h>
59 #include <sys/mach_intr.h>
60 #include <sys/psm.h>
61 #include <sys/ontrap.h>
62 #include <sys/atomic.h>
63 #include <sys/sdt.h>
64 #include <sys/rootnex.h>
65 #include <vm/hat_i86.h>
66 #include <sys/ddifm.h>
67 #include <sys/ddi_isa.h>
68 #include <sys/apic.h>
69 
70 #ifdef __xpv
71 #include <sys/bootinfo.h>
72 #include <sys/hypervisor.h>
73 #include <sys/bootconf.h>
74 #include <vm/kboot_mmu.h>
75 #endif
76 
77 #if defined(__amd64) && !defined(__xpv)
78 #include <sys/immu.h>
79 #endif
80 
81 
82 /*
83  * enable/disable extra checking of function parameters. Useful for debugging
84  * drivers.
85  */
86 #ifdef	DEBUG
87 int rootnex_alloc_check_parms = 1;
88 int rootnex_bind_check_parms = 1;
89 int rootnex_bind_check_inuse = 1;
90 int rootnex_unbind_verify_buffer = 0;
91 int rootnex_sync_check_parms = 1;
92 #else
93 int rootnex_alloc_check_parms = 0;
94 int rootnex_bind_check_parms = 0;
95 int rootnex_bind_check_inuse = 0;
96 int rootnex_unbind_verify_buffer = 0;
97 int rootnex_sync_check_parms = 0;
98 #endif
99 
100 boolean_t rootnex_dmar_not_setup;
101 
102 /* Master Abort and Target Abort panic flag */
103 int rootnex_fm_ma_ta_panic_flag = 0;
104 
105 /* Semi-temporary patchables to phase in bug fixes, test drivers, etc. */
106 int rootnex_bind_fail = 1;
107 int rootnex_bind_warn = 1;
108 uint8_t *rootnex_warn_list;
109 /* bitmasks for rootnex_warn_list. Up to 8 different warnings with uint8_t */
110 #define	ROOTNEX_BIND_WARNING	(0x1 << 0)
111 
112 /*
113  * revert back to old broken behavior of always sync'ing entire copy buffer.
114  * This is useful if be have a buggy driver which doesn't correctly pass in
115  * the offset and size into ddi_dma_sync().
116  */
117 int rootnex_sync_ignore_params = 0;
118 
119 /*
120  * For the 64-bit kernel, pre-alloc enough cookies for a 256K buffer plus 1
121  * page for alignment. For the 32-bit kernel, pre-alloc enough cookies for a
122  * 64K buffer plus 1 page for alignment (we have less kernel space in a 32-bit
123  * kernel). Allocate enough windows to handle a 256K buffer w/ at least 65
124  * sgllen DMA engine, and enough copybuf buffer state pages to handle 2 pages
125  * (< 8K). We will still need to allocate the copy buffer during bind though
126  * (if we need one). These can only be modified in /etc/system before rootnex
127  * attach.
128  */
129 #if defined(__amd64)
130 int rootnex_prealloc_cookies = 65;
131 int rootnex_prealloc_windows = 4;
132 int rootnex_prealloc_copybuf = 2;
133 #else
134 int rootnex_prealloc_cookies = 33;
135 int rootnex_prealloc_windows = 4;
136 int rootnex_prealloc_copybuf = 2;
137 #endif
138 
139 /* driver global state */
140 static rootnex_state_t *rootnex_state;
141 
142 #ifdef DEBUG
143 /* shortcut to rootnex counters */
144 static uint64_t *rootnex_cnt;
145 #endif
146 
147 /*
148  * XXX - does x86 even need these or are they left over from the SPARC days?
149  */
150 /* statically defined integer/boolean properties for the root node */
151 static rootnex_intprop_t rootnex_intprp[] = {
152 	{ "PAGESIZE",			PAGESIZE },
153 	{ "MMU_PAGESIZE",		MMU_PAGESIZE },
154 	{ "MMU_PAGEOFFSET",		MMU_PAGEOFFSET },
155 	{ DDI_RELATIVE_ADDRESSING,	1 },
156 };
157 #define	NROOT_INTPROPS	(sizeof (rootnex_intprp) / sizeof (rootnex_intprop_t))
158 
159 /*
160  * If we're dom0, we're using a real device so we need to load
161  * the cookies with MFNs instead of PFNs.
162  */
163 #ifdef __xpv
164 typedef maddr_t rootnex_addr_t;
165 #define	ROOTNEX_PADDR_TO_RBASE(pa)	\
166 	(DOMAIN_IS_INITDOMAIN(xen_info) ? pa_to_ma(pa) : (pa))
167 #else
168 typedef paddr_t rootnex_addr_t;
169 #define	ROOTNEX_PADDR_TO_RBASE(pa)	(pa)
170 #endif
171 
172 static struct cb_ops rootnex_cb_ops = {
173 	nodev,		/* open */
174 	nodev,		/* close */
175 	nodev,		/* strategy */
176 	nodev,		/* print */
177 	nodev,		/* dump */
178 	nodev,		/* read */
179 	nodev,		/* write */
180 	nodev,		/* ioctl */
181 	nodev,		/* devmap */
182 	nodev,		/* mmap */
183 	nodev,		/* segmap */
184 	nochpoll,	/* chpoll */
185 	ddi_prop_op,	/* cb_prop_op */
186 	NULL,		/* struct streamtab */
187 	D_NEW | D_MP | D_HOTPLUG, /* compatibility flags */
188 	CB_REV,		/* Rev */
189 	nodev,		/* cb_aread */
190 	nodev		/* cb_awrite */
191 };
192 
193 static int rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp,
194     off_t offset, off_t len, caddr_t *vaddrp);
195 static int rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip,
196     struct hat *hat, struct seg *seg, caddr_t addr,
197     struct devpage *dp, pfn_t pfn, uint_t prot, uint_t lock);
198 static int rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip,
199     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
200     ddi_dma_handle_t *handlep);
201 static int rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip,
202     ddi_dma_handle_t handle);
203 static int rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
204     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
205     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
206 static int rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
207     ddi_dma_handle_t handle);
208 static int rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip,
209     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
210 static int rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip,
211     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
212     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
213 static int rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip,
214     ddi_dma_handle_t handle, enum ddi_dma_ctlops request,
215     off_t *offp, size_t *lenp, caddr_t *objp, uint_t cache_flags);
216 static int rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip,
217     ddi_ctl_enum_t ctlop, void *arg, void *result);
218 static int rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
219     ddi_iblock_cookie_t *ibc);
220 static int rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip,
221     ddi_intr_op_t intr_op, ddi_intr_handle_impl_t *hdlp, void *result);
222 static int rootnex_alloc_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *,
223     void *);
224 static int rootnex_free_intr_fixed(dev_info_t *, ddi_intr_handle_impl_t *);
225 
226 static int rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
227     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
228     ddi_dma_handle_t *handlep);
229 static int rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
230     ddi_dma_handle_t handle);
231 static int rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
232     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
233     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
234 static int rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
235     ddi_dma_handle_t handle);
236 #if defined(__amd64) && !defined(__xpv)
237 static void rootnex_coredma_reset_cookies(dev_info_t *dip,
238     ddi_dma_handle_t handle);
239 static int rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
240     ddi_dma_cookie_t **cookiepp, uint_t *ccountp);
241 static int rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
242     ddi_dma_cookie_t *cookiep, uint_t ccount);
243 static int rootnex_coredma_clear_cookies(dev_info_t *dip,
244     ddi_dma_handle_t handle);
245 static int rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle);
246 #endif
247 static int rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip,
248     ddi_dma_handle_t handle, off_t off, size_t len, uint_t cache_flags);
249 static int rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip,
250     ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
251     ddi_dma_cookie_t *cookiep, uint_t *ccountp);
252 
253 #if defined(__amd64) && !defined(__xpv)
254 static int rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
255     ddi_dma_handle_t handle, void *v);
256 static void *rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
257     ddi_dma_handle_t handle);
258 #endif
259 
260 
261 static struct bus_ops rootnex_bus_ops = {
262 	BUSO_REV,
263 	rootnex_map,
264 	NULL,
265 	NULL,
266 	NULL,
267 	rootnex_map_fault,
268 	0,
269 	rootnex_dma_allochdl,
270 	rootnex_dma_freehdl,
271 	rootnex_dma_bindhdl,
272 	rootnex_dma_unbindhdl,
273 	rootnex_dma_sync,
274 	rootnex_dma_win,
275 	rootnex_dma_mctl,
276 	rootnex_ctlops,
277 	ddi_bus_prop_op,
278 	i_ddi_rootnex_get_eventcookie,
279 	i_ddi_rootnex_add_eventcall,
280 	i_ddi_rootnex_remove_eventcall,
281 	i_ddi_rootnex_post_event,
282 	0,			/* bus_intr_ctl */
283 	0,			/* bus_config */
284 	0,			/* bus_unconfig */
285 	rootnex_fm_init,	/* bus_fm_init */
286 	NULL,			/* bus_fm_fini */
287 	NULL,			/* bus_fm_access_enter */
288 	NULL,			/* bus_fm_access_exit */
289 	NULL,			/* bus_powr */
290 	rootnex_intr_ops	/* bus_intr_op */
291 };
292 
293 static int rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
294 static int rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
295 static int rootnex_quiesce(dev_info_t *dip);
296 
297 static struct dev_ops rootnex_ops = {
298 	DEVO_REV,
299 	0,
300 	ddi_no_info,
301 	nulldev,
302 	nulldev,
303 	rootnex_attach,
304 	rootnex_detach,
305 	nulldev,
306 	&rootnex_cb_ops,
307 	&rootnex_bus_ops,
308 	NULL,
309 	rootnex_quiesce,		/* quiesce */
310 };
311 
312 static struct modldrv rootnex_modldrv = {
313 	&mod_driverops,
314 	"i86pc root nexus",
315 	&rootnex_ops
316 };
317 
318 static struct modlinkage rootnex_modlinkage = {
319 	MODREV_1,
320 	(void *)&rootnex_modldrv,
321 	NULL
322 };
323 
324 #if defined(__amd64) && !defined(__xpv)
325 static iommulib_nexops_t iommulib_nexops = {
326 	IOMMU_NEXOPS_VERSION,
327 	"Rootnex IOMMU ops Vers 1.1",
328 	NULL,
329 	rootnex_coredma_allochdl,
330 	rootnex_coredma_freehdl,
331 	rootnex_coredma_bindhdl,
332 	rootnex_coredma_unbindhdl,
333 	rootnex_coredma_reset_cookies,
334 	rootnex_coredma_get_cookies,
335 	rootnex_coredma_set_cookies,
336 	rootnex_coredma_clear_cookies,
337 	rootnex_coredma_get_sleep_flags,
338 	rootnex_coredma_sync,
339 	rootnex_coredma_win,
340 	rootnex_coredma_hdl_setprivate,
341 	rootnex_coredma_hdl_getprivate
342 };
343 #endif
344 
345 /*
346  *  extern hacks
347  */
348 extern struct seg_ops segdev_ops;
349 extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
350 #ifdef	DDI_MAP_DEBUG
351 extern int ddi_map_debug_flag;
352 #define	ddi_map_debug	if (ddi_map_debug_flag) prom_printf
353 #endif
354 extern void i86_pp_map(page_t *pp, caddr_t kaddr);
355 extern void i86_va_map(caddr_t vaddr, struct as *asp, caddr_t kaddr);
356 extern int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *,
357     psm_intr_op_t, int *);
358 extern int impl_ddi_sunbus_initchild(dev_info_t *dip);
359 extern void impl_ddi_sunbus_removechild(dev_info_t *dip);
360 
361 /*
362  * Use device arena to use for device control register mappings.
363  * Various kernel memory walkers (debugger, dtrace) need to know
364  * to avoid this address range to prevent undesired device activity.
365  */
366 extern void *device_arena_alloc(size_t size, int vm_flag);
367 extern void device_arena_free(void * vaddr, size_t size);
368 
369 
370 /*
371  *  Internal functions
372  */
373 static int rootnex_dma_init();
374 static void rootnex_add_props(dev_info_t *);
375 static int rootnex_ctl_reportdev(dev_info_t *dip);
376 static struct intrspec *rootnex_get_ispec(dev_info_t *rdip, int inum);
377 static int rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
378 static int rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp);
379 static int rootnex_map_handle(ddi_map_req_t *mp);
380 static void rootnex_clean_dmahdl(ddi_dma_impl_t *hp);
381 static int rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegsize);
382 static int rootnex_valid_bind_parms(ddi_dma_req_t *dmareq,
383     ddi_dma_attr_t *attr);
384 static void rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
385     rootnex_sglinfo_t *sglinfo);
386 static void rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object,
387     ddi_dma_cookie_t *sgl, rootnex_sglinfo_t *sglinfo);
388 static int rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
389     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
390 static int rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
391     rootnex_dma_t *dma, ddi_dma_attr_t *attr);
392 static void rootnex_teardown_copybuf(rootnex_dma_t *dma);
393 static int rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
394     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag);
395 static void rootnex_teardown_windows(rootnex_dma_t *dma);
396 static void rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
397     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset);
398 static void rootnex_setup_cookie(ddi_dma_obj_t *dmar_object,
399     rootnex_dma_t *dma, ddi_dma_cookie_t *cookie, off_t cur_offset,
400     size_t *copybuf_used, page_t **cur_pp);
401 static int rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp,
402     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie,
403     ddi_dma_attr_t *attr, off_t cur_offset);
404 static int rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp,
405     rootnex_dma_t *dma, rootnex_window_t **windowp,
406     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used);
407 static int rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp,
408     rootnex_dma_t *dma, rootnex_window_t **windowp, ddi_dma_cookie_t *cookie);
409 static int rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
410     off_t offset, size_t size, uint_t cache_flags);
411 static int rootnex_verify_buffer(rootnex_dma_t *dma);
412 static int rootnex_dma_check(dev_info_t *dip, const void *handle,
413     const void *comp_addr, const void *not_used);
414 static boolean_t rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object,
415     rootnex_sglinfo_t *sglinfo);
416 static struct as *rootnex_get_as(ddi_dma_obj_t *dmar_object);
417 
418 /*
419  * _init()
420  *
421  */
422 int
423 _init(void)
424 {
425 
426 	rootnex_state = NULL;
427 	return (mod_install(&rootnex_modlinkage));
428 }
429 
430 
431 /*
432  * _info()
433  *
434  */
435 int
436 _info(struct modinfo *modinfop)
437 {
438 	return (mod_info(&rootnex_modlinkage, modinfop));
439 }
440 
441 
442 /*
443  * _fini()
444  *
445  */
446 int
447 _fini(void)
448 {
449 	return (EBUSY);
450 }
451 
452 
453 /*
454  * rootnex_attach()
455  *
456  */
457 static int
458 rootnex_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
459 {
460 	int fmcap;
461 	int e;
462 
463 	switch (cmd) {
464 	case DDI_ATTACH:
465 		break;
466 	case DDI_RESUME:
467 #if defined(__amd64) && !defined(__xpv)
468 		return (immu_unquiesce());
469 #else
470 		return (DDI_SUCCESS);
471 #endif
472 	default:
473 		return (DDI_FAILURE);
474 	}
475 
476 	/*
477 	 * We should only have one instance of rootnex. Save it away since we
478 	 * don't have an easy way to get it back later.
479 	 */
480 	ASSERT(rootnex_state == NULL);
481 	rootnex_state = kmem_zalloc(sizeof (rootnex_state_t), KM_SLEEP);
482 
483 	rootnex_state->r_dip = dip;
484 	rootnex_state->r_err_ibc = (ddi_iblock_cookie_t)ipltospl(15);
485 	rootnex_state->r_reserved_msg_printed = B_FALSE;
486 #ifdef DEBUG
487 	rootnex_cnt = &rootnex_state->r_counters[0];
488 #endif
489 
490 	/*
491 	 * Set minimum fm capability level for i86pc platforms and then
492 	 * initialize error handling. Since we're the rootnex, we don't
493 	 * care what's returned in the fmcap field.
494 	 */
495 	ddi_system_fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE |
496 	    DDI_FM_ACCCHK_CAPABLE | DDI_FM_DMACHK_CAPABLE;
497 	fmcap = ddi_system_fmcap;
498 	ddi_fm_init(dip, &fmcap, &rootnex_state->r_err_ibc);
499 
500 	/* initialize DMA related state */
501 	e = rootnex_dma_init();
502 	if (e != DDI_SUCCESS) {
503 		kmem_free(rootnex_state, sizeof (rootnex_state_t));
504 		return (DDI_FAILURE);
505 	}
506 
507 	/* Add static root node properties */
508 	rootnex_add_props(dip);
509 
510 	/* since we can't call ddi_report_dev() */
511 	cmn_err(CE_CONT, "?root nexus = %s\n", ddi_get_name(dip));
512 
513 	/* Initialize rootnex event handle */
514 	i_ddi_rootnex_init_events(dip);
515 
516 #if defined(__amd64) && !defined(__xpv)
517 	e = iommulib_nexus_register(dip, &iommulib_nexops,
518 	    &rootnex_state->r_iommulib_handle);
519 
520 	ASSERT(e == DDI_SUCCESS);
521 #endif
522 
523 	return (DDI_SUCCESS);
524 }
525 
526 
527 /*
528  * rootnex_detach()
529  *
530  */
531 /*ARGSUSED*/
532 static int
533 rootnex_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
534 {
535 	switch (cmd) {
536 	case DDI_SUSPEND:
537 #if defined(__amd64) && !defined(__xpv)
538 		return (immu_quiesce());
539 #else
540 		return (DDI_SUCCESS);
541 #endif
542 	default:
543 		return (DDI_FAILURE);
544 	}
545 	/*NOTREACHED*/
546 
547 }
548 
549 
550 /*
551  * rootnex_dma_init()
552  *
553  */
554 /*ARGSUSED*/
555 static int
556 rootnex_dma_init()
557 {
558 	size_t bufsize;
559 
560 
561 	/*
562 	 * size of our cookie/window/copybuf state needed in dma bind that we
563 	 * pre-alloc in dma_alloc_handle
564 	 */
565 	rootnex_state->r_prealloc_cookies = rootnex_prealloc_cookies;
566 	rootnex_state->r_prealloc_size =
567 	    (rootnex_state->r_prealloc_cookies * sizeof (ddi_dma_cookie_t)) +
568 	    (rootnex_prealloc_windows * sizeof (rootnex_window_t)) +
569 	    (rootnex_prealloc_copybuf * sizeof (rootnex_pgmap_t));
570 
571 	/*
572 	 * setup DDI DMA handle kmem cache, align each handle on 64 bytes,
573 	 * allocate 16 extra bytes for struct pointer alignment
574 	 * (p->dmai_private & dma->dp_prealloc_buffer)
575 	 */
576 	bufsize = sizeof (ddi_dma_impl_t) + sizeof (rootnex_dma_t) +
577 	    rootnex_state->r_prealloc_size + 0x10;
578 	rootnex_state->r_dmahdl_cache = kmem_cache_create("rootnex_dmahdl",
579 	    bufsize, 64, NULL, NULL, NULL, NULL, NULL, 0);
580 	if (rootnex_state->r_dmahdl_cache == NULL) {
581 		return (DDI_FAILURE);
582 	}
583 
584 	/*
585 	 * allocate array to track which major numbers we have printed warnings
586 	 * for.
587 	 */
588 	rootnex_warn_list = kmem_zalloc(devcnt * sizeof (*rootnex_warn_list),
589 	    KM_SLEEP);
590 
591 	return (DDI_SUCCESS);
592 }
593 
594 
595 /*
596  * rootnex_add_props()
597  *
598  */
599 static void
600 rootnex_add_props(dev_info_t *dip)
601 {
602 	rootnex_intprop_t *rpp;
603 	int i;
604 
605 	/* Add static integer/boolean properties to the root node */
606 	rpp = rootnex_intprp;
607 	for (i = 0; i < NROOT_INTPROPS; i++) {
608 		(void) e_ddi_prop_update_int(DDI_DEV_T_NONE, dip,
609 		    rpp[i].prop_name, rpp[i].prop_value);
610 	}
611 }
612 
613 
614 
615 /*
616  * *************************
617  *  ctlops related routines
618  * *************************
619  */
620 
621 /*
622  * rootnex_ctlops()
623  *
624  */
625 /*ARGSUSED*/
626 static int
627 rootnex_ctlops(dev_info_t *dip, dev_info_t *rdip, ddi_ctl_enum_t ctlop,
628     void *arg, void *result)
629 {
630 	int n, *ptr;
631 	struct ddi_parent_private_data *pdp;
632 
633 	switch (ctlop) {
634 	case DDI_CTLOPS_DMAPMAPC:
635 		/*
636 		 * Return 'partial' to indicate that dma mapping
637 		 * has to be done in the main MMU.
638 		 */
639 		return (DDI_DMA_PARTIAL);
640 
641 	case DDI_CTLOPS_BTOP:
642 		/*
643 		 * Convert byte count input to physical page units.
644 		 * (byte counts that are not a page-size multiple
645 		 * are rounded down)
646 		 */
647 		*(ulong_t *)result = btop(*(ulong_t *)arg);
648 		return (DDI_SUCCESS);
649 
650 	case DDI_CTLOPS_PTOB:
651 		/*
652 		 * Convert size in physical pages to bytes
653 		 */
654 		*(ulong_t *)result = ptob(*(ulong_t *)arg);
655 		return (DDI_SUCCESS);
656 
657 	case DDI_CTLOPS_BTOPR:
658 		/*
659 		 * Convert byte count input to physical page units
660 		 * (byte counts that are not a page-size multiple
661 		 * are rounded up)
662 		 */
663 		*(ulong_t *)result = btopr(*(ulong_t *)arg);
664 		return (DDI_SUCCESS);
665 
666 	case DDI_CTLOPS_INITCHILD:
667 		return (impl_ddi_sunbus_initchild(arg));
668 
669 	case DDI_CTLOPS_UNINITCHILD:
670 		impl_ddi_sunbus_removechild(arg);
671 		return (DDI_SUCCESS);
672 
673 	case DDI_CTLOPS_REPORTDEV:
674 		return (rootnex_ctl_reportdev(rdip));
675 
676 	case DDI_CTLOPS_IOMIN:
677 		/*
678 		 * Nothing to do here but reflect back..
679 		 */
680 		return (DDI_SUCCESS);
681 
682 	case DDI_CTLOPS_REGSIZE:
683 	case DDI_CTLOPS_NREGS:
684 		break;
685 
686 	case DDI_CTLOPS_SIDDEV:
687 		if (ndi_dev_is_prom_node(rdip))
688 			return (DDI_SUCCESS);
689 		if (ndi_dev_is_persistent_node(rdip))
690 			return (DDI_SUCCESS);
691 		return (DDI_FAILURE);
692 
693 	case DDI_CTLOPS_POWER:
694 		return ((*pm_platform_power)((power_req_t *)arg));
695 
696 	case DDI_CTLOPS_RESERVED0: /* Was DDI_CTLOPS_NINTRS, obsolete */
697 	case DDI_CTLOPS_RESERVED1: /* Was DDI_CTLOPS_POKE_INIT, obsolete */
698 	case DDI_CTLOPS_RESERVED2: /* Was DDI_CTLOPS_POKE_FLUSH, obsolete */
699 	case DDI_CTLOPS_RESERVED3: /* Was DDI_CTLOPS_POKE_FINI, obsolete */
700 	case DDI_CTLOPS_RESERVED4: /* Was DDI_CTLOPS_INTR_HILEVEL, obsolete */
701 	case DDI_CTLOPS_RESERVED5: /* Was DDI_CTLOPS_XLATE_INTRS, obsolete */
702 		if (!rootnex_state->r_reserved_msg_printed) {
703 			rootnex_state->r_reserved_msg_printed = B_TRUE;
704 			cmn_err(CE_WARN, "Failing ddi_ctlops call(s) for "
705 			    "1 or more reserved/obsolete operations.");
706 		}
707 		return (DDI_FAILURE);
708 
709 	default:
710 		return (DDI_FAILURE);
711 	}
712 	/*
713 	 * The rest are for "hardware" properties
714 	 */
715 	if ((pdp = ddi_get_parent_data(rdip)) == NULL)
716 		return (DDI_FAILURE);
717 
718 	if (ctlop == DDI_CTLOPS_NREGS) {
719 		ptr = (int *)result;
720 		*ptr = pdp->par_nreg;
721 	} else {
722 		off_t *size = (off_t *)result;
723 
724 		ptr = (int *)arg;
725 		n = *ptr;
726 		if (n >= pdp->par_nreg) {
727 			return (DDI_FAILURE);
728 		}
729 		*size = (off_t)pdp->par_reg[n].regspec_size;
730 	}
731 	return (DDI_SUCCESS);
732 }
733 
734 
735 /*
736  * rootnex_ctl_reportdev()
737  *
738  */
739 static int
740 rootnex_ctl_reportdev(dev_info_t *dev)
741 {
742 	int i, n, len, f_len = 0;
743 	char *buf;
744 
745 	buf = kmem_alloc(REPORTDEV_BUFSIZE, KM_SLEEP);
746 	f_len += snprintf(buf, REPORTDEV_BUFSIZE,
747 	    "%s%d at root", ddi_driver_name(dev), ddi_get_instance(dev));
748 	len = strlen(buf);
749 
750 	for (i = 0; i < sparc_pd_getnreg(dev); i++) {
751 
752 		struct regspec *rp = sparc_pd_getreg(dev, i);
753 
754 		if (i == 0)
755 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
756 			    ": ");
757 		else
758 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
759 			    " and ");
760 		len = strlen(buf);
761 
762 		switch (rp->regspec_bustype) {
763 
764 		case BTEISA:
765 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
766 			    "%s 0x%x", DEVI_EISA_NEXNAME, rp->regspec_addr);
767 			break;
768 
769 		case BTISA:
770 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
771 			    "%s 0x%x", DEVI_ISA_NEXNAME, rp->regspec_addr);
772 			break;
773 
774 		default:
775 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
776 			    "space %x offset %x",
777 			    rp->regspec_bustype, rp->regspec_addr);
778 			break;
779 		}
780 		len = strlen(buf);
781 	}
782 	for (i = 0, n = sparc_pd_getnintr(dev); i < n; i++) {
783 		int pri;
784 
785 		if (i != 0) {
786 			f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
787 			    ",");
788 			len = strlen(buf);
789 		}
790 		pri = INT_IPL(sparc_pd_getintr(dev, i)->intrspec_pri);
791 		f_len += snprintf(buf + len, REPORTDEV_BUFSIZE - len,
792 		    " sparc ipl %d", pri);
793 		len = strlen(buf);
794 	}
795 #ifdef DEBUG
796 	if (f_len + 1 >= REPORTDEV_BUFSIZE) {
797 		cmn_err(CE_NOTE, "next message is truncated: "
798 		    "printed length 1024, real length %d", f_len);
799 	}
800 #endif /* DEBUG */
801 	cmn_err(CE_CONT, "?%s\n", buf);
802 	kmem_free(buf, REPORTDEV_BUFSIZE);
803 	return (DDI_SUCCESS);
804 }
805 
806 
807 /*
808  * ******************
809  *  map related code
810  * ******************
811  */
812 
813 /*
814  * rootnex_map()
815  *
816  */
817 static int
818 rootnex_map(dev_info_t *dip, dev_info_t *rdip, ddi_map_req_t *mp, off_t offset,
819     off_t len, caddr_t *vaddrp)
820 {
821 	struct regspec *orp = NULL;
822 	struct regspec64 rp = { 0 };
823 	ddi_map_req_t mr = *mp;		/* Get private copy of request */
824 
825 	mp = &mr;
826 
827 	switch (mp->map_op)  {
828 	case DDI_MO_MAP_LOCKED:
829 	case DDI_MO_UNMAP:
830 	case DDI_MO_MAP_HANDLE:
831 		break;
832 	default:
833 #ifdef	DDI_MAP_DEBUG
834 		cmn_err(CE_WARN, "rootnex_map: unimplemented map op %d.",
835 		    mp->map_op);
836 #endif	/* DDI_MAP_DEBUG */
837 		return (DDI_ME_UNIMPLEMENTED);
838 	}
839 
840 	if (mp->map_flags & DDI_MF_USER_MAPPING)  {
841 #ifdef	DDI_MAP_DEBUG
842 		cmn_err(CE_WARN, "rootnex_map: unimplemented map type: user.");
843 #endif	/* DDI_MAP_DEBUG */
844 		return (DDI_ME_UNIMPLEMENTED);
845 	}
846 
847 	/*
848 	 * First, we need to get the original regspec out before we convert it
849 	 * to the extended format. If we have a register number, then we need to
850 	 * convert that to a regspec.
851 	 */
852 	if (mp->map_type == DDI_MT_RNUMBER)  {
853 
854 		int rnumber = mp->map_obj.rnumber;
855 #ifdef	DDI_MAP_DEBUG
856 		static char *out_of_range =
857 		    "rootnex_map: Out of range rnumber <%d>, device <%s>";
858 #endif	/* DDI_MAP_DEBUG */
859 
860 		orp = i_ddi_rnumber_to_regspec(rdip, rnumber);
861 		if (orp == NULL) {
862 #ifdef	DDI_MAP_DEBUG
863 			cmn_err(CE_WARN, out_of_range, rnumber,
864 			    ddi_get_name(rdip));
865 #endif	/* DDI_MAP_DEBUG */
866 			return (DDI_ME_RNUMBER_RANGE);
867 		}
868 	} else if (!(mp->map_flags & DDI_MF_EXT_REGSPEC)) {
869 		orp = mp->map_obj.rp;
870 	}
871 
872 	/*
873 	 * Ensure that we are always using a 64-bit extended regspec regardless
874 	 * of what was passed into us. If the child driver is using a 64-bit
875 	 * regspec, then we need to make sure that we copy this to the local
876 	 * regspec64, rp.
877 	 */
878 	if (orp != NULL) {
879 		rp.regspec_bustype = orp->regspec_bustype;
880 		rp.regspec_addr = orp->regspec_addr;
881 		rp.regspec_size = orp->regspec_size;
882 	} else {
883 		struct regspec64 *rp64;
884 		rp64 = (struct regspec64 *)mp->map_obj.rp;
885 		rp = *rp64;
886 	}
887 
888 	mp->map_type = DDI_MT_REGSPEC;
889 	mp->map_flags |= DDI_MF_EXT_REGSPEC;
890 	mp->map_obj.rp = (struct regspec *)&rp;
891 
892 	/*
893 	 * Adjust offset and length correspnding to called values...
894 	 * XXX: A non-zero length means override the one in the regspec
895 	 * XXX: (regardless of what's in the parent's range?)
896 	 */
897 
898 #ifdef	DDI_MAP_DEBUG
899 	cmn_err(CE_CONT, "rootnex: <%s,%s> <0x%x, 0x%x, 0x%d> offset %d len %d "
900 	    "handle 0x%x\n", ddi_get_name(dip), ddi_get_name(rdip),
901 	    rp.regspec_bustype, rp.regspec_addr, rp.regspec_size, offset,
902 	    len, mp->map_handlep);
903 #endif	/* DDI_MAP_DEBUG */
904 
905 	/*
906 	 * I/O or memory mapping:
907 	 *
908 	 *	<bustype=0, addr=x, len=x>: memory
909 	 *	<bustype=1, addr=x, len=x>: i/o
910 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
911 	 */
912 
913 	if (rp.regspec_bustype > 1 && rp.regspec_addr != 0) {
914 		cmn_err(CE_WARN, "<%s,%s> invalid register spec"
915 		    " <0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRIx64 ">",
916 		    ddi_get_name(dip), ddi_get_name(rdip), rp.regspec_bustype,
917 		    rp.regspec_addr, rp.regspec_size);
918 		return (DDI_ME_INVAL);
919 	}
920 
921 	if (rp.regspec_bustype > 1 && rp.regspec_addr == 0) {
922 		/*
923 		 * compatibility i/o mapping
924 		 */
925 		rp.regspec_bustype += offset;
926 	} else {
927 		/*
928 		 * Normal memory or i/o mapping
929 		 */
930 		rp.regspec_addr += offset;
931 	}
932 
933 	if (len != 0)
934 		rp.regspec_size = len;
935 
936 #ifdef	DDI_MAP_DEBUG
937 	cmn_err(CE_CONT, "             <%s,%s> <0x%" PRIx64 ", 0x%" PRIx64
938 	    ", 0x%" PRId64 "> offset %d len %d handle 0x%x\n",
939 	    ddi_get_name(dip), ddi_get_name(rdip), rp.regspec_bustype,
940 	    rp.regspec_addr, rp.regspec_size, offset, len, mp->map_handlep);
941 #endif	/* DDI_MAP_DEBUG */
942 
943 
944 	/*
945 	 * The x86 root nexus does not have any notion of valid ranges of
946 	 * addresses. Its children have valid ranges, but because there are none
947 	 * for the nexus, we don't need to call i_ddi_apply_range().  Verify
948 	 * that is the case.
949 	 */
950 	ASSERT0(sparc_pd_getnrng(dip));
951 
952 	switch (mp->map_op)  {
953 	case DDI_MO_MAP_LOCKED:
954 
955 		/*
956 		 * Set up the locked down kernel mapping to the regspec...
957 		 */
958 
959 		return (rootnex_map_regspec(mp, vaddrp));
960 
961 	case DDI_MO_UNMAP:
962 
963 		/*
964 		 * Release mapping...
965 		 */
966 
967 		return (rootnex_unmap_regspec(mp, vaddrp));
968 
969 	case DDI_MO_MAP_HANDLE:
970 
971 		return (rootnex_map_handle(mp));
972 
973 	default:
974 		return (DDI_ME_UNIMPLEMENTED);
975 	}
976 }
977 
978 
979 /*
980  * rootnex_map_fault()
981  *
982  *	fault in mappings for requestors
983  */
984 /*ARGSUSED*/
985 static int
986 rootnex_map_fault(dev_info_t *dip, dev_info_t *rdip, struct hat *hat,
987     struct seg *seg, caddr_t addr, struct devpage *dp, pfn_t pfn, uint_t prot,
988     uint_t lock)
989 {
990 
991 #ifdef	DDI_MAP_DEBUG
992 	ddi_map_debug("rootnex_map_fault: address <%x> pfn <%x>", addr, pfn);
993 	ddi_map_debug(" Seg <%s>\n",
994 	    seg->s_ops == &segdev_ops ? "segdev" :
995 	    seg == &kvseg ? "segkmem" : "NONE!");
996 #endif	/* DDI_MAP_DEBUG */
997 
998 	/*
999 	 * This is all terribly broken, but it is a start
1000 	 *
1001 	 * XXX	Note that this test means that segdev_ops
1002 	 *	must be exported from seg_dev.c.
1003 	 * XXX	What about devices with their own segment drivers?
1004 	 */
1005 	if (seg->s_ops == &segdev_ops) {
1006 		struct segdev_data *sdp = (struct segdev_data *)seg->s_data;
1007 
1008 		if (hat == NULL) {
1009 			/*
1010 			 * This is one plausible interpretation of
1011 			 * a null hat i.e. use the first hat on the
1012 			 * address space hat list which by convention is
1013 			 * the hat of the system MMU.  At alternative
1014 			 * would be to panic .. this might well be better ..
1015 			 */
1016 			ASSERT(AS_READ_HELD(seg->s_as));
1017 			hat = seg->s_as->a_hat;
1018 			cmn_err(CE_NOTE, "rootnex_map_fault: nil hat");
1019 		}
1020 		hat_devload(hat, addr, MMU_PAGESIZE, pfn, prot | sdp->hat_attr,
1021 		    (lock ? HAT_LOAD_LOCK : HAT_LOAD));
1022 	} else if (seg == &kvseg && dp == NULL) {
1023 		hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pfn, prot,
1024 		    HAT_LOAD_LOCK);
1025 	} else
1026 		return (DDI_FAILURE);
1027 	return (DDI_SUCCESS);
1028 }
1029 
1030 
1031 static int
1032 rootnex_map_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1033 {
1034 	rootnex_addr_t rbase;
1035 	void *cvaddr;
1036 	uint64_t npages, pgoffset;
1037 	struct regspec64 *rp;
1038 	ddi_acc_hdl_t *hp;
1039 	ddi_acc_impl_t *ap;
1040 	uint_t	hat_acc_flags;
1041 	paddr_t pbase;
1042 
1043 	ASSERT(mp->map_flags & DDI_MF_EXT_REGSPEC);
1044 	rp = (struct regspec64 *)mp->map_obj.rp;
1045 	hp = mp->map_handlep;
1046 
1047 #ifdef	DDI_MAP_DEBUG
1048 	ddi_map_debug(
1049 	    "rootnex_map_regspec: <0x%x 0x%x 0x%x> handle 0x%x\n",
1050 	    rp->regspec_bustype, rp->regspec_addr,
1051 	    rp->regspec_size, mp->map_handlep);
1052 #endif	/* DDI_MAP_DEBUG */
1053 
1054 	/*
1055 	 * I/O or memory mapping
1056 	 *
1057 	 *	<bustype=0, addr=x, len=x>: memory
1058 	 *	<bustype=1, addr=x, len=x>: i/o
1059 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1060 	 */
1061 
1062 	if (rp->regspec_bustype > 1 && rp->regspec_addr != 0) {
1063 		cmn_err(CE_WARN, "rootnex: invalid register spec"
1064 		    " <0x%" PRIx64 ", 0x%" PRIx64", 0x%" PRIx64">",
1065 		    rp->regspec_bustype, rp->regspec_addr, rp->regspec_size);
1066 		return (DDI_FAILURE);
1067 	}
1068 
1069 	if (rp->regspec_bustype != 0) {
1070 		/*
1071 		 * I/O space - needs a handle.
1072 		 */
1073 		if (hp == NULL) {
1074 			return (DDI_FAILURE);
1075 		}
1076 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1077 		ap->ahi_acc_attr |= DDI_ACCATTR_IO_SPACE;
1078 		impl_acc_hdl_init(hp);
1079 
1080 		if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1081 #ifdef  DDI_MAP_DEBUG
1082 			ddi_map_debug("rootnex_map_regspec: mmap() "
1083 			    "to I/O space is not supported.\n");
1084 #endif  /* DDI_MAP_DEBUG */
1085 			return (DDI_ME_INVAL);
1086 		} else {
1087 			/*
1088 			 * 1275-compliant vs. compatibility i/o mapping
1089 			 */
1090 			*vaddrp =
1091 			    (rp->regspec_bustype > 1 && rp->regspec_addr == 0) ?
1092 			    ((caddr_t)(uintptr_t)rp->regspec_bustype) :
1093 			    ((caddr_t)(uintptr_t)rp->regspec_addr);
1094 #ifdef __xpv
1095 			if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1096 				hp->ah_pfn = xen_assign_pfn(
1097 				    mmu_btop((ulong_t)rp->regspec_addr &
1098 				    MMU_PAGEMASK));
1099 			} else {
1100 				hp->ah_pfn = mmu_btop(
1101 				    (ulong_t)rp->regspec_addr & MMU_PAGEMASK);
1102 			}
1103 #else
1104 			hp->ah_pfn = mmu_btop((ulong_t)rp->regspec_addr &
1105 			    MMU_PAGEMASK);
1106 #endif
1107 			hp->ah_pnum = mmu_btopr(rp->regspec_size +
1108 			    (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET);
1109 		}
1110 
1111 #ifdef	DDI_MAP_DEBUG
1112 		ddi_map_debug(
1113 	    "rootnex_map_regspec: \"Mapping\" %d bytes I/O space at 0x%x\n",
1114 		    rp->regspec_size, *vaddrp);
1115 #endif	/* DDI_MAP_DEBUG */
1116 		return (DDI_SUCCESS);
1117 	}
1118 
1119 	/*
1120 	 * Memory space
1121 	 */
1122 
1123 	if (hp != NULL) {
1124 		/*
1125 		 * hat layer ignores
1126 		 * hp->ah_acc.devacc_attr_endian_flags.
1127 		 */
1128 		switch (hp->ah_acc.devacc_attr_dataorder) {
1129 		case DDI_STRICTORDER_ACC:
1130 			hat_acc_flags = HAT_STRICTORDER;
1131 			break;
1132 		case DDI_UNORDERED_OK_ACC:
1133 			hat_acc_flags = HAT_UNORDERED_OK;
1134 			break;
1135 		case DDI_MERGING_OK_ACC:
1136 			hat_acc_flags = HAT_MERGING_OK;
1137 			break;
1138 		case DDI_LOADCACHING_OK_ACC:
1139 			hat_acc_flags = HAT_LOADCACHING_OK;
1140 			break;
1141 		case DDI_STORECACHING_OK_ACC:
1142 			hat_acc_flags = HAT_STORECACHING_OK;
1143 			break;
1144 		}
1145 		ap = (ddi_acc_impl_t *)hp->ah_platform_private;
1146 		ap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1147 		impl_acc_hdl_init(hp);
1148 		hp->ah_hat_flags = hat_acc_flags;
1149 	} else {
1150 		hat_acc_flags = HAT_STRICTORDER;
1151 	}
1152 
1153 	rbase = (rootnex_addr_t)(rp->regspec_addr & MMU_PAGEMASK);
1154 #ifdef __xpv
1155 	/*
1156 	 * If we're dom0, we're using a real device so we need to translate
1157 	 * the MA to a PA.
1158 	 */
1159 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1160 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase)));
1161 	} else {
1162 		pbase = rbase;
1163 	}
1164 #else
1165 	pbase = rbase;
1166 #endif
1167 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1168 
1169 	if (rp->regspec_size == 0) {
1170 #ifdef  DDI_MAP_DEBUG
1171 		ddi_map_debug("rootnex_map_regspec: zero regspec_size\n");
1172 #endif  /* DDI_MAP_DEBUG */
1173 		return (DDI_ME_INVAL);
1174 	}
1175 
1176 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING) {
1177 		/* extra cast to make gcc happy */
1178 		*vaddrp = (caddr_t)((uintptr_t)mmu_btop(pbase));
1179 	} else {
1180 		npages = mmu_btopr(rp->regspec_size + pgoffset);
1181 
1182 #ifdef	DDI_MAP_DEBUG
1183 		ddi_map_debug("rootnex_map_regspec: Mapping %d pages "
1184 		    "physical %llx", npages, pbase);
1185 #endif	/* DDI_MAP_DEBUG */
1186 
1187 		cvaddr = device_arena_alloc(ptob(npages), VM_NOSLEEP);
1188 		if (cvaddr == NULL)
1189 			return (DDI_ME_NORESOURCES);
1190 
1191 		/*
1192 		 * Now map in the pages we've allocated...
1193 		 */
1194 		hat_devload(kas.a_hat, cvaddr, mmu_ptob(npages),
1195 		    mmu_btop(pbase), mp->map_prot | hat_acc_flags,
1196 		    HAT_LOAD_LOCK);
1197 		*vaddrp = (caddr_t)cvaddr + pgoffset;
1198 
1199 		/* save away pfn and npages for FMA */
1200 		hp = mp->map_handlep;
1201 		if (hp) {
1202 			hp->ah_pfn = mmu_btop(pbase);
1203 			hp->ah_pnum = npages;
1204 		}
1205 	}
1206 
1207 #ifdef	DDI_MAP_DEBUG
1208 	ddi_map_debug("at virtual 0x%x\n", *vaddrp);
1209 #endif	/* DDI_MAP_DEBUG */
1210 	return (DDI_SUCCESS);
1211 }
1212 
1213 
1214 static int
1215 rootnex_unmap_regspec(ddi_map_req_t *mp, caddr_t *vaddrp)
1216 {
1217 	caddr_t addr = (caddr_t)*vaddrp;
1218 	uint64_t npages, pgoffset;
1219 	struct regspec64 *rp;
1220 
1221 	if (mp->map_flags & DDI_MF_DEVICE_MAPPING)
1222 		return (0);
1223 
1224 	ASSERT(mp->map_flags & DDI_MF_EXT_REGSPEC);
1225 	rp = (struct regspec64 *)mp->map_obj.rp;
1226 
1227 	if (rp->regspec_size == 0) {
1228 #ifdef  DDI_MAP_DEBUG
1229 		ddi_map_debug("rootnex_unmap_regspec: zero regspec_size\n");
1230 #endif  /* DDI_MAP_DEBUG */
1231 		return (DDI_ME_INVAL);
1232 	}
1233 
1234 	/*
1235 	 * I/O or memory mapping:
1236 	 *
1237 	 *	<bustype=0, addr=x, len=x>: memory
1238 	 *	<bustype=1, addr=x, len=x>: i/o
1239 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1240 	 */
1241 	if (rp->regspec_bustype != 0) {
1242 		/*
1243 		 * This is I/O space, which requires no particular
1244 		 * processing on unmap since it isn't mapped in the
1245 		 * first place.
1246 		 */
1247 		return (DDI_SUCCESS);
1248 	}
1249 
1250 	/*
1251 	 * Memory space
1252 	 */
1253 	pgoffset = (uintptr_t)addr & MMU_PAGEOFFSET;
1254 	npages = mmu_btopr(rp->regspec_size + pgoffset);
1255 	hat_unload(kas.a_hat, addr - pgoffset, ptob(npages), HAT_UNLOAD_UNLOCK);
1256 	device_arena_free(addr - pgoffset, ptob(npages));
1257 
1258 	/*
1259 	 * Destroy the pointer - the mapping has logically gone
1260 	 */
1261 	*vaddrp = NULL;
1262 
1263 	return (DDI_SUCCESS);
1264 }
1265 
1266 static int
1267 rootnex_map_handle(ddi_map_req_t *mp)
1268 {
1269 	rootnex_addr_t rbase;
1270 	ddi_acc_hdl_t *hp;
1271 	uint64_t pgoffset;
1272 	struct regspec64 *rp;
1273 	paddr_t pbase;
1274 
1275 	rp = (struct regspec64 *)mp->map_obj.rp;
1276 
1277 #ifdef	DDI_MAP_DEBUG
1278 	ddi_map_debug(
1279 	    "rootnex_map_handle: <0x%x 0x%x 0x%x> handle 0x%x\n",
1280 	    rp->regspec_bustype, rp->regspec_addr,
1281 	    rp->regspec_size, mp->map_handlep);
1282 #endif	/* DDI_MAP_DEBUG */
1283 
1284 	/*
1285 	 * I/O or memory mapping:
1286 	 *
1287 	 *	<bustype=0, addr=x, len=x>: memory
1288 	 *	<bustype=1, addr=x, len=x>: i/o
1289 	 *	<bustype>1, addr=0, len=x>: x86-compatibility i/o
1290 	 */
1291 	if (rp->regspec_bustype != 0) {
1292 		/*
1293 		 * This refers to I/O space, and we don't support "mapping"
1294 		 * I/O space to a user.
1295 		 */
1296 		return (DDI_FAILURE);
1297 	}
1298 
1299 	/*
1300 	 * Set up the hat_flags for the mapping.
1301 	 */
1302 	hp = mp->map_handlep;
1303 
1304 	switch (hp->ah_acc.devacc_attr_endian_flags) {
1305 	case DDI_NEVERSWAP_ACC:
1306 		hp->ah_hat_flags = HAT_NEVERSWAP | HAT_STRICTORDER;
1307 		break;
1308 	case DDI_STRUCTURE_LE_ACC:
1309 		hp->ah_hat_flags = HAT_STRUCTURE_LE;
1310 		break;
1311 	case DDI_STRUCTURE_BE_ACC:
1312 		return (DDI_FAILURE);
1313 	default:
1314 		return (DDI_REGS_ACC_CONFLICT);
1315 	}
1316 
1317 	switch (hp->ah_acc.devacc_attr_dataorder) {
1318 	case DDI_STRICTORDER_ACC:
1319 		break;
1320 	case DDI_UNORDERED_OK_ACC:
1321 		hp->ah_hat_flags |= HAT_UNORDERED_OK;
1322 		break;
1323 	case DDI_MERGING_OK_ACC:
1324 		hp->ah_hat_flags |= HAT_MERGING_OK;
1325 		break;
1326 	case DDI_LOADCACHING_OK_ACC:
1327 		hp->ah_hat_flags |= HAT_LOADCACHING_OK;
1328 		break;
1329 	case DDI_STORECACHING_OK_ACC:
1330 		hp->ah_hat_flags |= HAT_STORECACHING_OK;
1331 		break;
1332 	default:
1333 		return (DDI_FAILURE);
1334 	}
1335 
1336 	rbase = (rootnex_addr_t)rp->regspec_addr &
1337 	    (~(rootnex_addr_t)MMU_PAGEOFFSET);
1338 	pgoffset = (ulong_t)rp->regspec_addr & MMU_PAGEOFFSET;
1339 
1340 	if (rp->regspec_size == 0)
1341 		return (DDI_ME_INVAL);
1342 
1343 #ifdef __xpv
1344 	/*
1345 	 * If we're dom0, we're using a real device so we need to translate
1346 	 * the MA to a PA.
1347 	 */
1348 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1349 		pbase = pfn_to_pa(xen_assign_pfn(mmu_btop(rbase))) |
1350 		    (rbase & MMU_PAGEOFFSET);
1351 	} else {
1352 		pbase = rbase;
1353 	}
1354 #else
1355 	pbase = rbase;
1356 #endif
1357 
1358 	hp->ah_pfn = mmu_btop(pbase);
1359 	hp->ah_pnum = mmu_btopr(rp->regspec_size + pgoffset);
1360 
1361 	return (DDI_SUCCESS);
1362 }
1363 
1364 
1365 
1366 /*
1367  * ************************
1368  *  interrupt related code
1369  * ************************
1370  */
1371 
1372 /*
1373  * rootnex_intr_ops()
1374  *	bus_intr_op() function for interrupt support
1375  */
1376 /* ARGSUSED */
1377 static int
1378 rootnex_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t intr_op,
1379     ddi_intr_handle_impl_t *hdlp, void *result)
1380 {
1381 	struct intrspec			*ispec;
1382 
1383 	DDI_INTR_NEXDBG((CE_CONT,
1384 	    "rootnex_intr_ops: pdip = %p, rdip = %p, intr_op = %x, hdlp = %p\n",
1385 	    (void *)pdip, (void *)rdip, intr_op, (void *)hdlp));
1386 
1387 	/* Process the interrupt operation */
1388 	switch (intr_op) {
1389 	case DDI_INTROP_GETCAP:
1390 		/* First check with pcplusmp */
1391 		if (psm_intr_ops == NULL)
1392 			return (DDI_FAILURE);
1393 
1394 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_CAP, result)) {
1395 			*(int *)result = 0;
1396 			return (DDI_FAILURE);
1397 		}
1398 		break;
1399 	case DDI_INTROP_SETCAP:
1400 		if (psm_intr_ops == NULL)
1401 			return (DDI_FAILURE);
1402 
1403 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_CAP, result))
1404 			return (DDI_FAILURE);
1405 		break;
1406 	case DDI_INTROP_ALLOC:
1407 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1408 		return (rootnex_alloc_intr_fixed(rdip, hdlp, result));
1409 	case DDI_INTROP_FREE:
1410 		ASSERT(hdlp->ih_type == DDI_INTR_TYPE_FIXED);
1411 		return (rootnex_free_intr_fixed(rdip, hdlp));
1412 	case DDI_INTROP_GETPRI:
1413 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1414 			return (DDI_FAILURE);
1415 		*(int *)result = ispec->intrspec_pri;
1416 		break;
1417 	case DDI_INTROP_SETPRI:
1418 		/* Validate the interrupt priority passed to us */
1419 		if (*(int *)result > LOCK_LEVEL)
1420 			return (DDI_FAILURE);
1421 
1422 		/* Ensure that PSM is all initialized and ispec is ok */
1423 		if ((psm_intr_ops == NULL) ||
1424 		    ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL))
1425 			return (DDI_FAILURE);
1426 
1427 		/* Change the priority */
1428 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_PRI, result) ==
1429 		    PSM_FAILURE)
1430 			return (DDI_FAILURE);
1431 
1432 		/* update the ispec with the new priority */
1433 		ispec->intrspec_pri =  *(int *)result;
1434 		break;
1435 	case DDI_INTROP_ADDISR:
1436 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1437 			return (DDI_FAILURE);
1438 		ispec->intrspec_func = hdlp->ih_cb_func;
1439 		break;
1440 	case DDI_INTROP_REMISR:
1441 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1442 			return (DDI_FAILURE);
1443 		ispec->intrspec_func = (uint_t (*)()) 0;
1444 		break;
1445 	case DDI_INTROP_ENABLE:
1446 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1447 			return (DDI_FAILURE);
1448 
1449 		/* Call psmi to translate irq with the dip */
1450 		if (psm_intr_ops == NULL)
1451 			return (DDI_FAILURE);
1452 
1453 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1454 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_XLATE_VECTOR,
1455 		    (int *)&hdlp->ih_vector) == PSM_FAILURE)
1456 			return (DDI_FAILURE);
1457 
1458 		/* Add the interrupt handler */
1459 		if (!add_avintr((void *)hdlp, ispec->intrspec_pri,
1460 		    hdlp->ih_cb_func, DEVI(rdip)->devi_name, hdlp->ih_vector,
1461 		    hdlp->ih_cb_arg1, hdlp->ih_cb_arg2, NULL, rdip))
1462 			return (DDI_FAILURE);
1463 		break;
1464 	case DDI_INTROP_DISABLE:
1465 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1466 			return (DDI_FAILURE);
1467 
1468 		/* Call psm_ops() to translate irq with the dip */
1469 		if (psm_intr_ops == NULL)
1470 			return (DDI_FAILURE);
1471 
1472 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1473 		(void) (*psm_intr_ops)(rdip, hdlp,
1474 		    PSM_INTR_OP_XLATE_VECTOR, (int *)&hdlp->ih_vector);
1475 
1476 		/* Remove the interrupt handler */
1477 		rem_avintr((void *)hdlp, ispec->intrspec_pri,
1478 		    hdlp->ih_cb_func, hdlp->ih_vector);
1479 		break;
1480 	case DDI_INTROP_SETMASK:
1481 		if (psm_intr_ops == NULL)
1482 			return (DDI_FAILURE);
1483 
1484 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_SET_MASK, NULL))
1485 			return (DDI_FAILURE);
1486 		break;
1487 	case DDI_INTROP_CLRMASK:
1488 		if (psm_intr_ops == NULL)
1489 			return (DDI_FAILURE);
1490 
1491 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_CLEAR_MASK, NULL))
1492 			return (DDI_FAILURE);
1493 		break;
1494 	case DDI_INTROP_GETPENDING:
1495 		if (psm_intr_ops == NULL)
1496 			return (DDI_FAILURE);
1497 
1498 		if ((*psm_intr_ops)(rdip, hdlp, PSM_INTR_OP_GET_PENDING,
1499 		    result)) {
1500 			*(int *)result = 0;
1501 			return (DDI_FAILURE);
1502 		}
1503 		break;
1504 	case DDI_INTROP_NAVAIL:
1505 	case DDI_INTROP_NINTRS:
1506 		*(int *)result = i_ddi_get_intx_nintrs(rdip);
1507 		if (*(int *)result == 0) {
1508 			/*
1509 			 * Special case for 'pcic' driver' only. This driver
1510 			 * driver is a child of 'isa' and 'rootnex' drivers.
1511 			 *
1512 			 * See detailed comments on this in the function
1513 			 * rootnex_get_ispec().
1514 			 *
1515 			 * Children of 'pcic' send 'NINITR' request all the
1516 			 * way to rootnex driver. But, the 'pdp->par_nintr'
1517 			 * field may not initialized. So, we fake it here
1518 			 * to return 1 (a la what PCMCIA nexus does).
1519 			 */
1520 			if (strcmp(ddi_get_name(rdip), "pcic") == 0)
1521 				*(int *)result = 1;
1522 			else
1523 				return (DDI_FAILURE);
1524 		}
1525 		break;
1526 	case DDI_INTROP_SUPPORTED_TYPES:
1527 		*(int *)result = DDI_INTR_TYPE_FIXED;	/* Always ... */
1528 		break;
1529 	default:
1530 		return (DDI_FAILURE);
1531 	}
1532 
1533 	return (DDI_SUCCESS);
1534 }
1535 
1536 
1537 /*
1538  * rootnex_get_ispec()
1539  *	convert an interrupt number to an interrupt specification.
1540  *	The interrupt number determines which interrupt spec will be
1541  *	returned if more than one exists.
1542  *
1543  *	Look into the parent private data area of the 'rdip' to find out
1544  *	the interrupt specification.  First check to make sure there is
1545  *	one that matchs "inumber" and then return a pointer to it.
1546  *
1547  *	Return NULL if one could not be found.
1548  *
1549  *	NOTE: This is needed for rootnex_intr_ops()
1550  */
1551 static struct intrspec *
1552 rootnex_get_ispec(dev_info_t *rdip, int inum)
1553 {
1554 	struct ddi_parent_private_data *pdp = ddi_get_parent_data(rdip);
1555 
1556 	/*
1557 	 * Special case handling for drivers that provide their own
1558 	 * intrspec structures instead of relying on the DDI framework.
1559 	 *
1560 	 * A broken hardware driver in ON could potentially provide its
1561 	 * own intrspec structure, instead of relying on the hardware.
1562 	 * If these drivers are children of 'rootnex' then we need to
1563 	 * continue to provide backward compatibility to them here.
1564 	 *
1565 	 * Following check is a special case for 'pcic' driver which
1566 	 * was found to have broken hardwre andby provides its own intrspec.
1567 	 *
1568 	 * Verbatim comments from this driver are shown here:
1569 	 * "Don't use the ddi_add_intr since we don't have a
1570 	 * default intrspec in all cases."
1571 	 *
1572 	 * Since an 'ispec' may not be always created for it,
1573 	 * check for that and create one if so.
1574 	 *
1575 	 * NOTE: Currently 'pcic' is the only driver found to do this.
1576 	 */
1577 	if (!pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1578 		pdp->par_nintr = 1;
1579 		pdp->par_intr = kmem_zalloc(sizeof (struct intrspec) *
1580 		    pdp->par_nintr, KM_SLEEP);
1581 	}
1582 
1583 	/* Validate the interrupt number */
1584 	if (inum >= pdp->par_nintr)
1585 		return (NULL);
1586 
1587 	/* Get the interrupt structure pointer and return that */
1588 	return ((struct intrspec *)&pdp->par_intr[inum]);
1589 }
1590 
1591 /*
1592  * Allocate interrupt vector for FIXED (legacy) type.
1593  */
1594 static int
1595 rootnex_alloc_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp,
1596     void *result)
1597 {
1598 	struct intrspec		*ispec;
1599 	ddi_intr_handle_impl_t	info_hdl;
1600 	int			ret;
1601 	int			free_phdl = 0;
1602 	apic_get_type_t		type_info;
1603 
1604 	if (psm_intr_ops == NULL)
1605 		return (DDI_FAILURE);
1606 
1607 	if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1608 		return (DDI_FAILURE);
1609 
1610 	/*
1611 	 * If the PSM module is "APIX" then pass the request for it
1612 	 * to allocate the vector now.
1613 	 */
1614 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1615 	info_hdl.ih_private = &type_info;
1616 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1617 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1618 		if (hdlp->ih_private == NULL) { /* allocate phdl structure */
1619 			free_phdl = 1;
1620 			i_ddi_alloc_intr_phdl(hdlp);
1621 		}
1622 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1623 		ret = (*psm_intr_ops)(rdip, hdlp,
1624 		    PSM_INTR_OP_ALLOC_VECTORS, result);
1625 		if (free_phdl) { /* free up the phdl structure */
1626 			free_phdl = 0;
1627 			i_ddi_free_intr_phdl(hdlp);
1628 			hdlp->ih_private = NULL;
1629 		}
1630 	} else {
1631 		/*
1632 		 * No APIX module; fall back to the old scheme where the
1633 		 * interrupt vector is allocated during ddi_enable_intr() call.
1634 		 */
1635 		hdlp->ih_pri = ispec->intrspec_pri;
1636 		*(int *)result = hdlp->ih_scratch1;
1637 		ret = DDI_SUCCESS;
1638 	}
1639 
1640 	return (ret);
1641 }
1642 
1643 /*
1644  * Free up interrupt vector for FIXED (legacy) type.
1645  */
1646 static int
1647 rootnex_free_intr_fixed(dev_info_t *rdip, ddi_intr_handle_impl_t *hdlp)
1648 {
1649 	struct intrspec			*ispec;
1650 	struct ddi_parent_private_data	*pdp;
1651 	ddi_intr_handle_impl_t		info_hdl;
1652 	int				ret;
1653 	apic_get_type_t			type_info;
1654 
1655 	if (psm_intr_ops == NULL)
1656 		return (DDI_FAILURE);
1657 
1658 	/*
1659 	 * If the PSM module is "APIX" then pass the request for it
1660 	 * to free up the vector now.
1661 	 */
1662 	bzero(&info_hdl, sizeof (ddi_intr_handle_impl_t));
1663 	info_hdl.ih_private = &type_info;
1664 	if ((*psm_intr_ops)(NULL, &info_hdl, PSM_INTR_OP_APIC_TYPE, NULL) ==
1665 	    PSM_SUCCESS && strcmp(type_info.avgi_type, APIC_APIX_NAME) == 0) {
1666 		if ((ispec = rootnex_get_ispec(rdip, hdlp->ih_inum)) == NULL)
1667 			return (DDI_FAILURE);
1668 		((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp = ispec;
1669 		ret = (*psm_intr_ops)(rdip, hdlp,
1670 		    PSM_INTR_OP_FREE_VECTORS, NULL);
1671 	} else {
1672 		/*
1673 		 * No APIX module; fall back to the old scheme where
1674 		 * the interrupt vector was already freed during
1675 		 * ddi_disable_intr() call.
1676 		 */
1677 		ret = DDI_SUCCESS;
1678 	}
1679 
1680 	pdp = ddi_get_parent_data(rdip);
1681 
1682 	/*
1683 	 * Special case for 'pcic' driver' only.
1684 	 * If an intrspec was created for it, clean it up here
1685 	 * See detailed comments on this in the function
1686 	 * rootnex_get_ispec().
1687 	 */
1688 	if (pdp->par_intr && strcmp(ddi_get_name(rdip), "pcic") == 0) {
1689 		kmem_free(pdp->par_intr, sizeof (struct intrspec) *
1690 		    pdp->par_nintr);
1691 		/*
1692 		 * Set it to zero; so that
1693 		 * DDI framework doesn't free it again
1694 		 */
1695 		pdp->par_intr = NULL;
1696 		pdp->par_nintr = 0;
1697 	}
1698 
1699 	return (ret);
1700 }
1701 
1702 
1703 /*
1704  * ******************
1705  *  dma related code
1706  * ******************
1707  */
1708 
1709 /*ARGSUSED*/
1710 static int
1711 rootnex_coredma_allochdl(dev_info_t *dip, dev_info_t *rdip,
1712     ddi_dma_attr_t *attr, int (*waitfp)(caddr_t), caddr_t arg,
1713     ddi_dma_handle_t *handlep)
1714 {
1715 	uint64_t maxsegmentsize_ll;
1716 	uint_t maxsegmentsize;
1717 	ddi_dma_impl_t *hp;
1718 	rootnex_dma_t *dma;
1719 	uint64_t count_max;
1720 	uint64_t seg;
1721 	int kmflag;
1722 	int e;
1723 
1724 
1725 	/* convert our sleep flags */
1726 	if (waitfp == DDI_DMA_SLEEP) {
1727 		kmflag = KM_SLEEP;
1728 	} else {
1729 		kmflag = KM_NOSLEEP;
1730 	}
1731 
1732 	/*
1733 	 * We try to do only one memory allocation here. We'll do a little
1734 	 * pointer manipulation later. If the bind ends up taking more than
1735 	 * our prealloc's space, we'll have to allocate more memory in the
1736 	 * bind operation. Not great, but much better than before and the
1737 	 * best we can do with the current bind interfaces.
1738 	 */
1739 	hp = kmem_cache_alloc(rootnex_state->r_dmahdl_cache, kmflag);
1740 	if (hp == NULL)
1741 		return (DDI_DMA_NORESOURCES);
1742 
1743 	/* Do our pointer manipulation now, align the structures */
1744 	hp->dmai_private = (void *)(((uintptr_t)hp +
1745 	    (uintptr_t)sizeof (ddi_dma_impl_t) + 0x7) & ~0x7);
1746 	dma = (rootnex_dma_t *)hp->dmai_private;
1747 	dma->dp_prealloc_buffer = (uchar_t *)(((uintptr_t)dma +
1748 	    sizeof (rootnex_dma_t) + 0x7) & ~0x7);
1749 
1750 	/* setup the handle */
1751 	rootnex_clean_dmahdl(hp);
1752 	hp->dmai_error.err_fep = NULL;
1753 	hp->dmai_error.err_cf = NULL;
1754 	dma->dp_dip = rdip;
1755 	dma->dp_sglinfo.si_flags = attr->dma_attr_flags;
1756 	dma->dp_sglinfo.si_min_addr = attr->dma_attr_addr_lo;
1757 
1758 	/*
1759 	 * The BOUNCE_ON_SEG workaround is not needed when an IOMMU
1760 	 * is being used. Set the upper limit to the seg value.
1761 	 * There will be enough DVMA space to always get addresses
1762 	 * that will match the constraints.
1763 	 */
1764 	if (IOMMU_USED(rdip) &&
1765 	    (attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)) {
1766 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_seg;
1767 		dma->dp_sglinfo.si_flags &= ~_DDI_DMA_BOUNCE_ON_SEG;
1768 	} else
1769 		dma->dp_sglinfo.si_max_addr = attr->dma_attr_addr_hi;
1770 
1771 	hp->dmai_minxfer = attr->dma_attr_minxfer;
1772 	hp->dmai_burstsizes = attr->dma_attr_burstsizes;
1773 	hp->dmai_rdip = rdip;
1774 	hp->dmai_attr = *attr;
1775 
1776 	if (attr->dma_attr_seg >= dma->dp_sglinfo.si_max_addr)
1777 		dma->dp_sglinfo.si_cancross = B_FALSE;
1778 	else
1779 		dma->dp_sglinfo.si_cancross = B_TRUE;
1780 
1781 	/* we don't need to worry about the SPL since we do a tryenter */
1782 	mutex_init(&dma->dp_mutex, NULL, MUTEX_DRIVER, NULL);
1783 
1784 	/*
1785 	 * Figure out our maximum segment size. If the segment size is greater
1786 	 * than 4G, we will limit it to (4G - 1) since the max size of a dma
1787 	 * object (ddi_dma_obj_t.dmao_size) is 32 bits. dma_attr_seg and
1788 	 * dma_attr_count_max are size-1 type values.
1789 	 *
1790 	 * Maximum segment size is the largest physically contiguous chunk of
1791 	 * memory that we can return from a bind (i.e. the maximum size of a
1792 	 * single cookie).
1793 	 */
1794 
1795 	/* handle the rollover cases */
1796 	seg = attr->dma_attr_seg + 1;
1797 	if (seg < attr->dma_attr_seg) {
1798 		seg = attr->dma_attr_seg;
1799 	}
1800 	count_max = attr->dma_attr_count_max + 1;
1801 	if (count_max < attr->dma_attr_count_max) {
1802 		count_max = attr->dma_attr_count_max;
1803 	}
1804 
1805 	/*
1806 	 * granularity may or may not be a power of two. If it isn't, we can't
1807 	 * use a simple mask.
1808 	 */
1809 	if (!ISP2(attr->dma_attr_granular)) {
1810 		dma->dp_granularity_power_2 = B_FALSE;
1811 	} else {
1812 		dma->dp_granularity_power_2 = B_TRUE;
1813 	}
1814 
1815 	/*
1816 	 * maxxfer should be a whole multiple of granularity. If we're going to
1817 	 * break up a window because we're greater than maxxfer, we might as
1818 	 * well make sure it's maxxfer is a whole multiple so we don't have to
1819 	 * worry about triming the window later on for this case.
1820 	 */
1821 	if (attr->dma_attr_granular > 1) {
1822 		if (dma->dp_granularity_power_2) {
1823 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1824 			    (attr->dma_attr_maxxfer &
1825 			    (attr->dma_attr_granular - 1));
1826 		} else {
1827 			dma->dp_maxxfer = attr->dma_attr_maxxfer -
1828 			    (attr->dma_attr_maxxfer % attr->dma_attr_granular);
1829 		}
1830 	} else {
1831 		dma->dp_maxxfer = attr->dma_attr_maxxfer;
1832 	}
1833 
1834 	maxsegmentsize_ll = MIN(seg, dma->dp_maxxfer);
1835 	maxsegmentsize_ll = MIN(maxsegmentsize_ll, count_max);
1836 	if (maxsegmentsize_ll == 0 || (maxsegmentsize_ll > 0xFFFFFFFF)) {
1837 		maxsegmentsize = 0xFFFFFFFF;
1838 	} else {
1839 		maxsegmentsize = maxsegmentsize_ll;
1840 	}
1841 	dma->dp_sglinfo.si_max_cookie_size = maxsegmentsize;
1842 	dma->dp_sglinfo.si_segmask = attr->dma_attr_seg;
1843 
1844 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
1845 	if (rootnex_alloc_check_parms) {
1846 		e = rootnex_valid_alloc_parms(attr, maxsegmentsize);
1847 		if (e != DDI_SUCCESS) {
1848 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ALLOC_FAIL]);
1849 			(void) rootnex_dma_freehdl(dip, rdip,
1850 			    (ddi_dma_handle_t)hp);
1851 			return (e);
1852 		}
1853 	}
1854 
1855 	*handlep = (ddi_dma_handle_t)hp;
1856 
1857 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1858 	ROOTNEX_DPROBE1(rootnex__alloc__handle, uint64_t,
1859 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1860 
1861 	return (DDI_SUCCESS);
1862 }
1863 
1864 
1865 /*
1866  * rootnex_dma_allochdl()
1867  *    called from ddi_dma_alloc_handle().
1868  */
1869 static int
1870 rootnex_dma_allochdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
1871     int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep)
1872 {
1873 	int retval = DDI_SUCCESS;
1874 #if defined(__amd64) && !defined(__xpv)
1875 
1876 	if (IOMMU_UNITIALIZED(rdip)) {
1877 		retval = iommulib_nex_open(dip, rdip);
1878 
1879 		if (retval != DDI_SUCCESS && retval != DDI_ENOTSUP)
1880 			return (retval);
1881 	}
1882 
1883 	if (IOMMU_UNUSED(rdip)) {
1884 		retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1885 		    handlep);
1886 	} else {
1887 		retval = iommulib_nexdma_allochdl(dip, rdip, attr,
1888 		    waitfp, arg, handlep);
1889 	}
1890 #else
1891 	retval = rootnex_coredma_allochdl(dip, rdip, attr, waitfp, arg,
1892 	    handlep);
1893 #endif
1894 	switch (retval) {
1895 	case DDI_DMA_NORESOURCES:
1896 		if (waitfp != DDI_DMA_DONTWAIT) {
1897 			ddi_set_callback(waitfp, arg,
1898 			    &rootnex_state->r_dvma_call_list_id);
1899 		}
1900 		break;
1901 	case DDI_SUCCESS:
1902 		ndi_fmc_insert(rdip, DMA_HANDLE, *handlep, NULL);
1903 		break;
1904 	default:
1905 		break;
1906 	}
1907 	return (retval);
1908 }
1909 
1910 /*ARGSUSED*/
1911 static int
1912 rootnex_coredma_freehdl(dev_info_t *dip, dev_info_t *rdip,
1913     ddi_dma_handle_t handle)
1914 {
1915 	ddi_dma_impl_t *hp;
1916 	rootnex_dma_t *dma;
1917 
1918 
1919 	hp = (ddi_dma_impl_t *)handle;
1920 	dma = (rootnex_dma_t *)hp->dmai_private;
1921 
1922 	/* unbind should have been called first */
1923 	ASSERT(!dma->dp_inuse);
1924 
1925 	mutex_destroy(&dma->dp_mutex);
1926 	kmem_cache_free(rootnex_state->r_dmahdl_cache, hp);
1927 
1928 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1929 	ROOTNEX_DPROBE1(rootnex__free__handle, uint64_t,
1930 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_HDLS]);
1931 
1932 	return (DDI_SUCCESS);
1933 }
1934 
1935 /*
1936  * rootnex_dma_freehdl()
1937  *    called from ddi_dma_free_handle().
1938  */
1939 static int
1940 rootnex_dma_freehdl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle)
1941 {
1942 	int ret;
1943 
1944 	ndi_fmc_remove(rdip, DMA_HANDLE, handle);
1945 #if defined(__amd64) && !defined(__xpv)
1946 	if (IOMMU_USED(rdip))
1947 		ret = iommulib_nexdma_freehdl(dip, rdip, handle);
1948 	else
1949 #endif
1950 	ret = rootnex_coredma_freehdl(dip, rdip, handle);
1951 
1952 	if (rootnex_state->r_dvma_call_list_id)
1953 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
1954 
1955 	return (ret);
1956 }
1957 
1958 /*ARGSUSED*/
1959 static int
1960 rootnex_coredma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
1961     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
1962     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
1963 {
1964 	rootnex_sglinfo_t *sinfo;
1965 	ddi_dma_obj_t *dmao;
1966 #if defined(__amd64) && !defined(__xpv)
1967 	struct dvmaseg *dvs;
1968 	ddi_dma_cookie_t *cookie;
1969 #endif
1970 	ddi_dma_attr_t *attr;
1971 	ddi_dma_impl_t *hp;
1972 	rootnex_dma_t *dma;
1973 	int kmflag;
1974 	int e;
1975 	uint_t ncookies;
1976 
1977 	hp = (ddi_dma_impl_t *)handle;
1978 	dma = (rootnex_dma_t *)hp->dmai_private;
1979 	dmao = &dma->dp_dma;
1980 	sinfo = &dma->dp_sglinfo;
1981 	attr = &hp->dmai_attr;
1982 
1983 	/* convert the sleep flags */
1984 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
1985 		dma->dp_sleep_flags = kmflag = KM_SLEEP;
1986 	} else {
1987 		dma->dp_sleep_flags = kmflag = KM_NOSLEEP;
1988 	}
1989 
1990 	hp->dmai_rflags = dmareq->dmar_flags & DMP_DDIFLAGS;
1991 
1992 	/*
1993 	 * This is useful for debugging a driver. Not as useful in a production
1994 	 * system. The only time this will fail is if you have a driver bug.
1995 	 */
1996 	if (rootnex_bind_check_inuse) {
1997 		/*
1998 		 * No one else should ever have this lock unless someone else
1999 		 * is trying to use this handle. So contention on the lock
2000 		 * is the same as inuse being set.
2001 		 */
2002 		e = mutex_tryenter(&dma->dp_mutex);
2003 		if (e == 0) {
2004 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2005 			return (DDI_DMA_INUSE);
2006 		}
2007 		if (dma->dp_inuse) {
2008 			mutex_exit(&dma->dp_mutex);
2009 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2010 			return (DDI_DMA_INUSE);
2011 		}
2012 		dma->dp_inuse = B_TRUE;
2013 		mutex_exit(&dma->dp_mutex);
2014 	}
2015 
2016 	/* check the ddi_dma_attr arg to make sure it makes a little sense */
2017 	if (rootnex_bind_check_parms) {
2018 		e = rootnex_valid_bind_parms(dmareq, attr);
2019 		if (e != DDI_SUCCESS) {
2020 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2021 			rootnex_clean_dmahdl(hp);
2022 			return (e);
2023 		}
2024 	}
2025 
2026 	/* save away the original bind info */
2027 	dma->dp_dma = dmareq->dmar_object;
2028 
2029 #if defined(__amd64) && !defined(__xpv)
2030 	if (IOMMU_USED(rdip)) {
2031 		dmao = &dma->dp_dvma;
2032 		e = iommulib_nexdma_mapobject(dip, rdip, handle, dmareq, dmao);
2033 		switch (e) {
2034 		case DDI_SUCCESS:
2035 			if (sinfo->si_cancross ||
2036 			    dmao->dmao_obj.dvma_obj.dv_nseg != 1 ||
2037 			    dmao->dmao_size > sinfo->si_max_cookie_size) {
2038 				dma->dp_dvma_used = B_TRUE;
2039 				break;
2040 			}
2041 			sinfo->si_sgl_size = 1;
2042 			hp->dmai_rflags |= DMP_NOSYNC;
2043 
2044 			dma->dp_dvma_used = B_TRUE;
2045 			dma->dp_need_to_free_cookie = B_FALSE;
2046 
2047 			dvs = &dmao->dmao_obj.dvma_obj.dv_seg[0];
2048 			cookie = hp->dmai_cookie = dma->dp_cookies =
2049 			    (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2050 			cookie->dmac_laddress = dvs->dvs_start +
2051 			    dmao->dmao_obj.dvma_obj.dv_off;
2052 			cookie->dmac_size = dvs->dvs_len;
2053 			cookie->dmac_type = 0;
2054 
2055 			ROOTNEX_DPROBE1(rootnex__bind__dvmafast, dev_info_t *,
2056 			    rdip);
2057 			goto fast;
2058 		case DDI_ENOTSUP:
2059 			break;
2060 		default:
2061 			rootnex_clean_dmahdl(hp);
2062 			return (e);
2063 		}
2064 	}
2065 #endif
2066 
2067 	/*
2068 	 * Figure out a rough estimate of what maximum number of pages
2069 	 * this buffer could use (a high estimate of course).
2070 	 */
2071 	sinfo->si_max_pages = mmu_btopr(dma->dp_dma.dmao_size) + 1;
2072 
2073 	if (dma->dp_dvma_used) {
2074 		/*
2075 		 * The number of physical pages is the worst case.
2076 		 *
2077 		 * For DVMA, the worst case is the length divided
2078 		 * by the maximum cookie length, plus 1. Add to that
2079 		 * the number of segment boundaries potentially crossed, and
2080 		 * the additional number of DVMA segments that was returned.
2081 		 *
2082 		 * In the normal case, for modern devices, si_cancross will
2083 		 * be false, and dv_nseg will be 1, and the fast path will
2084 		 * have been taken above.
2085 		 */
2086 		ncookies = (dma->dp_dma.dmao_size / sinfo->si_max_cookie_size)
2087 		    + 1;
2088 		if (sinfo->si_cancross)
2089 			ncookies +=
2090 			    (dma->dp_dma.dmao_size / attr->dma_attr_seg) + 1;
2091 		ncookies += (dmao->dmao_obj.dvma_obj.dv_nseg - 1);
2092 
2093 		sinfo->si_max_pages = MIN(sinfo->si_max_pages, ncookies);
2094 	}
2095 
2096 	/*
2097 	 * We'll use the pre-allocated cookies for any bind that will *always*
2098 	 * fit (more important to be consistent, we don't want to create
2099 	 * additional degenerate cases).
2100 	 */
2101 	if (sinfo->si_max_pages <= rootnex_state->r_prealloc_cookies) {
2102 		dma->dp_cookies = (ddi_dma_cookie_t *)dma->dp_prealloc_buffer;
2103 		dma->dp_need_to_free_cookie = B_FALSE;
2104 		ROOTNEX_DPROBE2(rootnex__bind__prealloc, dev_info_t *, rdip,
2105 		    uint_t, sinfo->si_max_pages);
2106 
2107 	/*
2108 	 * For anything larger than that, we'll go ahead and allocate the
2109 	 * maximum number of pages we expect to see. Hopefuly, we won't be
2110 	 * seeing this path in the fast path for high performance devices very
2111 	 * frequently.
2112 	 *
2113 	 * a ddi bind interface that allowed the driver to provide storage to
2114 	 * the bind interface would speed this case up.
2115 	 */
2116 	} else {
2117 		/*
2118 		 * Save away how much memory we allocated. If we're doing a
2119 		 * nosleep, the alloc could fail...
2120 		 */
2121 		dma->dp_cookie_size = sinfo->si_max_pages *
2122 		    sizeof (ddi_dma_cookie_t);
2123 		dma->dp_cookies = kmem_alloc(dma->dp_cookie_size, kmflag);
2124 		if (dma->dp_cookies == NULL) {
2125 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2126 			rootnex_clean_dmahdl(hp);
2127 			return (DDI_DMA_NORESOURCES);
2128 		}
2129 		dma->dp_need_to_free_cookie = B_TRUE;
2130 		ROOTNEX_DPROBE2(rootnex__bind__alloc, dev_info_t *, rdip,
2131 		    uint_t, sinfo->si_max_pages);
2132 	}
2133 	hp->dmai_cookie = dma->dp_cookies;
2134 
2135 	/*
2136 	 * Get the real sgl. rootnex_get_sgl will fill in cookie array while
2137 	 * looking at the constraints in the dma structure. It will then put
2138 	 * some additional state about the sgl in the dma struct (i.e. is
2139 	 * the sgl clean, or do we need to do some munging; how many pages
2140 	 * need to be copied, etc.)
2141 	 */
2142 	if (dma->dp_dvma_used)
2143 		rootnex_dvma_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2144 	else
2145 		rootnex_get_sgl(dmao, dma->dp_cookies, &dma->dp_sglinfo);
2146 
2147 out:
2148 	ASSERT(sinfo->si_sgl_size <= sinfo->si_max_pages);
2149 	/* if we don't need a copy buffer, we don't need to sync */
2150 	if (sinfo->si_copybuf_req == 0) {
2151 		hp->dmai_rflags |= DMP_NOSYNC;
2152 	}
2153 
2154 	/*
2155 	 * if we don't need the copybuf and we don't need to do a partial,  we
2156 	 * hit the fast path. All the high performance devices should be trying
2157 	 * to hit this path. To hit this path, a device should be able to reach
2158 	 * all of memory, shouldn't try to bind more than it can transfer, and
2159 	 * the buffer shouldn't require more cookies than the driver/device can
2160 	 * handle [sgllen]).
2161 	 *
2162 	 * Note that negative values of dma_attr_sgllen are supposed
2163 	 * to mean unlimited, but we just cast them to mean a
2164 	 * "ridiculous large limit".  This saves some extra checks on
2165 	 * hot paths.
2166 	 */
2167 	if ((sinfo->si_copybuf_req == 0) &&
2168 	    (sinfo->si_sgl_size <= (unsigned)attr->dma_attr_sgllen) &&
2169 	    (dmao->dmao_size < dma->dp_maxxfer)) {
2170 fast:
2171 		/*
2172 		 * If the driver supports FMA, insert the handle in the FMA DMA
2173 		 * handle cache.
2174 		 */
2175 		if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2176 			hp->dmai_error.err_cf = rootnex_dma_check;
2177 
2178 		/*
2179 		 * copy out the first cookie and ccountp, set the cookie
2180 		 * pointer to the second cookie. The first cookie is passed
2181 		 * back on the stack. Additional cookies are accessed via
2182 		 * ddi_dma_nextcookie()
2183 		 */
2184 		*cookiep = dma->dp_cookies[0];
2185 		*ccountp = sinfo->si_sgl_size;
2186 		hp->dmai_cookie++;
2187 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2188 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2189 		ROOTNEX_DPROBE4(rootnex__bind__fast, dev_info_t *, rdip,
2190 		    uint64_t, rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS],
2191 		    uint_t, dmao->dmao_size, uint_t, *ccountp);
2192 
2193 
2194 		return (DDI_DMA_MAPPED);
2195 	}
2196 
2197 	/*
2198 	 * go to the slow path, we may need to alloc more memory, create
2199 	 * multiple windows, and munge up a sgl to make the device happy.
2200 	 */
2201 
2202 	/*
2203 	 * With the IOMMU mapobject method used, we should never hit
2204 	 * the slow path. If we do, something is seriously wrong.
2205 	 * Clean up and return an error.
2206 	 */
2207 
2208 #if defined(__amd64) && !defined(__xpv)
2209 
2210 	if (dma->dp_dvma_used) {
2211 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2212 		    &dma->dp_dvma);
2213 		e = DDI_DMA_NOMAPPING;
2214 	} else {
2215 #endif
2216 		e = rootnex_bind_slowpath(hp, dmareq, dma, attr, &dma->dp_dma,
2217 		    kmflag);
2218 #if defined(__amd64) && !defined(__xpv)
2219 	}
2220 #endif
2221 	if ((e != DDI_DMA_MAPPED) && (e != DDI_DMA_PARTIAL_MAP)) {
2222 		if (dma->dp_need_to_free_cookie) {
2223 			kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2224 		}
2225 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_BIND_FAIL]);
2226 		rootnex_clean_dmahdl(hp); /* must be after free cookie */
2227 		return (e);
2228 	}
2229 
2230 	/*
2231 	 * If the driver supports FMA, insert the handle in the FMA DMA handle
2232 	 * cache.
2233 	 */
2234 	if (attr->dma_attr_flags & DDI_DMA_FLAGERR)
2235 		hp->dmai_error.err_cf = rootnex_dma_check;
2236 
2237 	/* if the first window uses the copy buffer, sync it for the device */
2238 	if ((dma->dp_window[dma->dp_current_win].wd_dosync) &&
2239 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
2240 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2241 		    DDI_DMA_SYNC_FORDEV);
2242 	}
2243 
2244 	/*
2245 	 * copy out the first cookie and ccountp, set the cookie pointer to the
2246 	 * second cookie. Make sure the partial flag is set/cleared correctly.
2247 	 * If we have a partial map (i.e. multiple windows), the number of
2248 	 * cookies we return is the number of cookies in the first window.
2249 	 */
2250 	if (e == DDI_DMA_MAPPED) {
2251 		hp->dmai_rflags &= ~DDI_DMA_PARTIAL;
2252 		*ccountp = sinfo->si_sgl_size;
2253 		hp->dmai_nwin = 1;
2254 	} else {
2255 		hp->dmai_rflags |= DDI_DMA_PARTIAL;
2256 		*ccountp = dma->dp_window[dma->dp_current_win].wd_cookie_cnt;
2257 		ASSERT(hp->dmai_nwin <= dma->dp_max_win);
2258 	}
2259 	*cookiep = dma->dp_cookies[0];
2260 	hp->dmai_cookie++;
2261 
2262 	ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2263 	ROOTNEX_DPROBE4(rootnex__bind__slow, dev_info_t *, rdip, uint64_t,
2264 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS], uint_t,
2265 	    dmao->dmao_size, uint_t, *ccountp);
2266 	return (e);
2267 }
2268 
2269 /*
2270  * rootnex_dma_bindhdl()
2271  *    called from ddi_dma_addr_bind_handle() and ddi_dma_buf_bind_handle().
2272  */
2273 static int
2274 rootnex_dma_bindhdl(dev_info_t *dip, dev_info_t *rdip,
2275     ddi_dma_handle_t handle, struct ddi_dma_req *dmareq,
2276     ddi_dma_cookie_t *cookiep, uint_t *ccountp)
2277 {
2278 	int ret;
2279 #if defined(__amd64) && !defined(__xpv)
2280 	if (IOMMU_USED(rdip))
2281 		ret = iommulib_nexdma_bindhdl(dip, rdip, handle, dmareq,
2282 		    cookiep, ccountp);
2283 	else
2284 #endif
2285 	ret = rootnex_coredma_bindhdl(dip, rdip, handle, dmareq,
2286 	    cookiep, ccountp);
2287 
2288 	if (ret == DDI_DMA_NORESOURCES && dmareq->dmar_fp != DDI_DMA_DONTWAIT) {
2289 		ddi_set_callback(dmareq->dmar_fp, dmareq->dmar_arg,
2290 		    &rootnex_state->r_dvma_call_list_id);
2291 	}
2292 
2293 	return (ret);
2294 }
2295 
2296 
2297 
2298 /*ARGSUSED*/
2299 static int
2300 rootnex_coredma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2301     ddi_dma_handle_t handle)
2302 {
2303 	ddi_dma_impl_t *hp;
2304 	rootnex_dma_t *dma;
2305 	int e;
2306 
2307 	hp = (ddi_dma_impl_t *)handle;
2308 	dma = (rootnex_dma_t *)hp->dmai_private;
2309 
2310 	/* make sure the buffer wasn't free'd before calling unbind */
2311 	if (rootnex_unbind_verify_buffer) {
2312 		e = rootnex_verify_buffer(dma);
2313 		if (e != DDI_SUCCESS) {
2314 			ASSERT(0);
2315 			return (DDI_FAILURE);
2316 		}
2317 	}
2318 
2319 	/* sync the current window before unbinding the buffer */
2320 	if (dma->dp_window && dma->dp_window[dma->dp_current_win].wd_dosync &&
2321 	    (hp->dmai_rflags & DDI_DMA_READ)) {
2322 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
2323 		    DDI_DMA_SYNC_FORCPU);
2324 	}
2325 
2326 	/*
2327 	 * cleanup and copy buffer or window state. if we didn't use the copy
2328 	 * buffer or windows, there won't be much to do :-)
2329 	 */
2330 	rootnex_teardown_copybuf(dma);
2331 	rootnex_teardown_windows(dma);
2332 
2333 #if defined(__amd64) && !defined(__xpv)
2334 	if (IOMMU_USED(rdip))
2335 		(void) iommulib_nexdma_unmapobject(dip, rdip, handle,
2336 		    &dma->dp_dvma);
2337 #endif
2338 
2339 	/*
2340 	 * If we had to allocate space to for the worse case sgl (it didn't
2341 	 * fit into our pre-allocate buffer), free that up now
2342 	 */
2343 	if (dma->dp_need_to_free_cookie) {
2344 		kmem_free(dma->dp_cookies, dma->dp_cookie_size);
2345 	}
2346 
2347 	/*
2348 	 * clean up the handle so it's ready for the next bind (i.e. if the
2349 	 * handle is reused).
2350 	 */
2351 	rootnex_clean_dmahdl(hp);
2352 	hp->dmai_error.err_cf = NULL;
2353 
2354 	ROOTNEX_DPROF_DEC(&rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2355 	ROOTNEX_DPROBE1(rootnex__unbind, uint64_t,
2356 	    rootnex_cnt[ROOTNEX_CNT_ACTIVE_BINDS]);
2357 
2358 	return (DDI_SUCCESS);
2359 }
2360 
2361 /*
2362  * rootnex_dma_unbindhdl()
2363  *    called from ddi_dma_unbind_handle()
2364  */
2365 /*ARGSUSED*/
2366 static int
2367 rootnex_dma_unbindhdl(dev_info_t *dip, dev_info_t *rdip,
2368     ddi_dma_handle_t handle)
2369 {
2370 	int ret;
2371 
2372 #if defined(__amd64) && !defined(__xpv)
2373 	if (IOMMU_USED(rdip))
2374 		ret = iommulib_nexdma_unbindhdl(dip, rdip, handle);
2375 	else
2376 #endif
2377 	ret = rootnex_coredma_unbindhdl(dip, rdip, handle);
2378 
2379 	if (rootnex_state->r_dvma_call_list_id)
2380 		ddi_run_callback(&rootnex_state->r_dvma_call_list_id);
2381 
2382 	return (ret);
2383 }
2384 
2385 #if defined(__amd64) && !defined(__xpv)
2386 
2387 static int
2388 rootnex_coredma_get_sleep_flags(ddi_dma_handle_t handle)
2389 {
2390 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2391 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2392 
2393 	if (dma->dp_sleep_flags != KM_SLEEP &&
2394 	    dma->dp_sleep_flags != KM_NOSLEEP)
2395 		cmn_err(CE_PANIC, "kmem sleep flags not set in DMA handle");
2396 	return (dma->dp_sleep_flags);
2397 }
2398 /*ARGSUSED*/
2399 static void
2400 rootnex_coredma_reset_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2401 {
2402 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2403 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2404 	rootnex_window_t *window;
2405 
2406 	if (dma->dp_window) {
2407 		window = &dma->dp_window[dma->dp_current_win];
2408 		hp->dmai_cookie = window->wd_first_cookie;
2409 	} else {
2410 		hp->dmai_cookie = dma->dp_cookies;
2411 	}
2412 	hp->dmai_cookie++;
2413 }
2414 
2415 /*ARGSUSED*/
2416 static int
2417 rootnex_coredma_get_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2418     ddi_dma_cookie_t **cookiepp, uint_t *ccountp)
2419 {
2420 	int i;
2421 	int km_flags;
2422 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2423 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2424 	rootnex_window_t *window;
2425 	ddi_dma_cookie_t *cp;
2426 	ddi_dma_cookie_t *cookie;
2427 
2428 	ASSERT(*cookiepp == NULL);
2429 	ASSERT(*ccountp == 0);
2430 
2431 	if (dma->dp_window) {
2432 		window = &dma->dp_window[dma->dp_current_win];
2433 		cp = window->wd_first_cookie;
2434 		*ccountp = window->wd_cookie_cnt;
2435 	} else {
2436 		cp = dma->dp_cookies;
2437 		*ccountp = dma->dp_sglinfo.si_sgl_size;
2438 	}
2439 
2440 	km_flags = rootnex_coredma_get_sleep_flags(handle);
2441 	cookie = kmem_zalloc(sizeof (ddi_dma_cookie_t) * (*ccountp), km_flags);
2442 	if (cookie == NULL) {
2443 		return (DDI_DMA_NORESOURCES);
2444 	}
2445 
2446 	for (i = 0; i < *ccountp; i++) {
2447 		cookie[i].dmac_notused = cp[i].dmac_notused;
2448 		cookie[i].dmac_type = cp[i].dmac_type;
2449 		cookie[i].dmac_address = cp[i].dmac_address;
2450 		cookie[i].dmac_size = cp[i].dmac_size;
2451 	}
2452 
2453 	*cookiepp = cookie;
2454 
2455 	return (DDI_SUCCESS);
2456 }
2457 
2458 /*ARGSUSED*/
2459 static int
2460 rootnex_coredma_set_cookies(dev_info_t *dip, ddi_dma_handle_t handle,
2461     ddi_dma_cookie_t *cookiep, uint_t ccount)
2462 {
2463 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2464 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2465 	rootnex_window_t *window;
2466 	ddi_dma_cookie_t *cur_cookiep;
2467 
2468 	ASSERT(cookiep);
2469 	ASSERT(ccount != 0);
2470 	ASSERT(dma->dp_need_to_switch_cookies == B_FALSE);
2471 
2472 	if (dma->dp_window) {
2473 		window = &dma->dp_window[dma->dp_current_win];
2474 		dma->dp_saved_cookies = window->wd_first_cookie;
2475 		window->wd_first_cookie = cookiep;
2476 		ASSERT(ccount == window->wd_cookie_cnt);
2477 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2478 		    + window->wd_first_cookie;
2479 	} else {
2480 		dma->dp_saved_cookies = dma->dp_cookies;
2481 		dma->dp_cookies = cookiep;
2482 		ASSERT(ccount == dma->dp_sglinfo.si_sgl_size);
2483 		cur_cookiep = (hp->dmai_cookie - dma->dp_saved_cookies)
2484 		    + dma->dp_cookies;
2485 	}
2486 
2487 	dma->dp_need_to_switch_cookies = B_TRUE;
2488 	hp->dmai_cookie = cur_cookiep;
2489 
2490 	return (DDI_SUCCESS);
2491 }
2492 
2493 /*ARGSUSED*/
2494 static int
2495 rootnex_coredma_clear_cookies(dev_info_t *dip, ddi_dma_handle_t handle)
2496 {
2497 	ddi_dma_impl_t *hp = (ddi_dma_impl_t *)handle;
2498 	rootnex_dma_t *dma = (rootnex_dma_t *)hp->dmai_private;
2499 	rootnex_window_t *window;
2500 	ddi_dma_cookie_t *cur_cookiep;
2501 	ddi_dma_cookie_t *cookie_array;
2502 	uint_t ccount;
2503 
2504 	/* check if cookies have not been switched */
2505 	if (dma->dp_need_to_switch_cookies == B_FALSE)
2506 		return (DDI_SUCCESS);
2507 
2508 	ASSERT(dma->dp_saved_cookies);
2509 
2510 	if (dma->dp_window) {
2511 		window = &dma->dp_window[dma->dp_current_win];
2512 		cookie_array = window->wd_first_cookie;
2513 		window->wd_first_cookie = dma->dp_saved_cookies;
2514 		dma->dp_saved_cookies = NULL;
2515 		ccount = window->wd_cookie_cnt;
2516 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2517 		    + window->wd_first_cookie;
2518 	} else {
2519 		cookie_array = dma->dp_cookies;
2520 		dma->dp_cookies = dma->dp_saved_cookies;
2521 		dma->dp_saved_cookies = NULL;
2522 		ccount = dma->dp_sglinfo.si_sgl_size;
2523 		cur_cookiep = (hp->dmai_cookie - cookie_array)
2524 		    + dma->dp_cookies;
2525 	}
2526 
2527 	kmem_free(cookie_array, sizeof (ddi_dma_cookie_t) * ccount);
2528 
2529 	hp->dmai_cookie = cur_cookiep;
2530 
2531 	dma->dp_need_to_switch_cookies = B_FALSE;
2532 
2533 	return (DDI_SUCCESS);
2534 }
2535 
2536 #endif
2537 
2538 static struct as *
2539 rootnex_get_as(ddi_dma_obj_t *dmao)
2540 {
2541 	struct as *asp;
2542 
2543 	switch (dmao->dmao_type) {
2544 	case DMA_OTYP_VADDR:
2545 	case DMA_OTYP_BUFVADDR:
2546 		asp = dmao->dmao_obj.virt_obj.v_as;
2547 		if (asp == NULL)
2548 			asp = &kas;
2549 		break;
2550 	default:
2551 		asp = NULL;
2552 		break;
2553 	}
2554 	return (asp);
2555 }
2556 
2557 /*
2558  * rootnex_verify_buffer()
2559  *   verify buffer wasn't free'd
2560  */
2561 static int
2562 rootnex_verify_buffer(rootnex_dma_t *dma)
2563 {
2564 	page_t **pplist;
2565 	caddr_t vaddr;
2566 	uint_t pcnt;
2567 	uint_t poff;
2568 	page_t *pp;
2569 	char b;
2570 	int i;
2571 
2572 	/* Figure out how many pages this buffer occupies */
2573 	if (dma->dp_dma.dmao_type == DMA_OTYP_PAGES) {
2574 		poff = dma->dp_dma.dmao_obj.pp_obj.pp_offset & MMU_PAGEOFFSET;
2575 	} else {
2576 		vaddr = dma->dp_dma.dmao_obj.virt_obj.v_addr;
2577 		poff = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2578 	}
2579 	pcnt = mmu_btopr(dma->dp_dma.dmao_size + poff);
2580 
2581 	switch (dma->dp_dma.dmao_type) {
2582 	case DMA_OTYP_PAGES:
2583 		/*
2584 		 * for a linked list of pp's walk through them to make sure
2585 		 * they're locked and not free.
2586 		 */
2587 		pp = dma->dp_dma.dmao_obj.pp_obj.pp_pp;
2588 		for (i = 0; i < pcnt; i++) {
2589 			if (PP_ISFREE(pp) || !PAGE_LOCKED(pp)) {
2590 				return (DDI_FAILURE);
2591 			}
2592 			pp = pp->p_next;
2593 		}
2594 		break;
2595 
2596 	case DMA_OTYP_VADDR:
2597 	case DMA_OTYP_BUFVADDR:
2598 		pplist = dma->dp_dma.dmao_obj.virt_obj.v_priv;
2599 		/*
2600 		 * for an array of pp's walk through them to make sure they're
2601 		 * not free. It's possible that they may not be locked.
2602 		 */
2603 		if (pplist) {
2604 			for (i = 0; i < pcnt; i++) {
2605 				if (PP_ISFREE(pplist[i])) {
2606 					return (DDI_FAILURE);
2607 				}
2608 			}
2609 
2610 		/* For a virtual address, try to peek at each page */
2611 		} else {
2612 			if (rootnex_get_as(&dma->dp_dma) == &kas) {
2613 				for (i = 0; i < pcnt; i++) {
2614 					if (ddi_peek8(NULL, vaddr, &b) ==
2615 					    DDI_FAILURE)
2616 						return (DDI_FAILURE);
2617 					vaddr += MMU_PAGESIZE;
2618 				}
2619 			}
2620 		}
2621 		break;
2622 
2623 	default:
2624 		cmn_err(CE_PANIC, "rootnex_verify_buffer: bad DMA object");
2625 		break;
2626 	}
2627 
2628 	return (DDI_SUCCESS);
2629 }
2630 
2631 
2632 /*
2633  * rootnex_clean_dmahdl()
2634  *    Clean the dma handle. This should be called on a handle alloc and an
2635  *    unbind handle. Set the handle state to the default settings.
2636  */
2637 static void
2638 rootnex_clean_dmahdl(ddi_dma_impl_t *hp)
2639 {
2640 	rootnex_dma_t *dma;
2641 
2642 
2643 	dma = (rootnex_dma_t *)hp->dmai_private;
2644 
2645 	hp->dmai_nwin = 0;
2646 	dma->dp_current_cookie = 0;
2647 	dma->dp_copybuf_size = 0;
2648 	dma->dp_window = NULL;
2649 	dma->dp_cbaddr = NULL;
2650 	dma->dp_inuse = B_FALSE;
2651 	dma->dp_dvma_used = B_FALSE;
2652 	dma->dp_need_to_free_cookie = B_FALSE;
2653 	dma->dp_need_to_switch_cookies = B_FALSE;
2654 	dma->dp_saved_cookies = NULL;
2655 	dma->dp_sleep_flags = KM_PANIC;
2656 	dma->dp_need_to_free_window = B_FALSE;
2657 	dma->dp_partial_required = B_FALSE;
2658 	dma->dp_trim_required = B_FALSE;
2659 	dma->dp_sglinfo.si_copybuf_req = 0;
2660 #if !defined(__amd64)
2661 	dma->dp_cb_remaping = B_FALSE;
2662 	dma->dp_kva = NULL;
2663 #endif
2664 
2665 	/* FMA related initialization */
2666 	hp->dmai_fault = 0;
2667 	hp->dmai_fault_check = NULL;
2668 	hp->dmai_fault_notify = NULL;
2669 	hp->dmai_error.err_ena = 0;
2670 	hp->dmai_error.err_status = DDI_FM_OK;
2671 	hp->dmai_error.err_expected = DDI_FM_ERR_UNEXPECTED;
2672 	hp->dmai_error.err_ontrap = NULL;
2673 }
2674 
2675 
2676 /*
2677  * rootnex_valid_alloc_parms()
2678  *    Called in ddi_dma_alloc_handle path to validate its parameters.
2679  */
2680 static int
2681 rootnex_valid_alloc_parms(ddi_dma_attr_t *attr, uint_t maxsegmentsize)
2682 {
2683 	if ((attr->dma_attr_seg < MMU_PAGEOFFSET) ||
2684 	    (attr->dma_attr_count_max < MMU_PAGEOFFSET) ||
2685 	    (attr->dma_attr_granular > MMU_PAGESIZE) ||
2686 	    (attr->dma_attr_maxxfer < MMU_PAGESIZE)) {
2687 		return (DDI_DMA_BADATTR);
2688 	}
2689 
2690 	if (attr->dma_attr_addr_hi <= attr->dma_attr_addr_lo) {
2691 		return (DDI_DMA_BADATTR);
2692 	}
2693 
2694 	if ((attr->dma_attr_seg & MMU_PAGEOFFSET) != MMU_PAGEOFFSET ||
2695 	    MMU_PAGESIZE & (attr->dma_attr_granular - 1) ||
2696 	    attr->dma_attr_sgllen == 0) {
2697 		return (DDI_DMA_BADATTR);
2698 	}
2699 
2700 	/* We should be able to DMA into every byte offset in a page */
2701 	if (maxsegmentsize < MMU_PAGESIZE) {
2702 		return (DDI_DMA_BADATTR);
2703 	}
2704 
2705 	/* if we're bouncing on seg, seg must be <= addr_hi */
2706 	if ((attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG) &&
2707 	    (attr->dma_attr_seg > attr->dma_attr_addr_hi)) {
2708 		return (DDI_DMA_BADATTR);
2709 	}
2710 	return (DDI_SUCCESS);
2711 }
2712 
2713 /*
2714  * rootnex_valid_bind_parms()
2715  *    Called in ddi_dma_*_bind_handle path to validate its parameters.
2716  */
2717 /* ARGSUSED */
2718 static int
2719 rootnex_valid_bind_parms(ddi_dma_req_t *dmareq, ddi_dma_attr_t *attr)
2720 {
2721 #if !defined(__amd64)
2722 	/*
2723 	 * we only support up to a 2G-1 transfer size on 32-bit kernels so
2724 	 * we can track the offset for the obsoleted interfaces.
2725 	 */
2726 	if (dmareq->dmar_object.dmao_size > 0x7FFFFFFF) {
2727 		return (DDI_DMA_TOOBIG);
2728 	}
2729 #endif
2730 
2731 	return (DDI_SUCCESS);
2732 }
2733 
2734 
2735 /*
2736  * rootnex_need_bounce_seg()
2737  *    check to see if the buffer lives on both side of the seg.
2738  */
2739 static boolean_t
2740 rootnex_need_bounce_seg(ddi_dma_obj_t *dmar_object, rootnex_sglinfo_t *sglinfo)
2741 {
2742 	ddi_dma_atyp_t buftype;
2743 	rootnex_addr_t raddr;
2744 	boolean_t lower_addr;
2745 	boolean_t upper_addr;
2746 	uint64_t offset;
2747 	page_t **pplist;
2748 	uint64_t paddr;
2749 	uint32_t psize;
2750 	uint32_t size;
2751 	caddr_t vaddr;
2752 	uint_t pcnt;
2753 	page_t *pp;
2754 
2755 
2756 	/* shortcuts */
2757 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2758 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2759 	buftype = dmar_object->dmao_type;
2760 	size = dmar_object->dmao_size;
2761 
2762 	lower_addr = B_FALSE;
2763 	upper_addr = B_FALSE;
2764 	pcnt = 0;
2765 
2766 	/*
2767 	 * Process the first page to handle the initial offset of the buffer.
2768 	 * We'll use the base address we get later when we loop through all
2769 	 * the pages.
2770 	 */
2771 	if (buftype == DMA_OTYP_PAGES) {
2772 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2773 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2774 		    MMU_PAGEOFFSET;
2775 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2776 		psize = MIN(size, (MMU_PAGESIZE - offset));
2777 		pp = pp->p_next;
2778 		sglinfo->si_asp = NULL;
2779 	} else if (pplist != NULL) {
2780 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2781 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2782 		if (sglinfo->si_asp == NULL) {
2783 			sglinfo->si_asp = &kas;
2784 		}
2785 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2786 		paddr += offset;
2787 		psize = MIN(size, (MMU_PAGESIZE - offset));
2788 		pcnt++;
2789 	} else {
2790 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2791 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2792 		if (sglinfo->si_asp == NULL) {
2793 			sglinfo->si_asp = &kas;
2794 		}
2795 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2796 		paddr += offset;
2797 		psize = MIN(size, (MMU_PAGESIZE - offset));
2798 		vaddr += psize;
2799 	}
2800 
2801 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2802 
2803 	if ((raddr + psize) > sglinfo->si_segmask) {
2804 		upper_addr = B_TRUE;
2805 	} else {
2806 		lower_addr = B_TRUE;
2807 	}
2808 	size -= psize;
2809 
2810 	/*
2811 	 * Walk through the rest of the pages in the buffer. Track to see
2812 	 * if we have pages on both sides of the segment boundary.
2813 	 */
2814 	while (size > 0) {
2815 		/* partial or full page */
2816 		psize = MIN(size, MMU_PAGESIZE);
2817 
2818 		if (buftype == DMA_OTYP_PAGES) {
2819 			/* get the paddr from the page_t */
2820 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2821 			paddr = pfn_to_pa(pp->p_pagenum);
2822 			pp = pp->p_next;
2823 		} else if (pplist != NULL) {
2824 			/* index into the array of page_t's to get the paddr */
2825 			ASSERT(!PP_ISFREE(pplist[pcnt]));
2826 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2827 			pcnt++;
2828 		} else {
2829 			/* call into the VM to get the paddr */
2830 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
2831 			    vaddr));
2832 			vaddr += psize;
2833 		}
2834 
2835 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2836 
2837 		if ((raddr + psize) > sglinfo->si_segmask) {
2838 			upper_addr = B_TRUE;
2839 		} else {
2840 			lower_addr = B_TRUE;
2841 		}
2842 		/*
2843 		 * if the buffer lives both above and below the segment
2844 		 * boundary, or the current page is the page immediately
2845 		 * after the segment, we will use a copy/bounce buffer for
2846 		 * all pages > seg.
2847 		 */
2848 		if ((lower_addr && upper_addr) ||
2849 		    (raddr == (sglinfo->si_segmask + 1))) {
2850 			return (B_TRUE);
2851 		}
2852 
2853 		size -= psize;
2854 	}
2855 
2856 	return (B_FALSE);
2857 }
2858 
2859 /*
2860  * rootnex_get_sgl()
2861  *    Called in bind fastpath to get the sgl. Most of this will be replaced
2862  *    with a call to the vm layer when vm2.0 comes around...
2863  */
2864 static void
2865 rootnex_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
2866     rootnex_sglinfo_t *sglinfo)
2867 {
2868 	ddi_dma_atyp_t buftype;
2869 	rootnex_addr_t raddr;
2870 	uint64_t last_page;
2871 	uint64_t offset;
2872 	uint64_t addrhi;
2873 	uint64_t addrlo;
2874 	uint64_t maxseg;
2875 	page_t **pplist;
2876 	uint64_t paddr;
2877 	uint32_t psize;
2878 	uint32_t size;
2879 	caddr_t vaddr;
2880 	uint_t pcnt;
2881 	page_t *pp;
2882 	uint_t cnt;
2883 
2884 
2885 	/* shortcuts */
2886 	pplist = dmar_object->dmao_obj.virt_obj.v_priv;
2887 	vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2888 	maxseg = sglinfo->si_max_cookie_size;
2889 	buftype = dmar_object->dmao_type;
2890 	addrhi = sglinfo->si_max_addr;
2891 	addrlo = sglinfo->si_min_addr;
2892 	size = dmar_object->dmao_size;
2893 
2894 	pcnt = 0;
2895 	cnt = 0;
2896 
2897 
2898 	/*
2899 	 * check to see if we need to use the copy buffer for pages over
2900 	 * the segment attr.
2901 	 */
2902 	sglinfo->si_bounce_on_seg = B_FALSE;
2903 	if (sglinfo->si_flags & _DDI_DMA_BOUNCE_ON_SEG) {
2904 		sglinfo->si_bounce_on_seg = rootnex_need_bounce_seg(
2905 		    dmar_object, sglinfo);
2906 	}
2907 
2908 	/*
2909 	 * if we were passed down a linked list of pages, i.e. pointer to
2910 	 * page_t, use this to get our physical address and buf offset.
2911 	 */
2912 	if (buftype == DMA_OTYP_PAGES) {
2913 		pp = dmar_object->dmao_obj.pp_obj.pp_pp;
2914 		ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
2915 		offset =  dmar_object->dmao_obj.pp_obj.pp_offset &
2916 		    MMU_PAGEOFFSET;
2917 		paddr = pfn_to_pa(pp->p_pagenum) + offset;
2918 		psize = MIN(size, (MMU_PAGESIZE - offset));
2919 		pp = pp->p_next;
2920 		sglinfo->si_asp = NULL;
2921 
2922 	/*
2923 	 * We weren't passed down a linked list of pages, but if we were passed
2924 	 * down an array of pages, use this to get our physical address and buf
2925 	 * offset.
2926 	 */
2927 	} else if (pplist != NULL) {
2928 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2929 		    (buftype == DMA_OTYP_BUFVADDR));
2930 
2931 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2932 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2933 		if (sglinfo->si_asp == NULL) {
2934 			sglinfo->si_asp = &kas;
2935 		}
2936 
2937 		ASSERT(!PP_ISFREE(pplist[pcnt]));
2938 		paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
2939 		paddr += offset;
2940 		psize = MIN(size, (MMU_PAGESIZE - offset));
2941 		pcnt++;
2942 
2943 	/*
2944 	 * All we have is a virtual address, we'll need to call into the VM
2945 	 * to get the physical address.
2946 	 */
2947 	} else {
2948 		ASSERT((buftype == DMA_OTYP_VADDR) ||
2949 		    (buftype == DMA_OTYP_BUFVADDR));
2950 
2951 		offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2952 		sglinfo->si_asp = dmar_object->dmao_obj.virt_obj.v_as;
2953 		if (sglinfo->si_asp == NULL) {
2954 			sglinfo->si_asp = &kas;
2955 		}
2956 
2957 		paddr = pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat, vaddr));
2958 		paddr += offset;
2959 		psize = MIN(size, (MMU_PAGESIZE - offset));
2960 		vaddr += psize;
2961 	}
2962 
2963 	raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
2964 
2965 	/*
2966 	 * Setup the first cookie with the physical address of the page and the
2967 	 * size of the page (which takes into account the initial offset into
2968 	 * the page.
2969 	 */
2970 	sgl[cnt].dmac_laddress = raddr;
2971 	sgl[cnt].dmac_size = psize;
2972 	sgl[cnt].dmac_type = 0;
2973 
2974 	/*
2975 	 * Save away the buffer offset into the page. We'll need this later in
2976 	 * the copy buffer code to help figure out the page index within the
2977 	 * buffer and the offset into the current page.
2978 	 */
2979 	sglinfo->si_buf_offset = offset;
2980 
2981 	/*
2982 	 * If we are using the copy buffer for anything over the segment
2983 	 * boundary, and this page is over the segment boundary.
2984 	 *   OR
2985 	 * if the DMA engine can't reach the physical address.
2986 	 */
2987 	if (((sglinfo->si_bounce_on_seg) &&
2988 	    ((raddr + psize) > sglinfo->si_segmask)) ||
2989 	    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
2990 		/*
2991 		 * Increase how much copy buffer we use. We always increase by
2992 		 * pagesize so we don't have to worry about converting offsets.
2993 		 * Set a flag in the cookies dmac_type to indicate that it uses
2994 		 * the copy buffer. If this isn't the last cookie, go to the
2995 		 * next cookie (since we separate each page which uses the copy
2996 		 * buffer in case the copy buffer is not physically contiguous.
2997 		 */
2998 		sglinfo->si_copybuf_req += MMU_PAGESIZE;
2999 		sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3000 		if ((cnt + 1) < sglinfo->si_max_pages) {
3001 			cnt++;
3002 			sgl[cnt].dmac_laddress = 0;
3003 			sgl[cnt].dmac_size = 0;
3004 			sgl[cnt].dmac_type = 0;
3005 		}
3006 	}
3007 
3008 	/*
3009 	 * save this page's physical address so we can figure out if the next
3010 	 * page is physically contiguous. Keep decrementing size until we are
3011 	 * done with the buffer.
3012 	 */
3013 	last_page = raddr & MMU_PAGEMASK;
3014 	size -= psize;
3015 
3016 	while (size > 0) {
3017 		/* Get the size for this page (i.e. partial or full page) */
3018 		psize = MIN(size, MMU_PAGESIZE);
3019 
3020 		if (buftype == DMA_OTYP_PAGES) {
3021 			/* get the paddr from the page_t */
3022 			ASSERT(!PP_ISFREE(pp) && PAGE_LOCKED(pp));
3023 			paddr = pfn_to_pa(pp->p_pagenum);
3024 			pp = pp->p_next;
3025 		} else if (pplist != NULL) {
3026 			/* index into the array of page_t's to get the paddr */
3027 			ASSERT(!PP_ISFREE(pplist[pcnt]));
3028 			paddr = pfn_to_pa(pplist[pcnt]->p_pagenum);
3029 			pcnt++;
3030 		} else {
3031 			/* call into the VM to get the paddr */
3032 			paddr =  pfn_to_pa(hat_getpfnum(sglinfo->si_asp->a_hat,
3033 			    vaddr));
3034 			vaddr += psize;
3035 		}
3036 
3037 		raddr = ROOTNEX_PADDR_TO_RBASE(paddr);
3038 
3039 		/*
3040 		 * If we are using the copy buffer for anything over the
3041 		 * segment boundary, and this page is over the segment
3042 		 * boundary.
3043 		 *   OR
3044 		 * if the DMA engine can't reach the physical address.
3045 		 */
3046 		if (((sglinfo->si_bounce_on_seg) &&
3047 		    ((raddr + psize) > sglinfo->si_segmask)) ||
3048 		    ((raddr < addrlo) || ((raddr + psize) > addrhi))) {
3049 
3050 			sglinfo->si_copybuf_req += MMU_PAGESIZE;
3051 
3052 			/*
3053 			 * if there is something in the current cookie, go to
3054 			 * the next one. We only want one page in a cookie which
3055 			 * uses the copybuf since the copybuf doesn't have to
3056 			 * be physically contiguous.
3057 			 */
3058 			if (sgl[cnt].dmac_size != 0) {
3059 				cnt++;
3060 			}
3061 			sgl[cnt].dmac_laddress = raddr;
3062 			sgl[cnt].dmac_size = psize;
3063 #if defined(__amd64)
3064 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF;
3065 #else
3066 			/*
3067 			 * save the buf offset for 32-bit kernel. used in the
3068 			 * obsoleted interfaces.
3069 			 */
3070 			sgl[cnt].dmac_type = ROOTNEX_USES_COPYBUF |
3071 			    (dmar_object->dmao_size - size);
3072 #endif
3073 			/* if this isn't the last cookie, go to the next one */
3074 			if ((cnt + 1) < sglinfo->si_max_pages) {
3075 				cnt++;
3076 				sgl[cnt].dmac_laddress = 0;
3077 				sgl[cnt].dmac_size = 0;
3078 				sgl[cnt].dmac_type = 0;
3079 			}
3080 
3081 		/*
3082 		 * this page didn't need the copy buffer, if it's not physically
3083 		 * contiguous, or it would put us over a segment boundary, or it
3084 		 * puts us over the max cookie size, or the current sgl doesn't
3085 		 * have anything in it.
3086 		 */
3087 		} else if (((last_page + MMU_PAGESIZE) != raddr) ||
3088 		    !(raddr & sglinfo->si_segmask) ||
3089 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3090 		    (sgl[cnt].dmac_size == 0)) {
3091 			/*
3092 			 * if we're not already in a new cookie, go to the next
3093 			 * cookie.
3094 			 */
3095 			if (sgl[cnt].dmac_size != 0) {
3096 				cnt++;
3097 			}
3098 
3099 			/* save the cookie information */
3100 			sgl[cnt].dmac_laddress = raddr;
3101 			sgl[cnt].dmac_size = psize;
3102 #if defined(__amd64)
3103 			sgl[cnt].dmac_type = 0;
3104 #else
3105 			/*
3106 			 * save the buf offset for 32-bit kernel. used in the
3107 			 * obsoleted interfaces.
3108 			 */
3109 			sgl[cnt].dmac_type = dmar_object->dmao_size - size;
3110 #endif
3111 
3112 		/*
3113 		 * this page didn't need the copy buffer, it is physically
3114 		 * contiguous with the last page, and it's <= the max cookie
3115 		 * size.
3116 		 */
3117 		} else {
3118 			sgl[cnt].dmac_size += psize;
3119 
3120 			/*
3121 			 * if this exactly ==  the maximum cookie size, and
3122 			 * it isn't the last cookie, go to the next cookie.
3123 			 */
3124 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3125 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3126 				cnt++;
3127 				sgl[cnt].dmac_laddress = 0;
3128 				sgl[cnt].dmac_size = 0;
3129 				sgl[cnt].dmac_type = 0;
3130 			}
3131 		}
3132 
3133 		/*
3134 		 * save this page's physical address so we can figure out if the
3135 		 * next page is physically contiguous. Keep decrementing size
3136 		 * until we are done with the buffer.
3137 		 */
3138 		last_page = raddr;
3139 		size -= psize;
3140 	}
3141 
3142 	/* we're done, save away how many cookies the sgl has */
3143 	if (sgl[cnt].dmac_size == 0) {
3144 		ASSERT(cnt < sglinfo->si_max_pages);
3145 		sglinfo->si_sgl_size = cnt;
3146 	} else {
3147 		sglinfo->si_sgl_size = cnt + 1;
3148 	}
3149 }
3150 
3151 static void
3152 rootnex_dvma_get_sgl(ddi_dma_obj_t *dmar_object, ddi_dma_cookie_t *sgl,
3153     rootnex_sglinfo_t *sglinfo)
3154 {
3155 	uint64_t offset;
3156 	uint64_t maxseg;
3157 	uint64_t dvaddr;
3158 	struct dvmaseg *dvs;
3159 	uint64_t paddr;
3160 	uint32_t psize, ssize;
3161 	uint32_t size;
3162 	uint_t cnt;
3163 	int physcontig;
3164 
3165 	ASSERT(dmar_object->dmao_type == DMA_OTYP_DVADDR);
3166 
3167 	/* shortcuts */
3168 	maxseg = sglinfo->si_max_cookie_size;
3169 	size = dmar_object->dmao_size;
3170 
3171 	cnt = 0;
3172 	sglinfo->si_bounce_on_seg = B_FALSE;
3173 
3174 	dvs = dmar_object->dmao_obj.dvma_obj.dv_seg;
3175 	offset = dmar_object->dmao_obj.dvma_obj.dv_off;
3176 	ssize = dvs->dvs_len;
3177 	paddr = dvs->dvs_start;
3178 	paddr += offset;
3179 	psize = MIN(ssize, (maxseg - offset));
3180 	dvaddr = paddr + psize;
3181 	ssize -= psize;
3182 
3183 	sgl[cnt].dmac_laddress = paddr;
3184 	sgl[cnt].dmac_size = psize;
3185 	sgl[cnt].dmac_type = 0;
3186 
3187 	size -= psize;
3188 	while (size > 0) {
3189 		if (ssize == 0) {
3190 			dvs++;
3191 			ssize = dvs->dvs_len;
3192 			dvaddr = dvs->dvs_start;
3193 			physcontig = 0;
3194 		} else
3195 			physcontig = 1;
3196 
3197 		paddr = dvaddr;
3198 		psize = MIN(ssize, maxseg);
3199 		dvaddr += psize;
3200 		ssize -= psize;
3201 
3202 		if (!physcontig || !(paddr & sglinfo->si_segmask) ||
3203 		    ((sgl[cnt].dmac_size + psize) > maxseg) ||
3204 		    (sgl[cnt].dmac_size == 0)) {
3205 			/*
3206 			 * if we're not already in a new cookie, go to the next
3207 			 * cookie.
3208 			 */
3209 			if (sgl[cnt].dmac_size != 0) {
3210 				cnt++;
3211 			}
3212 
3213 			/* save the cookie information */
3214 			sgl[cnt].dmac_laddress = paddr;
3215 			sgl[cnt].dmac_size = psize;
3216 			sgl[cnt].dmac_type = 0;
3217 		} else {
3218 			sgl[cnt].dmac_size += psize;
3219 
3220 			/*
3221 			 * if this exactly ==  the maximum cookie size, and
3222 			 * it isn't the last cookie, go to the next cookie.
3223 			 */
3224 			if (((sgl[cnt].dmac_size + psize) == maxseg) &&
3225 			    ((cnt + 1) < sglinfo->si_max_pages)) {
3226 				cnt++;
3227 				sgl[cnt].dmac_laddress = 0;
3228 				sgl[cnt].dmac_size = 0;
3229 				sgl[cnt].dmac_type = 0;
3230 			}
3231 		}
3232 		size -= psize;
3233 	}
3234 
3235 	/* we're done, save away how many cookies the sgl has */
3236 	if (sgl[cnt].dmac_size == 0) {
3237 		sglinfo->si_sgl_size = cnt;
3238 	} else {
3239 		sglinfo->si_sgl_size = cnt + 1;
3240 	}
3241 }
3242 
3243 /*
3244  * rootnex_bind_slowpath()
3245  *    Call in the bind path if the calling driver can't use the sgl without
3246  *    modifying it. We either need to use the copy buffer and/or we will end up
3247  *    with a partial bind.
3248  */
3249 static int
3250 rootnex_bind_slowpath(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3251     rootnex_dma_t *dma, ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3252 {
3253 	rootnex_sglinfo_t *sinfo;
3254 	rootnex_window_t *window;
3255 	ddi_dma_cookie_t *cookie;
3256 	size_t copybuf_used;
3257 	size_t dmac_size;
3258 	boolean_t partial;
3259 	off_t cur_offset;
3260 	page_t *cur_pp;
3261 	major_t mnum;
3262 	int e;
3263 	int i;
3264 
3265 
3266 	sinfo = &dma->dp_sglinfo;
3267 	copybuf_used = 0;
3268 	partial = B_FALSE;
3269 
3270 	/*
3271 	 * If we're using the copybuf, set the copybuf state in dma struct.
3272 	 * Needs to be first since it sets the copy buffer size.
3273 	 */
3274 	if (sinfo->si_copybuf_req != 0) {
3275 		e = rootnex_setup_copybuf(hp, dmareq, dma, attr);
3276 		if (e != DDI_SUCCESS) {
3277 			return (e);
3278 		}
3279 	} else {
3280 		dma->dp_copybuf_size = 0;
3281 	}
3282 
3283 	/*
3284 	 * Figure out if we need to do a partial mapping. If so, figure out
3285 	 * if we need to trim the buffers when we munge the sgl.
3286 	 */
3287 	if ((dma->dp_copybuf_size < sinfo->si_copybuf_req) ||
3288 	    (dmao->dmao_size > dma->dp_maxxfer) ||
3289 	    ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size)) {
3290 		dma->dp_partial_required = B_TRUE;
3291 		if (attr->dma_attr_granular != 1) {
3292 			dma->dp_trim_required = B_TRUE;
3293 		}
3294 	} else {
3295 		dma->dp_partial_required = B_FALSE;
3296 		dma->dp_trim_required = B_FALSE;
3297 	}
3298 
3299 	/* If we need to do a partial bind, make sure the driver supports it */
3300 	if (dma->dp_partial_required &&
3301 	    !(dmareq->dmar_flags & DDI_DMA_PARTIAL)) {
3302 
3303 		mnum = ddi_driver_major(dma->dp_dip);
3304 		/*
3305 		 * patchable which allows us to print one warning per major
3306 		 * number.
3307 		 */
3308 		if ((rootnex_bind_warn) &&
3309 		    ((rootnex_warn_list[mnum] & ROOTNEX_BIND_WARNING) == 0)) {
3310 			rootnex_warn_list[mnum] |= ROOTNEX_BIND_WARNING;
3311 			cmn_err(CE_WARN, "!%s: coding error detected, the "
3312 			    "driver is using ddi_dma_attr(9S) incorrectly. "
3313 			    "There is a small risk of data corruption in "
3314 			    "particular with large I/Os. The driver should be "
3315 			    "replaced with a corrected version for proper "
3316 			    "system operation. To disable this warning, add "
3317 			    "'set rootnex:rootnex_bind_warn=0' to "
3318 			    "/etc/system(4).", ddi_driver_name(dma->dp_dip));
3319 		}
3320 		return (DDI_DMA_TOOBIG);
3321 	}
3322 
3323 	/*
3324 	 * we might need multiple windows, setup state to handle them. In this
3325 	 * code path, we will have at least one window.
3326 	 */
3327 	e = rootnex_setup_windows(hp, dma, attr, dmao, kmflag);
3328 	if (e != DDI_SUCCESS) {
3329 		rootnex_teardown_copybuf(dma);
3330 		return (e);
3331 	}
3332 
3333 	window = &dma->dp_window[0];
3334 	cookie = &dma->dp_cookies[0];
3335 	cur_offset = 0;
3336 	rootnex_init_win(hp, dma, window, cookie, cur_offset);
3337 	if (dmao->dmao_type == DMA_OTYP_PAGES) {
3338 		cur_pp = dmareq->dmar_object.dmao_obj.pp_obj.pp_pp;
3339 	}
3340 
3341 	/* loop though all the cookies we got back from get_sgl() */
3342 	for (i = 0; i < sinfo->si_sgl_size; i++) {
3343 		/*
3344 		 * If we're using the copy buffer, check this cookie and setup
3345 		 * its associated copy buffer state. If this cookie uses the
3346 		 * copy buffer, make sure we sync this window during dma_sync.
3347 		 */
3348 		if (dma->dp_copybuf_size > 0) {
3349 			rootnex_setup_cookie(dmao, dma, cookie,
3350 			    cur_offset, &copybuf_used, &cur_pp);
3351 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3352 				window->wd_dosync = B_TRUE;
3353 			}
3354 		}
3355 
3356 		/*
3357 		 * save away the cookie size, since it could be modified in
3358 		 * the windowing code.
3359 		 */
3360 		dmac_size = cookie->dmac_size;
3361 
3362 		/* if we went over max copybuf size */
3363 		if (dma->dp_copybuf_size &&
3364 		    (copybuf_used > dma->dp_copybuf_size)) {
3365 			partial = B_TRUE;
3366 			e = rootnex_copybuf_window_boundary(hp, dma, &window,
3367 			    cookie, cur_offset, &copybuf_used);
3368 			if (e != DDI_SUCCESS) {
3369 				rootnex_teardown_copybuf(dma);
3370 				rootnex_teardown_windows(dma);
3371 				return (e);
3372 			}
3373 
3374 			/*
3375 			 * if the coookie uses the copy buffer, make sure the
3376 			 * new window we just moved to is set to sync.
3377 			 */
3378 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3379 				window->wd_dosync = B_TRUE;
3380 			}
3381 			ROOTNEX_DPROBE1(rootnex__copybuf__window, dev_info_t *,
3382 			    dma->dp_dip);
3383 
3384 		/* if the cookie cnt == max sgllen, move to the next window */
3385 		} else if (window->wd_cookie_cnt >=
3386 		    (unsigned)attr->dma_attr_sgllen) {
3387 			partial = B_TRUE;
3388 			ASSERT(window->wd_cookie_cnt == attr->dma_attr_sgllen);
3389 			e = rootnex_sgllen_window_boundary(hp, dma, &window,
3390 			    cookie, attr, cur_offset);
3391 			if (e != DDI_SUCCESS) {
3392 				rootnex_teardown_copybuf(dma);
3393 				rootnex_teardown_windows(dma);
3394 				return (e);
3395 			}
3396 
3397 			/*
3398 			 * if the coookie uses the copy buffer, make sure the
3399 			 * new window we just moved to is set to sync.
3400 			 */
3401 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3402 				window->wd_dosync = B_TRUE;
3403 			}
3404 			ROOTNEX_DPROBE1(rootnex__sgllen__window, dev_info_t *,
3405 			    dma->dp_dip);
3406 
3407 		/* else if we will be over maxxfer */
3408 		} else if ((window->wd_size + dmac_size) >
3409 		    dma->dp_maxxfer) {
3410 			partial = B_TRUE;
3411 			e = rootnex_maxxfer_window_boundary(hp, dma, &window,
3412 			    cookie);
3413 			if (e != DDI_SUCCESS) {
3414 				rootnex_teardown_copybuf(dma);
3415 				rootnex_teardown_windows(dma);
3416 				return (e);
3417 			}
3418 
3419 			/*
3420 			 * if the coookie uses the copy buffer, make sure the
3421 			 * new window we just moved to is set to sync.
3422 			 */
3423 			if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3424 				window->wd_dosync = B_TRUE;
3425 			}
3426 			ROOTNEX_DPROBE1(rootnex__maxxfer__window, dev_info_t *,
3427 			    dma->dp_dip);
3428 
3429 		/* else this cookie fits in the current window */
3430 		} else {
3431 			window->wd_cookie_cnt++;
3432 			window->wd_size += dmac_size;
3433 		}
3434 
3435 		/* track our offset into the buffer, go to the next cookie */
3436 		ASSERT(dmac_size <= dmao->dmao_size);
3437 		ASSERT(cookie->dmac_size <= dmac_size);
3438 		cur_offset += dmac_size;
3439 		cookie++;
3440 	}
3441 
3442 	/* if we ended up with a zero sized window in the end, clean it up */
3443 	if (window->wd_size == 0) {
3444 		hp->dmai_nwin--;
3445 		window--;
3446 	}
3447 
3448 	ASSERT(window->wd_trim.tr_trim_last == B_FALSE);
3449 
3450 	if (!partial) {
3451 		return (DDI_DMA_MAPPED);
3452 	}
3453 
3454 	ASSERT(dma->dp_partial_required);
3455 	return (DDI_DMA_PARTIAL_MAP);
3456 }
3457 
3458 /*
3459  * rootnex_setup_copybuf()
3460  *    Called in bind slowpath. Figures out if we're going to use the copy
3461  *    buffer, and if we do, sets up the basic state to handle it.
3462  */
3463 static int
3464 rootnex_setup_copybuf(ddi_dma_impl_t *hp, struct ddi_dma_req *dmareq,
3465     rootnex_dma_t *dma, ddi_dma_attr_t *attr)
3466 {
3467 	rootnex_sglinfo_t *sinfo;
3468 	ddi_dma_attr_t lattr;
3469 	size_t max_copybuf;
3470 	int cansleep;
3471 	int e;
3472 #if !defined(__amd64)
3473 	int vmflag;
3474 #endif
3475 
3476 	ASSERT(!dma->dp_dvma_used);
3477 
3478 	sinfo = &dma->dp_sglinfo;
3479 
3480 	/* read this first so it's consistent through the routine  */
3481 	max_copybuf = i_ddi_copybuf_size() & MMU_PAGEMASK;
3482 
3483 	/* We need to call into the rootnex on ddi_dma_sync() */
3484 	hp->dmai_rflags &= ~DMP_NOSYNC;
3485 
3486 	/* make sure the copybuf size <= the max size */
3487 	dma->dp_copybuf_size = MIN(sinfo->si_copybuf_req, max_copybuf);
3488 	ASSERT((dma->dp_copybuf_size & MMU_PAGEOFFSET) == 0);
3489 
3490 #if !defined(__amd64)
3491 	/*
3492 	 * if we don't have kva space to copy to/from, allocate the KVA space
3493 	 * now. We only do this for the 32-bit kernel. We use seg kpm space for
3494 	 * the 64-bit kernel.
3495 	 */
3496 	if ((dmareq->dmar_object.dmao_type == DMA_OTYP_PAGES) ||
3497 	    (dmareq->dmar_object.dmao_obj.virt_obj.v_as != NULL)) {
3498 
3499 		/* convert the sleep flags */
3500 		if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3501 			vmflag = VM_SLEEP;
3502 		} else {
3503 			vmflag = VM_NOSLEEP;
3504 		}
3505 
3506 		/* allocate Kernel VA space that we can bcopy to/from */
3507 		dma->dp_kva = vmem_alloc(heap_arena, dma->dp_copybuf_size,
3508 		    vmflag);
3509 		if (dma->dp_kva == NULL) {
3510 			return (DDI_DMA_NORESOURCES);
3511 		}
3512 	}
3513 #endif
3514 
3515 	/* convert the sleep flags */
3516 	if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
3517 		cansleep = 1;
3518 	} else {
3519 		cansleep = 0;
3520 	}
3521 
3522 	/*
3523 	 * Allocate the actual copy buffer. This needs to fit within the DMA
3524 	 * engine limits, so we can't use kmem_alloc... We don't need
3525 	 * contiguous memory (sgllen) since we will be forcing windows on
3526 	 * sgllen anyway.
3527 	 */
3528 	lattr = *attr;
3529 	lattr.dma_attr_align = MMU_PAGESIZE;
3530 	lattr.dma_attr_sgllen = -1;	/* no limit */
3531 	/*
3532 	 * if we're using the copy buffer because of seg, use that for our
3533 	 * upper address limit.
3534 	 */
3535 	if (sinfo->si_bounce_on_seg) {
3536 		lattr.dma_attr_addr_hi = lattr.dma_attr_seg;
3537 	}
3538 	e = i_ddi_mem_alloc(dma->dp_dip, &lattr, dma->dp_copybuf_size, cansleep,
3539 	    0, NULL, &dma->dp_cbaddr, &dma->dp_cbsize, NULL);
3540 	if (e != DDI_SUCCESS) {
3541 #if !defined(__amd64)
3542 		if (dma->dp_kva != NULL) {
3543 			vmem_free(heap_arena, dma->dp_kva,
3544 			    dma->dp_copybuf_size);
3545 		}
3546 #endif
3547 		return (DDI_DMA_NORESOURCES);
3548 	}
3549 
3550 	ROOTNEX_DPROBE2(rootnex__alloc__copybuf, dev_info_t *, dma->dp_dip,
3551 	    size_t, dma->dp_copybuf_size);
3552 
3553 	return (DDI_SUCCESS);
3554 }
3555 
3556 
3557 /*
3558  * rootnex_setup_windows()
3559  *    Called in bind slowpath to setup the window state. We always have windows
3560  *    in the slowpath. Even if the window count = 1.
3561  */
3562 static int
3563 rootnex_setup_windows(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3564     ddi_dma_attr_t *attr, ddi_dma_obj_t *dmao, int kmflag)
3565 {
3566 	rootnex_window_t *windowp;
3567 	rootnex_sglinfo_t *sinfo;
3568 	size_t copy_state_size;
3569 	size_t win_state_size;
3570 	size_t state_available;
3571 	size_t space_needed;
3572 	uint_t copybuf_win;
3573 	uint_t maxxfer_win;
3574 	size_t space_used;
3575 	uint_t sglwin;
3576 
3577 
3578 	sinfo = &dma->dp_sglinfo;
3579 
3580 	dma->dp_current_win = 0;
3581 	hp->dmai_nwin = 0;
3582 
3583 	/* If we don't need to do a partial, we only have one window */
3584 	if (!dma->dp_partial_required) {
3585 		dma->dp_max_win = 1;
3586 
3587 	/*
3588 	 * we need multiple windows, need to figure out the worse case number
3589 	 * of windows.
3590 	 */
3591 	} else {
3592 		/*
3593 		 * if we need windows because we need more copy buffer that
3594 		 * we allow, the worse case number of windows we could need
3595 		 * here would be (copybuf space required / copybuf space that
3596 		 * we have) plus one for remainder, and plus 2 to handle the
3597 		 * extra pages on the trim for the first and last pages of the
3598 		 * buffer (a page is the minimum window size so under the right
3599 		 * attr settings, you could have a window for each page).
3600 		 * The last page will only be hit here if the size is not a
3601 		 * multiple of the granularity (which theoretically shouldn't
3602 		 * be the case but never has been enforced, so we could have
3603 		 * broken things without it).
3604 		 */
3605 		if (sinfo->si_copybuf_req > dma->dp_copybuf_size) {
3606 			ASSERT(dma->dp_copybuf_size > 0);
3607 			copybuf_win = (sinfo->si_copybuf_req /
3608 			    dma->dp_copybuf_size) + 1 + 2;
3609 		} else {
3610 			copybuf_win = 0;
3611 		}
3612 
3613 		/*
3614 		 * if we need windows because we have more cookies than the H/W
3615 		 * can handle, the number of windows we would need here would
3616 		 * be (cookie count / cookies count H/W supports minus 1[for
3617 		 * trim]) plus one for remainder.
3618 		 */
3619 		if ((unsigned)attr->dma_attr_sgllen < sinfo->si_sgl_size) {
3620 			sglwin = (sinfo->si_sgl_size /
3621 			    (attr->dma_attr_sgllen - 1)) + 1;
3622 		} else {
3623 			sglwin = 0;
3624 		}
3625 
3626 		/*
3627 		 * if we need windows because we're binding more memory than the
3628 		 * H/W can transfer at once, the number of windows we would need
3629 		 * here would be (xfer count / max xfer H/W supports) plus one
3630 		 * for remainder, and plus 2 to handle the extra pages on the
3631 		 * trim (see above comment about trim)
3632 		 */
3633 		if (dmao->dmao_size > dma->dp_maxxfer) {
3634 			maxxfer_win = (dmao->dmao_size /
3635 			    dma->dp_maxxfer) + 1 + 2;
3636 		} else {
3637 			maxxfer_win = 0;
3638 		}
3639 		dma->dp_max_win =  copybuf_win + sglwin + maxxfer_win;
3640 		ASSERT(dma->dp_max_win > 0);
3641 	}
3642 	win_state_size = dma->dp_max_win * sizeof (rootnex_window_t);
3643 
3644 	/*
3645 	 * Get space for window and potential copy buffer state. Before we
3646 	 * go and allocate memory, see if we can get away with using what's
3647 	 * left in the pre-allocted state or the dynamically allocated sgl.
3648 	 */
3649 	space_used = (uintptr_t)(sinfo->si_sgl_size *
3650 	    sizeof (ddi_dma_cookie_t));
3651 
3652 	/* if we dynamically allocated space for the cookies */
3653 	if (dma->dp_need_to_free_cookie) {
3654 		/* if we have more space in the pre-allocted buffer, use it */
3655 		ASSERT(space_used <= dma->dp_cookie_size);
3656 		if ((dma->dp_cookie_size - space_used) <=
3657 		    rootnex_state->r_prealloc_size) {
3658 			state_available = rootnex_state->r_prealloc_size;
3659 			windowp = (rootnex_window_t *)dma->dp_prealloc_buffer;
3660 
3661 		/*
3662 		 * else, we have more free space in the dynamically allocated
3663 		 * buffer, i.e. the buffer wasn't worse case fragmented so we
3664 		 * didn't need a lot of cookies.
3665 		 */
3666 		} else {
3667 			state_available = dma->dp_cookie_size - space_used;
3668 			windowp = (rootnex_window_t *)
3669 			    &dma->dp_cookies[sinfo->si_sgl_size];
3670 		}
3671 
3672 	/* we used the pre-alloced buffer */
3673 	} else {
3674 		ASSERT(space_used <= rootnex_state->r_prealloc_size);
3675 		state_available = rootnex_state->r_prealloc_size - space_used;
3676 		windowp = (rootnex_window_t *)
3677 		    &dma->dp_cookies[sinfo->si_sgl_size];
3678 	}
3679 
3680 	/*
3681 	 * figure out how much state we need to track the copy buffer. Add an
3682 	 * addition 8 bytes for pointer alignemnt later.
3683 	 */
3684 	if (dma->dp_copybuf_size > 0) {
3685 		copy_state_size = sinfo->si_max_pages *
3686 		    sizeof (rootnex_pgmap_t);
3687 	} else {
3688 		copy_state_size = 0;
3689 	}
3690 	/* add an additional 8 bytes for pointer alignment */
3691 	space_needed = win_state_size + copy_state_size + 0x8;
3692 
3693 	/* if we have enough space already, use it */
3694 	if (state_available >= space_needed) {
3695 		dma->dp_window = windowp;
3696 		dma->dp_need_to_free_window = B_FALSE;
3697 
3698 	/* not enough space, need to allocate more. */
3699 	} else {
3700 		dma->dp_window = kmem_alloc(space_needed, kmflag);
3701 		if (dma->dp_window == NULL) {
3702 			return (DDI_DMA_NORESOURCES);
3703 		}
3704 		dma->dp_need_to_free_window = B_TRUE;
3705 		dma->dp_window_size = space_needed;
3706 		ROOTNEX_DPROBE2(rootnex__bind__sp__alloc, dev_info_t *,
3707 		    dma->dp_dip, size_t, space_needed);
3708 	}
3709 
3710 	/*
3711 	 * we allocate copy buffer state and window state at the same time.
3712 	 * setup our copy buffer state pointers. Make sure it's aligned.
3713 	 */
3714 	if (dma->dp_copybuf_size > 0) {
3715 		dma->dp_pgmap = (rootnex_pgmap_t *)(((uintptr_t)
3716 		    &dma->dp_window[dma->dp_max_win] + 0x7) & ~0x7);
3717 
3718 #if !defined(__amd64)
3719 		/*
3720 		 * make sure all pm_mapped, pm_vaddr, and pm_pp are set to
3721 		 * false/NULL. Should be quicker to bzero vs loop and set.
3722 		 */
3723 		bzero(dma->dp_pgmap, copy_state_size);
3724 #endif
3725 	} else {
3726 		dma->dp_pgmap = NULL;
3727 	}
3728 
3729 	return (DDI_SUCCESS);
3730 }
3731 
3732 
3733 /*
3734  * rootnex_teardown_copybuf()
3735  *    cleans up after rootnex_setup_copybuf()
3736  */
3737 static void
3738 rootnex_teardown_copybuf(rootnex_dma_t *dma)
3739 {
3740 #if !defined(__amd64)
3741 	int i;
3742 
3743 	/*
3744 	 * if we allocated kernel heap VMEM space, go through all the pages and
3745 	 * map out any of the ones that we're mapped into the kernel heap VMEM
3746 	 * arena. Then free the VMEM space.
3747 	 */
3748 	if (dma->dp_kva != NULL) {
3749 		for (i = 0; i < dma->dp_sglinfo.si_max_pages; i++) {
3750 			if (dma->dp_pgmap[i].pm_mapped) {
3751 				hat_unload(kas.a_hat, dma->dp_pgmap[i].pm_kaddr,
3752 				    MMU_PAGESIZE, HAT_UNLOAD);
3753 				dma->dp_pgmap[i].pm_mapped = B_FALSE;
3754 			}
3755 		}
3756 
3757 		vmem_free(heap_arena, dma->dp_kva, dma->dp_copybuf_size);
3758 	}
3759 
3760 #endif
3761 
3762 	/* if we allocated a copy buffer, free it */
3763 	if (dma->dp_cbaddr != NULL) {
3764 		i_ddi_mem_free(dma->dp_cbaddr, NULL);
3765 	}
3766 }
3767 
3768 
3769 /*
3770  * rootnex_teardown_windows()
3771  *    cleans up after rootnex_setup_windows()
3772  */
3773 static void
3774 rootnex_teardown_windows(rootnex_dma_t *dma)
3775 {
3776 	/*
3777 	 * if we had to allocate window state on the last bind (because we
3778 	 * didn't have enough pre-allocated space in the handle), free it.
3779 	 */
3780 	if (dma->dp_need_to_free_window) {
3781 		kmem_free(dma->dp_window, dma->dp_window_size);
3782 	}
3783 }
3784 
3785 
3786 /*
3787  * rootnex_init_win()
3788  *    Called in bind slow path during creation of a new window. Initializes
3789  *    window state to default values.
3790  */
3791 /*ARGSUSED*/
3792 static void
3793 rootnex_init_win(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
3794     rootnex_window_t *window, ddi_dma_cookie_t *cookie, off_t cur_offset)
3795 {
3796 	hp->dmai_nwin++;
3797 	window->wd_dosync = B_FALSE;
3798 	window->wd_offset = cur_offset;
3799 	window->wd_size = 0;
3800 	window->wd_first_cookie = cookie;
3801 	window->wd_cookie_cnt = 0;
3802 	window->wd_trim.tr_trim_first = B_FALSE;
3803 	window->wd_trim.tr_trim_last = B_FALSE;
3804 	window->wd_trim.tr_first_copybuf_win = B_FALSE;
3805 	window->wd_trim.tr_last_copybuf_win = B_FALSE;
3806 #if !defined(__amd64)
3807 	window->wd_remap_copybuf = dma->dp_cb_remaping;
3808 #endif
3809 }
3810 
3811 
3812 /*
3813  * rootnex_setup_cookie()
3814  *    Called in the bind slow path when the sgl uses the copy buffer. If any of
3815  *    the sgl uses the copy buffer, we need to go through each cookie, figure
3816  *    out if it uses the copy buffer, and if it does, save away everything we'll
3817  *    need during sync.
3818  */
3819 static void
3820 rootnex_setup_cookie(ddi_dma_obj_t *dmar_object, rootnex_dma_t *dma,
3821     ddi_dma_cookie_t *cookie, off_t cur_offset, size_t *copybuf_used,
3822     page_t **cur_pp)
3823 {
3824 	boolean_t copybuf_sz_power_2;
3825 	rootnex_sglinfo_t *sinfo;
3826 	paddr_t paddr;
3827 	uint_t pidx;
3828 	uint_t pcnt;
3829 	off_t poff;
3830 #if defined(__amd64)
3831 	pfn_t pfn;
3832 #else
3833 	page_t **pplist;
3834 #endif
3835 
3836 	ASSERT(dmar_object->dmao_type != DMA_OTYP_DVADDR);
3837 
3838 	sinfo = &dma->dp_sglinfo;
3839 
3840 	/*
3841 	 * Calculate the page index relative to the start of the buffer. The
3842 	 * index to the current page for our buffer is the offset into the
3843 	 * first page of the buffer plus our current offset into the buffer
3844 	 * itself, shifted of course...
3845 	 */
3846 	pidx = (sinfo->si_buf_offset + cur_offset) >> MMU_PAGESHIFT;
3847 	ASSERT(pidx < sinfo->si_max_pages);
3848 
3849 	/* if this cookie uses the copy buffer */
3850 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
3851 		/*
3852 		 * NOTE: we know that since this cookie uses the copy buffer, it
3853 		 * is <= MMU_PAGESIZE.
3854 		 */
3855 
3856 		/*
3857 		 * get the offset into the page. For the 64-bit kernel, get the
3858 		 * pfn which we'll use with seg kpm.
3859 		 */
3860 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
3861 #if defined(__amd64)
3862 		/* mfn_to_pfn() is a NOP on i86pc */
3863 		pfn = mfn_to_pfn(cookie->dmac_laddress >> MMU_PAGESHIFT);
3864 #endif /* __amd64 */
3865 
3866 		/* figure out if the copybuf size is a power of 2 */
3867 		if (!ISP2(dma->dp_copybuf_size)) {
3868 			copybuf_sz_power_2 = B_FALSE;
3869 		} else {
3870 			copybuf_sz_power_2 = B_TRUE;
3871 		}
3872 
3873 		/* This page uses the copy buffer */
3874 		dma->dp_pgmap[pidx].pm_uses_copybuf = B_TRUE;
3875 
3876 		/*
3877 		 * save the copy buffer KVA that we'll use with this page.
3878 		 * if we still fit within the copybuf, it's a simple add.
3879 		 * otherwise, we need to wrap over using & or % accordingly.
3880 		 */
3881 		if ((*copybuf_used + MMU_PAGESIZE) <= dma->dp_copybuf_size) {
3882 			dma->dp_pgmap[pidx].pm_cbaddr = dma->dp_cbaddr +
3883 			    *copybuf_used;
3884 		} else {
3885 			if (copybuf_sz_power_2) {
3886 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3887 				    (uintptr_t)dma->dp_cbaddr +
3888 				    (*copybuf_used &
3889 				    (dma->dp_copybuf_size - 1)));
3890 			} else {
3891 				dma->dp_pgmap[pidx].pm_cbaddr = (caddr_t)(
3892 				    (uintptr_t)dma->dp_cbaddr +
3893 				    (*copybuf_used % dma->dp_copybuf_size));
3894 			}
3895 		}
3896 
3897 		/*
3898 		 * over write the cookie physical address with the address of
3899 		 * the physical address of the copy buffer page that we will
3900 		 * use.
3901 		 */
3902 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
3903 		    dma->dp_pgmap[pidx].pm_cbaddr)) + poff;
3904 
3905 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
3906 
3907 		/* if we have a kernel VA, it's easy, just save that address */
3908 		if ((dmar_object->dmao_type != DMA_OTYP_PAGES) &&
3909 		    (sinfo->si_asp == &kas)) {
3910 			/*
3911 			 * save away the page aligned virtual address of the
3912 			 * driver buffer. Offsets are handled in the sync code.
3913 			 */
3914 			dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)(((uintptr_t)
3915 			    dmar_object->dmao_obj.virt_obj.v_addr + cur_offset)
3916 			    & MMU_PAGEMASK);
3917 #if !defined(__amd64)
3918 			/*
3919 			 * we didn't need to, and will never need to map this
3920 			 * page.
3921 			 */
3922 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
3923 #endif
3924 
3925 		/* we don't have a kernel VA. We need one for the bcopy. */
3926 		} else {
3927 #if defined(__amd64)
3928 			/*
3929 			 * for the 64-bit kernel, it's easy. We use seg kpm to
3930 			 * get a Kernel VA for the corresponding pfn.
3931 			 */
3932 			dma->dp_pgmap[pidx].pm_kaddr = hat_kpm_pfn2va(pfn);
3933 #else
3934 			/*
3935 			 * for the 32-bit kernel, this is a pain. First we'll
3936 			 * save away the page_t or user VA for this page. This
3937 			 * is needed in rootnex_dma_win() when we switch to a
3938 			 * new window which requires us to re-map the copy
3939 			 * buffer.
3940 			 */
3941 			pplist = dmar_object->dmao_obj.virt_obj.v_priv;
3942 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
3943 				dma->dp_pgmap[pidx].pm_pp = *cur_pp;
3944 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3945 			} else if (pplist != NULL) {
3946 				dma->dp_pgmap[pidx].pm_pp = pplist[pidx];
3947 				dma->dp_pgmap[pidx].pm_vaddr = NULL;
3948 			} else {
3949 				dma->dp_pgmap[pidx].pm_pp = NULL;
3950 				dma->dp_pgmap[pidx].pm_vaddr = (caddr_t)
3951 				    (((uintptr_t)
3952 				    dmar_object->dmao_obj.virt_obj.v_addr +
3953 				    cur_offset) & MMU_PAGEMASK);
3954 			}
3955 
3956 			/*
3957 			 * save away the page aligned virtual address which was
3958 			 * allocated from the kernel heap arena (taking into
3959 			 * account if we need more copy buffer than we alloced
3960 			 * and use multiple windows to handle this, i.e. &,%).
3961 			 * NOTE: there isn't and physical memory backing up this
3962 			 * virtual address space currently.
3963 			 */
3964 			if ((*copybuf_used + MMU_PAGESIZE) <=
3965 			    dma->dp_copybuf_size) {
3966 				dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3967 				    (((uintptr_t)dma->dp_kva + *copybuf_used) &
3968 				    MMU_PAGEMASK);
3969 			} else {
3970 				if (copybuf_sz_power_2) {
3971 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3972 					    (((uintptr_t)dma->dp_kva +
3973 					    (*copybuf_used &
3974 					    (dma->dp_copybuf_size - 1))) &
3975 					    MMU_PAGEMASK);
3976 				} else {
3977 					dma->dp_pgmap[pidx].pm_kaddr = (caddr_t)
3978 					    (((uintptr_t)dma->dp_kva +
3979 					    (*copybuf_used %
3980 					    dma->dp_copybuf_size)) &
3981 					    MMU_PAGEMASK);
3982 				}
3983 			}
3984 
3985 			/*
3986 			 * if we haven't used up the available copy buffer yet,
3987 			 * map the kva to the physical page.
3988 			 */
3989 			if (!dma->dp_cb_remaping && ((*copybuf_used +
3990 			    MMU_PAGESIZE) <= dma->dp_copybuf_size)) {
3991 				dma->dp_pgmap[pidx].pm_mapped = B_TRUE;
3992 				if (dma->dp_pgmap[pidx].pm_pp != NULL) {
3993 					i86_pp_map(dma->dp_pgmap[pidx].pm_pp,
3994 					    dma->dp_pgmap[pidx].pm_kaddr);
3995 				} else {
3996 					i86_va_map(dma->dp_pgmap[pidx].pm_vaddr,
3997 					    sinfo->si_asp,
3998 					    dma->dp_pgmap[pidx].pm_kaddr);
3999 				}
4000 
4001 			/*
4002 			 * we've used up the available copy buffer, this page
4003 			 * will have to be mapped during rootnex_dma_win() when
4004 			 * we switch to a new window which requires a re-map
4005 			 * the copy buffer. (32-bit kernel only)
4006 			 */
4007 			} else {
4008 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4009 			}
4010 #endif
4011 			/* go to the next page_t */
4012 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4013 				*cur_pp = (*cur_pp)->p_next;
4014 			}
4015 		}
4016 
4017 		/* add to the copy buffer count */
4018 		*copybuf_used += MMU_PAGESIZE;
4019 
4020 	/*
4021 	 * This cookie doesn't use the copy buffer. Walk through the pages this
4022 	 * cookie occupies to reflect this.
4023 	 */
4024 	} else {
4025 		/*
4026 		 * figure out how many pages the cookie occupies. We need to
4027 		 * use the original page offset of the buffer and the cookies
4028 		 * offset in the buffer to do this.
4029 		 */
4030 		poff = (sinfo->si_buf_offset + cur_offset) & MMU_PAGEOFFSET;
4031 		pcnt = mmu_btopr(cookie->dmac_size + poff);
4032 
4033 		while (pcnt > 0) {
4034 #if !defined(__amd64)
4035 			/*
4036 			 * the 32-bit kernel doesn't have seg kpm, so we need
4037 			 * to map in the driver buffer (if it didn't come down
4038 			 * with a kernel VA) on the fly. Since this page doesn't
4039 			 * use the copy buffer, it's not, or will it ever, have
4040 			 * to be mapped in.
4041 			 */
4042 			dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4043 #endif
4044 			dma->dp_pgmap[pidx].pm_uses_copybuf = B_FALSE;
4045 
4046 			/*
4047 			 * we need to update pidx and cur_pp or we'll loose
4048 			 * track of where we are.
4049 			 */
4050 			if (dmar_object->dmao_type == DMA_OTYP_PAGES) {
4051 				*cur_pp = (*cur_pp)->p_next;
4052 			}
4053 			pidx++;
4054 			pcnt--;
4055 		}
4056 	}
4057 }
4058 
4059 
4060 /*
4061  * rootnex_sgllen_window_boundary()
4062  *    Called in the bind slow path when the next cookie causes us to exceed (in
4063  *    this case == since we start at 0 and sgllen starts at 1) the maximum sgl
4064  *    length supported by the DMA H/W.
4065  */
4066 static int
4067 rootnex_sgllen_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4068     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, ddi_dma_attr_t *attr,
4069     off_t cur_offset)
4070 {
4071 	off_t new_offset;
4072 	size_t trim_sz;
4073 	off_t coffset;
4074 
4075 
4076 	/*
4077 	 * if we know we'll never have to trim, it's pretty easy. Just move to
4078 	 * the next window and init it. We're done.
4079 	 */
4080 	if (!dma->dp_trim_required) {
4081 		(*windowp)++;
4082 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4083 		(*windowp)->wd_cookie_cnt++;
4084 		(*windowp)->wd_size = cookie->dmac_size;
4085 		return (DDI_SUCCESS);
4086 	}
4087 
4088 	/* figure out how much we need to trim from the window */
4089 	ASSERT(attr->dma_attr_granular != 0);
4090 	if (dma->dp_granularity_power_2) {
4091 		trim_sz = (*windowp)->wd_size & (attr->dma_attr_granular - 1);
4092 	} else {
4093 		trim_sz = (*windowp)->wd_size % attr->dma_attr_granular;
4094 	}
4095 
4096 	/* The window's a whole multiple of granularity. We're done */
4097 	if (trim_sz == 0) {
4098 		(*windowp)++;
4099 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4100 		(*windowp)->wd_cookie_cnt++;
4101 		(*windowp)->wd_size = cookie->dmac_size;
4102 		return (DDI_SUCCESS);
4103 	}
4104 
4105 	/*
4106 	 * The window's not a whole multiple of granularity, since we know this
4107 	 * is due to the sgllen, we need to go back to the last cookie and trim
4108 	 * that one, add the left over part of the old cookie into the new
4109 	 * window, and then add in the new cookie into the new window.
4110 	 */
4111 
4112 	/*
4113 	 * make sure the driver isn't making us do something bad... Trimming and
4114 	 * sgllen == 1 don't go together.
4115 	 */
4116 	if (attr->dma_attr_sgllen == 1) {
4117 		return (DDI_DMA_NOMAPPING);
4118 	}
4119 
4120 	/*
4121 	 * first, setup the current window to account for the trim. Need to go
4122 	 * back to the last cookie for this.
4123 	 */
4124 	cookie--;
4125 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4126 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4127 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4128 	ASSERT(cookie->dmac_size > trim_sz);
4129 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4130 	(*windowp)->wd_size -= trim_sz;
4131 
4132 	/* save the buffer offsets for the next window */
4133 	coffset = cookie->dmac_size - trim_sz;
4134 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4135 
4136 	/*
4137 	 * set this now in case this is the first window. all other cases are
4138 	 * set in dma_win()
4139 	 */
4140 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4141 
4142 	/*
4143 	 * initialize the next window using what's left over in the previous
4144 	 * cookie.
4145 	 */
4146 	(*windowp)++;
4147 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4148 	(*windowp)->wd_cookie_cnt++;
4149 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4150 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4151 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4152 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4153 		(*windowp)->wd_dosync = B_TRUE;
4154 	}
4155 
4156 	/*
4157 	 * now go back to the current cookie and add it to the new window. set
4158 	 * the new window size to the what was left over from the previous
4159 	 * cookie and what's in the current cookie.
4160 	 */
4161 	cookie++;
4162 	(*windowp)->wd_cookie_cnt++;
4163 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4164 
4165 	/*
4166 	 * trim plus the next cookie could put us over maxxfer (a cookie can be
4167 	 * a max size of maxxfer). Handle that case.
4168 	 */
4169 	if ((*windowp)->wd_size > dma->dp_maxxfer) {
4170 		/*
4171 		 * maxxfer is already a whole multiple of granularity, and this
4172 		 * trim will be <= the previous trim (since a cookie can't be
4173 		 * larger than maxxfer). Make things simple here.
4174 		 */
4175 		trim_sz = (*windowp)->wd_size - dma->dp_maxxfer;
4176 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4177 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4178 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4179 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4180 		(*windowp)->wd_size -= trim_sz;
4181 		ASSERT((*windowp)->wd_size == dma->dp_maxxfer);
4182 
4183 		/* save the buffer offsets for the next window */
4184 		coffset = cookie->dmac_size - trim_sz;
4185 		new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4186 
4187 		/* setup the next window */
4188 		(*windowp)++;
4189 		rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4190 		(*windowp)->wd_cookie_cnt++;
4191 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4192 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4193 		    coffset;
4194 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4195 	}
4196 
4197 	return (DDI_SUCCESS);
4198 }
4199 
4200 
4201 /*
4202  * rootnex_copybuf_window_boundary()
4203  *    Called in bind slowpath when we get to a window boundary because we used
4204  *    up all the copy buffer that we have.
4205  */
4206 static int
4207 rootnex_copybuf_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4208     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie, off_t cur_offset,
4209     size_t *copybuf_used)
4210 {
4211 	rootnex_sglinfo_t *sinfo;
4212 	off_t new_offset;
4213 	size_t trim_sz;
4214 	paddr_t paddr;
4215 	off_t coffset;
4216 	uint_t pidx;
4217 	off_t poff;
4218 
4219 
4220 	sinfo = &dma->dp_sglinfo;
4221 
4222 	/*
4223 	 * the copy buffer should be a whole multiple of page size. We know that
4224 	 * this cookie is <= MMU_PAGESIZE.
4225 	 */
4226 	ASSERT(cookie->dmac_size <= MMU_PAGESIZE);
4227 
4228 	/*
4229 	 * from now on, all new windows in this bind need to be re-mapped during
4230 	 * ddi_dma_getwin() (32-bit kernel only). i.e. we ran out out copybuf
4231 	 * space...
4232 	 */
4233 #if !defined(__amd64)
4234 	dma->dp_cb_remaping = B_TRUE;
4235 #endif
4236 
4237 	/* reset copybuf used */
4238 	*copybuf_used = 0;
4239 
4240 	/*
4241 	 * if we don't have to trim (since granularity is set to 1), go to the
4242 	 * next window and add the current cookie to it. We know the current
4243 	 * cookie uses the copy buffer since we're in this code path.
4244 	 */
4245 	if (!dma->dp_trim_required) {
4246 		(*windowp)++;
4247 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4248 
4249 		/* Add this cookie to the new window */
4250 		(*windowp)->wd_cookie_cnt++;
4251 		(*windowp)->wd_size += cookie->dmac_size;
4252 		*copybuf_used += MMU_PAGESIZE;
4253 		return (DDI_SUCCESS);
4254 	}
4255 
4256 	/*
4257 	 * *** may need to trim, figure it out.
4258 	 */
4259 
4260 	/* figure out how much we need to trim from the window */
4261 	if (dma->dp_granularity_power_2) {
4262 		trim_sz = (*windowp)->wd_size &
4263 		    (hp->dmai_attr.dma_attr_granular - 1);
4264 	} else {
4265 		trim_sz = (*windowp)->wd_size % hp->dmai_attr.dma_attr_granular;
4266 	}
4267 
4268 	/*
4269 	 * if the window's a whole multiple of granularity, go to the next
4270 	 * window, init it, then add in the current cookie. We know the current
4271 	 * cookie uses the copy buffer since we're in this code path.
4272 	 */
4273 	if (trim_sz == 0) {
4274 		(*windowp)++;
4275 		rootnex_init_win(hp, dma, *windowp, cookie, cur_offset);
4276 
4277 		/* Add this cookie to the new window */
4278 		(*windowp)->wd_cookie_cnt++;
4279 		(*windowp)->wd_size += cookie->dmac_size;
4280 		*copybuf_used += MMU_PAGESIZE;
4281 		return (DDI_SUCCESS);
4282 	}
4283 
4284 	/*
4285 	 * *** We figured it out, we definitly need to trim
4286 	 */
4287 
4288 	/*
4289 	 * make sure the driver isn't making us do something bad...
4290 	 * Trimming and sgllen == 1 don't go together.
4291 	 */
4292 	if (hp->dmai_attr.dma_attr_sgllen == 1) {
4293 		return (DDI_DMA_NOMAPPING);
4294 	}
4295 
4296 	/*
4297 	 * first, setup the current window to account for the trim. Need to go
4298 	 * back to the last cookie for this. Some of the last cookie will be in
4299 	 * the current window, and some of the last cookie will be in the new
4300 	 * window. All of the current cookie will be in the new window.
4301 	 */
4302 	cookie--;
4303 	(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4304 	(*windowp)->wd_trim.tr_last_cookie = cookie;
4305 	(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4306 	ASSERT(cookie->dmac_size > trim_sz);
4307 	(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4308 	(*windowp)->wd_size -= trim_sz;
4309 
4310 	/*
4311 	 * we're trimming the last cookie (not the current cookie). So that
4312 	 * last cookie may have or may not have been using the copy buffer (
4313 	 * we know the cookie passed in uses the copy buffer since we're in
4314 	 * this code path).
4315 	 *
4316 	 * If the last cookie doesn't use the copy buffer, nothing special to
4317 	 * do. However, if it does uses the copy buffer, it will be both the
4318 	 * last page in the current window and the first page in the next
4319 	 * window. Since we are reusing the copy buffer (and KVA space on the
4320 	 * 32-bit kernel), this page will use the end of the copy buffer in the
4321 	 * current window, and the start of the copy buffer in the next window.
4322 	 * Track that info... The cookie physical address was already set to
4323 	 * the copy buffer physical address in setup_cookie..
4324 	 */
4325 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4326 		pidx = (sinfo->si_buf_offset + (*windowp)->wd_offset +
4327 		    (*windowp)->wd_size) >> MMU_PAGESHIFT;
4328 		(*windowp)->wd_trim.tr_last_copybuf_win = B_TRUE;
4329 		(*windowp)->wd_trim.tr_last_pidx = pidx;
4330 		(*windowp)->wd_trim.tr_last_cbaddr =
4331 		    dma->dp_pgmap[pidx].pm_cbaddr;
4332 #if !defined(__amd64)
4333 		(*windowp)->wd_trim.tr_last_kaddr =
4334 		    dma->dp_pgmap[pidx].pm_kaddr;
4335 #endif
4336 	}
4337 
4338 	/* save the buffer offsets for the next window */
4339 	coffset = cookie->dmac_size - trim_sz;
4340 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4341 
4342 	/*
4343 	 * set this now in case this is the first window. all other cases are
4344 	 * set in dma_win()
4345 	 */
4346 	cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4347 
4348 	/*
4349 	 * initialize the next window using what's left over in the previous
4350 	 * cookie.
4351 	 */
4352 	(*windowp)++;
4353 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4354 	(*windowp)->wd_cookie_cnt++;
4355 	(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4356 	(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress + coffset;
4357 	(*windowp)->wd_trim.tr_first_size = trim_sz;
4358 
4359 	/*
4360 	 * again, we're tracking if the last cookie uses the copy buffer.
4361 	 * read the comment above for more info on why we need to track
4362 	 * additional state.
4363 	 *
4364 	 * For the first cookie in the new window, we need reset the physical
4365 	 * address to DMA into to the start of the copy buffer plus any
4366 	 * initial page offset which may be present.
4367 	 */
4368 	if (cookie->dmac_type & ROOTNEX_USES_COPYBUF) {
4369 		(*windowp)->wd_dosync = B_TRUE;
4370 		(*windowp)->wd_trim.tr_first_copybuf_win = B_TRUE;
4371 		(*windowp)->wd_trim.tr_first_pidx = pidx;
4372 		(*windowp)->wd_trim.tr_first_cbaddr = dma->dp_cbaddr;
4373 		poff = (*windowp)->wd_trim.tr_first_paddr & MMU_PAGEOFFSET;
4374 
4375 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, dma->dp_cbaddr)) +
4376 		    poff;
4377 		(*windowp)->wd_trim.tr_first_paddr =
4378 		    ROOTNEX_PADDR_TO_RBASE(paddr);
4379 
4380 #if !defined(__amd64)
4381 		(*windowp)->wd_trim.tr_first_kaddr = dma->dp_kva;
4382 #endif
4383 		/* account for the cookie copybuf usage in the new window */
4384 		*copybuf_used += MMU_PAGESIZE;
4385 
4386 		/*
4387 		 * every piece of code has to have a hack, and here is this
4388 		 * ones :-)
4389 		 *
4390 		 * There is a complex interaction between setup_cookie and the
4391 		 * copybuf window boundary. The complexity had to be in either
4392 		 * the maxxfer window, or the copybuf window, and I chose the
4393 		 * copybuf code.
4394 		 *
4395 		 * So in this code path, we have taken the last cookie,
4396 		 * virtually broken it in half due to the trim, and it happens
4397 		 * to use the copybuf which further complicates life. At the
4398 		 * same time, we have already setup the current cookie, which
4399 		 * is now wrong. More background info: the current cookie uses
4400 		 * the copybuf, so it is only a page long max. So we need to
4401 		 * fix the current cookies copy buffer address, physical
4402 		 * address, and kva for the 32-bit kernel. We due this by
4403 		 * bumping them by page size (of course, we can't due this on
4404 		 * the physical address since the copy buffer may not be
4405 		 * physically contiguous).
4406 		 */
4407 		cookie++;
4408 		dma->dp_pgmap[pidx + 1].pm_cbaddr += MMU_PAGESIZE;
4409 		poff = cookie->dmac_laddress & MMU_PAGEOFFSET;
4410 
4411 		paddr = pfn_to_pa(hat_getpfnum(kas.a_hat,
4412 		    dma->dp_pgmap[pidx + 1].pm_cbaddr)) + poff;
4413 		cookie->dmac_laddress = ROOTNEX_PADDR_TO_RBASE(paddr);
4414 
4415 #if !defined(__amd64)
4416 		ASSERT(dma->dp_pgmap[pidx + 1].pm_mapped == B_FALSE);
4417 		dma->dp_pgmap[pidx + 1].pm_kaddr += MMU_PAGESIZE;
4418 #endif
4419 	} else {
4420 		/* go back to the current cookie */
4421 		cookie++;
4422 	}
4423 
4424 	/*
4425 	 * add the current cookie to the new window. set the new window size to
4426 	 * the what was left over from the previous cookie and what's in the
4427 	 * current cookie.
4428 	 */
4429 	(*windowp)->wd_cookie_cnt++;
4430 	(*windowp)->wd_size = trim_sz + cookie->dmac_size;
4431 	ASSERT((*windowp)->wd_size < dma->dp_maxxfer);
4432 
4433 	/*
4434 	 * we know that the cookie passed in always uses the copy buffer. We
4435 	 * wouldn't be here if it didn't.
4436 	 */
4437 	*copybuf_used += MMU_PAGESIZE;
4438 
4439 	return (DDI_SUCCESS);
4440 }
4441 
4442 
4443 /*
4444  * rootnex_maxxfer_window_boundary()
4445  *    Called in bind slowpath when we get to a window boundary because we will
4446  *    go over maxxfer.
4447  */
4448 static int
4449 rootnex_maxxfer_window_boundary(ddi_dma_impl_t *hp, rootnex_dma_t *dma,
4450     rootnex_window_t **windowp, ddi_dma_cookie_t *cookie)
4451 {
4452 	size_t dmac_size;
4453 	off_t new_offset;
4454 	size_t trim_sz;
4455 	off_t coffset;
4456 
4457 
4458 	/*
4459 	 * calculate how much we have to trim off of the current cookie to equal
4460 	 * maxxfer. We don't have to account for granularity here since our
4461 	 * maxxfer already takes that into account.
4462 	 */
4463 	trim_sz = ((*windowp)->wd_size + cookie->dmac_size) - dma->dp_maxxfer;
4464 	ASSERT(trim_sz <= cookie->dmac_size);
4465 	ASSERT(trim_sz <= dma->dp_maxxfer);
4466 
4467 	/* save cookie size since we need it later and we might change it */
4468 	dmac_size = cookie->dmac_size;
4469 
4470 	/*
4471 	 * if we're not trimming the entire cookie, setup the current window to
4472 	 * account for the trim.
4473 	 */
4474 	if (trim_sz < cookie->dmac_size) {
4475 		(*windowp)->wd_cookie_cnt++;
4476 		(*windowp)->wd_trim.tr_trim_last = B_TRUE;
4477 		(*windowp)->wd_trim.tr_last_cookie = cookie;
4478 		(*windowp)->wd_trim.tr_last_paddr = cookie->dmac_laddress;
4479 		(*windowp)->wd_trim.tr_last_size = cookie->dmac_size - trim_sz;
4480 		(*windowp)->wd_size = dma->dp_maxxfer;
4481 
4482 		/*
4483 		 * set the adjusted cookie size now in case this is the first
4484 		 * window. All other windows are taken care of in get win
4485 		 */
4486 		cookie->dmac_size = (*windowp)->wd_trim.tr_last_size;
4487 	}
4488 
4489 	/*
4490 	 * coffset is the current offset within the cookie, new_offset is the
4491 	 * current offset with the entire buffer.
4492 	 */
4493 	coffset = dmac_size - trim_sz;
4494 	new_offset = (*windowp)->wd_offset + (*windowp)->wd_size;
4495 
4496 	/* initialize the next window */
4497 	(*windowp)++;
4498 	rootnex_init_win(hp, dma, *windowp, cookie, new_offset);
4499 	(*windowp)->wd_cookie_cnt++;
4500 	(*windowp)->wd_size = trim_sz;
4501 	if (trim_sz < dmac_size) {
4502 		(*windowp)->wd_trim.tr_trim_first = B_TRUE;
4503 		(*windowp)->wd_trim.tr_first_paddr = cookie->dmac_laddress +
4504 		    coffset;
4505 		(*windowp)->wd_trim.tr_first_size = trim_sz;
4506 	}
4507 
4508 	return (DDI_SUCCESS);
4509 }
4510 
4511 
4512 /*ARGSUSED*/
4513 static int
4514 rootnex_coredma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4515     off_t off, size_t len, uint_t cache_flags)
4516 {
4517 	rootnex_sglinfo_t *sinfo;
4518 	rootnex_pgmap_t *cbpage;
4519 	rootnex_window_t *win;
4520 	ddi_dma_impl_t *hp;
4521 	rootnex_dma_t *dma;
4522 	caddr_t fromaddr;
4523 	caddr_t toaddr;
4524 	uint_t psize;
4525 	off_t offset;
4526 	uint_t pidx;
4527 	size_t size;
4528 	off_t poff;
4529 	int e;
4530 
4531 
4532 	hp = (ddi_dma_impl_t *)handle;
4533 	dma = (rootnex_dma_t *)hp->dmai_private;
4534 	sinfo = &dma->dp_sglinfo;
4535 
4536 	/*
4537 	 * if we don't have any windows, we don't need to sync. A copybuf
4538 	 * will cause us to have at least one window.
4539 	 */
4540 	if (dma->dp_window == NULL) {
4541 		return (DDI_SUCCESS);
4542 	}
4543 
4544 	/* This window may not need to be sync'd */
4545 	win = &dma->dp_window[dma->dp_current_win];
4546 	if (!win->wd_dosync) {
4547 		return (DDI_SUCCESS);
4548 	}
4549 
4550 	/* handle off and len special cases */
4551 	if ((off == 0) || (rootnex_sync_ignore_params)) {
4552 		offset = win->wd_offset;
4553 	} else {
4554 		offset = off;
4555 	}
4556 	if ((len == 0) || (rootnex_sync_ignore_params)) {
4557 		size = win->wd_size;
4558 	} else {
4559 		size = len;
4560 	}
4561 
4562 	/* check the sync args to make sure they make a little sense */
4563 	if (rootnex_sync_check_parms) {
4564 		e = rootnex_valid_sync_parms(hp, win, offset, size,
4565 		    cache_flags);
4566 		if (e != DDI_SUCCESS) {
4567 			ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_SYNC_FAIL]);
4568 			return (DDI_FAILURE);
4569 		}
4570 	}
4571 
4572 	/*
4573 	 * special case the first page to handle the offset into the page. The
4574 	 * offset to the current page for our buffer is the offset into the
4575 	 * first page of the buffer plus our current offset into the buffer
4576 	 * itself, masked of course.
4577 	 */
4578 	poff = (sinfo->si_buf_offset + offset) & MMU_PAGEOFFSET;
4579 	psize = MIN((MMU_PAGESIZE - poff), size);
4580 
4581 	/* go through all the pages that we want to sync */
4582 	while (size > 0) {
4583 		/*
4584 		 * Calculate the page index relative to the start of the buffer.
4585 		 * The index to the current page for our buffer is the offset
4586 		 * into the first page of the buffer plus our current offset
4587 		 * into the buffer itself, shifted of course...
4588 		 */
4589 		pidx = (sinfo->si_buf_offset + offset) >> MMU_PAGESHIFT;
4590 		ASSERT(pidx < sinfo->si_max_pages);
4591 
4592 		/*
4593 		 * if this page uses the copy buffer, we need to sync it,
4594 		 * otherwise, go on to the next page.
4595 		 */
4596 		cbpage = &dma->dp_pgmap[pidx];
4597 		ASSERT((cbpage->pm_uses_copybuf == B_TRUE) ||
4598 		    (cbpage->pm_uses_copybuf == B_FALSE));
4599 		if (cbpage->pm_uses_copybuf) {
4600 			/* cbaddr and kaddr should be page aligned */
4601 			ASSERT(((uintptr_t)cbpage->pm_cbaddr &
4602 			    MMU_PAGEOFFSET) == 0);
4603 			ASSERT(((uintptr_t)cbpage->pm_kaddr &
4604 			    MMU_PAGEOFFSET) == 0);
4605 
4606 			/*
4607 			 * if we're copying for the device, we are going to
4608 			 * copy from the drivers buffer and to the rootnex
4609 			 * allocated copy buffer.
4610 			 */
4611 			if (cache_flags == DDI_DMA_SYNC_FORDEV) {
4612 				fromaddr = cbpage->pm_kaddr + poff;
4613 				toaddr = cbpage->pm_cbaddr + poff;
4614 				ROOTNEX_DPROBE2(rootnex__sync__dev,
4615 				    dev_info_t *, dma->dp_dip, size_t, psize);
4616 
4617 			/*
4618 			 * if we're copying for the cpu/kernel, we are going to
4619 			 * copy from the rootnex allocated copy buffer to the
4620 			 * drivers buffer.
4621 			 */
4622 			} else {
4623 				fromaddr = cbpage->pm_cbaddr + poff;
4624 				toaddr = cbpage->pm_kaddr + poff;
4625 				ROOTNEX_DPROBE2(rootnex__sync__cpu,
4626 				    dev_info_t *, dma->dp_dip, size_t, psize);
4627 			}
4628 
4629 			bcopy(fromaddr, toaddr, psize);
4630 		}
4631 
4632 		/*
4633 		 * decrement size until we're done, update our offset into the
4634 		 * buffer, and get the next page size.
4635 		 */
4636 		size -= psize;
4637 		offset += psize;
4638 		psize = MIN(MMU_PAGESIZE, size);
4639 
4640 		/* page offset is zero for the rest of this loop */
4641 		poff = 0;
4642 	}
4643 
4644 	return (DDI_SUCCESS);
4645 }
4646 
4647 /*
4648  * rootnex_dma_sync()
4649  *    called from ddi_dma_sync() if DMP_NOSYNC is not set in hp->dmai_rflags.
4650  *    We set DMP_NOSYNC if we're not using the copy buffer. If DMP_NOSYNC
4651  *    is set, ddi_dma_sync() returns immediately passing back success.
4652  */
4653 /*ARGSUSED*/
4654 static int
4655 rootnex_dma_sync(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4656     off_t off, size_t len, uint_t cache_flags)
4657 {
4658 #if defined(__amd64) && !defined(__xpv)
4659 	if (IOMMU_USED(rdip)) {
4660 		return (iommulib_nexdma_sync(dip, rdip, handle, off, len,
4661 		    cache_flags));
4662 	}
4663 #endif
4664 	return (rootnex_coredma_sync(dip, rdip, handle, off, len,
4665 	    cache_flags));
4666 }
4667 
4668 /*
4669  * rootnex_valid_sync_parms()
4670  *    checks the parameters passed to sync to verify they are correct.
4671  */
4672 static int
4673 rootnex_valid_sync_parms(ddi_dma_impl_t *hp, rootnex_window_t *win,
4674     off_t offset, size_t size, uint_t cache_flags)
4675 {
4676 	off_t woffset;
4677 
4678 
4679 	/*
4680 	 * the first part of the test to make sure the offset passed in is
4681 	 * within the window.
4682 	 */
4683 	if (offset < win->wd_offset) {
4684 		return (DDI_FAILURE);
4685 	}
4686 
4687 	/*
4688 	 * second and last part of the test to make sure the offset and length
4689 	 * passed in is within the window.
4690 	 */
4691 	woffset = offset - win->wd_offset;
4692 	if ((woffset + size) > win->wd_size) {
4693 		return (DDI_FAILURE);
4694 	}
4695 
4696 	/*
4697 	 * if we are sync'ing for the device, the DDI_DMA_WRITE flag should
4698 	 * be set too.
4699 	 */
4700 	if ((cache_flags == DDI_DMA_SYNC_FORDEV) &&
4701 	    (hp->dmai_rflags & DDI_DMA_WRITE)) {
4702 		return (DDI_SUCCESS);
4703 	}
4704 
4705 	/*
4706 	 * at this point, either DDI_DMA_SYNC_FORCPU or DDI_DMA_SYNC_FORKERNEL
4707 	 * should be set. Also DDI_DMA_READ should be set in the flags.
4708 	 */
4709 	if (((cache_flags == DDI_DMA_SYNC_FORCPU) ||
4710 	    (cache_flags == DDI_DMA_SYNC_FORKERNEL)) &&
4711 	    (hp->dmai_rflags & DDI_DMA_READ)) {
4712 		return (DDI_SUCCESS);
4713 	}
4714 
4715 	return (DDI_FAILURE);
4716 }
4717 
4718 
4719 /*ARGSUSED*/
4720 static int
4721 rootnex_coredma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4722     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4723     uint_t *ccountp)
4724 {
4725 	rootnex_window_t *window;
4726 	rootnex_trim_t *trim;
4727 	ddi_dma_impl_t *hp;
4728 	rootnex_dma_t *dma;
4729 	ddi_dma_obj_t *dmao;
4730 #if !defined(__amd64)
4731 	rootnex_sglinfo_t *sinfo;
4732 	rootnex_pgmap_t *pmap;
4733 	uint_t pidx;
4734 	uint_t pcnt;
4735 	off_t poff;
4736 	int i;
4737 #endif
4738 
4739 
4740 	hp = (ddi_dma_impl_t *)handle;
4741 	dma = (rootnex_dma_t *)hp->dmai_private;
4742 #if !defined(__amd64)
4743 	sinfo = &dma->dp_sglinfo;
4744 #endif
4745 
4746 	/* If we try and get a window which doesn't exist, return failure */
4747 	if (win >= hp->dmai_nwin) {
4748 		ROOTNEX_DPROF_INC(&rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4749 		return (DDI_FAILURE);
4750 	}
4751 
4752 	dmao = dma->dp_dvma_used ? &dma->dp_dvma : &dma->dp_dma;
4753 
4754 	/*
4755 	 * if we don't have any windows, and they're asking for the first
4756 	 * window, setup the cookie pointer to the first cookie in the bind.
4757 	 * setup our return values, then increment the cookie since we return
4758 	 * the first cookie on the stack.
4759 	 */
4760 	if (dma->dp_window == NULL) {
4761 		if (win != 0) {
4762 			ROOTNEX_DPROF_INC(
4763 			    &rootnex_cnt[ROOTNEX_CNT_GETWIN_FAIL]);
4764 			return (DDI_FAILURE);
4765 		}
4766 		hp->dmai_cookie = dma->dp_cookies;
4767 		*offp = 0;
4768 		*lenp = dmao->dmao_size;
4769 		*ccountp = dma->dp_sglinfo.si_sgl_size;
4770 		*cookiep = hp->dmai_cookie[0];
4771 		hp->dmai_cookie++;
4772 		return (DDI_SUCCESS);
4773 	}
4774 
4775 	/* sync the old window before moving on to the new one */
4776 	window = &dma->dp_window[dma->dp_current_win];
4777 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_READ)) {
4778 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4779 		    DDI_DMA_SYNC_FORCPU);
4780 	}
4781 
4782 #if !defined(__amd64)
4783 	/*
4784 	 * before we move to the next window, if we need to re-map, unmap all
4785 	 * the pages in this window.
4786 	 */
4787 	if (dma->dp_cb_remaping) {
4788 		/*
4789 		 * If we switch to this window again, we'll need to map in
4790 		 * on the fly next time.
4791 		 */
4792 		window->wd_remap_copybuf = B_TRUE;
4793 
4794 		/*
4795 		 * calculate the page index into the buffer where this window
4796 		 * starts, and the number of pages this window takes up.
4797 		 */
4798 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4799 		    MMU_PAGESHIFT;
4800 		poff = (sinfo->si_buf_offset + window->wd_offset) &
4801 		    MMU_PAGEOFFSET;
4802 		pcnt = mmu_btopr(window->wd_size + poff);
4803 		ASSERT((pidx + pcnt) <= sinfo->si_max_pages);
4804 
4805 		/* unmap pages which are currently mapped in this window */
4806 		for (i = 0; i < pcnt; i++) {
4807 			if (dma->dp_pgmap[pidx].pm_mapped) {
4808 				hat_unload(kas.a_hat,
4809 				    dma->dp_pgmap[pidx].pm_kaddr, MMU_PAGESIZE,
4810 				    HAT_UNLOAD);
4811 				dma->dp_pgmap[pidx].pm_mapped = B_FALSE;
4812 			}
4813 			pidx++;
4814 		}
4815 	}
4816 #endif
4817 
4818 	/*
4819 	 * Move to the new window.
4820 	 * NOTE: current_win must be set for sync to work right
4821 	 */
4822 	dma->dp_current_win = win;
4823 	window = &dma->dp_window[win];
4824 
4825 	/* if needed, adjust the first and/or last cookies for trim */
4826 	trim = &window->wd_trim;
4827 	if (trim->tr_trim_first) {
4828 		window->wd_first_cookie->dmac_laddress = trim->tr_first_paddr;
4829 		window->wd_first_cookie->dmac_size = trim->tr_first_size;
4830 #if !defined(__amd64)
4831 		window->wd_first_cookie->dmac_type =
4832 		    (window->wd_first_cookie->dmac_type &
4833 		    ROOTNEX_USES_COPYBUF) + window->wd_offset;
4834 #endif
4835 		if (trim->tr_first_copybuf_win) {
4836 			dma->dp_pgmap[trim->tr_first_pidx].pm_cbaddr =
4837 			    trim->tr_first_cbaddr;
4838 #if !defined(__amd64)
4839 			dma->dp_pgmap[trim->tr_first_pidx].pm_kaddr =
4840 			    trim->tr_first_kaddr;
4841 #endif
4842 		}
4843 	}
4844 	if (trim->tr_trim_last) {
4845 		trim->tr_last_cookie->dmac_laddress = trim->tr_last_paddr;
4846 		trim->tr_last_cookie->dmac_size = trim->tr_last_size;
4847 		if (trim->tr_last_copybuf_win) {
4848 			dma->dp_pgmap[trim->tr_last_pidx].pm_cbaddr =
4849 			    trim->tr_last_cbaddr;
4850 #if !defined(__amd64)
4851 			dma->dp_pgmap[trim->tr_last_pidx].pm_kaddr =
4852 			    trim->tr_last_kaddr;
4853 #endif
4854 		}
4855 	}
4856 
4857 	/*
4858 	 * setup the cookie pointer to the first cookie in the window. setup
4859 	 * our return values, then increment the cookie since we return the
4860 	 * first cookie on the stack.
4861 	 */
4862 	hp->dmai_cookie = window->wd_first_cookie;
4863 	*offp = window->wd_offset;
4864 	*lenp = window->wd_size;
4865 	*ccountp = window->wd_cookie_cnt;
4866 	*cookiep = hp->dmai_cookie[0];
4867 	hp->dmai_cookie++;
4868 
4869 #if !defined(__amd64)
4870 	/* re-map copybuf if required for this window */
4871 	if (dma->dp_cb_remaping) {
4872 		/*
4873 		 * calculate the page index into the buffer where this
4874 		 * window starts.
4875 		 */
4876 		pidx = (sinfo->si_buf_offset + window->wd_offset) >>
4877 		    MMU_PAGESHIFT;
4878 		ASSERT(pidx < sinfo->si_max_pages);
4879 
4880 		/*
4881 		 * the first page can get unmapped if it's shared with the
4882 		 * previous window. Even if the rest of this window is already
4883 		 * mapped in, we need to still check this one.
4884 		 */
4885 		pmap = &dma->dp_pgmap[pidx];
4886 		if ((pmap->pm_uses_copybuf) && (pmap->pm_mapped == B_FALSE)) {
4887 			if (pmap->pm_pp != NULL) {
4888 				pmap->pm_mapped = B_TRUE;
4889 				i86_pp_map(pmap->pm_pp, pmap->pm_kaddr);
4890 			} else if (pmap->pm_vaddr != NULL) {
4891 				pmap->pm_mapped = B_TRUE;
4892 				i86_va_map(pmap->pm_vaddr, sinfo->si_asp,
4893 				    pmap->pm_kaddr);
4894 			}
4895 		}
4896 		pidx++;
4897 
4898 		/* map in the rest of the pages if required */
4899 		if (window->wd_remap_copybuf) {
4900 			window->wd_remap_copybuf = B_FALSE;
4901 
4902 			/* figure out many pages this window takes up */
4903 			poff = (sinfo->si_buf_offset + window->wd_offset) &
4904 			    MMU_PAGEOFFSET;
4905 			pcnt = mmu_btopr(window->wd_size + poff);
4906 			ASSERT(((pidx - 1) + pcnt) <= sinfo->si_max_pages);
4907 
4908 			/* map pages which require it */
4909 			for (i = 1; i < pcnt; i++) {
4910 				pmap = &dma->dp_pgmap[pidx];
4911 				if (pmap->pm_uses_copybuf) {
4912 					ASSERT(pmap->pm_mapped == B_FALSE);
4913 					if (pmap->pm_pp != NULL) {
4914 						pmap->pm_mapped = B_TRUE;
4915 						i86_pp_map(pmap->pm_pp,
4916 						    pmap->pm_kaddr);
4917 					} else if (pmap->pm_vaddr != NULL) {
4918 						pmap->pm_mapped = B_TRUE;
4919 						i86_va_map(pmap->pm_vaddr,
4920 						    sinfo->si_asp,
4921 						    pmap->pm_kaddr);
4922 					}
4923 				}
4924 				pidx++;
4925 			}
4926 		}
4927 	}
4928 #endif
4929 
4930 	/* if the new window uses the copy buffer, sync it for the device */
4931 	if ((window->wd_dosync) && (hp->dmai_rflags & DDI_DMA_WRITE)) {
4932 		(void) rootnex_coredma_sync(dip, rdip, handle, 0, 0,
4933 		    DDI_DMA_SYNC_FORDEV);
4934 	}
4935 
4936 	return (DDI_SUCCESS);
4937 }
4938 
4939 /*
4940  * rootnex_dma_win()
4941  *    called from ddi_dma_getwin()
4942  */
4943 /*ARGSUSED*/
4944 static int
4945 rootnex_dma_win(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
4946     uint_t win, off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
4947     uint_t *ccountp)
4948 {
4949 #if defined(__amd64) && !defined(__xpv)
4950 	if (IOMMU_USED(rdip)) {
4951 		return (iommulib_nexdma_win(dip, rdip, handle, win, offp, lenp,
4952 		    cookiep, ccountp));
4953 	}
4954 #endif
4955 
4956 	return (rootnex_coredma_win(dip, rdip, handle, win, offp, lenp,
4957 	    cookiep, ccountp));
4958 }
4959 
4960 #if defined(__amd64) && !defined(__xpv)
4961 /*ARGSUSED*/
4962 static int
4963 rootnex_coredma_hdl_setprivate(dev_info_t *dip, dev_info_t *rdip,
4964     ddi_dma_handle_t handle, void *v)
4965 {
4966 	ddi_dma_impl_t *hp;
4967 	rootnex_dma_t *dma;
4968 
4969 	hp = (ddi_dma_impl_t *)handle;
4970 	dma = (rootnex_dma_t *)hp->dmai_private;
4971 	dma->dp_iommu_private = v;
4972 
4973 	return (DDI_SUCCESS);
4974 }
4975 
4976 /*ARGSUSED*/
4977 static void *
4978 rootnex_coredma_hdl_getprivate(dev_info_t *dip, dev_info_t *rdip,
4979     ddi_dma_handle_t handle)
4980 {
4981 	ddi_dma_impl_t *hp;
4982 	rootnex_dma_t *dma;
4983 
4984 	hp = (ddi_dma_impl_t *)handle;
4985 	dma = (rootnex_dma_t *)hp->dmai_private;
4986 
4987 	return (dma->dp_iommu_private);
4988 }
4989 #endif
4990 
4991 /*
4992  * ************************
4993  *  obsoleted dma routines
4994  * ************************
4995  */
4996 
4997 /*
4998  * rootnex_dma_mctl()
4999  *
5000  * We don't support this legacy interface any more on x86.
5001  */
5002 /* ARGSUSED */
5003 static int
5004 rootnex_dma_mctl(dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t handle,
5005     enum ddi_dma_ctlops request, off_t *offp, size_t *lenp, caddr_t *objpp,
5006     uint_t cache_flags)
5007 {
5008 	/*
5009 	 * The only thing dma_mctl is usef for anymore is legacy SPARC
5010 	 * dvma and sbus-specific routines.
5011 	 */
5012 	return (DDI_FAILURE);
5013 }
5014 
5015 /*
5016  * *********
5017  *  FMA Code
5018  * *********
5019  */
5020 
5021 /*
5022  * rootnex_fm_init()
5023  *    FMA init busop
5024  */
5025 /* ARGSUSED */
5026 static int
5027 rootnex_fm_init(dev_info_t *dip, dev_info_t *tdip, int tcap,
5028     ddi_iblock_cookie_t *ibc)
5029 {
5030 	*ibc = rootnex_state->r_err_ibc;
5031 
5032 	return (ddi_system_fmcap);
5033 }
5034 
5035 /*
5036  * rootnex_dma_check()
5037  *    Function called after a dma fault occurred to find out whether the
5038  *    fault address is associated with a driver that is able to handle faults
5039  *    and recover from faults.
5040  */
5041 /* ARGSUSED */
5042 static int
5043 rootnex_dma_check(dev_info_t *dip, const void *handle, const void *addr,
5044     const void *not_used)
5045 {
5046 	rootnex_window_t *window;
5047 	uint64_t start_addr;
5048 	uint64_t fault_addr;
5049 	ddi_dma_impl_t *hp;
5050 	rootnex_dma_t *dma;
5051 	uint64_t end_addr;
5052 	size_t csize;
5053 	int i;
5054 	int j;
5055 
5056 
5057 	/* The driver has to set DDI_DMA_FLAGERR to recover from dma faults */
5058 	hp = (ddi_dma_impl_t *)handle;
5059 	ASSERT(hp);
5060 
5061 	dma = (rootnex_dma_t *)hp->dmai_private;
5062 
5063 	/* Get the address that we need to search for */
5064 	fault_addr = *(uint64_t *)addr;
5065 
5066 	/*
5067 	 * if we don't have any windows, we can just walk through all the
5068 	 * cookies.
5069 	 */
5070 	if (dma->dp_window == NULL) {
5071 		/* for each cookie */
5072 		for (i = 0; i < dma->dp_sglinfo.si_sgl_size; i++) {
5073 			/*
5074 			 * if the faulted address is within the physical address
5075 			 * range of the cookie, return DDI_FM_NONFATAL.
5076 			 */
5077 			if ((fault_addr >= dma->dp_cookies[i].dmac_laddress) &&
5078 			    (fault_addr <= (dma->dp_cookies[i].dmac_laddress +
5079 			    dma->dp_cookies[i].dmac_size))) {
5080 				return (DDI_FM_NONFATAL);
5081 			}
5082 		}
5083 
5084 		/* fault_addr not within this DMA handle */
5085 		return (DDI_FM_UNKNOWN);
5086 	}
5087 
5088 	/* we have mutiple windows, walk through each window */
5089 	for (i = 0; i < hp->dmai_nwin; i++) {
5090 		window = &dma->dp_window[i];
5091 
5092 		/* Go through all the cookies in the window */
5093 		for (j = 0; j < window->wd_cookie_cnt; j++) {
5094 
5095 			start_addr = window->wd_first_cookie[j].dmac_laddress;
5096 			csize = window->wd_first_cookie[j].dmac_size;
5097 
5098 			/*
5099 			 * if we are trimming the first cookie in the window,
5100 			 * and this is the first cookie, adjust the start
5101 			 * address and size of the cookie to account for the
5102 			 * trim.
5103 			 */
5104 			if (window->wd_trim.tr_trim_first && (j == 0)) {
5105 				start_addr = window->wd_trim.tr_first_paddr;
5106 				csize = window->wd_trim.tr_first_size;
5107 			}
5108 
5109 			/*
5110 			 * if we are trimming the last cookie in the window,
5111 			 * and this is the last cookie, adjust the start
5112 			 * address and size of the cookie to account for the
5113 			 * trim.
5114 			 */
5115 			if (window->wd_trim.tr_trim_last &&
5116 			    (j == (window->wd_cookie_cnt - 1))) {
5117 				start_addr = window->wd_trim.tr_last_paddr;
5118 				csize = window->wd_trim.tr_last_size;
5119 			}
5120 
5121 			end_addr = start_addr + csize;
5122 
5123 			/*
5124 			 * if the faulted address is within the physical
5125 			 * address of the cookie, return DDI_FM_NONFATAL.
5126 			 */
5127 			if ((fault_addr >= start_addr) &&
5128 			    (fault_addr <= end_addr)) {
5129 				return (DDI_FM_NONFATAL);
5130 			}
5131 		}
5132 	}
5133 
5134 	/* fault_addr not within this DMA handle */
5135 	return (DDI_FM_UNKNOWN);
5136 }
5137 
5138 /*ARGSUSED*/
5139 static int
5140 rootnex_quiesce(dev_info_t *dip)
5141 {
5142 #if defined(__amd64) && !defined(__xpv)
5143 	return (immu_quiesce());
5144 #else
5145 	return (DDI_SUCCESS);
5146 #endif
5147 }
5148 
5149 #if defined(__xpv)
5150 void
5151 immu_init(void)
5152 {
5153 	;
5154 }
5155 
5156 void
5157 immu_startup(void)
5158 {
5159 	;
5160 }
5161 /*ARGSUSED*/
5162 void
5163 immu_physmem_update(uint64_t addr, uint64_t size)
5164 {
5165 	;
5166 }
5167 #endif
5168