xref: /titanic_52/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision fd9cb95cbb2f626355a60efb9d02c5f0a33c10e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * apic_introp.c:
31  *	Has code for Advanced DDI interrupt framework support.
32  */
33 
34 #include <sys/cpuvar.h>
35 #include <sys/psm.h>
36 #include "apic.h"
37 #include <sys/sunddi.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/trap.h>
40 #include <sys/pci.h>
41 #include <sys/pci_intr_lib.h>
42 
43 /*
44  *	Local Function Prototypes
45  */
46 int		apic_pci_msi_enable_vector(dev_info_t *, int, int,
47 		    int, int, int);
48 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
49 static int	apic_get_pending(apic_irq_t *, int);
50 static void	apic_clear_mask(apic_irq_t *);
51 static void	apic_set_mask(apic_irq_t *);
52 static uchar_t	apic_find_multi_vectors(int, int);
53 int		apic_navail_vector(dev_info_t *, int);
54 int		apic_alloc_vectors(dev_info_t *, int, int, int, int);
55 void		apic_free_vectors(dev_info_t *, int, int, int, int);
56 int		apic_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
57 		    psm_intr_op_t, int *);
58 
59 extern int	intr_clear(void);
60 extern void	intr_restore(uint_t);
61 extern uchar_t	apic_bind_intr(dev_info_t *, int, uchar_t, uchar_t);
62 extern int	apic_allocate_irq(int);
63 extern int	apic_introp_xlate(dev_info_t *, struct intrspec *, int);
64 
65 /*
66  * MSI support flag:
67  * reflects whether MSI is supported at APIC level
68  * it can also be patched through /etc/system
69  *
70  *  0 = default value - don't know and need to call apic_check_msi_support()
71  *      to find out then set it accordingly
72  *  1 = supported
73  * -1 = not supported
74  */
75 int	apic_support_msi = 0;
76 
77 /* Multiple vector support for MSI */
78 int	apic_multi_msi_enable = 1;
79 int	apic_multi_msi_max = 2;
80 
81 extern uchar_t		apic_ipltopri[MAXIPL+1];
82 extern uchar_t		apic_vector_to_irq[APIC_MAX_VECTOR+1];
83 extern int		apic_max_device_irq;
84 extern int		apic_min_device_irq;
85 extern apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
86 extern volatile uint32_t *apicadr; /* virtual addr of local APIC */
87 extern volatile int32_t	*apicioadr[MAX_IO_APIC];
88 extern lock_t		apic_ioapic_lock;
89 extern kmutex_t		airq_mutex;
90 extern apic_cpus_info_t	*apic_cpus;
91 
92 
93 /*
94  * apic_pci_msi_enable_vector:
95  *	Set the address/data fields in the MSI/X capability structure
96  *	XXX: MSI-X support
97  */
98 /* ARGSUSED */
99 int
100 apic_pci_msi_enable_vector(dev_info_t *dip, int type, int inum, int vector,
101     int count, int target_apic_id)
102 {
103 	uint64_t	msi_addr, msi_data;
104 
105 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
106 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
107 	    ddi_driver_name(dip), inum, vector, target_apic_id));
108 
109 	/* MSI Address */
110 	msi_addr = (MSI_ADDR_HDR | (target_apic_id << MSI_ADDR_DEST_SHIFT));
111 	msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
112 		    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
113 
114 	/* MSI Data: MSI is edge triggered according to spec */
115 	msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
116 
117 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
118 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
119 
120 	if (pci_msi_configure(dip, type, count, inum, msi_addr, msi_data) !=
121 	    DDI_SUCCESS) {
122 		DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: "
123 		    "pci_msi_configure failed\n"));
124 		return (PSM_FAILURE);
125 	}
126 
127 	return (PSM_SUCCESS);
128 }
129 
130 
131 /*
132  * This function returns the no. of vectors available for the pri.
133  * dip is not used at this moment.  If we really don't need that,
134  * it will be removed.
135  */
136 /*ARGSUSED*/
137 int
138 apic_navail_vector(dev_info_t *dip, int pri)
139 {
140 	int	lowest, highest, i, navail, count;
141 
142 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
143 	    (void *)dip, pri));
144 
145 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
146 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
147 	navail = count = 0;
148 
149 	/* It has to be contiguous */
150 	for (i = lowest; i < highest; i++) {
151 		count = 0;
152 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
153 			(i < highest)) {
154 			if ((i == T_FASTTRAP) || (i == APIC_SPUR_INTR))
155 				break;
156 			count++;
157 			i++;
158 		}
159 		if (count > navail)
160 			navail = count;
161 	}
162 	return (navail);
163 }
164 
165 static uchar_t
166 apic_find_multi_vectors(int pri, int count)
167 {
168 	int	lowest, highest, i, navail, start;
169 
170 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
171 	    pri, count));
172 
173 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
174 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
175 	navail = 0;
176 
177 	/* It has to be contiguous */
178 	for (i = lowest; i < highest; i++) {
179 		navail = 0;
180 		start = i;
181 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
182 			(i < highest)) {
183 			if ((i == T_FASTTRAP) || (i == APIC_SPUR_INTR))
184 				break;
185 			navail++;
186 			if (navail >= count)
187 				return (start);
188 			i++;
189 		}
190 	}
191 	return (0);
192 }
193 
194 
195 /*
196  * It finds the apic_irq_t associates with the dip, ispec and type.
197  */
198 apic_irq_t *
199 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
200 {
201 	apic_irq_t	*irqp;
202 	int i;
203 
204 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
205 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
206 	    ispec->intrspec_pri, type));
207 
208 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
209 		if ((irqp = apic_irq_table[i]) == NULL)
210 			continue;
211 		if ((irqp->airq_dip == dip) &&
212 		    (irqp->airq_origirq == ispec->intrspec_vec) &&
213 		    (irqp->airq_ipl == ispec->intrspec_pri)) {
214 			if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
215 				if (APIC_IS_MSI_OR_MSIX_INDEX(irqp->
216 				    airq_mps_intr_index))
217 					return (irqp);
218 			} else
219 				return (irqp);
220 		}
221 	}
222 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
223 	return (NULL);
224 }
225 
226 
227 /*
228  * This function will return the pending bit of the irqp.
229  * It either comes from the IRR register of the APIC or the RDT
230  * entry of the I/O APIC.
231  * For the IRR to work, it needs to be to its binding CPU
232  */
233 static int
234 apic_get_pending(apic_irq_t *irqp, int type)
235 {
236 	int			bit, index, irr, pending;
237 	int			intin_no;
238 	volatile int32_t 	*ioapic;
239 
240 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
241 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
242 	    type));
243 
244 	/* need to get on the bound cpu */
245 	mutex_enter(&cpu_lock);
246 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
247 
248 	index = irqp->airq_vector / 32;
249 	bit = irqp->airq_vector % 32;
250 	irr = apicadr[APIC_IRR_REG + index];
251 
252 	affinity_clear();
253 	mutex_exit(&cpu_lock);
254 
255 	pending = (irr & (1 << bit)) ? 1 : 0;
256 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
257 		/* check I/O APIC for fixed interrupt */
258 		intin_no = irqp->airq_intin_no;
259 		ioapic = apicioadr[irqp->airq_ioapicindex];
260 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
261 		    AV_PENDING) ? 1 : 0;
262 	}
263 	return (pending);
264 }
265 
266 
267 /*
268  * This function will clear the mask for the interrupt on the I/O APIC
269  */
270 static void
271 apic_clear_mask(apic_irq_t *irqp)
272 {
273 	int			intin_no;
274 	int			iflag;
275 	int32_t			rdt_entry;
276 	volatile int32_t 	*ioapic;
277 
278 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
279 	    (void *)irqp));
280 
281 	intin_no = irqp->airq_intin_no;
282 	ioapic = apicioadr[irqp->airq_ioapicindex];
283 
284 	iflag = intr_clear();
285 	lock_set(&apic_ioapic_lock);
286 
287 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
288 
289 	/* clear mask */
290 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
291 	    ((~AV_MASK) & rdt_entry));
292 
293 	lock_clear(&apic_ioapic_lock);
294 	intr_restore(iflag);
295 }
296 
297 
298 /*
299  * This function will mask the interrupt on the I/O APIC
300  */
301 static void
302 apic_set_mask(apic_irq_t *irqp)
303 {
304 	int			intin_no;
305 	volatile int32_t 	*ioapic;
306 	int			iflag;
307 	int32_t			rdt_entry;
308 
309 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
310 
311 	intin_no = irqp->airq_intin_no;
312 	ioapic = apicioadr[irqp->airq_ioapicindex];
313 
314 	iflag = intr_clear();
315 
316 	lock_set(&apic_ioapic_lock);
317 
318 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
319 
320 	/* mask it */
321 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
322 	    (AV_MASK | rdt_entry));
323 
324 	lock_clear(&apic_ioapic_lock);
325 	intr_restore(iflag);
326 }
327 
328 
329 /*
330  * This function allocate "count" vector(s) for the given "dip/pri/type"
331  */
332 int
333 apic_alloc_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
334 {
335 	int	rcount, i;
336 	uchar_t	start, irqno, cpu;
337 	short	idx;
338 	major_t	major;
339 	apic_irq_t	*irqptr;
340 
341 	/* for MSI/X only */
342 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
343 		return (0);
344 
345 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: dip=0x%p type=%d "
346 	    "inum=0x%x  pri=0x%x count=0x%x\n",
347 	    (void *)dip, type, inum, pri, count));
348 
349 	if (count > 1) {
350 		if (apic_multi_msi_enable == 0)
351 			count = 1;
352 		else if (count > apic_multi_msi_max)
353 			count = apic_multi_msi_max;
354 	}
355 
356 	if ((rcount = apic_navail_vector(dip, pri)) > count)
357 		rcount = count;
358 
359 	mutex_enter(&airq_mutex);
360 
361 	for (start = 0; rcount > 0; rcount--) {
362 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0)
363 			break;
364 	}
365 
366 	if (start == 0) {
367 		/* no vector available */
368 		mutex_exit(&airq_mutex);
369 		return (0);
370 	}
371 
372 	idx = (short)((type == DDI_INTR_TYPE_MSI) ? MSI_INDEX : MSIX_INDEX);
373 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
374 	for (i = 0; i < rcount; i++) {
375 		if ((irqno = apic_allocate_irq(APIC_FIRST_FREE_IRQ)) ==
376 		    (uchar_t)-1) {
377 			mutex_exit(&airq_mutex);
378 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
379 			    "apic_allocate_irq failed\n"));
380 			return (i);
381 		}
382 		apic_max_device_irq = max(irqno, apic_max_device_irq);
383 		apic_min_device_irq = min(irqno, apic_min_device_irq);
384 		irqptr = apic_irq_table[irqno];
385 #ifdef	DEBUG
386 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
387 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
388 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
389 #endif
390 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
391 
392 		irqptr->airq_vector = (uchar_t)(start + i);
393 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
394 		irqptr->airq_intin_no = (uchar_t)rcount;
395 		irqptr->airq_ipl = pri;
396 		irqptr->airq_vector = start + i;
397 		irqptr->airq_origirq = (uchar_t)(inum + i);
398 		irqptr->airq_share_id = 0;
399 		irqptr->airq_mps_intr_index = idx;
400 		irqptr->airq_dip = dip;
401 		irqptr->airq_major = major;
402 		if (i == 0) /* they all bound to the same cpu */
403 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
404 				0xff, 0xff);
405 		else
406 			irqptr->airq_cpu = cpu;
407 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: irq=0x%x "
408 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
409 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
410 		    irqptr->airq_origirq, pri));
411 	}
412 	mutex_exit(&airq_mutex);
413 	return (rcount);
414 }
415 
416 
417 void
418 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
419 {
420 	int i;
421 	apic_irq_t *irqptr;
422 	struct intrspec ispec;
423 
424 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
425 	    "count: %x pri: %x type: %x\n",
426 	    (void *)dip, inum, count, pri, type));
427 
428 	/* for MSI/X only */
429 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
430 		return;
431 
432 	for (i = 0; i < count; i++) {
433 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
434 		    "pri=0x%x count=0x%x\n", inum, pri, count));
435 		ispec.intrspec_vec = inum + i;
436 		ispec.intrspec_pri = pri;
437 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
438 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
439 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
440 			    "failed\n", (void *)dip, inum, pri));
441 			continue;
442 		}
443 		irqptr->airq_mps_intr_index = FREE_INDEX;
444 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
445 	}
446 }
447 
448 
449 /*
450  * check whether the system supports MSI
451  *
452  * If PCI-E capability is found, then this must be a PCI-E system.
453  * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
454  * to indicate this system supports MSI.
455  */
456 int
457 apic_check_msi_support(dev_info_t *dip)
458 {
459 
460 	dev_info_t *rootdip;
461 
462 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: dip: 0x%p\n",
463 	    (void *)dip));
464 
465 	/* check whether the device or its ancestors have PCI-E capability */
466 	for (rootdip = ddi_root_node(); dip != rootdip &&
467 	    pci_check_pciex(dip) != DDI_SUCCESS; dip = ddi_get_parent(dip));
468 
469 	/* PCI-E capability found */
470 	if (dip != rootdip) {
471 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: "
472 		    "PCI-E capability found @ nodename %s driver %s%d\n",
473 		    ddi_node_name(dip), ddi_driver_name(dip),
474 		    ddi_get_instance(dip)));
475 		return (PSM_SUCCESS);
476 	}
477 
478 	/* MSI is not supported on this system */
479 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: "
480 	    "no PCI-E capability found\n"));
481 	return (PSM_FAILURE);
482 }
483 
484 /*
485  * This function provides external interface to the nexus for all
486  * functionalities related to the new DDI interrupt framework.
487  *
488  * Input:
489  * dip     - pointer to the dev_info structure of the requested device
490  * hdlp    - pointer to the internal interrupt handle structure for the
491  *	     requested interrupt
492  * intr_op - opcode for this call
493  * result  - pointer to the integer that will hold the result to be
494  *	     passed back if return value is PSM_SUCCESS
495  *
496  * Output:
497  * return value is either PSM_SUCCESS or PSM_FAILURE
498  */
499 int
500 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
501     psm_intr_op_t intr_op, int *result)
502 {
503 	int		cap;
504 	int		count_vec;
505 	int		old_priority;
506 	int		new_priority;
507 	apic_irq_t	*irqp;
508 	struct intrspec *ispec, intr_spec;
509 
510 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
511 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
512 
513 	ispec = &intr_spec;
514 	ispec->intrspec_pri = hdlp->ih_pri;
515 	ispec->intrspec_vec = hdlp->ih_inum;
516 	ispec->intrspec_func = hdlp->ih_cb_func;
517 
518 	switch (intr_op) {
519 	case PSM_INTR_OP_CHECK_MSI:
520 		/*
521 		 * Check MSI/X is supported or not at APIC level and
522 		 * masked off the MSI/X bits in hdlp->ih_type if not
523 		 * supported before return.  If MSI/X is supported,
524 		 * leave the ih_type unchanged and return.
525 		 *
526 		 * hdlp->ih_type passed in from the nexus has all the
527 		 * interrupt types supported by the device.
528 		 */
529 		if (apic_support_msi == 0) {
530 			/*
531 			 * if apic_support_msi is not set, call
532 			 * apic_check_msi_support() to check whether msi
533 			 * is supported first
534 			 */
535 			if (apic_check_msi_support(dip) == PSM_SUCCESS)
536 				apic_support_msi = 1;
537 			else
538 				apic_support_msi = -1;
539 		}
540 		if (apic_support_msi == 1)
541 			*result = hdlp->ih_type;
542 		else
543 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
544 			    DDI_INTR_TYPE_MSIX);
545 		break;
546 	case PSM_INTR_OP_ALLOC_VECTORS:
547 		*result = apic_alloc_vectors(dip, hdlp->ih_inum,
548 		    hdlp->ih_scratch1, hdlp->ih_pri, hdlp->ih_type);
549 		break;
550 	case PSM_INTR_OP_FREE_VECTORS:
551 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
552 		    hdlp->ih_pri, hdlp->ih_type);
553 		break;
554 	case PSM_INTR_OP_NAVAIL_VECTORS:
555 		*result = apic_navail_vector(dip, hdlp->ih_pri);
556 		break;
557 	case PSM_INTR_OP_XLATE_VECTOR:
558 		ispec = (struct intrspec *)hdlp->ih_private;
559 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
560 		break;
561 	case PSM_INTR_OP_GET_PENDING:
562 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
563 			return (PSM_FAILURE);
564 		*result = apic_get_pending(irqp, hdlp->ih_type);
565 		break;
566 	case PSM_INTR_OP_CLEAR_MASK:
567 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
568 			return (PSM_FAILURE);
569 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
570 		if (irqp == NULL)
571 			return (PSM_FAILURE);
572 		apic_clear_mask(irqp);
573 		break;
574 	case PSM_INTR_OP_SET_MASK:
575 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
576 			return (PSM_FAILURE);
577 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
578 			return (PSM_FAILURE);
579 		apic_set_mask(irqp);
580 		break;
581 	case PSM_INTR_OP_GET_CAP:
582 		cap = DDI_INTR_FLAG_PENDING;
583 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
584 			cap |= DDI_INTR_FLAG_MASKABLE;
585 		*result = cap;
586 		break;
587 	case PSM_INTR_OP_GET_SHARED:
588 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
589 			return (PSM_FAILURE);
590 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
591 			return (PSM_FAILURE);
592 		*result = irqp->airq_share ? 1: 0;
593 		break;
594 	case PSM_INTR_OP_SET_PRI:
595 		old_priority = hdlp->ih_pri;	/* save old value */
596 		new_priority = *(int *)result;	/* try the new value */
597 
598 		/* First, check if "hdlp->ih_scratch1" vectors exist? */
599 		if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1)
600 			return (PSM_FAILURE);
601 
602 		/* Now allocate the vectors */
603 		count_vec = apic_alloc_vectors(dip, hdlp->ih_inum,
604 		    hdlp->ih_scratch1, new_priority, hdlp->ih_type);
605 
606 		/* Did we get fewer vectors? */
607 		if (count_vec != hdlp->ih_scratch1) {
608 			apic_free_vectors(dip, hdlp->ih_inum, count_vec,
609 			    new_priority, hdlp->ih_type);
610 			return (PSM_FAILURE);
611 		}
612 
613 		/* Finally, free the previously allocated vectors */
614 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
615 		    old_priority, hdlp->ih_type);
616 		hdlp->ih_pri = new_priority; /* set the new value */
617 		break;
618 	case PSM_INTR_OP_SET_CAP:
619 	default:
620 		return (PSM_FAILURE);
621 	}
622 	return (PSM_SUCCESS);
623 }
624