xref: /titanic_52/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision b449fa8aa1f53939091aeb3a5af8a8f3ba9d33dc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * apic_introp.c:
30  *	Has code for Advanced DDI interrupt framework support.
31  */
32 
33 #include <sys/cpuvar.h>
34 #include <sys/psm.h>
35 #include <sys/archsystm.h>
36 #include <sys/apic.h>
37 #include <sys/sunddi.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/mach_intr.h>
40 #include <sys/sysmacros.h>
41 #include <sys/trap.h>
42 #include <sys/pci.h>
43 #include <sys/pci_intr_lib.h>
44 
45 extern struct av_head autovect[];
46 
47 /*
48  *	Local Function Prototypes
49  */
50 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
51 
52 /*
53  * MSI support flag:
54  * reflects whether MSI is supported at APIC level
55  * it can also be patched through /etc/system
56  *
57  *  0 = default value - don't know and need to call apic_check_msi_support()
58  *      to find out then set it accordingly
59  *  1 = supported
60  * -1 = not supported
61  */
62 int	apic_support_msi = 0;
63 
64 /* Multiple vector support for MSI */
65 int	apic_multi_msi_enable = 1;
66 int	apic_multi_msi_max = 2;
67 
68 /* Maximum no. of MSI-X vectors supported */
69 int	apic_msix_enable = 1;
70 int	apic_msix_max = 2;
71 
72 /*
73  * apic_pci_msi_enable_vector:
74  *	Set the address/data fields in the MSI/X capability structure
75  *	XXX: MSI-X support
76  */
77 /* ARGSUSED */
78 void
79 apic_pci_msi_enable_vector(dev_info_t *dip, int type, int inum, int vector,
80     int count, int target_apic_id)
81 {
82 	uint64_t		msi_addr, msi_data;
83 	ushort_t		msi_ctrl;
84 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
85 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(dip);
86 
87 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
88 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
89 	    ddi_driver_name(dip), inum, vector, target_apic_id));
90 
91 	ASSERT((handle != NULL) && (cap_ptr != 0));
92 
93 	/* MSI Address */
94 	msi_addr = (MSI_ADDR_HDR | (target_apic_id << MSI_ADDR_DEST_SHIFT));
95 	msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
96 	    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
97 
98 	/* MSI Data: MSI is edge triggered according to spec */
99 	msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
100 
101 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
102 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
103 
104 	if (type == DDI_INTR_TYPE_MSI) {
105 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
106 
107 		/* Set the bits to inform how many MSIs are enabled */
108 		msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT);
109 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
110 
111 		pci_config_put32(handle,
112 		    cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr);
113 
114 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
115 			pci_config_put32(handle,
116 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32);
117 			pci_config_put16(handle,
118 			    cap_ptr + PCI_MSI_64BIT_DATA, msi_data);
119 		} else {
120 			pci_config_put16(handle,
121 			    cap_ptr + PCI_MSI_32BIT_DATA, msi_data);
122 		}
123 
124 	} else if (type == DDI_INTR_TYPE_MSIX) {
125 		uintptr_t	off;
126 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(dip);
127 
128 		/* Offset into the "inum"th entry in the MSI-X table */
129 		off = (uintptr_t)msix_p->msix_tbl_addr +
130 		    (inum  * PCI_MSIX_VECTOR_SIZE);
131 
132 		ddi_put32(msix_p->msix_tbl_hdl,
133 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data);
134 		ddi_put64(msix_p->msix_tbl_hdl,
135 		    (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr);
136 	}
137 }
138 
139 
140 /*
141  * This function returns the no. of vectors available for the pri.
142  * dip is not used at this moment.  If we really don't need that,
143  * it will be removed.
144  */
145 /*ARGSUSED*/
146 int
147 apic_navail_vector(dev_info_t *dip, int pri)
148 {
149 	int	lowest, highest, i, navail, count;
150 
151 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
152 	    (void *)dip, pri));
153 
154 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
155 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
156 	navail = count = 0;
157 
158 	/* It has to be contiguous */
159 	for (i = lowest; i < highest; i++) {
160 		count = 0;
161 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
162 		    (i < highest)) {
163 			if (APIC_CHECK_RESERVE_VECTORS(i))
164 				break;
165 			count++;
166 			i++;
167 		}
168 		if (count > navail)
169 			navail = count;
170 	}
171 	return (navail);
172 }
173 
174 /*
175  * Finds "count" contiguous MSI vectors starting at the proper alignment
176  * at "pri".
177  * Caller needs to make sure that count has to be power of 2 and should not
178  * be < 1.
179  */
180 uchar_t
181 apic_find_multi_vectors(int pri, int count)
182 {
183 	int	lowest, highest, i, navail, start, msibits;
184 
185 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
186 	    pri, count));
187 
188 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
189 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
190 	navail = 0;
191 
192 	/*
193 	 * msibits is the no. of lower order message data bits for the
194 	 * allocated MSI vectors and is used to calculate the aligned
195 	 * starting vector
196 	 */
197 	msibits = count - 1;
198 
199 	/* It has to be contiguous */
200 	for (i = lowest; i < highest; i++) {
201 		navail = 0;
202 
203 		/*
204 		 * starting vector has to be aligned accordingly for
205 		 * multiple MSIs
206 		 */
207 		if (msibits)
208 			i = (i + msibits) & ~msibits;
209 		start = i;
210 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
211 		    (i < highest)) {
212 			if (APIC_CHECK_RESERVE_VECTORS(i))
213 				break;
214 			navail++;
215 			if (navail >= count)
216 				return (start);
217 			i++;
218 		}
219 	}
220 	return (0);
221 }
222 
223 
224 /*
225  * It finds the apic_irq_t associates with the dip, ispec and type.
226  */
227 apic_irq_t *
228 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
229 {
230 	apic_irq_t	*irqp;
231 	int i;
232 
233 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
234 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
235 	    ispec->intrspec_pri, type));
236 
237 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
238 		if ((irqp = apic_irq_table[i]) == NULL)
239 			continue;
240 		if ((irqp->airq_dip == dip) &&
241 		    (irqp->airq_origirq == ispec->intrspec_vec) &&
242 		    (irqp->airq_ipl == ispec->intrspec_pri)) {
243 			if (type == DDI_INTR_TYPE_MSI) {
244 				if (irqp->airq_mps_intr_index == MSI_INDEX)
245 					return (irqp);
246 			} else if (type == DDI_INTR_TYPE_MSIX) {
247 				if (irqp->airq_mps_intr_index == MSIX_INDEX)
248 					return (irqp);
249 			} else
250 				return (irqp);
251 		}
252 	}
253 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
254 	return (NULL);
255 }
256 
257 
258 #if !defined(__xpv)
259 
260 /*
261  * This function will return the pending bit of the irqp.
262  * It either comes from the IRR register of the APIC or the RDT
263  * entry of the I/O APIC.
264  * For the IRR to work, it needs to be to its binding CPU
265  */
266 static int
267 apic_get_pending(apic_irq_t *irqp, int type)
268 {
269 	int			bit, index, irr, pending;
270 	int			intin_no;
271 	int			apic_ix;
272 
273 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
274 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
275 	    type));
276 
277 	/* need to get on the bound cpu */
278 	mutex_enter(&cpu_lock);
279 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
280 
281 	index = irqp->airq_vector / 32;
282 	bit = irqp->airq_vector % 32;
283 	irr = apicadr[APIC_IRR_REG + index];
284 
285 	affinity_clear();
286 	mutex_exit(&cpu_lock);
287 
288 	pending = (irr & (1 << bit)) ? 1 : 0;
289 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
290 		/* check I/O APIC for fixed interrupt */
291 		intin_no = irqp->airq_intin_no;
292 		apic_ix = irqp->airq_ioapicindex;
293 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no) &
294 		    AV_PENDING) ? 1 : 0;
295 	}
296 	return (pending);
297 }
298 
299 
300 /*
301  * This function will clear the mask for the interrupt on the I/O APIC
302  */
303 static void
304 apic_clear_mask(apic_irq_t *irqp)
305 {
306 	int			intin_no;
307 	ulong_t			iflag;
308 	int32_t			rdt_entry;
309 	int 			apic_ix;
310 
311 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
312 	    (void *)irqp));
313 
314 	intin_no = irqp->airq_intin_no;
315 	apic_ix = irqp->airq_ioapicindex;
316 
317 	iflag = intr_clear();
318 	lock_set(&apic_ioapic_lock);
319 
320 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
321 
322 	/* clear mask */
323 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
324 	    ((~AV_MASK) & rdt_entry));
325 
326 	lock_clear(&apic_ioapic_lock);
327 	intr_restore(iflag);
328 }
329 
330 
331 /*
332  * This function will mask the interrupt on the I/O APIC
333  */
334 static void
335 apic_set_mask(apic_irq_t *irqp)
336 {
337 	int			intin_no;
338 	int 			apic_ix;
339 	ulong_t			iflag;
340 	int32_t			rdt_entry;
341 
342 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
343 
344 	intin_no = irqp->airq_intin_no;
345 	apic_ix = irqp->airq_ioapicindex;
346 
347 	iflag = intr_clear();
348 
349 	lock_set(&apic_ioapic_lock);
350 
351 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no);
352 
353 	/* mask it */
354 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_no,
355 	    (AV_MASK | rdt_entry));
356 
357 	lock_clear(&apic_ioapic_lock);
358 	intr_restore(iflag);
359 }
360 
361 #endif	/* ! __xpv */
362 
363 void
364 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
365 {
366 	int i;
367 	apic_irq_t *irqptr;
368 	struct intrspec ispec;
369 
370 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
371 	    "count: %x pri: %x type: %x\n",
372 	    (void *)dip, inum, count, pri, type));
373 
374 	/* for MSI/X only */
375 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
376 		return;
377 
378 	for (i = 0; i < count; i++) {
379 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
380 		    "pri=0x%x count=0x%x\n", inum, pri, count));
381 		ispec.intrspec_vec = inum + i;
382 		ispec.intrspec_pri = pri;
383 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
384 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
385 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
386 			    "failed\n", (void *)dip, inum, pri));
387 			continue;
388 		}
389 		irqptr->airq_mps_intr_index = FREE_INDEX;
390 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
391 	}
392 }
393 
394 
395 /*
396  * check whether the system supports MSI
397  *
398  * If PCI-E capability is found, then this must be a PCI-E system.
399  * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
400  * to indicate this system supports MSI.
401  */
402 int
403 apic_check_msi_support()
404 {
405 	dev_info_t *cdip;
406 	char dev_type[16];
407 	int dev_len;
408 
409 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
410 
411 	/*
412 	 * check whether the first level children of root_node have
413 	 * PCI-E capability
414 	 */
415 	for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
416 	    cdip = ddi_get_next_sibling(cdip)) {
417 
418 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
419 		    " driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
420 		    ddi_driver_name(cdip), ddi_binding_name(cdip),
421 		    ddi_node_name(cdip)));
422 		dev_len = sizeof (dev_type);
423 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
424 		    "device_type", (caddr_t)dev_type, &dev_len)
425 		    != DDI_PROP_SUCCESS)
426 			continue;
427 		if (strcmp(dev_type, "pciex") == 0)
428 			return (PSM_SUCCESS);
429 	}
430 
431 	/* MSI is not supported on this system */
432 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
433 	    "device_type found\n"));
434 	return (PSM_FAILURE);
435 }
436 
437 /*
438  * apic_pci_msi_unconfigure:
439  *
440  * This and next two interfaces are copied from pci_intr_lib.c
441  * Do ensure that these two files stay in sync.
442  * These needed to be copied over here to avoid a deadlock situation on
443  * certain mp systems that use MSI interrupts.
444  *
445  * IMPORTANT regards next three interfaces:
446  * i) are called only for MSI/X interrupts.
447  * ii) called with interrupts disabled, and must not block
448  */
449 void
450 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
451 {
452 	ushort_t		msi_ctrl;
453 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
454 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
455 
456 	ASSERT((handle != NULL) && (cap_ptr != 0));
457 
458 	if (type == DDI_INTR_TYPE_MSI) {
459 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
460 		msi_ctrl &= (~PCI_MSI_MME_MASK);
461 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
462 		pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
463 
464 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
465 			pci_config_put16(handle,
466 			    cap_ptr + PCI_MSI_64BIT_DATA, 0);
467 			pci_config_put32(handle,
468 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
469 		} else {
470 			pci_config_put16(handle,
471 			    cap_ptr + PCI_MSI_32BIT_DATA, 0);
472 		}
473 
474 	} else if (type == DDI_INTR_TYPE_MSIX) {
475 		uintptr_t	off;
476 		uint32_t	mask;
477 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(rdip);
478 
479 		/* Offset into "inum"th entry in the MSI-X table & mask it */
480 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
481 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
482 
483 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
484 
485 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1));
486 
487 		/* Offset into the "inum"th entry in the MSI-X table */
488 		off = (uintptr_t)msix_p->msix_tbl_addr +
489 		    (inum * PCI_MSIX_VECTOR_SIZE);
490 
491 		/* Reset the "data" and "addr" bits */
492 		ddi_put32(msix_p->msix_tbl_hdl,
493 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
494 		ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
495 	}
496 }
497 
498 
499 /*
500  * apic_pci_msi_enable_mode:
501  */
502 void
503 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum)
504 {
505 	ushort_t		msi_ctrl;
506 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
507 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
508 
509 	ASSERT((handle != NULL) && (cap_ptr != 0));
510 
511 	if (type == DDI_INTR_TYPE_MSI) {
512 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
513 		if ((msi_ctrl & PCI_MSI_ENABLE_BIT))
514 			return;
515 
516 		msi_ctrl |= PCI_MSI_ENABLE_BIT;
517 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
518 
519 	} else if (type == DDI_INTR_TYPE_MSIX) {
520 		uintptr_t	off;
521 		uint32_t	mask;
522 		ddi_intr_msix_t	*msix_p;
523 
524 		msix_p = i_ddi_get_msix(rdip);
525 
526 		/* Offset into "inum"th entry in the MSI-X table & clear mask */
527 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
528 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
529 
530 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
531 
532 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask & ~1));
533 
534 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
535 
536 		if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT)) {
537 			msi_ctrl |= PCI_MSIX_ENABLE_BIT;
538 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
539 			    msi_ctrl);
540 		}
541 	}
542 }
543 
544 /*
545  * apic_pci_msi_disable_mode:
546  */
547 void
548 apic_pci_msi_disable_mode(dev_info_t *rdip, int type)
549 {
550 	ushort_t		msi_ctrl;
551 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
552 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
553 
554 	ASSERT((handle != NULL) && (cap_ptr != 0));
555 
556 	if (type == DDI_INTR_TYPE_MSI) {
557 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
558 		if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
559 			return;
560 
561 		msi_ctrl &= ~PCI_MSI_ENABLE_BIT;	/* MSI disable */
562 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
563 
564 	} else if (type == DDI_INTR_TYPE_MSIX) {
565 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
566 		if (msi_ctrl & PCI_MSIX_ENABLE_BIT) {
567 			msi_ctrl &= ~PCI_MSIX_ENABLE_BIT;
568 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
569 			    msi_ctrl);
570 		}
571 	}
572 }
573 
574 #if !defined(__xpv)
575 
576 static int
577 apic_set_cpu(uint32_t vector, int cpu, int *result)
578 {
579 	apic_irq_t *irqp;
580 	ulong_t iflag;
581 	int ret;
582 
583 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_SET_CPU\n"));
584 
585 	/* Convert the vector to the irq using vector_to_irq table. */
586 	mutex_enter(&airq_mutex);
587 	irqp = apic_irq_table[apic_vector_to_irq[vector]];
588 	mutex_exit(&airq_mutex);
589 
590 	if (irqp == NULL) {
591 		*result = ENXIO;
592 		return (PSM_FAILURE);
593 	}
594 
595 	/* Fail if this is an MSI intr and is part of a group. */
596 	if ((irqp->airq_mps_intr_index == MSI_INDEX) &&
597 	    (irqp->airq_intin_no > 1)) {
598 		*result = ENXIO;
599 		return (PSM_FAILURE);
600 	}
601 
602 	iflag = intr_clear();
603 	lock_set(&apic_ioapic_lock);
604 
605 	ret = apic_rebind_all(irqp, cpu);
606 
607 	lock_clear(&apic_ioapic_lock);
608 	intr_restore(iflag);
609 
610 	if (ret) {
611 		*result = EIO;
612 		return (PSM_FAILURE);
613 	}
614 	*result = 0;
615 	return (PSM_SUCCESS);
616 }
617 
618 static int
619 apic_grp_set_cpu(uint32_t vector, int new_cpu, int *result)
620 {
621 	dev_info_t *orig_dip;
622 	uchar_t orig_cpu;
623 	ulong_t iflag;
624 	apic_irq_t *irqps[PCI_MSI_MAX_INTRS];
625 	int i;
626 	int cap_ptr;
627 	int msi_mask_off;
628 	ushort_t msi_ctrl;
629 	uint32_t msi_pvm;
630 	ddi_acc_handle_t handle;
631 	int num_vectors = 0;
632 
633 	DDI_INTR_IMPLDBG((CE_CONT, "APIC_GRP_SET_CPU\n"));
634 
635 	/*
636 	 * Take mutex to insure that table doesn't change out from underneath
637 	 * us while we're playing with it.
638 	 */
639 	mutex_enter(&airq_mutex);
640 	irqps[0] = apic_irq_table[apic_vector_to_irq[vector]];
641 	orig_cpu = irqps[0]->airq_temp_cpu;
642 	orig_dip = irqps[0]->airq_dip;
643 	num_vectors = irqps[0]->airq_intin_no;
644 
645 	/* A "group" of 1 */
646 	if (num_vectors == 1) {
647 		mutex_exit(&airq_mutex);
648 		return (apic_set_cpu(vector, new_cpu, result));
649 	}
650 
651 	*result = ENXIO;
652 
653 	if (irqps[0]->airq_mps_intr_index != MSI_INDEX) {
654 		mutex_exit(&airq_mutex);
655 		DDI_INTR_IMPLDBG((CE_CONT, "set_grp: intr not MSI\n"));
656 		goto set_grp_intr_done;
657 	}
658 	if ((num_vectors < 1) || ((num_vectors - 1) & vector)) {
659 		mutex_exit(&airq_mutex);
660 		DDI_INTR_IMPLDBG((CE_CONT,
661 		    "set_grp: base vec not part of a grp or not aligned: "
662 		    "vec:0x%x, num_vec:0x%x\n", vector, num_vectors));
663 		goto set_grp_intr_done;
664 	}
665 	DDI_INTR_IMPLDBG((CE_CONT, "set_grp: num intrs in grp: %d\n",
666 	    num_vectors));
667 
668 	ASSERT((num_vectors + vector) < APIC_MAX_VECTOR);
669 
670 	*result = EIO;
671 
672 	/*
673 	 * All IRQ entries in the table for the given device will be not
674 	 * shared.  Since they are not shared, the dip in the table will
675 	 * be true to the device of interest.
676 	 */
677 	for (i = 1; i < num_vectors; i++) {
678 		irqps[i] = apic_irq_table[apic_vector_to_irq[vector + i]];
679 		if (irqps[i] == NULL) {
680 			mutex_exit(&airq_mutex);
681 			goto set_grp_intr_done;
682 		}
683 #ifdef DEBUG
684 		/* Sanity check: CPU and dip is the same for all entries. */
685 		if ((irqps[i]->airq_dip != orig_dip) ||
686 		    (irqps[i]->airq_temp_cpu != orig_cpu)) {
687 			mutex_exit(&airq_mutex);
688 			DDI_INTR_IMPLDBG((CE_CONT,
689 			    "set_grp: cpu or dip for vec 0x%x difft than for "
690 			    "vec 0x%x\n", vector, vector + i));
691 			DDI_INTR_IMPLDBG((CE_CONT,
692 			    "  cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
693 			    irqps[i]->airq_temp_cpu, (void *)orig_dip,
694 			    (void *)irqps[i]->airq_dip));
695 			goto set_grp_intr_done;
696 		}
697 #endif /* DEBUG */
698 	}
699 	mutex_exit(&airq_mutex);
700 
701 	cap_ptr = i_ddi_get_msi_msix_cap_ptr(orig_dip);
702 	handle = i_ddi_get_pci_config_handle(orig_dip);
703 	msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
704 
705 	/* MSI Per vector masking is supported. */
706 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
707 		if (msi_ctrl &  PCI_MSI_64BIT_MASK)
708 			msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
709 		else
710 			msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
711 		msi_pvm = pci_config_get32(handle, msi_mask_off);
712 		pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
713 		DDI_INTR_IMPLDBG((CE_CONT,
714 		    "set_grp: pvm supported.  Mask set to 0x%x\n",
715 		    pci_config_get32(handle, msi_mask_off)));
716 	}
717 
718 	iflag = intr_clear();
719 	lock_set(&apic_ioapic_lock);
720 
721 	/*
722 	 * Do the first rebind and check for errors.  Apic_rebind_all returns
723 	 * an error if the CPU is not accepting interrupts.  If the first one
724 	 * succeeds they all will.
725 	 */
726 	if (apic_rebind_all(irqps[0], new_cpu))
727 		(void) apic_rebind_all(irqps[0], orig_cpu);
728 	else {
729 		for (i = 1; i < num_vectors; i++)
730 			(void) apic_rebind_all(irqps[i], new_cpu);
731 		*result = 0;	/* SUCCESS */
732 	}
733 
734 	lock_clear(&apic_ioapic_lock);
735 	intr_restore(iflag);
736 
737 	/* Reenable vectors if per vector masking is supported. */
738 	if (msi_ctrl & PCI_MSI_PVM_MASK) {
739 		pci_config_put32(handle, msi_mask_off, msi_pvm);
740 		DDI_INTR_IMPLDBG((CE_CONT,
741 		    "set_grp: pvm supported.  Mask restored to 0x%x\n",
742 		    pci_config_get32(handle, msi_mask_off)));
743 	}
744 
745 set_grp_intr_done:
746 	if (*result != 0)
747 		return (PSM_FAILURE);
748 
749 	return (PSM_SUCCESS);
750 }
751 
752 #endif	/* !__xpv */
753 
754 int
755 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p)
756 {
757 	struct autovec *av_dev;
758 	uchar_t irqno;
759 	int i;
760 	apic_irq_t *irq_p;
761 
762 	/* Sanity check the vector/irq argument. */
763 	ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR));
764 
765 	mutex_enter(&airq_mutex);
766 
767 	/*
768 	 * Convert the vecirq arg to an irq using vector_to_irq table
769 	 * if the arg is a vector.  Pass thru if already an irq.
770 	 */
771 	if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) ==
772 	    PSMGI_INTRBY_VEC)
773 		irqno = apic_vector_to_irq[vecirq];
774 	else
775 		irqno = vecirq;
776 
777 	irq_p = apic_irq_table[irqno];
778 
779 	if ((irq_p == NULL) ||
780 	    (irq_p->airq_temp_cpu == IRQ_UNBOUND) ||
781 	    (irq_p->airq_temp_cpu == IRQ_UNINIT)) {
782 		mutex_exit(&airq_mutex);
783 		return (PSM_FAILURE);
784 	}
785 
786 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
787 
788 		/* Get the (temp) cpu from apic_irq table, indexed by irq. */
789 		intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu;
790 
791 		/* Return user bound info for intrd. */
792 		if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
793 			intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
794 			intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
795 		}
796 	}
797 
798 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
799 		intr_params_p->avgi_vector = irq_p->airq_vector;
800 
801 	if (intr_params_p->avgi_req_flags &
802 	    (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
803 		/* Get number of devices from apic_irq table shared field. */
804 		intr_params_p->avgi_num_devs = irq_p->airq_share;
805 
806 	if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
807 
808 		intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
809 
810 		/* Some devices have NULL dip.  Don't count these. */
811 		if (intr_params_p->avgi_num_devs > 0) {
812 			for (i = 0, av_dev = autovect[irqno].avh_link;
813 			    av_dev; av_dev = av_dev->av_link)
814 				if (av_dev->av_vector && av_dev->av_dip)
815 					i++;
816 			intr_params_p->avgi_num_devs =
817 			    MIN(intr_params_p->avgi_num_devs, i);
818 		}
819 
820 		/* There are no viable dips to return. */
821 		if (intr_params_p->avgi_num_devs == 0)
822 			intr_params_p->avgi_dip_list = NULL;
823 
824 		else {	/* Return list of dips */
825 
826 			/* Allocate space in array for that number of devs. */
827 			intr_params_p->avgi_dip_list = kmem_zalloc(
828 			    intr_params_p->avgi_num_devs *
829 			    sizeof (dev_info_t *),
830 			    KM_SLEEP);
831 
832 			/*
833 			 * Loop through the device list of the autovec table
834 			 * filling in the dip array.
835 			 *
836 			 * Note that the autovect table may have some special
837 			 * entries which contain NULL dips.  These will be
838 			 * ignored.
839 			 */
840 			for (i = 0, av_dev = autovect[irqno].avh_link;
841 			    av_dev; av_dev = av_dev->av_link)
842 				if (av_dev->av_vector && av_dev->av_dip)
843 					intr_params_p->avgi_dip_list[i++] =
844 					    av_dev->av_dip;
845 		}
846 	}
847 
848 	mutex_exit(&airq_mutex);
849 
850 	return (PSM_SUCCESS);
851 }
852 
853 
854 #if !defined(__xpv)
855 
856 /*
857  * This function provides external interface to the nexus for all
858  * functionalities related to the new DDI interrupt framework.
859  *
860  * Input:
861  * dip     - pointer to the dev_info structure of the requested device
862  * hdlp    - pointer to the internal interrupt handle structure for the
863  *	     requested interrupt
864  * intr_op - opcode for this call
865  * result  - pointer to the integer that will hold the result to be
866  *	     passed back if return value is PSM_SUCCESS
867  *
868  * Output:
869  * return value is either PSM_SUCCESS or PSM_FAILURE
870  */
871 int
872 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
873     psm_intr_op_t intr_op, int *result)
874 {
875 	int		cap;
876 	int		count_vec;
877 	int		old_priority;
878 	int		new_priority;
879 	int		new_cpu;
880 	apic_irq_t	*irqp;
881 	struct intrspec *ispec, intr_spec;
882 
883 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
884 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
885 
886 	ispec = &intr_spec;
887 	ispec->intrspec_pri = hdlp->ih_pri;
888 	ispec->intrspec_vec = hdlp->ih_inum;
889 	ispec->intrspec_func = hdlp->ih_cb_func;
890 
891 	switch (intr_op) {
892 	case PSM_INTR_OP_CHECK_MSI:
893 		/*
894 		 * Check MSI/X is supported or not at APIC level and
895 		 * masked off the MSI/X bits in hdlp->ih_type if not
896 		 * supported before return.  If MSI/X is supported,
897 		 * leave the ih_type unchanged and return.
898 		 *
899 		 * hdlp->ih_type passed in from the nexus has all the
900 		 * interrupt types supported by the device.
901 		 */
902 		if (apic_support_msi == 0) {
903 			/*
904 			 * if apic_support_msi is not set, call
905 			 * apic_check_msi_support() to check whether msi
906 			 * is supported first
907 			 */
908 			if (apic_check_msi_support() == PSM_SUCCESS)
909 				apic_support_msi = 1;
910 			else
911 				apic_support_msi = -1;
912 		}
913 		if (apic_support_msi == 1) {
914 			if (apic_msix_enable)
915 				*result = hdlp->ih_type;
916 			else
917 				*result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
918 		} else
919 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
920 			    DDI_INTR_TYPE_MSIX);
921 		break;
922 	case PSM_INTR_OP_ALLOC_VECTORS:
923 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
924 			*result = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
925 			    hdlp->ih_scratch1, hdlp->ih_pri,
926 			    (int)(uintptr_t)hdlp->ih_scratch2);
927 		else
928 			*result = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
929 			    hdlp->ih_scratch1, hdlp->ih_pri,
930 			    (int)(uintptr_t)hdlp->ih_scratch2);
931 		break;
932 	case PSM_INTR_OP_FREE_VECTORS:
933 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
934 		    hdlp->ih_pri, hdlp->ih_type);
935 		break;
936 	case PSM_INTR_OP_NAVAIL_VECTORS:
937 		*result = apic_navail_vector(dip, hdlp->ih_pri);
938 		break;
939 	case PSM_INTR_OP_XLATE_VECTOR:
940 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
941 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
942 		break;
943 	case PSM_INTR_OP_GET_PENDING:
944 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
945 			return (PSM_FAILURE);
946 		*result = apic_get_pending(irqp, hdlp->ih_type);
947 		break;
948 	case PSM_INTR_OP_CLEAR_MASK:
949 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
950 			return (PSM_FAILURE);
951 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
952 		if (irqp == NULL)
953 			return (PSM_FAILURE);
954 		apic_clear_mask(irqp);
955 		break;
956 	case PSM_INTR_OP_SET_MASK:
957 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
958 			return (PSM_FAILURE);
959 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
960 			return (PSM_FAILURE);
961 		apic_set_mask(irqp);
962 		break;
963 	case PSM_INTR_OP_GET_CAP:
964 		cap = DDI_INTR_FLAG_PENDING;
965 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
966 			cap |= DDI_INTR_FLAG_MASKABLE;
967 		*result = cap;
968 		break;
969 	case PSM_INTR_OP_GET_SHARED:
970 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
971 			return (PSM_FAILURE);
972 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
973 			return (PSM_FAILURE);
974 		*result = irqp->airq_share ? 1: 0;
975 		break;
976 	case PSM_INTR_OP_SET_PRI:
977 		old_priority = hdlp->ih_pri;	/* save old value */
978 		new_priority = *(int *)result;	/* try the new value */
979 
980 		/* First, check if "hdlp->ih_scratch1" vectors exist? */
981 		if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1)
982 			return (PSM_FAILURE);
983 
984 		/* Now allocate the vectors */
985 		if (hdlp->ih_type == DDI_INTR_TYPE_MSI)
986 			count_vec = apic_alloc_msi_vectors(dip, hdlp->ih_inum,
987 			    hdlp->ih_scratch1, new_priority,
988 			    DDI_INTR_ALLOC_STRICT);
989 		else
990 			count_vec = apic_alloc_msix_vectors(dip, hdlp->ih_inum,
991 			    hdlp->ih_scratch1, new_priority,
992 			    DDI_INTR_ALLOC_STRICT);
993 
994 		/* Did we get new vectors? */
995 		if (!count_vec)
996 			return (PSM_FAILURE);
997 
998 		/* Finally, free the previously allocated vectors */
999 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
1000 		    old_priority, hdlp->ih_type);
1001 		hdlp->ih_pri = new_priority; /* set the new value */
1002 		break;
1003 	case PSM_INTR_OP_SET_CPU:
1004 	case PSM_INTR_OP_GRP_SET_CPU:
1005 		/*
1006 		 * The interrupt handle given here has been allocated
1007 		 * specifically for this command, and ih_private carries
1008 		 * a CPU value.
1009 		 */
1010 		new_cpu = (int)(intptr_t)hdlp->ih_private;
1011 		if (!apic_cpu_in_range(new_cpu)) {
1012 			DDI_INTR_IMPLDBG((CE_CONT,
1013 			    "[grp_]set_cpu: cpu out of range: %d\n", new_cpu));
1014 			*result = EINVAL;
1015 			return (PSM_FAILURE);
1016 		}
1017 		if (intr_op == PSM_INTR_OP_SET_CPU) {
1018 			if (apic_set_cpu(hdlp->ih_vector, new_cpu, result) !=
1019 			    PSM_SUCCESS)
1020 				return (PSM_FAILURE);
1021 		} else {
1022 			if (apic_grp_set_cpu(hdlp->ih_vector, new_cpu,
1023 			    result) != PSM_SUCCESS)
1024 				return (PSM_FAILURE);
1025 		}
1026 		break;
1027 	case PSM_INTR_OP_GET_INTR:
1028 		/*
1029 		 * The interrupt handle given here has been allocated
1030 		 * specifically for this command, and ih_private carries
1031 		 * a pointer to a apic_get_intr_t.
1032 		 */
1033 		if (apic_get_vector_intr_info(
1034 		    hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
1035 			return (PSM_FAILURE);
1036 		break;
1037 	case PSM_INTR_OP_APIC_TYPE:
1038 		hdlp->ih_private = apic_get_apic_type();
1039 		hdlp->ih_ver = apic_get_apic_version();
1040 		break;
1041 	case PSM_INTR_OP_SET_CAP:
1042 	default:
1043 		return (PSM_FAILURE);
1044 	}
1045 	return (PSM_SUCCESS);
1046 }
1047 #endif	/* !__xpv */
1048