xref: /titanic_52/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 96ab4d5390a62b7e1743ec1fad5c0eef9682b961)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
31  */
32 
33 /*
34  * To understand how the pcplusmp module interacts with the interrupt subsystem
35  * read the theory statement in uts/i86pc/os/intr.c.
36  */
37 
38 /*
39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42  * PSMI 1.5 extensions are supported in Solaris Nevada.
43  * PSMI 1.6 extensions are supported in Solaris Nevada.
44  * PSMI 1.7 extensions are supported in Solaris Nevada.
45  */
46 #define	PSMI_1_7
47 
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/apic.h>
57 #include <sys/pit.h>
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/ddi_impldefs.h>
61 #include <sys/pci.h>
62 #include <sys/promif.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 
88 /*
89  *	Local Function Prototypes
90  */
91 static void apic_init_intr(void);
92 
93 /*
94  *	standard MP entries
95  */
96 static int	apic_probe(void);
97 static int	apic_getclkirq(int ipl);
98 static void	apic_init(void);
99 static void	apic_picinit(void);
100 static int	apic_post_cpu_start(void);
101 static int	apic_intr_enter(int ipl, int *vect);
102 static void	apic_setspl(int ipl);
103 static void	x2apic_setspl(int ipl);
104 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int	apic_disable_intr(processorid_t cpun);
107 static void	apic_enable_intr(processorid_t cpun);
108 static int		apic_get_ipivect(int ipl, int type);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 /*
112  * The following vector assignments influence the value of ipltopri and
113  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
114  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
115  * we care to do so in future. Note some IPLs which are rarely used
116  * will share the vector ranges and heavily used IPLs (5 and 6) have
117  * a wide range.
118  *
119  * This array is used to initialize apic_ipls[] (in apic_init()).
120  *
121  *	IPL		Vector range.		as passed to intr_enter
122  *	0		none.
123  *	1,2,3		0x20-0x2f		0x0-0xf
124  *	4		0x30-0x3f		0x10-0x1f
125  *	5		0x40-0x5f		0x20-0x3f
126  *	6		0x60-0x7f		0x40-0x5f
127  *	7,8,9		0x80-0x8f		0x60-0x6f
128  *	10		0x90-0x9f		0x70-0x7f
129  *	11		0xa0-0xaf		0x80-0x8f
130  *	...		...
131  *	15		0xe0-0xef		0xc0-0xcf
132  *	15		0xf0-0xff		0xd0-0xdf
133  */
134 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
135 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
136 };
137 	/*
138 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
139 	 * NOTE that this is vector as passed into intr_enter which is
140 	 * programmed vector - 0x20 (APIC_BASE_VECT)
141 	 */
142 
143 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
144 	/* The taskpri to be programmed into apic to mask given ipl */
145 
146 #if defined(__amd64)
147 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
148 #endif
149 
150 /*
151  * Correlation of the hardware vector to the IPL in use, initialized
152  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
153  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
154  * connected to errata-stricken IOAPICs
155  */
156 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
157 
158 /*
159  * Patchable global variables.
160  */
161 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
162 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
163 
164 /*
165  *	Local static data
166  */
167 static struct	psm_ops apic_ops = {
168 	apic_probe,
169 
170 	apic_init,
171 	apic_picinit,
172 	apic_intr_enter,
173 	apic_intr_exit,
174 	apic_setspl,
175 	apic_addspl,
176 	apic_delspl,
177 	apic_disable_intr,
178 	apic_enable_intr,
179 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
180 	(void (*)(int))NULL,		/* psm_set_softintr */
181 
182 	apic_set_idlecpu,
183 	apic_unset_idlecpu,
184 
185 	apic_clkinit,
186 	apic_getclkirq,
187 	(void (*)(void))NULL,		/* psm_hrtimeinit */
188 	apic_gethrtime,
189 
190 	apic_get_next_processorid,
191 	apic_cpu_start,
192 	apic_post_cpu_start,
193 	apic_shutdown,
194 	apic_get_ipivect,
195 	apic_send_ipi,
196 
197 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
198 	(void (*)(int, char *))NULL,	/* psm_notify_error */
199 	(void (*)(int))NULL,		/* psm_notify_func */
200 	apic_timer_reprogram,
201 	apic_timer_enable,
202 	apic_timer_disable,
203 	apic_post_cyclic_setup,
204 	apic_preshutdown,
205 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
206 	apic_state,			/* save, restore apic state for S3 */
207 	apic_cpu_ops,			/* CPU control interface. */
208 };
209 
210 struct psm_ops *psmops = &apic_ops;
211 
212 static struct	psm_info apic_psm_info = {
213 	PSM_INFO_VER01_7,			/* version */
214 	PSM_OWN_EXCLUSIVE,			/* ownership */
215 	(struct psm_ops *)&apic_ops,		/* operation */
216 	APIC_PCPLUSMP_NAME,			/* machine name */
217 	"pcplusmp v1.4 compatible",
218 };
219 
220 static void *apic_hdlp;
221 
222 /*
223  * apic_let_idle_redistribute can have the following values:
224  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
225  * apic_redistribute_lock prevents multiple idle cpus from redistributing
226  */
227 int	apic_num_idle_redistributions = 0;
228 static	int apic_let_idle_redistribute = 0;
229 
230 /* to gather intr data and redistribute */
231 static void apic_redistribute_compute(void);
232 
233 /*
234  *	This is the loadable module wrapper
235  */
236 
237 int
238 _init(void)
239 {
240 	if (apic_coarse_hrtime)
241 		apic_ops.psm_gethrtime = &apic_gettime;
242 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
243 }
244 
245 int
246 _fini(void)
247 {
248 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
249 }
250 
251 int
252 _info(struct modinfo *modinfop)
253 {
254 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
255 }
256 
257 static int
258 apic_probe(void)
259 {
260 	/* check if apix is initialized */
261 	if (apix_enable && apix_loaded())
262 		return (PSM_FAILURE);
263 	else
264 		apix_enable = 0; /* continue using pcplusmp PSM */
265 
266 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
267 }
268 
269 static uchar_t
270 apic_xlate_vector_by_irq(uchar_t irq)
271 {
272 	if (apic_irq_table[irq] == NULL)
273 		return (0);
274 
275 	return (apic_irq_table[irq]->airq_vector);
276 }
277 
278 void
279 apic_init(void)
280 {
281 	int i;
282 	int	j = 1;
283 
284 	psm_get_ioapicid = apic_get_ioapicid;
285 	psm_get_localapicid = apic_get_localapicid;
286 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
287 
288 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
289 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
290 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
291 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
292 			/* get to highest vector at the same ipl */
293 			continue;
294 		for (; j <= apic_vectortoipl[i]; j++) {
295 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
296 			    APIC_BASE_VECT;
297 		}
298 	}
299 	for (; j < MAXIPL + 1; j++)
300 		/* fill up any empty ipltopri slots */
301 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
302 	apic_init_common();
303 #if defined(__amd64)
304 	/*
305 	 * Make cpu-specific interrupt info point to cr8pri vector
306 	 */
307 	for (i = 0; i <= MAXIPL; i++)
308 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
309 	CPU->cpu_pri_data = apic_cr8pri;
310 #else
311 	if (cpuid_have_cr8access(CPU))
312 		apic_have_32bit_cr8 = 1;
313 #endif	/* __amd64 */
314 }
315 
316 static void
317 apic_init_intr(void)
318 {
319 	processorid_t	cpun = psm_get_cpu_id();
320 	uint_t nlvt;
321 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
322 
323 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
324 
325 	if (apic_mode == LOCAL_APIC) {
326 		/*
327 		 * We are running APIC in MMIO mode.
328 		 */
329 		if (apic_flat_model) {
330 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
331 			    APIC_FLAT_MODEL);
332 		} else {
333 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
334 			    APIC_CLUSTER_MODEL);
335 		}
336 
337 		apic_reg_ops->apic_write(APIC_DEST_REG,
338 		    AV_HIGH_ORDER >> cpun);
339 	}
340 
341 	if (apic_directed_EOI_supported()) {
342 		/*
343 		 * Setting the 12th bit in the Spurious Interrupt Vector
344 		 * Register suppresses broadcast EOIs generated by the local
345 		 * APIC. The suppression of broadcast EOIs happens only when
346 		 * interrupts are level-triggered.
347 		 */
348 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
349 	}
350 
351 	/* need to enable APIC before unmasking NMI */
352 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
353 
354 	/*
355 	 * Presence of an invalid vector with delivery mode AV_FIXED can
356 	 * cause an error interrupt, even if the entry is masked...so
357 	 * write a valid vector to LVT entries along with the mask bit
358 	 */
359 
360 	/* All APICs have timer and LINT0/1 */
361 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
362 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
363 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
364 
365 	/*
366 	 * On integrated APICs, the number of LVT entries is
367 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
368 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
369 	 */
370 
371 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
372 		nlvt = 3;
373 	} else {
374 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
375 		    0xFF) + 1;
376 	}
377 
378 	if (nlvt >= 5) {
379 		/* Enable performance counter overflow interrupt */
380 
381 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
382 			apic_enable_cpcovf_intr = 0;
383 		if (apic_enable_cpcovf_intr) {
384 			if (apic_cpcovf_vect == 0) {
385 				int ipl = APIC_PCINT_IPL;
386 				int irq = apic_get_ipivect(ipl, -1);
387 
388 				ASSERT(irq != -1);
389 				apic_cpcovf_vect =
390 				    apic_irq_table[irq]->airq_vector;
391 				ASSERT(apic_cpcovf_vect);
392 				(void) add_avintr(NULL, ipl,
393 				    (avfunc)kcpc_hw_overflow_intr,
394 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
395 				kcpc_hw_overflow_intr_installed = 1;
396 				kcpc_hw_enable_cpc_intr =
397 				    apic_cpcovf_mask_clear;
398 			}
399 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
400 			    apic_cpcovf_vect);
401 		}
402 	}
403 
404 	if (nlvt >= 6) {
405 		/* Only mask TM intr if the BIOS apparently doesn't use it */
406 
407 		uint32_t lvtval;
408 
409 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
410 		if (((lvtval & AV_MASK) == AV_MASK) ||
411 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
412 			apic_reg_ops->apic_write(APIC_THERM_VECT,
413 			    AV_MASK|APIC_RESV_IRQ);
414 		}
415 	}
416 
417 	/* Enable error interrupt */
418 
419 	if (nlvt >= 4 && apic_enable_error_intr) {
420 		if (apic_errvect == 0) {
421 			int ipl = 0xf;	/* get highest priority intr */
422 			int irq = apic_get_ipivect(ipl, -1);
423 
424 			ASSERT(irq != -1);
425 			apic_errvect = apic_irq_table[irq]->airq_vector;
426 			ASSERT(apic_errvect);
427 			/*
428 			 * Not PSMI compliant, but we are going to merge
429 			 * with ON anyway
430 			 */
431 			(void) add_avintr((void *)NULL, ipl,
432 			    (avfunc)apic_error_intr, "apic error intr",
433 			    irq, NULL, NULL, NULL, NULL);
434 		}
435 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
436 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
437 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
438 	}
439 
440 	/* Enable CMCI interrupt */
441 	if (cmi_enable_cmci) {
442 
443 		mutex_enter(&cmci_cpu_setup_lock);
444 		if (cmci_cpu_setup_registered == 0) {
445 			mutex_enter(&cpu_lock);
446 			register_cpu_setup_func(cmci_cpu_setup, NULL);
447 			mutex_exit(&cpu_lock);
448 			cmci_cpu_setup_registered = 1;
449 		}
450 		mutex_exit(&cmci_cpu_setup_lock);
451 
452 		if (apic_cmci_vect == 0) {
453 			int ipl = 0x2;
454 			int irq = apic_get_ipivect(ipl, -1);
455 
456 			ASSERT(irq != -1);
457 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
458 			ASSERT(apic_cmci_vect);
459 
460 			(void) add_avintr(NULL, ipl,
461 			    (avfunc)cmi_cmci_trap,
462 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
463 		}
464 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
465 	}
466 }
467 
468 static void
469 apic_picinit(void)
470 {
471 	int i, j;
472 	uint_t isr;
473 
474 	/*
475 	 * Initialize and enable interrupt remapping before apic
476 	 * hardware initialization
477 	 */
478 	apic_intrmap_init(apic_mode);
479 
480 	/*
481 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
482 	 * bit on without clearing it with EOI.  Since softint
483 	 * uses vector 0x20 to interrupt itself, so softint will
484 	 * not work on this machine.  In order to fix this problem
485 	 * a check is made to verify all the isr bits are clear.
486 	 * If not, EOIs are issued to clear the bits.
487 	 */
488 	for (i = 7; i >= 1; i--) {
489 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
490 		if (isr != 0)
491 			for (j = 0; ((j < 32) && (isr != 0)); j++)
492 				if (isr & (1 << j)) {
493 					apic_reg_ops->apic_write(
494 					    APIC_EOI_REG, 0);
495 					isr &= ~(1 << j);
496 					apic_error |= APIC_ERR_BOOT_EOI;
497 				}
498 	}
499 
500 	/* set a flag so we know we have run apic_picinit() */
501 	apic_picinit_called = 1;
502 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
503 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
504 	LOCK_INIT_CLEAR(&apic_error_lock);
505 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
506 
507 	picsetup();	 /* initialise the 8259 */
508 
509 	/* add nmi handler - least priority nmi handler */
510 	LOCK_INIT_CLEAR(&apic_nmi_lock);
511 
512 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
513 	    "pcplusmp NMI handler", (caddr_t)NULL))
514 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
515 
516 	/*
517 	 * Check for directed-EOI capability in the local APIC.
518 	 */
519 	if (apic_directed_EOI_supported() == 1) {
520 		apic_set_directed_EOI_handler();
521 	}
522 
523 	apic_init_intr();
524 
525 	/* enable apic mode if imcr present */
526 	if (apic_imcrp) {
527 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
528 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
529 	}
530 
531 	ioapic_init_intr(IOAPIC_MASK);
532 }
533 
534 #ifdef	DEBUG
535 void
536 apic_break(void)
537 {
538 }
539 #endif /* DEBUG */
540 
541 /*
542  * platform_intr_enter
543  *
544  *	Called at the beginning of the interrupt service routine to
545  *	mask all level equal to and below the interrupt priority
546  *	of the interrupting vector.  An EOI should be given to
547  *	the interrupt controller to enable other HW interrupts.
548  *
549  *	Return -1 for spurious interrupts
550  *
551  */
552 /*ARGSUSED*/
553 static int
554 apic_intr_enter(int ipl, int *vectorp)
555 {
556 	uchar_t vector;
557 	int nipl;
558 	int irq;
559 	ulong_t iflag;
560 	apic_cpus_info_t *cpu_infop;
561 
562 	/*
563 	 * The real vector delivered is (*vectorp + 0x20), but our caller
564 	 * subtracts 0x20 from the vector before passing it to us.
565 	 * (That's why APIC_BASE_VECT is 0x20.)
566 	 */
567 	vector = (uchar_t)*vectorp;
568 
569 	/* if interrupted by the clock, increment apic_nsec_since_boot */
570 	if (vector == apic_clkvect) {
571 		if (!apic_oneshot) {
572 			/* NOTE: this is not MT aware */
573 			apic_hrtime_stamp++;
574 			apic_nsec_since_boot += apic_nsec_per_intr;
575 			apic_hrtime_stamp++;
576 			last_count_read = apic_hertz_count;
577 			apic_redistribute_compute();
578 		}
579 
580 		/* We will avoid all the book keeping overhead for clock */
581 		nipl = apic_ipls[vector];
582 
583 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
584 		if (apic_mode == LOCAL_APIC) {
585 #if defined(__amd64)
586 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
587 			    APIC_IPL_SHIFT));
588 #else
589 			if (apic_have_32bit_cr8)
590 				setcr8((ulong_t)(apic_ipltopri[nipl] >>
591 				    APIC_IPL_SHIFT));
592 			else
593 				LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
594 				    (uint32_t)apic_ipltopri[nipl]);
595 #endif
596 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
597 		} else {
598 			X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
599 			X2APIC_WRITE(APIC_EOI_REG, 0);
600 		}
601 
602 		return (nipl);
603 	}
604 
605 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
606 
607 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
608 		cpu_infop->aci_spur_cnt++;
609 		return (APIC_INT_SPURIOUS);
610 	}
611 
612 	/* Check if the vector we got is really what we need */
613 	if (apic_revector_pending) {
614 		/*
615 		 * Disable interrupts for the duration of
616 		 * the vector translation to prevent a self-race for
617 		 * the apic_revector_lock.  This cannot be done
618 		 * in apic_xlate_vector because it is recursive and
619 		 * we want the vector translation to be atomic with
620 		 * respect to other (higher-priority) interrupts.
621 		 */
622 		iflag = intr_clear();
623 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
624 		    APIC_BASE_VECT;
625 		intr_restore(iflag);
626 	}
627 
628 	nipl = apic_ipls[vector];
629 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
630 
631 	if (apic_mode == LOCAL_APIC) {
632 #if defined(__amd64)
633 		setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
634 #else
635 		if (apic_have_32bit_cr8)
636 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
637 			    APIC_IPL_SHIFT));
638 		else
639 			LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
640 			    (uint32_t)apic_ipltopri[nipl]);
641 #endif
642 	} else {
643 		X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
644 	}
645 
646 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
647 	cpu_infop->aci_curipl = (uchar_t)nipl;
648 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
649 
650 	/*
651 	 * apic_level_intr could have been assimilated into the irq struct.
652 	 * but, having it as a character array is more efficient in terms of
653 	 * cache usage. So, we leave it as is.
654 	 */
655 	if (!apic_level_intr[irq]) {
656 		if (apic_mode == LOCAL_APIC) {
657 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
658 		} else {
659 			X2APIC_WRITE(APIC_EOI_REG, 0);
660 		}
661 	}
662 
663 #ifdef	DEBUG
664 	APIC_DEBUG_BUF_PUT(vector);
665 	APIC_DEBUG_BUF_PUT(irq);
666 	APIC_DEBUG_BUF_PUT(nipl);
667 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
668 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
669 		drv_usecwait(apic_stretch_interrupts);
670 
671 	if (apic_break_on_cpu == psm_get_cpu_id())
672 		apic_break();
673 #endif /* DEBUG */
674 	return (nipl);
675 }
676 
677 /*
678  * This macro is a common code used by MMIO local apic and X2APIC
679  * local apic.
680  */
681 #define	APIC_INTR_EXIT() \
682 { \
683 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
684 	if (apic_level_intr[irq]) \
685 		apic_reg_ops->apic_send_eoi(irq); \
686 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
687 	/* ISR above current pri could not be in progress */ \
688 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
689 }
690 
691 /*
692  * Any changes made to this function must also change X2APIC
693  * version of intr_exit.
694  */
695 void
696 apic_intr_exit(int prev_ipl, int irq)
697 {
698 	apic_cpus_info_t *cpu_infop;
699 
700 #if defined(__amd64)
701 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
702 #else
703 	if (apic_have_32bit_cr8)
704 		setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT));
705 	else
706 		apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
707 #endif
708 
709 	APIC_INTR_EXIT();
710 }
711 
712 /*
713  * Same as apic_intr_exit() except it uses MSR rather than MMIO
714  * to access local apic registers.
715  */
716 void
717 x2apic_intr_exit(int prev_ipl, int irq)
718 {
719 	apic_cpus_info_t *cpu_infop;
720 
721 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
722 	APIC_INTR_EXIT();
723 }
724 
725 intr_exit_fn_t
726 psm_intr_exit_fn(void)
727 {
728 	if (apic_mode == LOCAL_X2APIC)
729 		return (x2apic_intr_exit);
730 
731 	return (apic_intr_exit);
732 }
733 
734 /*
735  * Mask all interrupts below or equal to the given IPL.
736  * Any changes made to this function must also change X2APIC
737  * version of setspl.
738  */
739 static void
740 apic_setspl(int ipl)
741 {
742 #if defined(__amd64)
743 	setcr8((ulong_t)apic_cr8pri[ipl]);
744 #else
745 	if (apic_have_32bit_cr8)
746 		setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT));
747 	else
748 		apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
749 #endif
750 
751 	/* interrupts at ipl above this cannot be in progress */
752 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
753 	/*
754 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
755 	 * have enough time to come in before the priority is raised again
756 	 * during the idle() loop.
757 	 */
758 	if (apic_setspl_delay)
759 		(void) apic_reg_ops->apic_get_pri();
760 }
761 
762 /*
763  * X2APIC version of setspl.
764  * Mask all interrupts below or equal to the given IPL
765  */
766 static void
767 x2apic_setspl(int ipl)
768 {
769 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
770 
771 	/* interrupts at ipl above this cannot be in progress */
772 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
773 }
774 
775 /*ARGSUSED*/
776 static int
777 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
778 {
779 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
780 }
781 
782 static int
783 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
784 {
785 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
786 }
787 
788 static int
789 apic_post_cpu_start(void)
790 {
791 	int cpun;
792 	static int cpus_started = 1;
793 
794 	/* We know this CPU + BSP  started successfully. */
795 	cpus_started++;
796 
797 	/*
798 	 * On BSP we would have enabled X2APIC, if supported by processor,
799 	 * in acpi_probe(), but on AP we do it here.
800 	 *
801 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
802 	 * local APIC mode of the current CPU is MMIO (xAPIC).
803 	 */
804 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
805 	    apic_local_mode() == LOCAL_APIC) {
806 		apic_enable_x2apic();
807 	}
808 
809 	/*
810 	 * Switch back to x2apic IPI sending method for performance when target
811 	 * CPU has entered x2apic mode.
812 	 */
813 	if (apic_mode == LOCAL_X2APIC) {
814 		apic_switch_ipi_callback(B_FALSE);
815 	}
816 
817 	splx(ipltospl(LOCK_LEVEL));
818 	apic_init_intr();
819 
820 	/*
821 	 * since some systems don't enable the internal cache on the non-boot
822 	 * cpus, so we have to enable them here
823 	 */
824 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
825 
826 #ifdef	DEBUG
827 	APIC_AV_PENDING_SET();
828 #else
829 	if (apic_mode == LOCAL_APIC)
830 		APIC_AV_PENDING_SET();
831 #endif	/* DEBUG */
832 
833 	/*
834 	 * We may be booting, or resuming from suspend; aci_status will
835 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
836 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
837 	 */
838 	cpun = psm_get_cpu_id();
839 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
840 
841 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
842 	return (PSM_SUCCESS);
843 }
844 
845 /*
846  * type == -1 indicates it is an internal request. Do not change
847  * resv_vector for these requests
848  */
849 static int
850 apic_get_ipivect(int ipl, int type)
851 {
852 	uchar_t vector;
853 	int irq;
854 
855 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
856 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
857 			apic_irq_table[irq]->airq_mps_intr_index =
858 			    RESERVE_INDEX;
859 			apic_irq_table[irq]->airq_vector = vector;
860 			if (type != -1) {
861 				apic_resv_vector[ipl] = vector;
862 			}
863 			return (irq);
864 		}
865 	}
866 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
867 	return (-1);	/* shouldn't happen */
868 }
869 
870 static int
871 apic_getclkirq(int ipl)
872 {
873 	int	irq;
874 
875 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
876 		return (-1);
877 	/*
878 	 * Note the vector in apic_clkvect for per clock handling.
879 	 */
880 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
881 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
882 	    apic_clkvect));
883 	return (irq);
884 }
885 
886 /*
887  * Try and disable all interrupts. We just assign interrupts to other
888  * processors based on policy. If any were bound by user request, we
889  * let them continue and return failure. We do not bother to check
890  * for cache affinity while rebinding.
891  */
892 
893 static int
894 apic_disable_intr(processorid_t cpun)
895 {
896 	int bind_cpu = 0, i, hardbound = 0;
897 	apic_irq_t *irq_ptr;
898 	ulong_t iflag;
899 
900 	iflag = intr_clear();
901 	lock_set(&apic_ioapic_lock);
902 
903 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
904 		if (apic_reprogram_info[i].done == B_FALSE) {
905 			if (apic_reprogram_info[i].bindcpu == cpun) {
906 				/*
907 				 * CPU is busy -- it's the target of
908 				 * a pending reprogramming attempt
909 				 */
910 				lock_clear(&apic_ioapic_lock);
911 				intr_restore(iflag);
912 				return (PSM_FAILURE);
913 			}
914 		}
915 	}
916 
917 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
918 
919 	apic_cpus[cpun].aci_curipl = 0;
920 
921 	i = apic_min_device_irq;
922 	for (; i <= apic_max_device_irq; i++) {
923 		/*
924 		 * If there are bound interrupts on this cpu, then
925 		 * rebind them to other processors.
926 		 */
927 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
928 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
929 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
930 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
931 
932 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
933 				hardbound = 1;
934 				continue;
935 			}
936 
937 			if (irq_ptr->airq_temp_cpu == cpun) {
938 				do {
939 					bind_cpu =
940 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
941 				} while (apic_rebind_all(irq_ptr, bind_cpu));
942 			}
943 		}
944 	}
945 
946 	lock_clear(&apic_ioapic_lock);
947 	intr_restore(iflag);
948 
949 	if (hardbound) {
950 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
951 		    "due to user bound interrupts", cpun);
952 		return (PSM_FAILURE);
953 	}
954 	else
955 		return (PSM_SUCCESS);
956 }
957 
958 /*
959  * Bind interrupts to the CPU's local APIC.
960  * Interrupts should not be bound to a CPU's local APIC until the CPU
961  * is ready to receive interrupts.
962  */
963 static void
964 apic_enable_intr(processorid_t cpun)
965 {
966 	int	i;
967 	apic_irq_t *irq_ptr;
968 	ulong_t iflag;
969 
970 	iflag = intr_clear();
971 	lock_set(&apic_ioapic_lock);
972 
973 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
974 
975 	i = apic_min_device_irq;
976 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
977 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
978 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
979 				(void) apic_rebind_all(irq_ptr,
980 				    irq_ptr->airq_cpu);
981 			}
982 		}
983 	}
984 
985 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
986 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
987 
988 	lock_clear(&apic_ioapic_lock);
989 	intr_restore(iflag);
990 }
991 
992 /*
993  * If this module needs a periodic handler for the interrupt distribution, it
994  * can be added here. The argument to the periodic handler is not currently
995  * used, but is reserved for future.
996  */
997 static void
998 apic_post_cyclic_setup(void *arg)
999 {
1000 _NOTE(ARGUNUSED(arg))
1001 
1002 	cyc_handler_t cyh;
1003 	cyc_time_t cyt;
1004 
1005 	/* cpu_lock is held */
1006 	/* set up a periodic handler for intr redistribution */
1007 
1008 	/*
1009 	 * In peridoc mode intr redistribution processing is done in
1010 	 * apic_intr_enter during clk intr processing
1011 	 */
1012 	if (!apic_oneshot)
1013 		return;
1014 
1015 	/*
1016 	 * Register a periodical handler for the redistribution processing.
1017 	 * Though we would generally prefer to use the DDI interface for
1018 	 * periodic handler invocation, ddi_periodic_add(9F), we are
1019 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1020 	 * attempt to take for us.  Thus, we add our own cyclic directly:
1021 	 */
1022 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
1023 	cyh.cyh_arg = NULL;
1024 	cyh.cyh_level = CY_LOW_LEVEL;
1025 
1026 	cyt.cyt_when = 0;
1027 	cyt.cyt_interval = apic_redistribute_sample_interval;
1028 
1029 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
1030 }
1031 
1032 static void
1033 apic_redistribute_compute(void)
1034 {
1035 	int	i, j, max_busy;
1036 
1037 	if (apic_enable_dynamic_migration) {
1038 		if (++apic_nticks == apic_sample_factor_redistribution) {
1039 			/*
1040 			 * Time to call apic_intr_redistribute().
1041 			 * reset apic_nticks. This will cause max_busy
1042 			 * to be calculated below and if it is more than
1043 			 * apic_int_busy, we will do the whole thing
1044 			 */
1045 			apic_nticks = 0;
1046 		}
1047 		max_busy = 0;
1048 		for (i = 0; i < apic_nproc; i++) {
1049 			if (!apic_cpu_in_range(i))
1050 				continue;
1051 
1052 			/*
1053 			 * Check if curipl is non zero & if ISR is in
1054 			 * progress
1055 			 */
1056 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
1057 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1058 
1059 				int	irq;
1060 				apic_cpus[i].aci_busy++;
1061 				irq = apic_cpus[i].aci_current[j];
1062 				apic_irq_table[irq]->airq_busy++;
1063 			}
1064 
1065 			if (!apic_nticks &&
1066 			    (apic_cpus[i].aci_busy > max_busy))
1067 				max_busy = apic_cpus[i].aci_busy;
1068 		}
1069 		if (!apic_nticks) {
1070 			if (max_busy > apic_int_busy_mark) {
1071 			/*
1072 			 * We could make the following check be
1073 			 * skipped > 1 in which case, we get a
1074 			 * redistribution at half the busy mark (due to
1075 			 * double interval). Need to be able to collect
1076 			 * more empirical data to decide if that is a
1077 			 * good strategy. Punt for now.
1078 			 */
1079 				if (apic_skipped_redistribute) {
1080 					apic_cleanup_busy();
1081 					apic_skipped_redistribute = 0;
1082 				} else {
1083 					apic_intr_redistribute();
1084 				}
1085 			} else
1086 				apic_skipped_redistribute++;
1087 		}
1088 	}
1089 }
1090 
1091 
1092 /*
1093  * The following functions are in the platform specific file so that they
1094  * can be different functions depending on whether we are running on
1095  * bare metal or a hypervisor.
1096  */
1097 
1098 /*
1099  * Check to make sure there are enough irq slots
1100  */
1101 int
1102 apic_check_free_irqs(int count)
1103 {
1104 	int i, avail;
1105 
1106 	avail = 0;
1107 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1108 		if ((apic_irq_table[i] == NULL) ||
1109 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1110 			if (++avail >= count)
1111 				return (PSM_SUCCESS);
1112 		}
1113 	}
1114 	return (PSM_FAILURE);
1115 }
1116 
1117 /*
1118  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1119  */
1120 int
1121 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1122     int behavior)
1123 {
1124 	int	rcount, i;
1125 	uchar_t	start, irqno;
1126 	uint32_t cpu;
1127 	major_t	major;
1128 	apic_irq_t	*irqptr;
1129 
1130 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1131 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1132 	    (void *)dip, inum, pri, count, behavior));
1133 
1134 	if (count > 1) {
1135 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1136 		    apic_multi_msi_enable == 0)
1137 			return (0);
1138 		if (apic_multi_msi_enable == 0)
1139 			count = 1;
1140 	}
1141 
1142 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1143 		rcount = count;
1144 	else if (rcount == 0 || (rcount < count &&
1145 	    behavior == DDI_INTR_ALLOC_STRICT))
1146 		return (0);
1147 
1148 	/* if not ISP2, then round it down */
1149 	if (!ISP2(rcount))
1150 		rcount = 1 << (highbit(rcount) - 1);
1151 
1152 	mutex_enter(&airq_mutex);
1153 
1154 	for (start = 0; rcount > 0; rcount >>= 1) {
1155 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1156 		    behavior == DDI_INTR_ALLOC_STRICT)
1157 			break;
1158 	}
1159 
1160 	if (start == 0) {
1161 		/* no vector available */
1162 		mutex_exit(&airq_mutex);
1163 		return (0);
1164 	}
1165 
1166 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1167 		/* not enough free irq slots available */
1168 		mutex_exit(&airq_mutex);
1169 		return (0);
1170 	}
1171 
1172 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1173 	for (i = 0; i < rcount; i++) {
1174 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1175 		    (uchar_t)-1) {
1176 			/*
1177 			 * shouldn't happen because of the
1178 			 * apic_check_free_irqs() check earlier
1179 			 */
1180 			mutex_exit(&airq_mutex);
1181 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1182 			    "apic_allocate_irq failed\n"));
1183 			return (i);
1184 		}
1185 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1186 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1187 		irqptr = apic_irq_table[irqno];
1188 #ifdef	DEBUG
1189 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1190 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1191 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1192 #endif
1193 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1194 
1195 		irqptr->airq_vector = (uchar_t)(start + i);
1196 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1197 		irqptr->airq_intin_no = (uchar_t)rcount;
1198 		irqptr->airq_ipl = pri;
1199 		irqptr->airq_vector = start + i;
1200 		irqptr->airq_origirq = (uchar_t)(inum + i);
1201 		irqptr->airq_share_id = 0;
1202 		irqptr->airq_mps_intr_index = MSI_INDEX;
1203 		irqptr->airq_dip = dip;
1204 		irqptr->airq_major = major;
1205 		if (i == 0) /* they all bound to the same cpu */
1206 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1207 			    0xff, 0xff);
1208 		else
1209 			irqptr->airq_cpu = cpu;
1210 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1211 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1212 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1213 		    irqptr->airq_origirq, pri));
1214 	}
1215 	mutex_exit(&airq_mutex);
1216 	return (rcount);
1217 }
1218 
1219 /*
1220  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1221  */
1222 int
1223 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1224     int behavior)
1225 {
1226 	int	rcount, i;
1227 	major_t	major;
1228 
1229 	mutex_enter(&airq_mutex);
1230 
1231 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1232 		rcount = count;
1233 	else if (rcount == 0 || (rcount < count &&
1234 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1235 		rcount = 0;
1236 		goto out;
1237 	}
1238 
1239 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1240 		/* not enough free irq slots available */
1241 		rcount = 0;
1242 		goto out;
1243 	}
1244 
1245 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1246 	for (i = 0; i < rcount; i++) {
1247 		uchar_t	vector, irqno;
1248 		apic_irq_t	*irqptr;
1249 
1250 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1251 		    (uchar_t)-1) {
1252 			/*
1253 			 * shouldn't happen because of the
1254 			 * apic_check_free_irqs() check earlier
1255 			 */
1256 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1257 			    "apic_allocate_irq failed\n"));
1258 			rcount = i;
1259 			goto out;
1260 		}
1261 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1262 			/*
1263 			 * shouldn't happen because of the
1264 			 * apic_navail_vector() call earlier
1265 			 */
1266 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1267 			    "apic_allocate_vector failed\n"));
1268 			rcount = i;
1269 			goto out;
1270 		}
1271 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1272 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1273 		irqptr = apic_irq_table[irqno];
1274 		irqptr->airq_vector = (uchar_t)vector;
1275 		irqptr->airq_ipl = pri;
1276 		irqptr->airq_origirq = (uchar_t)(inum + i);
1277 		irqptr->airq_share_id = 0;
1278 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1279 		irqptr->airq_dip = dip;
1280 		irqptr->airq_major = major;
1281 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1282 	}
1283 out:
1284 	mutex_exit(&airq_mutex);
1285 	return (rcount);
1286 }
1287 
1288 /*
1289  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1290  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1291  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1292  * requests and allocated only when pri is set.
1293  */
1294 uchar_t
1295 apic_allocate_vector(int ipl, int irq, int pri)
1296 {
1297 	int	lowest, highest, i;
1298 
1299 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1300 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1301 
1302 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1303 		lowest -= APIC_VECTOR_PER_IPL;
1304 
1305 #ifdef	DEBUG
1306 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1307 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1308 #endif /* DEBUG */
1309 	if (pri == 0)
1310 		highest -= APIC_HI_PRI_VECTS;
1311 
1312 	for (i = lowest; i <= highest; i++) {
1313 		if (APIC_CHECK_RESERVE_VECTORS(i))
1314 			continue;
1315 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1316 			apic_vector_to_irq[i] = (uchar_t)irq;
1317 			return (i);
1318 		}
1319 	}
1320 
1321 	return (0);
1322 }
1323 
1324 /* Mark vector as not being used by any irq */
1325 void
1326 apic_free_vector(uchar_t vector)
1327 {
1328 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1329 }
1330 
1331 /*
1332  * Call rebind to do the actual programming.
1333  * Must be called with interrupts disabled and apic_ioapic_lock held
1334  * 'p' is polymorphic -- if this function is called to process a deferred
1335  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1336  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1337  * p is of the type 'apic_irq_t *'.
1338  *
1339  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1340  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1341  * taken offline after a cpu is selected, but before apic_rebind is called to
1342  * bind interrupts to it.
1343  */
1344 int
1345 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1346 {
1347 	apic_irq_t *irqptr;
1348 	struct ioapic_reprogram_data *drep = NULL;
1349 	int rv;
1350 
1351 	if (deferred) {
1352 		drep = (struct ioapic_reprogram_data *)p;
1353 		ASSERT(drep != NULL);
1354 		irqptr = drep->irqp;
1355 	} else
1356 		irqptr = (apic_irq_t *)p;
1357 
1358 	ASSERT(irqptr != NULL);
1359 
1360 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1361 	if (rv) {
1362 		/*
1363 		 * CPU is not up or interrupts are disabled. Fall back to
1364 		 * the first available CPU
1365 		 */
1366 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1367 		    drep);
1368 	}
1369 
1370 	return (rv);
1371 }
1372 
1373 
1374 uchar_t
1375 apic_modify_vector(uchar_t vector, int irq)
1376 {
1377 	apic_vector_to_irq[vector] = (uchar_t)irq;
1378 	return (vector);
1379 }
1380 
1381 char *
1382 apic_get_apic_type(void)
1383 {
1384 	return (apic_psm_info.p_mach_idstring);
1385 }
1386 
1387 void
1388 x2apic_update_psm(void)
1389 {
1390 	struct psm_ops *pops = &apic_ops;
1391 
1392 	ASSERT(pops != NULL);
1393 
1394 	pops->psm_intr_exit = x2apic_intr_exit;
1395 	pops->psm_setspl = x2apic_setspl;
1396 
1397 	pops->psm_send_ipi =  x2apic_send_ipi;
1398 	send_dirintf = pops->psm_send_ipi;
1399 
1400 	apic_mode = LOCAL_X2APIC;
1401 	apic_change_ops();
1402 }
1403