xref: /titanic_52/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 2227b8ad8ebd0984a34b696ce07145248700852b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * To understand how the pcplusmp module interacts with the interrupt subsystem
32  * read the theory statement in uts/i86pc/os/intr.c.
33  */
34 
35 /*
36  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
37  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
38  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
39  * PSMI 1.5 extensions are supported in Solaris Nevada.
40  * PSMI 1.6 extensions are supported in Solaris Nevada.
41  * PSMI 1.7 extensions are supported in Solaris Nevada.
42  */
43 #define	PSMI_1_7
44 
45 #include <sys/processor.h>
46 #include <sys/time.h>
47 #include <sys/psm.h>
48 #include <sys/smp_impldefs.h>
49 #include <sys/cram.h>
50 #include <sys/acpi/acpi.h>
51 #include <sys/acpica.h>
52 #include <sys/psm_common.h>
53 #include <sys/apic.h>
54 #include <sys/pit.h>
55 #include <sys/ddi.h>
56 #include <sys/sunddi.h>
57 #include <sys/ddi_impldefs.h>
58 #include <sys/pci.h>
59 #include <sys/promif.h>
60 #include <sys/x86_archext.h>
61 #include <sys/cpc_impl.h>
62 #include <sys/uadmin.h>
63 #include <sys/panic.h>
64 #include <sys/debug.h>
65 #include <sys/archsystm.h>
66 #include <sys/trap.h>
67 #include <sys/machsystm.h>
68 #include <sys/sysmacros.h>
69 #include <sys/cpuvar.h>
70 #include <sys/rm_platter.h>
71 #include <sys/privregs.h>
72 #include <sys/note.h>
73 #include <sys/pci_intr_lib.h>
74 #include <sys/spl.h>
75 #include <sys/clock.h>
76 #include <sys/dditypes.h>
77 #include <sys/sunddi.h>
78 #include <sys/x_call.h>
79 #include <sys/reboot.h>
80 #include <sys/hpet.h>
81 #include <sys/apic_common.h>
82 #include <sys/apic_timer.h>
83 
84 /*
85  *	Local Function Prototypes
86  */
87 static void apic_init_intr(void);
88 
89 /*
90  *	standard MP entries
91  */
92 static int	apic_probe(void);
93 static int	apic_getclkirq(int ipl);
94 static void	apic_init(void);
95 static void	apic_picinit(void);
96 static int	apic_post_cpu_start(void);
97 static int	apic_intr_enter(int ipl, int *vect);
98 static void	apic_setspl(int ipl);
99 static void	x2apic_setspl(int ipl);
100 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
101 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
102 static int	apic_disable_intr(processorid_t cpun);
103 static void	apic_enable_intr(processorid_t cpun);
104 static int		apic_get_ipivect(int ipl, int type);
105 static void	apic_post_cyclic_setup(void *arg);
106 
107 /*
108  * The following vector assignments influence the value of ipltopri and
109  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
110  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
111  * we care to do so in future. Note some IPLs which are rarely used
112  * will share the vector ranges and heavily used IPLs (5 and 6) have
113  * a wide range.
114  *
115  * This array is used to initialize apic_ipls[] (in apic_init()).
116  *
117  *	IPL		Vector range.		as passed to intr_enter
118  *	0		none.
119  *	1,2,3		0x20-0x2f		0x0-0xf
120  *	4		0x30-0x3f		0x10-0x1f
121  *	5		0x40-0x5f		0x20-0x3f
122  *	6		0x60-0x7f		0x40-0x5f
123  *	7,8,9		0x80-0x8f		0x60-0x6f
124  *	10		0x90-0x9f		0x70-0x7f
125  *	11		0xa0-0xaf		0x80-0x8f
126  *	...		...
127  *	15		0xe0-0xef		0xc0-0xcf
128  *	15		0xf0-0xff		0xd0-0xdf
129  */
130 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
131 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
132 };
133 	/*
134 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
135 	 * NOTE that this is vector as passed into intr_enter which is
136 	 * programmed vector - 0x20 (APIC_BASE_VECT)
137 	 */
138 
139 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
140 	/* The taskpri to be programmed into apic to mask given ipl */
141 
142 #if defined(__amd64)
143 uchar_t	apic_cr8pri[MAXIPL + 1];	/* unix ipl to cr8 pri	*/
144 #endif
145 
146 /*
147  * Correlation of the hardware vector to the IPL in use, initialized
148  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
149  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
150  * connected to errata-stricken IOAPICs
151  */
152 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
153 
154 /*
155  * Patchable global variables.
156  */
157 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
158 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
159 
160 /*
161  *	Local static data
162  */
163 static struct	psm_ops apic_ops = {
164 	apic_probe,
165 
166 	apic_init,
167 	apic_picinit,
168 	apic_intr_enter,
169 	apic_intr_exit,
170 	apic_setspl,
171 	apic_addspl,
172 	apic_delspl,
173 	apic_disable_intr,
174 	apic_enable_intr,
175 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
176 	(void (*)(int))NULL,		/* psm_set_softintr */
177 
178 	apic_set_idlecpu,
179 	apic_unset_idlecpu,
180 
181 	apic_clkinit,
182 	apic_getclkirq,
183 	(void (*)(void))NULL,		/* psm_hrtimeinit */
184 	apic_gethrtime,
185 
186 	apic_get_next_processorid,
187 	apic_cpu_start,
188 	apic_post_cpu_start,
189 	apic_shutdown,
190 	apic_get_ipivect,
191 	apic_send_ipi,
192 
193 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
194 	(void (*)(int, char *))NULL,	/* psm_notify_error */
195 	(void (*)(int))NULL,		/* psm_notify_func */
196 	apic_timer_reprogram,
197 	apic_timer_enable,
198 	apic_timer_disable,
199 	apic_post_cyclic_setup,
200 	apic_preshutdown,
201 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
202 	apic_state,			/* save, restore apic state for S3 */
203 	apic_cpu_ops,			/* CPU control interface. */
204 };
205 
206 struct psm_ops *psmops = &apic_ops;
207 
208 static struct	psm_info apic_psm_info = {
209 	PSM_INFO_VER01_7,			/* version */
210 	PSM_OWN_EXCLUSIVE,			/* ownership */
211 	(struct psm_ops *)&apic_ops,		/* operation */
212 	APIC_PCPLUSMP_NAME,			/* machine name */
213 	"pcplusmp v1.4 compatible",
214 };
215 
216 static void *apic_hdlp;
217 
218 /*
219  * apic_let_idle_redistribute can have the following values:
220  * 0 - If clock decremented it from 1 to 0, clock has to call redistribute.
221  * apic_redistribute_lock prevents multiple idle cpus from redistributing
222  */
223 int	apic_num_idle_redistributions = 0;
224 static	int apic_let_idle_redistribute = 0;
225 
226 /* to gather intr data and redistribute */
227 static void apic_redistribute_compute(void);
228 
229 /*
230  *	This is the loadable module wrapper
231  */
232 
233 int
234 _init(void)
235 {
236 	if (apic_coarse_hrtime)
237 		apic_ops.psm_gethrtime = &apic_gettime;
238 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
239 }
240 
241 int
242 _fini(void)
243 {
244 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
245 }
246 
247 int
248 _info(struct modinfo *modinfop)
249 {
250 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
251 }
252 
253 static int
254 apic_probe(void)
255 {
256 	/* check if apix is initialized */
257 	if (apix_enable && apix_loaded())
258 		return (PSM_FAILURE);
259 	else
260 		apix_enable = 0; /* continue using pcplusmp PSM */
261 
262 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
263 }
264 
265 static uchar_t
266 apic_xlate_vector_by_irq(uchar_t irq)
267 {
268 	if (apic_irq_table[irq] == NULL)
269 		return (0);
270 
271 	return (apic_irq_table[irq]->airq_vector);
272 }
273 
274 void
275 apic_init(void)
276 {
277 	int i;
278 	int	j = 1;
279 
280 	psm_get_ioapicid = apic_get_ioapicid;
281 	psm_get_localapicid = apic_get_localapicid;
282 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
283 
284 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
285 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
286 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
287 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
288 			/* get to highest vector at the same ipl */
289 			continue;
290 		for (; j <= apic_vectortoipl[i]; j++) {
291 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
292 			    APIC_BASE_VECT;
293 		}
294 	}
295 	for (; j < MAXIPL + 1; j++)
296 		/* fill up any empty ipltopri slots */
297 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
298 	apic_init_common();
299 #if defined(__amd64)
300 	/*
301 	 * Make cpu-specific interrupt info point to cr8pri vector
302 	 */
303 	for (i = 0; i <= MAXIPL; i++)
304 		apic_cr8pri[i] = apic_ipltopri[i] >> APIC_IPL_SHIFT;
305 	CPU->cpu_pri_data = apic_cr8pri;
306 #else
307 	if (cpuid_have_cr8access(CPU))
308 		apic_have_32bit_cr8 = 1;
309 #endif	/* __amd64 */
310 }
311 
312 static void
313 apic_init_intr(void)
314 {
315 	processorid_t	cpun = psm_get_cpu_id();
316 	uint_t nlvt;
317 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
318 
319 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
320 
321 	if (apic_mode == LOCAL_APIC) {
322 		/*
323 		 * We are running APIC in MMIO mode.
324 		 */
325 		if (apic_flat_model) {
326 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
327 			    APIC_FLAT_MODEL);
328 		} else {
329 			apic_reg_ops->apic_write(APIC_FORMAT_REG,
330 			    APIC_CLUSTER_MODEL);
331 		}
332 
333 		apic_reg_ops->apic_write(APIC_DEST_REG,
334 		    AV_HIGH_ORDER >> cpun);
335 	}
336 
337 	if (apic_directed_EOI_supported()) {
338 		/*
339 		 * Setting the 12th bit in the Spurious Interrupt Vector
340 		 * Register suppresses broadcast EOIs generated by the local
341 		 * APIC. The suppression of broadcast EOIs happens only when
342 		 * interrupts are level-triggered.
343 		 */
344 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
345 	}
346 
347 	/* need to enable APIC before unmasking NMI */
348 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
349 
350 	/*
351 	 * Presence of an invalid vector with delivery mode AV_FIXED can
352 	 * cause an error interrupt, even if the entry is masked...so
353 	 * write a valid vector to LVT entries along with the mask bit
354 	 */
355 
356 	/* All APICs have timer and LINT0/1 */
357 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
358 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
359 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
360 
361 	/*
362 	 * On integrated APICs, the number of LVT entries is
363 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
364 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
365 	 */
366 
367 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
368 		nlvt = 3;
369 	} else {
370 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
371 		    0xFF) + 1;
372 	}
373 
374 	if (nlvt >= 5) {
375 		/* Enable performance counter overflow interrupt */
376 
377 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
378 			apic_enable_cpcovf_intr = 0;
379 		if (apic_enable_cpcovf_intr) {
380 			if (apic_cpcovf_vect == 0) {
381 				int ipl = APIC_PCINT_IPL;
382 				int irq = apic_get_ipivect(ipl, -1);
383 
384 				ASSERT(irq != -1);
385 				apic_cpcovf_vect =
386 				    apic_irq_table[irq]->airq_vector;
387 				ASSERT(apic_cpcovf_vect);
388 				(void) add_avintr(NULL, ipl,
389 				    (avfunc)kcpc_hw_overflow_intr,
390 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
391 				kcpc_hw_overflow_intr_installed = 1;
392 				kcpc_hw_enable_cpc_intr =
393 				    apic_cpcovf_mask_clear;
394 			}
395 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
396 			    apic_cpcovf_vect);
397 		}
398 	}
399 
400 	if (nlvt >= 6) {
401 		/* Only mask TM intr if the BIOS apparently doesn't use it */
402 
403 		uint32_t lvtval;
404 
405 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
406 		if (((lvtval & AV_MASK) == AV_MASK) ||
407 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
408 			apic_reg_ops->apic_write(APIC_THERM_VECT,
409 			    AV_MASK|APIC_RESV_IRQ);
410 		}
411 	}
412 
413 	/* Enable error interrupt */
414 
415 	if (nlvt >= 4 && apic_enable_error_intr) {
416 		if (apic_errvect == 0) {
417 			int ipl = 0xf;	/* get highest priority intr */
418 			int irq = apic_get_ipivect(ipl, -1);
419 
420 			ASSERT(irq != -1);
421 			apic_errvect = apic_irq_table[irq]->airq_vector;
422 			ASSERT(apic_errvect);
423 			/*
424 			 * Not PSMI compliant, but we are going to merge
425 			 * with ON anyway
426 			 */
427 			(void) add_avintr((void *)NULL, ipl,
428 			    (avfunc)apic_error_intr, "apic error intr",
429 			    irq, NULL, NULL, NULL, NULL);
430 		}
431 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
432 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
433 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
434 	}
435 
436 	/* Enable CMCI interrupt */
437 	if (cmi_enable_cmci) {
438 
439 		mutex_enter(&cmci_cpu_setup_lock);
440 		if (cmci_cpu_setup_registered == 0) {
441 			mutex_enter(&cpu_lock);
442 			register_cpu_setup_func(cmci_cpu_setup, NULL);
443 			mutex_exit(&cpu_lock);
444 			cmci_cpu_setup_registered = 1;
445 		}
446 		mutex_exit(&cmci_cpu_setup_lock);
447 
448 		if (apic_cmci_vect == 0) {
449 			int ipl = 0x2;
450 			int irq = apic_get_ipivect(ipl, -1);
451 
452 			ASSERT(irq != -1);
453 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
454 			ASSERT(apic_cmci_vect);
455 
456 			(void) add_avintr(NULL, ipl,
457 			    (avfunc)cmi_cmci_trap,
458 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
459 		}
460 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
461 	}
462 }
463 
464 static void
465 apic_picinit(void)
466 {
467 	int i, j;
468 	uint_t isr;
469 
470 	/*
471 	 * Initialize and enable interrupt remapping before apic
472 	 * hardware initialization
473 	 */
474 	apic_intrmap_init(apic_mode);
475 
476 	/*
477 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
478 	 * bit on without clearing it with EOI.  Since softint
479 	 * uses vector 0x20 to interrupt itself, so softint will
480 	 * not work on this machine.  In order to fix this problem
481 	 * a check is made to verify all the isr bits are clear.
482 	 * If not, EOIs are issued to clear the bits.
483 	 */
484 	for (i = 7; i >= 1; i--) {
485 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
486 		if (isr != 0)
487 			for (j = 0; ((j < 32) && (isr != 0)); j++)
488 				if (isr & (1 << j)) {
489 					apic_reg_ops->apic_write(
490 					    APIC_EOI_REG, 0);
491 					isr &= ~(1 << j);
492 					apic_error |= APIC_ERR_BOOT_EOI;
493 				}
494 	}
495 
496 	/* set a flag so we know we have run apic_picinit() */
497 	apic_picinit_called = 1;
498 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
499 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
500 	LOCK_INIT_CLEAR(&apic_error_lock);
501 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
502 
503 	picsetup();	 /* initialise the 8259 */
504 
505 	/* add nmi handler - least priority nmi handler */
506 	LOCK_INIT_CLEAR(&apic_nmi_lock);
507 
508 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
509 	    "pcplusmp NMI handler", (caddr_t)NULL))
510 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
511 
512 	/*
513 	 * Check for directed-EOI capability in the local APIC.
514 	 */
515 	if (apic_directed_EOI_supported() == 1) {
516 		apic_set_directed_EOI_handler();
517 	}
518 
519 	apic_init_intr();
520 
521 	/* enable apic mode if imcr present */
522 	if (apic_imcrp) {
523 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
524 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
525 	}
526 
527 	ioapic_init_intr(IOAPIC_MASK);
528 }
529 
530 #ifdef	DEBUG
531 void
532 apic_break(void)
533 {
534 }
535 #endif /* DEBUG */
536 
537 /*
538  * platform_intr_enter
539  *
540  *	Called at the beginning of the interrupt service routine to
541  *	mask all level equal to and below the interrupt priority
542  *	of the interrupting vector.  An EOI should be given to
543  *	the interrupt controller to enable other HW interrupts.
544  *
545  *	Return -1 for spurious interrupts
546  *
547  */
548 /*ARGSUSED*/
549 static int
550 apic_intr_enter(int ipl, int *vectorp)
551 {
552 	uchar_t vector;
553 	int nipl;
554 	int irq;
555 	ulong_t iflag;
556 	apic_cpus_info_t *cpu_infop;
557 
558 	/*
559 	 * The real vector delivered is (*vectorp + 0x20), but our caller
560 	 * subtracts 0x20 from the vector before passing it to us.
561 	 * (That's why APIC_BASE_VECT is 0x20.)
562 	 */
563 	vector = (uchar_t)*vectorp;
564 
565 	/* if interrupted by the clock, increment apic_nsec_since_boot */
566 	if (vector == apic_clkvect) {
567 		if (!apic_oneshot) {
568 			/* NOTE: this is not MT aware */
569 			apic_hrtime_stamp++;
570 			apic_nsec_since_boot += apic_nsec_per_intr;
571 			apic_hrtime_stamp++;
572 			last_count_read = apic_hertz_count;
573 			apic_redistribute_compute();
574 		}
575 
576 		/* We will avoid all the book keeping overhead for clock */
577 		nipl = apic_ipls[vector];
578 
579 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
580 		if (apic_mode == LOCAL_APIC) {
581 #if defined(__amd64)
582 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
583 			    APIC_IPL_SHIFT));
584 #else
585 			if (apic_have_32bit_cr8)
586 				setcr8((ulong_t)(apic_ipltopri[nipl] >>
587 				    APIC_IPL_SHIFT));
588 			else
589 				LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
590 				    (uint32_t)apic_ipltopri[nipl]);
591 #endif
592 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
593 		} else {
594 			X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
595 			X2APIC_WRITE(APIC_EOI_REG, 0);
596 		}
597 
598 		return (nipl);
599 	}
600 
601 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
602 
603 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
604 		cpu_infop->aci_spur_cnt++;
605 		return (APIC_INT_SPURIOUS);
606 	}
607 
608 	/* Check if the vector we got is really what we need */
609 	if (apic_revector_pending) {
610 		/*
611 		 * Disable interrupts for the duration of
612 		 * the vector translation to prevent a self-race for
613 		 * the apic_revector_lock.  This cannot be done
614 		 * in apic_xlate_vector because it is recursive and
615 		 * we want the vector translation to be atomic with
616 		 * respect to other (higher-priority) interrupts.
617 		 */
618 		iflag = intr_clear();
619 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
620 		    APIC_BASE_VECT;
621 		intr_restore(iflag);
622 	}
623 
624 	nipl = apic_ipls[vector];
625 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
626 
627 	if (apic_mode == LOCAL_APIC) {
628 #if defined(__amd64)
629 		setcr8((ulong_t)(apic_ipltopri[nipl] >> APIC_IPL_SHIFT));
630 #else
631 		if (apic_have_32bit_cr8)
632 			setcr8((ulong_t)(apic_ipltopri[nipl] >>
633 			    APIC_IPL_SHIFT));
634 		else
635 			LOCAL_APIC_WRITE_REG(APIC_TASK_REG,
636 			    (uint32_t)apic_ipltopri[nipl]);
637 #endif
638 	} else {
639 		X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[nipl]);
640 	}
641 
642 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
643 	cpu_infop->aci_curipl = (uchar_t)nipl;
644 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
645 
646 	/*
647 	 * apic_level_intr could have been assimilated into the irq struct.
648 	 * but, having it as a character array is more efficient in terms of
649 	 * cache usage. So, we leave it as is.
650 	 */
651 	if (!apic_level_intr[irq]) {
652 		if (apic_mode == LOCAL_APIC) {
653 			LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
654 		} else {
655 			X2APIC_WRITE(APIC_EOI_REG, 0);
656 		}
657 	}
658 
659 #ifdef	DEBUG
660 	APIC_DEBUG_BUF_PUT(vector);
661 	APIC_DEBUG_BUF_PUT(irq);
662 	APIC_DEBUG_BUF_PUT(nipl);
663 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
664 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
665 		drv_usecwait(apic_stretch_interrupts);
666 
667 	if (apic_break_on_cpu == psm_get_cpu_id())
668 		apic_break();
669 #endif /* DEBUG */
670 	return (nipl);
671 }
672 
673 /*
674  * This macro is a common code used by MMIO local apic and X2APIC
675  * local apic.
676  */
677 #define	APIC_INTR_EXIT() \
678 { \
679 	cpu_infop = &apic_cpus[psm_get_cpu_id()]; \
680 	if (apic_level_intr[irq]) \
681 		apic_reg_ops->apic_send_eoi(irq); \
682 	cpu_infop->aci_curipl = (uchar_t)prev_ipl; \
683 	/* ISR above current pri could not be in progress */ \
684 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1; \
685 }
686 
687 /*
688  * Any changes made to this function must also change X2APIC
689  * version of intr_exit.
690  */
691 void
692 apic_intr_exit(int prev_ipl, int irq)
693 {
694 	apic_cpus_info_t *cpu_infop;
695 
696 #if defined(__amd64)
697 	setcr8((ulong_t)apic_cr8pri[prev_ipl]);
698 #else
699 	if (apic_have_32bit_cr8)
700 		setcr8((ulong_t)(apic_ipltopri[prev_ipl] >> APIC_IPL_SHIFT));
701 	else
702 		apicadr[APIC_TASK_REG] = apic_ipltopri[prev_ipl];
703 #endif
704 
705 	APIC_INTR_EXIT();
706 }
707 
708 /*
709  * Same as apic_intr_exit() except it uses MSR rather than MMIO
710  * to access local apic registers.
711  */
712 void
713 x2apic_intr_exit(int prev_ipl, int irq)
714 {
715 	apic_cpus_info_t *cpu_infop;
716 
717 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[prev_ipl]);
718 	APIC_INTR_EXIT();
719 }
720 
721 intr_exit_fn_t
722 psm_intr_exit_fn(void)
723 {
724 	if (apic_mode == LOCAL_X2APIC)
725 		return (x2apic_intr_exit);
726 
727 	return (apic_intr_exit);
728 }
729 
730 /*
731  * Mask all interrupts below or equal to the given IPL.
732  * Any changes made to this function must also change X2APIC
733  * version of setspl.
734  */
735 static void
736 apic_setspl(int ipl)
737 {
738 #if defined(__amd64)
739 	setcr8((ulong_t)apic_cr8pri[ipl]);
740 #else
741 	if (apic_have_32bit_cr8)
742 		setcr8((ulong_t)(apic_ipltopri[ipl] >> APIC_IPL_SHIFT));
743 	else
744 		apicadr[APIC_TASK_REG] = apic_ipltopri[ipl];
745 #endif
746 
747 	/* interrupts at ipl above this cannot be in progress */
748 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
749 	/*
750 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
751 	 * have enough time to come in before the priority is raised again
752 	 * during the idle() loop.
753 	 */
754 	if (apic_setspl_delay)
755 		(void) apic_reg_ops->apic_get_pri();
756 }
757 
758 /*
759  * X2APIC version of setspl.
760  * Mask all interrupts below or equal to the given IPL
761  */
762 static void
763 x2apic_setspl(int ipl)
764 {
765 	X2APIC_WRITE(APIC_TASK_REG, apic_ipltopri[ipl]);
766 
767 	/* interrupts at ipl above this cannot be in progress */
768 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
769 }
770 
771 /*ARGSUSED*/
772 static int
773 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
774 {
775 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
776 }
777 
778 static int
779 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
780 {
781 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
782 }
783 
784 static int
785 apic_post_cpu_start(void)
786 {
787 	int cpun;
788 	static int cpus_started = 1;
789 
790 	/* We know this CPU + BSP  started successfully. */
791 	cpus_started++;
792 
793 	/*
794 	 * On BSP we would have enabled X2APIC, if supported by processor,
795 	 * in acpi_probe(), but on AP we do it here.
796 	 *
797 	 * We enable X2APIC mode only if BSP is running in X2APIC & the
798 	 * local APIC mode of the current CPU is MMIO (xAPIC).
799 	 */
800 	if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
801 	    apic_local_mode() == LOCAL_APIC) {
802 		apic_enable_x2apic();
803 	}
804 
805 	/*
806 	 * Switch back to x2apic IPI sending method for performance when target
807 	 * CPU has entered x2apic mode.
808 	 */
809 	if (apic_mode == LOCAL_X2APIC) {
810 		apic_switch_ipi_callback(B_FALSE);
811 	}
812 
813 	splx(ipltospl(LOCK_LEVEL));
814 	apic_init_intr();
815 
816 	/*
817 	 * since some systems don't enable the internal cache on the non-boot
818 	 * cpus, so we have to enable them here
819 	 */
820 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
821 
822 #ifdef	DEBUG
823 	APIC_AV_PENDING_SET();
824 #else
825 	if (apic_mode == LOCAL_APIC)
826 		APIC_AV_PENDING_SET();
827 #endif	/* DEBUG */
828 
829 	/*
830 	 * We may be booting, or resuming from suspend; aci_status will
831 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
832 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
833 	 */
834 	cpun = psm_get_cpu_id();
835 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
836 
837 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
838 	return (PSM_SUCCESS);
839 }
840 
841 /*
842  * type == -1 indicates it is an internal request. Do not change
843  * resv_vector for these requests
844  */
845 static int
846 apic_get_ipivect(int ipl, int type)
847 {
848 	uchar_t vector;
849 	int irq;
850 
851 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
852 		if (vector = apic_allocate_vector(ipl, irq, 1)) {
853 			apic_irq_table[irq]->airq_mps_intr_index =
854 			    RESERVE_INDEX;
855 			apic_irq_table[irq]->airq_vector = vector;
856 			if (type != -1) {
857 				apic_resv_vector[ipl] = vector;
858 			}
859 			return (irq);
860 		}
861 	}
862 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
863 	return (-1);	/* shouldn't happen */
864 }
865 
866 static int
867 apic_getclkirq(int ipl)
868 {
869 	int	irq;
870 
871 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
872 		return (-1);
873 	/*
874 	 * Note the vector in apic_clkvect for per clock handling.
875 	 */
876 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
877 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
878 	    apic_clkvect));
879 	return (irq);
880 }
881 
882 /*
883  * Try and disable all interrupts. We just assign interrupts to other
884  * processors based on policy. If any were bound by user request, we
885  * let them continue and return failure. We do not bother to check
886  * for cache affinity while rebinding.
887  */
888 
889 static int
890 apic_disable_intr(processorid_t cpun)
891 {
892 	int bind_cpu = 0, i, hardbound = 0;
893 	apic_irq_t *irq_ptr;
894 	ulong_t iflag;
895 
896 	iflag = intr_clear();
897 	lock_set(&apic_ioapic_lock);
898 
899 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
900 		if (apic_reprogram_info[i].done == B_FALSE) {
901 			if (apic_reprogram_info[i].bindcpu == cpun) {
902 				/*
903 				 * CPU is busy -- it's the target of
904 				 * a pending reprogramming attempt
905 				 */
906 				lock_clear(&apic_ioapic_lock);
907 				intr_restore(iflag);
908 				return (PSM_FAILURE);
909 			}
910 		}
911 	}
912 
913 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
914 
915 	apic_cpus[cpun].aci_curipl = 0;
916 
917 	i = apic_min_device_irq;
918 	for (; i <= apic_max_device_irq; i++) {
919 		/*
920 		 * If there are bound interrupts on this cpu, then
921 		 * rebind them to other processors.
922 		 */
923 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
924 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
925 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
926 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
927 
928 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
929 				hardbound = 1;
930 				continue;
931 			}
932 
933 			if (irq_ptr->airq_temp_cpu == cpun) {
934 				do {
935 					bind_cpu =
936 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
937 				} while (apic_rebind_all(irq_ptr, bind_cpu));
938 			}
939 		}
940 	}
941 
942 	lock_clear(&apic_ioapic_lock);
943 	intr_restore(iflag);
944 
945 	if (hardbound) {
946 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
947 		    "due to user bound interrupts", cpun);
948 		return (PSM_FAILURE);
949 	}
950 	else
951 		return (PSM_SUCCESS);
952 }
953 
954 /*
955  * Bind interrupts to the CPU's local APIC.
956  * Interrupts should not be bound to a CPU's local APIC until the CPU
957  * is ready to receive interrupts.
958  */
959 static void
960 apic_enable_intr(processorid_t cpun)
961 {
962 	int	i;
963 	apic_irq_t *irq_ptr;
964 	ulong_t iflag;
965 
966 	iflag = intr_clear();
967 	lock_set(&apic_ioapic_lock);
968 
969 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
970 
971 	i = apic_min_device_irq;
972 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
973 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
974 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
975 				(void) apic_rebind_all(irq_ptr,
976 				    irq_ptr->airq_cpu);
977 			}
978 		}
979 	}
980 
981 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
982 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
983 
984 	lock_clear(&apic_ioapic_lock);
985 	intr_restore(iflag);
986 }
987 
988 /*
989  * If this module needs a periodic handler for the interrupt distribution, it
990  * can be added here. The argument to the periodic handler is not currently
991  * used, but is reserved for future.
992  */
993 static void
994 apic_post_cyclic_setup(void *arg)
995 {
996 _NOTE(ARGUNUSED(arg))
997 	/* cpu_lock is held */
998 	/* set up a periodic handler for intr redistribution */
999 
1000 	/*
1001 	 * In peridoc mode intr redistribution processing is done in
1002 	 * apic_intr_enter during clk intr processing
1003 	 */
1004 	if (!apic_oneshot)
1005 		return;
1006 	/*
1007 	 * Register a periodical handler for the redistribution processing.
1008 	 * On X86, CY_LOW_LEVEL is mapped to the level 2 interrupt, so
1009 	 * DDI_IPL_2 should be passed to ddi_periodic_add() here.
1010 	 */
1011 	apic_periodic_id = ddi_periodic_add(
1012 	    (void (*)(void *))apic_redistribute_compute, NULL,
1013 	    apic_redistribute_sample_interval, DDI_IPL_2);
1014 }
1015 
1016 static void
1017 apic_redistribute_compute(void)
1018 {
1019 	int	i, j, max_busy;
1020 
1021 	if (apic_enable_dynamic_migration) {
1022 		if (++apic_nticks == apic_sample_factor_redistribution) {
1023 			/*
1024 			 * Time to call apic_intr_redistribute().
1025 			 * reset apic_nticks. This will cause max_busy
1026 			 * to be calculated below and if it is more than
1027 			 * apic_int_busy, we will do the whole thing
1028 			 */
1029 			apic_nticks = 0;
1030 		}
1031 		max_busy = 0;
1032 		for (i = 0; i < apic_nproc; i++) {
1033 			if (!apic_cpu_in_range(i))
1034 				continue;
1035 
1036 			/*
1037 			 * Check if curipl is non zero & if ISR is in
1038 			 * progress
1039 			 */
1040 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
1041 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1042 
1043 				int	irq;
1044 				apic_cpus[i].aci_busy++;
1045 				irq = apic_cpus[i].aci_current[j];
1046 				apic_irq_table[irq]->airq_busy++;
1047 			}
1048 
1049 			if (!apic_nticks &&
1050 			    (apic_cpus[i].aci_busy > max_busy))
1051 				max_busy = apic_cpus[i].aci_busy;
1052 		}
1053 		if (!apic_nticks) {
1054 			if (max_busy > apic_int_busy_mark) {
1055 			/*
1056 			 * We could make the following check be
1057 			 * skipped > 1 in which case, we get a
1058 			 * redistribution at half the busy mark (due to
1059 			 * double interval). Need to be able to collect
1060 			 * more empirical data to decide if that is a
1061 			 * good strategy. Punt for now.
1062 			 */
1063 				if (apic_skipped_redistribute) {
1064 					apic_cleanup_busy();
1065 					apic_skipped_redistribute = 0;
1066 				} else {
1067 					apic_intr_redistribute();
1068 				}
1069 			} else
1070 				apic_skipped_redistribute++;
1071 		}
1072 	}
1073 }
1074 
1075 
1076 /*
1077  * The following functions are in the platform specific file so that they
1078  * can be different functions depending on whether we are running on
1079  * bare metal or a hypervisor.
1080  */
1081 
1082 /*
1083  * Check to make sure there are enough irq slots
1084  */
1085 int
1086 apic_check_free_irqs(int count)
1087 {
1088 	int i, avail;
1089 
1090 	avail = 0;
1091 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
1092 		if ((apic_irq_table[i] == NULL) ||
1093 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
1094 			if (++avail >= count)
1095 				return (PSM_SUCCESS);
1096 		}
1097 	}
1098 	return (PSM_FAILURE);
1099 }
1100 
1101 /*
1102  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1103  */
1104 int
1105 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1106     int behavior)
1107 {
1108 	int	rcount, i;
1109 	uchar_t	start, irqno;
1110 	uint32_t cpu;
1111 	major_t	major;
1112 	apic_irq_t	*irqptr;
1113 
1114 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1115 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1116 	    (void *)dip, inum, pri, count, behavior));
1117 
1118 	if (count > 1) {
1119 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1120 		    apic_multi_msi_enable == 0)
1121 			return (0);
1122 		if (apic_multi_msi_enable == 0)
1123 			count = 1;
1124 	}
1125 
1126 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1127 		rcount = count;
1128 	else if (rcount == 0 || (rcount < count &&
1129 	    behavior == DDI_INTR_ALLOC_STRICT))
1130 		return (0);
1131 
1132 	/* if not ISP2, then round it down */
1133 	if (!ISP2(rcount))
1134 		rcount = 1 << (highbit(rcount) - 1);
1135 
1136 	mutex_enter(&airq_mutex);
1137 
1138 	for (start = 0; rcount > 0; rcount >>= 1) {
1139 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1140 		    behavior == DDI_INTR_ALLOC_STRICT)
1141 			break;
1142 	}
1143 
1144 	if (start == 0) {
1145 		/* no vector available */
1146 		mutex_exit(&airq_mutex);
1147 		return (0);
1148 	}
1149 
1150 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1151 		/* not enough free irq slots available */
1152 		mutex_exit(&airq_mutex);
1153 		return (0);
1154 	}
1155 
1156 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1157 	for (i = 0; i < rcount; i++) {
1158 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1159 		    (uchar_t)-1) {
1160 			/*
1161 			 * shouldn't happen because of the
1162 			 * apic_check_free_irqs() check earlier
1163 			 */
1164 			mutex_exit(&airq_mutex);
1165 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1166 			    "apic_allocate_irq failed\n"));
1167 			return (i);
1168 		}
1169 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1170 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1171 		irqptr = apic_irq_table[irqno];
1172 #ifdef	DEBUG
1173 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1174 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1175 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1176 #endif
1177 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1178 
1179 		irqptr->airq_vector = (uchar_t)(start + i);
1180 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1181 		irqptr->airq_intin_no = (uchar_t)rcount;
1182 		irqptr->airq_ipl = pri;
1183 		irqptr->airq_vector = start + i;
1184 		irqptr->airq_origirq = (uchar_t)(inum + i);
1185 		irqptr->airq_share_id = 0;
1186 		irqptr->airq_mps_intr_index = MSI_INDEX;
1187 		irqptr->airq_dip = dip;
1188 		irqptr->airq_major = major;
1189 		if (i == 0) /* they all bound to the same cpu */
1190 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1191 			    0xff, 0xff);
1192 		else
1193 			irqptr->airq_cpu = cpu;
1194 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1195 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1196 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1197 		    irqptr->airq_origirq, pri));
1198 	}
1199 	mutex_exit(&airq_mutex);
1200 	return (rcount);
1201 }
1202 
1203 /*
1204  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1205  */
1206 int
1207 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1208     int behavior)
1209 {
1210 	int	rcount, i;
1211 	major_t	major;
1212 
1213 	mutex_enter(&airq_mutex);
1214 
1215 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1216 		rcount = count;
1217 	else if (rcount == 0 || (rcount < count &&
1218 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1219 		rcount = 0;
1220 		goto out;
1221 	}
1222 
1223 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1224 		/* not enough free irq slots available */
1225 		rcount = 0;
1226 		goto out;
1227 	}
1228 
1229 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1230 	for (i = 0; i < rcount; i++) {
1231 		uchar_t	vector, irqno;
1232 		apic_irq_t	*irqptr;
1233 
1234 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1235 		    (uchar_t)-1) {
1236 			/*
1237 			 * shouldn't happen because of the
1238 			 * apic_check_free_irqs() check earlier
1239 			 */
1240 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1241 			    "apic_allocate_irq failed\n"));
1242 			rcount = i;
1243 			goto out;
1244 		}
1245 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1246 			/*
1247 			 * shouldn't happen because of the
1248 			 * apic_navail_vector() call earlier
1249 			 */
1250 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1251 			    "apic_allocate_vector failed\n"));
1252 			rcount = i;
1253 			goto out;
1254 		}
1255 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1256 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1257 		irqptr = apic_irq_table[irqno];
1258 		irqptr->airq_vector = (uchar_t)vector;
1259 		irqptr->airq_ipl = pri;
1260 		irqptr->airq_origirq = (uchar_t)(inum + i);
1261 		irqptr->airq_share_id = 0;
1262 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1263 		irqptr->airq_dip = dip;
1264 		irqptr->airq_major = major;
1265 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1266 	}
1267 out:
1268 	mutex_exit(&airq_mutex);
1269 	return (rcount);
1270 }
1271 
1272 /*
1273  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1274  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1275  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1276  * requests and allocated only when pri is set.
1277  */
1278 uchar_t
1279 apic_allocate_vector(int ipl, int irq, int pri)
1280 {
1281 	int	lowest, highest, i;
1282 
1283 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1284 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1285 
1286 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1287 		lowest -= APIC_VECTOR_PER_IPL;
1288 
1289 #ifdef	DEBUG
1290 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1291 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1292 #endif /* DEBUG */
1293 	if (pri == 0)
1294 		highest -= APIC_HI_PRI_VECTS;
1295 
1296 	for (i = lowest; i <= highest; i++) {
1297 		if (APIC_CHECK_RESERVE_VECTORS(i))
1298 			continue;
1299 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1300 			apic_vector_to_irq[i] = (uchar_t)irq;
1301 			return (i);
1302 		}
1303 	}
1304 
1305 	return (0);
1306 }
1307 
1308 /* Mark vector as not being used by any irq */
1309 void
1310 apic_free_vector(uchar_t vector)
1311 {
1312 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1313 }
1314 
1315 /*
1316  * Call rebind to do the actual programming.
1317  * Must be called with interrupts disabled and apic_ioapic_lock held
1318  * 'p' is polymorphic -- if this function is called to process a deferred
1319  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1320  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1321  * p is of the type 'apic_irq_t *'.
1322  *
1323  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1324  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1325  * taken offline after a cpu is selected, but before apic_rebind is called to
1326  * bind interrupts to it.
1327  */
1328 int
1329 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1330 {
1331 	apic_irq_t *irqptr;
1332 	struct ioapic_reprogram_data *drep = NULL;
1333 	int rv;
1334 
1335 	if (deferred) {
1336 		drep = (struct ioapic_reprogram_data *)p;
1337 		ASSERT(drep != NULL);
1338 		irqptr = drep->irqp;
1339 	} else
1340 		irqptr = (apic_irq_t *)p;
1341 
1342 	ASSERT(irqptr != NULL);
1343 
1344 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1345 	if (rv) {
1346 		/*
1347 		 * CPU is not up or interrupts are disabled. Fall back to
1348 		 * the first available CPU
1349 		 */
1350 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1351 		    drep);
1352 	}
1353 
1354 	return (rv);
1355 }
1356 
1357 
1358 uchar_t
1359 apic_modify_vector(uchar_t vector, int irq)
1360 {
1361 	apic_vector_to_irq[vector] = (uchar_t)irq;
1362 	return (vector);
1363 }
1364 
1365 char *
1366 apic_get_apic_type(void)
1367 {
1368 	return (apic_psm_info.p_mach_idstring);
1369 }
1370 
1371 void
1372 x2apic_update_psm(void)
1373 {
1374 	struct psm_ops *pops = &apic_ops;
1375 
1376 	ASSERT(pops != NULL);
1377 
1378 	pops->psm_intr_exit = x2apic_intr_exit;
1379 	pops->psm_setspl = x2apic_setspl;
1380 
1381 	pops->psm_send_ipi =  x2apic_send_ipi;
1382 	send_dirintf = pops->psm_send_ipi;
1383 
1384 	apic_mode = LOCAL_X2APIC;
1385 	apic_change_ops();
1386 }
1387