xref: /titanic_52/usr/src/uts/common/xen/io/xnf.c (revision 70cbfe41f2338b77c15f79c6625eca6e70c412f3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  *
29  * Copyright (c) 2004 Christian Limpach.
30  * All rights reserved.
31  *
32  * Redistribution and use in source and binary forms, with or without
33  * modification, are permitted provided that the following conditions
34  * are met:
35  * 1. Redistributions of source code must retain the above copyright
36  *    notice, this list of conditions and the following disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  * 3. This section intentionally left blank.
41  * 4. The name of the author may not be used to endorse or promote products
42  *    derived from this software without specific prior written permission.
43  *
44  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
45  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
46  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
47  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
48  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
49  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
53  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 /*
56  * Section 3 of the above license was updated in response to bug 6379571.
57  */
58 
59 /*
60  * xnf.c - Nemo-based network driver for domU
61  */
62 
63 #include <sys/types.h>
64 #include <sys/errno.h>
65 #include <sys/param.h>
66 #include <sys/sysmacros.h>
67 #include <sys/systm.h>
68 #include <sys/stream.h>
69 #include <sys/strsubr.h>
70 #include <sys/conf.h>
71 #include <sys/ddi.h>
72 #include <sys/devops.h>
73 #include <sys/sunddi.h>
74 #include <sys/sunndi.h>
75 #include <sys/dlpi.h>
76 #include <sys/ethernet.h>
77 #include <sys/strsun.h>
78 #include <sys/pattr.h>
79 #include <inet/ip.h>
80 #include <inet/ip_impl.h>
81 #include <sys/gld.h>
82 #include <sys/modctl.h>
83 #include <sys/mac.h>
84 #include <sys/mac_ether.h>
85 #include <sys/bootinfo.h>
86 #include <sys/mach_mmu.h>
87 #ifdef	XPV_HVM_DRIVER
88 #include <sys/xpv_support.h>
89 #include <sys/hypervisor.h>
90 #else
91 #include <sys/hypervisor.h>
92 #include <sys/evtchn_impl.h>
93 #include <sys/balloon_impl.h>
94 #endif
95 #include <xen/public/io/netif.h>
96 #include <sys/gnttab.h>
97 #include <xen/sys/xendev.h>
98 #include <sys/sdt.h>
99 
100 #include <io/xnf.h>
101 
102 
103 /*
104  *  Declarations and Module Linkage
105  */
106 
107 #if defined(DEBUG) || defined(__lint)
108 #define	XNF_DEBUG
109 int	xnfdebug = 0;
110 #endif
111 
112 /*
113  * On a 32 bit PAE system physical and machine addresses are larger
114  * than 32 bits.  ddi_btop() on such systems take an unsigned long
115  * argument, and so addresses above 4G are truncated before ddi_btop()
116  * gets to see them.  To avoid this, code the shift operation here.
117  */
118 #define	xnf_btop(addr)	((addr) >> PAGESHIFT)
119 
120 boolean_t	xnf_cksum_offload = B_TRUE;
121 
122 /* Default value for hypervisor-based copy operations */
123 boolean_t	xnf_rx_hvcopy = B_TRUE;
124 
125 /*
126  * Should pages used for transmit be readonly for the peer?
127  */
128 boolean_t	xnf_tx_pages_readonly = B_FALSE;
129 /*
130  * Packets under this size are bcopied instead of using desballoc.
131  * Choose a value > XNF_FRAMESIZE (1514) to force the receive path to
132  * always copy.
133  */
134 unsigned int	xnf_rx_bcopy_thresh = 64;
135 
136 unsigned int	xnf_max_tx_frags = 1;
137 
138 /* Required system entry points */
139 static int	xnf_attach(dev_info_t *, ddi_attach_cmd_t);
140 static int	xnf_detach(dev_info_t *, ddi_detach_cmd_t);
141 
142 /* Required driver entry points for Nemo */
143 static int	xnf_start(void *);
144 static void	xnf_stop(void *);
145 static int	xnf_set_mac_addr(void *, const uint8_t *);
146 static int	xnf_set_multicast(void *, boolean_t, const uint8_t *);
147 static int	xnf_set_promiscuous(void *, boolean_t);
148 static mblk_t	*xnf_send(void *, mblk_t *);
149 static uint_t	xnf_intr(caddr_t);
150 static int	xnf_stat(void *, uint_t, uint64_t *);
151 static void	xnf_blank(void *, time_t, uint_t);
152 static void	xnf_resources(void *);
153 static void	xnf_ioctl(void *, queue_t *, mblk_t *);
154 static boolean_t xnf_getcapab(void *, mac_capab_t, void *);
155 
156 /* Driver private functions */
157 static int xnf_alloc_dma_resources(xnf_t *);
158 static void xnf_release_dma_resources(xnf_t *);
159 static mblk_t *xnf_process_recv(xnf_t *);
160 static void xnf_rcv_complete(struct xnf_buffer_desc *);
161 static void xnf_release_mblks(xnf_t *);
162 static struct xnf_buffer_desc *xnf_alloc_tx_buffer(xnf_t *);
163 static struct xnf_buffer_desc *xnf_alloc_buffer(xnf_t *);
164 static struct xnf_buffer_desc *xnf_get_tx_buffer(xnf_t *);
165 static struct xnf_buffer_desc *xnf_get_buffer(xnf_t *);
166 static void xnf_free_buffer(struct xnf_buffer_desc *);
167 static void xnf_free_tx_buffer(struct xnf_buffer_desc *);
168 void xnf_send_driver_status(int, int);
169 static void rx_buffer_hang(xnf_t *, struct xnf_buffer_desc *);
170 static int xnf_clean_tx_ring(xnf_t  *);
171 static void oe_state_change(dev_info_t *, ddi_eventcookie_t,
172     void *, void *);
173 static mblk_t *xnf_process_hvcopy_recv(xnf_t *xnfp);
174 static boolean_t xnf_hvcopy_peer_status(dev_info_t *devinfo);
175 static boolean_t xnf_kstat_init(xnf_t *xnfp);
176 
177 /*
178  * XXPV dme: remove MC_IOCTL?
179  */
180 static mac_callbacks_t xnf_callbacks = {
181 	MC_RESOURCES | MC_IOCTL | MC_GETCAPAB,
182 	xnf_stat,
183 	xnf_start,
184 	xnf_stop,
185 	xnf_set_promiscuous,
186 	xnf_set_multicast,
187 	xnf_set_mac_addr,
188 	xnf_send,
189 	xnf_resources,
190 	xnf_ioctl,
191 	xnf_getcapab
192 };
193 
194 #define	GRANT_INVALID_REF	0
195 const int xnf_rx_bufs_lowat = 4 * NET_RX_RING_SIZE;
196 const int xnf_rx_bufs_hiwat = 8 * NET_RX_RING_SIZE; /* default max */
197 
198 /* DMA attributes for network ring buffer */
199 static ddi_dma_attr_t ringbuf_dma_attr = {
200 	DMA_ATTR_V0,		/* version of this structure */
201 	0,			/* lowest usable address */
202 	0xffffffffffffffffULL,	/* highest usable address */
203 	0x7fffffff,		/* maximum DMAable byte count */
204 	MMU_PAGESIZE,		/* alignment in bytes */
205 	0x7ff,			/* bitmap of burst sizes */
206 	1,			/* minimum transfer */
207 	0xffffffffU,		/* maximum transfer */
208 	0xffffffffffffffffULL,	/* maximum segment length */
209 	1,			/* maximum number of segments */
210 	1,			/* granularity */
211 	0,			/* flags (reserved) */
212 };
213 
214 /* DMA attributes for transmit data */
215 static ddi_dma_attr_t tx_buffer_dma_attr = {
216 	DMA_ATTR_V0,		/* version of this structure */
217 	0,			/* lowest usable address */
218 	0xffffffffffffffffULL,	/* highest usable address */
219 	0x7fffffff,		/* maximum DMAable byte count */
220 	MMU_PAGESIZE,		/* alignment in bytes */
221 	0x7ff,			/* bitmap of burst sizes */
222 	1,			/* minimum transfer */
223 	0xffffffffU,		/* maximum transfer */
224 	0xffffffffffffffffULL,	/* maximum segment length */
225 	1,			/* maximum number of segments */
226 	1,			/* granularity */
227 	0,			/* flags (reserved) */
228 };
229 
230 /* DMA attributes for a receive buffer */
231 static ddi_dma_attr_t rx_buffer_dma_attr = {
232 	DMA_ATTR_V0,		/* version of this structure */
233 	0,			/* lowest usable address */
234 	0xffffffffffffffffULL,	/* highest usable address */
235 	0x7fffffff,		/* maximum DMAable byte count */
236 	MMU_PAGESIZE,		/* alignment in bytes */
237 	0x7ff,			/* bitmap of burst sizes */
238 	1,			/* minimum transfer */
239 	0xffffffffU,		/* maximum transfer */
240 	0xffffffffffffffffULL,	/* maximum segment length */
241 	1,			/* maximum number of segments */
242 	1,			/* granularity */
243 	0,			/* flags (reserved) */
244 };
245 
246 /* DMA access attributes for registers and descriptors */
247 static ddi_device_acc_attr_t accattr = {
248 	DDI_DEVICE_ATTR_V0,
249 	DDI_STRUCTURE_LE_ACC,	/* This is a little-endian device */
250 	DDI_STRICTORDER_ACC
251 };
252 
253 /* DMA access attributes for data: NOT to be byte swapped. */
254 static ddi_device_acc_attr_t data_accattr = {
255 	DDI_DEVICE_ATTR_V0,
256 	DDI_NEVERSWAP_ACC,
257 	DDI_STRICTORDER_ACC
258 };
259 
260 unsigned char xnf_broadcastaddr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
261 int xnf_diagnose = 0; /* Patchable global for diagnostic purposes */
262 
263 DDI_DEFINE_STREAM_OPS(xnf_dev_ops, nulldev, nulldev, xnf_attach, xnf_detach,
264     nodev, NULL, D_MP, NULL);
265 
266 static struct modldrv xnf_modldrv = {
267 	&mod_driverops,
268 	"Virtual Ethernet driver",
269 	&xnf_dev_ops
270 };
271 
272 static struct modlinkage modlinkage = {
273 	MODREV_1, &xnf_modldrv, NULL
274 };
275 
276 int
277 _init(void)
278 {
279 	int r;
280 
281 	mac_init_ops(&xnf_dev_ops, "xnf");
282 	r = mod_install(&modlinkage);
283 	if (r != DDI_SUCCESS)
284 		mac_fini_ops(&xnf_dev_ops);
285 
286 	return (r);
287 }
288 
289 int
290 _fini(void)
291 {
292 	return (EBUSY); /* XXPV dme: should be removable */
293 }
294 
295 int
296 _info(struct modinfo *modinfop)
297 {
298 	return (mod_info(&modlinkage, modinfop));
299 }
300 
301 static int
302 xnf_setup_rings(xnf_t *xnfp)
303 {
304 	int			ix, err;
305 	RING_IDX		i;
306 	struct xnf_buffer_desc	*bdesc, *rbp;
307 	struct xenbus_device	*xsd;
308 	domid_t			oeid;
309 
310 	oeid = xvdi_get_oeid(xnfp->xnf_devinfo);
311 	xsd = xvdi_get_xsd(xnfp->xnf_devinfo);
312 
313 	if (xnfp->xnf_tx_ring_ref != GRANT_INVALID_REF)
314 		gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0);
315 
316 	err = gnttab_grant_foreign_access(oeid,
317 	    xnf_btop(pa_to_ma(xnfp->xnf_tx_ring_phys_addr)), 0);
318 	if (err <= 0) {
319 		err = -err;
320 		xenbus_dev_error(xsd, err, "granting access to tx ring page");
321 		goto out;
322 	}
323 	xnfp->xnf_tx_ring_ref = (grant_ref_t)err;
324 
325 	if (xnfp->xnf_rx_ring_ref != GRANT_INVALID_REF)
326 		gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0);
327 
328 	err = gnttab_grant_foreign_access(oeid,
329 	    xnf_btop(pa_to_ma(xnfp->xnf_rx_ring_phys_addr)), 0);
330 	if (err <= 0) {
331 		err = -err;
332 		xenbus_dev_error(xsd, err, "granting access to rx ring page");
333 		goto out;
334 	}
335 	xnfp->xnf_rx_ring_ref = (grant_ref_t)err;
336 
337 
338 	mutex_enter(&xnfp->xnf_intrlock);
339 
340 	/*
341 	 * Cleanup the TX ring.  We just clean up any valid tx_pktinfo structs
342 	 * and reset the ring.  Note that this can lose packets after a resume,
343 	 * but we expect to stagger on.
344 	 */
345 	mutex_enter(&xnfp->xnf_txlock);
346 
347 	for (i = 0; i < xnfp->xnf_n_tx; i++) {
348 		struct tx_pktinfo *txp = &xnfp->xnf_tx_pkt_info[i];
349 
350 		txp->id = i + 1;
351 
352 		if (txp->grant_ref == GRANT_INVALID_REF) {
353 			ASSERT(txp->mp == NULL);
354 			ASSERT(txp->bdesc == NULL);
355 			continue;
356 		}
357 
358 		if (gnttab_query_foreign_access(txp->grant_ref) != 0)
359 			panic("tx grant still in use by backend domain");
360 
361 		freemsg(txp->mp);
362 		txp->mp = NULL;
363 
364 		(void) ddi_dma_unbind_handle(txp->dma_handle);
365 
366 		if (txp->bdesc != NULL) {
367 			xnf_free_tx_buffer(txp->bdesc);
368 			txp->bdesc = NULL;
369 		}
370 
371 		(void) gnttab_end_foreign_access_ref(txp->grant_ref,
372 		    xnfp->xnf_tx_pages_readonly);
373 		gnttab_release_grant_reference(&xnfp->xnf_gref_tx_head,
374 		    txp->grant_ref);
375 		txp->grant_ref = GRANT_INVALID_REF;
376 	}
377 
378 	xnfp->xnf_tx_pkt_id_list = 0;
379 	xnfp->xnf_tx_ring.rsp_cons = 0;
380 	xnfp->xnf_tx_ring.req_prod_pvt = 0;
381 
382 	/* LINTED: constant in conditional context */
383 	SHARED_RING_INIT(xnfp->xnf_tx_ring.sring);
384 
385 	mutex_exit(&xnfp->xnf_txlock);
386 
387 	/*
388 	 * Rebuild the RX ring.  We have to rebuild the RX ring because some of
389 	 * our pages are currently flipped out/granted so we can't just free
390 	 * the RX buffers.  Reclaim any unprocessed recv buffers, they won't be
391 	 * useable anyway since the mfn's they refer to are no longer valid.
392 	 * Grant the backend domain access to each hung rx buffer.
393 	 */
394 	i = xnfp->xnf_rx_ring.rsp_cons;
395 	while (i++ != xnfp->xnf_rx_ring.sring->req_prod) {
396 		volatile netif_rx_request_t	*rxrp;
397 
398 		rxrp = RING_GET_REQUEST(&xnfp->xnf_rx_ring, i);
399 		ix = rxrp - RING_GET_REQUEST(&xnfp->xnf_rx_ring, 0);
400 		rbp = xnfp->xnf_rxpkt_bufptr[ix];
401 		if (rbp != NULL) {
402 			grant_ref_t	ref = rbp->grant_ref;
403 
404 			ASSERT(ref != GRANT_INVALID_REF);
405 			if (xnfp->xnf_rx_hvcopy) {
406 				pfn_t pfn = xnf_btop(rbp->buf_phys);
407 				mfn_t mfn = pfn_to_mfn(pfn);
408 
409 				gnttab_grant_foreign_access_ref(ref, oeid,
410 				    mfn, 0);
411 			} else {
412 				gnttab_grant_foreign_transfer_ref(ref,
413 				    oeid, 0);
414 			}
415 			rxrp->id = ix;
416 			rxrp->gref = ref;
417 		}
418 	}
419 
420 	/*
421 	 * Reset the ring pointers to initial state.
422 	 * Hang buffers for any empty ring slots.
423 	 */
424 	xnfp->xnf_rx_ring.rsp_cons = 0;
425 	xnfp->xnf_rx_ring.req_prod_pvt = 0;
426 
427 	/* LINTED: constant in conditional context */
428 	SHARED_RING_INIT(xnfp->xnf_rx_ring.sring);
429 
430 	for (i = 0; i < NET_RX_RING_SIZE; i++) {
431 		xnfp->xnf_rx_ring.req_prod_pvt = i;
432 		if (xnfp->xnf_rxpkt_bufptr[i] != NULL)
433 			continue;
434 		if ((bdesc = xnf_get_buffer(xnfp)) == NULL)
435 			break;
436 		rx_buffer_hang(xnfp, bdesc);
437 	}
438 	xnfp->xnf_rx_ring.req_prod_pvt = i;
439 	/* LINTED: constant in conditional context */
440 	RING_PUSH_REQUESTS(&xnfp->xnf_rx_ring);
441 
442 	mutex_exit(&xnfp->xnf_intrlock);
443 
444 	return (0);
445 
446 out:
447 	if (xnfp->xnf_tx_ring_ref != GRANT_INVALID_REF)
448 		gnttab_end_foreign_access(xnfp->xnf_tx_ring_ref, 0, 0);
449 	xnfp->xnf_tx_ring_ref = GRANT_INVALID_REF;
450 
451 	if (xnfp->xnf_rx_ring_ref != GRANT_INVALID_REF)
452 		gnttab_end_foreign_access(xnfp->xnf_rx_ring_ref, 0, 0);
453 	xnfp->xnf_rx_ring_ref = GRANT_INVALID_REF;
454 
455 	return (err);
456 }
457 
458 
459 /* Called when the upper layers free a message we passed upstream */
460 static void
461 xnf_copy_rcv_complete(struct xnf_buffer_desc *bdesc)
462 {
463 	(void) ddi_dma_unbind_handle(bdesc->dma_handle);
464 	ddi_dma_mem_free(&bdesc->acc_handle);
465 	ddi_dma_free_handle(&bdesc->dma_handle);
466 	kmem_free(bdesc, sizeof (*bdesc));
467 }
468 
469 
470 /*
471  * Connect driver to back end, called to set up communication with
472  * back end driver both initially and on resume after restore/migrate.
473  */
474 void
475 xnf_be_connect(xnf_t *xnfp)
476 {
477 	const char	*message;
478 	xenbus_transaction_t xbt;
479 	struct		xenbus_device *xsd;
480 	char		*xsname;
481 	int		err;
482 
483 	ASSERT(!xnfp->xnf_connected);
484 
485 	xsd = xvdi_get_xsd(xnfp->xnf_devinfo);
486 	xsname = xvdi_get_xsname(xnfp->xnf_devinfo);
487 
488 	err = xnf_setup_rings(xnfp);
489 	if (err != 0) {
490 		cmn_err(CE_WARN, "failed to set up tx/rx rings");
491 		xenbus_dev_error(xsd, err, "setting up ring");
492 		return;
493 	}
494 
495 again:
496 	err = xenbus_transaction_start(&xbt);
497 	if (err != 0) {
498 		xenbus_dev_error(xsd, EIO, "starting transaction");
499 		return;
500 	}
501 
502 	err = xenbus_printf(xbt, xsname, "tx-ring-ref", "%u",
503 	    xnfp->xnf_tx_ring_ref);
504 	if (err != 0) {
505 		message = "writing tx ring-ref";
506 		goto abort_transaction;
507 	}
508 
509 	err = xenbus_printf(xbt, xsname, "rx-ring-ref", "%u",
510 	    xnfp->xnf_rx_ring_ref);
511 	if (err != 0) {
512 		message = "writing rx ring-ref";
513 		goto abort_transaction;
514 	}
515 
516 	err = xenbus_printf(xbt, xsname, "event-channel", "%u",
517 	    xnfp->xnf_evtchn);
518 	if (err != 0) {
519 		message = "writing event-channel";
520 		goto abort_transaction;
521 	}
522 
523 	err = xenbus_printf(xbt, xsname, "feature-rx-notify", "%d", 1);
524 	if (err != 0) {
525 		message = "writing feature-rx-notify";
526 		goto abort_transaction;
527 	}
528 
529 	if (!xnfp->xnf_tx_pages_readonly) {
530 		err = xenbus_printf(xbt, xsname, "feature-tx-writable",
531 		    "%d", 1);
532 		if (err != 0) {
533 			message = "writing feature-tx-writable";
534 			goto abort_transaction;
535 		}
536 	}
537 
538 	err = xenbus_printf(xbt, xsname, "feature-no-csum-offload", "%d",
539 	    xnfp->xnf_cksum_offload ? 0 : 1);
540 	if (err != 0) {
541 		message = "writing feature-no-csum-offload";
542 		goto abort_transaction;
543 	}
544 	err = xenbus_printf(xbt, xsname, "request-rx-copy", "%d",
545 	    xnfp->xnf_rx_hvcopy ? 1 : 0);
546 	if (err != 0) {
547 		message = "writing request-rx-copy";
548 		goto abort_transaction;
549 	}
550 
551 	err = xenbus_printf(xbt, xsname, "state", "%d", XenbusStateConnected);
552 	if (err != 0) {
553 		message = "writing frontend XenbusStateConnected";
554 		goto abort_transaction;
555 	}
556 
557 	err = xenbus_transaction_end(xbt, 0);
558 	if (err != 0) {
559 		if (err == EAGAIN)
560 			goto again;
561 		xenbus_dev_error(xsd, err, "completing transaction");
562 	}
563 
564 	return;
565 
566 abort_transaction:
567 	(void) xenbus_transaction_end(xbt, 1);
568 	xenbus_dev_error(xsd, err, "%s", message);
569 }
570 
571 /*
572  * Read config info from xenstore
573  */
574 void
575 xnf_read_config(xnf_t *xnfp)
576 {
577 	char		mac[ETHERADDRL * 3];
578 	int		err, be_no_cksum_offload;
579 
580 	err = xenbus_scanf(XBT_NULL, xvdi_get_oename(xnfp->xnf_devinfo), "mac",
581 	    "%s", (char *)&mac[0]);
582 	if (err != 0) {
583 		/*
584 		 * bad: we're supposed to be set up with a proper mac
585 		 * addr. at this point
586 		 */
587 		cmn_err(CE_WARN, "%s%d: no mac address",
588 		    ddi_driver_name(xnfp->xnf_devinfo),
589 		    ddi_get_instance(xnfp->xnf_devinfo));
590 			return;
591 	}
592 	if (ether_aton(mac, xnfp->xnf_mac_addr) != ETHERADDRL) {
593 		err = ENOENT;
594 		xenbus_dev_error(xvdi_get_xsd(xnfp->xnf_devinfo), ENOENT,
595 		    "parsing %s/mac", xvdi_get_xsname(xnfp->xnf_devinfo));
596 		return;
597 	}
598 
599 	err = xenbus_scanf(XBT_NULL, xvdi_get_oename(xnfp->xnf_devinfo),
600 	    "feature-no-csum-offload", "%d", &be_no_cksum_offload);
601 	/*
602 	 * If we fail to read the store we assume that the key is
603 	 * absent, implying an older domain at the far end.  Older
604 	 * domains always support checksum offload.
605 	 */
606 	if (err != 0)
607 		be_no_cksum_offload = 0;
608 	/*
609 	 * If the far end cannot do checksum offload or we do not wish
610 	 * to do it, disable it.
611 	 */
612 	if ((be_no_cksum_offload == 1) || !xnfp->xnf_cksum_offload)
613 		xnfp->xnf_cksum_offload = B_FALSE;
614 }
615 
616 /*
617  *  attach(9E) -- Attach a device to the system
618  *
619  *  Called once for each board successfully probed.
620  */
621 static int
622 xnf_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
623 {
624 	mac_register_t *macp;
625 	xnf_t *xnfp;
626 	int err;
627 
628 #ifdef XNF_DEBUG
629 	if (xnfdebug & XNF_DEBUG_DDI)
630 		printf("xnf%d: attach(0x%p)\n", ddi_get_instance(devinfo),
631 		    (void *)devinfo);
632 #endif
633 
634 	switch (cmd) {
635 	case DDI_RESUME:
636 		xnfp = ddi_get_driver_private(devinfo);
637 
638 		(void) xvdi_resume(devinfo);
639 		(void) xvdi_alloc_evtchn(devinfo);
640 		xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo);
641 #ifdef XPV_HVM_DRIVER
642 		ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr,
643 		    xnfp);
644 #else
645 		(void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr,
646 		    (caddr_t)xnfp);
647 #endif
648 		xnf_be_connect(xnfp);
649 		/*
650 		 * Our MAC address may have changed if we're resuming:
651 		 * - on a different host
652 		 * - on the same one and got a different MAC address
653 		 *   because we didn't specify one of our own.
654 		 * so it's useful to claim that it changed in order that
655 		 * IP send out a gratuitous ARP.
656 		 */
657 		mac_unicst_update(xnfp->xnf_mh, xnfp->xnf_mac_addr);
658 		return (DDI_SUCCESS);
659 
660 	case DDI_ATTACH:
661 		break;
662 
663 	default:
664 		return (DDI_FAILURE);
665 	}
666 
667 	/*
668 	 *  Allocate gld_mac_info_t and xnf_instance structures
669 	 */
670 	macp = mac_alloc(MAC_VERSION);
671 	if (macp == NULL)
672 		return (DDI_FAILURE);
673 	xnfp = kmem_zalloc(sizeof (*xnfp), KM_SLEEP);
674 
675 	macp->m_dip = devinfo;
676 	macp->m_driver = xnfp;
677 	xnfp->xnf_devinfo = devinfo;
678 
679 	macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
680 	macp->m_src_addr = xnfp->xnf_mac_addr;
681 	macp->m_callbacks = &xnf_callbacks;
682 	macp->m_min_sdu = 0;
683 	macp->m_max_sdu = XNF_MAXPKT;
684 
685 	xnfp->xnf_running = B_FALSE;
686 	xnfp->xnf_connected = B_FALSE;
687 	xnfp->xnf_cksum_offload = xnf_cksum_offload;
688 	xnfp->xnf_tx_pages_readonly = xnf_tx_pages_readonly;
689 
690 	xnfp->xnf_rx_hvcopy = xnf_hvcopy_peer_status(devinfo) && xnf_rx_hvcopy;
691 #ifdef XPV_HVM_DRIVER
692 	/*
693 	 * Report our version to dom0.
694 	 */
695 	if (xenbus_printf(XBT_NULL, "hvmpv/xnf", "version", "%d",
696 	    HVMPV_XNF_VERS))
697 		cmn_err(CE_WARN, "xnf: couldn't write version\n");
698 
699 	if (!xnfp->xnf_rx_hvcopy) {
700 		cmn_err(CE_WARN, "The xnf driver requires a dom0 that "
701 		    "supports 'feature-rx-copy'");
702 		goto failure;
703 	}
704 #endif
705 
706 	/*
707 	 * Get the iblock cookie with which to initialize the mutexes.
708 	 */
709 	if (ddi_get_iblock_cookie(devinfo, 0, &xnfp->xnf_icookie)
710 	    != DDI_SUCCESS)
711 		goto failure;
712 	/*
713 	 * Driver locking strategy: the txlock protects all paths
714 	 * through the driver, except the interrupt thread.
715 	 * If the interrupt thread needs to do something which could
716 	 * affect the operation of any other part of the driver,
717 	 * it needs to acquire the txlock mutex.
718 	 */
719 	mutex_init(&xnfp->xnf_tx_buf_mutex,
720 	    NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
721 	mutex_init(&xnfp->xnf_rx_buf_mutex,
722 	    NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
723 	mutex_init(&xnfp->xnf_txlock,
724 	    NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
725 	mutex_init(&xnfp->xnf_intrlock,
726 	    NULL, MUTEX_DRIVER, xnfp->xnf_icookie);
727 	cv_init(&xnfp->xnf_cv, NULL, CV_DEFAULT, NULL);
728 
729 	xnfp->xnf_gref_tx_head = (grant_ref_t)-1;
730 	xnfp->xnf_gref_rx_head = (grant_ref_t)-1;
731 	if (gnttab_alloc_grant_references(NET_TX_RING_SIZE,
732 	    &xnfp->xnf_gref_tx_head) < 0) {
733 		cmn_err(CE_WARN, "xnf%d: can't alloc tx grant refs",
734 		    ddi_get_instance(xnfp->xnf_devinfo));
735 		goto failure_1;
736 	}
737 	if (gnttab_alloc_grant_references(NET_RX_RING_SIZE,
738 	    &xnfp->xnf_gref_rx_head) < 0) {
739 		cmn_err(CE_WARN, "xnf%d: can't alloc rx grant refs",
740 		    ddi_get_instance(xnfp->xnf_devinfo));
741 		goto failure_1;
742 	}
743 	if (xnf_alloc_dma_resources(xnfp) == DDI_FAILURE) {
744 		cmn_err(CE_WARN, "xnf%d: failed to allocate and initialize "
745 		    "driver data structures",
746 		    ddi_get_instance(xnfp->xnf_devinfo));
747 		goto failure_1;
748 	}
749 
750 	xnfp->xnf_rx_ring.sring->rsp_event =
751 	    xnfp->xnf_tx_ring.sring->rsp_event = 1;
752 
753 	xnfp->xnf_tx_ring_ref = GRANT_INVALID_REF;
754 	xnfp->xnf_rx_ring_ref = GRANT_INVALID_REF;
755 
756 	/* set driver private pointer now */
757 	ddi_set_driver_private(devinfo, xnfp);
758 
759 	if (xvdi_add_event_handler(devinfo, XS_OE_STATE, oe_state_change)
760 	    != DDI_SUCCESS)
761 		goto failure_1;
762 
763 	if (!xnf_kstat_init(xnfp))
764 		goto failure_2;
765 
766 	/*
767 	 * Allocate an event channel, add the interrupt handler and
768 	 * bind it to the event channel.
769 	 */
770 	(void) xvdi_alloc_evtchn(devinfo);
771 	xnfp->xnf_evtchn = xvdi_get_evtchn(devinfo);
772 #ifdef XPV_HVM_DRIVER
773 	ec_bind_evtchn_to_handler(xnfp->xnf_evtchn, IPL_VIF, xnf_intr, xnfp);
774 #else
775 	(void) ddi_add_intr(devinfo, 0, NULL, NULL, xnf_intr, (caddr_t)xnfp);
776 #endif
777 
778 	xnf_read_config(xnfp);
779 	err = mac_register(macp, &xnfp->xnf_mh);
780 	mac_free(macp);
781 	macp = NULL;
782 	if (err != 0)
783 		goto failure_3;
784 
785 #ifdef XPV_HVM_DRIVER
786 	/*
787 	 * In the HVM case, this driver essentially replaces a driver for
788 	 * a 'real' PCI NIC. Without the "model" property set to
789 	 * "Ethernet controller", like the PCI code does, netbooting does
790 	 * not work correctly, as strplumb_get_netdev_path() will not find
791 	 * this interface.
792 	 */
793 	(void) ndi_prop_update_string(DDI_DEV_T_NONE, devinfo, "model",
794 	    "Ethernet controller");
795 #endif
796 
797 	/*
798 	 * connect to the backend
799 	 */
800 	xnf_be_connect(xnfp);
801 
802 	return (DDI_SUCCESS);
803 
804 failure_3:
805 	kstat_delete(xnfp->xnf_kstat_aux);
806 #ifdef XPV_HVM_DRIVER
807 	ec_unbind_evtchn(xnfp->xnf_evtchn);
808 	xvdi_free_evtchn(devinfo);
809 #else
810 	ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
811 #endif
812 	xnfp->xnf_evtchn = INVALID_EVTCHN;
813 
814 failure_2:
815 	xvdi_remove_event_handler(devinfo, XS_OE_STATE);
816 
817 failure_1:
818 	if (xnfp->xnf_gref_tx_head != (grant_ref_t)-1)
819 		gnttab_free_grant_references(xnfp->xnf_gref_tx_head);
820 	if (xnfp->xnf_gref_rx_head != (grant_ref_t)-1)
821 		gnttab_free_grant_references(xnfp->xnf_gref_rx_head);
822 	xnf_release_dma_resources(xnfp);
823 	cv_destroy(&xnfp->xnf_cv);
824 	mutex_destroy(&xnfp->xnf_rx_buf_mutex);
825 	mutex_destroy(&xnfp->xnf_txlock);
826 	mutex_destroy(&xnfp->xnf_intrlock);
827 
828 failure:
829 	kmem_free(xnfp, sizeof (*xnfp));
830 	if (macp != NULL)
831 		mac_free(macp);
832 
833 	return (DDI_FAILURE);
834 }
835 
836 /*  detach(9E) -- Detach a device from the system */
837 static int
838 xnf_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
839 {
840 	xnf_t *xnfp;		/* Our private device info */
841 	int i;
842 
843 #ifdef XNF_DEBUG
844 	if (xnfdebug & XNF_DEBUG_DDI)
845 		printf("xnf_detach(0x%p)\n", (void *)devinfo);
846 #endif
847 
848 	xnfp = ddi_get_driver_private(devinfo);
849 
850 	switch (cmd) {
851 	case DDI_SUSPEND:
852 #ifdef XPV_HVM_DRIVER
853 		ec_unbind_evtchn(xnfp->xnf_evtchn);
854 		xvdi_free_evtchn(devinfo);
855 #else
856 		ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
857 #endif
858 
859 		xvdi_suspend(devinfo);
860 
861 		mutex_enter(&xnfp->xnf_intrlock);
862 		mutex_enter(&xnfp->xnf_txlock);
863 
864 		xnfp->xnf_evtchn = INVALID_EVTCHN;
865 		xnfp->xnf_connected = B_FALSE;
866 		mutex_exit(&xnfp->xnf_txlock);
867 		mutex_exit(&xnfp->xnf_intrlock);
868 
869 		/* claim link to be down after disconnect */
870 		mac_link_update(xnfp->xnf_mh, LINK_STATE_DOWN);
871 		return (DDI_SUCCESS);
872 
873 	case DDI_DETACH:
874 		break;
875 
876 	default:
877 		return (DDI_FAILURE);
878 	}
879 
880 	if (xnfp->xnf_connected)
881 		return (DDI_FAILURE);
882 
883 	/* Wait for receive buffers to be returned; give up after 5 seconds */
884 	i = 50;
885 
886 	mutex_enter(&xnfp->xnf_rx_buf_mutex);
887 	while (xnfp->xnf_rx_bufs_outstanding > 0) {
888 		mutex_exit(&xnfp->xnf_rx_buf_mutex);
889 		delay(drv_usectohz(100000));
890 		if (--i == 0) {
891 			cmn_err(CE_WARN,
892 			    "xnf%d: never reclaimed all the "
893 			    "receive buffers.  Still have %d "
894 			    "buffers outstanding.",
895 			    ddi_get_instance(xnfp->xnf_devinfo),
896 			    xnfp->xnf_rx_bufs_outstanding);
897 			return (DDI_FAILURE);
898 		}
899 		mutex_enter(&xnfp->xnf_rx_buf_mutex);
900 	}
901 	mutex_exit(&xnfp->xnf_rx_buf_mutex);
902 
903 	if (mac_unregister(xnfp->xnf_mh) != 0)
904 		return (DDI_FAILURE);
905 
906 	kstat_delete(xnfp->xnf_kstat_aux);
907 
908 	/* Stop the receiver */
909 	xnf_stop(xnfp);
910 
911 	xvdi_remove_event_handler(devinfo, XS_OE_STATE);
912 
913 	/* Remove the interrupt */
914 #ifdef XPV_HVM_DRIVER
915 	ec_unbind_evtchn(xnfp->xnf_evtchn);
916 	xvdi_free_evtchn(devinfo);
917 #else
918 	ddi_remove_intr(devinfo, 0, xnfp->xnf_icookie);
919 #endif
920 
921 	/* Release any pending xmit mblks */
922 	xnf_release_mblks(xnfp);
923 
924 	/* Release all DMA resources */
925 	xnf_release_dma_resources(xnfp);
926 
927 	cv_destroy(&xnfp->xnf_cv);
928 	mutex_destroy(&xnfp->xnf_rx_buf_mutex);
929 	mutex_destroy(&xnfp->xnf_txlock);
930 	mutex_destroy(&xnfp->xnf_intrlock);
931 
932 	kmem_free(xnfp, sizeof (*xnfp));
933 
934 	return (DDI_SUCCESS);
935 }
936 
937 /*
938  *  xnf_set_mac_addr() -- set the physical network address on the board.
939  */
940 /*ARGSUSED*/
941 static int
942 xnf_set_mac_addr(void *arg, const uint8_t *macaddr)
943 {
944 	xnf_t *xnfp = arg;
945 
946 #ifdef XNF_DEBUG
947 	if (xnfdebug & XNF_DEBUG_TRACE)
948 		printf("xnf%d: set_mac_addr(0x%p): "
949 		    "%02x:%02x:%02x:%02x:%02x:%02x\n",
950 		    ddi_get_instance(xnfp->xnf_devinfo),
951 		    (void *)xnfp, macaddr[0], macaddr[1], macaddr[2],
952 		    macaddr[3], macaddr[4], macaddr[5]);
953 #endif
954 	/*
955 	 * We can't set our macaddr.
956 	 *
957 	 * XXPV dme: Why not?
958 	 */
959 	return (ENOTSUP);
960 }
961 
962 /*
963  *  xnf_set_multicast() -- set (enable) or disable a multicast address.
964  *
965  *  Program the hardware to enable/disable the multicast address
966  *  in "mcast".  Enable if "add" is true, disable if false.
967  */
968 /*ARGSUSED*/
969 static int
970 xnf_set_multicast(void *arg, boolean_t add, const uint8_t *mca)
971 {
972 	xnf_t *xnfp = arg;
973 
974 #ifdef XNF_DEBUG
975 	if (xnfdebug & XNF_DEBUG_TRACE)
976 		printf("xnf%d set_multicast(0x%p): "
977 		    "%02x:%02x:%02x:%02x:%02x:%02x\n",
978 		    ddi_get_instance(xnfp->xnf_devinfo),
979 		    (void *)xnfp, mca[0], mca[1], mca[2],
980 		    mca[3], mca[4], mca[5]);
981 #endif
982 
983 	/*
984 	 * XXPV dme: Ideally we'd relay the address to the backend for
985 	 * enabling.  The protocol doesn't support that (interesting
986 	 * extension), so we simply succeed and hope that the relevant
987 	 * packets are going to arrive.
988 	 *
989 	 * If protocol support is added for enable/disable then we'll
990 	 * need to keep a list of those in use and re-add on resume.
991 	 */
992 	return (0);
993 }
994 
995 /*
996  * xnf_set_promiscuous() -- set or reset promiscuous mode on the board
997  *
998  *  Program the hardware to enable/disable promiscuous mode.
999  */
1000 /*ARGSUSED*/
1001 static int
1002 xnf_set_promiscuous(void *arg, boolean_t on)
1003 {
1004 	xnf_t *xnfp = arg;
1005 
1006 #ifdef XNF_DEBUG
1007 	if (xnfdebug & XNF_DEBUG_TRACE)
1008 		printf("xnf%d set_promiscuous(0x%p, %x)\n",
1009 		    ddi_get_instance(xnfp->xnf_devinfo),
1010 		    (void *)xnfp, on);
1011 #endif
1012 	/*
1013 	 * We can't really do this, but we pretend that we can in
1014 	 * order that snoop will work.
1015 	 */
1016 	return (0);
1017 }
1018 
1019 /*
1020  * Clean buffers that we have responses for from the transmit ring.
1021  */
1022 static int
1023 xnf_clean_tx_ring(xnf_t *xnfp)
1024 {
1025 	RING_IDX		next_resp, i;
1026 	struct tx_pktinfo	*reap;
1027 	int			id;
1028 	grant_ref_t		ref;
1029 	boolean_t		work_to_do;
1030 
1031 	ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
1032 
1033 loop:
1034 	while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_tx_ring)) {
1035 		/*
1036 		 * index of next transmission ack
1037 		 */
1038 		next_resp = xnfp->xnf_tx_ring.sring->rsp_prod;
1039 		membar_consumer();
1040 		/*
1041 		 * Clean tx packets from ring that we have responses for
1042 		 */
1043 		for (i = xnfp->xnf_tx_ring.rsp_cons; i != next_resp; i++) {
1044 			id = RING_GET_RESPONSE(&xnfp->xnf_tx_ring, i)->id;
1045 			reap = &xnfp->xnf_tx_pkt_info[id];
1046 			ref = reap->grant_ref;
1047 			/*
1048 			 * Return id to free list
1049 			 */
1050 			reap->id = xnfp->xnf_tx_pkt_id_list;
1051 			xnfp->xnf_tx_pkt_id_list = id;
1052 			if (gnttab_query_foreign_access(ref) != 0)
1053 				panic("tx grant still in use "
1054 				    "by backend domain");
1055 			(void) ddi_dma_unbind_handle(reap->dma_handle);
1056 			(void) gnttab_end_foreign_access_ref(ref,
1057 			    xnfp->xnf_tx_pages_readonly);
1058 			gnttab_release_grant_reference(&xnfp->xnf_gref_tx_head,
1059 			    ref);
1060 			freemsg(reap->mp);
1061 			reap->mp = NULL;
1062 			reap->grant_ref = GRANT_INVALID_REF;
1063 			if (reap->bdesc != NULL)
1064 				xnf_free_tx_buffer(reap->bdesc);
1065 			reap->bdesc = NULL;
1066 		}
1067 		xnfp->xnf_tx_ring.rsp_cons = next_resp;
1068 		membar_enter();
1069 	}
1070 
1071 	/* LINTED: constant in conditional context */
1072 	RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_tx_ring, work_to_do);
1073 	if (work_to_do)
1074 		goto loop;
1075 
1076 	return (RING_FREE_REQUESTS(&xnfp->xnf_tx_ring));
1077 }
1078 
1079 /*
1080  * If we need to pull up data from either a packet that crosses a page
1081  * boundary or consisting of multiple mblks, do it here.  We allocate
1082  * a page aligned buffer and copy the data into it.  The header for the
1083  * allocated buffer is returned. (which is also allocated here)
1084  */
1085 static struct xnf_buffer_desc *
1086 xnf_pullupmsg(xnf_t *xnfp, mblk_t *mp)
1087 {
1088 	struct xnf_buffer_desc	*bdesc;
1089 	mblk_t			*mptr;
1090 	caddr_t			bp;
1091 	int			len;
1092 
1093 	/*
1094 	 * get a xmit buffer from the xmit buffer pool
1095 	 */
1096 	mutex_enter(&xnfp->xnf_rx_buf_mutex);
1097 	bdesc = xnf_get_tx_buffer(xnfp);
1098 	mutex_exit(&xnfp->xnf_rx_buf_mutex);
1099 	if (bdesc == NULL)
1100 		return (bdesc);
1101 	/*
1102 	 * Copy the data into the buffer
1103 	 */
1104 	xnfp->xnf_stat_tx_pullup++;
1105 	bp = bdesc->buf;
1106 	for (mptr = mp; mptr != NULL; mptr = mptr->b_cont) {
1107 		len = mptr->b_wptr - mptr->b_rptr;
1108 		bcopy(mptr->b_rptr, bp, len);
1109 		bp += len;
1110 	}
1111 	return (bdesc);
1112 }
1113 
1114 void
1115 xnf_pseudo_cksum(caddr_t buf, int length)
1116 {
1117 	struct ether_header *ehp;
1118 	uint16_t sap, len, *stuff;
1119 	uint32_t cksum;
1120 	size_t offset;
1121 	ipha_t *ipha;
1122 	ipaddr_t src, dst;
1123 
1124 	ASSERT(length >= sizeof (*ehp));
1125 	ehp = (struct ether_header *)buf;
1126 
1127 	if (ntohs(ehp->ether_type) == VLAN_TPID) {
1128 		struct ether_vlan_header *evhp;
1129 
1130 		ASSERT(length >= sizeof (*evhp));
1131 		evhp = (struct ether_vlan_header *)buf;
1132 		sap = ntohs(evhp->ether_type);
1133 		offset = sizeof (*evhp);
1134 	} else {
1135 		sap = ntohs(ehp->ether_type);
1136 		offset = sizeof (*ehp);
1137 	}
1138 
1139 	ASSERT(sap == ETHERTYPE_IP);
1140 
1141 	/* Packet should have been pulled up by the caller. */
1142 	if ((offset + sizeof (ipha_t)) > length) {
1143 		cmn_err(CE_WARN, "xnf_pseudo_cksum: no room for checksum");
1144 		return;
1145 	}
1146 
1147 	ipha = (ipha_t *)(buf + offset);
1148 
1149 	ASSERT(IPH_HDR_LENGTH(ipha) == IP_SIMPLE_HDR_LENGTH);
1150 
1151 	len = ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH;
1152 
1153 	switch (ipha->ipha_protocol) {
1154 	case IPPROTO_TCP:
1155 		stuff = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1156 		cksum = IP_TCP_CSUM_COMP;
1157 		break;
1158 	case IPPROTO_UDP:
1159 		stuff = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
1160 		cksum = IP_UDP_CSUM_COMP;
1161 		break;
1162 	default:
1163 		cmn_err(CE_WARN, "xnf_pseudo_cksum: unexpected protocol %d",
1164 		    ipha->ipha_protocol);
1165 		return;
1166 	}
1167 
1168 	src = ipha->ipha_src;
1169 	dst = ipha->ipha_dst;
1170 
1171 	cksum += (dst >> 16) + (dst & 0xFFFF);
1172 	cksum += (src >> 16) + (src & 0xFFFF);
1173 	cksum += htons(len);
1174 
1175 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
1176 	cksum = (cksum >> 16) + (cksum & 0xFFFF);
1177 
1178 	ASSERT(cksum <= 0xFFFF);
1179 
1180 	*stuff = (uint16_t)(cksum ? cksum : ~cksum);
1181 }
1182 
1183 /*
1184  *  xnf_send_one() -- send a packet
1185  *
1186  *  Called when a packet is ready to be transmitted. A pointer to an
1187  *  M_DATA message that contains the packet is passed to this routine.
1188  *  At least the complete LLC header is contained in the message's
1189  *  first message block, and the remainder of the packet is contained
1190  *  within additional M_DATA message blocks linked to the first
1191  *  message block.
1192  *
1193  */
1194 static boolean_t
1195 xnf_send_one(xnf_t *xnfp, mblk_t *mp)
1196 {
1197 	struct xnf_buffer_desc	*xmitbuf;
1198 	struct tx_pktinfo	*txp_info;
1199 	mblk_t			*mptr;
1200 	ddi_dma_cookie_t	dma_cookie;
1201 	RING_IDX		slot;
1202 	int			length = 0, i, pktlen = 0, rc, tx_id;
1203 	int			tx_ring_freespace, page_oops;
1204 	uint_t			ncookies;
1205 	volatile netif_tx_request_t	*txrp;
1206 	caddr_t			bufaddr;
1207 	grant_ref_t		ref;
1208 	unsigned long		mfn;
1209 	uint32_t		pflags;
1210 	domid_t			oeid;
1211 
1212 #ifdef XNF_DEBUG
1213 	if (xnfdebug & XNF_DEBUG_SEND)
1214 		printf("xnf%d send(0x%p, 0x%p)\n",
1215 		    ddi_get_instance(xnfp->xnf_devinfo),
1216 		    (void *)xnfp, (void *)mp);
1217 #endif
1218 
1219 	ASSERT(mp != NULL);
1220 	ASSERT(mp->b_next == NULL);
1221 	ASSERT(MUTEX_HELD(&xnfp->xnf_txlock));
1222 
1223 	tx_ring_freespace = xnf_clean_tx_ring(xnfp);
1224 	ASSERT(tx_ring_freespace >= 0);
1225 
1226 	oeid = xvdi_get_oeid(xnfp->xnf_devinfo);
1227 	xnfp->xnf_stat_tx_attempt++;
1228 	/*
1229 	 * If there are no xmit ring slots available, return.
1230 	 */
1231 	if (tx_ring_freespace == 0) {
1232 		xnfp->xnf_stat_tx_defer++;
1233 		return (B_FALSE);	/* Send should be retried */
1234 	}
1235 
1236 	slot = xnfp->xnf_tx_ring.req_prod_pvt;
1237 	/* Count the number of mblks in message and compute packet size */
1238 	for (i = 0, mptr = mp; mptr != NULL; mptr = mptr->b_cont, i++)
1239 		pktlen += (mptr->b_wptr - mptr->b_rptr);
1240 
1241 	/* Make sure packet isn't too large */
1242 	if (pktlen > XNF_FRAMESIZE) {
1243 		cmn_err(CE_WARN, "xnf%d: oversized packet (%d bytes) dropped",
1244 		    ddi_get_instance(xnfp->xnf_devinfo), pktlen);
1245 		freemsg(mp);
1246 		return (B_TRUE);
1247 	}
1248 
1249 	/*
1250 	 * Test if we cross a page boundary with our buffer
1251 	 */
1252 	page_oops = (i == 1) &&
1253 	    (xnf_btop((size_t)mp->b_rptr) !=
1254 	    xnf_btop((size_t)(mp->b_rptr + pktlen)));
1255 	/*
1256 	 * XXPV - unfortunately, the Xen virtual net device currently
1257 	 * doesn't support multiple packet frags, so this will always
1258 	 * end up doing the pullup if we got more than one packet.
1259 	 */
1260 	if (i > xnf_max_tx_frags || page_oops) {
1261 		if (page_oops)
1262 			xnfp->xnf_stat_tx_pagebndry++;
1263 		if ((xmitbuf = xnf_pullupmsg(xnfp, mp)) == NULL) {
1264 			/* could not allocate resources? */
1265 #ifdef XNF_DEBUG
1266 			cmn_err(CE_WARN, "xnf%d: pullupmsg failed",
1267 			    ddi_get_instance(xnfp->xnf_devinfo));
1268 #endif
1269 			xnfp->xnf_stat_tx_defer++;
1270 			return (B_FALSE);	/* Retry send */
1271 		}
1272 		bufaddr = xmitbuf->buf;
1273 	} else {
1274 		xmitbuf = NULL;
1275 		bufaddr = (caddr_t)mp->b_rptr;
1276 	}
1277 
1278 	/* set up data descriptor */
1279 	length = pktlen;
1280 
1281 	/*
1282 	 * Get packet id from free list
1283 	 */
1284 	tx_id = xnfp->xnf_tx_pkt_id_list;
1285 	ASSERT(tx_id < NET_TX_RING_SIZE);
1286 	txp_info = &xnfp->xnf_tx_pkt_info[tx_id];
1287 	xnfp->xnf_tx_pkt_id_list = txp_info->id;
1288 	txp_info->id = tx_id;
1289 
1290 	/* Prepare for DMA mapping of tx buffer(s) */
1291 	rc = ddi_dma_addr_bind_handle(txp_info->dma_handle,
1292 	    NULL, bufaddr, length, DDI_DMA_WRITE | DDI_DMA_STREAMING,
1293 	    DDI_DMA_DONTWAIT, 0, &dma_cookie, &ncookies);
1294 	if (rc != DDI_DMA_MAPPED) {
1295 		ASSERT(rc != DDI_DMA_INUSE);
1296 		ASSERT(rc != DDI_DMA_PARTIAL_MAP);
1297 		/*
1298 		 *  Return id to free list
1299 		 */
1300 		txp_info->id = xnfp->xnf_tx_pkt_id_list;
1301 		xnfp->xnf_tx_pkt_id_list = tx_id;
1302 		if (rc == DDI_DMA_NORESOURCES) {
1303 			xnfp->xnf_stat_tx_defer++;
1304 			return (B_FALSE); /* Retry later */
1305 		}
1306 #ifdef XNF_DEBUG
1307 		cmn_err(CE_WARN, "xnf%d: bind_handle failed (%x)",
1308 		    ddi_get_instance(xnfp->xnf_devinfo), rc);
1309 #endif
1310 		return (B_FALSE);
1311 	}
1312 
1313 	ASSERT(ncookies == 1);
1314 	ref = gnttab_claim_grant_reference(&xnfp->xnf_gref_tx_head);
1315 	ASSERT((signed short)ref >= 0);
1316 	mfn = xnf_btop(pa_to_ma((paddr_t)dma_cookie.dmac_laddress));
1317 	gnttab_grant_foreign_access_ref(ref, oeid, mfn,
1318 	    xnfp->xnf_tx_pages_readonly);
1319 	txp_info->grant_ref = ref;
1320 	txrp = RING_GET_REQUEST(&xnfp->xnf_tx_ring, slot);
1321 	txrp->gref = ref;
1322 	txrp->size = dma_cookie.dmac_size;
1323 	txrp->offset = (uintptr_t)bufaddr & PAGEOFFSET;
1324 	txrp->id = tx_id;
1325 	txrp->flags = 0;
1326 	hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags);
1327 	if (pflags != 0) {
1328 		ASSERT(xnfp->xnf_cksum_offload);
1329 		/*
1330 		 * If the local protocol stack requests checksum
1331 		 * offload we set the 'checksum blank' flag,
1332 		 * indicating to the peer that we need the checksum
1333 		 * calculated for us.
1334 		 *
1335 		 * We _don't_ set the validated flag, because we haven't
1336 		 * validated that the data and the checksum match.
1337 		 */
1338 		xnf_pseudo_cksum(bufaddr, length);
1339 		txrp->flags |= NETTXF_csum_blank;
1340 		xnfp->xnf_stat_tx_cksum_deferred++;
1341 	}
1342 	membar_producer();
1343 	xnfp->xnf_tx_ring.req_prod_pvt = slot + 1;
1344 
1345 	txp_info->mp = mp;
1346 	txp_info->bdesc = xmitbuf;
1347 
1348 	xnfp->xnf_stat_opackets++;
1349 	xnfp->xnf_stat_obytes += pktlen;
1350 
1351 	return (B_TRUE);	/* successful transmit attempt */
1352 }
1353 
1354 mblk_t *
1355 xnf_send(void *arg, mblk_t *mp)
1356 {
1357 	xnf_t *xnfp = arg;
1358 	mblk_t *next;
1359 	boolean_t sent_something = B_FALSE;
1360 
1361 	mutex_enter(&xnfp->xnf_txlock);
1362 
1363 	/*
1364 	 * Transmission attempts should be impossible without having
1365 	 * previously called xnf_start().
1366 	 */
1367 	ASSERT(xnfp->xnf_running);
1368 
1369 	/*
1370 	 * Wait for getting connected to the backend
1371 	 */
1372 	while (!xnfp->xnf_connected) {
1373 		cv_wait(&xnfp->xnf_cv, &xnfp->xnf_txlock);
1374 	}
1375 
1376 	while (mp != NULL) {
1377 		next = mp->b_next;
1378 		mp->b_next = NULL;
1379 
1380 		if (!xnf_send_one(xnfp, mp)) {
1381 			mp->b_next = next;
1382 			break;
1383 		}
1384 
1385 		mp = next;
1386 		sent_something = B_TRUE;
1387 	}
1388 
1389 	if (sent_something) {
1390 		boolean_t notify;
1391 
1392 		/* LINTED: constant in conditional context */
1393 		RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_tx_ring,
1394 		    notify);
1395 		if (notify)
1396 			ec_notify_via_evtchn(xnfp->xnf_evtchn);
1397 	}
1398 
1399 	mutex_exit(&xnfp->xnf_txlock);
1400 
1401 	return (mp);
1402 }
1403 
1404 /*
1405  *  xnf_intr() -- ring interrupt service routine
1406  */
1407 static uint_t
1408 xnf_intr(caddr_t arg)
1409 {
1410 	xnf_t *xnfp = (xnf_t *)arg;
1411 	int tx_ring_space;
1412 
1413 	mutex_enter(&xnfp->xnf_intrlock);
1414 
1415 	/* spurious intr */
1416 	if (!xnfp->xnf_connected) {
1417 		mutex_exit(&xnfp->xnf_intrlock);
1418 		xnfp->xnf_stat_unclaimed_interrupts++;
1419 		return (DDI_INTR_UNCLAIMED);
1420 	}
1421 
1422 #ifdef XNF_DEBUG
1423 	if (xnfdebug & XNF_DEBUG_INT)
1424 		printf("xnf%d intr(0x%p)\n",
1425 		    ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp);
1426 #endif
1427 	if (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) {
1428 		mblk_t *mp;
1429 
1430 		if (xnfp->xnf_rx_hvcopy)
1431 			mp = xnf_process_hvcopy_recv(xnfp);
1432 		else
1433 			mp = xnf_process_recv(xnfp);
1434 
1435 		if (mp != NULL)
1436 			mac_rx(xnfp->xnf_mh, xnfp->xnf_rx_handle, mp);
1437 	}
1438 
1439 	/*
1440 	 * Clean tx ring and try to start any blocked xmit streams if
1441 	 * there is now some space.
1442 	 */
1443 	mutex_enter(&xnfp->xnf_txlock);
1444 	tx_ring_space = xnf_clean_tx_ring(xnfp);
1445 	mutex_exit(&xnfp->xnf_txlock);
1446 	if (tx_ring_space > XNF_TX_FREE_THRESH) {
1447 		mutex_exit(&xnfp->xnf_intrlock);
1448 		mac_tx_update(xnfp->xnf_mh);
1449 		mutex_enter(&xnfp->xnf_intrlock);
1450 	}
1451 
1452 	xnfp->xnf_stat_interrupts++;
1453 	mutex_exit(&xnfp->xnf_intrlock);
1454 	return (DDI_INTR_CLAIMED); /* indicate that the interrupt was for us */
1455 }
1456 
1457 /*
1458  *  xnf_start() -- start the board receiving and enable interrupts.
1459  */
1460 static int
1461 xnf_start(void *arg)
1462 {
1463 	xnf_t *xnfp = arg;
1464 
1465 #ifdef XNF_DEBUG
1466 	if (xnfdebug & XNF_DEBUG_TRACE)
1467 		printf("xnf%d start(0x%p)\n",
1468 		    ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp);
1469 #endif
1470 
1471 	mutex_enter(&xnfp->xnf_intrlock);
1472 	mutex_enter(&xnfp->xnf_txlock);
1473 
1474 	/* Accept packets from above. */
1475 	xnfp->xnf_running = B_TRUE;
1476 
1477 	mutex_exit(&xnfp->xnf_txlock);
1478 	mutex_exit(&xnfp->xnf_intrlock);
1479 
1480 	return (0);
1481 }
1482 
1483 /* xnf_stop() - disable hardware */
1484 static void
1485 xnf_stop(void *arg)
1486 {
1487 	xnf_t *xnfp = arg;
1488 
1489 #ifdef XNF_DEBUG
1490 	if (xnfdebug & XNF_DEBUG_TRACE)
1491 		printf("xnf%d stop(0x%p)\n",
1492 		    ddi_get_instance(xnfp->xnf_devinfo), (void *)xnfp);
1493 #endif
1494 
1495 	mutex_enter(&xnfp->xnf_intrlock);
1496 	mutex_enter(&xnfp->xnf_txlock);
1497 
1498 	xnfp->xnf_running = B_FALSE;
1499 
1500 	mutex_exit(&xnfp->xnf_txlock);
1501 	mutex_exit(&xnfp->xnf_intrlock);
1502 }
1503 
1504 /*
1505  * Driver private functions follow
1506  */
1507 
1508 /*
1509  * Hang buffer on rx ring
1510  */
1511 static void
1512 rx_buffer_hang(xnf_t *xnfp, struct xnf_buffer_desc *bdesc)
1513 {
1514 	volatile netif_rx_request_t	*reqp;
1515 	RING_IDX			hang_ix;
1516 	grant_ref_t			ref;
1517 	domid_t				oeid;
1518 
1519 	oeid = xvdi_get_oeid(xnfp->xnf_devinfo);
1520 
1521 	ASSERT(MUTEX_HELD(&xnfp->xnf_intrlock));
1522 	reqp = RING_GET_REQUEST(&xnfp->xnf_rx_ring,
1523 	    xnfp->xnf_rx_ring.req_prod_pvt);
1524 	hang_ix = (RING_IDX) (reqp - RING_GET_REQUEST(&xnfp->xnf_rx_ring, 0));
1525 	ASSERT(xnfp->xnf_rxpkt_bufptr[hang_ix] == NULL);
1526 	if (bdesc->grant_ref == GRANT_INVALID_REF) {
1527 		ref = gnttab_claim_grant_reference(&xnfp->xnf_gref_rx_head);
1528 		ASSERT((signed short)ref >= 0);
1529 		bdesc->grant_ref = ref;
1530 		if (xnfp->xnf_rx_hvcopy) {
1531 			pfn_t pfn = xnf_btop(bdesc->buf_phys);
1532 			mfn_t mfn = pfn_to_mfn(pfn);
1533 
1534 			gnttab_grant_foreign_access_ref(ref, oeid, mfn, 0);
1535 		} else {
1536 			gnttab_grant_foreign_transfer_ref(ref, oeid, 0);
1537 		}
1538 	}
1539 	reqp->id = hang_ix;
1540 	reqp->gref = bdesc->grant_ref;
1541 	bdesc->id = hang_ix;
1542 	xnfp->xnf_rxpkt_bufptr[hang_ix] = bdesc;
1543 	membar_producer();
1544 	xnfp->xnf_rx_ring.req_prod_pvt++;
1545 }
1546 
1547 static mblk_t *
1548 xnf_process_hvcopy_recv(xnf_t *xnfp)
1549 {
1550 	netif_rx_response_t *rxpkt;
1551 	mblk_t		*mp, *head, *tail;
1552 	struct		xnf_buffer_desc *bdesc;
1553 	boolean_t	hwcsum = B_FALSE, notify, work_to_do;
1554 	size_t 		len;
1555 
1556 	/*
1557 	 * in loop over unconsumed responses, we do:
1558 	 * 1. get a response
1559 	 * 2. take corresponding buffer off recv. ring
1560 	 * 3. indicate this by setting slot to NULL
1561 	 * 4. create a new message and
1562 	 * 5. copy data in, adjust ptr
1563 	 *
1564 	 * outside loop:
1565 	 * 7. make sure no more data has arrived; kick HV
1566 	 */
1567 
1568 	head = tail = NULL;
1569 
1570 loop:
1571 	while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) {
1572 
1573 		/* 1. */
1574 		rxpkt = RING_GET_RESPONSE(&xnfp->xnf_rx_ring,
1575 		    xnfp->xnf_rx_ring.rsp_cons);
1576 
1577 		DTRACE_PROBE4(got_PKT, int, (int)rxpkt->id, int,
1578 		    (int)rxpkt->offset,
1579 		    int, (int)rxpkt->flags, int, (int)rxpkt->status);
1580 
1581 		/*
1582 		 * 2.
1583 		 * Take buffer off of receive ring
1584 		 */
1585 		hwcsum = B_FALSE;
1586 		bdesc = xnfp->xnf_rxpkt_bufptr[rxpkt->id];
1587 		/* 3 */
1588 		xnfp->xnf_rxpkt_bufptr[rxpkt->id] = NULL;
1589 		ASSERT(bdesc->id == rxpkt->id);
1590 		mp = NULL;
1591 		if (!xnfp->xnf_running) {
1592 			DTRACE_PROBE4(pkt_dropped, int, rxpkt->status,
1593 			    char *, bdesc->buf, int, rxpkt->offset,
1594 			    char *, ((char *)bdesc->buf) + rxpkt->offset);
1595 			xnfp->xnf_stat_drop++;
1596 			/*
1597 			 * re-hang the buffer
1598 			 */
1599 			rx_buffer_hang(xnfp, bdesc);
1600 		} else if (rxpkt->status <= 0) {
1601 			DTRACE_PROBE4(pkt_status_negative, int, rxpkt->status,
1602 			    char *, bdesc->buf, int, rxpkt->offset,
1603 			    char *, ((char *)bdesc->buf) + rxpkt->offset);
1604 			xnfp->xnf_stat_errrx++;
1605 			if (rxpkt->status == 0)
1606 				xnfp->xnf_stat_runt++;
1607 			if (rxpkt->status == NETIF_RSP_ERROR)
1608 				xnfp->xnf_stat_mac_rcv_error++;
1609 			if (rxpkt->status == NETIF_RSP_DROPPED)
1610 				xnfp->xnf_stat_norxbuf++;
1611 			/*
1612 			 * re-hang the buffer
1613 			 */
1614 			rx_buffer_hang(xnfp, bdesc);
1615 		} else {
1616 			grant_ref_t		ref =  bdesc->grant_ref;
1617 			struct xnf_buffer_desc	*new_bdesc;
1618 			unsigned long		off = rxpkt->offset;
1619 
1620 			DTRACE_PROBE4(pkt_status_ok, int, rxpkt->status,
1621 			    char *, bdesc->buf, int, rxpkt->offset,
1622 			    char *, ((char *)bdesc->buf) + rxpkt->offset);
1623 			len = rxpkt->status;
1624 			ASSERT(off + len <= PAGEOFFSET);
1625 			if (ref == GRANT_INVALID_REF) {
1626 				mp = NULL;
1627 				new_bdesc = bdesc;
1628 				cmn_err(CE_WARN, "Bad rx grant reference %d "
1629 				    "from dom %d", ref,
1630 				    xvdi_get_oeid(xnfp->xnf_devinfo));
1631 				goto luckless;
1632 			}
1633 			/*
1634 			 * Release ref which we'll be re-claiming in
1635 			 * rx_buffer_hang().
1636 			 */
1637 			bdesc->grant_ref = GRANT_INVALID_REF;
1638 			(void) gnttab_end_foreign_access_ref(ref, 0);
1639 			gnttab_release_grant_reference(&xnfp->xnf_gref_rx_head,
1640 			    ref);
1641 			if (rxpkt->flags & NETRXF_data_validated)
1642 				hwcsum = B_TRUE;
1643 
1644 			/*
1645 			 * XXPV for the initial implementation of HVcopy,
1646 			 * create a new msg and copy in the data
1647 			 */
1648 			/* 4. */
1649 			if ((mp = allocb(len, BPRI_MED)) == NULL) {
1650 				/*
1651 				 * Couldn't get buffer to copy to,
1652 				 * drop this data, and re-hang
1653 				 * the buffer on the ring.
1654 				 */
1655 				xnfp->xnf_stat_norxbuf++;
1656 				DTRACE_PROBE(alloc_nix);
1657 			} else {
1658 				/* 5. */
1659 				DTRACE_PROBE(alloc_ok);
1660 				bcopy(bdesc->buf + off, mp->b_wptr,
1661 				    len);
1662 				mp->b_wptr += len;
1663 			}
1664 			new_bdesc = bdesc;
1665 luckless:
1666 
1667 			/* Re-hang old or hang new buffer. */
1668 			rx_buffer_hang(xnfp, new_bdesc);
1669 		}
1670 		if (mp) {
1671 			if (hwcsum) {
1672 				/*
1673 				 * See comments in xnf_process_recv().
1674 				 */
1675 
1676 				(void) hcksum_assoc(mp, NULL,
1677 				    NULL, 0, 0, 0, 0,
1678 				    HCK_FULLCKSUM |
1679 				    HCK_FULLCKSUM_OK,
1680 				    0);
1681 				xnfp->xnf_stat_rx_cksum_no_need++;
1682 			}
1683 			if (head == NULL) {
1684 				head = tail = mp;
1685 			} else {
1686 				tail->b_next = mp;
1687 				tail = mp;
1688 			}
1689 
1690 			ASSERT(mp->b_next == NULL);
1691 
1692 			xnfp->xnf_stat_ipackets++;
1693 			xnfp->xnf_stat_rbytes += len;
1694 		}
1695 
1696 		xnfp->xnf_rx_ring.rsp_cons++;
1697 
1698 		xnfp->xnf_stat_hvcopy_packet_processed++;
1699 	}
1700 
1701 	/* 7. */
1702 	/*
1703 	 * Has more data come in since we started?
1704 	 */
1705 	/* LINTED: constant in conditional context */
1706 	RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_rx_ring, work_to_do);
1707 	if (work_to_do)
1708 		goto loop;
1709 
1710 	/*
1711 	 * Indicate to the backend that we have re-filled the receive
1712 	 * ring.
1713 	 */
1714 	/* LINTED: constant in conditional context */
1715 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_rx_ring, notify);
1716 	if (notify)
1717 		ec_notify_via_evtchn(xnfp->xnf_evtchn);
1718 
1719 	return (head);
1720 }
1721 
1722 /* Process all queued received packets */
1723 static mblk_t *
1724 xnf_process_recv(xnf_t *xnfp)
1725 {
1726 	volatile netif_rx_response_t *rxpkt;
1727 	mblk_t *mp, *head, *tail;
1728 	struct xnf_buffer_desc *bdesc;
1729 	extern mblk_t *desballoc(unsigned char *, size_t, uint_t, frtn_t *);
1730 	boolean_t hwcsum = B_FALSE, notify, work_to_do;
1731 	size_t len;
1732 	pfn_t pfn;
1733 	long cnt;
1734 
1735 	head = tail = NULL;
1736 loop:
1737 	while (RING_HAS_UNCONSUMED_RESPONSES(&xnfp->xnf_rx_ring)) {
1738 
1739 		rxpkt = RING_GET_RESPONSE(&xnfp->xnf_rx_ring,
1740 		    xnfp->xnf_rx_ring.rsp_cons);
1741 
1742 		/*
1743 		 * Take buffer off of receive ring
1744 		 */
1745 		hwcsum = B_FALSE;
1746 		bdesc = xnfp->xnf_rxpkt_bufptr[rxpkt->id];
1747 		xnfp->xnf_rxpkt_bufptr[rxpkt->id] = NULL;
1748 		ASSERT(bdesc->id == rxpkt->id);
1749 		mp = NULL;
1750 		if (!xnfp->xnf_running) {
1751 			xnfp->xnf_stat_drop++;
1752 			/*
1753 			 * re-hang the buffer
1754 			 */
1755 			rx_buffer_hang(xnfp, bdesc);
1756 		} else if (rxpkt->status <= 0) {
1757 			xnfp->xnf_stat_errrx++;
1758 			if (rxpkt->status == 0)
1759 				xnfp->xnf_stat_runt++;
1760 			if (rxpkt->status == NETIF_RSP_ERROR)
1761 				xnfp->xnf_stat_mac_rcv_error++;
1762 			if (rxpkt->status == NETIF_RSP_DROPPED)
1763 				xnfp->xnf_stat_norxbuf++;
1764 			/*
1765 			 * re-hang the buffer
1766 			 */
1767 			rx_buffer_hang(xnfp, bdesc);
1768 		} else {
1769 			grant_ref_t ref =  bdesc->grant_ref;
1770 			struct xnf_buffer_desc *new_bdesc;
1771 			unsigned long off = rxpkt->offset;
1772 			unsigned long mfn;
1773 
1774 			len = rxpkt->status;
1775 			ASSERT(off + len <= PAGEOFFSET);
1776 			if (ref == GRANT_INVALID_REF) {
1777 				mp = NULL;
1778 				new_bdesc = bdesc;
1779 				cmn_err(CE_WARN, "Bad rx grant reference %d "
1780 				    "from dom %d", ref,
1781 				    xvdi_get_oeid(xnfp->xnf_devinfo));
1782 				goto luckless;
1783 			}
1784 			bdesc->grant_ref = GRANT_INVALID_REF;
1785 			mfn = gnttab_end_foreign_transfer_ref(ref);
1786 			ASSERT(mfn != MFN_INVALID);
1787 			ASSERT(hat_getpfnum(kas.a_hat, bdesc->buf) ==
1788 			    PFN_INVALID);
1789 
1790 			gnttab_release_grant_reference(&xnfp->xnf_gref_rx_head,
1791 			    ref);
1792 			reassign_pfn(xnf_btop(bdesc->buf_phys), mfn);
1793 			hat_devload(kas.a_hat, bdesc->buf, PAGESIZE,
1794 			    xnf_btop(bdesc->buf_phys),
1795 			    PROT_READ | PROT_WRITE, HAT_LOAD);
1796 			balloon_drv_added(1);
1797 
1798 			if (rxpkt->flags & NETRXF_data_validated)
1799 				hwcsum = B_TRUE;
1800 			if (len <= xnf_rx_bcopy_thresh) {
1801 				/*
1802 				 * For small buffers, just copy the data
1803 				 * and send the copy upstream.
1804 				 */
1805 				new_bdesc = NULL;
1806 			} else {
1807 				/*
1808 				 * We send a pointer to this data upstream;
1809 				 * we need a new buffer to replace this one.
1810 				 */
1811 				mutex_enter(&xnfp->xnf_rx_buf_mutex);
1812 				new_bdesc = xnf_get_buffer(xnfp);
1813 				if (new_bdesc != NULL) {
1814 					xnfp->xnf_rx_bufs_outstanding++;
1815 				} else {
1816 					xnfp->xnf_stat_rx_no_ringbuf++;
1817 				}
1818 				mutex_exit(&xnfp->xnf_rx_buf_mutex);
1819 			}
1820 
1821 			if (new_bdesc == NULL) {
1822 				/*
1823 				 * Don't have a new ring buffer; bcopy the data
1824 				 * from the buffer, and preserve the
1825 				 * original buffer
1826 				 */
1827 				if ((mp = allocb(len, BPRI_MED)) == NULL) {
1828 					/*
1829 					 * Could't get buffer to copy to,
1830 					 * drop this data, and re-hang
1831 					 * the buffer on the ring.
1832 					 */
1833 					xnfp->xnf_stat_norxbuf++;
1834 				} else {
1835 					bcopy(bdesc->buf + off, mp->b_wptr,
1836 					    len);
1837 				}
1838 				/*
1839 				 * Give the buffer page back to xen
1840 				 */
1841 				pfn = xnf_btop(bdesc->buf_phys);
1842 				cnt = balloon_free_pages(1, &mfn, bdesc->buf,
1843 				    &pfn);
1844 				if (cnt != 1) {
1845 					cmn_err(CE_WARN, "unable to give a "
1846 					    "page back to the hypervisor\n");
1847 				}
1848 				new_bdesc = bdesc;
1849 			} else {
1850 				if ((mp = desballoc((unsigned char *)bdesc->buf,
1851 				    off + len, 0, (frtn_t *)bdesc)) == NULL) {
1852 					/*
1853 					 * Couldn't get mblk to pass recv data
1854 					 * up with, free the old ring buffer
1855 					 */
1856 					xnfp->xnf_stat_norxbuf++;
1857 					xnf_rcv_complete(bdesc);
1858 					goto luckless;
1859 				}
1860 				(void) ddi_dma_sync(bdesc->dma_handle,
1861 				    0, 0, DDI_DMA_SYNC_FORCPU);
1862 
1863 				mp->b_wptr += off;
1864 				mp->b_rptr += off;
1865 			}
1866 luckless:
1867 			if (mp)
1868 				mp->b_wptr += len;
1869 			/* re-hang old or hang new buffer */
1870 			rx_buffer_hang(xnfp, new_bdesc);
1871 		}
1872 		if (mp) {
1873 			if (hwcsum) {
1874 				/*
1875 				 * If the peer says that the data has
1876 				 * been validated then we declare that
1877 				 * the full checksum has been
1878 				 * verified.
1879 				 *
1880 				 * We don't look at the "checksum
1881 				 * blank" flag, and hence could have a
1882 				 * packet here that we are asserting
1883 				 * is good with a blank checksum.
1884 				 *
1885 				 * The hardware checksum offload
1886 				 * specification says that we must
1887 				 * provide the actual checksum as well
1888 				 * as an assertion that it is valid,
1889 				 * but the protocol stack doesn't
1890 				 * actually use it and some other
1891 				 * drivers don't bother, so we don't.
1892 				 * If it was necessary we could grovel
1893 				 * in the packet to find it.
1894 				 */
1895 
1896 				(void) hcksum_assoc(mp, NULL,
1897 				    NULL, 0, 0, 0, 0,
1898 				    HCK_FULLCKSUM |
1899 				    HCK_FULLCKSUM_OK,
1900 				    0);
1901 				xnfp->xnf_stat_rx_cksum_no_need++;
1902 			}
1903 			if (head == NULL) {
1904 				head = tail = mp;
1905 			} else {
1906 				tail->b_next = mp;
1907 				tail = mp;
1908 			}
1909 
1910 			ASSERT(mp->b_next == NULL);
1911 
1912 			xnfp->xnf_stat_ipackets++;
1913 			xnfp->xnf_stat_rbytes += len;
1914 		}
1915 
1916 		xnfp->xnf_rx_ring.rsp_cons++;
1917 	}
1918 
1919 	/*
1920 	 * Has more data come in since we started?
1921 	 */
1922 	/* LINTED: constant in conditional context */
1923 	RING_FINAL_CHECK_FOR_RESPONSES(&xnfp->xnf_rx_ring, work_to_do);
1924 	if (work_to_do)
1925 		goto loop;
1926 
1927 	/*
1928 	 * Indicate to the backend that we have re-filled the receive
1929 	 * ring.
1930 	 */
1931 	/* LINTED: constant in conditional context */
1932 	RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&xnfp->xnf_rx_ring, notify);
1933 	if (notify)
1934 		ec_notify_via_evtchn(xnfp->xnf_evtchn);
1935 
1936 	return (head);
1937 }
1938 
1939 /* Called when the upper layers free a message we passed upstream */
1940 static void
1941 xnf_rcv_complete(struct xnf_buffer_desc *bdesc)
1942 {
1943 	xnf_t *xnfp = bdesc->xnfp;
1944 	pfn_t pfn;
1945 	long cnt;
1946 
1947 	/* One less outstanding receive buffer */
1948 	mutex_enter(&xnfp->xnf_rx_buf_mutex);
1949 	--xnfp->xnf_rx_bufs_outstanding;
1950 	/*
1951 	 * Return buffer to the free list, unless the free list is getting
1952 	 * too large.  XXPV - this threshold may need tuning.
1953 	 */
1954 	if (xnfp->xnf_rx_descs_free < xnf_rx_bufs_lowat) {
1955 		/*
1956 		 * Unmap the page, and hand the machine page back
1957 		 * to xen so it can be re-used as a backend net buffer.
1958 		 */
1959 		pfn = xnf_btop(bdesc->buf_phys);
1960 		cnt = balloon_free_pages(1, NULL, bdesc->buf, &pfn);
1961 		if (cnt != 1) {
1962 			cmn_err(CE_WARN, "unable to give a page back to the "
1963 			    "hypervisor\n");
1964 		}
1965 
1966 		bdesc->next = xnfp->xnf_free_list;
1967 		xnfp->xnf_free_list = bdesc;
1968 		xnfp->xnf_rx_descs_free++;
1969 		mutex_exit(&xnfp->xnf_rx_buf_mutex);
1970 	} else {
1971 		/*
1972 		 * We can return everything here since we have a free buffer
1973 		 * that we have not given the backing page for back to xen.
1974 		 */
1975 		--xnfp->xnf_rx_buffer_count;
1976 		mutex_exit(&xnfp->xnf_rx_buf_mutex);
1977 		(void) ddi_dma_unbind_handle(bdesc->dma_handle);
1978 		ddi_dma_mem_free(&bdesc->acc_handle);
1979 		ddi_dma_free_handle(&bdesc->dma_handle);
1980 		kmem_free(bdesc, sizeof (*bdesc));
1981 	}
1982 }
1983 
1984 /*
1985  *  xnf_alloc_dma_resources() -- initialize the drivers structures
1986  */
1987 static int
1988 xnf_alloc_dma_resources(xnf_t *xnfp)
1989 {
1990 	dev_info_t 		*devinfo = xnfp->xnf_devinfo;
1991 	int			i;
1992 	size_t			len;
1993 	ddi_dma_cookie_t	dma_cookie;
1994 	uint_t			ncookies;
1995 	struct xnf_buffer_desc	*bdesc;
1996 	int			rc;
1997 	caddr_t			rptr;
1998 
1999 	xnfp->xnf_n_rx = NET_RX_RING_SIZE;
2000 	xnfp->xnf_max_rx_bufs = xnf_rx_bufs_hiwat;
2001 
2002 	xnfp->xnf_n_tx = NET_TX_RING_SIZE;
2003 
2004 	/*
2005 	 * The code below allocates all the DMA data structures that
2006 	 * need to be released when the driver is detached.
2007 	 *
2008 	 * First allocate handles for mapping (virtual address) pointers to
2009 	 * transmit data buffers to physical addresses
2010 	 */
2011 	for (i = 0; i < xnfp->xnf_n_tx; i++) {
2012 		if ((rc = ddi_dma_alloc_handle(devinfo,
2013 		    &tx_buffer_dma_attr, DDI_DMA_SLEEP, 0,
2014 		    &xnfp->xnf_tx_pkt_info[i].dma_handle)) != DDI_SUCCESS)
2015 			return (DDI_FAILURE);
2016 	}
2017 
2018 	/*
2019 	 * Allocate page for the transmit descriptor ring.
2020 	 */
2021 	if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr,
2022 	    DDI_DMA_SLEEP, 0, &xnfp->xnf_tx_ring_dma_handle) != DDI_SUCCESS)
2023 		goto alloc_error;
2024 
2025 	if (ddi_dma_mem_alloc(xnfp->xnf_tx_ring_dma_handle,
2026 	    PAGESIZE, &accattr, DDI_DMA_CONSISTENT,
2027 	    DDI_DMA_SLEEP, 0, &rptr, &len,
2028 	    &xnfp->xnf_tx_ring_dma_acchandle) != DDI_SUCCESS) {
2029 		ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2030 		xnfp->xnf_tx_ring_dma_handle = NULL;
2031 		goto alloc_error;
2032 	}
2033 
2034 	if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_tx_ring_dma_handle, NULL,
2035 	    rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2036 	    DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) {
2037 		ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle);
2038 		ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2039 		xnfp->xnf_tx_ring_dma_handle = NULL;
2040 		xnfp->xnf_tx_ring_dma_acchandle = NULL;
2041 		if (rc == DDI_DMA_NORESOURCES)
2042 			goto alloc_error;
2043 		else
2044 			goto error;
2045 	}
2046 
2047 	ASSERT(ncookies == 1);
2048 	bzero(rptr, PAGESIZE);
2049 	/* LINTED: constant in conditional context */
2050 	SHARED_RING_INIT((netif_tx_sring_t *)rptr);
2051 	/* LINTED: constant in conditional context */
2052 	FRONT_RING_INIT(&xnfp->xnf_tx_ring, (netif_tx_sring_t *)rptr, PAGESIZE);
2053 	xnfp->xnf_tx_ring_phys_addr = dma_cookie.dmac_laddress;
2054 
2055 	/*
2056 	 * Allocate page for the receive descriptor ring.
2057 	 */
2058 	if (ddi_dma_alloc_handle(devinfo, &ringbuf_dma_attr,
2059 	    DDI_DMA_SLEEP, 0, &xnfp->xnf_rx_ring_dma_handle) != DDI_SUCCESS)
2060 		goto alloc_error;
2061 
2062 	if (ddi_dma_mem_alloc(xnfp->xnf_rx_ring_dma_handle,
2063 	    PAGESIZE, &accattr, DDI_DMA_CONSISTENT,
2064 	    DDI_DMA_SLEEP, 0, &rptr, &len,
2065 	    &xnfp->xnf_rx_ring_dma_acchandle) != DDI_SUCCESS) {
2066 		ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2067 		xnfp->xnf_rx_ring_dma_handle = NULL;
2068 		goto alloc_error;
2069 	}
2070 
2071 	if ((rc = ddi_dma_addr_bind_handle(xnfp->xnf_rx_ring_dma_handle, NULL,
2072 	    rptr, PAGESIZE, DDI_DMA_RDWR | DDI_DMA_CONSISTENT,
2073 	    DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies)) != DDI_DMA_MAPPED) {
2074 		ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle);
2075 		ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2076 		xnfp->xnf_rx_ring_dma_handle = NULL;
2077 		xnfp->xnf_rx_ring_dma_acchandle = NULL;
2078 		if (rc == DDI_DMA_NORESOURCES)
2079 			goto alloc_error;
2080 		else
2081 			goto error;
2082 	}
2083 
2084 	ASSERT(ncookies == 1);
2085 	bzero(rptr, PAGESIZE);
2086 	/* LINTED: constant in conditional context */
2087 	SHARED_RING_INIT((netif_rx_sring_t *)rptr);
2088 	/* LINTED: constant in conditional context */
2089 	FRONT_RING_INIT(&xnfp->xnf_rx_ring, (netif_rx_sring_t *)rptr, PAGESIZE);
2090 	xnfp->xnf_rx_ring_phys_addr = dma_cookie.dmac_laddress;
2091 
2092 	/*
2093 	 * Preallocate receive buffers for each receive descriptor.
2094 	 */
2095 
2096 	/* Set up the "free list" of receive buffer descriptors */
2097 	for (i = 0; i < xnfp->xnf_n_rx; i++) {
2098 		if ((bdesc = xnf_alloc_buffer(xnfp)) == NULL)
2099 			goto alloc_error;
2100 		bdesc->next = xnfp->xnf_free_list;
2101 		xnfp->xnf_free_list = bdesc;
2102 	}
2103 
2104 	return (DDI_SUCCESS);
2105 
2106 alloc_error:
2107 	cmn_err(CE_WARN, "xnf%d: could not allocate enough DMA memory",
2108 	    ddi_get_instance(xnfp->xnf_devinfo));
2109 error:
2110 	xnf_release_dma_resources(xnfp);
2111 	return (DDI_FAILURE);
2112 }
2113 
2114 /*
2115  * Release all DMA resources in the opposite order from acquisition
2116  * Should not be called until all outstanding esballoc buffers
2117  * have been returned.
2118  */
2119 static void
2120 xnf_release_dma_resources(xnf_t *xnfp)
2121 {
2122 	int i;
2123 
2124 	/*
2125 	 * Free receive buffers which are currently associated with
2126 	 * descriptors
2127 	 */
2128 	for (i = 0; i < xnfp->xnf_n_rx; i++) {
2129 		struct xnf_buffer_desc *bp;
2130 
2131 		if ((bp = xnfp->xnf_rxpkt_bufptr[i]) == NULL)
2132 			continue;
2133 		xnf_free_buffer(bp);
2134 		xnfp->xnf_rxpkt_bufptr[i] = NULL;
2135 	}
2136 
2137 	/* Free the receive ring buffer */
2138 	if (xnfp->xnf_rx_ring_dma_acchandle != NULL) {
2139 		(void) ddi_dma_unbind_handle(xnfp->xnf_rx_ring_dma_handle);
2140 		ddi_dma_mem_free(&xnfp->xnf_rx_ring_dma_acchandle);
2141 		ddi_dma_free_handle(&xnfp->xnf_rx_ring_dma_handle);
2142 		xnfp->xnf_rx_ring_dma_acchandle = NULL;
2143 	}
2144 	/* Free the transmit ring buffer */
2145 	if (xnfp->xnf_tx_ring_dma_acchandle != NULL) {
2146 		(void) ddi_dma_unbind_handle(xnfp->xnf_tx_ring_dma_handle);
2147 		ddi_dma_mem_free(&xnfp->xnf_tx_ring_dma_acchandle);
2148 		ddi_dma_free_handle(&xnfp->xnf_tx_ring_dma_handle);
2149 		xnfp->xnf_tx_ring_dma_acchandle = NULL;
2150 	}
2151 
2152 	/*
2153 	 * Free handles for mapping (virtual address) pointers to
2154 	 * transmit data buffers to physical addresses
2155 	 */
2156 	for (i = 0; i < xnfp->xnf_n_tx; i++) {
2157 		if (xnfp->xnf_tx_pkt_info[i].dma_handle != NULL) {
2158 			ddi_dma_free_handle(
2159 			    &xnfp->xnf_tx_pkt_info[i].dma_handle);
2160 		}
2161 	}
2162 
2163 }
2164 
2165 static void
2166 xnf_release_mblks(xnf_t *xnfp)
2167 {
2168 	int	i;
2169 
2170 	for (i = 0; i < xnfp->xnf_n_tx; i++) {
2171 		if (xnfp->xnf_tx_pkt_info[i].mp == NULL)
2172 			continue;
2173 		freemsg(xnfp->xnf_tx_pkt_info[i].mp);
2174 		xnfp->xnf_tx_pkt_info[i].mp = NULL;
2175 		(void) ddi_dma_unbind_handle(
2176 		    xnfp->xnf_tx_pkt_info[i].dma_handle);
2177 	}
2178 }
2179 
2180 /*
2181  * Remove a xmit buffer descriptor from the head of the free list and return
2182  * a pointer to it.  If no buffers on list, attempt to allocate a new one.
2183  * Called with the tx_buf_mutex held.
2184  */
2185 static struct xnf_buffer_desc *
2186 xnf_get_tx_buffer(xnf_t *xnfp)
2187 {
2188 	struct xnf_buffer_desc *bdesc;
2189 
2190 	bdesc = xnfp->xnf_tx_free_list;
2191 	if (bdesc != NULL) {
2192 		xnfp->xnf_tx_free_list = bdesc->next;
2193 	} else {
2194 		bdesc = xnf_alloc_tx_buffer(xnfp);
2195 	}
2196 	return (bdesc);
2197 }
2198 
2199 /*
2200  * Remove a buffer descriptor from the head of the free list and return
2201  * a pointer to it.  If no buffers on list, attempt to allocate a new one.
2202  * Called with the rx_buf_mutex held.
2203  */
2204 static struct xnf_buffer_desc *
2205 xnf_get_buffer(xnf_t *xnfp)
2206 {
2207 	struct xnf_buffer_desc *bdesc;
2208 
2209 	bdesc = xnfp->xnf_free_list;
2210 	if (bdesc != NULL) {
2211 		xnfp->xnf_free_list = bdesc->next;
2212 		xnfp->xnf_rx_descs_free--;
2213 	} else {
2214 		bdesc = xnf_alloc_buffer(xnfp);
2215 	}
2216 	return (bdesc);
2217 }
2218 
2219 /*
2220  * Free a xmit buffer back to the xmit free list
2221  */
2222 static void
2223 xnf_free_tx_buffer(struct xnf_buffer_desc *bp)
2224 {
2225 	xnf_t *xnfp = bp->xnfp;
2226 
2227 	mutex_enter(&xnfp->xnf_tx_buf_mutex);
2228 	bp->next = xnfp->xnf_tx_free_list;
2229 	xnfp->xnf_tx_free_list = bp;
2230 	mutex_exit(&xnfp->xnf_tx_buf_mutex);
2231 }
2232 
2233 /*
2234  * Put a buffer descriptor onto the head of the free list.
2235  * for page-flip:
2236  * We can't really free these buffers back to the kernel
2237  * since we have given away their backing page to be used
2238  * by the back end net driver.
2239  * for hvcopy:
2240  * release all the memory
2241  */
2242 static void
2243 xnf_free_buffer(struct xnf_buffer_desc *bdesc)
2244 {
2245 	xnf_t *xnfp = bdesc->xnfp;
2246 
2247 	mutex_enter(&xnfp->xnf_rx_buf_mutex);
2248 	if (xnfp->xnf_rx_hvcopy) {
2249 		if (ddi_dma_unbind_handle(bdesc->dma_handle) != DDI_SUCCESS)
2250 			goto out;
2251 		ddi_dma_mem_free(&bdesc->acc_handle);
2252 		ddi_dma_free_handle(&bdesc->dma_handle);
2253 		kmem_free(bdesc, sizeof (*bdesc));
2254 		xnfp->xnf_rx_buffer_count--;
2255 	} else {
2256 		bdesc->next = xnfp->xnf_free_list;
2257 		xnfp->xnf_free_list = bdesc;
2258 		xnfp->xnf_rx_descs_free++;
2259 	}
2260 out:
2261 	mutex_exit(&xnfp->xnf_rx_buf_mutex);
2262 }
2263 
2264 /*
2265  * Allocate a DMA-able xmit buffer, including a structure to
2266  * keep track of the buffer.  Called with tx_buf_mutex held.
2267  */
2268 static struct xnf_buffer_desc *
2269 xnf_alloc_tx_buffer(xnf_t *xnfp)
2270 {
2271 	struct xnf_buffer_desc *bdesc;
2272 	size_t len;
2273 
2274 	if ((bdesc = kmem_zalloc(sizeof (*bdesc), KM_NOSLEEP)) == NULL)
2275 		return (NULL);
2276 
2277 	/* allocate a DMA access handle for receive buffer */
2278 	if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &tx_buffer_dma_attr,
2279 	    0, 0, &bdesc->dma_handle) != DDI_SUCCESS)
2280 		goto failure;
2281 
2282 	/* Allocate DMA-able memory for transmit buffer */
2283 	if (ddi_dma_mem_alloc(bdesc->dma_handle,
2284 	    PAGESIZE, &data_accattr, DDI_DMA_STREAMING, 0, 0,
2285 	    &bdesc->buf, &len, &bdesc->acc_handle) != DDI_SUCCESS)
2286 		goto failure_1;
2287 
2288 	bdesc->xnfp = xnfp;
2289 	xnfp->xnf_tx_buffer_count++;
2290 
2291 	return (bdesc);
2292 
2293 failure_1:
2294 	ddi_dma_free_handle(&bdesc->dma_handle);
2295 
2296 failure:
2297 	kmem_free(bdesc, sizeof (*bdesc));
2298 	return (NULL);
2299 }
2300 
2301 /*
2302  * Allocate a DMA-able receive buffer, including a structure to
2303  * keep track of the buffer.  Called with rx_buf_mutex held.
2304  */
2305 static struct xnf_buffer_desc *
2306 xnf_alloc_buffer(xnf_t *xnfp)
2307 {
2308 	struct			xnf_buffer_desc *bdesc;
2309 	size_t			len;
2310 	uint_t			ncookies;
2311 	ddi_dma_cookie_t	dma_cookie;
2312 	long			cnt;
2313 	pfn_t			pfn;
2314 
2315 	if (xnfp->xnf_rx_buffer_count >= xnfp->xnf_max_rx_bufs)
2316 		return (NULL);
2317 
2318 	if ((bdesc = kmem_zalloc(sizeof (*bdesc), KM_NOSLEEP)) == NULL)
2319 		return (NULL);
2320 
2321 	/* allocate a DMA access handle for receive buffer */
2322 	if (ddi_dma_alloc_handle(xnfp->xnf_devinfo, &rx_buffer_dma_attr,
2323 	    0, 0, &bdesc->dma_handle) != DDI_SUCCESS)
2324 		goto failure;
2325 
2326 	/* Allocate DMA-able memory for receive buffer */
2327 	if (ddi_dma_mem_alloc(bdesc->dma_handle,
2328 	    PAGESIZE, &data_accattr, DDI_DMA_STREAMING, 0, 0,
2329 	    &bdesc->buf, &len, &bdesc->acc_handle) != DDI_SUCCESS)
2330 		goto failure_1;
2331 
2332 	/* bind to virtual address of buffer to get physical address */
2333 	if (ddi_dma_addr_bind_handle(bdesc->dma_handle, NULL,
2334 	    bdesc->buf, PAGESIZE, DDI_DMA_READ | DDI_DMA_STREAMING,
2335 	    DDI_DMA_SLEEP, 0, &dma_cookie, &ncookies) != DDI_DMA_MAPPED)
2336 		goto failure_2;
2337 
2338 	bdesc->buf_phys = dma_cookie.dmac_laddress;
2339 	bdesc->xnfp = xnfp;
2340 	if (xnfp->xnf_rx_hvcopy) {
2341 		bdesc->free_rtn.free_func = xnf_copy_rcv_complete;
2342 	} else {
2343 		bdesc->free_rtn.free_func = xnf_rcv_complete;
2344 	}
2345 	bdesc->free_rtn.free_arg = (char *)bdesc;
2346 	bdesc->grant_ref = GRANT_INVALID_REF;
2347 	ASSERT(ncookies == 1);
2348 
2349 	xnfp->xnf_rx_buffer_count++;
2350 
2351 	if (!xnfp->xnf_rx_hvcopy) {
2352 		/*
2353 		 * Unmap the page, and hand the machine page back
2354 		 * to xen so it can be used as a backend net buffer.
2355 		 */
2356 		pfn = xnf_btop(bdesc->buf_phys);
2357 		cnt = balloon_free_pages(1, NULL, bdesc->buf, &pfn);
2358 		if (cnt != 1) {
2359 			cmn_err(CE_WARN, "unable to give a page back to the "
2360 			    "hypervisor\n");
2361 		}
2362 	}
2363 
2364 	return (bdesc);
2365 
2366 failure_2:
2367 	ddi_dma_mem_free(&bdesc->acc_handle);
2368 
2369 failure_1:
2370 	ddi_dma_free_handle(&bdesc->dma_handle);
2371 
2372 failure:
2373 	kmem_free(bdesc, sizeof (*bdesc));
2374 	return (NULL);
2375 }
2376 
2377 /*
2378  * Statistics.
2379  */
2380 static char *xnf_aux_statistics[] = {
2381 	"tx_cksum_deferred",
2382 	"rx_cksum_no_need",
2383 	"interrupts",
2384 	"unclaimed_interrupts",
2385 	"tx_pullup",
2386 	"tx_pagebndry",
2387 	"tx_attempt",
2388 	"rx_no_ringbuf",
2389 	"hvcopy_packet_processed",
2390 };
2391 
2392 static int
2393 xnf_kstat_aux_update(kstat_t *ksp, int flag)
2394 {
2395 	xnf_t *xnfp;
2396 	kstat_named_t *knp;
2397 
2398 	if (flag != KSTAT_READ)
2399 		return (EACCES);
2400 
2401 	xnfp = ksp->ks_private;
2402 	knp = ksp->ks_data;
2403 
2404 	/*
2405 	 * Assignment order must match that of the names in
2406 	 * xnf_aux_statistics.
2407 	 */
2408 	(knp++)->value.ui64 = xnfp->xnf_stat_tx_cksum_deferred;
2409 	(knp++)->value.ui64 = xnfp->xnf_stat_rx_cksum_no_need;
2410 
2411 	(knp++)->value.ui64 = xnfp->xnf_stat_interrupts;
2412 	(knp++)->value.ui64 = xnfp->xnf_stat_unclaimed_interrupts;
2413 	(knp++)->value.ui64 = xnfp->xnf_stat_tx_pullup;
2414 	(knp++)->value.ui64 = xnfp->xnf_stat_tx_pagebndry;
2415 	(knp++)->value.ui64 = xnfp->xnf_stat_tx_attempt;
2416 	(knp++)->value.ui64 = xnfp->xnf_stat_rx_no_ringbuf;
2417 
2418 	(knp++)->value.ui64 = xnfp->xnf_stat_hvcopy_packet_processed;
2419 
2420 	return (0);
2421 }
2422 
2423 static boolean_t
2424 xnf_kstat_init(xnf_t *xnfp)
2425 {
2426 	int nstat = sizeof (xnf_aux_statistics) /
2427 	    sizeof (xnf_aux_statistics[0]);
2428 	char **cp = xnf_aux_statistics;
2429 	kstat_named_t *knp;
2430 
2431 	/*
2432 	 * Create and initialise kstats.
2433 	 */
2434 	if ((xnfp->xnf_kstat_aux = kstat_create("xnf",
2435 	    ddi_get_instance(xnfp->xnf_devinfo),
2436 	    "aux_statistics", "net", KSTAT_TYPE_NAMED,
2437 	    nstat, 0)) == NULL)
2438 		return (B_FALSE);
2439 
2440 	xnfp->xnf_kstat_aux->ks_private = xnfp;
2441 	xnfp->xnf_kstat_aux->ks_update = xnf_kstat_aux_update;
2442 
2443 	knp = xnfp->xnf_kstat_aux->ks_data;
2444 	while (nstat > 0) {
2445 		kstat_named_init(knp, *cp, KSTAT_DATA_UINT64);
2446 
2447 		knp++;
2448 		cp++;
2449 		nstat--;
2450 	}
2451 
2452 	kstat_install(xnfp->xnf_kstat_aux);
2453 
2454 	return (B_TRUE);
2455 }
2456 
2457 static int
2458 xnf_stat(void *arg, uint_t stat, uint64_t *val)
2459 {
2460 	xnf_t *xnfp = arg;
2461 
2462 	mutex_enter(&xnfp->xnf_intrlock);
2463 	mutex_enter(&xnfp->xnf_txlock);
2464 
2465 #define	mac_stat(q, r)				\
2466 	case (MAC_STAT_##q):			\
2467 		*val = xnfp->xnf_stat_##r;	\
2468 		break
2469 
2470 #define	ether_stat(q, r)			\
2471 	case (ETHER_STAT_##q):			\
2472 		*val = xnfp->xnf_stat_##r;	\
2473 		break
2474 
2475 	switch (stat) {
2476 
2477 	mac_stat(IPACKETS, ipackets);
2478 	mac_stat(OPACKETS, opackets);
2479 	mac_stat(RBYTES, rbytes);
2480 	mac_stat(OBYTES, obytes);
2481 	mac_stat(NORCVBUF, norxbuf);
2482 	mac_stat(IERRORS, errrx);
2483 	mac_stat(NOXMTBUF, tx_defer);
2484 
2485 	ether_stat(MACRCV_ERRORS, mac_rcv_error);
2486 	ether_stat(TOOSHORT_ERRORS, runt);
2487 
2488 	/* always claim to be in full duplex mode */
2489 	case ETHER_STAT_LINK_DUPLEX:
2490 		*val = LINK_DUPLEX_FULL;
2491 		break;
2492 
2493 	/* always claim to be at 1Gb/s link speed */
2494 	case MAC_STAT_IFSPEED:
2495 		*val = 1000000000ull;
2496 		break;
2497 
2498 	default:
2499 		mutex_exit(&xnfp->xnf_txlock);
2500 		mutex_exit(&xnfp->xnf_intrlock);
2501 
2502 		return (ENOTSUP);
2503 	}
2504 
2505 #undef mac_stat
2506 #undef ether_stat
2507 
2508 	mutex_exit(&xnfp->xnf_txlock);
2509 	mutex_exit(&xnfp->xnf_intrlock);
2510 
2511 	return (0);
2512 }
2513 
2514 /*ARGSUSED*/
2515 static void
2516 xnf_blank(void *arg, time_t ticks, uint_t count)
2517 {
2518 	/*
2519 	 * XXPV dme: blanking is not currently implemented.
2520 	 *
2521 	 * It's not obvious how to use the 'ticks' argument here.
2522 	 *
2523 	 * 'Count' might be used as an indicator of how to set
2524 	 * rsp_event when posting receive buffers to the rx_ring.  It
2525 	 * would replace the code at the tail of xnf_process_recv()
2526 	 * that simply indicates that the next completed packet should
2527 	 * cause an interrupt.
2528 	 */
2529 }
2530 
2531 static void
2532 xnf_resources(void *arg)
2533 {
2534 	xnf_t *xnfp = arg;
2535 	mac_rx_fifo_t mrf;
2536 
2537 	mrf.mrf_type = MAC_RX_FIFO;
2538 	mrf.mrf_blank = xnf_blank;
2539 	mrf.mrf_arg = (void *)xnfp;
2540 	mrf.mrf_normal_blank_time = 128;	/* XXPV dme: see xnf_blank() */
2541 	mrf.mrf_normal_pkt_count = 8;		/* XXPV dme: see xnf_blank() */
2542 
2543 	xnfp->xnf_rx_handle = mac_resource_add(xnfp->xnf_mh,
2544 	    (mac_resource_t *)&mrf);
2545 }
2546 
2547 /*ARGSUSED*/
2548 static void
2549 xnf_ioctl(void *arg, queue_t *q, mblk_t *mp)
2550 {
2551 	miocnak(q, mp, 0, EINVAL);
2552 }
2553 
2554 static boolean_t
2555 xnf_getcapab(void *arg, mac_capab_t cap, void *cap_data)
2556 {
2557 	xnf_t *xnfp = arg;
2558 
2559 	switch (cap) {
2560 	case MAC_CAPAB_HCKSUM: {
2561 		uint32_t *capab = cap_data;
2562 
2563 		/*
2564 		 * Whilst the flag used to communicate with the IO
2565 		 * domain is called "NETTXF_csum_blank", the checksum
2566 		 * in the packet must contain the pseudo-header
2567 		 * checksum and not zero.
2568 		 *
2569 		 * To help out the IO domain, we might use
2570 		 * HCKSUM_INET_PARTIAL. Unfortunately our stack will
2571 		 * then use checksum offload for IPv6 packets, which
2572 		 * the IO domain can't handle.
2573 		 *
2574 		 * As a result, we declare outselves capable of
2575 		 * HCKSUM_INET_FULL_V4. This means that we receive
2576 		 * IPv4 packets from the stack with a blank checksum
2577 		 * field and must insert the pseudo-header checksum
2578 		 * before passing the packet to the IO domain.
2579 		 */
2580 		if (xnfp->xnf_cksum_offload)
2581 			*capab = HCKSUM_INET_FULL_V4;
2582 		else
2583 			*capab = 0;
2584 		break;
2585 	}
2586 
2587 	case MAC_CAPAB_POLL:
2588 		/* Just return B_TRUE. */
2589 		break;
2590 
2591 	default:
2592 		return (B_FALSE);
2593 	}
2594 
2595 	return (B_TRUE);
2596 }
2597 
2598 /*ARGSUSED*/
2599 static void
2600 oe_state_change(dev_info_t *dip, ddi_eventcookie_t id,
2601     void *arg, void *impl_data)
2602 {
2603 	xnf_t *xnfp = ddi_get_driver_private(dip);
2604 	XenbusState new_state = *(XenbusState *)impl_data;
2605 
2606 	ASSERT(xnfp != NULL);
2607 
2608 	switch (new_state) {
2609 	case XenbusStateConnected:
2610 		mutex_enter(&xnfp->xnf_intrlock);
2611 		mutex_enter(&xnfp->xnf_txlock);
2612 
2613 		xnfp->xnf_connected = B_TRUE;
2614 		/*
2615 		 * wake up threads wanting to send data to backend,
2616 		 * but got blocked due to backend is not ready
2617 		 */
2618 		cv_broadcast(&xnfp->xnf_cv);
2619 
2620 		mutex_exit(&xnfp->xnf_txlock);
2621 		mutex_exit(&xnfp->xnf_intrlock);
2622 
2623 		/*
2624 		 * kick backend in case it missed any tx request
2625 		 * in the TX ring buffer
2626 		 */
2627 		ec_notify_via_evtchn(xnfp->xnf_evtchn);
2628 
2629 		/*
2630 		 * there maybe already queued rx data in the RX ring
2631 		 * sent by backend after it gets connected but before
2632 		 * we see its state change here, so we call our intr
2633 		 * handling routine to handle them, if any
2634 		 */
2635 		(void) xnf_intr((caddr_t)xnfp);
2636 
2637 		/* mark as link up after get connected */
2638 		mac_link_update(xnfp->xnf_mh, LINK_STATE_UP);
2639 
2640 		break;
2641 
2642 	default:
2643 		break;
2644 	}
2645 }
2646 
2647 /*
2648  * Check whether backend is capable of and willing to talk
2649  * to us via hypervisor copy, as opposed to page flip.
2650  */
2651 static boolean_t
2652 xnf_hvcopy_peer_status(dev_info_t *devinfo)
2653 {
2654 	int	be_rx_copy;
2655 	int	err;
2656 
2657 	err = xenbus_scanf(XBT_NULL, xvdi_get_oename(devinfo),
2658 	    "feature-rx-copy", "%d", &be_rx_copy);
2659 	/*
2660 	 * If we fail to read the store we assume that the key is
2661 	 * absent, implying an older domain at the far end.  Older
2662 	 * domains cannot do HV copy (we assume ..).
2663 	 */
2664 	if (err != 0)
2665 		be_rx_copy = 0;
2666 
2667 	return (be_rx_copy?B_TRUE:B_FALSE);
2668 }
2669