xref: /titanic_52/usr/src/uts/common/vm/vm_pvn.c (revision a7317ceb814150d472383df8b987d7e3282ea15b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - paged vnode.
41  *
42  * This file supplies vm support for the vnode operations that deal with pages.
43  */
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/sysmacros.h>
48 #include <sys/systm.h>
49 #include <sys/time.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/uio.h>
53 #include <sys/vmsystm.h>
54 #include <sys/mman.h>
55 #include <sys/vfs.h>
56 #include <sys/cred.h>
57 #include <sys/user.h>
58 #include <sys/kmem.h>
59 #include <sys/cmn_err.h>
60 #include <sys/debug.h>
61 #include <sys/cpuvar.h>
62 #include <sys/vtrace.h>
63 #include <sys/tnf_probe.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/rm.h>
69 #include <vm/pvn.h>
70 #include <vm/page.h>
71 #include <vm/seg_map.h>
72 #include <vm/seg_kmem.h>
73 #include <sys/fs/swapnode.h>
74 
75 int pvn_nofodklust = 0;
76 int pvn_write_noklust = 0;
77 
78 uint_t pvn_vmodsort_supported = 0;	/* set if HAT supports VMODSORT */
79 uint_t pvn_vmodsort_disable = 0;	/* set in /etc/system to disable HAT */
80 					/* support for vmodsort for testing */
81 
82 static struct kmem_cache *marker_cache = NULL;
83 
84 /*
85  * Find the largest contiguous block which contains `addr' for file offset
86  * `offset' in it while living within the file system block sizes (`vp_off'
87  * and `vp_len') and the address space limits for which no pages currently
88  * exist and which map to consecutive file offsets.
89  */
90 page_t *
91 pvn_read_kluster(
92 	struct vnode *vp,
93 	u_offset_t off,
94 	struct seg *seg,
95 	caddr_t addr,
96 	u_offset_t *offp,			/* return values */
97 	size_t *lenp,				/* return values */
98 	u_offset_t vp_off,
99 	size_t vp_len,
100 	int isra)
101 {
102 	ssize_t deltaf, deltab;
103 	page_t *pp;
104 	page_t *plist = NULL;
105 	spgcnt_t pagesavail;
106 	u_offset_t vp_end;
107 
108 	ASSERT(off >= vp_off && off < vp_off + vp_len);
109 
110 	/*
111 	 * We only want to do klustering/read ahead if there
112 	 * is more than minfree pages currently available.
113 	 */
114 	pagesavail = freemem - minfree;
115 
116 	if (pagesavail <= 0)
117 		if (isra)
118 			return ((page_t *)NULL);    /* ra case - give up */
119 		else
120 			pagesavail = 1;		    /* must return a page */
121 
122 	/* We calculate in pages instead of bytes due to 32-bit overflows */
123 	if (pagesavail < (spgcnt_t)btopr(vp_len)) {
124 		/*
125 		 * Don't have enough free memory for the
126 		 * max request, try sizing down vp request.
127 		 */
128 		deltab = (ssize_t)(off - vp_off);
129 		vp_len -= deltab;
130 		vp_off += deltab;
131 		if (pagesavail < btopr(vp_len)) {
132 			/*
133 			 * Still not enough memory, just settle for
134 			 * pagesavail which is at least 1.
135 			 */
136 			vp_len = ptob(pagesavail);
137 		}
138 	}
139 
140 	vp_end = vp_off + vp_len;
141 	ASSERT(off >= vp_off && off < vp_end);
142 
143 	if (isra && SEGOP_KLUSTER(seg, addr, 0))
144 		return ((page_t *)NULL);	/* segment driver says no */
145 
146 	if ((plist = page_create_va(vp, off,
147 	    PAGESIZE, PG_EXCL | PG_WAIT, seg, addr)) == NULL)
148 		return ((page_t *)NULL);
149 
150 	if (vp_len <= PAGESIZE || pvn_nofodklust) {
151 		*offp = off;
152 		*lenp = MIN(vp_len, PAGESIZE);
153 	} else {
154 		/*
155 		 * Scan back from front by incrementing "deltab" and
156 		 * comparing "off" with "vp_off + deltab" to avoid
157 		 * "signed" versus "unsigned" conversion problems.
158 		 */
159 		for (deltab = PAGESIZE; off >= vp_off + deltab;
160 		    deltab += PAGESIZE) {
161 			/*
162 			 * Call back to the segment driver to verify that
163 			 * the klustering/read ahead operation makes sense.
164 			 */
165 			if (SEGOP_KLUSTER(seg, addr, -deltab))
166 				break;		/* page not eligible */
167 			if ((pp = page_create_va(vp, off - deltab,
168 			    PAGESIZE, PG_EXCL, seg, addr - deltab))
169 			    == NULL)
170 				break;		/* already have the page */
171 			/*
172 			 * Add page to front of page list.
173 			 */
174 			page_add(&plist, pp);
175 		}
176 		deltab -= PAGESIZE;
177 
178 		/* scan forward from front */
179 		for (deltaf = PAGESIZE; off + deltaf < vp_end;
180 		    deltaf += PAGESIZE) {
181 			/*
182 			 * Call back to the segment driver to verify that
183 			 * the klustering/read ahead operation makes sense.
184 			 */
185 			if (SEGOP_KLUSTER(seg, addr, deltaf))
186 				break;		/* page not file extension */
187 			if ((pp = page_create_va(vp, off + deltaf,
188 			    PAGESIZE, PG_EXCL, seg, addr + deltaf))
189 			    == NULL)
190 				break;		/* already have page */
191 
192 			/*
193 			 * Add page to end of page list.
194 			 */
195 			page_add(&plist, pp);
196 			plist = plist->p_next;
197 		}
198 		*offp = off = off - deltab;
199 		*lenp = deltab + deltaf;
200 		ASSERT(off >= vp_off);
201 
202 		/*
203 		 * If we ended up getting more than was actually
204 		 * requested, retract the returned length to only
205 		 * reflect what was requested.  This might happen
206 		 * if we were allowed to kluster pages across a
207 		 * span of (say) 5 frags, and frag size is less
208 		 * than PAGESIZE.  We need a whole number of
209 		 * pages to contain those frags, but the returned
210 		 * size should only allow the returned range to
211 		 * extend as far as the end of the frags.
212 		 */
213 		if ((vp_off + vp_len) < (off + *lenp)) {
214 			ASSERT(vp_end > off);
215 			*lenp = vp_end - off;
216 		}
217 	}
218 	TRACE_3(TR_FAC_VM, TR_PVN_READ_KLUSTER,
219 	    "pvn_read_kluster:seg %p addr %x isra %x",
220 	    seg, addr, isra);
221 	return (plist);
222 }
223 
224 /*
225  * Handle pages for this vnode on either side of the page "pp"
226  * which has been locked by the caller.  This routine will also
227  * do klustering in the range [vp_off, vp_off + vp_len] up
228  * until a page which is not found.  The offset and length
229  * of pages included is returned in "*offp" and "*lenp".
230  *
231  * Returns a list of dirty locked pages all ready to be
232  * written back.
233  */
234 page_t *
235 pvn_write_kluster(
236 	struct vnode *vp,
237 	page_t *pp,
238 	u_offset_t *offp,		/* return values */
239 	size_t *lenp,			/* return values */
240 	u_offset_t vp_off,
241 	size_t vp_len,
242 	int flags)
243 {
244 	u_offset_t off;
245 	page_t *dirty;
246 	size_t deltab, deltaf;
247 	se_t se;
248 	u_offset_t vp_end;
249 
250 	off = pp->p_offset;
251 
252 	/*
253 	 * Kustering should not be done if we are invalidating
254 	 * pages since we could destroy pages that belong to
255 	 * some other process if this is a swap vnode.
256 	 */
257 	if (pvn_write_noklust || ((flags & B_INVAL) && IS_SWAPVP(vp))) {
258 		*offp = off;
259 		*lenp = PAGESIZE;
260 		return (pp);
261 	}
262 
263 	if (flags & (B_FREE | B_INVAL))
264 		se = SE_EXCL;
265 	else
266 		se = SE_SHARED;
267 
268 	dirty = pp;
269 	/*
270 	 * Scan backwards looking for pages to kluster by incrementing
271 	 * "deltab" and comparing "off" with "vp_off + deltab" to
272 	 * avoid "signed" versus "unsigned" conversion problems.
273 	 */
274 	for (deltab = PAGESIZE; off >= vp_off + deltab; deltab += PAGESIZE) {
275 		pp = page_lookup_nowait(vp, off - deltab, se);
276 		if (pp == NULL)
277 			break;		/* page not found */
278 		if (pvn_getdirty(pp, flags | B_DELWRI) == 0)
279 			break;
280 		page_add(&dirty, pp);
281 	}
282 	deltab -= PAGESIZE;
283 
284 	vp_end = vp_off + vp_len;
285 	/* now scan forwards looking for pages to kluster */
286 	for (deltaf = PAGESIZE; off + deltaf < vp_end; deltaf += PAGESIZE) {
287 		pp = page_lookup_nowait(vp, off + deltaf, se);
288 		if (pp == NULL)
289 			break;		/* page not found */
290 		if (pvn_getdirty(pp, flags | B_DELWRI) == 0)
291 			break;
292 		page_add(&dirty, pp);
293 		dirty = dirty->p_next;
294 	}
295 
296 	*offp = off - deltab;
297 	*lenp = deltab + deltaf;
298 	return (dirty);
299 }
300 
301 /*
302  * Generic entry point used to release the "shared/exclusive" lock
303  * and the "p_iolock" on pages after i/o is complete.
304  */
305 void
306 pvn_io_done(page_t *plist)
307 {
308 	page_t *pp;
309 
310 	while (plist != NULL) {
311 		pp = plist;
312 		page_sub(&plist, pp);
313 		page_io_unlock(pp);
314 		page_unlock(pp);
315 	}
316 }
317 
318 /*
319  * Entry point to be used by file system getpage subr's and
320  * other such routines which either want to unlock pages (B_ASYNC
321  * request) or destroy a list of pages if an error occurred.
322  */
323 void
324 pvn_read_done(page_t *plist, int flags)
325 {
326 	page_t *pp;
327 
328 	while (plist != NULL) {
329 		pp = plist;
330 		page_sub(&plist, pp);
331 		page_io_unlock(pp);
332 		if (flags & B_ERROR) {
333 			/*LINTED: constant in conditional context*/
334 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
335 		} else {
336 			(void) page_release(pp, 0);
337 		}
338 	}
339 }
340 
341 /*
342  * Automagic pageout.
343  * When memory gets tight, start freeing pages popping out of the
344  * write queue.
345  */
346 int	write_free = 1;
347 pgcnt_t	pages_before_pager = 200;	/* LMXXX */
348 
349 /*
350  * Routine to be called when page-out's complete.
351  * The caller, typically VOP_PUTPAGE, has to explicity call this routine
352  * after waiting for i/o to complete (biowait) to free the list of
353  * pages associated with the buffer.  These pages must be locked
354  * before i/o is initiated.
355  *
356  * If a write error occurs, the pages are marked as modified
357  * so the write will be re-tried later.
358  */
359 
360 void
361 pvn_write_done(page_t *plist, int flags)
362 {
363 	int dfree = 0;
364 	int pgrec = 0;
365 	int pgout = 0;
366 	int pgpgout = 0;
367 	int anonpgout = 0;
368 	int anonfree = 0;
369 	int fspgout = 0;
370 	int fsfree = 0;
371 	int execpgout = 0;
372 	int execfree = 0;
373 	page_t *pp;
374 	struct cpu *cpup;
375 	struct vnode *vp = NULL;	/* for probe */
376 	uint_t ppattr;
377 	kmutex_t *vphm = NULL;
378 
379 	ASSERT((flags & B_READ) == 0);
380 
381 	/*
382 	 * If we are about to start paging anyway, start freeing pages.
383 	 */
384 	if (write_free && freemem < lotsfree + pages_before_pager &&
385 	    (flags & B_ERROR) == 0) {
386 		flags |= B_FREE;
387 	}
388 
389 	/*
390 	 * Handle each page involved in the i/o operation.
391 	 */
392 	while (plist != NULL) {
393 		pp = plist;
394 		ASSERT(PAGE_LOCKED(pp) && page_iolock_assert(pp));
395 		page_sub(&plist, pp);
396 
397 		/* Kernel probe support */
398 		if (vp == NULL)
399 			vp = pp->p_vnode;
400 
401 		if (((flags & B_ERROR) == 0) && IS_VMODSORT(vp)) {
402 			/*
403 			 * Move page to the top of the v_page list.
404 			 * Skip pages modified during IO.
405 			 */
406 			vphm = page_vnode_mutex(vp);
407 			mutex_enter(vphm);
408 			if ((pp->p_vpnext != pp) && !hat_ismod(pp)) {
409 				page_vpsub(&vp->v_pages, pp);
410 				page_vpadd(&vp->v_pages, pp);
411 			}
412 			mutex_exit(vphm);
413 		}
414 
415 		if (flags & B_ERROR) {
416 			/*
417 			 * Write operation failed.  We don't want
418 			 * to destroy (or free) the page unless B_FORCE
419 			 * is set. We set the mod bit again and release
420 			 * all locks on the page so that it will get written
421 			 * back again later when things are hopefully
422 			 * better again.
423 			 * If B_INVAL and B_FORCE is set we really have
424 			 * to destroy the page.
425 			 */
426 			if ((flags & (B_INVAL|B_FORCE)) == (B_INVAL|B_FORCE)) {
427 				page_io_unlock(pp);
428 				/*LINTED: constant in conditional context*/
429 				VN_DISPOSE(pp, B_INVAL, 0, kcred);
430 			} else {
431 				hat_setmod_only(pp);
432 				page_io_unlock(pp);
433 				page_unlock(pp);
434 			}
435 		} else if (flags & B_INVAL) {
436 			/*
437 			 * XXX - Failed writes with B_INVAL set are
438 			 * not handled appropriately.
439 			 */
440 			page_io_unlock(pp);
441 			/*LINTED: constant in conditional context*/
442 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
443 		} else if (flags & B_FREE ||!hat_page_is_mapped(pp)) {
444 			/*
445 			 * Update statistics for pages being paged out
446 			 */
447 			if (pp->p_vnode) {
448 				if (IS_SWAPFSVP(pp->p_vnode)) {
449 					anonpgout++;
450 				} else {
451 					if (pp->p_vnode->v_flag & VVMEXEC) {
452 						execpgout++;
453 					} else {
454 						fspgout++;
455 					}
456 				}
457 			}
458 			page_io_unlock(pp);
459 			pgout = 1;
460 			pgpgout++;
461 			TRACE_1(TR_FAC_VM, TR_PAGE_WS_OUT,
462 			    "page_ws_out:pp %p", pp);
463 
464 			/*
465 			 * The page_struct_lock need not be acquired to
466 			 * examine "p_lckcnt" and "p_cowcnt" since we'll
467 			 * have an "exclusive" lock if the upgrade succeeds.
468 			 */
469 			if (page_tryupgrade(pp) &&
470 			    pp->p_lckcnt == 0 && pp->p_cowcnt == 0) {
471 				/*
472 				 * Check if someone has reclaimed the
473 				 * page.  If ref and mod are not set, no
474 				 * one is using it so we can free it.
475 				 * The rest of the system is careful
476 				 * to use the NOSYNC flag to unload
477 				 * translations set up for i/o w/o
478 				 * affecting ref and mod bits.
479 				 *
480 				 * Obtain a copy of the real hardware
481 				 * mod bit using hat_pagesync(pp, HAT_DONTZERO)
482 				 * to avoid having to flush the cache.
483 				 */
484 				ppattr = hat_pagesync(pp, HAT_SYNC_DONTZERO |
485 				    HAT_SYNC_STOPON_MOD);
486 			ck_refmod:
487 				if (!(ppattr & (P_REF | P_MOD))) {
488 					if (hat_page_is_mapped(pp)) {
489 						/*
490 						 * Doesn't look like the page
491 						 * was modified so now we
492 						 * really have to unload the
493 						 * translations.  Meanwhile
494 						 * another CPU could've
495 						 * modified it so we have to
496 						 * check again.  We don't loop
497 						 * forever here because now
498 						 * the translations are gone
499 						 * and no one can get a new one
500 						 * since we have the "exclusive"
501 						 * lock on the page.
502 						 */
503 						(void) hat_pageunload(pp,
504 						    HAT_FORCE_PGUNLOAD);
505 						ppattr = hat_page_getattr(pp,
506 						    P_REF | P_MOD);
507 						goto ck_refmod;
508 					}
509 					/*
510 					 * Update statistics for pages being
511 					 * freed
512 					 */
513 					if (pp->p_vnode) {
514 						if (IS_SWAPFSVP(pp->p_vnode)) {
515 							anonfree++;
516 						} else {
517 							if (pp->p_vnode->v_flag
518 							    & VVMEXEC) {
519 								execfree++;
520 							} else {
521 								fsfree++;
522 							}
523 						}
524 					}
525 					/*LINTED: constant in conditional ctx*/
526 					VN_DISPOSE(pp, B_FREE,
527 					    (flags & B_DONTNEED), kcred);
528 					dfree++;
529 				} else {
530 					page_unlock(pp);
531 					pgrec++;
532 					TRACE_1(TR_FAC_VM, TR_PAGE_WS_FREE,
533 					    "page_ws_free:pp %p", pp);
534 				}
535 			} else {
536 				/*
537 				 * Page is either `locked' in memory
538 				 * or was reclaimed and now has a
539 				 * "shared" lock, so release it.
540 				 */
541 				page_unlock(pp);
542 			}
543 		} else {
544 			/*
545 			 * Neither B_FREE nor B_INVAL nor B_ERROR.
546 			 * Just release locks.
547 			 */
548 			page_io_unlock(pp);
549 			page_unlock(pp);
550 		}
551 	}
552 
553 	CPU_STATS_ENTER_K();
554 	cpup = CPU;		/* get cpup now that CPU cannot change */
555 	CPU_STATS_ADDQ(cpup, vm, dfree, dfree);
556 	CPU_STATS_ADDQ(cpup, vm, pgrec, pgrec);
557 	CPU_STATS_ADDQ(cpup, vm, pgout, pgout);
558 	CPU_STATS_ADDQ(cpup, vm, pgpgout, pgpgout);
559 	CPU_STATS_ADDQ(cpup, vm, anonpgout, anonpgout);
560 	CPU_STATS_ADDQ(cpup, vm, anonfree, anonfree);
561 	CPU_STATS_ADDQ(cpup, vm, fspgout, fspgout);
562 	CPU_STATS_ADDQ(cpup, vm, fsfree, fsfree);
563 	CPU_STATS_ADDQ(cpup, vm, execpgout, execpgout);
564 	CPU_STATS_ADDQ(cpup, vm, execfree, execfree);
565 	CPU_STATS_EXIT_K();
566 
567 	/* Kernel probe */
568 	TNF_PROBE_4(pageout, "vm pageio io", /* CSTYLED */,
569 	    tnf_opaque,	vnode,			vp,
570 	    tnf_ulong,	pages_pageout,		pgpgout,
571 	    tnf_ulong,	pages_freed,		dfree,
572 	    tnf_ulong,	pages_reclaimed,	pgrec);
573 }
574 
575 /*
576  * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_DELWRI,
577  * B_TRUNC, B_FORCE}.  B_DELWRI indicates that this page is part of a kluster
578  * operation and is only to be considered if it doesn't involve any
579  * waiting here.  B_TRUNC indicates that the file is being truncated
580  * and so no i/o needs to be done. B_FORCE indicates that the page
581  * must be destroyed so don't try wrting it out.
582  *
583  * The caller must ensure that the page is locked.  Returns 1, if
584  * the page should be written back (the "iolock" is held in this
585  * case), or 0 if the page has been dealt with or has been
586  * unlocked.
587  */
588 int
589 pvn_getdirty(page_t *pp, int flags)
590 {
591 	ASSERT((flags & (B_INVAL | B_FREE)) ?
592 	    PAGE_EXCL(pp) : PAGE_SHARED(pp));
593 	ASSERT(PP_ISFREE(pp) == 0);
594 
595 	/*
596 	 * If trying to invalidate or free a logically `locked' page,
597 	 * forget it.  Don't need page_struct_lock to check p_lckcnt and
598 	 * p_cowcnt as the page is exclusively locked.
599 	 */
600 	if ((flags & (B_INVAL | B_FREE)) && !(flags & (B_TRUNC|B_FORCE)) &&
601 	    (pp->p_lckcnt != 0 || pp->p_cowcnt != 0)) {
602 		page_unlock(pp);
603 		return (0);
604 	}
605 
606 	/*
607 	 * Now acquire the i/o lock so we can add it to the dirty
608 	 * list (if necessary).  We avoid blocking on the i/o lock
609 	 * in the following cases:
610 	 *
611 	 *	If B_DELWRI is set, which implies that this request is
612 	 *	due to a klustering operartion.
613 	 *
614 	 *	If this is an async (B_ASYNC) operation and we are not doing
615 	 *	invalidation (B_INVAL) [The current i/o or fsflush will ensure
616 	 *	that the the page is written out].
617 	 */
618 	if ((flags & B_DELWRI) || ((flags & (B_INVAL | B_ASYNC)) == B_ASYNC)) {
619 		if (!page_io_trylock(pp)) {
620 			page_unlock(pp);
621 			return (0);
622 		}
623 	} else {
624 		page_io_lock(pp);
625 	}
626 
627 	/*
628 	 * If we want to free or invalidate the page then
629 	 * we need to unload it so that anyone who wants
630 	 * it will have to take a minor fault to get it.
631 	 * Otherwise, we're just writing the page back so we
632 	 * need to sync up the hardwre and software mod bit to
633 	 * detect any future modifications.  We clear the
634 	 * software mod bit when we put the page on the dirty
635 	 * list.
636 	 */
637 	if (flags & (B_INVAL | B_FREE)) {
638 		(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
639 	} else {
640 		(void) hat_pagesync(pp, HAT_SYNC_ZERORM);
641 	}
642 
643 	if (!hat_ismod(pp) || (flags & B_TRUNC)) {
644 		/*
645 		 * Don't need to add it to the
646 		 * list after all.
647 		 */
648 		page_io_unlock(pp);
649 		if (flags & B_INVAL) {
650 			/*LINTED: constant in conditional context*/
651 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
652 		} else if (flags & B_FREE) {
653 			/*LINTED: constant in conditional context*/
654 			VN_DISPOSE(pp, B_FREE, (flags & B_DONTNEED), kcred);
655 		} else {
656 			/*
657 			 * This is advisory path for the callers
658 			 * of VOP_PUTPAGE() who prefer freeing the
659 			 * page _only_ if no one else is accessing it.
660 			 * E.g. segmap_release()
661 			 *
662 			 * The above hat_ismod() check is useless because:
663 			 * (1) we may not be holding SE_EXCL lock;
664 			 * (2) we've not unloaded _all_ translations
665 			 *
666 			 * Let page_release() do the heavy-lifting.
667 			 */
668 			(void) page_release(pp, 1);
669 		}
670 		return (0);
671 	}
672 
673 	/*
674 	 * Page is dirty, get it ready for the write back
675 	 * and add page to the dirty list.
676 	 */
677 	hat_clrrefmod(pp);
678 
679 	/*
680 	 * If we're going to free the page when we're done
681 	 * then we can let others try to use it starting now.
682 	 * We'll detect the fact that they used it when the
683 	 * i/o is done and avoid freeing the page.
684 	 */
685 	if (flags & B_FREE)
686 		page_downgrade(pp);
687 
688 
689 	TRACE_1(TR_FAC_VM, TR_PVN_GETDIRTY, "pvn_getdirty:pp %p", pp);
690 
691 	return (1);
692 }
693 
694 
695 /*ARGSUSED*/
696 static int
697 marker_constructor(void *buf, void *cdrarg, int kmflags)
698 {
699 	page_t *mark = buf;
700 	bzero(mark, sizeof (page_t));
701 	mark->p_hash = PVN_VPLIST_HASH_TAG;
702 	return (0);
703 }
704 
705 void
706 pvn_init()
707 {
708 	if (pvn_vmodsort_disable == 0)
709 		pvn_vmodsort_supported = hat_supported(HAT_VMODSORT, NULL);
710 	marker_cache = kmem_cache_create("marker_cache",
711 	    sizeof (page_t), 0, marker_constructor,
712 	    NULL, NULL, NULL, NULL, 0);
713 }
714 
715 
716 /*
717  * Process a vnode's page list for all pages whose offset is >= off.
718  * Pages are to either be free'd, invalidated, or written back to disk.
719  *
720  * An "exclusive" lock is acquired for each page if B_INVAL or B_FREE
721  * is specified, otherwise they are "shared" locked.
722  *
723  * Flags are {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_TRUNC}
724  *
725  * Special marker page_t's are inserted in the list in order
726  * to keep track of where we are in the list when locks are dropped.
727  *
728  * Note the list is circular and insertions can happen only at the
729  * head and tail of the list. The algorithm ensures visiting all pages
730  * on the list in the following way:
731  *
732  *    Drop two marker pages at the end of the list.
733  *
734  *    Move one marker page backwards towards the start of the list until
735  *    it is at the list head, processing the pages passed along the way.
736  *
737  *    Due to race conditions when the vphm mutex is dropped, additional pages
738  *    can be added to either end of the list, so we'll continue to move
739  *    the marker and process pages until it is up against the end marker.
740  *
741  * There is one special exit condition. If we are processing a VMODSORT
742  * vnode and only writing back modified pages, we can stop as soon as
743  * we run into an unmodified page.  This makes fsync(3) operations fast.
744  */
745 int
746 pvn_vplist_dirty(
747 	vnode_t		*vp,
748 	u_offset_t	off,
749 	int		(*putapage)(vnode_t *, page_t *, u_offset_t *,
750 			size_t *, int, cred_t *),
751 	int		flags,
752 	cred_t		*cred)
753 {
754 	page_t		*pp;
755 	page_t		*mark;		/* marker page that moves toward head */
756 	page_t		*end;		/* marker page at end of list */
757 	int		err = 0;
758 	int		error;
759 	kmutex_t	*vphm;
760 	se_t		se;
761 	page_t		**where_to_move;
762 
763 	ASSERT(vp->v_type != VCHR);
764 
765 	if (vp->v_pages == NULL)
766 		return (0);
767 
768 
769 	/*
770 	 * Serialize vplist_dirty operations on this vnode by setting VVMLOCK.
771 	 *
772 	 * Don't block on VVMLOCK if B_ASYNC is set. This prevents sync()
773 	 * from getting blocked while flushing pages to a dead NFS server.
774 	 */
775 	mutex_enter(&vp->v_lock);
776 	if ((vp->v_flag & VVMLOCK) && (flags & B_ASYNC)) {
777 		mutex_exit(&vp->v_lock);
778 		return (EAGAIN);
779 	}
780 
781 	while (vp->v_flag & VVMLOCK)
782 		cv_wait(&vp->v_cv, &vp->v_lock);
783 
784 	if (vp->v_pages == NULL) {
785 		mutex_exit(&vp->v_lock);
786 		return (0);
787 	}
788 
789 	vp->v_flag |= VVMLOCK;
790 	mutex_exit(&vp->v_lock);
791 
792 
793 	/*
794 	 * Set up the marker pages used to walk the list
795 	 */
796 	end = kmem_cache_alloc(marker_cache, KM_SLEEP);
797 	end->p_vnode = vp;
798 	end->p_offset = (u_offset_t)-2;
799 	mark = kmem_cache_alloc(marker_cache, KM_SLEEP);
800 	mark->p_vnode = vp;
801 	mark->p_offset = (u_offset_t)-1;
802 
803 	/*
804 	 * Grab the lock protecting the vnode's page list
805 	 * note that this lock is dropped at times in the loop.
806 	 */
807 	vphm = page_vnode_mutex(vp);
808 	mutex_enter(vphm);
809 	if (vp->v_pages == NULL)
810 		goto leave;
811 
812 	/*
813 	 * insert the markers and loop through the list of pages
814 	 */
815 	page_vpadd(&vp->v_pages->p_vpprev->p_vpnext, mark);
816 	page_vpadd(&mark->p_vpnext, end);
817 	for (;;) {
818 
819 		/*
820 		 * If only doing an async write back, then we can
821 		 * stop as soon as we get to start of the list.
822 		 */
823 		if (flags == B_ASYNC && vp->v_pages == mark)
824 			break;
825 
826 		/*
827 		 * otherwise stop when we've gone through all the pages
828 		 */
829 		if (mark->p_vpprev == end)
830 			break;
831 
832 		pp = mark->p_vpprev;
833 		if (vp->v_pages == pp)
834 			where_to_move = &vp->v_pages;
835 		else
836 			where_to_move = &pp->p_vpprev->p_vpnext;
837 
838 		ASSERT(pp->p_vnode == vp);
839 
840 		/*
841 		 * If just flushing dirty pages to disk and this vnode
842 		 * is using a sorted list of pages, we can stop processing
843 		 * as soon as we find an unmodified page. Since all the
844 		 * modified pages are visited first.
845 		 */
846 		if (IS_VMODSORT(vp) &&
847 		    !(flags & (B_INVAL | B_FREE | B_TRUNC))) {
848 			if (!hat_ismod(pp) && !page_io_locked(pp)) {
849 #ifdef  DEBUG
850 				/*
851 				 * For debug kernels examine what should be
852 				 * all the remaining clean pages, asserting
853 				 * that they are not modified.
854 				 */
855 				page_t	*chk = pp;
856 				int	attr;
857 
858 				page_vpsub(&vp->v_pages, mark);
859 				page_vpadd(where_to_move, mark);
860 				do {
861 					chk = chk->p_vpprev;
862 					ASSERT(chk != end);
863 					if (chk == mark)
864 						continue;
865 					attr = hat_page_getattr(chk, P_MOD |
866 					    P_REF);
867 					if ((attr & P_MOD) == 0)
868 						continue;
869 					panic("v_pages list not all clean: "
870 					    "page_t*=%p vnode=%p off=%lx "
871 					    "attr=0x%x last clean page_t*=%p\n",
872 					    (void *)chk, (void *)chk->p_vnode,
873 					    (long)chk->p_offset, attr,
874 					    (void *)pp);
875 				} while (chk != vp->v_pages);
876 #endif
877 				break;
878 			} else if (!(flags & B_ASYNC) && !hat_ismod(pp)) {
879 				/*
880 				 * Couldn't get io lock, wait until IO is done.
881 				 * Block only for sync IO since we don't want
882 				 * to block async IO.
883 				 */
884 				mutex_exit(vphm);
885 				page_io_wait(pp);
886 				mutex_enter(vphm);
887 				continue;
888 			}
889 		}
890 
891 		/*
892 		 * Skip this page if the offset is out of the desired range.
893 		 * Just move the marker and continue.
894 		 */
895 		if (pp->p_offset < off) {
896 			page_vpsub(&vp->v_pages, mark);
897 			page_vpadd(where_to_move, mark);
898 			continue;
899 		}
900 
901 		/*
902 		 * If we are supposed to invalidate or free this
903 		 * page, then we need an exclusive lock.
904 		 */
905 		se = (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED;
906 
907 		/*
908 		 * We must acquire the page lock for all synchronous
909 		 * operations (invalidate, free and write).
910 		 */
911 		if ((flags & B_INVAL) != 0 || (flags & B_ASYNC) == 0) {
912 			/*
913 			 * If the page_lock() drops the mutex
914 			 * we must retry the loop.
915 			 */
916 			if (!page_lock(pp, se, vphm, P_NO_RECLAIM))
917 				continue;
918 
919 			/*
920 			 * It's ok to move the marker page now.
921 			 */
922 			page_vpsub(&vp->v_pages, mark);
923 			page_vpadd(where_to_move, mark);
924 		} else {
925 
926 			/*
927 			 * update the marker page for all remaining cases
928 			 */
929 			page_vpsub(&vp->v_pages, mark);
930 			page_vpadd(where_to_move, mark);
931 
932 			/*
933 			 * For write backs, If we can't lock the page, it's
934 			 * invalid or in the process of being destroyed.  Skip
935 			 * it, assuming someone else is writing it.
936 			 */
937 			if (!page_trylock(pp, se))
938 				continue;
939 		}
940 
941 		ASSERT(pp->p_vnode == vp);
942 
943 		/*
944 		 * Successfully locked the page, now figure out what to
945 		 * do with it. Free pages are easily dealt with, invalidate
946 		 * if desired or just go on to the next page.
947 		 */
948 		if (PP_ISFREE(pp)) {
949 			if ((flags & B_INVAL) == 0) {
950 				page_unlock(pp);
951 				continue;
952 			}
953 
954 			/*
955 			 * Invalidate (destroy) the page.
956 			 */
957 			mutex_exit(vphm);
958 			page_destroy_free(pp);
959 			mutex_enter(vphm);
960 			continue;
961 		}
962 
963 		/*
964 		 * pvn_getdirty() figures out what do do with a dirty page.
965 		 * If the page is dirty, the putapage() routine will write it
966 		 * and will kluster any other adjacent dirty pages it can.
967 		 *
968 		 * pvn_getdirty() and `(*putapage)' unlock the page.
969 		 */
970 		mutex_exit(vphm);
971 		if (pvn_getdirty(pp, flags)) {
972 			error = (*putapage)(vp, pp, NULL, NULL, flags, cred);
973 			if (!err)
974 				err = error;
975 		}
976 		mutex_enter(vphm);
977 	}
978 	page_vpsub(&vp->v_pages, mark);
979 	page_vpsub(&vp->v_pages, end);
980 
981 leave:
982 	/*
983 	 * Release v_pages mutex, also VVMLOCK and wakeup blocked thrds
984 	 */
985 	mutex_exit(vphm);
986 	kmem_cache_free(marker_cache, mark);
987 	kmem_cache_free(marker_cache, end);
988 	mutex_enter(&vp->v_lock);
989 	vp->v_flag &= ~VVMLOCK;
990 	cv_broadcast(&vp->v_cv);
991 	mutex_exit(&vp->v_lock);
992 	return (err);
993 }
994 
995 /*
996  * Walk the vp->v_pages list, for every page call the callback function
997  * pointed by *page_check. If page_check returns non-zero, then mark the
998  * page as modified and if VMODSORT is set, move it to the end of v_pages
999  * list. Moving makes sense only if we have at least two pages - this also
1000  * avoids having v_pages temporarily being NULL after calling page_vpsub()
1001  * if there was just one page.
1002  */
1003 void
1004 pvn_vplist_setdirty(vnode_t *vp, int (*page_check)(page_t *))
1005 {
1006 	page_t	*pp, *next, *end;
1007 	kmutex_t	*vphm;
1008 	int	shuffle;
1009 
1010 	vphm = page_vnode_mutex(vp);
1011 	mutex_enter(vphm);
1012 
1013 	if (vp->v_pages == NULL) {
1014 		mutex_exit(vphm);
1015 		return;
1016 	}
1017 
1018 	end = vp->v_pages->p_vpprev;
1019 	shuffle = IS_VMODSORT(vp) && (vp->v_pages != end);
1020 	pp = vp->v_pages;
1021 
1022 	for (;;) {
1023 		next = pp->p_vpnext;
1024 		if (pp->p_hash != PVN_VPLIST_HASH_TAG && page_check(pp)) {
1025 			/*
1026 			 * hat_setmod_only() in contrast to hat_setmod() does
1027 			 * not shuffle the pages and does not grab the mutex
1028 			 * page_vnode_mutex. Exactly what we need.
1029 			 */
1030 			hat_setmod_only(pp);
1031 			if (shuffle) {
1032 				page_vpsub(&vp->v_pages, pp);
1033 				ASSERT(vp->v_pages != NULL);
1034 				page_vpadd(&vp->v_pages->p_vpprev->p_vpnext,
1035 				    pp);
1036 			}
1037 		}
1038 		/* Stop if we have just processed the last page. */
1039 		if (pp == end)
1040 			break;
1041 		pp = next;
1042 	}
1043 
1044 	mutex_exit(vphm);
1045 }
1046 
1047 /*
1048  * Zero out zbytes worth of data. Caller should be aware that this
1049  * routine may enter back into the fs layer (xxx_getpage). Locks
1050  * that the xxx_getpage routine may need should not be held while
1051  * calling this.
1052  */
1053 void
1054 pvn_vpzero(struct vnode *vp, u_offset_t vplen, size_t zbytes)
1055 {
1056 	caddr_t addr;
1057 
1058 	ASSERT(vp->v_type != VCHR);
1059 
1060 	if (vp->v_pages == NULL)
1061 		return;
1062 
1063 	/*
1064 	 * zbytes may be zero but there still may be some portion of
1065 	 * a page which needs clearing (since zbytes is a function
1066 	 * of filesystem block size, not pagesize.)
1067 	 */
1068 	if (zbytes == 0 && (PAGESIZE - (vplen & PAGEOFFSET)) == 0)
1069 		return;
1070 
1071 	/*
1072 	 * We get the last page and handle the partial
1073 	 * zeroing via kernel mappings.  This will make the page
1074 	 * dirty so that we know that when this page is written
1075 	 * back, the zeroed information will go out with it.  If
1076 	 * the page is not currently in memory, then the kzero
1077 	 * operation will cause it to be brought it.  We use kzero
1078 	 * instead of bzero so that if the page cannot be read in
1079 	 * for any reason, the system will not panic.  We need
1080 	 * to zero out a minimum of the fs given zbytes, but we
1081 	 * might also have to do more to get the entire last page.
1082 	 */
1083 
1084 	if ((zbytes + (vplen & MAXBOFFSET)) > MAXBSIZE)
1085 		panic("pvn_vptrunc zbytes");
1086 	addr = segmap_getmapflt(segkmap, vp, vplen,
1087 	    MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET)), 1, S_WRITE);
1088 	(void) kzero(addr + (vplen & MAXBOFFSET),
1089 	    MAX(zbytes, PAGESIZE - (vplen & PAGEOFFSET)));
1090 	(void) segmap_release(segkmap, addr, SM_WRITE | SM_ASYNC);
1091 }
1092 
1093 /*
1094  * Handles common work of the VOP_GETPAGE routines by iterating page by page
1095  * calling the getpage helper for each.
1096  */
1097 int
1098 pvn_getpages(
1099 	int (*getpage)(vnode_t *, u_offset_t, size_t, uint_t *, page_t *[],
1100 		size_t, struct seg *, caddr_t, enum seg_rw, cred_t *),
1101 	struct vnode *vp,
1102 	u_offset_t off,
1103 	size_t len,
1104 	uint_t *protp,
1105 	page_t *pl[],
1106 	size_t plsz,
1107 	struct seg *seg,
1108 	caddr_t addr,
1109 	enum seg_rw rw,
1110 	struct cred *cred)
1111 {
1112 	page_t **ppp;
1113 	u_offset_t o, eoff;
1114 	size_t sz, xlen;
1115 	int err;
1116 
1117 	/* ensure that we have enough space */
1118 	ASSERT(pl == NULL || plsz >= len);
1119 
1120 	/*
1121 	 * Loop one page at a time and let getapage function fill
1122 	 * in the next page in array.  We only allow one page to be
1123 	 * returned at a time (except for the last page) so that we
1124 	 * don't have any problems with duplicates and other such
1125 	 * painful problems.  This is a very simple minded algorithm,
1126 	 * but it does the job correctly.  We hope that the cost of a
1127 	 * getapage call for a resident page that we might have been
1128 	 * able to get from an earlier call doesn't cost too much.
1129 	 */
1130 	ppp = pl;
1131 	sz = (pl != NULL) ? PAGESIZE : 0;
1132 	eoff = off + len;
1133 	xlen = len;
1134 	for (o = off; o < eoff; o += PAGESIZE, addr += PAGESIZE,
1135 	    xlen -= PAGESIZE) {
1136 		if (o + PAGESIZE >= eoff && pl != NULL) {
1137 			/*
1138 			 * Last time through - allow the all of
1139 			 * what's left of the pl[] array to be used.
1140 			 */
1141 			sz = plsz - (o - off);
1142 		}
1143 		err = (*getpage)(vp, o, xlen, protp, ppp, sz, seg, addr,
1144 		    rw, cred);
1145 		if (err) {
1146 			/*
1147 			 * Release any pages we already got.
1148 			 */
1149 			if (o > off && pl != NULL) {
1150 				for (ppp = pl; *ppp != NULL; *ppp++ = NULL)
1151 					(void) page_release(*ppp, 1);
1152 			}
1153 			break;
1154 		}
1155 		if (pl != NULL)
1156 			ppp++;
1157 	}
1158 	return (err);
1159 }
1160 
1161 /*
1162  * Initialize the page list array.
1163  */
1164 /*ARGSUSED*/
1165 void
1166 pvn_plist_init(page_t *pp, page_t *pl[], size_t plsz,
1167     u_offset_t off, size_t io_len, enum seg_rw rw)
1168 {
1169 	ssize_t sz;
1170 	page_t *ppcur, **ppp;
1171 
1172 	/*
1173 	 * Set up to load plsz worth
1174 	 * starting at the needed page.
1175 	 */
1176 	while (pp != NULL && pp->p_offset != off) {
1177 		/*
1178 		 * Remove page from the i/o list,
1179 		 * release the i/o and the page lock.
1180 		 */
1181 		ppcur = pp;
1182 		page_sub(&pp, ppcur);
1183 		page_io_unlock(ppcur);
1184 		(void) page_release(ppcur, 1);
1185 	}
1186 
1187 	if (pp == NULL) {
1188 		pl[0] = NULL;
1189 		return;
1190 	}
1191 
1192 	sz = plsz;
1193 
1194 	/*
1195 	 * Initialize the page list array.
1196 	 */
1197 	ppp = pl;
1198 	do {
1199 		ppcur = pp;
1200 		*ppp++ = ppcur;
1201 		page_sub(&pp, ppcur);
1202 		page_io_unlock(ppcur);
1203 		if (rw != S_CREATE)
1204 			page_downgrade(ppcur);
1205 		sz -= PAGESIZE;
1206 	} while (sz > 0 && pp != NULL);
1207 	*ppp = NULL;		/* terminate list */
1208 
1209 	/*
1210 	 * Now free the remaining pages that weren't
1211 	 * loaded in the page list.
1212 	 */
1213 	while (pp != NULL) {
1214 		ppcur = pp;
1215 		page_sub(&pp, ppcur);
1216 		page_io_unlock(ppcur);
1217 		(void) page_release(ppcur, 1);
1218 	}
1219 }
1220