1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - physical page management. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/errno.h> 50 #include <sys/time.h> 51 #include <sys/vnode.h> 52 #include <sys/vm.h> 53 #include <sys/vtrace.h> 54 #include <sys/swap.h> 55 #include <sys/cmn_err.h> 56 #include <sys/tuneable.h> 57 #include <sys/sysmacros.h> 58 #include <sys/cpuvar.h> 59 #include <sys/callb.h> 60 #include <sys/debug.h> 61 #include <sys/tnf_probe.h> 62 #include <sys/condvar_impl.h> 63 #include <sys/mem_config.h> 64 #include <sys/mem_cage.h> 65 #include <sys/kmem.h> 66 #include <sys/atomic.h> 67 #include <sys/strlog.h> 68 #include <sys/mman.h> 69 #include <sys/ontrap.h> 70 #include <sys/lgrp.h> 71 #include <sys/vfs.h> 72 73 #include <vm/hat.h> 74 #include <vm/anon.h> 75 #include <vm/page.h> 76 #include <vm/seg.h> 77 #include <vm/pvn.h> 78 #include <vm/seg_kmem.h> 79 #include <vm/vm_dep.h> 80 #include <sys/vm_usage.h> 81 #include <fs/fs_subr.h> 82 #include <sys/ddi.h> 83 #include <sys/modctl.h> 84 85 static int nopageage = 0; 86 87 static pgcnt_t max_page_get; /* max page_get request size in pages */ 88 pgcnt_t total_pages = 0; /* total number of pages (used by /proc) */ 89 90 /* 91 * freemem_lock protects all freemem variables: 92 * availrmem. Also this lock protects the globals which track the 93 * availrmem changes for accurate kernel footprint calculation. 94 * See below for an explanation of these 95 * globals. 96 */ 97 kmutex_t freemem_lock; 98 pgcnt_t availrmem; 99 pgcnt_t availrmem_initial; 100 101 /* 102 * These globals track availrmem changes to get a more accurate 103 * estimate of tke kernel size. Historically pp_kernel is used for 104 * kernel size and is based on availrmem. But availrmem is adjusted for 105 * locked pages in the system not just for kernel locked pages. 106 * These new counters will track the pages locked through segvn and 107 * by explicit user locking. 108 * 109 * segvn_pages_locked : This keeps track on a global basis how many pages 110 * are currently locked because of I/O. 111 * 112 * pages_locked : How many pages are locked because of user specified 113 * locking through mlock or plock. 114 * 115 * pages_useclaim,pages_claimed : These two variables track the 116 * claim adjustments because of the protection changes on a segvn segment. 117 * 118 * All these globals are protected by the same lock which protects availrmem. 119 */ 120 pgcnt_t segvn_pages_locked; 121 pgcnt_t pages_locked; 122 pgcnt_t pages_useclaim; 123 pgcnt_t pages_claimed; 124 125 126 /* 127 * new_freemem_lock protects freemem, freemem_wait & freemem_cv. 128 */ 129 static kmutex_t new_freemem_lock; 130 static uint_t freemem_wait; /* someone waiting for freemem */ 131 static kcondvar_t freemem_cv; 132 133 /* 134 * The logical page free list is maintained as two lists, the 'free' 135 * and the 'cache' lists. 136 * The free list contains those pages that should be reused first. 137 * 138 * The implementation of the lists is machine dependent. 139 * page_get_freelist(), page_get_cachelist(), 140 * page_list_sub(), and page_list_add() 141 * form the interface to the machine dependent implementation. 142 * 143 * Pages with p_free set are on the cache list. 144 * Pages with p_free and p_age set are on the free list, 145 * 146 * A page may be locked while on either list. 147 */ 148 149 /* 150 * free list accounting stuff. 151 * 152 * 153 * Spread out the value for the number of pages on the 154 * page free and page cache lists. If there is just one 155 * value, then it must be under just one lock. 156 * The lock contention and cache traffic are a real bother. 157 * 158 * When we acquire and then drop a single pcf lock 159 * we can start in the middle of the array of pcf structures. 160 * If we acquire more than one pcf lock at a time, we need to 161 * start at the front to avoid deadlocking. 162 * 163 * pcf_count holds the number of pages in each pool. 164 * 165 * pcf_block is set when page_create_get_something() has asked the 166 * PSM page freelist and page cachelist routines without specifying 167 * a color and nothing came back. This is used to block anything 168 * else from moving pages from one list to the other while the 169 * lists are searched again. If a page is freeed while pcf_block is 170 * set, then pcf_reserve is incremented. pcgs_unblock() takes care 171 * of clearning pcf_block, doing the wakeups, etc. 172 */ 173 174 #if NCPU <= 4 175 #define PAD 2 176 #define PCF_FANOUT 4 177 static uint_t pcf_mask = PCF_FANOUT - 1; 178 #else 179 #define PAD 10 180 #ifdef sun4v 181 #define PCF_FANOUT 32 182 #else 183 #define PCF_FANOUT 128 184 #endif 185 static uint_t pcf_mask = PCF_FANOUT - 1; 186 #endif 187 188 struct pcf { 189 kmutex_t pcf_lock; /* protects the structure */ 190 uint_t pcf_count; /* page count */ 191 uint_t pcf_wait; /* number of waiters */ 192 uint_t pcf_block; /* pcgs flag to page_free() */ 193 uint_t pcf_reserve; /* pages freed after pcf_block set */ 194 uint_t pcf_fill[PAD]; /* to line up on the caches */ 195 }; 196 197 static struct pcf pcf[PCF_FANOUT]; 198 #define PCF_INDEX() ((CPU->cpu_id) & (pcf_mask)) 199 200 kmutex_t pcgs_lock; /* serializes page_create_get_ */ 201 kmutex_t pcgs_cagelock; /* serializes NOSLEEP cage allocs */ 202 kmutex_t pcgs_wait_lock; /* used for delay in pcgs */ 203 static kcondvar_t pcgs_cv; /* cv for delay in pcgs */ 204 205 #ifdef VM_STATS 206 207 /* 208 * No locks, but so what, they are only statistics. 209 */ 210 211 static struct page_tcnt { 212 int pc_free_cache; /* free's into cache list */ 213 int pc_free_dontneed; /* free's with dontneed */ 214 int pc_free_pageout; /* free's from pageout */ 215 int pc_free_free; /* free's into free list */ 216 int pc_free_pages; /* free's into large page free list */ 217 int pc_destroy_pages; /* large page destroy's */ 218 int pc_get_cache; /* get's from cache list */ 219 int pc_get_free; /* get's from free list */ 220 int pc_reclaim; /* reclaim's */ 221 int pc_abortfree; /* abort's of free pages */ 222 int pc_find_hit; /* find's that find page */ 223 int pc_find_miss; /* find's that don't find page */ 224 int pc_destroy_free; /* # of free pages destroyed */ 225 #define PC_HASH_CNT (4*PAGE_HASHAVELEN) 226 int pc_find_hashlen[PC_HASH_CNT+1]; 227 int pc_addclaim_pages; 228 int pc_subclaim_pages; 229 int pc_free_replacement_page[2]; 230 int pc_try_demote_pages[6]; 231 int pc_demote_pages[2]; 232 } pagecnt; 233 234 uint_t hashin_count; 235 uint_t hashin_not_held; 236 uint_t hashin_already; 237 238 uint_t hashout_count; 239 uint_t hashout_not_held; 240 241 uint_t page_create_count; 242 uint_t page_create_not_enough; 243 uint_t page_create_not_enough_again; 244 uint_t page_create_zero; 245 uint_t page_create_hashout; 246 uint_t page_create_page_lock_failed; 247 uint_t page_create_trylock_failed; 248 uint_t page_create_found_one; 249 uint_t page_create_hashin_failed; 250 uint_t page_create_dropped_phm; 251 252 uint_t page_create_new; 253 uint_t page_create_exists; 254 uint_t page_create_putbacks; 255 uint_t page_create_overshoot; 256 257 uint_t page_reclaim_zero; 258 uint_t page_reclaim_zero_locked; 259 260 uint_t page_rename_exists; 261 uint_t page_rename_count; 262 263 uint_t page_lookup_cnt[20]; 264 uint_t page_lookup_nowait_cnt[10]; 265 uint_t page_find_cnt; 266 uint_t page_exists_cnt; 267 uint_t page_exists_forreal_cnt; 268 uint_t page_lookup_dev_cnt; 269 uint_t get_cachelist_cnt; 270 uint_t page_create_cnt[10]; 271 uint_t alloc_pages[9]; 272 uint_t page_exphcontg[19]; 273 uint_t page_create_large_cnt[10]; 274 275 /* 276 * Collects statistics. 277 */ 278 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 279 uint_t mylen = 0; \ 280 \ 281 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash, mylen++) { \ 282 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 283 break; \ 284 } \ 285 if ((pp) != NULL) \ 286 pagecnt.pc_find_hit++; \ 287 else \ 288 pagecnt.pc_find_miss++; \ 289 if (mylen > PC_HASH_CNT) \ 290 mylen = PC_HASH_CNT; \ 291 pagecnt.pc_find_hashlen[mylen]++; \ 292 } 293 294 #else /* VM_STATS */ 295 296 /* 297 * Don't collect statistics 298 */ 299 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 300 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 301 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 302 break; \ 303 } \ 304 } 305 306 #endif /* VM_STATS */ 307 308 309 310 #ifdef DEBUG 311 #define MEMSEG_SEARCH_STATS 312 #endif 313 314 #ifdef MEMSEG_SEARCH_STATS 315 struct memseg_stats { 316 uint_t nsearch; 317 uint_t nlastwon; 318 uint_t nhashwon; 319 uint_t nnotfound; 320 } memseg_stats; 321 322 #define MEMSEG_STAT_INCR(v) \ 323 atomic_add_32(&memseg_stats.v, 1) 324 #else 325 #define MEMSEG_STAT_INCR(x) 326 #endif 327 328 struct memseg *memsegs; /* list of memory segments */ 329 330 331 static void page_init_mem_config(void); 332 static int page_do_hashin(page_t *, vnode_t *, u_offset_t); 333 static void page_do_hashout(page_t *); 334 static void page_capture_init(); 335 int page_capture_take_action(page_t *, uint_t, void *); 336 337 static void page_demote_vp_pages(page_t *); 338 339 /* 340 * vm subsystem related initialization 341 */ 342 void 343 vm_init(void) 344 { 345 boolean_t callb_vm_cpr(void *, int); 346 347 (void) callb_add(callb_vm_cpr, 0, CB_CL_CPR_VM, "vm"); 348 page_init_mem_config(); 349 page_retire_init(); 350 vm_usage_init(); 351 page_capture_init(); 352 } 353 354 /* 355 * This function is called at startup and when memory is added or deleted. 356 */ 357 void 358 init_pages_pp_maximum() 359 { 360 static pgcnt_t p_min; 361 static pgcnt_t pages_pp_maximum_startup; 362 static pgcnt_t avrmem_delta; 363 static int init_done; 364 static int user_set; /* true if set in /etc/system */ 365 366 if (init_done == 0) { 367 368 /* If the user specified a value, save it */ 369 if (pages_pp_maximum != 0) { 370 user_set = 1; 371 pages_pp_maximum_startup = pages_pp_maximum; 372 } 373 374 /* 375 * Setting of pages_pp_maximum is based first time 376 * on the value of availrmem just after the start-up 377 * allocations. To preserve this relationship at run 378 * time, use a delta from availrmem_initial. 379 */ 380 ASSERT(availrmem_initial >= availrmem); 381 avrmem_delta = availrmem_initial - availrmem; 382 383 /* The allowable floor of pages_pp_maximum */ 384 p_min = tune.t_minarmem + 100; 385 386 /* Make sure we don't come through here again. */ 387 init_done = 1; 388 } 389 /* 390 * Determine pages_pp_maximum, the number of currently available 391 * pages (availrmem) that can't be `locked'. If not set by 392 * the user, we set it to 4% of the currently available memory 393 * plus 4MB. 394 * But we also insist that it be greater than tune.t_minarmem; 395 * otherwise a process could lock down a lot of memory, get swapped 396 * out, and never have enough to get swapped back in. 397 */ 398 if (user_set) 399 pages_pp_maximum = pages_pp_maximum_startup; 400 else 401 pages_pp_maximum = ((availrmem_initial - avrmem_delta) / 25) 402 + btop(4 * 1024 * 1024); 403 404 if (pages_pp_maximum <= p_min) { 405 pages_pp_maximum = p_min; 406 } 407 } 408 409 void 410 set_max_page_get(pgcnt_t target_total_pages) 411 { 412 max_page_get = target_total_pages / 2; 413 } 414 415 static pgcnt_t pending_delete; 416 417 /*ARGSUSED*/ 418 static void 419 page_mem_config_post_add( 420 void *arg, 421 pgcnt_t delta_pages) 422 { 423 set_max_page_get(total_pages - pending_delete); 424 init_pages_pp_maximum(); 425 } 426 427 /*ARGSUSED*/ 428 static int 429 page_mem_config_pre_del( 430 void *arg, 431 pgcnt_t delta_pages) 432 { 433 pgcnt_t nv; 434 435 nv = atomic_add_long_nv(&pending_delete, (spgcnt_t)delta_pages); 436 set_max_page_get(total_pages - nv); 437 return (0); 438 } 439 440 /*ARGSUSED*/ 441 static void 442 page_mem_config_post_del( 443 void *arg, 444 pgcnt_t delta_pages, 445 int cancelled) 446 { 447 pgcnt_t nv; 448 449 nv = atomic_add_long_nv(&pending_delete, -(spgcnt_t)delta_pages); 450 set_max_page_get(total_pages - nv); 451 if (!cancelled) 452 init_pages_pp_maximum(); 453 } 454 455 static kphysm_setup_vector_t page_mem_config_vec = { 456 KPHYSM_SETUP_VECTOR_VERSION, 457 page_mem_config_post_add, 458 page_mem_config_pre_del, 459 page_mem_config_post_del, 460 }; 461 462 static void 463 page_init_mem_config(void) 464 { 465 int ret; 466 467 ret = kphysm_setup_func_register(&page_mem_config_vec, (void *)NULL); 468 ASSERT(ret == 0); 469 } 470 471 /* 472 * Evenly spread out the PCF counters for large free pages 473 */ 474 static void 475 page_free_large_ctr(pgcnt_t npages) 476 { 477 static struct pcf *p = pcf; 478 pgcnt_t lump; 479 480 freemem += npages; 481 482 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 483 484 while (npages > 0) { 485 486 ASSERT(!p->pcf_block); 487 488 if (lump < npages) { 489 p->pcf_count += (uint_t)lump; 490 npages -= lump; 491 } else { 492 p->pcf_count += (uint_t)npages; 493 npages = 0; 494 } 495 496 ASSERT(!p->pcf_wait); 497 498 if (++p > &pcf[PCF_FANOUT - 1]) 499 p = pcf; 500 } 501 502 ASSERT(npages == 0); 503 } 504 505 /* 506 * Add a physical chunk of memory to the system free lists during startup. 507 * Platform specific startup() allocates the memory for the page structs. 508 * 509 * num - number of page structures 510 * base - page number (pfn) to be associated with the first page. 511 * 512 * Since we are doing this during startup (ie. single threaded), we will 513 * use shortcut routines to avoid any locking overhead while putting all 514 * these pages on the freelists. 515 * 516 * NOTE: Any changes performed to page_free(), must also be performed to 517 * add_physmem() since this is how we initialize all page_t's at 518 * boot time. 519 */ 520 void 521 add_physmem( 522 page_t *pp, 523 pgcnt_t num, 524 pfn_t pnum) 525 { 526 page_t *root = NULL; 527 uint_t szc = page_num_pagesizes() - 1; 528 pgcnt_t large = page_get_pagecnt(szc); 529 pgcnt_t cnt = 0; 530 531 TRACE_2(TR_FAC_VM, TR_PAGE_INIT, 532 "add_physmem:pp %p num %lu", pp, num); 533 534 /* 535 * Arbitrarily limit the max page_get request 536 * to 1/2 of the page structs we have. 537 */ 538 total_pages += num; 539 set_max_page_get(total_pages); 540 541 PLCNT_MODIFY_MAX(pnum, (long)num); 542 543 /* 544 * The physical space for the pages array 545 * representing ram pages has already been 546 * allocated. Here we initialize each lock 547 * in the page structure, and put each on 548 * the free list 549 */ 550 for (; num; pp++, pnum++, num--) { 551 552 /* 553 * this needs to fill in the page number 554 * and do any other arch specific initialization 555 */ 556 add_physmem_cb(pp, pnum); 557 558 pp->p_lckcnt = 0; 559 pp->p_cowcnt = 0; 560 pp->p_slckcnt = 0; 561 562 /* 563 * Initialize the page lock as unlocked, since nobody 564 * can see or access this page yet. 565 */ 566 pp->p_selock = 0; 567 568 /* 569 * Initialize IO lock 570 */ 571 page_iolock_init(pp); 572 573 /* 574 * initialize other fields in the page_t 575 */ 576 PP_SETFREE(pp); 577 page_clr_all_props(pp); 578 PP_SETAGED(pp); 579 pp->p_offset = (u_offset_t)-1; 580 pp->p_next = pp; 581 pp->p_prev = pp; 582 583 /* 584 * Simple case: System doesn't support large pages. 585 */ 586 if (szc == 0) { 587 pp->p_szc = 0; 588 page_free_at_startup(pp); 589 continue; 590 } 591 592 /* 593 * Handle unaligned pages, we collect them up onto 594 * the root page until we have a full large page. 595 */ 596 if (!IS_P2ALIGNED(pnum, large)) { 597 598 /* 599 * If not in a large page, 600 * just free as small page. 601 */ 602 if (root == NULL) { 603 pp->p_szc = 0; 604 page_free_at_startup(pp); 605 continue; 606 } 607 608 /* 609 * Link a constituent page into the large page. 610 */ 611 pp->p_szc = szc; 612 page_list_concat(&root, &pp); 613 614 /* 615 * When large page is fully formed, free it. 616 */ 617 if (++cnt == large) { 618 page_free_large_ctr(cnt); 619 page_list_add_pages(root, PG_LIST_ISINIT); 620 root = NULL; 621 cnt = 0; 622 } 623 continue; 624 } 625 626 /* 627 * At this point we have a page number which 628 * is aligned. We assert that we aren't already 629 * in a different large page. 630 */ 631 ASSERT(IS_P2ALIGNED(pnum, large)); 632 ASSERT(root == NULL && cnt == 0); 633 634 /* 635 * If insufficient number of pages left to form 636 * a large page, just free the small page. 637 */ 638 if (num < large) { 639 pp->p_szc = 0; 640 page_free_at_startup(pp); 641 continue; 642 } 643 644 /* 645 * Otherwise start a new large page. 646 */ 647 pp->p_szc = szc; 648 cnt++; 649 root = pp; 650 } 651 ASSERT(root == NULL && cnt == 0); 652 } 653 654 /* 655 * Find a page representing the specified [vp, offset]. 656 * If we find the page but it is intransit coming in, 657 * it will have an "exclusive" lock and we wait for 658 * the i/o to complete. A page found on the free list 659 * is always reclaimed and then locked. On success, the page 660 * is locked, its data is valid and it isn't on the free 661 * list, while a NULL is returned if the page doesn't exist. 662 */ 663 page_t * 664 page_lookup(vnode_t *vp, u_offset_t off, se_t se) 665 { 666 return (page_lookup_create(vp, off, se, NULL, NULL, 0)); 667 } 668 669 /* 670 * Find a page representing the specified [vp, offset]. 671 * We either return the one we found or, if passed in, 672 * create one with identity of [vp, offset] of the 673 * pre-allocated page. If we find existing page but it is 674 * intransit coming in, it will have an "exclusive" lock 675 * and we wait for the i/o to complete. A page found on 676 * the free list is always reclaimed and then locked. 677 * On success, the page is locked, its data is valid and 678 * it isn't on the free list, while a NULL is returned 679 * if the page doesn't exist and newpp is NULL; 680 */ 681 page_t * 682 page_lookup_create( 683 vnode_t *vp, 684 u_offset_t off, 685 se_t se, 686 page_t *newpp, 687 spgcnt_t *nrelocp, 688 int flags) 689 { 690 page_t *pp; 691 kmutex_t *phm; 692 ulong_t index; 693 uint_t hash_locked; 694 uint_t es; 695 696 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 697 VM_STAT_ADD(page_lookup_cnt[0]); 698 ASSERT(newpp ? PAGE_EXCL(newpp) : 1); 699 700 /* 701 * Acquire the appropriate page hash lock since 702 * we have to search the hash list. Pages that 703 * hash to this list can't change identity while 704 * this lock is held. 705 */ 706 hash_locked = 0; 707 index = PAGE_HASH_FUNC(vp, off); 708 phm = NULL; 709 top: 710 PAGE_HASH_SEARCH(index, pp, vp, off); 711 if (pp != NULL) { 712 VM_STAT_ADD(page_lookup_cnt[1]); 713 es = (newpp != NULL) ? 1 : 0; 714 es |= flags; 715 if (!hash_locked) { 716 VM_STAT_ADD(page_lookup_cnt[2]); 717 if (!page_try_reclaim_lock(pp, se, es)) { 718 /* 719 * On a miss, acquire the phm. Then 720 * next time, page_lock() will be called, 721 * causing a wait if the page is busy. 722 * just looping with page_trylock() would 723 * get pretty boring. 724 */ 725 VM_STAT_ADD(page_lookup_cnt[3]); 726 phm = PAGE_HASH_MUTEX(index); 727 mutex_enter(phm); 728 hash_locked = 1; 729 goto top; 730 } 731 } else { 732 VM_STAT_ADD(page_lookup_cnt[4]); 733 if (!page_lock_es(pp, se, phm, P_RECLAIM, es)) { 734 VM_STAT_ADD(page_lookup_cnt[5]); 735 goto top; 736 } 737 } 738 739 /* 740 * Since `pp' is locked it can not change identity now. 741 * Reconfirm we locked the correct page. 742 * 743 * Both the p_vnode and p_offset *must* be cast volatile 744 * to force a reload of their values: The PAGE_HASH_SEARCH 745 * macro will have stuffed p_vnode and p_offset into 746 * registers before calling page_trylock(); another thread, 747 * actually holding the hash lock, could have changed the 748 * page's identity in memory, but our registers would not 749 * be changed, fooling the reconfirmation. If the hash 750 * lock was held during the search, the casting would 751 * not be needed. 752 */ 753 VM_STAT_ADD(page_lookup_cnt[6]); 754 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 755 ((volatile u_offset_t)(pp->p_offset) != off)) { 756 VM_STAT_ADD(page_lookup_cnt[7]); 757 if (hash_locked) { 758 panic("page_lookup_create: lost page %p", 759 (void *)pp); 760 /*NOTREACHED*/ 761 } 762 page_unlock(pp); 763 phm = PAGE_HASH_MUTEX(index); 764 mutex_enter(phm); 765 hash_locked = 1; 766 goto top; 767 } 768 769 /* 770 * If page_trylock() was called, then pp may still be on 771 * the cachelist (can't be on the free list, it would not 772 * have been found in the search). If it is on the 773 * cachelist it must be pulled now. To pull the page from 774 * the cachelist, it must be exclusively locked. 775 * 776 * The other big difference between page_trylock() and 777 * page_lock(), is that page_lock() will pull the 778 * page from whatever free list (the cache list in this 779 * case) the page is on. If page_trylock() was used 780 * above, then we have to do the reclaim ourselves. 781 */ 782 if ((!hash_locked) && (PP_ISFREE(pp))) { 783 ASSERT(PP_ISAGED(pp) == 0); 784 VM_STAT_ADD(page_lookup_cnt[8]); 785 786 /* 787 * page_relcaim will insure that we 788 * have this page exclusively 789 */ 790 791 if (!page_reclaim(pp, NULL)) { 792 /* 793 * Page_reclaim dropped whatever lock 794 * we held. 795 */ 796 VM_STAT_ADD(page_lookup_cnt[9]); 797 phm = PAGE_HASH_MUTEX(index); 798 mutex_enter(phm); 799 hash_locked = 1; 800 goto top; 801 } else if (se == SE_SHARED && newpp == NULL) { 802 VM_STAT_ADD(page_lookup_cnt[10]); 803 page_downgrade(pp); 804 } 805 } 806 807 if (hash_locked) { 808 mutex_exit(phm); 809 } 810 811 if (newpp != NULL && pp->p_szc < newpp->p_szc && 812 PAGE_EXCL(pp) && nrelocp != NULL) { 813 ASSERT(nrelocp != NULL); 814 (void) page_relocate(&pp, &newpp, 1, 1, nrelocp, 815 NULL); 816 if (*nrelocp > 0) { 817 VM_STAT_COND_ADD(*nrelocp == 1, 818 page_lookup_cnt[11]); 819 VM_STAT_COND_ADD(*nrelocp > 1, 820 page_lookup_cnt[12]); 821 pp = newpp; 822 se = SE_EXCL; 823 } else { 824 if (se == SE_SHARED) { 825 page_downgrade(pp); 826 } 827 VM_STAT_ADD(page_lookup_cnt[13]); 828 } 829 } else if (newpp != NULL && nrelocp != NULL) { 830 if (PAGE_EXCL(pp) && se == SE_SHARED) { 831 page_downgrade(pp); 832 } 833 VM_STAT_COND_ADD(pp->p_szc < newpp->p_szc, 834 page_lookup_cnt[14]); 835 VM_STAT_COND_ADD(pp->p_szc == newpp->p_szc, 836 page_lookup_cnt[15]); 837 VM_STAT_COND_ADD(pp->p_szc > newpp->p_szc, 838 page_lookup_cnt[16]); 839 } else if (newpp != NULL && PAGE_EXCL(pp)) { 840 se = SE_EXCL; 841 } 842 } else if (!hash_locked) { 843 VM_STAT_ADD(page_lookup_cnt[17]); 844 phm = PAGE_HASH_MUTEX(index); 845 mutex_enter(phm); 846 hash_locked = 1; 847 goto top; 848 } else if (newpp != NULL) { 849 /* 850 * If we have a preallocated page then 851 * insert it now and basically behave like 852 * page_create. 853 */ 854 VM_STAT_ADD(page_lookup_cnt[18]); 855 /* 856 * Since we hold the page hash mutex and 857 * just searched for this page, page_hashin 858 * had better not fail. If it does, that 859 * means some thread did not follow the 860 * page hash mutex rules. Panic now and 861 * get it over with. As usual, go down 862 * holding all the locks. 863 */ 864 ASSERT(MUTEX_HELD(phm)); 865 if (!page_hashin(newpp, vp, off, phm)) { 866 ASSERT(MUTEX_HELD(phm)); 867 panic("page_lookup_create: hashin failed %p %p %llx %p", 868 (void *)newpp, (void *)vp, off, (void *)phm); 869 /*NOTREACHED*/ 870 } 871 ASSERT(MUTEX_HELD(phm)); 872 mutex_exit(phm); 873 phm = NULL; 874 page_set_props(newpp, P_REF); 875 page_io_lock(newpp); 876 pp = newpp; 877 se = SE_EXCL; 878 } else { 879 VM_STAT_ADD(page_lookup_cnt[19]); 880 mutex_exit(phm); 881 } 882 883 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 884 885 ASSERT(pp ? ((PP_ISFREE(pp) == 0) && (PP_ISAGED(pp) == 0)) : 1); 886 887 return (pp); 888 } 889 890 /* 891 * Search the hash list for the page representing the 892 * specified [vp, offset] and return it locked. Skip 893 * free pages and pages that cannot be locked as requested. 894 * Used while attempting to kluster pages. 895 */ 896 page_t * 897 page_lookup_nowait(vnode_t *vp, u_offset_t off, se_t se) 898 { 899 page_t *pp; 900 kmutex_t *phm; 901 ulong_t index; 902 uint_t locked; 903 904 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 905 VM_STAT_ADD(page_lookup_nowait_cnt[0]); 906 907 index = PAGE_HASH_FUNC(vp, off); 908 PAGE_HASH_SEARCH(index, pp, vp, off); 909 locked = 0; 910 if (pp == NULL) { 911 top: 912 VM_STAT_ADD(page_lookup_nowait_cnt[1]); 913 locked = 1; 914 phm = PAGE_HASH_MUTEX(index); 915 mutex_enter(phm); 916 PAGE_HASH_SEARCH(index, pp, vp, off); 917 } 918 919 if (pp == NULL || PP_ISFREE(pp)) { 920 VM_STAT_ADD(page_lookup_nowait_cnt[2]); 921 pp = NULL; 922 } else { 923 if (!page_trylock(pp, se)) { 924 VM_STAT_ADD(page_lookup_nowait_cnt[3]); 925 pp = NULL; 926 } else { 927 VM_STAT_ADD(page_lookup_nowait_cnt[4]); 928 /* 929 * See the comment in page_lookup() 930 */ 931 if (((volatile struct vnode *)(pp->p_vnode) != vp) || 932 ((u_offset_t)(pp->p_offset) != off)) { 933 VM_STAT_ADD(page_lookup_nowait_cnt[5]); 934 if (locked) { 935 panic("page_lookup_nowait %p", 936 (void *)pp); 937 /*NOTREACHED*/ 938 } 939 page_unlock(pp); 940 goto top; 941 } 942 if (PP_ISFREE(pp)) { 943 VM_STAT_ADD(page_lookup_nowait_cnt[6]); 944 page_unlock(pp); 945 pp = NULL; 946 } 947 } 948 } 949 if (locked) { 950 VM_STAT_ADD(page_lookup_nowait_cnt[7]); 951 mutex_exit(phm); 952 } 953 954 ASSERT(pp ? PAGE_LOCKED_SE(pp, se) : 1); 955 956 return (pp); 957 } 958 959 /* 960 * Search the hash list for a page with the specified [vp, off] 961 * that is known to exist and is already locked. This routine 962 * is typically used by segment SOFTUNLOCK routines. 963 */ 964 page_t * 965 page_find(vnode_t *vp, u_offset_t off) 966 { 967 page_t *pp; 968 kmutex_t *phm; 969 ulong_t index; 970 971 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 972 VM_STAT_ADD(page_find_cnt); 973 974 index = PAGE_HASH_FUNC(vp, off); 975 phm = PAGE_HASH_MUTEX(index); 976 977 mutex_enter(phm); 978 PAGE_HASH_SEARCH(index, pp, vp, off); 979 mutex_exit(phm); 980 981 ASSERT(pp == NULL || PAGE_LOCKED(pp) || panicstr); 982 return (pp); 983 } 984 985 /* 986 * Determine whether a page with the specified [vp, off] 987 * currently exists in the system. Obviously this should 988 * only be considered as a hint since nothing prevents the 989 * page from disappearing or appearing immediately after 990 * the return from this routine. Subsequently, we don't 991 * even bother to lock the list. 992 */ 993 page_t * 994 page_exists(vnode_t *vp, u_offset_t off) 995 { 996 page_t *pp; 997 ulong_t index; 998 999 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1000 VM_STAT_ADD(page_exists_cnt); 1001 1002 index = PAGE_HASH_FUNC(vp, off); 1003 PAGE_HASH_SEARCH(index, pp, vp, off); 1004 1005 return (pp); 1006 } 1007 1008 /* 1009 * Determine if physically contiguous pages exist for [vp, off] - [vp, off + 1010 * page_size(szc)) range. if they exist and ppa is not NULL fill ppa array 1011 * with these pages locked SHARED. If necessary reclaim pages from 1012 * freelist. Return 1 if contiguous pages exist and 0 otherwise. 1013 * 1014 * If we fail to lock pages still return 1 if pages exist and contiguous. 1015 * But in this case return value is just a hint. ppa array won't be filled. 1016 * Caller should initialize ppa[0] as NULL to distinguish return value. 1017 * 1018 * Returns 0 if pages don't exist or not physically contiguous. 1019 * 1020 * This routine doesn't work for anonymous(swapfs) pages. 1021 */ 1022 int 1023 page_exists_physcontig(vnode_t *vp, u_offset_t off, uint_t szc, page_t *ppa[]) 1024 { 1025 pgcnt_t pages; 1026 pfn_t pfn; 1027 page_t *rootpp; 1028 pgcnt_t i; 1029 pgcnt_t j; 1030 u_offset_t save_off = off; 1031 ulong_t index; 1032 kmutex_t *phm; 1033 page_t *pp; 1034 uint_t pszc; 1035 int loopcnt = 0; 1036 1037 ASSERT(szc != 0); 1038 ASSERT(vp != NULL); 1039 ASSERT(!IS_SWAPFSVP(vp)); 1040 ASSERT(!VN_ISKAS(vp)); 1041 1042 again: 1043 if (++loopcnt > 3) { 1044 VM_STAT_ADD(page_exphcontg[0]); 1045 return (0); 1046 } 1047 1048 index = PAGE_HASH_FUNC(vp, off); 1049 phm = PAGE_HASH_MUTEX(index); 1050 1051 mutex_enter(phm); 1052 PAGE_HASH_SEARCH(index, pp, vp, off); 1053 mutex_exit(phm); 1054 1055 VM_STAT_ADD(page_exphcontg[1]); 1056 1057 if (pp == NULL) { 1058 VM_STAT_ADD(page_exphcontg[2]); 1059 return (0); 1060 } 1061 1062 pages = page_get_pagecnt(szc); 1063 rootpp = pp; 1064 pfn = rootpp->p_pagenum; 1065 1066 if ((pszc = pp->p_szc) >= szc && ppa != NULL) { 1067 VM_STAT_ADD(page_exphcontg[3]); 1068 if (!page_trylock(pp, SE_SHARED)) { 1069 VM_STAT_ADD(page_exphcontg[4]); 1070 return (1); 1071 } 1072 if (pp->p_szc != pszc || pp->p_vnode != vp || 1073 pp->p_offset != off) { 1074 VM_STAT_ADD(page_exphcontg[5]); 1075 page_unlock(pp); 1076 off = save_off; 1077 goto again; 1078 } 1079 /* 1080 * szc was non zero and vnode and offset matched after we 1081 * locked the page it means it can't become free on us. 1082 */ 1083 ASSERT(!PP_ISFREE(pp)); 1084 if (!IS_P2ALIGNED(pfn, pages)) { 1085 page_unlock(pp); 1086 return (0); 1087 } 1088 ppa[0] = pp; 1089 pp++; 1090 off += PAGESIZE; 1091 pfn++; 1092 for (i = 1; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1093 if (!page_trylock(pp, SE_SHARED)) { 1094 VM_STAT_ADD(page_exphcontg[6]); 1095 pp--; 1096 while (i-- > 0) { 1097 page_unlock(pp); 1098 pp--; 1099 } 1100 ppa[0] = NULL; 1101 return (1); 1102 } 1103 if (pp->p_szc != pszc) { 1104 VM_STAT_ADD(page_exphcontg[7]); 1105 page_unlock(pp); 1106 pp--; 1107 while (i-- > 0) { 1108 page_unlock(pp); 1109 pp--; 1110 } 1111 ppa[0] = NULL; 1112 off = save_off; 1113 goto again; 1114 } 1115 /* 1116 * szc the same as for previous already locked pages 1117 * with right identity. Since this page had correct 1118 * szc after we locked it can't get freed or destroyed 1119 * and therefore must have the expected identity. 1120 */ 1121 ASSERT(!PP_ISFREE(pp)); 1122 if (pp->p_vnode != vp || 1123 pp->p_offset != off) { 1124 panic("page_exists_physcontig: " 1125 "large page identity doesn't match"); 1126 } 1127 ppa[i] = pp; 1128 ASSERT(pp->p_pagenum == pfn); 1129 } 1130 VM_STAT_ADD(page_exphcontg[8]); 1131 ppa[pages] = NULL; 1132 return (1); 1133 } else if (pszc >= szc) { 1134 VM_STAT_ADD(page_exphcontg[9]); 1135 if (!IS_P2ALIGNED(pfn, pages)) { 1136 return (0); 1137 } 1138 return (1); 1139 } 1140 1141 if (!IS_P2ALIGNED(pfn, pages)) { 1142 VM_STAT_ADD(page_exphcontg[10]); 1143 return (0); 1144 } 1145 1146 if (page_numtomemseg_nolock(pfn) != 1147 page_numtomemseg_nolock(pfn + pages - 1)) { 1148 VM_STAT_ADD(page_exphcontg[11]); 1149 return (0); 1150 } 1151 1152 /* 1153 * We loop up 4 times across pages to promote page size. 1154 * We're extra cautious to promote page size atomically with respect 1155 * to everybody else. But we can probably optimize into 1 loop if 1156 * this becomes an issue. 1157 */ 1158 1159 for (i = 0; i < pages; i++, pp++, off += PAGESIZE, pfn++) { 1160 ASSERT(pp->p_pagenum == pfn); 1161 if (!page_trylock(pp, SE_EXCL)) { 1162 VM_STAT_ADD(page_exphcontg[12]); 1163 break; 1164 } 1165 if (pp->p_vnode != vp || 1166 pp->p_offset != off) { 1167 VM_STAT_ADD(page_exphcontg[13]); 1168 page_unlock(pp); 1169 break; 1170 } 1171 if (pp->p_szc >= szc) { 1172 ASSERT(i == 0); 1173 page_unlock(pp); 1174 off = save_off; 1175 goto again; 1176 } 1177 } 1178 1179 if (i != pages) { 1180 VM_STAT_ADD(page_exphcontg[14]); 1181 --pp; 1182 while (i-- > 0) { 1183 page_unlock(pp); 1184 --pp; 1185 } 1186 return (0); 1187 } 1188 1189 pp = rootpp; 1190 for (i = 0; i < pages; i++, pp++) { 1191 if (PP_ISFREE(pp)) { 1192 VM_STAT_ADD(page_exphcontg[15]); 1193 ASSERT(!PP_ISAGED(pp)); 1194 ASSERT(pp->p_szc == 0); 1195 if (!page_reclaim(pp, NULL)) { 1196 break; 1197 } 1198 } else { 1199 ASSERT(pp->p_szc < szc); 1200 VM_STAT_ADD(page_exphcontg[16]); 1201 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 1202 } 1203 } 1204 if (i < pages) { 1205 VM_STAT_ADD(page_exphcontg[17]); 1206 /* 1207 * page_reclaim failed because we were out of memory. 1208 * drop the rest of the locks and return because this page 1209 * must be already reallocated anyway. 1210 */ 1211 pp = rootpp; 1212 for (j = 0; j < pages; j++, pp++) { 1213 if (j != i) { 1214 page_unlock(pp); 1215 } 1216 } 1217 return (0); 1218 } 1219 1220 off = save_off; 1221 pp = rootpp; 1222 for (i = 0; i < pages; i++, pp++, off += PAGESIZE) { 1223 ASSERT(PAGE_EXCL(pp)); 1224 ASSERT(!PP_ISFREE(pp)); 1225 ASSERT(!hat_page_is_mapped(pp)); 1226 ASSERT(pp->p_vnode == vp); 1227 ASSERT(pp->p_offset == off); 1228 pp->p_szc = szc; 1229 } 1230 pp = rootpp; 1231 for (i = 0; i < pages; i++, pp++) { 1232 if (ppa == NULL) { 1233 page_unlock(pp); 1234 } else { 1235 ppa[i] = pp; 1236 page_downgrade(ppa[i]); 1237 } 1238 } 1239 if (ppa != NULL) { 1240 ppa[pages] = NULL; 1241 } 1242 VM_STAT_ADD(page_exphcontg[18]); 1243 ASSERT(vp->v_pages != NULL); 1244 return (1); 1245 } 1246 1247 /* 1248 * Determine whether a page with the specified [vp, off] 1249 * currently exists in the system and if so return its 1250 * size code. Obviously this should only be considered as 1251 * a hint since nothing prevents the page from disappearing 1252 * or appearing immediately after the return from this routine. 1253 */ 1254 int 1255 page_exists_forreal(vnode_t *vp, u_offset_t off, uint_t *szc) 1256 { 1257 page_t *pp; 1258 kmutex_t *phm; 1259 ulong_t index; 1260 int rc = 0; 1261 1262 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 1263 ASSERT(szc != NULL); 1264 VM_STAT_ADD(page_exists_forreal_cnt); 1265 1266 index = PAGE_HASH_FUNC(vp, off); 1267 phm = PAGE_HASH_MUTEX(index); 1268 1269 mutex_enter(phm); 1270 PAGE_HASH_SEARCH(index, pp, vp, off); 1271 if (pp != NULL) { 1272 *szc = pp->p_szc; 1273 rc = 1; 1274 } 1275 mutex_exit(phm); 1276 return (rc); 1277 } 1278 1279 /* wakeup threads waiting for pages in page_create_get_something() */ 1280 void 1281 wakeup_pcgs(void) 1282 { 1283 if (!CV_HAS_WAITERS(&pcgs_cv)) 1284 return; 1285 cv_broadcast(&pcgs_cv); 1286 } 1287 1288 /* 1289 * 'freemem' is used all over the kernel as an indication of how many 1290 * pages are free (either on the cache list or on the free page list) 1291 * in the system. In very few places is a really accurate 'freemem' 1292 * needed. To avoid contention of the lock protecting a the 1293 * single freemem, it was spread out into NCPU buckets. Set_freemem 1294 * sets freemem to the total of all NCPU buckets. It is called from 1295 * clock() on each TICK. 1296 */ 1297 void 1298 set_freemem() 1299 { 1300 struct pcf *p; 1301 ulong_t t; 1302 uint_t i; 1303 1304 t = 0; 1305 p = pcf; 1306 for (i = 0; i < PCF_FANOUT; i++) { 1307 t += p->pcf_count; 1308 p++; 1309 } 1310 freemem = t; 1311 1312 /* 1313 * Don't worry about grabbing mutex. It's not that 1314 * critical if we miss a tick or two. This is 1315 * where we wakeup possible delayers in 1316 * page_create_get_something(). 1317 */ 1318 wakeup_pcgs(); 1319 } 1320 1321 ulong_t 1322 get_freemem() 1323 { 1324 struct pcf *p; 1325 ulong_t t; 1326 uint_t i; 1327 1328 t = 0; 1329 p = pcf; 1330 for (i = 0; i < PCF_FANOUT; i++) { 1331 t += p->pcf_count; 1332 p++; 1333 } 1334 /* 1335 * We just calculated it, might as well set it. 1336 */ 1337 freemem = t; 1338 return (t); 1339 } 1340 1341 /* 1342 * Acquire all of the page cache & free (pcf) locks. 1343 */ 1344 void 1345 pcf_acquire_all() 1346 { 1347 struct pcf *p; 1348 uint_t i; 1349 1350 p = pcf; 1351 for (i = 0; i < PCF_FANOUT; i++) { 1352 mutex_enter(&p->pcf_lock); 1353 p++; 1354 } 1355 } 1356 1357 /* 1358 * Release all the pcf_locks. 1359 */ 1360 void 1361 pcf_release_all() 1362 { 1363 struct pcf *p; 1364 uint_t i; 1365 1366 p = pcf; 1367 for (i = 0; i < PCF_FANOUT; i++) { 1368 mutex_exit(&p->pcf_lock); 1369 p++; 1370 } 1371 } 1372 1373 /* 1374 * Inform the VM system that we need some pages freed up. 1375 * Calls must be symmetric, e.g.: 1376 * 1377 * page_needfree(100); 1378 * wait a bit; 1379 * page_needfree(-100); 1380 */ 1381 void 1382 page_needfree(spgcnt_t npages) 1383 { 1384 mutex_enter(&new_freemem_lock); 1385 needfree += npages; 1386 mutex_exit(&new_freemem_lock); 1387 } 1388 1389 /* 1390 * Throttle for page_create(): try to prevent freemem from dropping 1391 * below throttlefree. We can't provide a 100% guarantee because 1392 * KM_NOSLEEP allocations, page_reclaim(), and various other things 1393 * nibble away at the freelist. However, we can block all PG_WAIT 1394 * allocations until memory becomes available. The motivation is 1395 * that several things can fall apart when there's no free memory: 1396 * 1397 * (1) If pageout() needs memory to push a page, the system deadlocks. 1398 * 1399 * (2) By (broken) specification, timeout(9F) can neither fail nor 1400 * block, so it has no choice but to panic the system if it 1401 * cannot allocate a callout structure. 1402 * 1403 * (3) Like timeout(), ddi_set_callback() cannot fail and cannot block; 1404 * it panics if it cannot allocate a callback structure. 1405 * 1406 * (4) Untold numbers of third-party drivers have not yet been hardened 1407 * against KM_NOSLEEP and/or allocb() failures; they simply assume 1408 * success and panic the system with a data fault on failure. 1409 * (The long-term solution to this particular problem is to ship 1410 * hostile fault-injecting DEBUG kernels with the DDK.) 1411 * 1412 * It is theoretically impossible to guarantee success of non-blocking 1413 * allocations, but in practice, this throttle is very hard to break. 1414 */ 1415 static int 1416 page_create_throttle(pgcnt_t npages, int flags) 1417 { 1418 ulong_t fm; 1419 uint_t i; 1420 pgcnt_t tf; /* effective value of throttlefree */ 1421 1422 /* 1423 * Never deny pages when: 1424 * - it's a thread that cannot block [NOMEMWAIT()] 1425 * - the allocation cannot block and must not fail 1426 * - the allocation cannot block and is pageout dispensated 1427 */ 1428 if (NOMEMWAIT() || 1429 ((flags & (PG_WAIT | PG_PANIC)) == PG_PANIC) || 1430 ((flags & (PG_WAIT | PG_PUSHPAGE)) == PG_PUSHPAGE)) 1431 return (1); 1432 1433 /* 1434 * If the allocation can't block, we look favorably upon it 1435 * unless we're below pageout_reserve. In that case we fail 1436 * the allocation because we want to make sure there are a few 1437 * pages available for pageout. 1438 */ 1439 if ((flags & PG_WAIT) == 0) 1440 return (freemem >= npages + pageout_reserve); 1441 1442 /* Calculate the effective throttlefree value */ 1443 tf = throttlefree - 1444 ((flags & PG_PUSHPAGE) ? pageout_reserve : 0); 1445 1446 cv_signal(&proc_pageout->p_cv); 1447 1448 for (;;) { 1449 fm = 0; 1450 pcf_acquire_all(); 1451 mutex_enter(&new_freemem_lock); 1452 for (i = 0; i < PCF_FANOUT; i++) { 1453 fm += pcf[i].pcf_count; 1454 pcf[i].pcf_wait++; 1455 mutex_exit(&pcf[i].pcf_lock); 1456 } 1457 freemem = fm; 1458 if (freemem >= npages + tf) { 1459 mutex_exit(&new_freemem_lock); 1460 break; 1461 } 1462 needfree += npages; 1463 freemem_wait++; 1464 cv_wait(&freemem_cv, &new_freemem_lock); 1465 freemem_wait--; 1466 needfree -= npages; 1467 mutex_exit(&new_freemem_lock); 1468 } 1469 return (1); 1470 } 1471 1472 /* 1473 * page_create_wait() is called to either coalesce pages from the 1474 * different pcf buckets or to wait because there simply are not 1475 * enough pages to satisfy the caller's request. 1476 * 1477 * Sadly, this is called from platform/vm/vm_machdep.c 1478 */ 1479 int 1480 page_create_wait(size_t npages, uint_t flags) 1481 { 1482 pgcnt_t total; 1483 uint_t i; 1484 struct pcf *p; 1485 1486 /* 1487 * Wait until there are enough free pages to satisfy our 1488 * entire request. 1489 * We set needfree += npages before prodding pageout, to make sure 1490 * it does real work when npages > lotsfree > freemem. 1491 */ 1492 VM_STAT_ADD(page_create_not_enough); 1493 1494 ASSERT(!kcage_on ? !(flags & PG_NORELOC) : 1); 1495 checkagain: 1496 if ((flags & PG_NORELOC) && 1497 kcage_freemem < kcage_throttlefree + npages) 1498 (void) kcage_create_throttle(npages, flags); 1499 1500 if (freemem < npages + throttlefree) 1501 if (!page_create_throttle(npages, flags)) 1502 return (0); 1503 1504 /* 1505 * Since page_create_va() looked at every 1506 * bucket, assume we are going to have to wait. 1507 * Get all of the pcf locks. 1508 */ 1509 total = 0; 1510 p = pcf; 1511 for (i = 0; i < PCF_FANOUT; i++) { 1512 mutex_enter(&p->pcf_lock); 1513 total += p->pcf_count; 1514 if (total >= npages) { 1515 /* 1516 * Wow! There are enough pages laying around 1517 * to satisfy the request. Do the accounting, 1518 * drop the locks we acquired, and go back. 1519 * 1520 * freemem is not protected by any lock. So, 1521 * we cannot have any assertion containing 1522 * freemem. 1523 */ 1524 freemem -= npages; 1525 1526 while (p >= pcf) { 1527 if (p->pcf_count <= npages) { 1528 npages -= p->pcf_count; 1529 p->pcf_count = 0; 1530 } else { 1531 p->pcf_count -= (uint_t)npages; 1532 npages = 0; 1533 } 1534 mutex_exit(&p->pcf_lock); 1535 p--; 1536 } 1537 ASSERT(npages == 0); 1538 return (1); 1539 } 1540 p++; 1541 } 1542 1543 /* 1544 * All of the pcf locks are held, there are not enough pages 1545 * to satisfy the request (npages < total). 1546 * Be sure to acquire the new_freemem_lock before dropping 1547 * the pcf locks. This prevents dropping wakeups in page_free(). 1548 * The order is always pcf_lock then new_freemem_lock. 1549 * 1550 * Since we hold all the pcf locks, it is a good time to set freemem. 1551 * 1552 * If the caller does not want to wait, return now. 1553 * Else turn the pageout daemon loose to find something 1554 * and wait till it does. 1555 * 1556 */ 1557 freemem = total; 1558 1559 if ((flags & PG_WAIT) == 0) { 1560 pcf_release_all(); 1561 1562 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_NOMEM, 1563 "page_create_nomem:npages %ld freemem %ld", npages, freemem); 1564 return (0); 1565 } 1566 1567 ASSERT(proc_pageout != NULL); 1568 cv_signal(&proc_pageout->p_cv); 1569 1570 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_START, 1571 "page_create_sleep_start: freemem %ld needfree %ld", 1572 freemem, needfree); 1573 1574 /* 1575 * We are going to wait. 1576 * We currently hold all of the pcf_locks, 1577 * get the new_freemem_lock (it protects freemem_wait), 1578 * before dropping the pcf_locks. 1579 */ 1580 mutex_enter(&new_freemem_lock); 1581 1582 p = pcf; 1583 for (i = 0; i < PCF_FANOUT; i++) { 1584 p->pcf_wait++; 1585 mutex_exit(&p->pcf_lock); 1586 p++; 1587 } 1588 1589 needfree += npages; 1590 freemem_wait++; 1591 1592 cv_wait(&freemem_cv, &new_freemem_lock); 1593 1594 freemem_wait--; 1595 needfree -= npages; 1596 1597 mutex_exit(&new_freemem_lock); 1598 1599 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SLEEP_END, 1600 "page_create_sleep_end: freemem %ld needfree %ld", 1601 freemem, needfree); 1602 1603 VM_STAT_ADD(page_create_not_enough_again); 1604 goto checkagain; 1605 } 1606 1607 /* 1608 * A routine to do the opposite of page_create_wait(). 1609 */ 1610 void 1611 page_create_putback(spgcnt_t npages) 1612 { 1613 struct pcf *p; 1614 pgcnt_t lump; 1615 uint_t *which; 1616 1617 /* 1618 * When a contiguous lump is broken up, we have to 1619 * deal with lots of pages (min 64) so lets spread 1620 * the wealth around. 1621 */ 1622 lump = roundup(npages, PCF_FANOUT) / PCF_FANOUT; 1623 freemem += npages; 1624 1625 for (p = pcf; (npages > 0) && (p < &pcf[PCF_FANOUT]); p++) { 1626 which = &p->pcf_count; 1627 1628 mutex_enter(&p->pcf_lock); 1629 1630 if (p->pcf_block) { 1631 which = &p->pcf_reserve; 1632 } 1633 1634 if (lump < npages) { 1635 *which += (uint_t)lump; 1636 npages -= lump; 1637 } else { 1638 *which += (uint_t)npages; 1639 npages = 0; 1640 } 1641 1642 if (p->pcf_wait) { 1643 mutex_enter(&new_freemem_lock); 1644 /* 1645 * Check to see if some other thread 1646 * is actually waiting. Another bucket 1647 * may have woken it up by now. If there 1648 * are no waiters, then set our pcf_wait 1649 * count to zero to avoid coming in here 1650 * next time. 1651 */ 1652 if (freemem_wait) { 1653 if (npages > 1) { 1654 cv_broadcast(&freemem_cv); 1655 } else { 1656 cv_signal(&freemem_cv); 1657 } 1658 p->pcf_wait--; 1659 } else { 1660 p->pcf_wait = 0; 1661 } 1662 mutex_exit(&new_freemem_lock); 1663 } 1664 mutex_exit(&p->pcf_lock); 1665 } 1666 ASSERT(npages == 0); 1667 } 1668 1669 /* 1670 * A helper routine for page_create_get_something. 1671 * The indenting got to deep down there. 1672 * Unblock the pcf counters. Any pages freed after 1673 * pcf_block got set are moved to pcf_count and 1674 * wakeups (cv_broadcast() or cv_signal()) are done as needed. 1675 */ 1676 static void 1677 pcgs_unblock(void) 1678 { 1679 int i; 1680 struct pcf *p; 1681 1682 /* Update freemem while we're here. */ 1683 freemem = 0; 1684 p = pcf; 1685 for (i = 0; i < PCF_FANOUT; i++) { 1686 mutex_enter(&p->pcf_lock); 1687 ASSERT(p->pcf_count == 0); 1688 p->pcf_count = p->pcf_reserve; 1689 p->pcf_block = 0; 1690 freemem += p->pcf_count; 1691 if (p->pcf_wait) { 1692 mutex_enter(&new_freemem_lock); 1693 if (freemem_wait) { 1694 if (p->pcf_reserve > 1) { 1695 cv_broadcast(&freemem_cv); 1696 p->pcf_wait = 0; 1697 } else { 1698 cv_signal(&freemem_cv); 1699 p->pcf_wait--; 1700 } 1701 } else { 1702 p->pcf_wait = 0; 1703 } 1704 mutex_exit(&new_freemem_lock); 1705 } 1706 p->pcf_reserve = 0; 1707 mutex_exit(&p->pcf_lock); 1708 p++; 1709 } 1710 } 1711 1712 /* 1713 * Called from page_create_va() when both the cache and free lists 1714 * have been checked once. 1715 * 1716 * Either returns a page or panics since the accounting was done 1717 * way before we got here. 1718 * 1719 * We don't come here often, so leave the accounting on permanently. 1720 */ 1721 1722 #define MAX_PCGS 100 1723 1724 #ifdef DEBUG 1725 #define PCGS_TRIES 100 1726 #else /* DEBUG */ 1727 #define PCGS_TRIES 10 1728 #endif /* DEBUG */ 1729 1730 #ifdef VM_STATS 1731 uint_t pcgs_counts[PCGS_TRIES]; 1732 uint_t pcgs_too_many; 1733 uint_t pcgs_entered; 1734 uint_t pcgs_entered_noreloc; 1735 uint_t pcgs_locked; 1736 uint_t pcgs_cagelocked; 1737 #endif /* VM_STATS */ 1738 1739 static page_t * 1740 page_create_get_something(vnode_t *vp, u_offset_t off, struct seg *seg, 1741 caddr_t vaddr, uint_t flags) 1742 { 1743 uint_t count; 1744 page_t *pp; 1745 uint_t locked, i; 1746 struct pcf *p; 1747 lgrp_t *lgrp; 1748 int cagelocked = 0; 1749 1750 VM_STAT_ADD(pcgs_entered); 1751 1752 /* 1753 * Tap any reserve freelists: if we fail now, we'll die 1754 * since the page(s) we're looking for have already been 1755 * accounted for. 1756 */ 1757 flags |= PG_PANIC; 1758 1759 if ((flags & PG_NORELOC) != 0) { 1760 VM_STAT_ADD(pcgs_entered_noreloc); 1761 /* 1762 * Requests for free pages from critical threads 1763 * such as pageout still won't throttle here, but 1764 * we must try again, to give the cageout thread 1765 * another chance to catch up. Since we already 1766 * accounted for the pages, we had better get them 1767 * this time. 1768 * 1769 * N.B. All non-critical threads acquire the pcgs_cagelock 1770 * to serialize access to the freelists. This implements a 1771 * turnstile-type synchornization to avoid starvation of 1772 * critical requests for PG_NORELOC memory by non-critical 1773 * threads: all non-critical threads must acquire a 'ticket' 1774 * before passing through, which entails making sure 1775 * kcage_freemem won't fall below minfree prior to grabbing 1776 * pages from the freelists. 1777 */ 1778 if (kcage_create_throttle(1, flags) == KCT_NONCRIT) { 1779 mutex_enter(&pcgs_cagelock); 1780 cagelocked = 1; 1781 VM_STAT_ADD(pcgs_cagelocked); 1782 } 1783 } 1784 1785 /* 1786 * Time to get serious. 1787 * We failed to get a `correctly colored' page from both the 1788 * free and cache lists. 1789 * We escalate in stage. 1790 * 1791 * First try both lists without worring about color. 1792 * 1793 * Then, grab all page accounting locks (ie. pcf[]) and 1794 * steal any pages that they have and set the pcf_block flag to 1795 * stop deletions from the lists. This will help because 1796 * a page can get added to the free list while we are looking 1797 * at the cache list, then another page could be added to the cache 1798 * list allowing the page on the free list to be removed as we 1799 * move from looking at the cache list to the free list. This 1800 * could happen over and over. We would never find the page 1801 * we have accounted for. 1802 * 1803 * Noreloc pages are a subset of the global (relocatable) page pool. 1804 * They are not tracked separately in the pcf bins, so it is 1805 * impossible to know when doing pcf accounting if the available 1806 * page(s) are noreloc pages or not. When looking for a noreloc page 1807 * it is quite easy to end up here even if the global (relocatable) 1808 * page pool has plenty of free pages but the noreloc pool is empty. 1809 * 1810 * When the noreloc pool is empty (or low), additional noreloc pages 1811 * are created by converting pages from the global page pool. This 1812 * process will stall during pcf accounting if the pcf bins are 1813 * already locked. Such is the case when a noreloc allocation is 1814 * looping here in page_create_get_something waiting for more noreloc 1815 * pages to appear. 1816 * 1817 * Short of adding a new field to the pcf bins to accurately track 1818 * the number of free noreloc pages, we instead do not grab the 1819 * pcgs_lock, do not set the pcf blocks and do not timeout when 1820 * allocating a noreloc page. This allows noreloc allocations to 1821 * loop without blocking global page pool allocations. 1822 * 1823 * NOTE: the behaviour of page_create_get_something has not changed 1824 * for the case of global page pool allocations. 1825 */ 1826 1827 flags &= ~PG_MATCH_COLOR; 1828 locked = 0; 1829 #if defined(__i386) || defined(__amd64) 1830 flags = page_create_update_flags_x86(flags); 1831 #endif 1832 1833 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 1834 1835 for (count = 0; kcage_on || count < MAX_PCGS; count++) { 1836 pp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 1837 flags, lgrp); 1838 if (pp == NULL) { 1839 pp = page_get_cachelist(vp, off, seg, vaddr, 1840 flags, lgrp); 1841 } 1842 if (pp == NULL) { 1843 /* 1844 * Serialize. Don't fight with other pcgs(). 1845 */ 1846 if (!locked && (!kcage_on || !(flags & PG_NORELOC))) { 1847 mutex_enter(&pcgs_lock); 1848 VM_STAT_ADD(pcgs_locked); 1849 locked = 1; 1850 p = pcf; 1851 for (i = 0; i < PCF_FANOUT; i++) { 1852 mutex_enter(&p->pcf_lock); 1853 ASSERT(p->pcf_block == 0); 1854 p->pcf_block = 1; 1855 p->pcf_reserve = p->pcf_count; 1856 p->pcf_count = 0; 1857 mutex_exit(&p->pcf_lock); 1858 p++; 1859 } 1860 freemem = 0; 1861 } 1862 1863 if (count) { 1864 /* 1865 * Since page_free() puts pages on 1866 * a list then accounts for it, we 1867 * just have to wait for page_free() 1868 * to unlock any page it was working 1869 * with. The page_lock()-page_reclaim() 1870 * path falls in the same boat. 1871 * 1872 * We don't need to check on the 1873 * PG_WAIT flag, we have already 1874 * accounted for the page we are 1875 * looking for in page_create_va(). 1876 * 1877 * We just wait a moment to let any 1878 * locked pages on the lists free up, 1879 * then continue around and try again. 1880 * 1881 * Will be awakened by set_freemem(). 1882 */ 1883 mutex_enter(&pcgs_wait_lock); 1884 cv_wait(&pcgs_cv, &pcgs_wait_lock); 1885 mutex_exit(&pcgs_wait_lock); 1886 } 1887 } else { 1888 #ifdef VM_STATS 1889 if (count >= PCGS_TRIES) { 1890 VM_STAT_ADD(pcgs_too_many); 1891 } else { 1892 VM_STAT_ADD(pcgs_counts[count]); 1893 } 1894 #endif 1895 if (locked) { 1896 pcgs_unblock(); 1897 mutex_exit(&pcgs_lock); 1898 } 1899 if (cagelocked) 1900 mutex_exit(&pcgs_cagelock); 1901 return (pp); 1902 } 1903 } 1904 /* 1905 * we go down holding the pcf locks. 1906 */ 1907 panic("no %spage found %d", 1908 ((flags & PG_NORELOC) ? "non-reloc " : ""), count); 1909 /*NOTREACHED*/ 1910 } 1911 1912 /* 1913 * Create enough pages for "bytes" worth of data starting at 1914 * "off" in "vp". 1915 * 1916 * Where flag must be one of: 1917 * 1918 * PG_EXCL: Exclusive create (fail if any page already 1919 * exists in the page cache) which does not 1920 * wait for memory to become available. 1921 * 1922 * PG_WAIT: Non-exclusive create which can wait for 1923 * memory to become available. 1924 * 1925 * PG_PHYSCONTIG: Allocate physically contiguous pages. 1926 * (Not Supported) 1927 * 1928 * A doubly linked list of pages is returned to the caller. Each page 1929 * on the list has the "exclusive" (p_selock) lock and "iolock" (p_iolock) 1930 * lock. 1931 * 1932 * Unable to change the parameters to page_create() in a minor release, 1933 * we renamed page_create() to page_create_va(), changed all known calls 1934 * from page_create() to page_create_va(), and created this wrapper. 1935 * 1936 * Upon a major release, we should break compatibility by deleting this 1937 * wrapper, and replacing all the strings "page_create_va", with "page_create". 1938 * 1939 * NOTE: There is a copy of this interface as page_create_io() in 1940 * i86/vm/vm_machdep.c. Any bugs fixed here should be applied 1941 * there. 1942 */ 1943 page_t * 1944 page_create(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags) 1945 { 1946 caddr_t random_vaddr; 1947 struct seg kseg; 1948 1949 #ifdef DEBUG 1950 cmn_err(CE_WARN, "Using deprecated interface page_create: caller %p", 1951 (void *)caller()); 1952 #endif 1953 1954 random_vaddr = (caddr_t)(((uintptr_t)vp >> 7) ^ 1955 (uintptr_t)(off >> PAGESHIFT)); 1956 kseg.s_as = &kas; 1957 1958 return (page_create_va(vp, off, bytes, flags, &kseg, random_vaddr)); 1959 } 1960 1961 #ifdef DEBUG 1962 uint32_t pg_alloc_pgs_mtbf = 0; 1963 #endif 1964 1965 /* 1966 * Used for large page support. It will attempt to allocate 1967 * a large page(s) off the freelist. 1968 * 1969 * Returns non zero on failure. 1970 */ 1971 int 1972 page_alloc_pages(struct vnode *vp, struct seg *seg, caddr_t addr, 1973 page_t **basepp, page_t *ppa[], uint_t szc, int anypgsz, int pgflags) 1974 { 1975 pgcnt_t npgs, curnpgs, totpgs; 1976 size_t pgsz; 1977 page_t *pplist = NULL, *pp; 1978 int err = 0; 1979 lgrp_t *lgrp; 1980 1981 ASSERT(szc != 0 && szc <= (page_num_pagesizes() - 1)); 1982 ASSERT(pgflags == 0 || pgflags == PG_LOCAL); 1983 1984 VM_STAT_ADD(alloc_pages[0]); 1985 1986 #ifdef DEBUG 1987 if (pg_alloc_pgs_mtbf && !(gethrtime() % pg_alloc_pgs_mtbf)) { 1988 return (ENOMEM); 1989 } 1990 #endif 1991 1992 /* 1993 * One must be NULL but not both. 1994 * And one must be non NULL but not both. 1995 */ 1996 ASSERT(basepp != NULL || ppa != NULL); 1997 ASSERT(basepp == NULL || ppa == NULL); 1998 1999 #if defined(__i386) || defined(__amd64) 2000 while (page_chk_freelist(szc) == 0) { 2001 VM_STAT_ADD(alloc_pages[8]); 2002 if (anypgsz == 0 || --szc == 0) 2003 return (ENOMEM); 2004 } 2005 #endif 2006 2007 pgsz = page_get_pagesize(szc); 2008 totpgs = curnpgs = npgs = pgsz >> PAGESHIFT; 2009 2010 ASSERT(((uintptr_t)addr & (pgsz - 1)) == 0); 2011 2012 (void) page_create_wait(npgs, PG_WAIT); 2013 2014 while (npgs && szc) { 2015 lgrp = lgrp_mem_choose(seg, addr, pgsz); 2016 if (pgflags == PG_LOCAL) { 2017 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2018 pgflags, lgrp); 2019 if (pp == NULL) { 2020 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2021 0, lgrp); 2022 } 2023 } else { 2024 pp = page_get_freelist(vp, 0, seg, addr, pgsz, 2025 0, lgrp); 2026 } 2027 if (pp != NULL) { 2028 VM_STAT_ADD(alloc_pages[1]); 2029 page_list_concat(&pplist, &pp); 2030 ASSERT(npgs >= curnpgs); 2031 npgs -= curnpgs; 2032 } else if (anypgsz) { 2033 VM_STAT_ADD(alloc_pages[2]); 2034 szc--; 2035 pgsz = page_get_pagesize(szc); 2036 curnpgs = pgsz >> PAGESHIFT; 2037 } else { 2038 VM_STAT_ADD(alloc_pages[3]); 2039 ASSERT(npgs == totpgs); 2040 page_create_putback(npgs); 2041 return (ENOMEM); 2042 } 2043 } 2044 if (szc == 0) { 2045 VM_STAT_ADD(alloc_pages[4]); 2046 ASSERT(npgs != 0); 2047 page_create_putback(npgs); 2048 err = ENOMEM; 2049 } else if (basepp != NULL) { 2050 ASSERT(npgs == 0); 2051 ASSERT(ppa == NULL); 2052 *basepp = pplist; 2053 } 2054 2055 npgs = totpgs - npgs; 2056 pp = pplist; 2057 2058 /* 2059 * Clear the free and age bits. Also if we were passed in a ppa then 2060 * fill it in with all the constituent pages from the large page. But 2061 * if we failed to allocate all the pages just free what we got. 2062 */ 2063 while (npgs != 0) { 2064 ASSERT(PP_ISFREE(pp)); 2065 ASSERT(PP_ISAGED(pp)); 2066 if (ppa != NULL || err != 0) { 2067 if (err == 0) { 2068 VM_STAT_ADD(alloc_pages[5]); 2069 PP_CLRFREE(pp); 2070 PP_CLRAGED(pp); 2071 page_sub(&pplist, pp); 2072 *ppa++ = pp; 2073 npgs--; 2074 } else { 2075 VM_STAT_ADD(alloc_pages[6]); 2076 ASSERT(pp->p_szc != 0); 2077 curnpgs = page_get_pagecnt(pp->p_szc); 2078 page_list_break(&pp, &pplist, curnpgs); 2079 page_list_add_pages(pp, 0); 2080 page_create_putback(curnpgs); 2081 ASSERT(npgs >= curnpgs); 2082 npgs -= curnpgs; 2083 } 2084 pp = pplist; 2085 } else { 2086 VM_STAT_ADD(alloc_pages[7]); 2087 PP_CLRFREE(pp); 2088 PP_CLRAGED(pp); 2089 pp = pp->p_next; 2090 npgs--; 2091 } 2092 } 2093 return (err); 2094 } 2095 2096 /* 2097 * Get a single large page off of the freelists, and set it up for use. 2098 * Number of bytes requested must be a supported page size. 2099 * 2100 * Note that this call may fail even if there is sufficient 2101 * memory available or PG_WAIT is set, so the caller must 2102 * be willing to fallback on page_create_va(), block and retry, 2103 * or fail the requester. 2104 */ 2105 page_t * 2106 page_create_va_large(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2107 struct seg *seg, caddr_t vaddr, void *arg) 2108 { 2109 pgcnt_t npages, pcftotal; 2110 page_t *pp; 2111 page_t *rootpp; 2112 lgrp_t *lgrp; 2113 uint_t enough; 2114 uint_t pcf_index; 2115 uint_t i; 2116 struct pcf *p; 2117 struct pcf *q; 2118 lgrp_id_t *lgrpid = (lgrp_id_t *)arg; 2119 2120 ASSERT(vp != NULL); 2121 2122 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2123 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2124 /* but no others */ 2125 2126 ASSERT((flags & PG_EXCL) == PG_EXCL); 2127 2128 npages = btop(bytes); 2129 2130 if (!kcage_on || panicstr) { 2131 /* 2132 * Cage is OFF, or we are single threaded in 2133 * panic, so make everything a RELOC request. 2134 */ 2135 flags &= ~PG_NORELOC; 2136 } 2137 2138 /* 2139 * Make sure there's adequate physical memory available. 2140 * Note: PG_WAIT is ignored here. 2141 */ 2142 if (freemem <= throttlefree + npages) { 2143 VM_STAT_ADD(page_create_large_cnt[1]); 2144 return (NULL); 2145 } 2146 2147 /* 2148 * If cage is on, dampen draw from cage when available 2149 * cage space is low. 2150 */ 2151 if ((flags & (PG_NORELOC | PG_WAIT)) == (PG_NORELOC | PG_WAIT) && 2152 kcage_freemem < kcage_throttlefree + npages) { 2153 2154 /* 2155 * The cage is on, the caller wants PG_NORELOC 2156 * pages and available cage memory is very low. 2157 * Call kcage_create_throttle() to attempt to 2158 * control demand on the cage. 2159 */ 2160 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) { 2161 VM_STAT_ADD(page_create_large_cnt[2]); 2162 return (NULL); 2163 } 2164 } 2165 2166 enough = 0; 2167 pcf_index = PCF_INDEX(); 2168 p = &pcf[pcf_index]; 2169 q = &pcf[PCF_FANOUT]; 2170 for (pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2171 if (p->pcf_count > npages) { 2172 /* 2173 * a good one to try. 2174 */ 2175 mutex_enter(&p->pcf_lock); 2176 if (p->pcf_count > npages) { 2177 p->pcf_count -= (uint_t)npages; 2178 /* 2179 * freemem is not protected by any lock. 2180 * Thus, we cannot have any assertion 2181 * containing freemem here. 2182 */ 2183 freemem -= npages; 2184 enough = 1; 2185 mutex_exit(&p->pcf_lock); 2186 break; 2187 } 2188 mutex_exit(&p->pcf_lock); 2189 } 2190 pcftotal += p->pcf_count; 2191 p++; 2192 if (p >= q) { 2193 p = pcf; 2194 } 2195 } 2196 2197 if (!enough) { 2198 /* If there isn't enough memory available, give up. */ 2199 if (pcftotal < npages) { 2200 VM_STAT_ADD(page_create_large_cnt[3]); 2201 return (NULL); 2202 } 2203 2204 /* try to collect pages from several pcf bins */ 2205 for (p = pcf, pcftotal = 0, i = 0; i < PCF_FANOUT; i++) { 2206 mutex_enter(&p->pcf_lock); 2207 pcftotal += p->pcf_count; 2208 if (pcftotal >= npages) { 2209 /* 2210 * Wow! There are enough pages laying around 2211 * to satisfy the request. Do the accounting, 2212 * drop the locks we acquired, and go back. 2213 * 2214 * freemem is not protected by any lock. So, 2215 * we cannot have any assertion containing 2216 * freemem. 2217 */ 2218 pgcnt_t tpages = npages; 2219 freemem -= npages; 2220 while (p >= pcf) { 2221 if (p->pcf_count <= tpages) { 2222 tpages -= p->pcf_count; 2223 p->pcf_count = 0; 2224 } else { 2225 p->pcf_count -= (uint_t)tpages; 2226 tpages = 0; 2227 } 2228 mutex_exit(&p->pcf_lock); 2229 p--; 2230 } 2231 ASSERT(tpages == 0); 2232 break; 2233 } 2234 p++; 2235 } 2236 if (i == PCF_FANOUT) { 2237 /* failed to collect pages - release the locks */ 2238 while (--p >= pcf) { 2239 mutex_exit(&p->pcf_lock); 2240 } 2241 VM_STAT_ADD(page_create_large_cnt[4]); 2242 return (NULL); 2243 } 2244 } 2245 2246 /* 2247 * This is where this function behaves fundamentally differently 2248 * than page_create_va(); since we're intending to map the page 2249 * with a single TTE, we have to get it as a physically contiguous 2250 * hardware pagesize chunk. If we can't, we fail. 2251 */ 2252 if (lgrpid != NULL && *lgrpid >= 0 && *lgrpid <= lgrp_alloc_max && 2253 LGRP_EXISTS(lgrp_table[*lgrpid])) 2254 lgrp = lgrp_table[*lgrpid]; 2255 else 2256 lgrp = lgrp_mem_choose(seg, vaddr, bytes); 2257 2258 if ((rootpp = page_get_freelist(&kvp, off, seg, vaddr, 2259 bytes, flags & ~PG_MATCH_COLOR, lgrp)) == NULL) { 2260 page_create_putback(npages); 2261 VM_STAT_ADD(page_create_large_cnt[5]); 2262 return (NULL); 2263 } 2264 2265 /* 2266 * if we got the page with the wrong mtype give it back this is a 2267 * workaround for CR 6249718. When CR 6249718 is fixed we never get 2268 * inside "if" and the workaround becomes just a nop 2269 */ 2270 if (kcage_on && (flags & PG_NORELOC) && !PP_ISNORELOC(rootpp)) { 2271 page_list_add_pages(rootpp, 0); 2272 page_create_putback(npages); 2273 VM_STAT_ADD(page_create_large_cnt[6]); 2274 return (NULL); 2275 } 2276 2277 /* 2278 * If satisfying this request has left us with too little 2279 * memory, start the wheels turning to get some back. The 2280 * first clause of the test prevents waking up the pageout 2281 * daemon in situations where it would decide that there's 2282 * nothing to do. 2283 */ 2284 if (nscan < desscan && freemem < minfree) { 2285 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2286 "pageout_cv_signal:freemem %ld", freemem); 2287 cv_signal(&proc_pageout->p_cv); 2288 } 2289 2290 pp = rootpp; 2291 while (npages--) { 2292 ASSERT(PAGE_EXCL(pp)); 2293 ASSERT(pp->p_vnode == NULL); 2294 ASSERT(!hat_page_is_mapped(pp)); 2295 PP_CLRFREE(pp); 2296 PP_CLRAGED(pp); 2297 if (!page_hashin(pp, vp, off, NULL)) 2298 panic("page_create_large: hashin failed: page %p", 2299 (void *)pp); 2300 page_io_lock(pp); 2301 off += PAGESIZE; 2302 pp = pp->p_next; 2303 } 2304 2305 VM_STAT_ADD(page_create_large_cnt[0]); 2306 return (rootpp); 2307 } 2308 2309 page_t * 2310 page_create_va(vnode_t *vp, u_offset_t off, size_t bytes, uint_t flags, 2311 struct seg *seg, caddr_t vaddr) 2312 { 2313 page_t *plist = NULL; 2314 pgcnt_t npages; 2315 pgcnt_t found_on_free = 0; 2316 pgcnt_t pages_req; 2317 page_t *npp = NULL; 2318 uint_t enough; 2319 uint_t i; 2320 uint_t pcf_index; 2321 struct pcf *p; 2322 struct pcf *q; 2323 lgrp_t *lgrp; 2324 2325 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 2326 "page_create_start:vp %p off %llx bytes %lu flags %x", 2327 vp, off, bytes, flags); 2328 2329 ASSERT(bytes != 0 && vp != NULL); 2330 2331 if ((flags & PG_EXCL) == 0 && (flags & PG_WAIT) == 0) { 2332 panic("page_create: invalid flags"); 2333 /*NOTREACHED*/ 2334 } 2335 ASSERT((flags & ~(PG_EXCL | PG_WAIT | 2336 PG_NORELOC | PG_PANIC | PG_PUSHPAGE)) == 0); 2337 /* but no others */ 2338 2339 pages_req = npages = btopr(bytes); 2340 /* 2341 * Try to see whether request is too large to *ever* be 2342 * satisfied, in order to prevent deadlock. We arbitrarily 2343 * decide to limit maximum size requests to max_page_get. 2344 */ 2345 if (npages >= max_page_get) { 2346 if ((flags & PG_WAIT) == 0) { 2347 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_TOOBIG, 2348 "page_create_toobig:vp %p off %llx npages " 2349 "%lu max_page_get %lu", 2350 vp, off, npages, max_page_get); 2351 return (NULL); 2352 } else { 2353 cmn_err(CE_WARN, 2354 "Request for too much kernel memory " 2355 "(%lu bytes), will hang forever", bytes); 2356 for (;;) 2357 delay(1000000000); 2358 } 2359 } 2360 2361 if (!kcage_on || panicstr) { 2362 /* 2363 * Cage is OFF, or we are single threaded in 2364 * panic, so make everything a RELOC request. 2365 */ 2366 flags &= ~PG_NORELOC; 2367 } 2368 2369 if (freemem <= throttlefree + npages) 2370 if (!page_create_throttle(npages, flags)) 2371 return (NULL); 2372 2373 /* 2374 * If cage is on, dampen draw from cage when available 2375 * cage space is low. 2376 */ 2377 if ((flags & PG_NORELOC) && 2378 kcage_freemem < kcage_throttlefree + npages) { 2379 2380 /* 2381 * The cage is on, the caller wants PG_NORELOC 2382 * pages and available cage memory is very low. 2383 * Call kcage_create_throttle() to attempt to 2384 * control demand on the cage. 2385 */ 2386 if (kcage_create_throttle(npages, flags) == KCT_FAILURE) 2387 return (NULL); 2388 } 2389 2390 VM_STAT_ADD(page_create_cnt[0]); 2391 2392 enough = 0; 2393 pcf_index = PCF_INDEX(); 2394 2395 p = &pcf[pcf_index]; 2396 q = &pcf[PCF_FANOUT]; 2397 for (i = 0; i < PCF_FANOUT; i++) { 2398 if (p->pcf_count > npages) { 2399 /* 2400 * a good one to try. 2401 */ 2402 mutex_enter(&p->pcf_lock); 2403 if (p->pcf_count > npages) { 2404 p->pcf_count -= (uint_t)npages; 2405 /* 2406 * freemem is not protected by any lock. 2407 * Thus, we cannot have any assertion 2408 * containing freemem here. 2409 */ 2410 freemem -= npages; 2411 enough = 1; 2412 mutex_exit(&p->pcf_lock); 2413 break; 2414 } 2415 mutex_exit(&p->pcf_lock); 2416 } 2417 p++; 2418 if (p >= q) { 2419 p = pcf; 2420 } 2421 } 2422 2423 if (!enough) { 2424 /* 2425 * Have to look harder. If npages is greater than 2426 * one, then we might have to coalesce the counters. 2427 * 2428 * Go wait. We come back having accounted 2429 * for the memory. 2430 */ 2431 VM_STAT_ADD(page_create_cnt[1]); 2432 if (!page_create_wait(npages, flags)) { 2433 VM_STAT_ADD(page_create_cnt[2]); 2434 return (NULL); 2435 } 2436 } 2437 2438 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 2439 "page_create_success:vp %p off %llx", vp, off); 2440 2441 /* 2442 * If satisfying this request has left us with too little 2443 * memory, start the wheels turning to get some back. The 2444 * first clause of the test prevents waking up the pageout 2445 * daemon in situations where it would decide that there's 2446 * nothing to do. 2447 */ 2448 if (nscan < desscan && freemem < minfree) { 2449 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 2450 "pageout_cv_signal:freemem %ld", freemem); 2451 cv_signal(&proc_pageout->p_cv); 2452 } 2453 2454 /* 2455 * Loop around collecting the requested number of pages. 2456 * Most of the time, we have to `create' a new page. With 2457 * this in mind, pull the page off the free list before 2458 * getting the hash lock. This will minimize the hash 2459 * lock hold time, nesting, and the like. If it turns 2460 * out we don't need the page, we put it back at the end. 2461 */ 2462 while (npages--) { 2463 page_t *pp; 2464 kmutex_t *phm = NULL; 2465 ulong_t index; 2466 2467 index = PAGE_HASH_FUNC(vp, off); 2468 top: 2469 ASSERT(phm == NULL); 2470 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 2471 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 2472 2473 if (npp == NULL) { 2474 /* 2475 * Try to get a page from the freelist (ie, 2476 * a page with no [vp, off] tag). If that 2477 * fails, use the cachelist. 2478 * 2479 * During the first attempt at both the free 2480 * and cache lists we try for the correct color. 2481 */ 2482 /* 2483 * XXXX-how do we deal with virtual indexed 2484 * caches and and colors? 2485 */ 2486 VM_STAT_ADD(page_create_cnt[4]); 2487 /* 2488 * Get lgroup to allocate next page of shared memory 2489 * from and use it to specify where to allocate 2490 * the physical memory 2491 */ 2492 lgrp = lgrp_mem_choose(seg, vaddr, PAGESIZE); 2493 npp = page_get_freelist(vp, off, seg, vaddr, PAGESIZE, 2494 flags | PG_MATCH_COLOR, lgrp); 2495 if (npp == NULL) { 2496 npp = page_get_cachelist(vp, off, seg, 2497 vaddr, flags | PG_MATCH_COLOR, lgrp); 2498 if (npp == NULL) { 2499 npp = page_create_get_something(vp, 2500 off, seg, vaddr, 2501 flags & ~PG_MATCH_COLOR); 2502 } 2503 2504 if (PP_ISAGED(npp) == 0) { 2505 /* 2506 * Since this page came from the 2507 * cachelist, we must destroy the 2508 * old vnode association. 2509 */ 2510 page_hashout(npp, NULL); 2511 } 2512 } 2513 } 2514 2515 /* 2516 * We own this page! 2517 */ 2518 ASSERT(PAGE_EXCL(npp)); 2519 ASSERT(npp->p_vnode == NULL); 2520 ASSERT(!hat_page_is_mapped(npp)); 2521 PP_CLRFREE(npp); 2522 PP_CLRAGED(npp); 2523 2524 /* 2525 * Here we have a page in our hot little mits and are 2526 * just waiting to stuff it on the appropriate lists. 2527 * Get the mutex and check to see if it really does 2528 * not exist. 2529 */ 2530 phm = PAGE_HASH_MUTEX(index); 2531 mutex_enter(phm); 2532 PAGE_HASH_SEARCH(index, pp, vp, off); 2533 if (pp == NULL) { 2534 VM_STAT_ADD(page_create_new); 2535 pp = npp; 2536 npp = NULL; 2537 if (!page_hashin(pp, vp, off, phm)) { 2538 /* 2539 * Since we hold the page hash mutex and 2540 * just searched for this page, page_hashin 2541 * had better not fail. If it does, that 2542 * means somethread did not follow the 2543 * page hash mutex rules. Panic now and 2544 * get it over with. As usual, go down 2545 * holding all the locks. 2546 */ 2547 ASSERT(MUTEX_HELD(phm)); 2548 panic("page_create: " 2549 "hashin failed %p %p %llx %p", 2550 (void *)pp, (void *)vp, off, (void *)phm); 2551 /*NOTREACHED*/ 2552 } 2553 ASSERT(MUTEX_HELD(phm)); 2554 mutex_exit(phm); 2555 phm = NULL; 2556 2557 /* 2558 * Hat layer locking need not be done to set 2559 * the following bits since the page is not hashed 2560 * and was on the free list (i.e., had no mappings). 2561 * 2562 * Set the reference bit to protect 2563 * against immediate pageout 2564 * 2565 * XXXmh modify freelist code to set reference 2566 * bit so we don't have to do it here. 2567 */ 2568 page_set_props(pp, P_REF); 2569 found_on_free++; 2570 } else { 2571 VM_STAT_ADD(page_create_exists); 2572 if (flags & PG_EXCL) { 2573 /* 2574 * Found an existing page, and the caller 2575 * wanted all new pages. Undo all of the work 2576 * we have done. 2577 */ 2578 mutex_exit(phm); 2579 phm = NULL; 2580 while (plist != NULL) { 2581 pp = plist; 2582 page_sub(&plist, pp); 2583 page_io_unlock(pp); 2584 /* large pages should not end up here */ 2585 ASSERT(pp->p_szc == 0); 2586 /*LINTED: constant in conditional ctx*/ 2587 VN_DISPOSE(pp, B_INVAL, 0, kcred); 2588 } 2589 VM_STAT_ADD(page_create_found_one); 2590 goto fail; 2591 } 2592 ASSERT(flags & PG_WAIT); 2593 if (!page_lock(pp, SE_EXCL, phm, P_NO_RECLAIM)) { 2594 /* 2595 * Start all over again if we blocked trying 2596 * to lock the page. 2597 */ 2598 mutex_exit(phm); 2599 VM_STAT_ADD(page_create_page_lock_failed); 2600 phm = NULL; 2601 goto top; 2602 } 2603 mutex_exit(phm); 2604 phm = NULL; 2605 2606 if (PP_ISFREE(pp)) { 2607 ASSERT(PP_ISAGED(pp) == 0); 2608 VM_STAT_ADD(pagecnt.pc_get_cache); 2609 page_list_sub(pp, PG_CACHE_LIST); 2610 PP_CLRFREE(pp); 2611 found_on_free++; 2612 } 2613 } 2614 2615 /* 2616 * Got a page! It is locked. Acquire the i/o 2617 * lock since we are going to use the p_next and 2618 * p_prev fields to link the requested pages together. 2619 */ 2620 page_io_lock(pp); 2621 page_add(&plist, pp); 2622 plist = plist->p_next; 2623 off += PAGESIZE; 2624 vaddr += PAGESIZE; 2625 } 2626 2627 ASSERT((flags & PG_EXCL) ? (found_on_free == pages_req) : 1); 2628 fail: 2629 if (npp != NULL) { 2630 /* 2631 * Did not need this page after all. 2632 * Put it back on the free list. 2633 */ 2634 VM_STAT_ADD(page_create_putbacks); 2635 PP_SETFREE(npp); 2636 PP_SETAGED(npp); 2637 npp->p_offset = (u_offset_t)-1; 2638 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 2639 page_unlock(npp); 2640 2641 } 2642 2643 ASSERT(pages_req >= found_on_free); 2644 2645 { 2646 uint_t overshoot = (uint_t)(pages_req - found_on_free); 2647 2648 if (overshoot) { 2649 VM_STAT_ADD(page_create_overshoot); 2650 p = &pcf[pcf_index]; 2651 mutex_enter(&p->pcf_lock); 2652 if (p->pcf_block) { 2653 p->pcf_reserve += overshoot; 2654 } else { 2655 p->pcf_count += overshoot; 2656 if (p->pcf_wait) { 2657 mutex_enter(&new_freemem_lock); 2658 if (freemem_wait) { 2659 cv_signal(&freemem_cv); 2660 p->pcf_wait--; 2661 } else { 2662 p->pcf_wait = 0; 2663 } 2664 mutex_exit(&new_freemem_lock); 2665 } 2666 } 2667 mutex_exit(&p->pcf_lock); 2668 /* freemem is approximate, so this test OK */ 2669 if (!p->pcf_block) 2670 freemem += overshoot; 2671 } 2672 } 2673 2674 return (plist); 2675 } 2676 2677 /* 2678 * One or more constituent pages of this large page has been marked 2679 * toxic. Simply demote the large page to PAGESIZE pages and let 2680 * page_free() handle it. This routine should only be called by 2681 * large page free routines (page_free_pages() and page_destroy_pages(). 2682 * All pages are locked SE_EXCL and have already been marked free. 2683 */ 2684 static void 2685 page_free_toxic_pages(page_t *rootpp) 2686 { 2687 page_t *tpp; 2688 pgcnt_t i, pgcnt = page_get_pagecnt(rootpp->p_szc); 2689 uint_t szc = rootpp->p_szc; 2690 2691 for (i = 0, tpp = rootpp; i < pgcnt; i++, tpp = tpp->p_next) { 2692 ASSERT(tpp->p_szc == szc); 2693 ASSERT((PAGE_EXCL(tpp) && 2694 !page_iolock_assert(tpp)) || panicstr); 2695 tpp->p_szc = 0; 2696 } 2697 2698 while (rootpp != NULL) { 2699 tpp = rootpp; 2700 page_sub(&rootpp, tpp); 2701 ASSERT(PP_ISFREE(tpp)); 2702 PP_CLRFREE(tpp); 2703 page_free(tpp, 1); 2704 } 2705 } 2706 2707 /* 2708 * Put page on the "free" list. 2709 * The free list is really two lists maintained by 2710 * the PSM of whatever machine we happen to be on. 2711 */ 2712 void 2713 page_free(page_t *pp, int dontneed) 2714 { 2715 struct pcf *p; 2716 uint_t pcf_index; 2717 2718 ASSERT((PAGE_EXCL(pp) && 2719 !page_iolock_assert(pp)) || panicstr); 2720 2721 if (PP_ISFREE(pp)) { 2722 panic("page_free: page %p is free", (void *)pp); 2723 } 2724 2725 if (pp->p_szc != 0) { 2726 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 2727 PP_ISKAS(pp)) { 2728 panic("page_free: anon or kernel " 2729 "or no vnode large page %p", (void *)pp); 2730 } 2731 page_demote_vp_pages(pp); 2732 ASSERT(pp->p_szc == 0); 2733 } 2734 2735 /* 2736 * The page_struct_lock need not be acquired to examine these 2737 * fields since the page has an "exclusive" lock. 2738 */ 2739 if (hat_page_is_mapped(pp) || pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 2740 pp->p_slckcnt != 0) { 2741 panic("page_free pp=%p, pfn=%lx, lckcnt=%d, cowcnt=%d " 2742 "slckcnt = %d", pp, page_pptonum(pp), pp->p_lckcnt, 2743 pp->p_cowcnt, pp->p_slckcnt); 2744 /*NOTREACHED*/ 2745 } 2746 2747 ASSERT(!hat_page_getshare(pp)); 2748 2749 PP_SETFREE(pp); 2750 ASSERT(pp->p_vnode == NULL || !IS_VMODSORT(pp->p_vnode) || 2751 !hat_ismod(pp)); 2752 page_clr_all_props(pp); 2753 ASSERT(!hat_page_getshare(pp)); 2754 2755 /* 2756 * Now we add the page to the head of the free list. 2757 * But if this page is associated with a paged vnode 2758 * then we adjust the head forward so that the page is 2759 * effectively at the end of the list. 2760 */ 2761 if (pp->p_vnode == NULL) { 2762 /* 2763 * Page has no identity, put it on the free list. 2764 */ 2765 PP_SETAGED(pp); 2766 pp->p_offset = (u_offset_t)-1; 2767 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 2768 VM_STAT_ADD(pagecnt.pc_free_free); 2769 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2770 "page_free_free:pp %p", pp); 2771 } else { 2772 PP_CLRAGED(pp); 2773 2774 if (!dontneed || nopageage) { 2775 /* move it to the tail of the list */ 2776 page_list_add(pp, PG_CACHE_LIST | PG_LIST_TAIL); 2777 2778 VM_STAT_ADD(pagecnt.pc_free_cache); 2779 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_TAIL, 2780 "page_free_cache_tail:pp %p", pp); 2781 } else { 2782 page_list_add(pp, PG_CACHE_LIST | PG_LIST_HEAD); 2783 2784 VM_STAT_ADD(pagecnt.pc_free_dontneed); 2785 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_CACHE_HEAD, 2786 "page_free_cache_head:pp %p", pp); 2787 } 2788 } 2789 page_unlock(pp); 2790 2791 /* 2792 * Now do the `freemem' accounting. 2793 */ 2794 pcf_index = PCF_INDEX(); 2795 p = &pcf[pcf_index]; 2796 2797 mutex_enter(&p->pcf_lock); 2798 if (p->pcf_block) { 2799 p->pcf_reserve += 1; 2800 } else { 2801 p->pcf_count += 1; 2802 if (p->pcf_wait) { 2803 mutex_enter(&new_freemem_lock); 2804 /* 2805 * Check to see if some other thread 2806 * is actually waiting. Another bucket 2807 * may have woken it up by now. If there 2808 * are no waiters, then set our pcf_wait 2809 * count to zero to avoid coming in here 2810 * next time. Also, since only one page 2811 * was put on the free list, just wake 2812 * up one waiter. 2813 */ 2814 if (freemem_wait) { 2815 cv_signal(&freemem_cv); 2816 p->pcf_wait--; 2817 } else { 2818 p->pcf_wait = 0; 2819 } 2820 mutex_exit(&new_freemem_lock); 2821 } 2822 } 2823 mutex_exit(&p->pcf_lock); 2824 2825 /* freemem is approximate, so this test OK */ 2826 if (!p->pcf_block) 2827 freemem += 1; 2828 } 2829 2830 /* 2831 * Put page on the "free" list during intial startup. 2832 * This happens during initial single threaded execution. 2833 */ 2834 void 2835 page_free_at_startup(page_t *pp) 2836 { 2837 struct pcf *p; 2838 uint_t pcf_index; 2839 2840 page_list_add(pp, PG_FREE_LIST | PG_LIST_HEAD | PG_LIST_ISINIT); 2841 VM_STAT_ADD(pagecnt.pc_free_free); 2842 2843 /* 2844 * Now do the `freemem' accounting. 2845 */ 2846 pcf_index = PCF_INDEX(); 2847 p = &pcf[pcf_index]; 2848 2849 ASSERT(p->pcf_block == 0); 2850 ASSERT(p->pcf_wait == 0); 2851 p->pcf_count += 1; 2852 2853 /* freemem is approximate, so this is OK */ 2854 freemem += 1; 2855 } 2856 2857 void 2858 page_free_pages(page_t *pp) 2859 { 2860 page_t *tpp, *rootpp = NULL; 2861 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 2862 pgcnt_t i; 2863 uint_t szc = pp->p_szc; 2864 2865 VM_STAT_ADD(pagecnt.pc_free_pages); 2866 TRACE_1(TR_FAC_VM, TR_PAGE_FREE_FREE, 2867 "page_free_free:pp %p", pp); 2868 2869 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 2870 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 2871 panic("page_free_pages: not root page %p", (void *)pp); 2872 /*NOTREACHED*/ 2873 } 2874 2875 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 2876 ASSERT((PAGE_EXCL(tpp) && 2877 !page_iolock_assert(tpp)) || panicstr); 2878 if (PP_ISFREE(tpp)) { 2879 panic("page_free_pages: page %p is free", (void *)tpp); 2880 /*NOTREACHED*/ 2881 } 2882 if (hat_page_is_mapped(tpp) || tpp->p_lckcnt != 0 || 2883 tpp->p_cowcnt != 0 || tpp->p_slckcnt != 0) { 2884 panic("page_free_pages %p", (void *)tpp); 2885 /*NOTREACHED*/ 2886 } 2887 2888 ASSERT(!hat_page_getshare(tpp)); 2889 ASSERT(tpp->p_vnode == NULL); 2890 ASSERT(tpp->p_szc == szc); 2891 2892 PP_SETFREE(tpp); 2893 page_clr_all_props(tpp); 2894 PP_SETAGED(tpp); 2895 tpp->p_offset = (u_offset_t)-1; 2896 ASSERT(tpp->p_next == tpp); 2897 ASSERT(tpp->p_prev == tpp); 2898 page_list_concat(&rootpp, &tpp); 2899 } 2900 ASSERT(rootpp == pp); 2901 2902 page_list_add_pages(rootpp, 0); 2903 page_create_putback(pgcnt); 2904 } 2905 2906 int free_pages = 1; 2907 2908 /* 2909 * This routine attempts to return pages to the cachelist via page_release(). 2910 * It does not *have* to be successful in all cases, since the pageout scanner 2911 * will catch any pages it misses. It does need to be fast and not introduce 2912 * too much overhead. 2913 * 2914 * If a page isn't found on the unlocked sweep of the page_hash bucket, we 2915 * don't lock and retry. This is ok, since the page scanner will eventually 2916 * find any page we miss in free_vp_pages(). 2917 */ 2918 void 2919 free_vp_pages(vnode_t *vp, u_offset_t off, size_t len) 2920 { 2921 page_t *pp; 2922 u_offset_t eoff; 2923 extern int swap_in_range(vnode_t *, u_offset_t, size_t); 2924 2925 eoff = off + len; 2926 2927 if (free_pages == 0) 2928 return; 2929 if (swap_in_range(vp, off, len)) 2930 return; 2931 2932 for (; off < eoff; off += PAGESIZE) { 2933 2934 /* 2935 * find the page using a fast, but inexact search. It'll be OK 2936 * if a few pages slip through the cracks here. 2937 */ 2938 pp = page_exists(vp, off); 2939 2940 /* 2941 * If we didn't find the page (it may not exist), the page 2942 * is free, looks still in use (shared), or we can't lock it, 2943 * just give up. 2944 */ 2945 if (pp == NULL || 2946 PP_ISFREE(pp) || 2947 page_share_cnt(pp) > 0 || 2948 !page_trylock(pp, SE_EXCL)) 2949 continue; 2950 2951 /* 2952 * Once we have locked pp, verify that it's still the 2953 * correct page and not already free 2954 */ 2955 ASSERT(PAGE_LOCKED_SE(pp, SE_EXCL)); 2956 if (pp->p_vnode != vp || pp->p_offset != off || PP_ISFREE(pp)) { 2957 page_unlock(pp); 2958 continue; 2959 } 2960 2961 /* 2962 * try to release the page... 2963 */ 2964 (void) page_release(pp, 1); 2965 } 2966 } 2967 2968 /* 2969 * Reclaim the given page from the free list. 2970 * If pp is part of a large pages, only the given constituent page is reclaimed 2971 * and the large page it belonged to will be demoted. This can only happen 2972 * if the page is not on the cachelist. 2973 * 2974 * Returns 1 on success or 0 on failure. 2975 * 2976 * The page is unlocked if it can't be reclaimed (when freemem == 0). 2977 * If `lock' is non-null, it will be dropped and re-acquired if 2978 * the routine must wait while freemem is 0. 2979 * 2980 * As it turns out, boot_getpages() does this. It picks a page, 2981 * based on where OBP mapped in some address, gets its pfn, searches 2982 * the memsegs, locks the page, then pulls it off the free list! 2983 */ 2984 int 2985 page_reclaim(page_t *pp, kmutex_t *lock) 2986 { 2987 struct pcf *p; 2988 uint_t pcf_index; 2989 struct cpu *cpup; 2990 int enough; 2991 uint_t i; 2992 2993 ASSERT(lock != NULL ? MUTEX_HELD(lock) : 1); 2994 ASSERT(PAGE_EXCL(pp) && PP_ISFREE(pp)); 2995 2996 /* 2997 * If `freemem' is 0, we cannot reclaim this page from the 2998 * freelist, so release every lock we might hold: the page, 2999 * and the `lock' before blocking. 3000 * 3001 * The only way `freemem' can become 0 while there are pages 3002 * marked free (have their p->p_free bit set) is when the 3003 * system is low on memory and doing a page_create(). In 3004 * order to guarantee that once page_create() starts acquiring 3005 * pages it will be able to get all that it needs since `freemem' 3006 * was decreased by the requested amount. So, we need to release 3007 * this page, and let page_create() have it. 3008 * 3009 * Since `freemem' being zero is not supposed to happen, just 3010 * use the usual hash stuff as a starting point. If that bucket 3011 * is empty, then assume the worst, and start at the beginning 3012 * of the pcf array. If we always start at the beginning 3013 * when acquiring more than one pcf lock, there won't be any 3014 * deadlock problems. 3015 */ 3016 3017 /* TODO: Do we need to test kcage_freemem if PG_NORELOC(pp)? */ 3018 3019 if (freemem <= throttlefree && !page_create_throttle(1l, 0)) { 3020 pcf_acquire_all(); 3021 goto page_reclaim_nomem; 3022 } 3023 3024 enough = 0; 3025 pcf_index = PCF_INDEX(); 3026 p = &pcf[pcf_index]; 3027 mutex_enter(&p->pcf_lock); 3028 if (p->pcf_count >= 1) { 3029 enough = 1; 3030 p->pcf_count--; 3031 } 3032 mutex_exit(&p->pcf_lock); 3033 3034 if (!enough) { 3035 VM_STAT_ADD(page_reclaim_zero); 3036 /* 3037 * Check again. Its possible that some other thread 3038 * could have been right behind us, and added one 3039 * to a list somewhere. Acquire each of the pcf locks 3040 * until we find a page. 3041 */ 3042 p = pcf; 3043 for (i = 0; i < PCF_FANOUT; i++) { 3044 mutex_enter(&p->pcf_lock); 3045 if (p->pcf_count >= 1) { 3046 p->pcf_count -= 1; 3047 enough = 1; 3048 break; 3049 } 3050 p++; 3051 } 3052 3053 if (!enough) { 3054 page_reclaim_nomem: 3055 /* 3056 * We really can't have page `pp'. 3057 * Time for the no-memory dance with 3058 * page_free(). This is just like 3059 * page_create_wait(). Plus the added 3060 * attraction of releasing whatever mutex 3061 * we held when we were called with in `lock'. 3062 * Page_unlock() will wakeup any thread 3063 * waiting around for this page. 3064 */ 3065 if (lock) { 3066 VM_STAT_ADD(page_reclaim_zero_locked); 3067 mutex_exit(lock); 3068 } 3069 page_unlock(pp); 3070 3071 /* 3072 * get this before we drop all the pcf locks. 3073 */ 3074 mutex_enter(&new_freemem_lock); 3075 3076 p = pcf; 3077 for (i = 0; i < PCF_FANOUT; i++) { 3078 p->pcf_wait++; 3079 mutex_exit(&p->pcf_lock); 3080 p++; 3081 } 3082 3083 freemem_wait++; 3084 cv_wait(&freemem_cv, &new_freemem_lock); 3085 freemem_wait--; 3086 3087 mutex_exit(&new_freemem_lock); 3088 3089 if (lock) { 3090 mutex_enter(lock); 3091 } 3092 return (0); 3093 } 3094 3095 /* 3096 * The pcf accounting has been done, 3097 * though none of the pcf_wait flags have been set, 3098 * drop the locks and continue on. 3099 */ 3100 while (p >= pcf) { 3101 mutex_exit(&p->pcf_lock); 3102 p--; 3103 } 3104 } 3105 3106 /* 3107 * freemem is not protected by any lock. Thus, we cannot 3108 * have any assertion containing freemem here. 3109 */ 3110 freemem -= 1; 3111 3112 VM_STAT_ADD(pagecnt.pc_reclaim); 3113 3114 /* 3115 * page_list_sub will handle the case where pp is a large page. 3116 * It's possible that the page was promoted while on the freelist 3117 */ 3118 if (PP_ISAGED(pp)) { 3119 page_list_sub(pp, PG_FREE_LIST); 3120 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_FREE, 3121 "page_reclaim_free:pp %p", pp); 3122 } else { 3123 page_list_sub(pp, PG_CACHE_LIST); 3124 TRACE_1(TR_FAC_VM, TR_PAGE_UNFREE_CACHE, 3125 "page_reclaim_cache:pp %p", pp); 3126 } 3127 3128 /* 3129 * clear the p_free & p_age bits since this page is no longer 3130 * on the free list. Notice that there was a brief time where 3131 * a page is marked as free, but is not on the list. 3132 * 3133 * Set the reference bit to protect against immediate pageout. 3134 */ 3135 PP_CLRFREE(pp); 3136 PP_CLRAGED(pp); 3137 page_set_props(pp, P_REF); 3138 3139 CPU_STATS_ENTER_K(); 3140 cpup = CPU; /* get cpup now that CPU cannot change */ 3141 CPU_STATS_ADDQ(cpup, vm, pgrec, 1); 3142 CPU_STATS_ADDQ(cpup, vm, pgfrec, 1); 3143 CPU_STATS_EXIT_K(); 3144 ASSERT(pp->p_szc == 0); 3145 3146 return (1); 3147 } 3148 3149 /* 3150 * Destroy identity of the page and put it back on 3151 * the page free list. Assumes that the caller has 3152 * acquired the "exclusive" lock on the page. 3153 */ 3154 void 3155 page_destroy(page_t *pp, int dontfree) 3156 { 3157 ASSERT((PAGE_EXCL(pp) && 3158 !page_iolock_assert(pp)) || panicstr); 3159 ASSERT(pp->p_slckcnt == 0 || panicstr); 3160 3161 if (pp->p_szc != 0) { 3162 if (pp->p_vnode == NULL || IS_SWAPFSVP(pp->p_vnode) || 3163 PP_ISKAS(pp)) { 3164 panic("page_destroy: anon or kernel or no vnode " 3165 "large page %p", (void *)pp); 3166 } 3167 page_demote_vp_pages(pp); 3168 ASSERT(pp->p_szc == 0); 3169 } 3170 3171 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy:pp %p", pp); 3172 3173 /* 3174 * Unload translations, if any, then hash out the 3175 * page to erase its identity. 3176 */ 3177 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3178 page_hashout(pp, NULL); 3179 3180 if (!dontfree) { 3181 /* 3182 * Acquire the "freemem_lock" for availrmem. 3183 * The page_struct_lock need not be acquired for lckcnt 3184 * and cowcnt since the page has an "exclusive" lock. 3185 */ 3186 if ((pp->p_lckcnt != 0) || (pp->p_cowcnt != 0)) { 3187 mutex_enter(&freemem_lock); 3188 if (pp->p_lckcnt != 0) { 3189 availrmem++; 3190 pp->p_lckcnt = 0; 3191 } 3192 if (pp->p_cowcnt != 0) { 3193 availrmem += pp->p_cowcnt; 3194 pp->p_cowcnt = 0; 3195 } 3196 mutex_exit(&freemem_lock); 3197 } 3198 /* 3199 * Put the page on the "free" list. 3200 */ 3201 page_free(pp, 0); 3202 } 3203 } 3204 3205 void 3206 page_destroy_pages(page_t *pp) 3207 { 3208 3209 page_t *tpp, *rootpp = NULL; 3210 pgcnt_t pgcnt = page_get_pagecnt(pp->p_szc); 3211 pgcnt_t i, pglcks = 0; 3212 uint_t szc = pp->p_szc; 3213 3214 ASSERT(pp->p_szc != 0 && pp->p_szc < page_num_pagesizes()); 3215 3216 VM_STAT_ADD(pagecnt.pc_destroy_pages); 3217 3218 TRACE_1(TR_FAC_VM, TR_PAGE_DESTROY, "page_destroy_pages:pp %p", pp); 3219 3220 if ((page_pptonum(pp) & (pgcnt - 1)) != 0) { 3221 panic("page_destroy_pages: not root page %p", (void *)pp); 3222 /*NOTREACHED*/ 3223 } 3224 3225 for (i = 0, tpp = pp; i < pgcnt; i++, tpp++) { 3226 ASSERT((PAGE_EXCL(tpp) && 3227 !page_iolock_assert(tpp)) || panicstr); 3228 ASSERT(tpp->p_slckcnt == 0 || panicstr); 3229 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 3230 page_hashout(tpp, NULL); 3231 ASSERT(tpp->p_offset == (u_offset_t)-1); 3232 if (tpp->p_lckcnt != 0) { 3233 pglcks++; 3234 tpp->p_lckcnt = 0; 3235 } else if (tpp->p_cowcnt != 0) { 3236 pglcks += tpp->p_cowcnt; 3237 tpp->p_cowcnt = 0; 3238 } 3239 ASSERT(!hat_page_getshare(tpp)); 3240 ASSERT(tpp->p_vnode == NULL); 3241 ASSERT(tpp->p_szc == szc); 3242 3243 PP_SETFREE(tpp); 3244 page_clr_all_props(tpp); 3245 PP_SETAGED(tpp); 3246 ASSERT(tpp->p_next == tpp); 3247 ASSERT(tpp->p_prev == tpp); 3248 page_list_concat(&rootpp, &tpp); 3249 } 3250 3251 ASSERT(rootpp == pp); 3252 if (pglcks != 0) { 3253 mutex_enter(&freemem_lock); 3254 availrmem += pglcks; 3255 mutex_exit(&freemem_lock); 3256 } 3257 3258 page_list_add_pages(rootpp, 0); 3259 page_create_putback(pgcnt); 3260 } 3261 3262 /* 3263 * Similar to page_destroy(), but destroys pages which are 3264 * locked and known to be on the page free list. Since 3265 * the page is known to be free and locked, no one can access 3266 * it. 3267 * 3268 * Also, the number of free pages does not change. 3269 */ 3270 void 3271 page_destroy_free(page_t *pp) 3272 { 3273 ASSERT(PAGE_EXCL(pp)); 3274 ASSERT(PP_ISFREE(pp)); 3275 ASSERT(pp->p_vnode); 3276 ASSERT(hat_page_getattr(pp, P_MOD | P_REF | P_RO) == 0); 3277 ASSERT(!hat_page_is_mapped(pp)); 3278 ASSERT(PP_ISAGED(pp) == 0); 3279 ASSERT(pp->p_szc == 0); 3280 3281 VM_STAT_ADD(pagecnt.pc_destroy_free); 3282 page_list_sub(pp, PG_CACHE_LIST); 3283 3284 page_hashout(pp, NULL); 3285 ASSERT(pp->p_vnode == NULL); 3286 ASSERT(pp->p_offset == (u_offset_t)-1); 3287 ASSERT(pp->p_hash == NULL); 3288 3289 PP_SETAGED(pp); 3290 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 3291 page_unlock(pp); 3292 3293 mutex_enter(&new_freemem_lock); 3294 if (freemem_wait) { 3295 cv_signal(&freemem_cv); 3296 } 3297 mutex_exit(&new_freemem_lock); 3298 } 3299 3300 /* 3301 * Rename the page "opp" to have an identity specified 3302 * by [vp, off]. If a page already exists with this name 3303 * it is locked and destroyed. Note that the page's 3304 * translations are not unloaded during the rename. 3305 * 3306 * This routine is used by the anon layer to "steal" the 3307 * original page and is not unlike destroying a page and 3308 * creating a new page using the same page frame. 3309 * 3310 * XXX -- Could deadlock if caller 1 tries to rename A to B while 3311 * caller 2 tries to rename B to A. 3312 */ 3313 void 3314 page_rename(page_t *opp, vnode_t *vp, u_offset_t off) 3315 { 3316 page_t *pp; 3317 int olckcnt = 0; 3318 int ocowcnt = 0; 3319 kmutex_t *phm; 3320 ulong_t index; 3321 3322 ASSERT(PAGE_EXCL(opp) && !page_iolock_assert(opp)); 3323 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3324 ASSERT(PP_ISFREE(opp) == 0); 3325 3326 VM_STAT_ADD(page_rename_count); 3327 3328 TRACE_3(TR_FAC_VM, TR_PAGE_RENAME, 3329 "page rename:pp %p vp %p off %llx", opp, vp, off); 3330 3331 /* 3332 * CacheFS may call page_rename for a large NFS page 3333 * when both CacheFS and NFS mount points are used 3334 * by applications. Demote this large page before 3335 * renaming it, to ensure that there are no "partial" 3336 * large pages left lying around. 3337 */ 3338 if (opp->p_szc != 0) { 3339 vnode_t *ovp = opp->p_vnode; 3340 ASSERT(ovp != NULL); 3341 ASSERT(!IS_SWAPFSVP(ovp)); 3342 ASSERT(!VN_ISKAS(ovp)); 3343 page_demote_vp_pages(opp); 3344 ASSERT(opp->p_szc == 0); 3345 } 3346 3347 page_hashout(opp, NULL); 3348 PP_CLRAGED(opp); 3349 3350 /* 3351 * Acquire the appropriate page hash lock, since 3352 * we're going to rename the page. 3353 */ 3354 index = PAGE_HASH_FUNC(vp, off); 3355 phm = PAGE_HASH_MUTEX(index); 3356 mutex_enter(phm); 3357 top: 3358 /* 3359 * Look for an existing page with this name and destroy it if found. 3360 * By holding the page hash lock all the way to the page_hashin() 3361 * call, we are assured that no page can be created with this 3362 * identity. In the case when the phm lock is dropped to undo any 3363 * hat layer mappings, the existing page is held with an "exclusive" 3364 * lock, again preventing another page from being created with 3365 * this identity. 3366 */ 3367 PAGE_HASH_SEARCH(index, pp, vp, off); 3368 if (pp != NULL) { 3369 VM_STAT_ADD(page_rename_exists); 3370 3371 /* 3372 * As it turns out, this is one of only two places where 3373 * page_lock() needs to hold the passed in lock in the 3374 * successful case. In all of the others, the lock could 3375 * be dropped as soon as the attempt is made to lock 3376 * the page. It is tempting to add yet another arguement, 3377 * PL_KEEP or PL_DROP, to let page_lock know what to do. 3378 */ 3379 if (!page_lock(pp, SE_EXCL, phm, P_RECLAIM)) { 3380 /* 3381 * Went to sleep because the page could not 3382 * be locked. We were woken up when the page 3383 * was unlocked, or when the page was destroyed. 3384 * In either case, `phm' was dropped while we 3385 * slept. Hence we should not just roar through 3386 * this loop. 3387 */ 3388 goto top; 3389 } 3390 3391 /* 3392 * If an existing page is a large page, then demote 3393 * it to ensure that no "partial" large pages are 3394 * "created" after page_rename. An existing page 3395 * can be a CacheFS page, and can't belong to swapfs. 3396 */ 3397 if (hat_page_is_mapped(pp)) { 3398 /* 3399 * Unload translations. Since we hold the 3400 * exclusive lock on this page, the page 3401 * can not be changed while we drop phm. 3402 * This is also not a lock protocol violation, 3403 * but rather the proper way to do things. 3404 */ 3405 mutex_exit(phm); 3406 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 3407 if (pp->p_szc != 0) { 3408 ASSERT(!IS_SWAPFSVP(vp)); 3409 ASSERT(!VN_ISKAS(vp)); 3410 page_demote_vp_pages(pp); 3411 ASSERT(pp->p_szc == 0); 3412 } 3413 mutex_enter(phm); 3414 } else if (pp->p_szc != 0) { 3415 ASSERT(!IS_SWAPFSVP(vp)); 3416 ASSERT(!VN_ISKAS(vp)); 3417 mutex_exit(phm); 3418 page_demote_vp_pages(pp); 3419 ASSERT(pp->p_szc == 0); 3420 mutex_enter(phm); 3421 } 3422 page_hashout(pp, phm); 3423 } 3424 /* 3425 * Hash in the page with the new identity. 3426 */ 3427 if (!page_hashin(opp, vp, off, phm)) { 3428 /* 3429 * We were holding phm while we searched for [vp, off] 3430 * and only dropped phm if we found and locked a page. 3431 * If we can't create this page now, then some thing 3432 * is really broken. 3433 */ 3434 panic("page_rename: Can't hash in page: %p", (void *)pp); 3435 /*NOTREACHED*/ 3436 } 3437 3438 ASSERT(MUTEX_HELD(phm)); 3439 mutex_exit(phm); 3440 3441 /* 3442 * Now that we have dropped phm, lets get around to finishing up 3443 * with pp. 3444 */ 3445 if (pp != NULL) { 3446 ASSERT(!hat_page_is_mapped(pp)); 3447 /* for now large pages should not end up here */ 3448 ASSERT(pp->p_szc == 0); 3449 /* 3450 * Save the locks for transfer to the new page and then 3451 * clear them so page_free doesn't think they're important. 3452 * The page_struct_lock need not be acquired for lckcnt and 3453 * cowcnt since the page has an "exclusive" lock. 3454 */ 3455 olckcnt = pp->p_lckcnt; 3456 ocowcnt = pp->p_cowcnt; 3457 pp->p_lckcnt = pp->p_cowcnt = 0; 3458 3459 /* 3460 * Put the page on the "free" list after we drop 3461 * the lock. The less work under the lock the better. 3462 */ 3463 /*LINTED: constant in conditional context*/ 3464 VN_DISPOSE(pp, B_FREE, 0, kcred); 3465 } 3466 3467 /* 3468 * Transfer the lock count from the old page (if any). 3469 * The page_struct_lock need not be acquired for lckcnt and 3470 * cowcnt since the page has an "exclusive" lock. 3471 */ 3472 opp->p_lckcnt += olckcnt; 3473 opp->p_cowcnt += ocowcnt; 3474 } 3475 3476 /* 3477 * low level routine to add page `pp' to the hash and vp chains for [vp, offset] 3478 * 3479 * Pages are normally inserted at the start of a vnode's v_pages list. 3480 * If the vnode is VMODSORT and the page is modified, it goes at the end. 3481 * This can happen when a modified page is relocated for DR. 3482 * 3483 * Returns 1 on success and 0 on failure. 3484 */ 3485 static int 3486 page_do_hashin(page_t *pp, vnode_t *vp, u_offset_t offset) 3487 { 3488 page_t **listp; 3489 page_t *tp; 3490 ulong_t index; 3491 3492 ASSERT(PAGE_EXCL(pp)); 3493 ASSERT(vp != NULL); 3494 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3495 3496 /* 3497 * Be sure to set these up before the page is inserted on the hash 3498 * list. As soon as the page is placed on the list some other 3499 * thread might get confused and wonder how this page could 3500 * possibly hash to this list. 3501 */ 3502 pp->p_vnode = vp; 3503 pp->p_offset = offset; 3504 3505 /* 3506 * record if this page is on a swap vnode 3507 */ 3508 if ((vp->v_flag & VISSWAP) != 0) 3509 PP_SETSWAP(pp); 3510 3511 index = PAGE_HASH_FUNC(vp, offset); 3512 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(index))); 3513 listp = &page_hash[index]; 3514 3515 /* 3516 * If this page is already hashed in, fail this attempt to add it. 3517 */ 3518 for (tp = *listp; tp != NULL; tp = tp->p_hash) { 3519 if (tp->p_vnode == vp && tp->p_offset == offset) { 3520 pp->p_vnode = NULL; 3521 pp->p_offset = (u_offset_t)(-1); 3522 return (0); 3523 } 3524 } 3525 pp->p_hash = *listp; 3526 *listp = pp; 3527 3528 /* 3529 * Add the page to the vnode's list of pages 3530 */ 3531 if (vp->v_pages != NULL && IS_VMODSORT(vp) && hat_ismod(pp)) 3532 listp = &vp->v_pages->p_vpprev->p_vpnext; 3533 else 3534 listp = &vp->v_pages; 3535 3536 page_vpadd(listp, pp); 3537 3538 return (1); 3539 } 3540 3541 /* 3542 * Add page `pp' to both the hash and vp chains for [vp, offset]. 3543 * 3544 * Returns 1 on success and 0 on failure. 3545 * If hold is passed in, it is not dropped. 3546 */ 3547 int 3548 page_hashin(page_t *pp, vnode_t *vp, u_offset_t offset, kmutex_t *hold) 3549 { 3550 kmutex_t *phm = NULL; 3551 kmutex_t *vphm; 3552 int rc; 3553 3554 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3555 3556 TRACE_3(TR_FAC_VM, TR_PAGE_HASHIN, 3557 "page_hashin:pp %p vp %p offset %llx", 3558 pp, vp, offset); 3559 3560 VM_STAT_ADD(hashin_count); 3561 3562 if (hold != NULL) 3563 phm = hold; 3564 else { 3565 VM_STAT_ADD(hashin_not_held); 3566 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, offset)); 3567 mutex_enter(phm); 3568 } 3569 3570 vphm = page_vnode_mutex(vp); 3571 mutex_enter(vphm); 3572 rc = page_do_hashin(pp, vp, offset); 3573 mutex_exit(vphm); 3574 if (hold == NULL) 3575 mutex_exit(phm); 3576 if (rc == 0) 3577 VM_STAT_ADD(hashin_already); 3578 return (rc); 3579 } 3580 3581 /* 3582 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3583 * All mutexes must be held 3584 */ 3585 static void 3586 page_do_hashout(page_t *pp) 3587 { 3588 page_t **hpp; 3589 page_t *hp; 3590 vnode_t *vp = pp->p_vnode; 3591 3592 ASSERT(vp != NULL); 3593 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 3594 3595 /* 3596 * First, take pp off of its hash chain. 3597 */ 3598 hpp = &page_hash[PAGE_HASH_FUNC(vp, pp->p_offset)]; 3599 3600 for (;;) { 3601 hp = *hpp; 3602 if (hp == pp) 3603 break; 3604 if (hp == NULL) { 3605 panic("page_do_hashout"); 3606 /*NOTREACHED*/ 3607 } 3608 hpp = &hp->p_hash; 3609 } 3610 *hpp = pp->p_hash; 3611 3612 /* 3613 * Now remove it from its associated vnode. 3614 */ 3615 if (vp->v_pages) 3616 page_vpsub(&vp->v_pages, pp); 3617 3618 pp->p_hash = NULL; 3619 page_clr_all_props(pp); 3620 PP_CLRSWAP(pp); 3621 pp->p_vnode = NULL; 3622 pp->p_offset = (u_offset_t)-1; 3623 } 3624 3625 /* 3626 * Remove page ``pp'' from the hash and vp chains and remove vp association. 3627 * 3628 * When `phm' is non-NULL it contains the address of the mutex protecting the 3629 * hash list pp is on. It is not dropped. 3630 */ 3631 void 3632 page_hashout(page_t *pp, kmutex_t *phm) 3633 { 3634 vnode_t *vp; 3635 ulong_t index; 3636 kmutex_t *nphm; 3637 kmutex_t *vphm; 3638 kmutex_t *sep; 3639 3640 ASSERT(phm != NULL ? MUTEX_HELD(phm) : 1); 3641 ASSERT(pp->p_vnode != NULL); 3642 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr); 3643 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(pp->p_vnode))); 3644 3645 vp = pp->p_vnode; 3646 3647 TRACE_2(TR_FAC_VM, TR_PAGE_HASHOUT, 3648 "page_hashout:pp %p vp %p", pp, vp); 3649 3650 /* Kernel probe */ 3651 TNF_PROBE_2(page_unmap, "vm pagefault", /* CSTYLED */, 3652 tnf_opaque, vnode, vp, 3653 tnf_offset, offset, pp->p_offset); 3654 3655 /* 3656 * 3657 */ 3658 VM_STAT_ADD(hashout_count); 3659 index = PAGE_HASH_FUNC(vp, pp->p_offset); 3660 if (phm == NULL) { 3661 VM_STAT_ADD(hashout_not_held); 3662 nphm = PAGE_HASH_MUTEX(index); 3663 mutex_enter(nphm); 3664 } 3665 ASSERT(phm ? phm == PAGE_HASH_MUTEX(index) : 1); 3666 3667 3668 /* 3669 * grab page vnode mutex and remove it... 3670 */ 3671 vphm = page_vnode_mutex(vp); 3672 mutex_enter(vphm); 3673 3674 page_do_hashout(pp); 3675 3676 mutex_exit(vphm); 3677 if (phm == NULL) 3678 mutex_exit(nphm); 3679 3680 /* 3681 * Wake up processes waiting for this page. The page's 3682 * identity has been changed, and is probably not the 3683 * desired page any longer. 3684 */ 3685 sep = page_se_mutex(pp); 3686 mutex_enter(sep); 3687 pp->p_selock &= ~SE_EWANTED; 3688 if (CV_HAS_WAITERS(&pp->p_cv)) 3689 cv_broadcast(&pp->p_cv); 3690 mutex_exit(sep); 3691 } 3692 3693 /* 3694 * Add the page to the front of a linked list of pages 3695 * using the p_next & p_prev pointers for the list. 3696 * The caller is responsible for protecting the list pointers. 3697 */ 3698 void 3699 page_add(page_t **ppp, page_t *pp) 3700 { 3701 ASSERT(PAGE_EXCL(pp) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3702 3703 page_add_common(ppp, pp); 3704 } 3705 3706 3707 3708 /* 3709 * Common code for page_add() and mach_page_add() 3710 */ 3711 void 3712 page_add_common(page_t **ppp, page_t *pp) 3713 { 3714 if (*ppp == NULL) { 3715 pp->p_next = pp->p_prev = pp; 3716 } else { 3717 pp->p_next = *ppp; 3718 pp->p_prev = (*ppp)->p_prev; 3719 (*ppp)->p_prev = pp; 3720 pp->p_prev->p_next = pp; 3721 } 3722 *ppp = pp; 3723 } 3724 3725 3726 /* 3727 * Remove this page from a linked list of pages 3728 * using the p_next & p_prev pointers for the list. 3729 * 3730 * The caller is responsible for protecting the list pointers. 3731 */ 3732 void 3733 page_sub(page_t **ppp, page_t *pp) 3734 { 3735 ASSERT((PP_ISFREE(pp)) ? 1 : 3736 (PAGE_EXCL(pp)) || (PAGE_SHARED(pp) && page_iolock_assert(pp))); 3737 3738 if (*ppp == NULL || pp == NULL) { 3739 panic("page_sub: bad arg(s): pp %p, *ppp %p", 3740 (void *)pp, (void *)(*ppp)); 3741 /*NOTREACHED*/ 3742 } 3743 3744 page_sub_common(ppp, pp); 3745 } 3746 3747 3748 /* 3749 * Common code for page_sub() and mach_page_sub() 3750 */ 3751 void 3752 page_sub_common(page_t **ppp, page_t *pp) 3753 { 3754 if (*ppp == pp) 3755 *ppp = pp->p_next; /* go to next page */ 3756 3757 if (*ppp == pp) 3758 *ppp = NULL; /* page list is gone */ 3759 else { 3760 pp->p_prev->p_next = pp->p_next; 3761 pp->p_next->p_prev = pp->p_prev; 3762 } 3763 pp->p_prev = pp->p_next = pp; /* make pp a list of one */ 3764 } 3765 3766 3767 /* 3768 * Break page list cppp into two lists with npages in the first list. 3769 * The tail is returned in nppp. 3770 */ 3771 void 3772 page_list_break(page_t **oppp, page_t **nppp, pgcnt_t npages) 3773 { 3774 page_t *s1pp = *oppp; 3775 page_t *s2pp; 3776 page_t *e1pp, *e2pp; 3777 long n = 0; 3778 3779 if (s1pp == NULL) { 3780 *nppp = NULL; 3781 return; 3782 } 3783 if (npages == 0) { 3784 *nppp = s1pp; 3785 *oppp = NULL; 3786 return; 3787 } 3788 for (n = 0, s2pp = *oppp; n < npages; n++) { 3789 s2pp = s2pp->p_next; 3790 } 3791 /* Fix head and tail of new lists */ 3792 e1pp = s2pp->p_prev; 3793 e2pp = s1pp->p_prev; 3794 s1pp->p_prev = e1pp; 3795 e1pp->p_next = s1pp; 3796 s2pp->p_prev = e2pp; 3797 e2pp->p_next = s2pp; 3798 3799 /* second list empty */ 3800 if (s2pp == s1pp) { 3801 *oppp = s1pp; 3802 *nppp = NULL; 3803 } else { 3804 *oppp = s1pp; 3805 *nppp = s2pp; 3806 } 3807 } 3808 3809 /* 3810 * Concatenate page list nppp onto the end of list ppp. 3811 */ 3812 void 3813 page_list_concat(page_t **ppp, page_t **nppp) 3814 { 3815 page_t *s1pp, *s2pp, *e1pp, *e2pp; 3816 3817 if (*nppp == NULL) { 3818 return; 3819 } 3820 if (*ppp == NULL) { 3821 *ppp = *nppp; 3822 return; 3823 } 3824 s1pp = *ppp; 3825 e1pp = s1pp->p_prev; 3826 s2pp = *nppp; 3827 e2pp = s2pp->p_prev; 3828 s1pp->p_prev = e2pp; 3829 e2pp->p_next = s1pp; 3830 e1pp->p_next = s2pp; 3831 s2pp->p_prev = e1pp; 3832 } 3833 3834 /* 3835 * return the next page in the page list 3836 */ 3837 page_t * 3838 page_list_next(page_t *pp) 3839 { 3840 return (pp->p_next); 3841 } 3842 3843 3844 /* 3845 * Add the page to the front of the linked list of pages 3846 * using p_vpnext/p_vpprev pointers for the list. 3847 * 3848 * The caller is responsible for protecting the lists. 3849 */ 3850 void 3851 page_vpadd(page_t **ppp, page_t *pp) 3852 { 3853 if (*ppp == NULL) { 3854 pp->p_vpnext = pp->p_vpprev = pp; 3855 } else { 3856 pp->p_vpnext = *ppp; 3857 pp->p_vpprev = (*ppp)->p_vpprev; 3858 (*ppp)->p_vpprev = pp; 3859 pp->p_vpprev->p_vpnext = pp; 3860 } 3861 *ppp = pp; 3862 } 3863 3864 /* 3865 * Remove this page from the linked list of pages 3866 * using p_vpnext/p_vpprev pointers for the list. 3867 * 3868 * The caller is responsible for protecting the lists. 3869 */ 3870 void 3871 page_vpsub(page_t **ppp, page_t *pp) 3872 { 3873 if (*ppp == NULL || pp == NULL) { 3874 panic("page_vpsub: bad arg(s): pp %p, *ppp %p", 3875 (void *)pp, (void *)(*ppp)); 3876 /*NOTREACHED*/ 3877 } 3878 3879 if (*ppp == pp) 3880 *ppp = pp->p_vpnext; /* go to next page */ 3881 3882 if (*ppp == pp) 3883 *ppp = NULL; /* page list is gone */ 3884 else { 3885 pp->p_vpprev->p_vpnext = pp->p_vpnext; 3886 pp->p_vpnext->p_vpprev = pp->p_vpprev; 3887 } 3888 pp->p_vpprev = pp->p_vpnext = pp; /* make pp a list of one */ 3889 } 3890 3891 /* 3892 * Lock a physical page into memory "long term". Used to support "lock 3893 * in memory" functions. Accepts the page to be locked, and a cow variable 3894 * to indicate whether a the lock will travel to the new page during 3895 * a potential copy-on-write. 3896 */ 3897 int 3898 page_pp_lock( 3899 page_t *pp, /* page to be locked */ 3900 int cow, /* cow lock */ 3901 int kernel) /* must succeed -- ignore checking */ 3902 { 3903 int r = 0; /* result -- assume failure */ 3904 3905 ASSERT(PAGE_LOCKED(pp)); 3906 3907 page_struct_lock(pp); 3908 /* 3909 * Acquire the "freemem_lock" for availrmem. 3910 */ 3911 if (cow) { 3912 mutex_enter(&freemem_lock); 3913 if ((availrmem > pages_pp_maximum) && 3914 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 3915 availrmem--; 3916 pages_locked++; 3917 mutex_exit(&freemem_lock); 3918 r = 1; 3919 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 3920 cmn_err(CE_WARN, 3921 "COW lock limit reached on pfn 0x%lx", 3922 page_pptonum(pp)); 3923 } 3924 } else 3925 mutex_exit(&freemem_lock); 3926 } else { 3927 if (pp->p_lckcnt) { 3928 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 3929 r = 1; 3930 if (++pp->p_lckcnt == 3931 (ushort_t)PAGE_LOCK_MAXIMUM) { 3932 cmn_err(CE_WARN, "Page lock limit " 3933 "reached on pfn 0x%lx", 3934 page_pptonum(pp)); 3935 } 3936 } 3937 } else { 3938 if (kernel) { 3939 /* availrmem accounting done by caller */ 3940 ++pp->p_lckcnt; 3941 r = 1; 3942 } else { 3943 mutex_enter(&freemem_lock); 3944 if (availrmem > pages_pp_maximum) { 3945 availrmem--; 3946 pages_locked++; 3947 ++pp->p_lckcnt; 3948 r = 1; 3949 } 3950 mutex_exit(&freemem_lock); 3951 } 3952 } 3953 } 3954 page_struct_unlock(pp); 3955 return (r); 3956 } 3957 3958 /* 3959 * Decommit a lock on a physical page frame. Account for cow locks if 3960 * appropriate. 3961 */ 3962 void 3963 page_pp_unlock( 3964 page_t *pp, /* page to be unlocked */ 3965 int cow, /* expect cow lock */ 3966 int kernel) /* this was a kernel lock */ 3967 { 3968 ASSERT(PAGE_LOCKED(pp)); 3969 3970 page_struct_lock(pp); 3971 /* 3972 * Acquire the "freemem_lock" for availrmem. 3973 * If cowcnt or lcknt is already 0 do nothing; i.e., we 3974 * could be called to unlock even if nothing is locked. This could 3975 * happen if locked file pages were truncated (removing the lock) 3976 * and the file was grown again and new pages faulted in; the new 3977 * pages are unlocked but the segment still thinks they're locked. 3978 */ 3979 if (cow) { 3980 if (pp->p_cowcnt) { 3981 mutex_enter(&freemem_lock); 3982 pp->p_cowcnt--; 3983 availrmem++; 3984 pages_locked--; 3985 mutex_exit(&freemem_lock); 3986 } 3987 } else { 3988 if (pp->p_lckcnt && --pp->p_lckcnt == 0) { 3989 if (!kernel) { 3990 mutex_enter(&freemem_lock); 3991 availrmem++; 3992 pages_locked--; 3993 mutex_exit(&freemem_lock); 3994 } 3995 } 3996 } 3997 page_struct_unlock(pp); 3998 } 3999 4000 /* 4001 * This routine reserves availrmem for npages; 4002 * flags: KM_NOSLEEP or KM_SLEEP 4003 * returns 1 on success or 0 on failure 4004 */ 4005 int 4006 page_resv(pgcnt_t npages, uint_t flags) 4007 { 4008 mutex_enter(&freemem_lock); 4009 while (availrmem < tune.t_minarmem + npages) { 4010 if (flags & KM_NOSLEEP) { 4011 mutex_exit(&freemem_lock); 4012 return (0); 4013 } 4014 mutex_exit(&freemem_lock); 4015 page_needfree(npages); 4016 kmem_reap(); 4017 delay(hz >> 2); 4018 page_needfree(-(spgcnt_t)npages); 4019 mutex_enter(&freemem_lock); 4020 } 4021 availrmem -= npages; 4022 mutex_exit(&freemem_lock); 4023 return (1); 4024 } 4025 4026 /* 4027 * This routine unreserves availrmem for npages; 4028 */ 4029 void 4030 page_unresv(pgcnt_t npages) 4031 { 4032 mutex_enter(&freemem_lock); 4033 availrmem += npages; 4034 mutex_exit(&freemem_lock); 4035 } 4036 4037 /* 4038 * See Statement at the beginning of segvn_lockop() regarding 4039 * the way we handle cowcnts and lckcnts. 4040 * 4041 * Transfer cowcnt on 'opp' to cowcnt on 'npp' if the vpage 4042 * that breaks COW has PROT_WRITE. 4043 * 4044 * Note that, we may also break COW in case we are softlocking 4045 * on read access during physio; 4046 * in this softlock case, the vpage may not have PROT_WRITE. 4047 * So, we need to transfer lckcnt on 'opp' to lckcnt on 'npp' 4048 * if the vpage doesn't have PROT_WRITE. 4049 * 4050 * This routine is never called if we are stealing a page 4051 * in anon_private. 4052 * 4053 * The caller subtracted from availrmem for read only mapping. 4054 * if lckcnt is 1 increment availrmem. 4055 */ 4056 void 4057 page_pp_useclaim( 4058 page_t *opp, /* original page frame losing lock */ 4059 page_t *npp, /* new page frame gaining lock */ 4060 uint_t write_perm) /* set if vpage has PROT_WRITE */ 4061 { 4062 int payback = 0; 4063 4064 ASSERT(PAGE_LOCKED(opp)); 4065 ASSERT(PAGE_LOCKED(npp)); 4066 4067 page_struct_lock(opp); 4068 4069 ASSERT(npp->p_cowcnt == 0); 4070 ASSERT(npp->p_lckcnt == 0); 4071 4072 /* Don't use claim if nothing is locked (see page_pp_unlock above) */ 4073 if ((write_perm && opp->p_cowcnt != 0) || 4074 (!write_perm && opp->p_lckcnt != 0)) { 4075 4076 if (write_perm) { 4077 npp->p_cowcnt++; 4078 ASSERT(opp->p_cowcnt != 0); 4079 opp->p_cowcnt--; 4080 } else { 4081 4082 ASSERT(opp->p_lckcnt != 0); 4083 4084 /* 4085 * We didn't need availrmem decremented if p_lckcnt on 4086 * original page is 1. Here, we are unlocking 4087 * read-only copy belonging to original page and 4088 * are locking a copy belonging to new page. 4089 */ 4090 if (opp->p_lckcnt == 1) 4091 payback = 1; 4092 4093 npp->p_lckcnt++; 4094 opp->p_lckcnt--; 4095 } 4096 } 4097 if (payback) { 4098 mutex_enter(&freemem_lock); 4099 availrmem++; 4100 pages_useclaim--; 4101 mutex_exit(&freemem_lock); 4102 } 4103 page_struct_unlock(opp); 4104 } 4105 4106 /* 4107 * Simple claim adjust functions -- used to support changes in 4108 * claims due to changes in access permissions. Used by segvn_setprot(). 4109 */ 4110 int 4111 page_addclaim(page_t *pp) 4112 { 4113 int r = 0; /* result */ 4114 4115 ASSERT(PAGE_LOCKED(pp)); 4116 4117 page_struct_lock(pp); 4118 ASSERT(pp->p_lckcnt != 0); 4119 4120 if (pp->p_lckcnt == 1) { 4121 if (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4122 --pp->p_lckcnt; 4123 r = 1; 4124 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4125 cmn_err(CE_WARN, 4126 "COW lock limit reached on pfn 0x%lx", 4127 page_pptonum(pp)); 4128 } 4129 } 4130 } else { 4131 mutex_enter(&freemem_lock); 4132 if ((availrmem > pages_pp_maximum) && 4133 (pp->p_cowcnt < (ushort_t)PAGE_LOCK_MAXIMUM)) { 4134 --availrmem; 4135 ++pages_claimed; 4136 mutex_exit(&freemem_lock); 4137 --pp->p_lckcnt; 4138 r = 1; 4139 if (++pp->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4140 cmn_err(CE_WARN, 4141 "COW lock limit reached on pfn 0x%lx", 4142 page_pptonum(pp)); 4143 } 4144 } else 4145 mutex_exit(&freemem_lock); 4146 } 4147 page_struct_unlock(pp); 4148 return (r); 4149 } 4150 4151 int 4152 page_subclaim(page_t *pp) 4153 { 4154 int r = 0; 4155 4156 ASSERT(PAGE_LOCKED(pp)); 4157 4158 page_struct_lock(pp); 4159 ASSERT(pp->p_cowcnt != 0); 4160 4161 if (pp->p_lckcnt) { 4162 if (pp->p_lckcnt < (ushort_t)PAGE_LOCK_MAXIMUM) { 4163 r = 1; 4164 /* 4165 * for availrmem 4166 */ 4167 mutex_enter(&freemem_lock); 4168 availrmem++; 4169 pages_claimed--; 4170 mutex_exit(&freemem_lock); 4171 4172 pp->p_cowcnt--; 4173 4174 if (++pp->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4175 cmn_err(CE_WARN, 4176 "Page lock limit reached on pfn 0x%lx", 4177 page_pptonum(pp)); 4178 } 4179 } 4180 } else { 4181 r = 1; 4182 pp->p_cowcnt--; 4183 pp->p_lckcnt++; 4184 } 4185 page_struct_unlock(pp); 4186 return (r); 4187 } 4188 4189 int 4190 page_addclaim_pages(page_t **ppa) 4191 { 4192 4193 pgcnt_t lckpgs = 0, pg_idx; 4194 4195 VM_STAT_ADD(pagecnt.pc_addclaim_pages); 4196 4197 mutex_enter(&page_llock); 4198 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4199 4200 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4201 ASSERT(ppa[pg_idx]->p_lckcnt != 0); 4202 if (ppa[pg_idx]->p_cowcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4203 mutex_exit(&page_llock); 4204 return (0); 4205 } 4206 if (ppa[pg_idx]->p_lckcnt > 1) 4207 lckpgs++; 4208 } 4209 4210 if (lckpgs != 0) { 4211 mutex_enter(&freemem_lock); 4212 if (availrmem >= pages_pp_maximum + lckpgs) { 4213 availrmem -= lckpgs; 4214 pages_claimed += lckpgs; 4215 } else { 4216 mutex_exit(&freemem_lock); 4217 mutex_exit(&page_llock); 4218 return (0); 4219 } 4220 mutex_exit(&freemem_lock); 4221 } 4222 4223 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4224 ppa[pg_idx]->p_lckcnt--; 4225 ppa[pg_idx]->p_cowcnt++; 4226 } 4227 mutex_exit(&page_llock); 4228 return (1); 4229 } 4230 4231 int 4232 page_subclaim_pages(page_t **ppa) 4233 { 4234 pgcnt_t ulckpgs = 0, pg_idx; 4235 4236 VM_STAT_ADD(pagecnt.pc_subclaim_pages); 4237 4238 mutex_enter(&page_llock); 4239 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4240 4241 ASSERT(PAGE_LOCKED(ppa[pg_idx])); 4242 ASSERT(ppa[pg_idx]->p_cowcnt != 0); 4243 if (ppa[pg_idx]->p_lckcnt == (ushort_t)PAGE_LOCK_MAXIMUM) { 4244 mutex_exit(&page_llock); 4245 return (0); 4246 } 4247 if (ppa[pg_idx]->p_lckcnt != 0) 4248 ulckpgs++; 4249 } 4250 4251 if (ulckpgs != 0) { 4252 mutex_enter(&freemem_lock); 4253 availrmem += ulckpgs; 4254 pages_claimed -= ulckpgs; 4255 mutex_exit(&freemem_lock); 4256 } 4257 4258 for (pg_idx = 0; ppa[pg_idx] != NULL; pg_idx++) { 4259 ppa[pg_idx]->p_cowcnt--; 4260 ppa[pg_idx]->p_lckcnt++; 4261 4262 } 4263 mutex_exit(&page_llock); 4264 return (1); 4265 } 4266 4267 page_t * 4268 page_numtopp(pfn_t pfnum, se_t se) 4269 { 4270 page_t *pp; 4271 4272 retry: 4273 pp = page_numtopp_nolock(pfnum); 4274 if (pp == NULL) { 4275 return ((page_t *)NULL); 4276 } 4277 4278 /* 4279 * Acquire the appropriate lock on the page. 4280 */ 4281 while (!page_lock(pp, se, (kmutex_t *)NULL, P_RECLAIM)) { 4282 if (page_pptonum(pp) != pfnum) 4283 goto retry; 4284 continue; 4285 } 4286 4287 if (page_pptonum(pp) != pfnum) { 4288 page_unlock(pp); 4289 goto retry; 4290 } 4291 4292 return (pp); 4293 } 4294 4295 page_t * 4296 page_numtopp_noreclaim(pfn_t pfnum, se_t se) 4297 { 4298 page_t *pp; 4299 4300 retry: 4301 pp = page_numtopp_nolock(pfnum); 4302 if (pp == NULL) { 4303 return ((page_t *)NULL); 4304 } 4305 4306 /* 4307 * Acquire the appropriate lock on the page. 4308 */ 4309 while (!page_lock(pp, se, (kmutex_t *)NULL, P_NO_RECLAIM)) { 4310 if (page_pptonum(pp) != pfnum) 4311 goto retry; 4312 continue; 4313 } 4314 4315 if (page_pptonum(pp) != pfnum) { 4316 page_unlock(pp); 4317 goto retry; 4318 } 4319 4320 return (pp); 4321 } 4322 4323 /* 4324 * This routine is like page_numtopp, but will only return page structs 4325 * for pages which are ok for loading into hardware using the page struct. 4326 */ 4327 page_t * 4328 page_numtopp_nowait(pfn_t pfnum, se_t se) 4329 { 4330 page_t *pp; 4331 4332 retry: 4333 pp = page_numtopp_nolock(pfnum); 4334 if (pp == NULL) { 4335 return ((page_t *)NULL); 4336 } 4337 4338 /* 4339 * Try to acquire the appropriate lock on the page. 4340 */ 4341 if (PP_ISFREE(pp)) 4342 pp = NULL; 4343 else { 4344 if (!page_trylock(pp, se)) 4345 pp = NULL; 4346 else { 4347 if (page_pptonum(pp) != pfnum) { 4348 page_unlock(pp); 4349 goto retry; 4350 } 4351 if (PP_ISFREE(pp)) { 4352 page_unlock(pp); 4353 pp = NULL; 4354 } 4355 } 4356 } 4357 return (pp); 4358 } 4359 4360 /* 4361 * Returns a count of dirty pages that are in the process 4362 * of being written out. If 'cleanit' is set, try to push the page. 4363 */ 4364 pgcnt_t 4365 page_busy(int cleanit) 4366 { 4367 page_t *page0 = page_first(); 4368 page_t *pp = page0; 4369 pgcnt_t nppbusy = 0; 4370 u_offset_t off; 4371 4372 do { 4373 vnode_t *vp = pp->p_vnode; 4374 4375 /* 4376 * A page is a candidate for syncing if it is: 4377 * 4378 * (a) On neither the freelist nor the cachelist 4379 * (b) Hashed onto a vnode 4380 * (c) Not a kernel page 4381 * (d) Dirty 4382 * (e) Not part of a swapfile 4383 * (f) a page which belongs to a real vnode; eg has a non-null 4384 * v_vfsp pointer. 4385 * (g) Backed by a filesystem which doesn't have a 4386 * stubbed-out sync operation 4387 */ 4388 if (!PP_ISFREE(pp) && vp != NULL && !VN_ISKAS(vp) && 4389 hat_ismod(pp) && !IS_SWAPVP(vp) && vp->v_vfsp != NULL && 4390 vfs_can_sync(vp->v_vfsp)) { 4391 nppbusy++; 4392 vfs_syncprogress(); 4393 4394 if (!cleanit) 4395 continue; 4396 if (!page_trylock(pp, SE_EXCL)) 4397 continue; 4398 4399 if (PP_ISFREE(pp) || vp == NULL || IS_SWAPVP(vp) || 4400 pp->p_lckcnt != 0 || pp->p_cowcnt != 0 || 4401 !(hat_pagesync(pp, 4402 HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) & P_MOD)) { 4403 page_unlock(pp); 4404 continue; 4405 } 4406 off = pp->p_offset; 4407 VN_HOLD(vp); 4408 page_unlock(pp); 4409 (void) VOP_PUTPAGE(vp, off, PAGESIZE, 4410 B_ASYNC | B_FREE, kcred, NULL); 4411 VN_RELE(vp); 4412 } 4413 } while ((pp = page_next(pp)) != page0); 4414 4415 return (nppbusy); 4416 } 4417 4418 void page_invalidate_pages(void); 4419 4420 /* 4421 * callback handler to vm sub-system 4422 * 4423 * callers make sure no recursive entries to this func. 4424 */ 4425 /*ARGSUSED*/ 4426 boolean_t 4427 callb_vm_cpr(void *arg, int code) 4428 { 4429 if (code == CB_CODE_CPR_CHKPT) 4430 page_invalidate_pages(); 4431 return (B_TRUE); 4432 } 4433 4434 /* 4435 * Invalidate all pages of the system. 4436 * It shouldn't be called until all user page activities are all stopped. 4437 */ 4438 void 4439 page_invalidate_pages() 4440 { 4441 page_t *pp; 4442 page_t *page0; 4443 pgcnt_t nbusypages; 4444 int retry = 0; 4445 const int MAXRETRIES = 4; 4446 #if defined(__sparc) 4447 extern struct vnode prom_ppages; 4448 #endif /* __sparc */ 4449 4450 top: 4451 /* 4452 * Flush dirty pages and destroy the clean ones. 4453 */ 4454 nbusypages = 0; 4455 4456 pp = page0 = page_first(); 4457 do { 4458 struct vnode *vp; 4459 u_offset_t offset; 4460 int mod; 4461 4462 /* 4463 * skip the page if it has no vnode or the page associated 4464 * with the kernel vnode or prom allocated kernel mem. 4465 */ 4466 #if defined(__sparc) 4467 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp) || 4468 vp == &prom_ppages) 4469 #else /* x86 doesn't have prom or prom_ppage */ 4470 if ((vp = pp->p_vnode) == NULL || VN_ISKAS(vp)) 4471 #endif /* __sparc */ 4472 continue; 4473 4474 /* 4475 * skip the page which is already free invalidated. 4476 */ 4477 if (PP_ISFREE(pp) && PP_ISAGED(pp)) 4478 continue; 4479 4480 /* 4481 * skip pages that are already locked or can't be "exclusively" 4482 * locked or are already free. After we lock the page, check 4483 * the free and age bits again to be sure it's not destroied 4484 * yet. 4485 * To achieve max. parallelization, we use page_trylock instead 4486 * of page_lock so that we don't get block on individual pages 4487 * while we have thousands of other pages to process. 4488 */ 4489 if (!page_trylock(pp, SE_EXCL)) { 4490 nbusypages++; 4491 continue; 4492 } else if (PP_ISFREE(pp)) { 4493 if (!PP_ISAGED(pp)) { 4494 page_destroy_free(pp); 4495 } else { 4496 page_unlock(pp); 4497 } 4498 continue; 4499 } 4500 /* 4501 * Is this page involved in some I/O? shared? 4502 * 4503 * The page_struct_lock need not be acquired to 4504 * examine these fields since the page has an 4505 * "exclusive" lock. 4506 */ 4507 if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) { 4508 page_unlock(pp); 4509 continue; 4510 } 4511 4512 if (vp->v_type == VCHR) { 4513 panic("vp->v_type == VCHR"); 4514 /*NOTREACHED*/ 4515 } 4516 4517 if (!page_try_demote_pages(pp)) { 4518 page_unlock(pp); 4519 continue; 4520 } 4521 4522 /* 4523 * Check the modified bit. Leave the bits alone in hardware 4524 * (they will be modified if we do the putpage). 4525 */ 4526 mod = (hat_pagesync(pp, HAT_SYNC_DONTZERO | HAT_SYNC_STOPON_MOD) 4527 & P_MOD); 4528 if (mod) { 4529 offset = pp->p_offset; 4530 /* 4531 * Hold the vnode before releasing the page lock 4532 * to prevent it from being freed and re-used by 4533 * some other thread. 4534 */ 4535 VN_HOLD(vp); 4536 page_unlock(pp); 4537 /* 4538 * No error return is checked here. Callers such as 4539 * cpr deals with the dirty pages at the dump time 4540 * if this putpage fails. 4541 */ 4542 (void) VOP_PUTPAGE(vp, offset, PAGESIZE, B_INVAL, 4543 kcred, NULL); 4544 VN_RELE(vp); 4545 } else { 4546 page_destroy(pp, 0); 4547 } 4548 } while ((pp = page_next(pp)) != page0); 4549 if (nbusypages && retry++ < MAXRETRIES) { 4550 delay(1); 4551 goto top; 4552 } 4553 } 4554 4555 /* 4556 * Replace the page "old" with the page "new" on the page hash and vnode lists 4557 * 4558 * the replacement must be done in place, ie the equivalent sequence: 4559 * 4560 * vp = old->p_vnode; 4561 * off = old->p_offset; 4562 * page_do_hashout(old) 4563 * page_do_hashin(new, vp, off) 4564 * 4565 * doesn't work, since 4566 * 1) if old is the only page on the vnode, the v_pages list has a window 4567 * where it looks empty. This will break file system assumptions. 4568 * and 4569 * 2) pvn_vplist_dirty() can't deal with pages moving on the v_pages list. 4570 */ 4571 static void 4572 page_do_relocate_hash(page_t *new, page_t *old) 4573 { 4574 page_t **hash_list; 4575 vnode_t *vp = old->p_vnode; 4576 kmutex_t *sep; 4577 4578 ASSERT(PAGE_EXCL(old)); 4579 ASSERT(PAGE_EXCL(new)); 4580 ASSERT(vp != NULL); 4581 ASSERT(MUTEX_HELD(page_vnode_mutex(vp))); 4582 ASSERT(MUTEX_HELD(PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, old->p_offset)))); 4583 4584 /* 4585 * First find old page on the page hash list 4586 */ 4587 hash_list = &page_hash[PAGE_HASH_FUNC(vp, old->p_offset)]; 4588 4589 for (;;) { 4590 if (*hash_list == old) 4591 break; 4592 if (*hash_list == NULL) { 4593 panic("page_do_hashout"); 4594 /*NOTREACHED*/ 4595 } 4596 hash_list = &(*hash_list)->p_hash; 4597 } 4598 4599 /* 4600 * update new and replace old with new on the page hash list 4601 */ 4602 new->p_vnode = old->p_vnode; 4603 new->p_offset = old->p_offset; 4604 new->p_hash = old->p_hash; 4605 *hash_list = new; 4606 4607 if ((new->p_vnode->v_flag & VISSWAP) != 0) 4608 PP_SETSWAP(new); 4609 4610 /* 4611 * replace old with new on the vnode's page list 4612 */ 4613 if (old->p_vpnext == old) { 4614 new->p_vpnext = new; 4615 new->p_vpprev = new; 4616 } else { 4617 new->p_vpnext = old->p_vpnext; 4618 new->p_vpprev = old->p_vpprev; 4619 new->p_vpnext->p_vpprev = new; 4620 new->p_vpprev->p_vpnext = new; 4621 } 4622 if (vp->v_pages == old) 4623 vp->v_pages = new; 4624 4625 /* 4626 * clear out the old page 4627 */ 4628 old->p_hash = NULL; 4629 old->p_vpnext = NULL; 4630 old->p_vpprev = NULL; 4631 old->p_vnode = NULL; 4632 PP_CLRSWAP(old); 4633 old->p_offset = (u_offset_t)-1; 4634 page_clr_all_props(old); 4635 4636 /* 4637 * Wake up processes waiting for this page. The page's 4638 * identity has been changed, and is probably not the 4639 * desired page any longer. 4640 */ 4641 sep = page_se_mutex(old); 4642 mutex_enter(sep); 4643 old->p_selock &= ~SE_EWANTED; 4644 if (CV_HAS_WAITERS(&old->p_cv)) 4645 cv_broadcast(&old->p_cv); 4646 mutex_exit(sep); 4647 } 4648 4649 /* 4650 * This function moves the identity of page "pp_old" to page "pp_new". 4651 * Both pages must be locked on entry. "pp_new" is free, has no identity, 4652 * and need not be hashed out from anywhere. 4653 */ 4654 void 4655 page_relocate_hash(page_t *pp_new, page_t *pp_old) 4656 { 4657 vnode_t *vp = pp_old->p_vnode; 4658 u_offset_t off = pp_old->p_offset; 4659 kmutex_t *phm, *vphm; 4660 4661 /* 4662 * Rehash two pages 4663 */ 4664 ASSERT(PAGE_EXCL(pp_old)); 4665 ASSERT(PAGE_EXCL(pp_new)); 4666 ASSERT(vp != NULL); 4667 ASSERT(pp_new->p_vnode == NULL); 4668 4669 /* 4670 * hashout then hashin while holding the mutexes 4671 */ 4672 phm = PAGE_HASH_MUTEX(PAGE_HASH_FUNC(vp, off)); 4673 mutex_enter(phm); 4674 vphm = page_vnode_mutex(vp); 4675 mutex_enter(vphm); 4676 4677 page_do_relocate_hash(pp_new, pp_old); 4678 4679 mutex_exit(vphm); 4680 mutex_exit(phm); 4681 4682 /* 4683 * The page_struct_lock need not be acquired for lckcnt and 4684 * cowcnt since the page has an "exclusive" lock. 4685 */ 4686 ASSERT(pp_new->p_lckcnt == 0); 4687 ASSERT(pp_new->p_cowcnt == 0); 4688 pp_new->p_lckcnt = pp_old->p_lckcnt; 4689 pp_new->p_cowcnt = pp_old->p_cowcnt; 4690 pp_old->p_lckcnt = pp_old->p_cowcnt = 0; 4691 4692 /* The following comment preserved from page_flip(). */ 4693 /* XXX - Do we need to protect fsdata? */ 4694 pp_new->p_fsdata = pp_old->p_fsdata; 4695 } 4696 4697 /* 4698 * Helper routine used to lock all remaining members of a 4699 * large page. The caller is responsible for passing in a locked 4700 * pp. If pp is a large page, then it succeeds in locking all the 4701 * remaining constituent pages or it returns with only the 4702 * original page locked. 4703 * 4704 * Returns 1 on success, 0 on failure. 4705 * 4706 * If success is returned this routine guarantees p_szc for all constituent 4707 * pages of a large page pp belongs to can't change. To achieve this we 4708 * recheck szc of pp after locking all constituent pages and retry if szc 4709 * changed (it could only decrease). Since hat_page_demote() needs an EXCL 4710 * lock on one of constituent pages it can't be running after all constituent 4711 * pages are locked. hat_page_demote() with a lock on a constituent page 4712 * outside of this large page (i.e. pp belonged to a larger large page) is 4713 * already done with all constituent pages of pp since the root's p_szc is 4714 * changed last. Therefore no need to synchronize with hat_page_demote() that 4715 * locked a constituent page outside of pp's current large page. 4716 */ 4717 #ifdef DEBUG 4718 uint32_t gpg_trylock_mtbf = 0; 4719 #endif 4720 4721 int 4722 group_page_trylock(page_t *pp, se_t se) 4723 { 4724 page_t *tpp; 4725 pgcnt_t npgs, i, j; 4726 uint_t pszc = pp->p_szc; 4727 4728 #ifdef DEBUG 4729 if (gpg_trylock_mtbf && !(gethrtime() % gpg_trylock_mtbf)) { 4730 return (0); 4731 } 4732 #endif 4733 4734 if (pp != PP_GROUPLEADER(pp, pszc)) { 4735 return (0); 4736 } 4737 4738 retry: 4739 ASSERT(PAGE_LOCKED_SE(pp, se)); 4740 ASSERT(!PP_ISFREE(pp)); 4741 if (pszc == 0) { 4742 return (1); 4743 } 4744 npgs = page_get_pagecnt(pszc); 4745 tpp = pp + 1; 4746 for (i = 1; i < npgs; i++, tpp++) { 4747 if (!page_trylock(tpp, se)) { 4748 tpp = pp + 1; 4749 for (j = 1; j < i; j++, tpp++) { 4750 page_unlock(tpp); 4751 } 4752 return (0); 4753 } 4754 } 4755 if (pp->p_szc != pszc) { 4756 ASSERT(pp->p_szc < pszc); 4757 ASSERT(pp->p_vnode != NULL && !PP_ISKAS(pp) && 4758 !IS_SWAPFSVP(pp->p_vnode)); 4759 tpp = pp + 1; 4760 for (i = 1; i < npgs; i++, tpp++) { 4761 page_unlock(tpp); 4762 } 4763 pszc = pp->p_szc; 4764 goto retry; 4765 } 4766 return (1); 4767 } 4768 4769 void 4770 group_page_unlock(page_t *pp) 4771 { 4772 page_t *tpp; 4773 pgcnt_t npgs, i; 4774 4775 ASSERT(PAGE_LOCKED(pp)); 4776 ASSERT(!PP_ISFREE(pp)); 4777 ASSERT(pp == PP_PAGEROOT(pp)); 4778 npgs = page_get_pagecnt(pp->p_szc); 4779 for (i = 1, tpp = pp + 1; i < npgs; i++, tpp++) { 4780 page_unlock(tpp); 4781 } 4782 } 4783 4784 /* 4785 * returns 4786 * 0 : on success and *nrelocp is number of relocated PAGESIZE pages 4787 * ERANGE : this is not a base page 4788 * EBUSY : failure to get locks on the page/pages 4789 * ENOMEM : failure to obtain replacement pages 4790 * EAGAIN : OBP has not yet completed its boot-time handoff to the kernel 4791 * EIO : An error occurred while trying to copy the page data 4792 * 4793 * Return with all constituent members of target and replacement 4794 * SE_EXCL locked. It is the callers responsibility to drop the 4795 * locks. 4796 */ 4797 int 4798 do_page_relocate( 4799 page_t **target, 4800 page_t **replacement, 4801 int grouplock, 4802 spgcnt_t *nrelocp, 4803 lgrp_t *lgrp) 4804 { 4805 page_t *first_repl; 4806 page_t *repl; 4807 page_t *targ; 4808 page_t *pl = NULL; 4809 uint_t ppattr; 4810 pfn_t pfn, repl_pfn; 4811 uint_t szc; 4812 spgcnt_t npgs, i; 4813 int repl_contig = 0; 4814 uint_t flags = 0; 4815 spgcnt_t dofree = 0; 4816 4817 *nrelocp = 0; 4818 4819 #if defined(__sparc) 4820 /* 4821 * We need to wait till OBP has completed 4822 * its boot-time handoff of its resources to the kernel 4823 * before we allow page relocation 4824 */ 4825 if (page_relocate_ready == 0) { 4826 return (EAGAIN); 4827 } 4828 #endif 4829 4830 /* 4831 * If this is not a base page, 4832 * just return with 0x0 pages relocated. 4833 */ 4834 targ = *target; 4835 ASSERT(PAGE_EXCL(targ)); 4836 ASSERT(!PP_ISFREE(targ)); 4837 szc = targ->p_szc; 4838 ASSERT(szc < mmu_page_sizes); 4839 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4840 pfn = targ->p_pagenum; 4841 if (pfn != PFN_BASE(pfn, szc)) { 4842 VM_STAT_ADD(vmm_vmstats.ppr_relocnoroot[szc]); 4843 return (ERANGE); 4844 } 4845 4846 if ((repl = *replacement) != NULL && repl->p_szc >= szc) { 4847 repl_pfn = repl->p_pagenum; 4848 if (repl_pfn != PFN_BASE(repl_pfn, szc)) { 4849 VM_STAT_ADD(vmm_vmstats.ppr_reloc_replnoroot[szc]); 4850 return (ERANGE); 4851 } 4852 repl_contig = 1; 4853 } 4854 4855 /* 4856 * We must lock all members of this large page or we cannot 4857 * relocate any part of it. 4858 */ 4859 if (grouplock != 0 && !group_page_trylock(targ, SE_EXCL)) { 4860 VM_STAT_ADD(vmm_vmstats.ppr_relocnolock[targ->p_szc]); 4861 return (EBUSY); 4862 } 4863 4864 /* 4865 * reread szc it could have been decreased before 4866 * group_page_trylock() was done. 4867 */ 4868 szc = targ->p_szc; 4869 ASSERT(szc < mmu_page_sizes); 4870 VM_STAT_ADD(vmm_vmstats.ppr_reloc[szc]); 4871 ASSERT(pfn == PFN_BASE(pfn, szc)); 4872 4873 npgs = page_get_pagecnt(targ->p_szc); 4874 4875 if (repl == NULL) { 4876 dofree = npgs; /* Size of target page in MMU pages */ 4877 if (!page_create_wait(dofree, 0)) { 4878 if (grouplock != 0) { 4879 group_page_unlock(targ); 4880 } 4881 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4882 return (ENOMEM); 4883 } 4884 4885 /* 4886 * seg kmem pages require that the target and replacement 4887 * page be the same pagesize. 4888 */ 4889 flags = (VN_ISKAS(targ->p_vnode)) ? PGR_SAMESZC : 0; 4890 repl = page_get_replacement_page(targ, lgrp, flags); 4891 if (repl == NULL) { 4892 if (grouplock != 0) { 4893 group_page_unlock(targ); 4894 } 4895 page_create_putback(dofree); 4896 VM_STAT_ADD(vmm_vmstats.ppr_relocnomem[szc]); 4897 return (ENOMEM); 4898 } 4899 } 4900 #ifdef DEBUG 4901 else { 4902 ASSERT(PAGE_LOCKED(repl)); 4903 } 4904 #endif /* DEBUG */ 4905 4906 #if defined(__sparc) 4907 /* 4908 * Let hat_page_relocate() complete the relocation if it's kernel page 4909 */ 4910 if (VN_ISKAS(targ->p_vnode)) { 4911 *replacement = repl; 4912 if (hat_page_relocate(target, replacement, nrelocp) != 0) { 4913 if (grouplock != 0) { 4914 group_page_unlock(targ); 4915 } 4916 if (dofree) { 4917 *replacement = NULL; 4918 page_free_replacement_page(repl); 4919 page_create_putback(dofree); 4920 } 4921 VM_STAT_ADD(vmm_vmstats.ppr_krelocfail[szc]); 4922 return (EAGAIN); 4923 } 4924 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 4925 return (0); 4926 } 4927 #else 4928 #if defined(lint) 4929 dofree = dofree; 4930 #endif 4931 #endif 4932 4933 first_repl = repl; 4934 4935 for (i = 0; i < npgs; i++) { 4936 ASSERT(PAGE_EXCL(targ)); 4937 ASSERT(targ->p_slckcnt == 0); 4938 ASSERT(repl->p_slckcnt == 0); 4939 4940 (void) hat_pageunload(targ, HAT_FORCE_PGUNLOAD); 4941 4942 ASSERT(hat_page_getshare(targ) == 0); 4943 ASSERT(!PP_ISFREE(targ)); 4944 ASSERT(targ->p_pagenum == (pfn + i)); 4945 ASSERT(repl_contig == 0 || 4946 repl->p_pagenum == (repl_pfn + i)); 4947 4948 /* 4949 * Copy the page contents and attributes then 4950 * relocate the page in the page hash. 4951 */ 4952 if (ppcopy(targ, repl) == 0) { 4953 targ = *target; 4954 repl = first_repl; 4955 VM_STAT_ADD(vmm_vmstats.ppr_copyfail); 4956 if (grouplock != 0) { 4957 group_page_unlock(targ); 4958 } 4959 if (dofree) { 4960 *replacement = NULL; 4961 page_free_replacement_page(repl); 4962 page_create_putback(dofree); 4963 } 4964 return (EIO); 4965 } 4966 4967 targ++; 4968 if (repl_contig != 0) { 4969 repl++; 4970 } else { 4971 repl = repl->p_next; 4972 } 4973 } 4974 4975 repl = first_repl; 4976 targ = *target; 4977 4978 for (i = 0; i < npgs; i++) { 4979 ppattr = hat_page_getattr(targ, (P_MOD | P_REF | P_RO)); 4980 page_clr_all_props(repl); 4981 page_set_props(repl, ppattr); 4982 page_relocate_hash(repl, targ); 4983 4984 ASSERT(hat_page_getshare(targ) == 0); 4985 ASSERT(hat_page_getshare(repl) == 0); 4986 /* 4987 * Now clear the props on targ, after the 4988 * page_relocate_hash(), they no longer 4989 * have any meaning. 4990 */ 4991 page_clr_all_props(targ); 4992 ASSERT(targ->p_next == targ); 4993 ASSERT(targ->p_prev == targ); 4994 page_list_concat(&pl, &targ); 4995 4996 targ++; 4997 if (repl_contig != 0) { 4998 repl++; 4999 } else { 5000 repl = repl->p_next; 5001 } 5002 } 5003 /* assert that we have come full circle with repl */ 5004 ASSERT(repl_contig == 1 || first_repl == repl); 5005 5006 *target = pl; 5007 if (*replacement == NULL) { 5008 ASSERT(first_repl == repl); 5009 *replacement = repl; 5010 } 5011 VM_STAT_ADD(vmm_vmstats.ppr_relocok[szc]); 5012 *nrelocp = npgs; 5013 return (0); 5014 } 5015 /* 5016 * On success returns 0 and *nrelocp the number of PAGESIZE pages relocated. 5017 */ 5018 int 5019 page_relocate( 5020 page_t **target, 5021 page_t **replacement, 5022 int grouplock, 5023 int freetarget, 5024 spgcnt_t *nrelocp, 5025 lgrp_t *lgrp) 5026 { 5027 spgcnt_t ret; 5028 5029 /* do_page_relocate returns 0 on success or errno value */ 5030 ret = do_page_relocate(target, replacement, grouplock, nrelocp, lgrp); 5031 5032 if (ret != 0 || freetarget == 0) { 5033 return (ret); 5034 } 5035 if (*nrelocp == 1) { 5036 ASSERT(*target != NULL); 5037 page_free(*target, 1); 5038 } else { 5039 page_t *tpp = *target; 5040 uint_t szc = tpp->p_szc; 5041 pgcnt_t npgs = page_get_pagecnt(szc); 5042 ASSERT(npgs > 1); 5043 ASSERT(szc != 0); 5044 do { 5045 ASSERT(PAGE_EXCL(tpp)); 5046 ASSERT(!hat_page_is_mapped(tpp)); 5047 ASSERT(tpp->p_szc == szc); 5048 PP_SETFREE(tpp); 5049 PP_SETAGED(tpp); 5050 npgs--; 5051 } while ((tpp = tpp->p_next) != *target); 5052 ASSERT(npgs == 0); 5053 page_list_add_pages(*target, 0); 5054 npgs = page_get_pagecnt(szc); 5055 page_create_putback(npgs); 5056 } 5057 return (ret); 5058 } 5059 5060 /* 5061 * it is up to the caller to deal with pcf accounting. 5062 */ 5063 void 5064 page_free_replacement_page(page_t *pplist) 5065 { 5066 page_t *pp; 5067 5068 while (pplist != NULL) { 5069 /* 5070 * pp_targ is a linked list. 5071 */ 5072 pp = pplist; 5073 if (pp->p_szc == 0) { 5074 page_sub(&pplist, pp); 5075 page_clr_all_props(pp); 5076 PP_SETFREE(pp); 5077 PP_SETAGED(pp); 5078 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 5079 page_unlock(pp); 5080 VM_STAT_ADD(pagecnt.pc_free_replacement_page[0]); 5081 } else { 5082 spgcnt_t curnpgs = page_get_pagecnt(pp->p_szc); 5083 page_t *tpp; 5084 page_list_break(&pp, &pplist, curnpgs); 5085 tpp = pp; 5086 do { 5087 ASSERT(PAGE_EXCL(tpp)); 5088 ASSERT(!hat_page_is_mapped(tpp)); 5089 page_clr_all_props(pp); 5090 PP_SETFREE(tpp); 5091 PP_SETAGED(tpp); 5092 } while ((tpp = tpp->p_next) != pp); 5093 page_list_add_pages(pp, 0); 5094 VM_STAT_ADD(pagecnt.pc_free_replacement_page[1]); 5095 } 5096 } 5097 } 5098 5099 /* 5100 * Relocate target to non-relocatable replacement page. 5101 */ 5102 int 5103 page_relocate_cage(page_t **target, page_t **replacement) 5104 { 5105 page_t *tpp, *rpp; 5106 spgcnt_t pgcnt, npgs; 5107 int result; 5108 5109 tpp = *target; 5110 5111 ASSERT(PAGE_EXCL(tpp)); 5112 ASSERT(tpp->p_szc == 0); 5113 5114 pgcnt = btop(page_get_pagesize(tpp->p_szc)); 5115 5116 do { 5117 (void) page_create_wait(pgcnt, PG_WAIT | PG_NORELOC); 5118 rpp = page_get_replacement_page(tpp, NULL, PGR_NORELOC); 5119 if (rpp == NULL) { 5120 page_create_putback(pgcnt); 5121 kcage_cageout_wakeup(); 5122 } 5123 } while (rpp == NULL); 5124 5125 ASSERT(PP_ISNORELOC(rpp)); 5126 5127 result = page_relocate(&tpp, &rpp, 0, 1, &npgs, NULL); 5128 5129 if (result == 0) { 5130 *replacement = rpp; 5131 if (pgcnt != npgs) 5132 panic("page_relocate_cage: partial relocation"); 5133 } 5134 5135 return (result); 5136 } 5137 5138 /* 5139 * Release the page lock on a page, place on cachelist 5140 * tail if no longer mapped. Caller can let us know if 5141 * the page is known to be clean. 5142 */ 5143 int 5144 page_release(page_t *pp, int checkmod) 5145 { 5146 int status; 5147 5148 ASSERT(PAGE_LOCKED(pp) && !PP_ISFREE(pp) && 5149 (pp->p_vnode != NULL)); 5150 5151 if (!hat_page_is_mapped(pp) && !IS_SWAPVP(pp->p_vnode) && 5152 ((PAGE_SHARED(pp) && page_tryupgrade(pp)) || PAGE_EXCL(pp)) && 5153 pp->p_lckcnt == 0 && pp->p_cowcnt == 0 && 5154 !hat_page_is_mapped(pp)) { 5155 5156 /* 5157 * If page is modified, unlock it 5158 * 5159 * (p_nrm & P_MOD) bit has the latest stuff because: 5160 * (1) We found that this page doesn't have any mappings 5161 * _after_ holding SE_EXCL and 5162 * (2) We didn't drop SE_EXCL lock after the check in (1) 5163 */ 5164 if (checkmod && hat_ismod(pp)) { 5165 page_unlock(pp); 5166 status = PGREL_MOD; 5167 } else { 5168 /*LINTED: constant in conditional context*/ 5169 VN_DISPOSE(pp, B_FREE, 0, kcred); 5170 status = PGREL_CLEAN; 5171 } 5172 } else { 5173 page_unlock(pp); 5174 status = PGREL_NOTREL; 5175 } 5176 return (status); 5177 } 5178 5179 /* 5180 * Given a constituent page, try to demote the large page on the freelist. 5181 * 5182 * Returns nonzero if the page could be demoted successfully. Returns with 5183 * the constituent page still locked. 5184 */ 5185 int 5186 page_try_demote_free_pages(page_t *pp) 5187 { 5188 page_t *rootpp = pp; 5189 pfn_t pfn = page_pptonum(pp); 5190 spgcnt_t npgs; 5191 uint_t szc = pp->p_szc; 5192 5193 ASSERT(PP_ISFREE(pp)); 5194 ASSERT(PAGE_EXCL(pp)); 5195 5196 /* 5197 * Adjust rootpp and lock it, if `pp' is not the base 5198 * constituent page. 5199 */ 5200 npgs = page_get_pagecnt(pp->p_szc); 5201 if (npgs == 1) { 5202 return (0); 5203 } 5204 5205 if (!IS_P2ALIGNED(pfn, npgs)) { 5206 pfn = P2ALIGN(pfn, npgs); 5207 rootpp = page_numtopp_nolock(pfn); 5208 } 5209 5210 if (pp != rootpp && !page_trylock(rootpp, SE_EXCL)) { 5211 return (0); 5212 } 5213 5214 if (rootpp->p_szc != szc) { 5215 if (pp != rootpp) 5216 page_unlock(rootpp); 5217 return (0); 5218 } 5219 5220 page_demote_free_pages(rootpp); 5221 5222 if (pp != rootpp) 5223 page_unlock(rootpp); 5224 5225 ASSERT(PP_ISFREE(pp)); 5226 ASSERT(PAGE_EXCL(pp)); 5227 return (1); 5228 } 5229 5230 /* 5231 * Given a constituent page, try to demote the large page. 5232 * 5233 * Returns nonzero if the page could be demoted successfully. Returns with 5234 * the constituent page still locked. 5235 */ 5236 int 5237 page_try_demote_pages(page_t *pp) 5238 { 5239 page_t *tpp, *rootpp = pp; 5240 pfn_t pfn = page_pptonum(pp); 5241 spgcnt_t i, npgs; 5242 uint_t szc = pp->p_szc; 5243 vnode_t *vp = pp->p_vnode; 5244 5245 ASSERT(PAGE_EXCL(pp)); 5246 5247 VM_STAT_ADD(pagecnt.pc_try_demote_pages[0]); 5248 5249 if (pp->p_szc == 0) { 5250 VM_STAT_ADD(pagecnt.pc_try_demote_pages[1]); 5251 return (1); 5252 } 5253 5254 if (vp != NULL && !IS_SWAPFSVP(vp) && !VN_ISKAS(vp)) { 5255 VM_STAT_ADD(pagecnt.pc_try_demote_pages[2]); 5256 page_demote_vp_pages(pp); 5257 ASSERT(pp->p_szc == 0); 5258 return (1); 5259 } 5260 5261 /* 5262 * Adjust rootpp if passed in is not the base 5263 * constituent page. 5264 */ 5265 npgs = page_get_pagecnt(pp->p_szc); 5266 ASSERT(npgs > 1); 5267 if (!IS_P2ALIGNED(pfn, npgs)) { 5268 pfn = P2ALIGN(pfn, npgs); 5269 rootpp = page_numtopp_nolock(pfn); 5270 VM_STAT_ADD(pagecnt.pc_try_demote_pages[3]); 5271 ASSERT(rootpp->p_vnode != NULL); 5272 ASSERT(rootpp->p_szc == szc); 5273 } 5274 5275 /* 5276 * We can't demote kernel pages since we can't hat_unload() 5277 * the mappings. 5278 */ 5279 if (VN_ISKAS(rootpp->p_vnode)) 5280 return (0); 5281 5282 /* 5283 * Attempt to lock all constituent pages except the page passed 5284 * in since it's already locked. 5285 */ 5286 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5287 ASSERT(!PP_ISFREE(tpp)); 5288 ASSERT(tpp->p_vnode != NULL); 5289 5290 if (tpp != pp && !page_trylock(tpp, SE_EXCL)) 5291 break; 5292 ASSERT(tpp->p_szc == rootpp->p_szc); 5293 ASSERT(page_pptonum(tpp) == page_pptonum(rootpp) + i); 5294 } 5295 5296 /* 5297 * If we failed to lock them all then unlock what we have 5298 * locked so far and bail. 5299 */ 5300 if (i < npgs) { 5301 tpp = rootpp; 5302 while (i-- > 0) { 5303 if (tpp != pp) 5304 page_unlock(tpp); 5305 tpp++; 5306 } 5307 VM_STAT_ADD(pagecnt.pc_try_demote_pages[4]); 5308 return (0); 5309 } 5310 5311 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5312 ASSERT(PAGE_EXCL(tpp)); 5313 ASSERT(tpp->p_slckcnt == 0); 5314 (void) hat_pageunload(tpp, HAT_FORCE_PGUNLOAD); 5315 tpp->p_szc = 0; 5316 } 5317 5318 /* 5319 * Unlock all pages except the page passed in. 5320 */ 5321 for (tpp = rootpp, i = 0; i < npgs; i++, tpp++) { 5322 ASSERT(!hat_page_is_mapped(tpp)); 5323 if (tpp != pp) 5324 page_unlock(tpp); 5325 } 5326 5327 VM_STAT_ADD(pagecnt.pc_try_demote_pages[5]); 5328 return (1); 5329 } 5330 5331 /* 5332 * Called by page_free() and page_destroy() to demote the page size code 5333 * (p_szc) to 0 (since we can't just put a single PAGESIZE page with non zero 5334 * p_szc on free list, neither can we just clear p_szc of a single page_t 5335 * within a large page since it will break other code that relies on p_szc 5336 * being the same for all page_t's of a large page). Anonymous pages should 5337 * never end up here because anon_map_getpages() cannot deal with p_szc 5338 * changes after a single constituent page is locked. While anonymous or 5339 * kernel large pages are demoted or freed the entire large page at a time 5340 * with all constituent pages locked EXCL for the file system pages we 5341 * have to be able to demote a large page (i.e. decrease all constituent pages 5342 * p_szc) with only just an EXCL lock on one of constituent pages. The reason 5343 * we can easily deal with anonymous page demotion the entire large page at a 5344 * time is that those operation originate at address space level and concern 5345 * the entire large page region with actual demotion only done when pages are 5346 * not shared with any other processes (therefore we can always get EXCL lock 5347 * on all anonymous constituent pages after clearing segment page 5348 * cache). However file system pages can be truncated or invalidated at a 5349 * PAGESIZE level from the file system side and end up in page_free() or 5350 * page_destroy() (we also allow only part of the large page to be SOFTLOCKed 5351 * and therefore pageout should be able to demote a large page by EXCL locking 5352 * any constituent page that is not under SOFTLOCK). In those cases we cannot 5353 * rely on being able to lock EXCL all constituent pages. 5354 * 5355 * To prevent szc changes on file system pages one has to lock all constituent 5356 * pages at least SHARED (or call page_szc_lock()). The only subsystem that 5357 * doesn't rely on locking all constituent pages (or using page_szc_lock()) to 5358 * prevent szc changes is hat layer that uses its own page level mlist 5359 * locks. hat assumes that szc doesn't change after mlist lock for a page is 5360 * taken. Therefore we need to change szc under hat level locks if we only 5361 * have an EXCL lock on a single constituent page and hat still references any 5362 * of constituent pages. (Note we can't "ignore" hat layer by simply 5363 * hat_pageunload() all constituent pages without having EXCL locks on all of 5364 * constituent pages). We use hat_page_demote() call to safely demote szc of 5365 * all constituent pages under hat locks when we only have an EXCL lock on one 5366 * of constituent pages. 5367 * 5368 * This routine calls page_szc_lock() before calling hat_page_demote() to 5369 * allow segvn in one special case not to lock all constituent pages SHARED 5370 * before calling hat_memload_array() that relies on p_szc not changing even 5371 * before hat level mlist lock is taken. In that case segvn uses 5372 * page_szc_lock() to prevent hat_page_demote() changing p_szc values. 5373 * 5374 * Anonymous or kernel page demotion still has to lock all pages exclusively 5375 * and do hat_pageunload() on all constituent pages before demoting the page 5376 * therefore there's no need for anonymous or kernel page demotion to use 5377 * hat_page_demote() mechanism. 5378 * 5379 * hat_page_demote() removes all large mappings that map pp and then decreases 5380 * p_szc starting from the last constituent page of the large page. By working 5381 * from the tail of a large page in pfn decreasing order allows one looking at 5382 * the root page to know that hat_page_demote() is done for root's szc area. 5383 * e.g. if a root page has szc 1 one knows it only has to lock all constituent 5384 * pages within szc 1 area to prevent szc changes because hat_page_demote() 5385 * that started on this page when it had szc > 1 is done for this szc 1 area. 5386 * 5387 * We are guaranteed that all constituent pages of pp's large page belong to 5388 * the same vnode with the consecutive offsets increasing in the direction of 5389 * the pfn i.e. the identity of constituent pages can't change until their 5390 * p_szc is decreased. Therefore it's safe for hat_page_demote() to remove 5391 * large mappings to pp even though we don't lock any constituent page except 5392 * pp (i.e. we won't unload e.g. kernel locked page). 5393 */ 5394 static void 5395 page_demote_vp_pages(page_t *pp) 5396 { 5397 kmutex_t *mtx; 5398 5399 ASSERT(PAGE_EXCL(pp)); 5400 ASSERT(!PP_ISFREE(pp)); 5401 ASSERT(pp->p_vnode != NULL); 5402 ASSERT(!IS_SWAPFSVP(pp->p_vnode)); 5403 ASSERT(!PP_ISKAS(pp)); 5404 5405 VM_STAT_ADD(pagecnt.pc_demote_pages[0]); 5406 5407 mtx = page_szc_lock(pp); 5408 if (mtx != NULL) { 5409 hat_page_demote(pp); 5410 mutex_exit(mtx); 5411 } 5412 ASSERT(pp->p_szc == 0); 5413 } 5414 5415 /* 5416 * Mark any existing pages for migration in the given range 5417 */ 5418 void 5419 page_mark_migrate(struct seg *seg, caddr_t addr, size_t len, 5420 struct anon_map *amp, ulong_t anon_index, vnode_t *vp, 5421 u_offset_t vnoff, int rflag) 5422 { 5423 struct anon *ap; 5424 vnode_t *curvp; 5425 lgrp_t *from; 5426 pgcnt_t i; 5427 pgcnt_t nlocked; 5428 u_offset_t off; 5429 pfn_t pfn; 5430 size_t pgsz; 5431 size_t segpgsz; 5432 pgcnt_t pages; 5433 uint_t pszc; 5434 page_t **ppa; 5435 pgcnt_t ppa_nentries; 5436 page_t *pp; 5437 caddr_t va; 5438 ulong_t an_idx; 5439 anon_sync_obj_t cookie; 5440 5441 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5442 5443 /* 5444 * Don't do anything if don't need to do lgroup optimizations 5445 * on this system 5446 */ 5447 if (!lgrp_optimizations()) 5448 return; 5449 5450 /* 5451 * Align address and length to (potentially large) page boundary 5452 */ 5453 segpgsz = page_get_pagesize(seg->s_szc); 5454 addr = (caddr_t)P2ALIGN((uintptr_t)addr, segpgsz); 5455 if (rflag) 5456 len = P2ROUNDUP(len, segpgsz); 5457 5458 /* 5459 * Allocate page array to accommodate largest page size 5460 */ 5461 pgsz = page_get_pagesize(page_num_pagesizes() - 1); 5462 ppa_nentries = btop(pgsz); 5463 ppa = kmem_zalloc(ppa_nentries * sizeof (page_t *), KM_SLEEP); 5464 5465 /* 5466 * Do one (large) page at a time 5467 */ 5468 va = addr; 5469 while (va < addr + len) { 5470 /* 5471 * Lookup (root) page for vnode and offset corresponding to 5472 * this virtual address 5473 * Try anonmap first since there may be copy-on-write 5474 * pages, but initialize vnode pointer and offset using 5475 * vnode arguments just in case there isn't an amp. 5476 */ 5477 curvp = vp; 5478 off = vnoff + va - seg->s_base; 5479 if (amp) { 5480 ANON_LOCK_ENTER(&->a_rwlock, RW_READER); 5481 an_idx = anon_index + seg_page(seg, va); 5482 anon_array_enter(amp, an_idx, &cookie); 5483 ap = anon_get_ptr(amp->ahp, an_idx); 5484 if (ap) 5485 swap_xlate(ap, &curvp, &off); 5486 anon_array_exit(&cookie); 5487 ANON_LOCK_EXIT(&->a_rwlock); 5488 } 5489 5490 pp = NULL; 5491 if (curvp) 5492 pp = page_lookup(curvp, off, SE_SHARED); 5493 5494 /* 5495 * If there isn't a page at this virtual address, 5496 * skip to next page 5497 */ 5498 if (pp == NULL) { 5499 va += PAGESIZE; 5500 continue; 5501 } 5502 5503 /* 5504 * Figure out which lgroup this page is in for kstats 5505 */ 5506 pfn = page_pptonum(pp); 5507 from = lgrp_pfn_to_lgrp(pfn); 5508 5509 /* 5510 * Get page size, and round up and skip to next page boundary 5511 * if unaligned address 5512 */ 5513 pszc = pp->p_szc; 5514 pgsz = page_get_pagesize(pszc); 5515 pages = btop(pgsz); 5516 if (!IS_P2ALIGNED(va, pgsz) || 5517 !IS_P2ALIGNED(pfn, pages) || 5518 pgsz > segpgsz) { 5519 pgsz = MIN(pgsz, segpgsz); 5520 page_unlock(pp); 5521 i = btop(P2END((uintptr_t)va, pgsz) - 5522 (uintptr_t)va); 5523 va = (caddr_t)P2END((uintptr_t)va, pgsz); 5524 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, i); 5525 continue; 5526 } 5527 5528 /* 5529 * Upgrade to exclusive lock on page 5530 */ 5531 if (!page_tryupgrade(pp)) { 5532 page_unlock(pp); 5533 va += pgsz; 5534 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5535 btop(pgsz)); 5536 continue; 5537 } 5538 5539 /* 5540 * Remember pages locked exclusively and how many 5541 */ 5542 ppa[0] = pp; 5543 nlocked = 1; 5544 5545 /* 5546 * Lock constituent pages if this is large page 5547 */ 5548 if (pages > 1) { 5549 /* 5550 * Lock all constituents except root page, since it 5551 * should be locked already. 5552 */ 5553 for (i = 1; i < pages; i++) { 5554 pp++; 5555 if (!page_trylock(pp, SE_EXCL)) { 5556 break; 5557 } 5558 if (PP_ISFREE(pp) || 5559 pp->p_szc != pszc) { 5560 /* 5561 * hat_page_demote() raced in with us. 5562 */ 5563 ASSERT(!IS_SWAPFSVP(curvp)); 5564 page_unlock(pp); 5565 break; 5566 } 5567 ppa[nlocked] = pp; 5568 nlocked++; 5569 } 5570 } 5571 5572 /* 5573 * If all constituent pages couldn't be locked, 5574 * unlock pages locked so far and skip to next page. 5575 */ 5576 if (nlocked != pages) { 5577 for (i = 0; i < nlocked; i++) 5578 page_unlock(ppa[i]); 5579 va += pgsz; 5580 lgrp_stat_add(from->lgrp_id, LGRP_PMM_FAIL_PGS, 5581 btop(pgsz)); 5582 continue; 5583 } 5584 5585 /* 5586 * hat_page_demote() can no longer happen 5587 * since last cons page had the right p_szc after 5588 * all cons pages were locked. all cons pages 5589 * should now have the same p_szc. 5590 */ 5591 5592 /* 5593 * All constituent pages locked successfully, so mark 5594 * large page for migration and unload the mappings of 5595 * constituent pages, so a fault will occur on any part of the 5596 * large page 5597 */ 5598 PP_SETMIGRATE(ppa[0]); 5599 for (i = 0; i < nlocked; i++) { 5600 pp = ppa[i]; 5601 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 5602 ASSERT(hat_page_getshare(pp) == 0); 5603 page_unlock(pp); 5604 } 5605 lgrp_stat_add(from->lgrp_id, LGRP_PMM_PGS, nlocked); 5606 5607 va += pgsz; 5608 } 5609 kmem_free(ppa, ppa_nentries * sizeof (page_t *)); 5610 } 5611 5612 /* 5613 * Migrate any pages that have been marked for migration in the given range 5614 */ 5615 void 5616 page_migrate( 5617 struct seg *seg, 5618 caddr_t addr, 5619 page_t **ppa, 5620 pgcnt_t npages) 5621 { 5622 lgrp_t *from; 5623 lgrp_t *to; 5624 page_t *newpp; 5625 page_t *pp; 5626 pfn_t pfn; 5627 size_t pgsz; 5628 spgcnt_t page_cnt; 5629 spgcnt_t i; 5630 uint_t pszc; 5631 5632 ASSERT(seg->s_as && AS_LOCK_HELD(seg->s_as, &seg->s_as->a_lock)); 5633 5634 while (npages > 0) { 5635 pp = *ppa; 5636 pszc = pp->p_szc; 5637 pgsz = page_get_pagesize(pszc); 5638 page_cnt = btop(pgsz); 5639 5640 /* 5641 * Check to see whether this page is marked for migration 5642 * 5643 * Assume that root page of large page is marked for 5644 * migration and none of the other constituent pages 5645 * are marked. This really simplifies clearing the 5646 * migrate bit by not having to clear it from each 5647 * constituent page. 5648 * 5649 * note we don't want to relocate an entire large page if 5650 * someone is only using one subpage. 5651 */ 5652 if (npages < page_cnt) 5653 break; 5654 5655 /* 5656 * Is it marked for migration? 5657 */ 5658 if (!PP_ISMIGRATE(pp)) 5659 goto next; 5660 5661 /* 5662 * Determine lgroups that page is being migrated between 5663 */ 5664 pfn = page_pptonum(pp); 5665 if (!IS_P2ALIGNED(pfn, page_cnt)) { 5666 break; 5667 } 5668 from = lgrp_pfn_to_lgrp(pfn); 5669 to = lgrp_mem_choose(seg, addr, pgsz); 5670 5671 /* 5672 * Need to get exclusive lock's to migrate 5673 */ 5674 for (i = 0; i < page_cnt; i++) { 5675 ASSERT(PAGE_LOCKED(ppa[i])); 5676 if (page_pptonum(ppa[i]) != pfn + i || 5677 ppa[i]->p_szc != pszc) { 5678 break; 5679 } 5680 if (!page_tryupgrade(ppa[i])) { 5681 lgrp_stat_add(from->lgrp_id, 5682 LGRP_PM_FAIL_LOCK_PGS, 5683 page_cnt); 5684 break; 5685 } 5686 5687 /* 5688 * Check to see whether we are trying to migrate 5689 * page to lgroup where it is allocated already. 5690 * If so, clear the migrate bit and skip to next 5691 * page. 5692 */ 5693 if (i == 0 && to == from) { 5694 PP_CLRMIGRATE(ppa[0]); 5695 page_downgrade(ppa[0]); 5696 goto next; 5697 } 5698 } 5699 5700 /* 5701 * If all constituent pages couldn't be locked, 5702 * unlock pages locked so far and skip to next page. 5703 */ 5704 if (i != page_cnt) { 5705 while (--i != -1) { 5706 page_downgrade(ppa[i]); 5707 } 5708 goto next; 5709 } 5710 5711 (void) page_create_wait(page_cnt, PG_WAIT); 5712 newpp = page_get_replacement_page(pp, to, PGR_SAMESZC); 5713 if (newpp == NULL) { 5714 page_create_putback(page_cnt); 5715 for (i = 0; i < page_cnt; i++) { 5716 page_downgrade(ppa[i]); 5717 } 5718 lgrp_stat_add(to->lgrp_id, LGRP_PM_FAIL_ALLOC_PGS, 5719 page_cnt); 5720 goto next; 5721 } 5722 ASSERT(newpp->p_szc == pszc); 5723 /* 5724 * Clear migrate bit and relocate page 5725 */ 5726 PP_CLRMIGRATE(pp); 5727 if (page_relocate(&pp, &newpp, 0, 1, &page_cnt, to)) { 5728 panic("page_migrate: page_relocate failed"); 5729 } 5730 ASSERT(page_cnt * PAGESIZE == pgsz); 5731 5732 /* 5733 * Keep stats for number of pages migrated from and to 5734 * each lgroup 5735 */ 5736 lgrp_stat_add(from->lgrp_id, LGRP_PM_SRC_PGS, page_cnt); 5737 lgrp_stat_add(to->lgrp_id, LGRP_PM_DEST_PGS, page_cnt); 5738 /* 5739 * update the page_t array we were passed in and 5740 * unlink constituent pages of a large page. 5741 */ 5742 for (i = 0; i < page_cnt; ++i, ++pp) { 5743 ASSERT(PAGE_EXCL(newpp)); 5744 ASSERT(newpp->p_szc == pszc); 5745 ppa[i] = newpp; 5746 pp = newpp; 5747 page_sub(&newpp, pp); 5748 page_downgrade(pp); 5749 } 5750 ASSERT(newpp == NULL); 5751 next: 5752 addr += pgsz; 5753 ppa += page_cnt; 5754 npages -= page_cnt; 5755 } 5756 } 5757 5758 ulong_t mem_waiters = 0; 5759 ulong_t max_count = 20; 5760 #define MAX_DELAY 0x1ff 5761 5762 /* 5763 * Check if enough memory is available to proceed. 5764 * Depending on system configuration and how much memory is 5765 * reserved for swap we need to check against two variables. 5766 * e.g. on systems with little physical swap availrmem can be 5767 * more reliable indicator of how much memory is available. 5768 * On systems with large phys swap freemem can be better indicator. 5769 * If freemem drops below threshold level don't return an error 5770 * immediately but wake up pageout to free memory and block. 5771 * This is done number of times. If pageout is not able to free 5772 * memory within certain time return an error. 5773 * The same applies for availrmem but kmem_reap is used to 5774 * free memory. 5775 */ 5776 int 5777 page_mem_avail(pgcnt_t npages) 5778 { 5779 ulong_t count; 5780 5781 #if defined(__i386) 5782 if (freemem > desfree + npages && 5783 availrmem > swapfs_reserve + npages && 5784 btop(vmem_size(heap_arena, VMEM_FREE)) > tune.t_minarmem + 5785 npages) 5786 return (1); 5787 #else 5788 if (freemem > desfree + npages && 5789 availrmem > swapfs_reserve + npages) 5790 return (1); 5791 #endif 5792 5793 count = max_count; 5794 atomic_add_long(&mem_waiters, 1); 5795 5796 while (freemem < desfree + npages && --count) { 5797 cv_signal(&proc_pageout->p_cv); 5798 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5799 atomic_add_long(&mem_waiters, -1); 5800 return (0); 5801 } 5802 } 5803 if (count == 0) { 5804 atomic_add_long(&mem_waiters, -1); 5805 return (0); 5806 } 5807 5808 count = max_count; 5809 while (availrmem < swapfs_reserve + npages && --count) { 5810 kmem_reap(); 5811 if (delay_sig(hz + (mem_waiters & MAX_DELAY))) { 5812 atomic_add_long(&mem_waiters, -1); 5813 return (0); 5814 } 5815 } 5816 atomic_add_long(&mem_waiters, -1); 5817 if (count == 0) 5818 return (0); 5819 5820 #if defined(__i386) 5821 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 5822 tune.t_minarmem + npages) 5823 return (0); 5824 #endif 5825 return (1); 5826 } 5827 5828 #define MAX_CNT 60 /* max num of iterations */ 5829 /* 5830 * Reclaim/reserve availrmem for npages. 5831 * If there is not enough memory start reaping seg, kmem caches. 5832 * Start pageout scanner (via page_needfree()). 5833 * Exit after ~ MAX_CNT s regardless of how much memory has been released. 5834 * Note: There is no guarantee that any availrmem will be freed as 5835 * this memory typically is locked (kernel heap) or reserved for swap. 5836 * Also due to memory fragmentation kmem allocator may not be able 5837 * to free any memory (single user allocated buffer will prevent 5838 * freeing slab or a page). 5839 */ 5840 int 5841 page_reclaim_mem(pgcnt_t npages, pgcnt_t epages, int adjust) 5842 { 5843 int i = 0; 5844 int ret = 0; 5845 pgcnt_t deficit; 5846 pgcnt_t old_availrmem; 5847 5848 mutex_enter(&freemem_lock); 5849 old_availrmem = availrmem - 1; 5850 while ((availrmem < tune.t_minarmem + npages + epages) && 5851 (old_availrmem < availrmem) && (i++ < MAX_CNT)) { 5852 old_availrmem = availrmem; 5853 deficit = tune.t_minarmem + npages + epages - availrmem; 5854 mutex_exit(&freemem_lock); 5855 page_needfree(deficit); 5856 seg_preap(); 5857 kmem_reap(); 5858 delay(hz); 5859 page_needfree(-(spgcnt_t)deficit); 5860 mutex_enter(&freemem_lock); 5861 } 5862 5863 if (adjust && (availrmem >= tune.t_minarmem + npages + epages)) { 5864 availrmem -= npages; 5865 ret = 1; 5866 } 5867 5868 mutex_exit(&freemem_lock); 5869 5870 return (ret); 5871 } 5872 5873 /* 5874 * Search the memory segments to locate the desired page. Within a 5875 * segment, pages increase linearly with one page structure per 5876 * physical page frame (size PAGESIZE). The search begins 5877 * with the segment that was accessed last, to take advantage of locality. 5878 * If the hint misses, we start from the beginning of the sorted memseg list 5879 */ 5880 5881 5882 /* 5883 * Some data structures for pfn to pp lookup. 5884 */ 5885 ulong_t mhash_per_slot; 5886 struct memseg *memseg_hash[N_MEM_SLOTS]; 5887 5888 page_t * 5889 page_numtopp_nolock(pfn_t pfnum) 5890 { 5891 struct memseg *seg; 5892 page_t *pp; 5893 vm_cpu_data_t *vc = CPU->cpu_vm_data; 5894 5895 ASSERT(vc != NULL); 5896 5897 MEMSEG_STAT_INCR(nsearch); 5898 5899 /* Try last winner first */ 5900 if (((seg = vc->vc_pnum_memseg) != NULL) && 5901 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5902 MEMSEG_STAT_INCR(nlastwon); 5903 pp = seg->pages + (pfnum - seg->pages_base); 5904 if (pp->p_pagenum == pfnum) 5905 return ((page_t *)pp); 5906 } 5907 5908 /* Else Try hash */ 5909 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5910 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5911 MEMSEG_STAT_INCR(nhashwon); 5912 vc->vc_pnum_memseg = seg; 5913 pp = seg->pages + (pfnum - seg->pages_base); 5914 if (pp->p_pagenum == pfnum) 5915 return ((page_t *)pp); 5916 } 5917 5918 /* Else Brute force */ 5919 for (seg = memsegs; seg != NULL; seg = seg->next) { 5920 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5921 vc->vc_pnum_memseg = seg; 5922 pp = seg->pages + (pfnum - seg->pages_base); 5923 return ((page_t *)pp); 5924 } 5925 } 5926 vc->vc_pnum_memseg = NULL; 5927 MEMSEG_STAT_INCR(nnotfound); 5928 return ((page_t *)NULL); 5929 5930 } 5931 5932 struct memseg * 5933 page_numtomemseg_nolock(pfn_t pfnum) 5934 { 5935 struct memseg *seg; 5936 page_t *pp; 5937 5938 /* Try hash */ 5939 if (((seg = memseg_hash[MEMSEG_PFN_HASH(pfnum)]) != NULL) && 5940 (pfnum >= seg->pages_base) && (pfnum < seg->pages_end)) { 5941 pp = seg->pages + (pfnum - seg->pages_base); 5942 if (pp->p_pagenum == pfnum) 5943 return (seg); 5944 } 5945 5946 /* Else Brute force */ 5947 for (seg = memsegs; seg != NULL; seg = seg->next) { 5948 if (pfnum >= seg->pages_base && pfnum < seg->pages_end) { 5949 return (seg); 5950 } 5951 } 5952 return ((struct memseg *)NULL); 5953 } 5954 5955 /* 5956 * Given a page and a count return the page struct that is 5957 * n structs away from the current one in the global page 5958 * list. 5959 * 5960 * This function wraps to the first page upon 5961 * reaching the end of the memseg list. 5962 */ 5963 page_t * 5964 page_nextn(page_t *pp, ulong_t n) 5965 { 5966 struct memseg *seg; 5967 page_t *ppn; 5968 vm_cpu_data_t *vc = (vm_cpu_data_t *)CPU->cpu_vm_data; 5969 5970 ASSERT(vc != NULL); 5971 5972 if (((seg = vc->vc_pnext_memseg) == NULL) || 5973 (seg->pages_base == seg->pages_end) || 5974 !(pp >= seg->pages && pp < seg->epages)) { 5975 5976 for (seg = memsegs; seg; seg = seg->next) { 5977 if (pp >= seg->pages && pp < seg->epages) 5978 break; 5979 } 5980 5981 if (seg == NULL) { 5982 /* Memory delete got in, return something valid. */ 5983 /* TODO: fix me. */ 5984 seg = memsegs; 5985 pp = seg->pages; 5986 } 5987 } 5988 5989 /* check for wraparound - possible if n is large */ 5990 while ((ppn = (pp + n)) >= seg->epages || ppn < pp) { 5991 n -= seg->epages - pp; 5992 seg = seg->next; 5993 if (seg == NULL) 5994 seg = memsegs; 5995 pp = seg->pages; 5996 } 5997 vc->vc_pnext_memseg = seg; 5998 return (ppn); 5999 } 6000 6001 /* 6002 * Initialize for a loop using page_next_scan_large(). 6003 */ 6004 page_t * 6005 page_next_scan_init(void **cookie) 6006 { 6007 ASSERT(cookie != NULL); 6008 *cookie = (void *)memsegs; 6009 return ((page_t *)memsegs->pages); 6010 } 6011 6012 /* 6013 * Return the next page in a scan of page_t's, assuming we want 6014 * to skip over sub-pages within larger page sizes. 6015 * 6016 * The cookie is used to keep track of the current memseg. 6017 */ 6018 page_t * 6019 page_next_scan_large( 6020 page_t *pp, 6021 ulong_t *n, 6022 void **cookie) 6023 { 6024 struct memseg *seg = (struct memseg *)*cookie; 6025 page_t *new_pp; 6026 ulong_t cnt; 6027 pfn_t pfn; 6028 6029 6030 /* 6031 * get the count of page_t's to skip based on the page size 6032 */ 6033 ASSERT(pp != NULL); 6034 if (pp->p_szc == 0) { 6035 cnt = 1; 6036 } else { 6037 pfn = page_pptonum(pp); 6038 cnt = page_get_pagecnt(pp->p_szc); 6039 cnt -= pfn & (cnt - 1); 6040 } 6041 *n += cnt; 6042 new_pp = pp + cnt; 6043 6044 /* 6045 * Catch if we went past the end of the current memory segment. If so, 6046 * just move to the next segment with pages. 6047 */ 6048 if (new_pp >= seg->epages) { 6049 do { 6050 seg = seg->next; 6051 if (seg == NULL) 6052 seg = memsegs; 6053 } while (seg->pages == seg->epages); 6054 new_pp = seg->pages; 6055 *cookie = (void *)seg; 6056 } 6057 6058 return (new_pp); 6059 } 6060 6061 6062 /* 6063 * Returns next page in list. Note: this function wraps 6064 * to the first page in the list upon reaching the end 6065 * of the list. Callers should be aware of this fact. 6066 */ 6067 6068 /* We should change this be a #define */ 6069 6070 page_t * 6071 page_next(page_t *pp) 6072 { 6073 return (page_nextn(pp, 1)); 6074 } 6075 6076 page_t * 6077 page_first() 6078 { 6079 return ((page_t *)memsegs->pages); 6080 } 6081 6082 6083 /* 6084 * This routine is called at boot with the initial memory configuration 6085 * and when memory is added or removed. 6086 */ 6087 void 6088 build_pfn_hash() 6089 { 6090 pfn_t cur; 6091 pgcnt_t index; 6092 struct memseg *pseg; 6093 int i; 6094 6095 /* 6096 * Clear memseg_hash array. 6097 * Since memory add/delete is designed to operate concurrently 6098 * with normal operation, the hash rebuild must be able to run 6099 * concurrently with page_numtopp_nolock(). To support this 6100 * functionality, assignments to memseg_hash array members must 6101 * be done atomically. 6102 * 6103 * NOTE: bzero() does not currently guarantee this for kernel 6104 * threads, and cannot be used here. 6105 */ 6106 for (i = 0; i < N_MEM_SLOTS; i++) 6107 memseg_hash[i] = NULL; 6108 6109 hat_kpm_mseghash_clear(N_MEM_SLOTS); 6110 6111 /* 6112 * Physmax is the last valid pfn. 6113 */ 6114 mhash_per_slot = (physmax + 1) >> MEM_HASH_SHIFT; 6115 for (pseg = memsegs; pseg != NULL; pseg = pseg->next) { 6116 index = MEMSEG_PFN_HASH(pseg->pages_base); 6117 cur = pseg->pages_base; 6118 do { 6119 if (index >= N_MEM_SLOTS) 6120 index = MEMSEG_PFN_HASH(cur); 6121 6122 if (memseg_hash[index] == NULL || 6123 memseg_hash[index]->pages_base > pseg->pages_base) { 6124 memseg_hash[index] = pseg; 6125 hat_kpm_mseghash_update(index, pseg); 6126 } 6127 cur += mhash_per_slot; 6128 index++; 6129 } while (cur < pseg->pages_end); 6130 } 6131 } 6132 6133 /* 6134 * Return the pagenum for the pp 6135 */ 6136 pfn_t 6137 page_pptonum(page_t *pp) 6138 { 6139 return (pp->p_pagenum); 6140 } 6141 6142 /* 6143 * interface to the referenced and modified etc bits 6144 * in the PSM part of the page struct 6145 * when no locking is desired. 6146 */ 6147 void 6148 page_set_props(page_t *pp, uint_t flags) 6149 { 6150 ASSERT((flags & ~(P_MOD | P_REF | P_RO)) == 0); 6151 pp->p_nrm |= (uchar_t)flags; 6152 } 6153 6154 void 6155 page_clr_all_props(page_t *pp) 6156 { 6157 pp->p_nrm = 0; 6158 } 6159 6160 /* 6161 * Clear p_lckcnt and p_cowcnt, adjusting freemem if required. 6162 */ 6163 int 6164 page_clear_lck_cow(page_t *pp, int adjust) 6165 { 6166 int f_amount; 6167 6168 ASSERT(PAGE_EXCL(pp)); 6169 6170 /* 6171 * The page_struct_lock need not be acquired here since 6172 * we require the caller hold the page exclusively locked. 6173 */ 6174 f_amount = 0; 6175 if (pp->p_lckcnt) { 6176 f_amount = 1; 6177 pp->p_lckcnt = 0; 6178 } 6179 if (pp->p_cowcnt) { 6180 f_amount += pp->p_cowcnt; 6181 pp->p_cowcnt = 0; 6182 } 6183 6184 if (adjust && f_amount) { 6185 mutex_enter(&freemem_lock); 6186 availrmem += f_amount; 6187 mutex_exit(&freemem_lock); 6188 } 6189 6190 return (f_amount); 6191 } 6192 6193 /* 6194 * The following functions is called from free_vp_pages() 6195 * for an inexact estimate of a newly free'd page... 6196 */ 6197 ulong_t 6198 page_share_cnt(page_t *pp) 6199 { 6200 return (hat_page_getshare(pp)); 6201 } 6202 6203 int 6204 page_isshared(page_t *pp) 6205 { 6206 return (hat_page_checkshare(pp, 1)); 6207 } 6208 6209 int 6210 page_isfree(page_t *pp) 6211 { 6212 return (PP_ISFREE(pp)); 6213 } 6214 6215 int 6216 page_isref(page_t *pp) 6217 { 6218 return (hat_page_getattr(pp, P_REF)); 6219 } 6220 6221 int 6222 page_ismod(page_t *pp) 6223 { 6224 return (hat_page_getattr(pp, P_MOD)); 6225 } 6226 6227 /* 6228 * The following code all currently relates to the page capture logic: 6229 * 6230 * This logic is used for cases where there is a desire to claim a certain 6231 * physical page in the system for the caller. As it may not be possible 6232 * to capture the page immediately, the p_toxic bits are used in the page 6233 * structure to indicate that someone wants to capture this page. When the 6234 * page gets unlocked, the toxic flag will be noted and an attempt to capture 6235 * the page will be made. If it is successful, the original callers callback 6236 * will be called with the page to do with it what they please. 6237 * 6238 * There is also an async thread which wakes up to attempt to capture 6239 * pages occasionally which have the capture bit set. All of the pages which 6240 * need to be captured asynchronously have been inserted into the 6241 * page_capture_hash and thus this thread walks that hash list. Items in the 6242 * hash have an expiration time so this thread handles that as well by removing 6243 * the item from the hash if it has expired. 6244 * 6245 * Some important things to note are: 6246 * - if the PR_CAPTURE bit is set on a page, then the page is in the 6247 * page_capture_hash. The page_capture_hash_head.pchh_mutex is needed 6248 * to set and clear this bit, and while the lock is held is the only time 6249 * you can add or remove an entry from the hash. 6250 * - the PR_CAPTURE bit can only be set and cleared while holding the 6251 * page_capture_hash_head.pchh_mutex 6252 * - the t_flag field of the thread struct is used with the T_CAPTURING 6253 * flag to prevent recursion while dealing with large pages. 6254 * - pages which need to be retired never expire on the page_capture_hash. 6255 */ 6256 6257 static void page_capture_thread(void); 6258 static kthread_t *pc_thread_id; 6259 kcondvar_t pc_cv; 6260 static kmutex_t pc_thread_mutex; 6261 static clock_t pc_thread_shortwait; 6262 static clock_t pc_thread_longwait; 6263 static int pc_thread_ism_retry; 6264 6265 struct page_capture_callback pc_cb[PC_NUM_CALLBACKS]; 6266 6267 /* Note that this is a circular linked list */ 6268 typedef struct page_capture_hash_bucket { 6269 page_t *pp; 6270 uint_t szc; 6271 uint_t flags; 6272 clock_t expires; /* lbolt at which this request expires. */ 6273 void *datap; /* Cached data passed in for callback */ 6274 struct page_capture_hash_bucket *next; 6275 struct page_capture_hash_bucket *prev; 6276 } page_capture_hash_bucket_t; 6277 6278 /* 6279 * Each hash bucket will have it's own mutex and two lists which are: 6280 * active (0): represents requests which have not been processed by 6281 * the page_capture async thread yet. 6282 * walked (1): represents requests which have been processed by the 6283 * page_capture async thread within it's given walk of this bucket. 6284 * 6285 * These are all needed so that we can synchronize all async page_capture 6286 * events. When the async thread moves to a new bucket, it will append the 6287 * walked list to the active list and walk each item one at a time, moving it 6288 * from the active list to the walked list. Thus if there is an async request 6289 * outstanding for a given page, it will always be in one of the two lists. 6290 * New requests will always be added to the active list. 6291 * If we were not able to capture a page before the request expired, we'd free 6292 * up the request structure which would indicate to page_capture that there is 6293 * no longer a need for the given page, and clear the PR_CAPTURE flag if 6294 * possible. 6295 */ 6296 typedef struct page_capture_hash_head { 6297 kmutex_t pchh_mutex; 6298 uint_t num_pages; 6299 page_capture_hash_bucket_t lists[2]; /* sentinel nodes */ 6300 } page_capture_hash_head_t; 6301 6302 #ifdef DEBUG 6303 #define NUM_PAGE_CAPTURE_BUCKETS 4 6304 #else 6305 #define NUM_PAGE_CAPTURE_BUCKETS 64 6306 #endif 6307 6308 page_capture_hash_head_t page_capture_hash[NUM_PAGE_CAPTURE_BUCKETS]; 6309 6310 /* for now use a very simple hash based upon the size of a page struct */ 6311 #define PAGE_CAPTURE_HASH(pp) \ 6312 ((int)(((uintptr_t)pp >> 7) & (NUM_PAGE_CAPTURE_BUCKETS - 1))) 6313 6314 extern pgcnt_t swapfs_minfree; 6315 6316 int page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap); 6317 6318 /* 6319 * a callback function is required for page capture requests. 6320 */ 6321 void 6322 page_capture_register_callback(uint_t index, clock_t duration, 6323 int (*cb_func)(page_t *, void *, uint_t)) 6324 { 6325 ASSERT(pc_cb[index].cb_active == 0); 6326 ASSERT(cb_func != NULL); 6327 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6328 pc_cb[index].duration = duration; 6329 pc_cb[index].cb_func = cb_func; 6330 pc_cb[index].cb_active = 1; 6331 rw_exit(&pc_cb[index].cb_rwlock); 6332 } 6333 6334 void 6335 page_capture_unregister_callback(uint_t index) 6336 { 6337 int i, j; 6338 struct page_capture_hash_bucket *bp1; 6339 struct page_capture_hash_bucket *bp2; 6340 struct page_capture_hash_bucket *head = NULL; 6341 uint_t flags = (1 << index); 6342 6343 rw_enter(&pc_cb[index].cb_rwlock, RW_WRITER); 6344 ASSERT(pc_cb[index].cb_active == 1); 6345 pc_cb[index].duration = 0; /* Paranoia */ 6346 pc_cb[index].cb_func = NULL; /* Paranoia */ 6347 pc_cb[index].cb_active = 0; 6348 rw_exit(&pc_cb[index].cb_rwlock); 6349 6350 /* 6351 * Just move all the entries to a private list which we can walk 6352 * through without the need to hold any locks. 6353 * No more requests can get added to the hash lists for this consumer 6354 * as the cb_active field for the callback has been cleared. 6355 */ 6356 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 6357 mutex_enter(&page_capture_hash[i].pchh_mutex); 6358 for (j = 0; j < 2; j++) { 6359 bp1 = page_capture_hash[i].lists[j].next; 6360 /* walk through all but first (sentinel) element */ 6361 while (bp1 != &page_capture_hash[i].lists[j]) { 6362 bp2 = bp1; 6363 if (bp2->flags & flags) { 6364 bp1 = bp2->next; 6365 bp1->prev = bp2->prev; 6366 bp2->prev->next = bp1; 6367 bp2->next = head; 6368 head = bp2; 6369 /* 6370 * Clear the PR_CAPTURE bit as we 6371 * hold appropriate locks here. 6372 */ 6373 page_clrtoxic(head->pp, PR_CAPTURE); 6374 page_capture_hash[i].num_pages--; 6375 continue; 6376 } 6377 bp1 = bp1->next; 6378 } 6379 } 6380 mutex_exit(&page_capture_hash[i].pchh_mutex); 6381 } 6382 6383 while (head != NULL) { 6384 bp1 = head; 6385 head = head->next; 6386 kmem_free(bp1, sizeof (*bp1)); 6387 } 6388 } 6389 6390 6391 /* 6392 * Find pp in the active list and move it to the walked list if it 6393 * exists. 6394 * Note that most often pp should be at the front of the active list 6395 * as it is currently used and thus there is no other sort of optimization 6396 * being done here as this is a linked list data structure. 6397 * Returns 1 on successful move or 0 if page could not be found. 6398 */ 6399 static int 6400 page_capture_move_to_walked(page_t *pp) 6401 { 6402 page_capture_hash_bucket_t *bp; 6403 int index; 6404 6405 index = PAGE_CAPTURE_HASH(pp); 6406 6407 mutex_enter(&page_capture_hash[index].pchh_mutex); 6408 bp = page_capture_hash[index].lists[0].next; 6409 while (bp != &page_capture_hash[index].lists[0]) { 6410 if (bp->pp == pp) { 6411 /* Remove from old list */ 6412 bp->next->prev = bp->prev; 6413 bp->prev->next = bp->next; 6414 6415 /* Add to new list */ 6416 bp->next = page_capture_hash[index].lists[1].next; 6417 bp->prev = &page_capture_hash[index].lists[1]; 6418 page_capture_hash[index].lists[1].next = bp; 6419 bp->next->prev = bp; 6420 mutex_exit(&page_capture_hash[index].pchh_mutex); 6421 6422 return (1); 6423 } 6424 bp = bp->next; 6425 } 6426 mutex_exit(&page_capture_hash[index].pchh_mutex); 6427 return (0); 6428 } 6429 6430 /* 6431 * Add a new entry to the page capture hash. The only case where a new 6432 * entry is not added is when the page capture consumer is no longer registered. 6433 * In this case, we'll silently not add the page to the hash. We know that 6434 * page retire will always be registered for the case where we are currently 6435 * unretiring a page and thus there are no conflicts. 6436 */ 6437 static void 6438 page_capture_add_hash(page_t *pp, uint_t szc, uint_t flags, void *datap) 6439 { 6440 page_capture_hash_bucket_t *bp1; 6441 page_capture_hash_bucket_t *bp2; 6442 int index; 6443 int cb_index; 6444 int i; 6445 #ifdef DEBUG 6446 page_capture_hash_bucket_t *tp1; 6447 int l; 6448 #endif 6449 6450 ASSERT(!(flags & CAPTURE_ASYNC)); 6451 6452 bp1 = kmem_alloc(sizeof (struct page_capture_hash_bucket), KM_SLEEP); 6453 6454 bp1->pp = pp; 6455 bp1->szc = szc; 6456 bp1->flags = flags; 6457 bp1->datap = datap; 6458 6459 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6460 if ((flags >> cb_index) & 1) { 6461 break; 6462 } 6463 } 6464 6465 ASSERT(cb_index != PC_NUM_CALLBACKS); 6466 6467 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6468 if (pc_cb[cb_index].cb_active) { 6469 if (pc_cb[cb_index].duration == -1) { 6470 bp1->expires = (clock_t)-1; 6471 } else { 6472 bp1->expires = lbolt + pc_cb[cb_index].duration; 6473 } 6474 } else { 6475 /* There's no callback registered so don't add to the hash */ 6476 rw_exit(&pc_cb[cb_index].cb_rwlock); 6477 kmem_free(bp1, sizeof (*bp1)); 6478 return; 6479 } 6480 6481 index = PAGE_CAPTURE_HASH(pp); 6482 6483 /* 6484 * Only allow capture flag to be modified under this mutex. 6485 * Prevents multiple entries for same page getting added. 6486 */ 6487 mutex_enter(&page_capture_hash[index].pchh_mutex); 6488 6489 /* 6490 * if not already on the hash, set capture bit and add to the hash 6491 */ 6492 if (!(pp->p_toxic & PR_CAPTURE)) { 6493 #ifdef DEBUG 6494 /* Check for duplicate entries */ 6495 for (l = 0; l < 2; l++) { 6496 tp1 = page_capture_hash[index].lists[l].next; 6497 while (tp1 != &page_capture_hash[index].lists[l]) { 6498 if (tp1->pp == pp) { 6499 panic("page pp 0x%p already on hash " 6500 "at 0x%p\n", pp, tp1); 6501 } 6502 tp1 = tp1->next; 6503 } 6504 } 6505 6506 #endif 6507 page_settoxic(pp, PR_CAPTURE); 6508 bp1->next = page_capture_hash[index].lists[0].next; 6509 bp1->prev = &page_capture_hash[index].lists[0]; 6510 bp1->next->prev = bp1; 6511 page_capture_hash[index].lists[0].next = bp1; 6512 page_capture_hash[index].num_pages++; 6513 if (flags & CAPTURE_RETIRE) { 6514 page_retire_incr_pend_count(); 6515 } 6516 mutex_exit(&page_capture_hash[index].pchh_mutex); 6517 rw_exit(&pc_cb[cb_index].cb_rwlock); 6518 cv_signal(&pc_cv); 6519 return; 6520 } 6521 6522 /* 6523 * A page retire request will replace any other request. 6524 * A second physmem request which is for a different process than 6525 * the currently registered one will be dropped as there is 6526 * no way to hold the private data for both calls. 6527 * In the future, once there are more callers, this will have to 6528 * be worked out better as there needs to be private storage for 6529 * at least each type of caller (maybe have datap be an array of 6530 * *void's so that we can index based upon callers index). 6531 */ 6532 6533 /* walk hash list to update expire time */ 6534 for (i = 0; i < 2; i++) { 6535 bp2 = page_capture_hash[index].lists[i].next; 6536 while (bp2 != &page_capture_hash[index].lists[i]) { 6537 if (bp2->pp == pp) { 6538 if (flags & CAPTURE_RETIRE) { 6539 if (!(bp2->flags & CAPTURE_RETIRE)) { 6540 page_retire_incr_pend_count(); 6541 bp2->flags = flags; 6542 bp2->expires = bp1->expires; 6543 bp2->datap = datap; 6544 } 6545 } else { 6546 ASSERT(flags & CAPTURE_PHYSMEM); 6547 if (!(bp2->flags & CAPTURE_RETIRE) && 6548 (datap == bp2->datap)) { 6549 bp2->expires = bp1->expires; 6550 } 6551 } 6552 mutex_exit(&page_capture_hash[index]. 6553 pchh_mutex); 6554 rw_exit(&pc_cb[cb_index].cb_rwlock); 6555 kmem_free(bp1, sizeof (*bp1)); 6556 return; 6557 } 6558 bp2 = bp2->next; 6559 } 6560 } 6561 6562 /* 6563 * the PR_CAPTURE flag is protected by the page_capture_hash mutexes 6564 * and thus it either has to be set or not set and can't change 6565 * while holding the mutex above. 6566 */ 6567 panic("page_capture_add_hash, PR_CAPTURE flag set on pp %p\n", pp); 6568 } 6569 6570 /* 6571 * We have a page in our hands, lets try and make it ours by turning 6572 * it into a clean page like it had just come off the freelists. 6573 * 6574 * Returns 0 on success, with the page still EXCL locked. 6575 * On failure, the page will be unlocked, and returns EAGAIN 6576 */ 6577 static int 6578 page_capture_clean_page(page_t *pp) 6579 { 6580 page_t *newpp; 6581 int skip_unlock = 0; 6582 spgcnt_t count; 6583 page_t *tpp; 6584 int ret = 0; 6585 int extra; 6586 6587 ASSERT(PAGE_EXCL(pp)); 6588 ASSERT(!PP_RETIRED(pp)); 6589 ASSERT(curthread->t_flag & T_CAPTURING); 6590 6591 if (PP_ISFREE(pp)) { 6592 if (!page_reclaim(pp, NULL)) { 6593 skip_unlock = 1; 6594 ret = EAGAIN; 6595 goto cleanup; 6596 } 6597 ASSERT(pp->p_szc == 0); 6598 if (pp->p_vnode != NULL) { 6599 /* 6600 * Since this page came from the 6601 * cachelist, we must destroy the 6602 * old vnode association. 6603 */ 6604 page_hashout(pp, NULL); 6605 } 6606 goto cleanup; 6607 } 6608 6609 /* 6610 * If we know page_relocate will fail, skip it 6611 * It could still fail due to a UE on another page but we 6612 * can't do anything about that. 6613 */ 6614 if (pp->p_toxic & PR_UE) { 6615 goto skip_relocate; 6616 } 6617 6618 /* 6619 * It's possible that pages can not have a vnode as fsflush comes 6620 * through and cleans up these pages. It's ugly but that's how it is. 6621 */ 6622 if (pp->p_vnode == NULL) { 6623 goto skip_relocate; 6624 } 6625 6626 /* 6627 * Page was not free, so lets try to relocate it. 6628 * page_relocate only works with root pages, so if this is not a root 6629 * page, we need to demote it to try and relocate it. 6630 * Unfortunately this is the best we can do right now. 6631 */ 6632 newpp = NULL; 6633 if ((pp->p_szc > 0) && (pp != PP_PAGEROOT(pp))) { 6634 if (page_try_demote_pages(pp) == 0) { 6635 ret = EAGAIN; 6636 goto cleanup; 6637 } 6638 } 6639 ret = page_relocate(&pp, &newpp, 1, 0, &count, NULL); 6640 if (ret == 0) { 6641 page_t *npp; 6642 /* unlock the new page(s) */ 6643 while (count-- > 0) { 6644 ASSERT(newpp != NULL); 6645 npp = newpp; 6646 page_sub(&newpp, npp); 6647 page_unlock(npp); 6648 } 6649 ASSERT(newpp == NULL); 6650 /* 6651 * Check to see if the page we have is too large. 6652 * If so, demote it freeing up the extra pages. 6653 */ 6654 if (pp->p_szc > 0) { 6655 /* For now demote extra pages to szc == 0 */ 6656 extra = page_get_pagecnt(pp->p_szc) - 1; 6657 while (extra > 0) { 6658 tpp = pp->p_next; 6659 page_sub(&pp, tpp); 6660 tpp->p_szc = 0; 6661 page_free(tpp, 1); 6662 extra--; 6663 } 6664 /* Make sure to set our page to szc 0 as well */ 6665 ASSERT(pp->p_next == pp && pp->p_prev == pp); 6666 pp->p_szc = 0; 6667 } 6668 goto cleanup; 6669 } else if (ret == EIO) { 6670 ret = EAGAIN; 6671 goto cleanup; 6672 } else { 6673 /* 6674 * Need to reset return type as we failed to relocate the page 6675 * but that does not mean that some of the next steps will not 6676 * work. 6677 */ 6678 ret = 0; 6679 } 6680 6681 skip_relocate: 6682 6683 if (pp->p_szc > 0) { 6684 if (page_try_demote_pages(pp) == 0) { 6685 ret = EAGAIN; 6686 goto cleanup; 6687 } 6688 } 6689 6690 ASSERT(pp->p_szc == 0); 6691 6692 if (hat_ismod(pp)) { 6693 ret = EAGAIN; 6694 goto cleanup; 6695 } 6696 if (PP_ISKAS(pp)) { 6697 ret = EAGAIN; 6698 goto cleanup; 6699 } 6700 if (pp->p_lckcnt || pp->p_cowcnt) { 6701 ret = EAGAIN; 6702 goto cleanup; 6703 } 6704 6705 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 6706 ASSERT(!hat_page_is_mapped(pp)); 6707 6708 if (hat_ismod(pp)) { 6709 /* 6710 * This is a semi-odd case as the page is now modified but not 6711 * mapped as we just unloaded the mappings above. 6712 */ 6713 ret = EAGAIN; 6714 goto cleanup; 6715 } 6716 if (pp->p_vnode != NULL) { 6717 page_hashout(pp, NULL); 6718 } 6719 6720 /* 6721 * At this point, the page should be in a clean state and 6722 * we can do whatever we want with it. 6723 */ 6724 6725 cleanup: 6726 if (ret != 0) { 6727 if (!skip_unlock) { 6728 page_unlock(pp); 6729 } 6730 } else { 6731 ASSERT(pp->p_szc == 0); 6732 ASSERT(PAGE_EXCL(pp)); 6733 6734 pp->p_next = pp; 6735 pp->p_prev = pp; 6736 } 6737 return (ret); 6738 } 6739 6740 /* 6741 * Various callers of page_trycapture() can have different restrictions upon 6742 * what memory they have access to. 6743 * Returns 0 on success, with the following error codes on failure: 6744 * EPERM - The requested page is long term locked, and thus repeated 6745 * requests to capture this page will likely fail. 6746 * ENOMEM - There was not enough free memory in the system to safely 6747 * map the requested page. 6748 * ENOENT - The requested page was inside the kernel cage, and the 6749 * PHYSMEM_CAGE flag was not set. 6750 */ 6751 int 6752 page_capture_pre_checks(page_t *pp, uint_t flags) 6753 { 6754 #if defined(__sparc) 6755 extern struct vnode prom_ppages; 6756 #endif /* __sparc */ 6757 6758 ASSERT(pp != NULL); 6759 6760 /* only physmem currently has restrictions */ 6761 if (!(flags & CAPTURE_PHYSMEM)) { 6762 return (0); 6763 } 6764 6765 #if defined(__sparc) 6766 if (pp->p_vnode == &prom_ppages) { 6767 return (EPERM); 6768 } 6769 6770 if (PP_ISNORELOC(pp) && !(flags & CAPTURE_GET_CAGE)) { 6771 return (ENOENT); 6772 } 6773 6774 if (PP_ISNORELOCKERNEL(pp)) { 6775 return (EPERM); 6776 } 6777 #else 6778 if (PP_ISKAS(pp)) { 6779 return (EPERM); 6780 } 6781 #endif /* __sparc */ 6782 6783 if (availrmem < swapfs_minfree) { 6784 /* 6785 * We won't try to capture this page as we are 6786 * running low on memory. 6787 */ 6788 return (ENOMEM); 6789 } 6790 return (0); 6791 } 6792 6793 /* 6794 * Once we have a page in our mits, go ahead and complete the capture 6795 * operation. 6796 * Returns 1 on failure where page is no longer needed 6797 * Returns 0 on success 6798 * Returns -1 if there was a transient failure. 6799 * Failure cases must release the SE_EXCL lock on pp (usually via page_free). 6800 */ 6801 int 6802 page_capture_take_action(page_t *pp, uint_t flags, void *datap) 6803 { 6804 int cb_index; 6805 int ret = 0; 6806 page_capture_hash_bucket_t *bp1; 6807 page_capture_hash_bucket_t *bp2; 6808 int index; 6809 int found = 0; 6810 int i; 6811 6812 ASSERT(PAGE_EXCL(pp)); 6813 ASSERT(curthread->t_flag & T_CAPTURING); 6814 6815 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 6816 if ((flags >> cb_index) & 1) { 6817 break; 6818 } 6819 } 6820 ASSERT(cb_index < PC_NUM_CALLBACKS); 6821 6822 /* 6823 * Remove the entry from the page_capture hash, but don't free it yet 6824 * as we may need to put it back. 6825 * Since we own the page at this point in time, we should find it 6826 * in the hash if this is an ASYNC call. If we don't it's likely 6827 * that the page_capture_async() thread decided that this request 6828 * had expired, in which case we just continue on. 6829 */ 6830 if (flags & CAPTURE_ASYNC) { 6831 6832 index = PAGE_CAPTURE_HASH(pp); 6833 6834 mutex_enter(&page_capture_hash[index].pchh_mutex); 6835 for (i = 0; i < 2 && !found; i++) { 6836 bp1 = page_capture_hash[index].lists[i].next; 6837 while (bp1 != &page_capture_hash[index].lists[i]) { 6838 if (bp1->pp == pp) { 6839 bp1->next->prev = bp1->prev; 6840 bp1->prev->next = bp1->next; 6841 page_capture_hash[index].num_pages--; 6842 page_clrtoxic(pp, PR_CAPTURE); 6843 found = 1; 6844 break; 6845 } 6846 bp1 = bp1->next; 6847 } 6848 } 6849 mutex_exit(&page_capture_hash[index].pchh_mutex); 6850 } 6851 6852 /* Synchronize with the unregister func. */ 6853 rw_enter(&pc_cb[cb_index].cb_rwlock, RW_READER); 6854 if (!pc_cb[cb_index].cb_active) { 6855 page_free(pp, 1); 6856 rw_exit(&pc_cb[cb_index].cb_rwlock); 6857 if (found) { 6858 kmem_free(bp1, sizeof (*bp1)); 6859 } 6860 return (1); 6861 } 6862 6863 /* 6864 * We need to remove the entry from the page capture hash and turn off 6865 * the PR_CAPTURE bit before calling the callback. We'll need to cache 6866 * the entry here, and then based upon the return value, cleanup 6867 * appropriately or re-add it to the hash, making sure that someone else 6868 * hasn't already done so. 6869 * It should be rare for the callback to fail and thus it's ok for 6870 * the failure path to be a bit complicated as the success path is 6871 * cleaner and the locking rules are easier to follow. 6872 */ 6873 6874 ret = pc_cb[cb_index].cb_func(pp, datap, flags); 6875 6876 rw_exit(&pc_cb[cb_index].cb_rwlock); 6877 6878 /* 6879 * If this was an ASYNC request, we need to cleanup the hash if the 6880 * callback was successful or if the request was no longer valid. 6881 * For non-ASYNC requests, we return failure to map and the caller 6882 * will take care of adding the request to the hash. 6883 * Note also that the callback itself is responsible for the page 6884 * at this point in time in terms of locking ... The most common 6885 * case for the failure path should just be a page_free. 6886 */ 6887 if (ret >= 0) { 6888 if (found) { 6889 if (bp1->flags & CAPTURE_RETIRE) { 6890 page_retire_decr_pend_count(); 6891 } 6892 kmem_free(bp1, sizeof (*bp1)); 6893 } 6894 return (ret); 6895 } 6896 if (!found) { 6897 return (ret); 6898 } 6899 6900 ASSERT(flags & CAPTURE_ASYNC); 6901 6902 /* 6903 * Check for expiration time first as we can just free it up if it's 6904 * expired. 6905 */ 6906 if (lbolt > bp1->expires && bp1->expires != -1) { 6907 kmem_free(bp1, sizeof (*bp1)); 6908 return (ret); 6909 } 6910 6911 /* 6912 * The callback failed and there used to be an entry in the hash for 6913 * this page, so we need to add it back to the hash. 6914 */ 6915 mutex_enter(&page_capture_hash[index].pchh_mutex); 6916 if (!(pp->p_toxic & PR_CAPTURE)) { 6917 /* just add bp1 back to head of walked list */ 6918 page_settoxic(pp, PR_CAPTURE); 6919 bp1->next = page_capture_hash[index].lists[1].next; 6920 bp1->prev = &page_capture_hash[index].lists[1]; 6921 bp1->next->prev = bp1; 6922 page_capture_hash[index].lists[1].next = bp1; 6923 page_capture_hash[index].num_pages++; 6924 mutex_exit(&page_capture_hash[index].pchh_mutex); 6925 return (ret); 6926 } 6927 6928 /* 6929 * Otherwise there was a new capture request added to list 6930 * Need to make sure that our original data is represented if 6931 * appropriate. 6932 */ 6933 for (i = 0; i < 2; i++) { 6934 bp2 = page_capture_hash[index].lists[i].next; 6935 while (bp2 != &page_capture_hash[index].lists[i]) { 6936 if (bp2->pp == pp) { 6937 if (bp1->flags & CAPTURE_RETIRE) { 6938 if (!(bp2->flags & CAPTURE_RETIRE)) { 6939 bp2->szc = bp1->szc; 6940 bp2->flags = bp1->flags; 6941 bp2->expires = bp1->expires; 6942 bp2->datap = bp1->datap; 6943 } 6944 } else { 6945 ASSERT(bp1->flags & CAPTURE_PHYSMEM); 6946 if (!(bp2->flags & CAPTURE_RETIRE)) { 6947 bp2->szc = bp1->szc; 6948 bp2->flags = bp1->flags; 6949 bp2->expires = bp1->expires; 6950 bp2->datap = bp1->datap; 6951 } 6952 } 6953 mutex_exit(&page_capture_hash[index]. 6954 pchh_mutex); 6955 kmem_free(bp1, sizeof (*bp1)); 6956 return (ret); 6957 } 6958 bp2 = bp2->next; 6959 } 6960 } 6961 panic("PR_CAPTURE set but not on hash for pp 0x%p\n", pp); 6962 /*NOTREACHED*/ 6963 } 6964 6965 /* 6966 * Try to capture the given page for the caller specified in the flags 6967 * parameter. The page will either be captured and handed over to the 6968 * appropriate callback, or will be queued up in the page capture hash 6969 * to be captured asynchronously. 6970 * If the current request is due to an async capture, the page must be 6971 * exclusively locked before calling this function. 6972 * Currently szc must be 0 but in the future this should be expandable to 6973 * other page sizes. 6974 * Returns 0 on success, with the following error codes on failure: 6975 * EPERM - The requested page is long term locked, and thus repeated 6976 * requests to capture this page will likely fail. 6977 * ENOMEM - There was not enough free memory in the system to safely 6978 * map the requested page. 6979 * ENOENT - The requested page was inside the kernel cage, and the 6980 * CAPTURE_GET_CAGE flag was not set. 6981 * EAGAIN - The requested page could not be capturead at this point in 6982 * time but future requests will likely work. 6983 * EBUSY - The requested page is retired and the CAPTURE_GET_RETIRED flag 6984 * was not set. 6985 */ 6986 int 6987 page_itrycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 6988 { 6989 int ret; 6990 int cb_index; 6991 6992 if (flags & CAPTURE_ASYNC) { 6993 ASSERT(PAGE_EXCL(pp)); 6994 goto async; 6995 } 6996 6997 /* Make sure there's enough availrmem ... */ 6998 ret = page_capture_pre_checks(pp, flags); 6999 if (ret != 0) { 7000 return (ret); 7001 } 7002 7003 if (!page_trylock(pp, SE_EXCL)) { 7004 for (cb_index = 0; cb_index < PC_NUM_CALLBACKS; cb_index++) { 7005 if ((flags >> cb_index) & 1) { 7006 break; 7007 } 7008 } 7009 ASSERT(cb_index < PC_NUM_CALLBACKS); 7010 ret = EAGAIN; 7011 /* Special case for retired pages */ 7012 if (PP_RETIRED(pp)) { 7013 if (flags & CAPTURE_GET_RETIRED) { 7014 if (!page_unretire_pp(pp, PR_UNR_TEMP)) { 7015 /* 7016 * Need to set capture bit and add to 7017 * hash so that the page will be 7018 * retired when freed. 7019 */ 7020 page_capture_add_hash(pp, szc, 7021 CAPTURE_RETIRE, NULL); 7022 ret = 0; 7023 goto own_page; 7024 } 7025 } else { 7026 return (EBUSY); 7027 } 7028 } 7029 page_capture_add_hash(pp, szc, flags, datap); 7030 return (ret); 7031 } 7032 7033 async: 7034 ASSERT(PAGE_EXCL(pp)); 7035 7036 /* Need to check for physmem async requests that availrmem is sane */ 7037 if ((flags & (CAPTURE_ASYNC | CAPTURE_PHYSMEM)) == 7038 (CAPTURE_ASYNC | CAPTURE_PHYSMEM) && 7039 (availrmem < swapfs_minfree)) { 7040 page_unlock(pp); 7041 return (ENOMEM); 7042 } 7043 7044 ret = page_capture_clean_page(pp); 7045 7046 if (ret != 0) { 7047 /* We failed to get the page, so lets add it to the hash */ 7048 if (!(flags & CAPTURE_ASYNC)) { 7049 page_capture_add_hash(pp, szc, flags, datap); 7050 } 7051 return (ret); 7052 } 7053 7054 own_page: 7055 ASSERT(PAGE_EXCL(pp)); 7056 ASSERT(pp->p_szc == 0); 7057 7058 /* Call the callback */ 7059 ret = page_capture_take_action(pp, flags, datap); 7060 7061 if (ret == 0) { 7062 return (0); 7063 } 7064 7065 /* 7066 * Note that in the failure cases from page_capture_take_action, the 7067 * EXCL lock will have already been dropped. 7068 */ 7069 if ((ret == -1) && (!(flags & CAPTURE_ASYNC))) { 7070 page_capture_add_hash(pp, szc, flags, datap); 7071 } 7072 return (EAGAIN); 7073 } 7074 7075 int 7076 page_trycapture(page_t *pp, uint_t szc, uint_t flags, void *datap) 7077 { 7078 int ret; 7079 7080 curthread->t_flag |= T_CAPTURING; 7081 ret = page_itrycapture(pp, szc, flags, datap); 7082 curthread->t_flag &= ~T_CAPTURING; /* xor works as we know its set */ 7083 return (ret); 7084 } 7085 7086 /* 7087 * When unlocking a page which has the PR_CAPTURE bit set, this routine 7088 * gets called to try and capture the page. 7089 */ 7090 void 7091 page_unlock_capture(page_t *pp) 7092 { 7093 page_capture_hash_bucket_t *bp; 7094 int index; 7095 int i; 7096 uint_t szc; 7097 uint_t flags = 0; 7098 void *datap; 7099 kmutex_t *mp; 7100 extern vnode_t retired_pages; 7101 7102 /* 7103 * We need to protect against a possible deadlock here where we own 7104 * the vnode page hash mutex and want to acquire it again as there 7105 * are locations in the code, where we unlock a page while holding 7106 * the mutex which can lead to the page being captured and eventually 7107 * end up here. As we may be hashing out the old page and hashing into 7108 * the retire vnode, we need to make sure we don't own them. 7109 * Other callbacks who do hash operations also need to make sure that 7110 * before they hashin to a vnode that they do not currently own the 7111 * vphm mutex otherwise there will be a panic. 7112 */ 7113 if (mutex_owned(page_vnode_mutex(&retired_pages))) { 7114 page_unlock_nocapture(pp); 7115 return; 7116 } 7117 if (pp->p_vnode != NULL && mutex_owned(page_vnode_mutex(pp->p_vnode))) { 7118 page_unlock_nocapture(pp); 7119 return; 7120 } 7121 7122 index = PAGE_CAPTURE_HASH(pp); 7123 7124 mp = &page_capture_hash[index].pchh_mutex; 7125 mutex_enter(mp); 7126 for (i = 0; i < 2; i++) { 7127 bp = page_capture_hash[index].lists[i].next; 7128 while (bp != &page_capture_hash[index].lists[i]) { 7129 if (bp->pp == pp) { 7130 szc = bp->szc; 7131 flags = bp->flags | CAPTURE_ASYNC; 7132 datap = bp->datap; 7133 mutex_exit(mp); 7134 (void) page_trycapture(pp, szc, flags, datap); 7135 return; 7136 } 7137 bp = bp->next; 7138 } 7139 } 7140 7141 /* Failed to find page in hash so clear flags and unlock it. */ 7142 page_clrtoxic(pp, PR_CAPTURE); 7143 page_unlock(pp); 7144 7145 mutex_exit(mp); 7146 } 7147 7148 void 7149 page_capture_init() 7150 { 7151 int i; 7152 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7153 page_capture_hash[i].lists[0].next = 7154 &page_capture_hash[i].lists[0]; 7155 page_capture_hash[i].lists[0].prev = 7156 &page_capture_hash[i].lists[0]; 7157 page_capture_hash[i].lists[1].next = 7158 &page_capture_hash[i].lists[1]; 7159 page_capture_hash[i].lists[1].prev = 7160 &page_capture_hash[i].lists[1]; 7161 } 7162 7163 pc_thread_shortwait = 23 * hz; 7164 pc_thread_longwait = 1201 * hz; 7165 pc_thread_ism_retry = 3; 7166 mutex_init(&pc_thread_mutex, NULL, MUTEX_DEFAULT, NULL); 7167 cv_init(&pc_cv, NULL, CV_DEFAULT, NULL); 7168 pc_thread_id = thread_create(NULL, 0, page_capture_thread, NULL, 0, &p0, 7169 TS_RUN, minclsyspri); 7170 } 7171 7172 /* 7173 * It is necessary to scrub any failing pages prior to reboot in order to 7174 * prevent a latent error trap from occurring on the next boot. 7175 */ 7176 void 7177 page_retire_mdboot() 7178 { 7179 page_t *pp; 7180 int i, j; 7181 page_capture_hash_bucket_t *bp; 7182 7183 /* walk lists looking for pages to scrub */ 7184 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7185 if (page_capture_hash[i].num_pages == 0) 7186 continue; 7187 7188 mutex_enter(&page_capture_hash[i].pchh_mutex); 7189 7190 for (j = 0; j < 2; j++) { 7191 bp = page_capture_hash[i].lists[j].next; 7192 while (bp != &page_capture_hash[i].lists[j]) { 7193 pp = bp->pp; 7194 if (!PP_ISKAS(pp) && PP_TOXIC(pp)) { 7195 pp->p_selock = -1; /* pacify ASSERTs */ 7196 PP_CLRFREE(pp); 7197 pagescrub(pp, 0, PAGESIZE); 7198 pp->p_selock = 0; 7199 } 7200 bp = bp->next; 7201 } 7202 } 7203 mutex_exit(&page_capture_hash[i].pchh_mutex); 7204 } 7205 } 7206 7207 /* 7208 * Walk the page_capture_hash trying to capture pages and also cleanup old 7209 * entries which have expired. 7210 */ 7211 void 7212 page_capture_async() 7213 { 7214 page_t *pp; 7215 int i; 7216 int ret; 7217 page_capture_hash_bucket_t *bp1, *bp2; 7218 uint_t szc; 7219 uint_t flags; 7220 void *datap; 7221 7222 /* If there are outstanding pages to be captured, get to work */ 7223 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) { 7224 if (page_capture_hash[i].num_pages == 0) 7225 continue; 7226 /* Append list 1 to list 0 and then walk through list 0 */ 7227 mutex_enter(&page_capture_hash[i].pchh_mutex); 7228 bp1 = &page_capture_hash[i].lists[1]; 7229 bp2 = bp1->next; 7230 if (bp1 != bp2) { 7231 bp1->prev->next = page_capture_hash[i].lists[0].next; 7232 bp2->prev = &page_capture_hash[i].lists[0]; 7233 page_capture_hash[i].lists[0].next->prev = bp1->prev; 7234 page_capture_hash[i].lists[0].next = bp2; 7235 bp1->next = bp1; 7236 bp1->prev = bp1; 7237 } 7238 7239 /* list[1] will be empty now */ 7240 7241 bp1 = page_capture_hash[i].lists[0].next; 7242 while (bp1 != &page_capture_hash[i].lists[0]) { 7243 /* Check expiration time */ 7244 if ((lbolt > bp1->expires && bp1->expires != -1) || 7245 page_deleted(bp1->pp)) { 7246 page_capture_hash[i].lists[0].next = bp1->next; 7247 bp1->next->prev = 7248 &page_capture_hash[i].lists[0]; 7249 page_capture_hash[i].num_pages--; 7250 7251 /* 7252 * We can safely remove the PR_CAPTURE bit 7253 * without holding the EXCL lock on the page 7254 * as the PR_CAPTURE bit requres that the 7255 * page_capture_hash[].pchh_mutex be held 7256 * to modify it. 7257 */ 7258 page_clrtoxic(bp1->pp, PR_CAPTURE); 7259 mutex_exit(&page_capture_hash[i].pchh_mutex); 7260 kmem_free(bp1, sizeof (*bp1)); 7261 mutex_enter(&page_capture_hash[i].pchh_mutex); 7262 bp1 = page_capture_hash[i].lists[0].next; 7263 continue; 7264 } 7265 pp = bp1->pp; 7266 szc = bp1->szc; 7267 flags = bp1->flags; 7268 datap = bp1->datap; 7269 mutex_exit(&page_capture_hash[i].pchh_mutex); 7270 if (page_trylock(pp, SE_EXCL)) { 7271 ret = page_trycapture(pp, szc, 7272 flags | CAPTURE_ASYNC, datap); 7273 } else { 7274 ret = 1; /* move to walked hash */ 7275 } 7276 7277 if (ret != 0) { 7278 /* Move to walked hash */ 7279 (void) page_capture_move_to_walked(pp); 7280 } 7281 mutex_enter(&page_capture_hash[i].pchh_mutex); 7282 bp1 = page_capture_hash[i].lists[0].next; 7283 } 7284 7285 mutex_exit(&page_capture_hash[i].pchh_mutex); 7286 } 7287 } 7288 7289 /* 7290 * This function is called by the page_capture_thread, and is needed in 7291 * in order to initiate aio cleanup, so that pages used in aio 7292 * will be unlocked and subsequently retired by page_capture_thread. 7293 */ 7294 static int 7295 do_aio_cleanup(void) 7296 { 7297 proc_t *procp; 7298 int (*aio_cleanup_dr_delete_memory)(proc_t *); 7299 int cleaned = 0; 7300 7301 if (modload("sys", "kaio") == -1) { 7302 cmn_err(CE_WARN, "do_aio_cleanup: cannot load kaio"); 7303 return (0); 7304 } 7305 /* 7306 * We use the aio_cleanup_dr_delete_memory function to 7307 * initiate the actual clean up; this function will wake 7308 * up the per-process aio_cleanup_thread. 7309 */ 7310 aio_cleanup_dr_delete_memory = (int (*)(proc_t *)) 7311 modgetsymvalue("aio_cleanup_dr_delete_memory", 0); 7312 if (aio_cleanup_dr_delete_memory == NULL) { 7313 cmn_err(CE_WARN, 7314 "aio_cleanup_dr_delete_memory not found in kaio"); 7315 return (0); 7316 } 7317 mutex_enter(&pidlock); 7318 for (procp = practive; (procp != NULL); procp = procp->p_next) { 7319 mutex_enter(&procp->p_lock); 7320 if (procp->p_aio != NULL) { 7321 /* cleanup proc's outstanding kaio */ 7322 cleaned += (*aio_cleanup_dr_delete_memory)(procp); 7323 } 7324 mutex_exit(&procp->p_lock); 7325 } 7326 mutex_exit(&pidlock); 7327 return (cleaned); 7328 } 7329 7330 /* 7331 * helper function for page_capture_thread 7332 */ 7333 static void 7334 page_capture_handle_outstanding(void) 7335 { 7336 extern size_t spt_used; 7337 int ntry; 7338 7339 if (!page_retire_pend_count()) { 7340 /* 7341 * Do we really want to be this aggressive 7342 * for things other than page_retire? 7343 * Maybe have a counter for each callback 7344 * type to guide how aggressive we should 7345 * be here. Thus if there's at least one 7346 * page for page_retire we go ahead and reap 7347 * like this. 7348 */ 7349 kmem_reap(); 7350 seg_preap(); 7351 page_capture_async(); 7352 } else { 7353 /* 7354 * There are pages pending retirement, so 7355 * we reap prior to attempting to capture. 7356 */ 7357 kmem_reap(); 7358 /* 7359 * When ISM is in use, we need to disable and 7360 * purge the seg_pcache, and initiate aio 7361 * cleanup in order to release page locks and 7362 * subsquently retire pages in need of 7363 * retirement. 7364 */ 7365 if (spt_used) { 7366 /* disable and purge seg_pcache */ 7367 (void) seg_p_disable(); 7368 for (ntry = 0; ntry < pc_thread_ism_retry; ntry++) { 7369 if (!page_retire_pend_count()) 7370 break; 7371 if (do_aio_cleanup()) { 7372 /* 7373 * allow the apps cleanup threads 7374 * to run 7375 */ 7376 delay(pc_thread_shortwait); 7377 } 7378 page_capture_async(); 7379 } 7380 /* reenable seg_pcache */ 7381 seg_p_enable(); 7382 } else { 7383 seg_preap(); 7384 page_capture_async(); 7385 } 7386 } 7387 } 7388 7389 /* 7390 * The page_capture_thread loops forever, looking to see if there are 7391 * pages still waiting to be captured. 7392 */ 7393 static void 7394 page_capture_thread(void) 7395 { 7396 callb_cpr_t c; 7397 int outstanding; 7398 int i; 7399 7400 CALLB_CPR_INIT(&c, &pc_thread_mutex, callb_generic_cpr, "page_capture"); 7401 7402 mutex_enter(&pc_thread_mutex); 7403 for (;;) { 7404 outstanding = 0; 7405 for (i = 0; i < NUM_PAGE_CAPTURE_BUCKETS; i++) 7406 outstanding += page_capture_hash[i].num_pages; 7407 if (outstanding) { 7408 page_capture_handle_outstanding(); 7409 CALLB_CPR_SAFE_BEGIN(&c); 7410 (void) cv_timedwait(&pc_cv, &pc_thread_mutex, 7411 lbolt + pc_thread_shortwait); 7412 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7413 } else { 7414 CALLB_CPR_SAFE_BEGIN(&c); 7415 (void) cv_timedwait(&pc_cv, &pc_thread_mutex, 7416 lbolt + pc_thread_longwait); 7417 CALLB_CPR_SAFE_END(&c, &pc_thread_mutex); 7418 } 7419 } 7420 /*NOTREACHED*/ 7421 } 7422