xref: /titanic_52/usr/src/uts/common/vm/vm_as.c (revision ccdeb6b6d71f3c9aa7e78b688f7b34fff109a817)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright 2015, Joyent, Inc.  All rights reserved.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 /*
41  * VM - address spaces.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/systm.h>
49 #include <sys/mman.h>
50 #include <sys/sysmacros.h>
51 #include <sys/cpuvar.h>
52 #include <sys/sysinfo.h>
53 #include <sys/kmem.h>
54 #include <sys/vnode.h>
55 #include <sys/vmsystm.h>
56 #include <sys/cmn_err.h>
57 #include <sys/debug.h>
58 #include <sys/tnf_probe.h>
59 #include <sys/vtrace.h>
60 
61 #include <vm/hat.h>
62 #include <vm/as.h>
63 #include <vm/seg.h>
64 #include <vm/seg_vn.h>
65 #include <vm/seg_dev.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_map.h>
68 #include <vm/seg_spt.h>
69 #include <vm/page.h>
70 
71 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
72 
73 static struct kmem_cache *as_cache;
74 
75 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
76 static void as_clearwatchprot(struct as *, caddr_t, size_t);
77 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
78 
79 
80 /*
81  * Verifying the segment lists is very time-consuming; it may not be
82  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
83  */
84 #ifdef DEBUG
85 #define	VERIFY_SEGLIST
86 int do_as_verify = 0;
87 #endif
88 
89 /*
90  * Allocate a new callback data structure entry and fill in the events of
91  * interest, the address range of interest, and the callback argument.
92  * Link the entry on the as->a_callbacks list. A callback entry for the
93  * entire address space may be specified with vaddr = 0 and size = -1.
94  *
95  * CALLERS RESPONSIBILITY: If not calling from within the process context for
96  * the specified as, the caller must guarantee persistence of the specified as
97  * for the duration of this function (eg. pages being locked within the as
98  * will guarantee persistence).
99  */
100 int
101 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
102 		caddr_t vaddr, size_t size, int sleepflag)
103 {
104 	struct as_callback 	*current_head, *cb;
105 	caddr_t 		saddr;
106 	size_t 			rsize;
107 
108 	/* callback function and an event are mandatory */
109 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
110 		return (EINVAL);
111 
112 	/* Adding a callback after as_free has been called is not allowed */
113 	if (as == &kas)
114 		return (ENOMEM);
115 
116 	/*
117 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
118 	 * is the entire address space so no rounding is done in that case.
119 	 */
120 	if (size != -1) {
121 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
122 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
123 		    (size_t)saddr;
124 		/* check for wraparound */
125 		if (saddr + rsize < saddr)
126 			return (ENOMEM);
127 	} else {
128 		if (vaddr != 0)
129 			return (EINVAL);
130 		saddr = vaddr;
131 		rsize = size;
132 	}
133 
134 	/* Allocate and initialize a callback entry */
135 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
136 	if (cb == NULL)
137 		return (EAGAIN);
138 
139 	cb->ascb_func = cb_func;
140 	cb->ascb_arg = arg;
141 	cb->ascb_events = events;
142 	cb->ascb_saddr = saddr;
143 	cb->ascb_len = rsize;
144 
145 	/* Add the entry to the list */
146 	mutex_enter(&as->a_contents);
147 	current_head = as->a_callbacks;
148 	as->a_callbacks = cb;
149 	cb->ascb_next = current_head;
150 
151 	/*
152 	 * The call to this function may lose in a race with
153 	 * a pertinent event - eg. a thread does long term memory locking
154 	 * but before the callback is added another thread executes as_unmap.
155 	 * A broadcast here resolves that.
156 	 */
157 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
158 		AS_CLRUNMAPWAIT(as);
159 		cv_broadcast(&as->a_cv);
160 	}
161 
162 	mutex_exit(&as->a_contents);
163 	return (0);
164 }
165 
166 /*
167  * Search the callback list for an entry which pertains to arg.
168  *
169  * This is called from within the client upon completion of the callback.
170  * RETURN VALUES:
171  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
172  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
173  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
174  *			entry will be made in as_do_callbacks)
175  *
176  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
177  * set, it indicates that as_do_callbacks is processing this entry.  The
178  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
179  * to unblock as_do_callbacks, in case it is blocked.
180  *
181  * CALLERS RESPONSIBILITY: If not calling from within the process context for
182  * the specified as, the caller must guarantee persistence of the specified as
183  * for the duration of this function (eg. pages being locked within the as
184  * will guarantee persistence).
185  */
186 uint_t
187 as_delete_callback(struct as *as, void *arg)
188 {
189 	struct as_callback **prevcb = &as->a_callbacks;
190 	struct as_callback *cb;
191 	uint_t rc = AS_CALLBACK_NOTFOUND;
192 
193 	mutex_enter(&as->a_contents);
194 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
195 		if (cb->ascb_arg != arg)
196 			continue;
197 
198 		/*
199 		 * If the events indicate AS_CALLBACK_CALLED, just clear
200 		 * AS_ALL_EVENT in the events field and wakeup the thread
201 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
202 		 * will take care of removing this entry from the list.  In
203 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
204 		 * (AS_CALLBACK_CALLED not set), just remove it from the
205 		 * list, return the memory and return AS_CALLBACK_DELETED.
206 		 */
207 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
208 			/* leave AS_CALLBACK_CALLED */
209 			cb->ascb_events &= ~AS_ALL_EVENT;
210 			rc = AS_CALLBACK_DELETE_DEFERRED;
211 			cv_broadcast(&as->a_cv);
212 		} else {
213 			*prevcb = cb->ascb_next;
214 			kmem_free(cb, sizeof (struct as_callback));
215 			rc = AS_CALLBACK_DELETED;
216 		}
217 		break;
218 	}
219 	mutex_exit(&as->a_contents);
220 	return (rc);
221 }
222 
223 /*
224  * Searches the as callback list for a matching entry.
225  * Returns a pointer to the first matching callback, or NULL if
226  * nothing is found.
227  * This function never sleeps so it is ok to call it with more
228  * locks held but the (required) a_contents mutex.
229  *
230  * See also comment on as_do_callbacks below.
231  */
232 static struct as_callback *
233 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
234 			size_t event_len)
235 {
236 	struct as_callback	*cb;
237 
238 	ASSERT(MUTEX_HELD(&as->a_contents));
239 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
240 		/*
241 		 * If the callback has not already been called, then
242 		 * check if events or address range pertains.  An event_len
243 		 * of zero means do an unconditional callback.
244 		 */
245 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
246 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
247 		    (event_addr + event_len < cb->ascb_saddr) ||
248 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
249 			continue;
250 		}
251 		break;
252 	}
253 	return (cb);
254 }
255 
256 /*
257  * Executes a given callback and removes it from the callback list for
258  * this address space.
259  * This function may sleep so the caller must drop all locks except
260  * a_contents before calling this func.
261  *
262  * See also comments on as_do_callbacks below.
263  */
264 static void
265 as_execute_callback(struct as *as, struct as_callback *cb,
266 				uint_t events)
267 {
268 	struct as_callback **prevcb;
269 	void	*cb_arg;
270 
271 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
272 	cb->ascb_events |= AS_CALLBACK_CALLED;
273 	mutex_exit(&as->a_contents);
274 	(*cb->ascb_func)(as, cb->ascb_arg, events);
275 	mutex_enter(&as->a_contents);
276 	/*
277 	 * the callback function is required to delete the callback
278 	 * when the callback function determines it is OK for
279 	 * this thread to continue. as_delete_callback will clear
280 	 * the AS_ALL_EVENT in the events field when it is deleted.
281 	 * If the callback function called as_delete_callback,
282 	 * events will already be cleared and there will be no blocking.
283 	 */
284 	while ((cb->ascb_events & events) != 0) {
285 		cv_wait(&as->a_cv, &as->a_contents);
286 	}
287 	/*
288 	 * This entry needs to be taken off the list. Normally, the
289 	 * callback func itself does that, but unfortunately the list
290 	 * may have changed while the callback was running because the
291 	 * a_contents mutex was dropped and someone else other than the
292 	 * callback func itself could have called as_delete_callback,
293 	 * so we have to search to find this entry again.  The entry
294 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
295 	 */
296 	cb_arg = cb->ascb_arg;
297 	prevcb = &as->a_callbacks;
298 	for (cb = as->a_callbacks; cb != NULL;
299 	    prevcb = &cb->ascb_next, cb = *prevcb) {
300 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
301 		    (cb_arg != cb->ascb_arg)) {
302 			continue;
303 		}
304 		*prevcb = cb->ascb_next;
305 		kmem_free(cb, sizeof (struct as_callback));
306 		break;
307 	}
308 }
309 
310 /*
311  * Check the callback list for a matching event and intersection of
312  * address range. If there is a match invoke the callback.  Skip an entry if:
313  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
314  *    - not event of interest
315  *    - not address range of interest
316  *
317  * An event_len of zero indicates a request for an unconditional callback
318  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
319  * a_contents lock must be dropped before a callback, so only one callback
320  * can be done before returning. Return -1 (true) if a callback was
321  * executed and removed from the list, else return 0 (false).
322  *
323  * The logically separate parts, i.e. finding a matching callback and
324  * executing a given callback have been separated into two functions
325  * so that they can be called with different sets of locks held beyond
326  * the always-required a_contents. as_find_callback does not sleep so
327  * it is ok to call it if more locks than a_contents (i.e. the a_lock
328  * rwlock) are held. as_execute_callback on the other hand may sleep
329  * so all locks beyond a_contents must be dropped by the caller if one
330  * does not want to end comatose.
331  */
332 static int
333 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
334 			size_t event_len)
335 {
336 	struct as_callback *cb;
337 
338 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
339 		as_execute_callback(as, cb, events);
340 		return (-1);
341 	}
342 	return (0);
343 }
344 
345 /*
346  * Search for the segment containing addr. If a segment containing addr
347  * exists, that segment is returned.  If no such segment exists, and
348  * the list spans addresses greater than addr, then the first segment
349  * whose base is greater than addr is returned; otherwise, NULL is
350  * returned unless tail is true, in which case the last element of the
351  * list is returned.
352  *
353  * a_seglast is used to cache the last found segment for repeated
354  * searches to the same addr (which happens frequently).
355  */
356 struct seg *
357 as_findseg(struct as *as, caddr_t addr, int tail)
358 {
359 	struct seg *seg = as->a_seglast;
360 	avl_index_t where;
361 
362 	ASSERT(AS_LOCK_HELD(as));
363 
364 	if (seg != NULL &&
365 	    seg->s_base <= addr &&
366 	    addr < seg->s_base + seg->s_size)
367 		return (seg);
368 
369 	seg = avl_find(&as->a_segtree, &addr, &where);
370 	if (seg != NULL)
371 		return (as->a_seglast = seg);
372 
373 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
374 	if (seg == NULL && tail)
375 		seg = avl_last(&as->a_segtree);
376 	return (as->a_seglast = seg);
377 }
378 
379 #ifdef VERIFY_SEGLIST
380 /*
381  * verify that the linked list is coherent
382  */
383 static void
384 as_verify(struct as *as)
385 {
386 	struct seg *seg, *seglast, *p, *n;
387 	uint_t nsegs = 0;
388 
389 	if (do_as_verify == 0)
390 		return;
391 
392 	seglast = as->a_seglast;
393 
394 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
395 		ASSERT(seg->s_as == as);
396 		p = AS_SEGPREV(as, seg);
397 		n = AS_SEGNEXT(as, seg);
398 		ASSERT(p == NULL || p->s_as == as);
399 		ASSERT(p == NULL || p->s_base < seg->s_base);
400 		ASSERT(n == NULL || n->s_base > seg->s_base);
401 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
402 		if (seg == seglast)
403 			seglast = NULL;
404 		nsegs++;
405 	}
406 	ASSERT(seglast == NULL);
407 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
408 }
409 #endif /* VERIFY_SEGLIST */
410 
411 /*
412  * Add a new segment to the address space. The avl_find()
413  * may be expensive so we attempt to use last segment accessed
414  * in as_gap() as an insertion point.
415  */
416 int
417 as_addseg(struct as  *as, struct seg *newseg)
418 {
419 	struct seg *seg;
420 	caddr_t addr;
421 	caddr_t eaddr;
422 	avl_index_t where;
423 
424 	ASSERT(AS_WRITE_HELD(as));
425 
426 	as->a_updatedir = 1;	/* inform /proc */
427 	gethrestime(&as->a_updatetime);
428 
429 	if (as->a_lastgaphl != NULL) {
430 		struct seg *hseg = NULL;
431 		struct seg *lseg = NULL;
432 
433 		if (as->a_lastgaphl->s_base > newseg->s_base) {
434 			hseg = as->a_lastgaphl;
435 			lseg = AVL_PREV(&as->a_segtree, hseg);
436 		} else {
437 			lseg = as->a_lastgaphl;
438 			hseg = AVL_NEXT(&as->a_segtree, lseg);
439 		}
440 
441 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
442 		    hseg->s_base > newseg->s_base) {
443 			avl_insert_here(&as->a_segtree, newseg, lseg,
444 			    AVL_AFTER);
445 			as->a_lastgaphl = NULL;
446 			as->a_seglast = newseg;
447 			return (0);
448 		}
449 		as->a_lastgaphl = NULL;
450 	}
451 
452 	addr = newseg->s_base;
453 	eaddr = addr + newseg->s_size;
454 again:
455 
456 	seg = avl_find(&as->a_segtree, &addr, &where);
457 
458 	if (seg == NULL)
459 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
460 
461 	if (seg == NULL)
462 		seg = avl_last(&as->a_segtree);
463 
464 	if (seg != NULL) {
465 		caddr_t base = seg->s_base;
466 
467 		/*
468 		 * If top of seg is below the requested address, then
469 		 * the insertion point is at the end of the linked list,
470 		 * and seg points to the tail of the list.  Otherwise,
471 		 * the insertion point is immediately before seg.
472 		 */
473 		if (base + seg->s_size > addr) {
474 			if (addr >= base || eaddr > base) {
475 #ifdef __sparc
476 				extern struct seg_ops segnf_ops;
477 
478 				/*
479 				 * no-fault segs must disappear if overlaid.
480 				 * XXX need new segment type so
481 				 * we don't have to check s_ops
482 				 */
483 				if (seg->s_ops == &segnf_ops) {
484 					seg_unmap(seg);
485 					goto again;
486 				}
487 #endif
488 				return (-1);	/* overlapping segment */
489 			}
490 		}
491 	}
492 	as->a_seglast = newseg;
493 	avl_insert(&as->a_segtree, newseg, where);
494 
495 #ifdef VERIFY_SEGLIST
496 	as_verify(as);
497 #endif
498 	return (0);
499 }
500 
501 struct seg *
502 as_removeseg(struct as *as, struct seg *seg)
503 {
504 	avl_tree_t *t;
505 
506 	ASSERT(AS_WRITE_HELD(as));
507 
508 	as->a_updatedir = 1;	/* inform /proc */
509 	gethrestime(&as->a_updatetime);
510 
511 	if (seg == NULL)
512 		return (NULL);
513 
514 	t = &as->a_segtree;
515 	if (as->a_seglast == seg)
516 		as->a_seglast = NULL;
517 	as->a_lastgaphl = NULL;
518 
519 	/*
520 	 * if this segment is at an address higher than
521 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
522 	 */
523 	if (as->a_lastgap &&
524 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
525 		as->a_lastgap = AVL_NEXT(t, seg);
526 
527 	/*
528 	 * remove the segment from the seg tree
529 	 */
530 	avl_remove(t, seg);
531 
532 #ifdef VERIFY_SEGLIST
533 	as_verify(as);
534 #endif
535 	return (seg);
536 }
537 
538 /*
539  * Find a segment containing addr.
540  */
541 struct seg *
542 as_segat(struct as *as, caddr_t addr)
543 {
544 	struct seg *seg = as->a_seglast;
545 
546 	ASSERT(AS_LOCK_HELD(as));
547 
548 	if (seg != NULL && seg->s_base <= addr &&
549 	    addr < seg->s_base + seg->s_size)
550 		return (seg);
551 
552 	seg = avl_find(&as->a_segtree, &addr, NULL);
553 	return (seg);
554 }
555 
556 /*
557  * Serialize all searches for holes in an address space to
558  * prevent two or more threads from allocating the same virtual
559  * address range.  The address space must not be "read/write"
560  * locked by the caller since we may block.
561  */
562 void
563 as_rangelock(struct as *as)
564 {
565 	mutex_enter(&as->a_contents);
566 	while (AS_ISCLAIMGAP(as))
567 		cv_wait(&as->a_cv, &as->a_contents);
568 	AS_SETCLAIMGAP(as);
569 	mutex_exit(&as->a_contents);
570 }
571 
572 /*
573  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
574  */
575 void
576 as_rangeunlock(struct as *as)
577 {
578 	mutex_enter(&as->a_contents);
579 	AS_CLRCLAIMGAP(as);
580 	cv_signal(&as->a_cv);
581 	mutex_exit(&as->a_contents);
582 }
583 
584 /*
585  * compar segments (or just an address) by segment address range
586  */
587 static int
588 as_segcompar(const void *x, const void *y)
589 {
590 	struct seg *a = (struct seg *)x;
591 	struct seg *b = (struct seg *)y;
592 
593 	if (a->s_base < b->s_base)
594 		return (-1);
595 	if (a->s_base >= b->s_base + b->s_size)
596 		return (1);
597 	return (0);
598 }
599 
600 
601 void
602 as_avlinit(struct as *as)
603 {
604 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
605 	    offsetof(struct seg, s_tree));
606 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
607 	    offsetof(struct watched_page, wp_link));
608 }
609 
610 /*ARGSUSED*/
611 static int
612 as_constructor(void *buf, void *cdrarg, int kmflags)
613 {
614 	struct as *as = buf;
615 
616 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
617 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
618 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
619 	as_avlinit(as);
620 	return (0);
621 }
622 
623 /*ARGSUSED1*/
624 static void
625 as_destructor(void *buf, void *cdrarg)
626 {
627 	struct as *as = buf;
628 
629 	avl_destroy(&as->a_segtree);
630 	mutex_destroy(&as->a_contents);
631 	cv_destroy(&as->a_cv);
632 	rw_destroy(&as->a_lock);
633 }
634 
635 void
636 as_init(void)
637 {
638 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
639 	    as_constructor, as_destructor, NULL, NULL, NULL, 0);
640 }
641 
642 /*
643  * Allocate and initialize an address space data structure.
644  * We call hat_alloc to allow any machine dependent
645  * information in the hat structure to be initialized.
646  */
647 struct as *
648 as_alloc(void)
649 {
650 	struct as *as;
651 
652 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
653 
654 	as->a_flags		= 0;
655 	as->a_vbits		= 0;
656 	as->a_hrm		= NULL;
657 	as->a_seglast		= NULL;
658 	as->a_size		= 0;
659 	as->a_resvsize		= 0;
660 	as->a_updatedir		= 0;
661 	gethrestime(&as->a_updatetime);
662 	as->a_objectdir		= NULL;
663 	as->a_sizedir		= 0;
664 	as->a_userlimit		= (caddr_t)USERLIMIT;
665 	as->a_lastgap		= NULL;
666 	as->a_lastgaphl		= NULL;
667 	as->a_callbacks		= NULL;
668 
669 	AS_LOCK_ENTER(as, RW_WRITER);
670 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
671 	AS_LOCK_EXIT(as);
672 
673 	return (as);
674 }
675 
676 /*
677  * Free an address space data structure.
678  * Need to free the hat first and then
679  * all the segments on this as and finally
680  * the space for the as struct itself.
681  */
682 void
683 as_free(struct as *as)
684 {
685 	struct hat *hat = as->a_hat;
686 	struct seg *seg, *next;
687 	boolean_t free_started = B_FALSE;
688 
689 top:
690 	/*
691 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
692 	 * per call, and not return (-1) until the callback has completed.
693 	 * When as_do_callbacks returns zero, all callbacks have completed.
694 	 */
695 	mutex_enter(&as->a_contents);
696 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0))
697 		;
698 
699 	mutex_exit(&as->a_contents);
700 	AS_LOCK_ENTER(as, RW_WRITER);
701 
702 	if (!free_started) {
703 		free_started = B_TRUE;
704 		hat_free_start(hat);
705 	}
706 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
707 		int err;
708 
709 		next = AS_SEGNEXT(as, seg);
710 retry:
711 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
712 		if (err == EAGAIN) {
713 			mutex_enter(&as->a_contents);
714 			if (as->a_callbacks) {
715 				AS_LOCK_EXIT(as);
716 			} else if (!AS_ISNOUNMAPWAIT(as)) {
717 				/*
718 				 * Memory is currently locked. Wait for a
719 				 * cv_signal that it has been unlocked, then
720 				 * try the operation again.
721 				 */
722 				if (AS_ISUNMAPWAIT(as) == 0)
723 					cv_broadcast(&as->a_cv);
724 				AS_SETUNMAPWAIT(as);
725 				AS_LOCK_EXIT(as);
726 				while (AS_ISUNMAPWAIT(as))
727 					cv_wait(&as->a_cv, &as->a_contents);
728 			} else {
729 				/*
730 				 * We may have raced with
731 				 * segvn_reclaim()/segspt_reclaim(). In this
732 				 * case clean nounmapwait flag and retry since
733 				 * softlockcnt in this segment may be already
734 				 * 0.  We don't drop as writer lock so our
735 				 * number of retries without sleeping should
736 				 * be very small. See segvn_reclaim() for
737 				 * more comments.
738 				 */
739 				AS_CLRNOUNMAPWAIT(as);
740 				mutex_exit(&as->a_contents);
741 				goto retry;
742 			}
743 			mutex_exit(&as->a_contents);
744 			goto top;
745 		} else {
746 			/*
747 			 * We do not expect any other error return at this
748 			 * time. This is similar to an ASSERT in seg_unmap()
749 			 */
750 			ASSERT(err == 0);
751 		}
752 	}
753 	hat_free_end(hat);
754 	AS_LOCK_EXIT(as);
755 
756 	/* /proc stuff */
757 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
758 	if (as->a_objectdir) {
759 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
760 		as->a_objectdir = NULL;
761 		as->a_sizedir = 0;
762 	}
763 
764 	/*
765 	 * Free the struct as back to kmem.  Assert it has no segments.
766 	 */
767 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
768 	kmem_cache_free(as_cache, as);
769 }
770 
771 int
772 as_dup(struct as *as, struct proc *forkedproc)
773 {
774 	struct as *newas;
775 	struct seg *seg, *newseg;
776 	size_t	purgesize = 0;
777 	int error;
778 
779 	AS_LOCK_ENTER(as, RW_WRITER);
780 	as_clearwatch(as);
781 	newas = as_alloc();
782 	newas->a_userlimit = as->a_userlimit;
783 	newas->a_proc = forkedproc;
784 
785 	AS_LOCK_ENTER(newas, RW_WRITER);
786 
787 	(void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD);
788 
789 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
790 
791 		if (seg->s_flags & S_PURGE) {
792 			purgesize += seg->s_size;
793 			continue;
794 		}
795 
796 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
797 		if (newseg == NULL) {
798 			AS_LOCK_EXIT(newas);
799 			as_setwatch(as);
800 			AS_LOCK_EXIT(as);
801 			as_free(newas);
802 			return (-1);
803 		}
804 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
805 			/*
806 			 * We call seg_free() on the new seg
807 			 * because the segment is not set up
808 			 * completely; i.e. it has no ops.
809 			 */
810 			as_setwatch(as);
811 			AS_LOCK_EXIT(as);
812 			seg_free(newseg);
813 			AS_LOCK_EXIT(newas);
814 			as_free(newas);
815 			return (error);
816 		}
817 		newas->a_size += seg->s_size;
818 	}
819 	newas->a_resvsize = as->a_resvsize - purgesize;
820 
821 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
822 
823 	AS_LOCK_EXIT(newas);
824 
825 	as_setwatch(as);
826 	AS_LOCK_EXIT(as);
827 	if (error != 0) {
828 		as_free(newas);
829 		return (error);
830 	}
831 	forkedproc->p_as = newas;
832 	return (0);
833 }
834 
835 /*
836  * Handle a ``fault'' at addr for size bytes.
837  */
838 faultcode_t
839 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
840 	enum fault_type type, enum seg_rw rw)
841 {
842 	struct seg *seg;
843 	caddr_t raddr;			/* rounded down addr */
844 	size_t rsize;			/* rounded up size */
845 	size_t ssize;
846 	faultcode_t res = 0;
847 	caddr_t addrsav;
848 	struct seg *segsav;
849 	int as_lock_held;
850 	klwp_t *lwp = ttolwp(curthread);
851 
852 
853 
854 retry:
855 	/*
856 	 * Indicate that the lwp is not to be stopped while waiting for a
857 	 * pagefault.  This is to avoid deadlock while debugging a process
858 	 * via /proc over NFS (in particular).
859 	 */
860 	if (lwp != NULL)
861 		lwp->lwp_nostop++;
862 
863 	/*
864 	 * same length must be used when we softlock and softunlock.  We
865 	 * don't support softunlocking lengths less than the original length
866 	 * when there is largepage support.  See seg_dev.c for more
867 	 * comments.
868 	 */
869 	switch (type) {
870 
871 	case F_SOFTLOCK:
872 		CPU_STATS_ADD_K(vm, softlock, 1);
873 		break;
874 
875 	case F_SOFTUNLOCK:
876 		break;
877 
878 	case F_PROT:
879 		CPU_STATS_ADD_K(vm, prot_fault, 1);
880 		break;
881 
882 	case F_INVAL:
883 		CPU_STATS_ENTER_K();
884 		CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
885 		if (as == &kas)
886 			CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
887 		CPU_STATS_EXIT_K();
888 		break;
889 	}
890 
891 	/* Kernel probe */
892 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
893 	    tnf_opaque,	address,	addr,
894 	    tnf_fault_type,	fault_type,	type,
895 	    tnf_seg_access,	access,		rw);
896 
897 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
898 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
899 	    (size_t)raddr;
900 
901 	/*
902 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
903 	 * correctness, but then we could be stuck holding this lock for
904 	 * a LONG time if the fault needs to be resolved on a slow
905 	 * filesystem, and then no-one will be able to exec new commands,
906 	 * as exec'ing requires the write lock on the as.
907 	 */
908 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
909 	    raddr + size < segkmap->s_base + segkmap->s_size) {
910 		seg = segkmap;
911 		as_lock_held = 0;
912 	} else {
913 		AS_LOCK_ENTER(as, RW_READER);
914 
915 		seg = as_segat(as, raddr);
916 		if (seg == NULL) {
917 			AS_LOCK_EXIT(as);
918 			if (lwp != NULL)
919 				lwp->lwp_nostop--;
920 			return (FC_NOMAP);
921 		}
922 
923 		as_lock_held = 1;
924 	}
925 
926 	addrsav = raddr;
927 	segsav = seg;
928 
929 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
930 		if (raddr >= seg->s_base + seg->s_size) {
931 			seg = AS_SEGNEXT(as, seg);
932 			if (seg == NULL || raddr != seg->s_base) {
933 				res = FC_NOMAP;
934 				break;
935 			}
936 		}
937 		if (raddr + rsize > seg->s_base + seg->s_size)
938 			ssize = seg->s_base + seg->s_size - raddr;
939 		else
940 			ssize = rsize;
941 
942 		res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
943 		if (res != 0)
944 			break;
945 	}
946 
947 	/*
948 	 * If we were SOFTLOCKing and encountered a failure,
949 	 * we must SOFTUNLOCK the range we already did. (Maybe we
950 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
951 	 * right here...)
952 	 */
953 	if (res != 0 && type == F_SOFTLOCK) {
954 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
955 			if (addrsav >= seg->s_base + seg->s_size)
956 				seg = AS_SEGNEXT(as, seg);
957 			ASSERT(seg != NULL);
958 			/*
959 			 * Now call the fault routine again to perform the
960 			 * unlock using S_OTHER instead of the rw variable
961 			 * since we never got a chance to touch the pages.
962 			 */
963 			if (raddr > seg->s_base + seg->s_size)
964 				ssize = seg->s_base + seg->s_size - addrsav;
965 			else
966 				ssize = raddr - addrsav;
967 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
968 			    F_SOFTUNLOCK, S_OTHER);
969 		}
970 	}
971 	if (as_lock_held)
972 		AS_LOCK_EXIT(as);
973 	if (lwp != NULL)
974 		lwp->lwp_nostop--;
975 
976 	/*
977 	 * If the lower levels returned EDEADLK for a fault,
978 	 * It means that we should retry the fault.  Let's wait
979 	 * a bit also to let the deadlock causing condition clear.
980 	 * This is part of a gross hack to work around a design flaw
981 	 * in the ufs/sds logging code and should go away when the
982 	 * logging code is re-designed to fix the problem. See bug
983 	 * 4125102 for details of the problem.
984 	 */
985 	if (FC_ERRNO(res) == EDEADLK) {
986 		delay(deadlk_wait);
987 		res = 0;
988 		goto retry;
989 	}
990 	return (res);
991 }
992 
993 
994 
995 /*
996  * Asynchronous ``fault'' at addr for size bytes.
997  */
998 faultcode_t
999 as_faulta(struct as *as, caddr_t addr, size_t size)
1000 {
1001 	struct seg *seg;
1002 	caddr_t raddr;			/* rounded down addr */
1003 	size_t rsize;			/* rounded up size */
1004 	faultcode_t res = 0;
1005 	klwp_t *lwp = ttolwp(curthread);
1006 
1007 retry:
1008 	/*
1009 	 * Indicate that the lwp is not to be stopped while waiting
1010 	 * for a pagefault.  This is to avoid deadlock while debugging
1011 	 * a process via /proc over NFS (in particular).
1012 	 */
1013 	if (lwp != NULL)
1014 		lwp->lwp_nostop++;
1015 
1016 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1017 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1018 	    (size_t)raddr;
1019 
1020 	AS_LOCK_ENTER(as, RW_READER);
1021 	seg = as_segat(as, raddr);
1022 	if (seg == NULL) {
1023 		AS_LOCK_EXIT(as);
1024 		if (lwp != NULL)
1025 			lwp->lwp_nostop--;
1026 		return (FC_NOMAP);
1027 	}
1028 
1029 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1030 		if (raddr >= seg->s_base + seg->s_size) {
1031 			seg = AS_SEGNEXT(as, seg);
1032 			if (seg == NULL || raddr != seg->s_base) {
1033 				res = FC_NOMAP;
1034 				break;
1035 			}
1036 		}
1037 		res = SEGOP_FAULTA(seg, raddr);
1038 		if (res != 0)
1039 			break;
1040 	}
1041 	AS_LOCK_EXIT(as);
1042 	if (lwp != NULL)
1043 		lwp->lwp_nostop--;
1044 	/*
1045 	 * If the lower levels returned EDEADLK for a fault,
1046 	 * It means that we should retry the fault.  Let's wait
1047 	 * a bit also to let the deadlock causing condition clear.
1048 	 * This is part of a gross hack to work around a design flaw
1049 	 * in the ufs/sds logging code and should go away when the
1050 	 * logging code is re-designed to fix the problem. See bug
1051 	 * 4125102 for details of the problem.
1052 	 */
1053 	if (FC_ERRNO(res) == EDEADLK) {
1054 		delay(deadlk_wait);
1055 		res = 0;
1056 		goto retry;
1057 	}
1058 	return (res);
1059 }
1060 
1061 /*
1062  * Set the virtual mapping for the interval from [addr : addr + size)
1063  * in address space `as' to have the specified protection.
1064  * It is ok for the range to cross over several segments,
1065  * as long as they are contiguous.
1066  */
1067 int
1068 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1069 {
1070 	struct seg *seg;
1071 	struct as_callback *cb;
1072 	size_t ssize;
1073 	caddr_t raddr;			/* rounded down addr */
1074 	size_t rsize;			/* rounded up size */
1075 	int error = 0, writer = 0;
1076 	caddr_t saveraddr;
1077 	size_t saversize;
1078 
1079 setprot_top:
1080 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1081 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1082 	    (size_t)raddr;
1083 
1084 	if (raddr + rsize < raddr)		/* check for wraparound */
1085 		return (ENOMEM);
1086 
1087 	saveraddr = raddr;
1088 	saversize = rsize;
1089 
1090 	/*
1091 	 * Normally we only lock the as as a reader. But
1092 	 * if due to setprot the segment driver needs to split
1093 	 * a segment it will return IE_RETRY. Therefore we re-acquire
1094 	 * the as lock as a writer so the segment driver can change
1095 	 * the seg list. Also the segment driver will return IE_RETRY
1096 	 * after it has changed the segment list so we therefore keep
1097 	 * locking as a writer. Since these opeartions should be rare
1098 	 * want to only lock as a writer when necessary.
1099 	 */
1100 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1101 		AS_LOCK_ENTER(as, RW_WRITER);
1102 	} else {
1103 		AS_LOCK_ENTER(as, RW_READER);
1104 	}
1105 
1106 	as_clearwatchprot(as, raddr, rsize);
1107 	seg = as_segat(as, raddr);
1108 	if (seg == NULL) {
1109 		as_setwatch(as);
1110 		AS_LOCK_EXIT(as);
1111 		return (ENOMEM);
1112 	}
1113 
1114 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1115 		if (raddr >= seg->s_base + seg->s_size) {
1116 			seg = AS_SEGNEXT(as, seg);
1117 			if (seg == NULL || raddr != seg->s_base) {
1118 				error = ENOMEM;
1119 				break;
1120 			}
1121 		}
1122 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1123 			ssize = seg->s_base + seg->s_size - raddr;
1124 		else
1125 			ssize = rsize;
1126 retry:
1127 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1128 
1129 		if (error == IE_NOMEM) {
1130 			error = EAGAIN;
1131 			break;
1132 		}
1133 
1134 		if (error == IE_RETRY) {
1135 			AS_LOCK_EXIT(as);
1136 			writer = 1;
1137 			goto setprot_top;
1138 		}
1139 
1140 		if (error == EAGAIN) {
1141 			/*
1142 			 * Make sure we have a_lock as writer.
1143 			 */
1144 			if (writer == 0) {
1145 				AS_LOCK_EXIT(as);
1146 				writer = 1;
1147 				goto setprot_top;
1148 			}
1149 
1150 			/*
1151 			 * Memory is currently locked.  It must be unlocked
1152 			 * before this operation can succeed through a retry.
1153 			 * The possible reasons for locked memory and
1154 			 * corresponding strategies for unlocking are:
1155 			 * (1) Normal I/O
1156 			 *	wait for a signal that the I/O operation
1157 			 *	has completed and the memory is unlocked.
1158 			 * (2) Asynchronous I/O
1159 			 *	The aio subsystem does not unlock pages when
1160 			 *	the I/O is completed. Those pages are unlocked
1161 			 *	when the application calls aiowait/aioerror.
1162 			 *	So, to prevent blocking forever, cv_broadcast()
1163 			 *	is done to wake up aio_cleanup_thread.
1164 			 *	Subsequently, segvn_reclaim will be called, and
1165 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1166 			 * (3) Long term page locking:
1167 			 *	Drivers intending to have pages locked for a
1168 			 *	period considerably longer than for normal I/O
1169 			 *	(essentially forever) may have registered for a
1170 			 *	callback so they may unlock these pages on
1171 			 *	request. This is needed to allow this operation
1172 			 *	to succeed. Each entry on the callback list is
1173 			 *	examined. If the event or address range pertains
1174 			 *	the callback is invoked (unless it already is in
1175 			 *	progress). The a_contents lock must be dropped
1176 			 *	before the callback, so only one callback can
1177 			 *	be done at a time. Go to the top and do more
1178 			 *	until zero is returned. If zero is returned,
1179 			 *	either there were no callbacks for this event
1180 			 *	or they were already in progress.
1181 			 */
1182 			mutex_enter(&as->a_contents);
1183 			if (as->a_callbacks &&
1184 			    (cb = as_find_callback(as, AS_SETPROT_EVENT,
1185 			    seg->s_base, seg->s_size))) {
1186 				AS_LOCK_EXIT(as);
1187 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1188 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1189 				if (AS_ISUNMAPWAIT(as) == 0)
1190 					cv_broadcast(&as->a_cv);
1191 				AS_SETUNMAPWAIT(as);
1192 				AS_LOCK_EXIT(as);
1193 				while (AS_ISUNMAPWAIT(as))
1194 					cv_wait(&as->a_cv, &as->a_contents);
1195 			} else {
1196 				/*
1197 				 * We may have raced with
1198 				 * segvn_reclaim()/segspt_reclaim(). In this
1199 				 * case clean nounmapwait flag and retry since
1200 				 * softlockcnt in this segment may be already
1201 				 * 0.  We don't drop as writer lock so our
1202 				 * number of retries without sleeping should
1203 				 * be very small. See segvn_reclaim() for
1204 				 * more comments.
1205 				 */
1206 				AS_CLRNOUNMAPWAIT(as);
1207 				mutex_exit(&as->a_contents);
1208 				goto retry;
1209 			}
1210 			mutex_exit(&as->a_contents);
1211 			goto setprot_top;
1212 		} else if (error != 0)
1213 			break;
1214 	}
1215 	if (error != 0) {
1216 		as_setwatch(as);
1217 	} else {
1218 		as_setwatchprot(as, saveraddr, saversize, prot);
1219 	}
1220 	AS_LOCK_EXIT(as);
1221 	return (error);
1222 }
1223 
1224 /*
1225  * Check to make sure that the interval [addr, addr + size)
1226  * in address space `as' has at least the specified protection.
1227  * It is ok for the range to cross over several segments, as long
1228  * as they are contiguous.
1229  */
1230 int
1231 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1232 {
1233 	struct seg *seg;
1234 	size_t ssize;
1235 	caddr_t raddr;			/* rounded down addr */
1236 	size_t rsize;			/* rounded up size */
1237 	int error = 0;
1238 
1239 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1240 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1241 	    (size_t)raddr;
1242 
1243 	if (raddr + rsize < raddr)		/* check for wraparound */
1244 		return (ENOMEM);
1245 
1246 	/*
1247 	 * This is ugly as sin...
1248 	 * Normally, we only acquire the address space readers lock.
1249 	 * However, if the address space has watchpoints present,
1250 	 * we must acquire the writer lock on the address space for
1251 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1252 	 */
1253 	if (avl_numnodes(&as->a_wpage) != 0)
1254 		AS_LOCK_ENTER(as, RW_WRITER);
1255 	else
1256 		AS_LOCK_ENTER(as, RW_READER);
1257 	as_clearwatchprot(as, raddr, rsize);
1258 	seg = as_segat(as, raddr);
1259 	if (seg == NULL) {
1260 		as_setwatch(as);
1261 		AS_LOCK_EXIT(as);
1262 		return (ENOMEM);
1263 	}
1264 
1265 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1266 		if (raddr >= seg->s_base + seg->s_size) {
1267 			seg = AS_SEGNEXT(as, seg);
1268 			if (seg == NULL || raddr != seg->s_base) {
1269 				error = ENOMEM;
1270 				break;
1271 			}
1272 		}
1273 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1274 			ssize = seg->s_base + seg->s_size - raddr;
1275 		else
1276 			ssize = rsize;
1277 
1278 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1279 		if (error != 0)
1280 			break;
1281 	}
1282 	as_setwatch(as);
1283 	AS_LOCK_EXIT(as);
1284 	return (error);
1285 }
1286 
1287 int
1288 as_unmap(struct as *as, caddr_t addr, size_t size)
1289 {
1290 	struct seg *seg, *seg_next;
1291 	struct as_callback *cb;
1292 	caddr_t raddr, eaddr;
1293 	size_t ssize, rsize = 0;
1294 	int err;
1295 
1296 top:
1297 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1298 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1299 	    (uintptr_t)PAGEMASK);
1300 
1301 	AS_LOCK_ENTER(as, RW_WRITER);
1302 
1303 	as->a_updatedir = 1;	/* inform /proc */
1304 	gethrestime(&as->a_updatetime);
1305 
1306 	/*
1307 	 * Use as_findseg to find the first segment in the range, then
1308 	 * step through the segments in order, following s_next.
1309 	 */
1310 	as_clearwatchprot(as, raddr, eaddr - raddr);
1311 
1312 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1313 		if (eaddr <= seg->s_base)
1314 			break;		/* eaddr was in a gap; all done */
1315 
1316 		/* this is implied by the test above */
1317 		ASSERT(raddr < eaddr);
1318 
1319 		if (raddr < seg->s_base)
1320 			raddr = seg->s_base; 	/* raddr was in a gap */
1321 
1322 		if (eaddr > (seg->s_base + seg->s_size))
1323 			ssize = seg->s_base + seg->s_size - raddr;
1324 		else
1325 			ssize = eaddr - raddr;
1326 
1327 		/*
1328 		 * Save next segment pointer since seg can be
1329 		 * destroyed during the segment unmap operation.
1330 		 */
1331 		seg_next = AS_SEGNEXT(as, seg);
1332 
1333 		/*
1334 		 * We didn't count /dev/null mappings, so ignore them here.
1335 		 * We'll handle MAP_NORESERVE cases in segvn_unmap(). (Again,
1336 		 * we have to do this check here while we have seg.)
1337 		 */
1338 		rsize = 0;
1339 		if (!SEG_IS_DEVNULL_MAPPING(seg) &&
1340 		    !SEG_IS_PARTIAL_RESV(seg))
1341 			rsize = ssize;
1342 
1343 retry:
1344 		err = SEGOP_UNMAP(seg, raddr, ssize);
1345 		if (err == EAGAIN) {
1346 			/*
1347 			 * Memory is currently locked.  It must be unlocked
1348 			 * before this operation can succeed through a retry.
1349 			 * The possible reasons for locked memory and
1350 			 * corresponding strategies for unlocking are:
1351 			 * (1) Normal I/O
1352 			 *	wait for a signal that the I/O operation
1353 			 *	has completed and the memory is unlocked.
1354 			 * (2) Asynchronous I/O
1355 			 *	The aio subsystem does not unlock pages when
1356 			 *	the I/O is completed. Those pages are unlocked
1357 			 *	when the application calls aiowait/aioerror.
1358 			 *	So, to prevent blocking forever, cv_broadcast()
1359 			 *	is done to wake up aio_cleanup_thread.
1360 			 *	Subsequently, segvn_reclaim will be called, and
1361 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1362 			 * (3) Long term page locking:
1363 			 *	Drivers intending to have pages locked for a
1364 			 *	period considerably longer than for normal I/O
1365 			 *	(essentially forever) may have registered for a
1366 			 *	callback so they may unlock these pages on
1367 			 *	request. This is needed to allow this operation
1368 			 *	to succeed. Each entry on the callback list is
1369 			 *	examined. If the event or address range pertains
1370 			 *	the callback is invoked (unless it already is in
1371 			 *	progress). The a_contents lock must be dropped
1372 			 *	before the callback, so only one callback can
1373 			 *	be done at a time. Go to the top and do more
1374 			 *	until zero is returned. If zero is returned,
1375 			 *	either there were no callbacks for this event
1376 			 *	or they were already in progress.
1377 			 */
1378 			mutex_enter(&as->a_contents);
1379 			if (as->a_callbacks &&
1380 			    (cb = as_find_callback(as, AS_UNMAP_EVENT,
1381 			    seg->s_base, seg->s_size))) {
1382 				AS_LOCK_EXIT(as);
1383 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1384 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1385 				if (AS_ISUNMAPWAIT(as) == 0)
1386 					cv_broadcast(&as->a_cv);
1387 				AS_SETUNMAPWAIT(as);
1388 				AS_LOCK_EXIT(as);
1389 				while (AS_ISUNMAPWAIT(as))
1390 					cv_wait(&as->a_cv, &as->a_contents);
1391 			} else {
1392 				/*
1393 				 * We may have raced with
1394 				 * segvn_reclaim()/segspt_reclaim(). In this
1395 				 * case clean nounmapwait flag and retry since
1396 				 * softlockcnt in this segment may be already
1397 				 * 0.  We don't drop as writer lock so our
1398 				 * number of retries without sleeping should
1399 				 * be very small. See segvn_reclaim() for
1400 				 * more comments.
1401 				 */
1402 				AS_CLRNOUNMAPWAIT(as);
1403 				mutex_exit(&as->a_contents);
1404 				goto retry;
1405 			}
1406 			mutex_exit(&as->a_contents);
1407 			goto top;
1408 		} else if (err == IE_RETRY) {
1409 			AS_LOCK_EXIT(as);
1410 			goto top;
1411 		} else if (err) {
1412 			as_setwatch(as);
1413 			AS_LOCK_EXIT(as);
1414 			return (-1);
1415 		}
1416 
1417 		as->a_size -= ssize;
1418 		if (rsize)
1419 			as->a_resvsize -= rsize;
1420 		raddr += ssize;
1421 	}
1422 	AS_LOCK_EXIT(as);
1423 	return (0);
1424 }
1425 
1426 static int
1427 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec,
1428     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1429 {
1430 	uint_t szc;
1431 	uint_t nszc;
1432 	int error;
1433 	caddr_t a;
1434 	caddr_t eaddr;
1435 	size_t segsize;
1436 	struct seg *seg;
1437 	size_t pgsz;
1438 	int do_off = (vn_a->vp != NULL || vn_a->amp != NULL);
1439 	uint_t save_szcvec;
1440 
1441 	ASSERT(AS_WRITE_HELD(as));
1442 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1443 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1444 	ASSERT(vn_a->vp == NULL || vn_a->amp == NULL);
1445 	if (!do_off) {
1446 		vn_a->offset = 0;
1447 	}
1448 
1449 	if (szcvec <= 1) {
1450 		seg = seg_alloc(as, addr, size);
1451 		if (seg == NULL) {
1452 			return (ENOMEM);
1453 		}
1454 		vn_a->szc = 0;
1455 		error = (*crfp)(seg, vn_a);
1456 		if (error != 0) {
1457 			seg_free(seg);
1458 		} else {
1459 			as->a_size += size;
1460 			as->a_resvsize += size;
1461 		}
1462 		return (error);
1463 	}
1464 
1465 	eaddr = addr + size;
1466 	save_szcvec = szcvec;
1467 	szcvec >>= 1;
1468 	szc = 0;
1469 	nszc = 0;
1470 	while (szcvec) {
1471 		if ((szcvec & 0x1) == 0) {
1472 			nszc++;
1473 			szcvec >>= 1;
1474 			continue;
1475 		}
1476 		nszc++;
1477 		pgsz = page_get_pagesize(nszc);
1478 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1479 		if (a != addr) {
1480 			ASSERT(a < eaddr);
1481 			segsize = a - addr;
1482 			seg = seg_alloc(as, addr, segsize);
1483 			if (seg == NULL) {
1484 				return (ENOMEM);
1485 			}
1486 			vn_a->szc = szc;
1487 			error = (*crfp)(seg, vn_a);
1488 			if (error != 0) {
1489 				seg_free(seg);
1490 				return (error);
1491 			}
1492 			as->a_size += segsize;
1493 			as->a_resvsize += segsize;
1494 			*segcreated = 1;
1495 			if (do_off) {
1496 				vn_a->offset += segsize;
1497 			}
1498 			addr = a;
1499 		}
1500 		szc = nszc;
1501 		szcvec >>= 1;
1502 	}
1503 
1504 	ASSERT(addr < eaddr);
1505 	szcvec = save_szcvec | 1; /* add 8K pages */
1506 	while (szcvec) {
1507 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1508 		ASSERT(a >= addr);
1509 		if (a != addr) {
1510 			segsize = a - addr;
1511 			seg = seg_alloc(as, addr, segsize);
1512 			if (seg == NULL) {
1513 				return (ENOMEM);
1514 			}
1515 			vn_a->szc = szc;
1516 			error = (*crfp)(seg, vn_a);
1517 			if (error != 0) {
1518 				seg_free(seg);
1519 				return (error);
1520 			}
1521 			as->a_size += segsize;
1522 			as->a_resvsize += segsize;
1523 			*segcreated = 1;
1524 			if (do_off) {
1525 				vn_a->offset += segsize;
1526 			}
1527 			addr = a;
1528 		}
1529 		szcvec &= ~(1 << szc);
1530 		if (szcvec) {
1531 			szc = highbit(szcvec) - 1;
1532 			pgsz = page_get_pagesize(szc);
1533 		}
1534 	}
1535 	ASSERT(addr == eaddr);
1536 
1537 	return (0);
1538 }
1539 
1540 static int
1541 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1542     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1543 {
1544 	uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA);
1545 	int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
1546 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1547 	    type, 0);
1548 	int error;
1549 	struct seg *seg;
1550 	struct vattr va;
1551 	u_offset_t eoff;
1552 	size_t save_size = 0;
1553 	extern size_t textrepl_size_thresh;
1554 
1555 	ASSERT(AS_WRITE_HELD(as));
1556 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1557 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1558 	ASSERT(vn_a->vp != NULL);
1559 	ASSERT(vn_a->amp == NULL);
1560 
1561 again:
1562 	if (szcvec <= 1) {
1563 		seg = seg_alloc(as, addr, size);
1564 		if (seg == NULL) {
1565 			return (ENOMEM);
1566 		}
1567 		vn_a->szc = 0;
1568 		error = (*crfp)(seg, vn_a);
1569 		if (error != 0) {
1570 			seg_free(seg);
1571 		} else {
1572 			as->a_size += size;
1573 			as->a_resvsize += size;
1574 		}
1575 		return (error);
1576 	}
1577 
1578 	va.va_mask = AT_SIZE;
1579 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) {
1580 		szcvec = 0;
1581 		goto again;
1582 	}
1583 	eoff = vn_a->offset & PAGEMASK;
1584 	if (eoff >= va.va_size) {
1585 		szcvec = 0;
1586 		goto again;
1587 	}
1588 	eoff += size;
1589 	if (btopr(va.va_size) < btopr(eoff)) {
1590 		save_size = size;
1591 		size = va.va_size - (vn_a->offset & PAGEMASK);
1592 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1593 		szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1594 		    type, 0);
1595 		if (szcvec <= 1) {
1596 			size = save_size;
1597 			goto again;
1598 		}
1599 	}
1600 
1601 	if (size > textrepl_size_thresh) {
1602 		vn_a->flags |= _MAP_TEXTREPL;
1603 	}
1604 	error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a,
1605 	    segcreated);
1606 	if (error != 0) {
1607 		return (error);
1608 	}
1609 	if (save_size) {
1610 		addr += size;
1611 		size = save_size - size;
1612 		szcvec = 0;
1613 		goto again;
1614 	}
1615 	return (0);
1616 }
1617 
1618 /*
1619  * as_map_ansegs: shared or private anonymous memory.  Note that the flags
1620  * passed to map_pgszvec cannot be MAP_INITDATA, for anon.
1621  */
1622 static int
1623 as_map_ansegs(struct as *as, caddr_t addr, size_t size,
1624     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1625 {
1626 	uint_t szcvec;
1627 	uchar_t type;
1628 
1629 	ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE);
1630 	if (vn_a->type == MAP_SHARED) {
1631 		type = MAPPGSZC_SHM;
1632 	} else if (vn_a->type == MAP_PRIVATE) {
1633 		if (vn_a->szc == AS_MAP_HEAP) {
1634 			type = MAPPGSZC_HEAP;
1635 		} else if (vn_a->szc == AS_MAP_STACK) {
1636 			type = MAPPGSZC_STACK;
1637 		} else {
1638 			type = MAPPGSZC_PRIVM;
1639 		}
1640 	}
1641 	szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ?
1642 	    (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE),
1643 	    (vn_a->flags & MAP_TEXT), type, 0);
1644 	ASSERT(AS_WRITE_HELD(as));
1645 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1646 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1647 	ASSERT(vn_a->vp == NULL);
1648 
1649 	return (as_map_segvn_segs(as, addr, size, szcvec,
1650 	    crfp, vn_a, segcreated));
1651 }
1652 
1653 int
1654 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1655 {
1656 	AS_LOCK_ENTER(as, RW_WRITER);
1657 	return (as_map_locked(as, addr, size, crfp, argsp));
1658 }
1659 
1660 int
1661 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(),
1662 		void *argsp)
1663 {
1664 	struct seg *seg = NULL;
1665 	caddr_t raddr;			/* rounded down addr */
1666 	size_t rsize;			/* rounded up size */
1667 	int error;
1668 	int unmap = 0;
1669 	struct proc *p = curproc;
1670 	struct segvn_crargs crargs;
1671 
1672 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1673 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1674 	    (size_t)raddr;
1675 
1676 	/*
1677 	 * check for wrap around
1678 	 */
1679 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1680 		AS_LOCK_EXIT(as);
1681 		return (ENOMEM);
1682 	}
1683 
1684 	as->a_updatedir = 1;	/* inform /proc */
1685 	gethrestime(&as->a_updatetime);
1686 
1687 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1688 		AS_LOCK_EXIT(as);
1689 
1690 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1691 		    RCA_UNSAFE_ALL);
1692 
1693 		return (ENOMEM);
1694 	}
1695 
1696 	if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) {
1697 		crargs = *(struct segvn_crargs *)argsp;
1698 		error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap);
1699 		if (error != 0) {
1700 			AS_LOCK_EXIT(as);
1701 			if (unmap) {
1702 				(void) as_unmap(as, addr, size);
1703 			}
1704 			return (error);
1705 		}
1706 	} else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) {
1707 		crargs = *(struct segvn_crargs *)argsp;
1708 		error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap);
1709 		if (error != 0) {
1710 			AS_LOCK_EXIT(as);
1711 			if (unmap) {
1712 				(void) as_unmap(as, addr, size);
1713 			}
1714 			return (error);
1715 		}
1716 	} else {
1717 		seg = seg_alloc(as, addr, size);
1718 		if (seg == NULL) {
1719 			AS_LOCK_EXIT(as);
1720 			return (ENOMEM);
1721 		}
1722 
1723 		error = (*crfp)(seg, argsp);
1724 		if (error != 0) {
1725 			seg_free(seg);
1726 			AS_LOCK_EXIT(as);
1727 			return (error);
1728 		}
1729 		/*
1730 		 * Add size now so as_unmap will work if as_ctl fails.
1731 		 */
1732 		as->a_size += rsize;
1733 		as->a_resvsize += rsize;
1734 	}
1735 
1736 	as_setwatch(as);
1737 
1738 	/*
1739 	 * If the address space is locked,
1740 	 * establish memory locks for the new segment.
1741 	 */
1742 	mutex_enter(&as->a_contents);
1743 	if (AS_ISPGLCK(as)) {
1744 		mutex_exit(&as->a_contents);
1745 		AS_LOCK_EXIT(as);
1746 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1747 		if (error != 0)
1748 			(void) as_unmap(as, addr, size);
1749 	} else {
1750 		mutex_exit(&as->a_contents);
1751 		AS_LOCK_EXIT(as);
1752 	}
1753 	return (error);
1754 }
1755 
1756 
1757 /*
1758  * Delete all segments in the address space marked with S_PURGE.
1759  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1760  * These segments are deleted as a first step before calls to as_gap(), so
1761  * that they don't affect mmap() or shmat().
1762  */
1763 void
1764 as_purge(struct as *as)
1765 {
1766 	struct seg *seg;
1767 	struct seg *next_seg;
1768 
1769 	/*
1770 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1771 	 * no need to grab a_contents mutex for this check
1772 	 */
1773 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1774 		return;
1775 
1776 	AS_LOCK_ENTER(as, RW_WRITER);
1777 	next_seg = NULL;
1778 	seg = AS_SEGFIRST(as);
1779 	while (seg != NULL) {
1780 		next_seg = AS_SEGNEXT(as, seg);
1781 		if (seg->s_flags & S_PURGE)
1782 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1783 		seg = next_seg;
1784 	}
1785 	AS_LOCK_EXIT(as);
1786 
1787 	mutex_enter(&as->a_contents);
1788 	as->a_flags &= ~AS_NEEDSPURGE;
1789 	mutex_exit(&as->a_contents);
1790 }
1791 
1792 /*
1793  * Find a hole within [*basep, *basep + *lenp), which contains a mappable
1794  * range of addresses at least "minlen" long, where the base of the range is
1795  * at "off" phase from an "align" boundary and there is space for a
1796  * "redzone"-sized redzone on eithe rside of the range.  Thus,
1797  * if align was 4M and off was 16k, the user wants a hole which will start
1798  * 16k into a 4M page.
1799  *
1800  * If flags specifies AH_HI, the hole will have the highest possible address
1801  * in the range.  We use the as->a_lastgap field to figure out where to
1802  * start looking for a gap.
1803  *
1804  * Otherwise, the gap will have the lowest possible address.
1805  *
1806  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1807  *
1808  * If an adequate hole is found, *basep and *lenp are set to reflect the part of
1809  * the hole that is within range, and 0 is returned. On failure, -1 is returned.
1810  *
1811  * NOTE: This routine is not correct when base+len overflows caddr_t.
1812  */
1813 int
1814 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp,
1815     uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off)
1816 {
1817 	caddr_t lobound = *basep;
1818 	caddr_t hibound = lobound + *lenp;
1819 	struct seg *lseg, *hseg;
1820 	caddr_t lo, hi;
1821 	int forward;
1822 	caddr_t save_base;
1823 	size_t save_len;
1824 	size_t save_minlen;
1825 	size_t save_redzone;
1826 	int fast_path = 1;
1827 
1828 	save_base = *basep;
1829 	save_len = *lenp;
1830 	save_minlen = minlen;
1831 	save_redzone = redzone;
1832 
1833 	/*
1834 	 * For the first pass/fast_path, just add align and redzone into
1835 	 * minlen since if we get an allocation, we can guarantee that it
1836 	 * will fit the alignment and redzone requested.
1837 	 * This increases the chance that hibound will be adjusted to
1838 	 * a_lastgap->s_base which will likely allow us to find an
1839 	 * acceptable hole in the address space quicker.
1840 	 * If we can't find a hole with this fast_path, then we look for
1841 	 * smaller holes in which the alignment and offset may allow
1842 	 * the allocation to fit.
1843 	 */
1844 	minlen += align;
1845 	minlen += 2 * redzone;
1846 	redzone = 0;
1847 
1848 	AS_LOCK_ENTER(as, RW_READER);
1849 	if (AS_SEGFIRST(as) == NULL) {
1850 		if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR,
1851 		    align, redzone, off)) {
1852 			AS_LOCK_EXIT(as);
1853 			return (0);
1854 		} else {
1855 			AS_LOCK_EXIT(as);
1856 			*basep = save_base;
1857 			*lenp = save_len;
1858 			return (-1);
1859 		}
1860 	}
1861 
1862 retry:
1863 	/*
1864 	 * Set up to iterate over all the inter-segment holes in the given
1865 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1866 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1867 	 * sseg to denote the highest-addressed segment.
1868 	 */
1869 	forward = (flags & AH_DIR) == AH_LO;
1870 	if (forward) {
1871 		hseg = as_findseg(as, lobound, 1);
1872 		lseg = AS_SEGPREV(as, hseg);
1873 	} else {
1874 
1875 		/*
1876 		 * If allocating at least as much as the last allocation,
1877 		 * use a_lastgap's base as a better estimate of hibound.
1878 		 */
1879 		if (as->a_lastgap &&
1880 		    minlen >= as->a_lastgap->s_size &&
1881 		    hibound >= as->a_lastgap->s_base)
1882 			hibound = as->a_lastgap->s_base;
1883 
1884 		hseg = as_findseg(as, hibound, 1);
1885 		if (hseg->s_base + hseg->s_size < hibound) {
1886 			lseg = hseg;
1887 			hseg = NULL;
1888 		} else {
1889 			lseg = AS_SEGPREV(as, hseg);
1890 		}
1891 	}
1892 
1893 	for (;;) {
1894 		/*
1895 		 * Set lo and hi to the hole's boundaries.  (We should really
1896 		 * use MAXADDR in place of hibound in the expression below,
1897 		 * but can't express it easily; using hibound in its place is
1898 		 * harmless.)
1899 		 */
1900 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1901 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1902 		/*
1903 		 * If the iteration has moved past the interval from lobound
1904 		 * to hibound it's pointless to continue.
1905 		 */
1906 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1907 			break;
1908 		else if (lo > hibound || hi < lobound)
1909 			goto cont;
1910 		/*
1911 		 * Candidate hole lies at least partially within the allowable
1912 		 * range.  Restrict it to fall completely within that range,
1913 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
1914 		 */
1915 		if (lo < lobound)
1916 			lo = lobound;
1917 		if (hi > hibound)
1918 			hi = hibound;
1919 		/*
1920 		 * Verify that the candidate hole is big enough and meets
1921 		 * hardware constraints.  If the hole is too small, no need
1922 		 * to do the further checks since they will fail.
1923 		 */
1924 		*basep = lo;
1925 		*lenp = hi - lo;
1926 		if (*lenp >= minlen && valid_va_range_aligned(basep, lenp,
1927 		    minlen, forward ? AH_LO : AH_HI, align, redzone, off) &&
1928 		    ((flags & AH_CONTAIN) == 0 ||
1929 		    (*basep <= addr && *basep + *lenp > addr))) {
1930 			if (!forward)
1931 				as->a_lastgap = hseg;
1932 			if (hseg != NULL)
1933 				as->a_lastgaphl = hseg;
1934 			else
1935 				as->a_lastgaphl = lseg;
1936 			AS_LOCK_EXIT(as);
1937 			return (0);
1938 		}
1939 	cont:
1940 		/*
1941 		 * Move to the next hole.
1942 		 */
1943 		if (forward) {
1944 			lseg = hseg;
1945 			if (lseg == NULL)
1946 				break;
1947 			hseg = AS_SEGNEXT(as, hseg);
1948 		} else {
1949 			hseg = lseg;
1950 			if (hseg == NULL)
1951 				break;
1952 			lseg = AS_SEGPREV(as, lseg);
1953 		}
1954 	}
1955 	if (fast_path && (align != 0 || save_redzone != 0)) {
1956 		fast_path = 0;
1957 		minlen = save_minlen;
1958 		redzone = save_redzone;
1959 		goto retry;
1960 	}
1961 	*basep = save_base;
1962 	*lenp = save_len;
1963 	AS_LOCK_EXIT(as);
1964 	return (-1);
1965 }
1966 
1967 /*
1968  * Find a hole of at least size minlen within [*basep, *basep + *lenp).
1969  *
1970  * If flags specifies AH_HI, the hole will have the highest possible address
1971  * in the range.  We use the as->a_lastgap field to figure out where to
1972  * start looking for a gap.
1973  *
1974  * Otherwise, the gap will have the lowest possible address.
1975  *
1976  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1977  *
1978  * If an adequate hole is found, base and len are set to reflect the part of
1979  * the hole that is within range, and 0 is returned, otherwise,
1980  * -1 is returned.
1981  *
1982  * NOTE: This routine is not correct when base+len overflows caddr_t.
1983  */
1984 int
1985 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
1986     caddr_t addr)
1987 {
1988 
1989 	return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0));
1990 }
1991 
1992 /*
1993  * Return the next range within [base, base + len) that is backed
1994  * with "real memory".  Skip holes and non-seg_vn segments.
1995  * We're lazy and only return one segment at a time.
1996  */
1997 int
1998 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
1999 {
2000 	extern struct seg_ops segspt_shmops;	/* needs a header file */
2001 	struct seg *seg;
2002 	caddr_t addr, eaddr;
2003 	caddr_t segend;
2004 
2005 	AS_LOCK_ENTER(as, RW_READER);
2006 
2007 	addr = *basep;
2008 	eaddr = addr + *lenp;
2009 
2010 	seg = as_findseg(as, addr, 0);
2011 	if (seg != NULL)
2012 		addr = MAX(seg->s_base, addr);
2013 
2014 	for (;;) {
2015 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
2016 			AS_LOCK_EXIT(as);
2017 			return (EINVAL);
2018 		}
2019 
2020 		if (seg->s_ops == &segvn_ops) {
2021 			segend = seg->s_base + seg->s_size;
2022 			break;
2023 		}
2024 
2025 		/*
2026 		 * We do ISM by looking into the private data
2027 		 * to determine the real size of the segment.
2028 		 */
2029 		if (seg->s_ops == &segspt_shmops) {
2030 			segend = seg->s_base + spt_realsize(seg);
2031 			if (addr < segend)
2032 				break;
2033 		}
2034 
2035 		seg = AS_SEGNEXT(as, seg);
2036 
2037 		if (seg != NULL)
2038 			addr = seg->s_base;
2039 	}
2040 
2041 	*basep = addr;
2042 
2043 	if (segend > eaddr)
2044 		*lenp = eaddr - addr;
2045 	else
2046 		*lenp = segend - addr;
2047 
2048 	AS_LOCK_EXIT(as);
2049 	return (0);
2050 }
2051 
2052 /*
2053  * Swap the pages associated with the address space as out to
2054  * secondary storage, returning the number of bytes actually
2055  * swapped.
2056  *
2057  * The value returned is intended to correlate well with the process's
2058  * memory requirements.  Its usefulness for this purpose depends on
2059  * how well the segment-level routines do at returning accurate
2060  * information.
2061  */
2062 size_t
2063 as_swapout(struct as *as)
2064 {
2065 	struct seg *seg;
2066 	size_t swpcnt = 0;
2067 
2068 	/*
2069 	 * Kernel-only processes have given up their address
2070 	 * spaces.  Of course, we shouldn't be attempting to
2071 	 * swap out such processes in the first place...
2072 	 */
2073 	if (as == NULL)
2074 		return (0);
2075 
2076 	AS_LOCK_ENTER(as, RW_READER);
2077 
2078 	/*
2079 	 * Free all mapping resources associated with the address
2080 	 * space.  The segment-level swapout routines capitalize
2081 	 * on this unmapping by scavanging pages that have become
2082 	 * unmapped here.
2083 	 */
2084 	hat_swapout(as->a_hat);
2085 
2086 	/*
2087 	 * Call the swapout routines of all segments in the address
2088 	 * space to do the actual work, accumulating the amount of
2089 	 * space reclaimed.
2090 	 */
2091 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2092 		struct seg_ops *ov = seg->s_ops;
2093 
2094 		/*
2095 		 * We have to check to see if the seg has
2096 		 * an ops vector because the seg may have
2097 		 * been in the middle of being set up when
2098 		 * the process was picked for swapout.
2099 		 */
2100 		if ((ov != NULL) && (ov->swapout != NULL))
2101 			swpcnt += SEGOP_SWAPOUT(seg);
2102 	}
2103 	AS_LOCK_EXIT(as);
2104 	return (swpcnt);
2105 }
2106 
2107 /*
2108  * Determine whether data from the mappings in interval [addr, addr + size)
2109  * are in the primary memory (core) cache.
2110  */
2111 int
2112 as_incore(struct as *as, caddr_t addr,
2113     size_t size, char *vec, size_t *sizep)
2114 {
2115 	struct seg *seg;
2116 	size_t ssize;
2117 	caddr_t raddr;		/* rounded down addr */
2118 	size_t rsize;		/* rounded up size */
2119 	size_t isize;			/* iteration size */
2120 	int error = 0;		/* result, assume success */
2121 
2122 	*sizep = 0;
2123 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2124 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
2125 	    (size_t)raddr;
2126 
2127 	if (raddr + rsize < raddr)		/* check for wraparound */
2128 		return (ENOMEM);
2129 
2130 	AS_LOCK_ENTER(as, RW_READER);
2131 	seg = as_segat(as, raddr);
2132 	if (seg == NULL) {
2133 		AS_LOCK_EXIT(as);
2134 		return (-1);
2135 	}
2136 
2137 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2138 		if (raddr >= seg->s_base + seg->s_size) {
2139 			seg = AS_SEGNEXT(as, seg);
2140 			if (seg == NULL || raddr != seg->s_base) {
2141 				error = -1;
2142 				break;
2143 			}
2144 		}
2145 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2146 			ssize = seg->s_base + seg->s_size - raddr;
2147 		else
2148 			ssize = rsize;
2149 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2150 		if (isize != ssize) {
2151 			error = -1;
2152 			break;
2153 		}
2154 		vec += btopr(ssize);
2155 	}
2156 	AS_LOCK_EXIT(as);
2157 	return (error);
2158 }
2159 
2160 static void
2161 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2162 	ulong_t *bitmap, size_t position, size_t npages)
2163 {
2164 	caddr_t	range_start;
2165 	size_t	pos1 = position;
2166 	size_t	pos2;
2167 	size_t	size;
2168 	size_t  end_pos = npages + position;
2169 
2170 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2171 		size = ptob((pos2 - pos1));
2172 		range_start = (caddr_t)((uintptr_t)addr +
2173 		    ptob(pos1 - position));
2174 
2175 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2176 		    (ulong_t *)NULL, (size_t)NULL);
2177 		pos1 = pos2;
2178 	}
2179 }
2180 
2181 static void
2182 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2183 	caddr_t raddr, size_t rsize)
2184 {
2185 	struct seg *seg = as_segat(as, raddr);
2186 	size_t ssize;
2187 
2188 	while (rsize != 0) {
2189 		if (raddr >= seg->s_base + seg->s_size)
2190 			seg = AS_SEGNEXT(as, seg);
2191 
2192 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2193 			ssize = seg->s_base + seg->s_size - raddr;
2194 		else
2195 			ssize = rsize;
2196 
2197 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2198 
2199 		rsize -= ssize;
2200 		raddr += ssize;
2201 	}
2202 }
2203 
2204 /*
2205  * Cache control operations over the interval [addr, addr + size) in
2206  * address space "as".
2207  */
2208 /*ARGSUSED*/
2209 int
2210 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2211     uintptr_t arg, ulong_t *lock_map, size_t pos)
2212 {
2213 	struct seg *seg;	/* working segment */
2214 	caddr_t raddr;		/* rounded down addr */
2215 	caddr_t initraddr;	/* saved initial rounded down addr */
2216 	size_t rsize;		/* rounded up size */
2217 	size_t initrsize;	/* saved initial rounded up size */
2218 	size_t ssize;		/* size of seg */
2219 	int error = 0;			/* result */
2220 	size_t mlock_size;	/* size of bitmap */
2221 	ulong_t *mlock_map;	/* pointer to bitmap used */
2222 				/* to represent the locked */
2223 				/* pages. */
2224 retry:
2225 	if (error == IE_RETRY)
2226 		AS_LOCK_ENTER(as, RW_WRITER);
2227 	else
2228 		AS_LOCK_ENTER(as, RW_READER);
2229 
2230 	/*
2231 	 * If these are address space lock/unlock operations, loop over
2232 	 * all segments in the address space, as appropriate.
2233 	 */
2234 	if (func == MC_LOCKAS) {
2235 		size_t npages, idx;
2236 		size_t rlen = 0;	/* rounded as length */
2237 
2238 		idx = pos;
2239 
2240 		if (arg & MCL_FUTURE) {
2241 			mutex_enter(&as->a_contents);
2242 			AS_SETPGLCK(as);
2243 			mutex_exit(&as->a_contents);
2244 		}
2245 		if ((arg & MCL_CURRENT) == 0) {
2246 			AS_LOCK_EXIT(as);
2247 			return (0);
2248 		}
2249 
2250 		seg = AS_SEGFIRST(as);
2251 		if (seg == NULL) {
2252 			AS_LOCK_EXIT(as);
2253 			return (0);
2254 		}
2255 
2256 		do {
2257 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2258 			    (uintptr_t)PAGEMASK);
2259 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2260 			    PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2261 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2262 
2263 		mlock_size = BT_BITOUL(btopr(rlen));
2264 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2265 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2266 				AS_LOCK_EXIT(as);
2267 				return (EAGAIN);
2268 		}
2269 
2270 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2271 			error = SEGOP_LOCKOP(seg, seg->s_base,
2272 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2273 			if (error != 0)
2274 				break;
2275 			pos += seg_pages(seg);
2276 		}
2277 
2278 		if (error) {
2279 			for (seg = AS_SEGFIRST(as); seg != NULL;
2280 			    seg = AS_SEGNEXT(as, seg)) {
2281 
2282 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2283 				    (uintptr_t)PAGEMASK);
2284 				npages = seg_pages(seg);
2285 				as_segunlock(seg, raddr, attr, mlock_map,
2286 				    idx, npages);
2287 				idx += npages;
2288 			}
2289 		}
2290 
2291 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2292 		AS_LOCK_EXIT(as);
2293 		goto lockerr;
2294 	} else if (func == MC_UNLOCKAS) {
2295 		mutex_enter(&as->a_contents);
2296 		AS_CLRPGLCK(as);
2297 		mutex_exit(&as->a_contents);
2298 
2299 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2300 			error = SEGOP_LOCKOP(seg, seg->s_base,
2301 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2302 			if (error != 0)
2303 				break;
2304 		}
2305 
2306 		AS_LOCK_EXIT(as);
2307 		goto lockerr;
2308 	}
2309 
2310 	/*
2311 	 * Normalize addresses and sizes.
2312 	 */
2313 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2314 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2315 	    (size_t)raddr;
2316 
2317 	if (raddr + rsize < raddr) {		/* check for wraparound */
2318 		AS_LOCK_EXIT(as);
2319 		return (ENOMEM);
2320 	}
2321 
2322 	/*
2323 	 * Get initial segment.
2324 	 */
2325 	if ((seg = as_segat(as, raddr)) == NULL) {
2326 		AS_LOCK_EXIT(as);
2327 		return (ENOMEM);
2328 	}
2329 
2330 	if (func == MC_LOCK) {
2331 		mlock_size = BT_BITOUL(btopr(rsize));
2332 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2333 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2334 				AS_LOCK_EXIT(as);
2335 				return (EAGAIN);
2336 		}
2337 	}
2338 
2339 	/*
2340 	 * Loop over all segments.  If a hole in the address range is
2341 	 * discovered, then fail.  For each segment, perform the appropriate
2342 	 * control operation.
2343 	 */
2344 	while (rsize != 0) {
2345 
2346 		/*
2347 		 * Make sure there's no hole, calculate the portion
2348 		 * of the next segment to be operated over.
2349 		 */
2350 		if (raddr >= seg->s_base + seg->s_size) {
2351 			seg = AS_SEGNEXT(as, seg);
2352 			if (seg == NULL || raddr != seg->s_base) {
2353 				if (func == MC_LOCK) {
2354 					as_unlockerr(as, attr, mlock_map,
2355 					    initraddr, initrsize - rsize);
2356 					kmem_free(mlock_map,
2357 					    mlock_size * sizeof (ulong_t));
2358 				}
2359 				AS_LOCK_EXIT(as);
2360 				return (ENOMEM);
2361 			}
2362 		}
2363 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2364 			ssize = seg->s_base + seg->s_size - raddr;
2365 		else
2366 			ssize = rsize;
2367 
2368 		/*
2369 		 * Dispatch on specific function.
2370 		 */
2371 		switch (func) {
2372 
2373 		/*
2374 		 * Synchronize cached data from mappings with backing
2375 		 * objects.
2376 		 */
2377 		case MC_SYNC:
2378 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2379 			    attr, (uint_t)arg)) {
2380 				AS_LOCK_EXIT(as);
2381 				return (error);
2382 			}
2383 			break;
2384 
2385 		/*
2386 		 * Lock pages in memory.
2387 		 */
2388 		case MC_LOCK:
2389 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2390 			    attr, func, mlock_map, pos)) {
2391 				as_unlockerr(as, attr, mlock_map, initraddr,
2392 				    initrsize - rsize + ssize);
2393 				kmem_free(mlock_map, mlock_size *
2394 				    sizeof (ulong_t));
2395 				AS_LOCK_EXIT(as);
2396 				goto lockerr;
2397 			}
2398 			break;
2399 
2400 		/*
2401 		 * Unlock mapped pages.
2402 		 */
2403 		case MC_UNLOCK:
2404 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2405 			    (ulong_t *)NULL, (size_t)NULL);
2406 			break;
2407 
2408 		/*
2409 		 * Store VM advise for mapped pages in segment layer.
2410 		 */
2411 		case MC_ADVISE:
2412 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2413 
2414 			/*
2415 			 * Check for regular errors and special retry error
2416 			 */
2417 			if (error) {
2418 				if (error == IE_RETRY) {
2419 					/*
2420 					 * Need to acquire writers lock, so
2421 					 * have to drop readers lock and start
2422 					 * all over again
2423 					 */
2424 					AS_LOCK_EXIT(as);
2425 					goto retry;
2426 				} else if (error == IE_REATTACH) {
2427 					/*
2428 					 * Find segment for current address
2429 					 * because current segment just got
2430 					 * split or concatenated
2431 					 */
2432 					seg = as_segat(as, raddr);
2433 					if (seg == NULL) {
2434 						AS_LOCK_EXIT(as);
2435 						return (ENOMEM);
2436 					}
2437 				} else {
2438 					/*
2439 					 * Regular error
2440 					 */
2441 					AS_LOCK_EXIT(as);
2442 					return (error);
2443 				}
2444 			}
2445 			break;
2446 
2447 		case MC_INHERIT_ZERO:
2448 			if (seg->s_ops->inherit == NULL) {
2449 				error = ENOTSUP;
2450 			} else {
2451 				error = SEGOP_INHERIT(seg, raddr, ssize,
2452 				    SEGP_INH_ZERO);
2453 			}
2454 			if (error != 0) {
2455 				AS_LOCK_EXIT(as);
2456 				return (error);
2457 			}
2458 			break;
2459 
2460 		/*
2461 		 * Can't happen.
2462 		 */
2463 		default:
2464 			panic("as_ctl: bad operation %d", func);
2465 			/*NOTREACHED*/
2466 		}
2467 
2468 		rsize -= ssize;
2469 		raddr += ssize;
2470 	}
2471 
2472 	if (func == MC_LOCK)
2473 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2474 	AS_LOCK_EXIT(as);
2475 	return (0);
2476 lockerr:
2477 
2478 	/*
2479 	 * If the lower levels returned EDEADLK for a segment lockop,
2480 	 * it means that we should retry the operation.  Let's wait
2481 	 * a bit also to let the deadlock causing condition clear.
2482 	 * This is part of a gross hack to work around a design flaw
2483 	 * in the ufs/sds logging code and should go away when the
2484 	 * logging code is re-designed to fix the problem. See bug
2485 	 * 4125102 for details of the problem.
2486 	 */
2487 	if (error == EDEADLK) {
2488 		delay(deadlk_wait);
2489 		error = 0;
2490 		goto retry;
2491 	}
2492 	return (error);
2493 }
2494 
2495 int
2496 fc_decode(faultcode_t fault_err)
2497 {
2498 	int error = 0;
2499 
2500 	switch (FC_CODE(fault_err)) {
2501 	case FC_OBJERR:
2502 		error = FC_ERRNO(fault_err);
2503 		break;
2504 	case FC_PROT:
2505 		error = EACCES;
2506 		break;
2507 	default:
2508 		error = EFAULT;
2509 		break;
2510 	}
2511 	return (error);
2512 }
2513 
2514 /*
2515  * Pagelock pages from a range that spans more than 1 segment.  Obtain shadow
2516  * lists from each segment and copy them to one contiguous shadow list (plist)
2517  * as expected by the caller.  Save pointers to per segment shadow lists at
2518  * the tail of plist so that they can be used during as_pageunlock().
2519  */
2520 static int
2521 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp,
2522     caddr_t addr, size_t size, enum seg_rw rw)
2523 {
2524 	caddr_t sv_addr = addr;
2525 	size_t sv_size = size;
2526 	struct seg *sv_seg = seg;
2527 	ulong_t segcnt = 1;
2528 	ulong_t cnt;
2529 	size_t ssize;
2530 	pgcnt_t npages = btop(size);
2531 	page_t **plist;
2532 	page_t **pl;
2533 	int error;
2534 	caddr_t eaddr;
2535 	faultcode_t fault_err = 0;
2536 	pgcnt_t pl_off;
2537 	extern struct seg_ops segspt_shmops;
2538 
2539 	ASSERT(AS_LOCK_HELD(as));
2540 	ASSERT(seg != NULL);
2541 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2542 	ASSERT(addr + size > seg->s_base + seg->s_size);
2543 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2544 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2545 
2546 	/*
2547 	 * Count the number of segments covered by the range we are about to
2548 	 * lock. The segment count is used to size the shadow list we return
2549 	 * back to the caller.
2550 	 */
2551 	for (; size != 0; size -= ssize, addr += ssize) {
2552 		if (addr >= seg->s_base + seg->s_size) {
2553 
2554 			seg = AS_SEGNEXT(as, seg);
2555 			if (seg == NULL || addr != seg->s_base) {
2556 				AS_LOCK_EXIT(as);
2557 				return (EFAULT);
2558 			}
2559 			/*
2560 			 * Do a quick check if subsequent segments
2561 			 * will most likely support pagelock.
2562 			 */
2563 			if (seg->s_ops == &segvn_ops) {
2564 				vnode_t *vp;
2565 
2566 				if (SEGOP_GETVP(seg, addr, &vp) != 0 ||
2567 				    vp != NULL) {
2568 					AS_LOCK_EXIT(as);
2569 					goto slow;
2570 				}
2571 			} else if (seg->s_ops != &segspt_shmops) {
2572 				AS_LOCK_EXIT(as);
2573 				goto slow;
2574 			}
2575 			segcnt++;
2576 		}
2577 		if (addr + size > seg->s_base + seg->s_size) {
2578 			ssize = seg->s_base + seg->s_size - addr;
2579 		} else {
2580 			ssize = size;
2581 		}
2582 	}
2583 	ASSERT(segcnt > 1);
2584 
2585 	plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP);
2586 
2587 	addr = sv_addr;
2588 	size = sv_size;
2589 	seg = sv_seg;
2590 
2591 	for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) {
2592 		if (addr >= seg->s_base + seg->s_size) {
2593 			seg = AS_SEGNEXT(as, seg);
2594 			ASSERT(seg != NULL && addr == seg->s_base);
2595 			cnt++;
2596 			ASSERT(cnt < segcnt);
2597 		}
2598 		if (addr + size > seg->s_base + seg->s_size) {
2599 			ssize = seg->s_base + seg->s_size - addr;
2600 		} else {
2601 			ssize = size;
2602 		}
2603 		pl = &plist[npages + cnt];
2604 		error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2605 		    L_PAGELOCK, rw);
2606 		if (error) {
2607 			break;
2608 		}
2609 		ASSERT(plist[npages + cnt] != NULL);
2610 		ASSERT(pl_off + btop(ssize) <= npages);
2611 		bcopy(plist[npages + cnt], &plist[pl_off],
2612 		    btop(ssize) * sizeof (page_t *));
2613 		pl_off += btop(ssize);
2614 	}
2615 
2616 	if (size == 0) {
2617 		AS_LOCK_EXIT(as);
2618 		ASSERT(cnt == segcnt - 1);
2619 		*ppp = plist;
2620 		return (0);
2621 	}
2622 
2623 	/*
2624 	 * one of pagelock calls failed. The error type is in error variable.
2625 	 * Unlock what we've locked so far and retry with F_SOFTLOCK if error
2626 	 * type is either EFAULT or ENOTSUP. Otherwise just return the error
2627 	 * back to the caller.
2628 	 */
2629 
2630 	eaddr = addr;
2631 	seg = sv_seg;
2632 
2633 	for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) {
2634 		if (addr >= seg->s_base + seg->s_size) {
2635 			seg = AS_SEGNEXT(as, seg);
2636 			ASSERT(seg != NULL && addr == seg->s_base);
2637 			cnt++;
2638 			ASSERT(cnt < segcnt);
2639 		}
2640 		if (eaddr > seg->s_base + seg->s_size) {
2641 			ssize = seg->s_base + seg->s_size - addr;
2642 		} else {
2643 			ssize = eaddr - addr;
2644 		}
2645 		pl = &plist[npages + cnt];
2646 		ASSERT(*pl != NULL);
2647 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2648 		    L_PAGEUNLOCK, rw);
2649 	}
2650 
2651 	AS_LOCK_EXIT(as);
2652 
2653 	kmem_free(plist, (npages + segcnt) * sizeof (page_t *));
2654 
2655 	if (error != ENOTSUP && error != EFAULT) {
2656 		return (error);
2657 	}
2658 
2659 slow:
2660 	/*
2661 	 * If we are here because pagelock failed due to the need to cow fault
2662 	 * in the pages we want to lock F_SOFTLOCK will do this job and in
2663 	 * next as_pagelock() call for this address range pagelock will
2664 	 * hopefully succeed.
2665 	 */
2666 	fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw);
2667 	if (fault_err != 0) {
2668 		return (fc_decode(fault_err));
2669 	}
2670 	*ppp = NULL;
2671 
2672 	return (0);
2673 }
2674 
2675 /*
2676  * lock pages in a given address space. Return shadow list. If
2677  * the list is NULL, the MMU mapping is also locked.
2678  */
2679 int
2680 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2681     size_t size, enum seg_rw rw)
2682 {
2683 	size_t rsize;
2684 	caddr_t raddr;
2685 	faultcode_t fault_err;
2686 	struct seg *seg;
2687 	int err;
2688 
2689 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2690 	    "as_pagelock_start: addr %p size %ld", addr, size);
2691 
2692 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2693 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2694 	    (size_t)raddr;
2695 
2696 	/*
2697 	 * if the request crosses two segments let
2698 	 * as_fault handle it.
2699 	 */
2700 	AS_LOCK_ENTER(as, RW_READER);
2701 
2702 	seg = as_segat(as, raddr);
2703 	if (seg == NULL) {
2704 		AS_LOCK_EXIT(as);
2705 		return (EFAULT);
2706 	}
2707 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2708 	if (raddr + rsize > seg->s_base + seg->s_size) {
2709 		return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw));
2710 	}
2711 	if (raddr + rsize <= raddr) {
2712 		AS_LOCK_EXIT(as);
2713 		return (EFAULT);
2714 	}
2715 
2716 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2717 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2718 
2719 	/*
2720 	 * try to lock pages and pass back shadow list
2721 	 */
2722 	err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2723 
2724 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2725 
2726 	AS_LOCK_EXIT(as);
2727 
2728 	if (err == 0 || (err != ENOTSUP && err != EFAULT)) {
2729 		return (err);
2730 	}
2731 
2732 	/*
2733 	 * Use F_SOFTLOCK to lock the pages because pagelock failed either due
2734 	 * to no pagelock support for this segment or pages need to be cow
2735 	 * faulted in. If fault is needed F_SOFTLOCK will do this job for
2736 	 * this as_pagelock() call and in the next as_pagelock() call for the
2737 	 * same address range pagelock call will hopefull succeed.
2738 	 */
2739 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2740 	if (fault_err != 0) {
2741 		return (fc_decode(fault_err));
2742 	}
2743 	*ppp = NULL;
2744 
2745 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2746 	return (0);
2747 }
2748 
2749 /*
2750  * unlock pages locked by as_pagelock_segs().  Retrieve per segment shadow
2751  * lists from the end of plist and call pageunlock interface for each segment.
2752  * Drop as lock and free plist.
2753  */
2754 static void
2755 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size,
2756     struct page **plist, enum seg_rw rw)
2757 {
2758 	ulong_t cnt;
2759 	caddr_t eaddr = addr + size;
2760 	pgcnt_t npages = btop(size);
2761 	size_t ssize;
2762 	page_t **pl;
2763 
2764 	ASSERT(AS_LOCK_HELD(as));
2765 	ASSERT(seg != NULL);
2766 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2767 	ASSERT(addr + size > seg->s_base + seg->s_size);
2768 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2769 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2770 	ASSERT(plist != NULL);
2771 
2772 	for (cnt = 0; addr < eaddr; addr += ssize) {
2773 		if (addr >= seg->s_base + seg->s_size) {
2774 			seg = AS_SEGNEXT(as, seg);
2775 			ASSERT(seg != NULL && addr == seg->s_base);
2776 			cnt++;
2777 		}
2778 		if (eaddr > seg->s_base + seg->s_size) {
2779 			ssize = seg->s_base + seg->s_size - addr;
2780 		} else {
2781 			ssize = eaddr - addr;
2782 		}
2783 		pl = &plist[npages + cnt];
2784 		ASSERT(*pl != NULL);
2785 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2786 		    L_PAGEUNLOCK, rw);
2787 	}
2788 	ASSERT(cnt > 0);
2789 	AS_LOCK_EXIT(as);
2790 
2791 	cnt++;
2792 	kmem_free(plist, (npages + cnt) * sizeof (page_t *));
2793 }
2794 
2795 /*
2796  * unlock pages in a given address range
2797  */
2798 void
2799 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2800     enum seg_rw rw)
2801 {
2802 	struct seg *seg;
2803 	size_t rsize;
2804 	caddr_t raddr;
2805 
2806 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2807 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2808 
2809 	/*
2810 	 * if the shadow list is NULL, as_pagelock was
2811 	 * falling back to as_fault
2812 	 */
2813 	if (pp == NULL) {
2814 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2815 		return;
2816 	}
2817 
2818 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2819 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2820 	    (size_t)raddr;
2821 
2822 	AS_LOCK_ENTER(as, RW_READER);
2823 	seg = as_segat(as, raddr);
2824 	ASSERT(seg != NULL);
2825 
2826 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2827 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2828 
2829 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2830 	if (raddr + rsize <= seg->s_base + seg->s_size) {
2831 		SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2832 	} else {
2833 		as_pageunlock_segs(as, seg, raddr, rsize, pp, rw);
2834 		return;
2835 	}
2836 	AS_LOCK_EXIT(as);
2837 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2838 }
2839 
2840 int
2841 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2842     boolean_t wait)
2843 {
2844 	struct seg *seg;
2845 	size_t ssize;
2846 	caddr_t raddr;			/* rounded down addr */
2847 	size_t rsize;			/* rounded up size */
2848 	int error = 0;
2849 	size_t pgsz = page_get_pagesize(szc);
2850 
2851 setpgsz_top:
2852 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2853 		return (EINVAL);
2854 	}
2855 
2856 	raddr = addr;
2857 	rsize = size;
2858 
2859 	if (raddr + rsize < raddr)		/* check for wraparound */
2860 		return (ENOMEM);
2861 
2862 	AS_LOCK_ENTER(as, RW_WRITER);
2863 	as_clearwatchprot(as, raddr, rsize);
2864 	seg = as_segat(as, raddr);
2865 	if (seg == NULL) {
2866 		as_setwatch(as);
2867 		AS_LOCK_EXIT(as);
2868 		return (ENOMEM);
2869 	}
2870 
2871 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2872 		if (raddr >= seg->s_base + seg->s_size) {
2873 			seg = AS_SEGNEXT(as, seg);
2874 			if (seg == NULL || raddr != seg->s_base) {
2875 				error = ENOMEM;
2876 				break;
2877 			}
2878 		}
2879 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2880 			ssize = seg->s_base + seg->s_size - raddr;
2881 		} else {
2882 			ssize = rsize;
2883 		}
2884 
2885 retry:
2886 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2887 
2888 		if (error == IE_NOMEM) {
2889 			error = EAGAIN;
2890 			break;
2891 		}
2892 
2893 		if (error == IE_RETRY) {
2894 			AS_LOCK_EXIT(as);
2895 			goto setpgsz_top;
2896 		}
2897 
2898 		if (error == ENOTSUP) {
2899 			error = EINVAL;
2900 			break;
2901 		}
2902 
2903 		if (wait && (error == EAGAIN)) {
2904 			/*
2905 			 * Memory is currently locked.  It must be unlocked
2906 			 * before this operation can succeed through a retry.
2907 			 * The possible reasons for locked memory and
2908 			 * corresponding strategies for unlocking are:
2909 			 * (1) Normal I/O
2910 			 *	wait for a signal that the I/O operation
2911 			 *	has completed and the memory is unlocked.
2912 			 * (2) Asynchronous I/O
2913 			 *	The aio subsystem does not unlock pages when
2914 			 *	the I/O is completed. Those pages are unlocked
2915 			 *	when the application calls aiowait/aioerror.
2916 			 *	So, to prevent blocking forever, cv_broadcast()
2917 			 *	is done to wake up aio_cleanup_thread.
2918 			 *	Subsequently, segvn_reclaim will be called, and
2919 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
2920 			 * (3) Long term page locking:
2921 			 *	This is not relevant for as_setpagesize()
2922 			 *	because we cannot change the page size for
2923 			 *	driver memory. The attempt to do so will
2924 			 *	fail with a different error than EAGAIN so
2925 			 *	there's no need to trigger as callbacks like
2926 			 *	as_unmap, as_setprot or as_free would do.
2927 			 */
2928 			mutex_enter(&as->a_contents);
2929 			if (!AS_ISNOUNMAPWAIT(as)) {
2930 				if (AS_ISUNMAPWAIT(as) == 0) {
2931 					cv_broadcast(&as->a_cv);
2932 				}
2933 				AS_SETUNMAPWAIT(as);
2934 				AS_LOCK_EXIT(as);
2935 				while (AS_ISUNMAPWAIT(as)) {
2936 					cv_wait(&as->a_cv, &as->a_contents);
2937 				}
2938 			} else {
2939 				/*
2940 				 * We may have raced with
2941 				 * segvn_reclaim()/segspt_reclaim(). In this
2942 				 * case clean nounmapwait flag and retry since
2943 				 * softlockcnt in this segment may be already
2944 				 * 0.  We don't drop as writer lock so our
2945 				 * number of retries without sleeping should
2946 				 * be very small. See segvn_reclaim() for
2947 				 * more comments.
2948 				 */
2949 				AS_CLRNOUNMAPWAIT(as);
2950 				mutex_exit(&as->a_contents);
2951 				goto retry;
2952 			}
2953 			mutex_exit(&as->a_contents);
2954 			goto setpgsz_top;
2955 		} else if (error != 0) {
2956 			break;
2957 		}
2958 	}
2959 	as_setwatch(as);
2960 	AS_LOCK_EXIT(as);
2961 	return (error);
2962 }
2963 
2964 /*
2965  * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments
2966  * in its chunk where s_szc is less than the szc we want to set.
2967  */
2968 static int
2969 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
2970     int *retry)
2971 {
2972 	struct seg *seg;
2973 	size_t ssize;
2974 	int error;
2975 
2976 	ASSERT(AS_WRITE_HELD(as));
2977 
2978 	seg = as_segat(as, raddr);
2979 	if (seg == NULL) {
2980 		panic("as_iset3_default_lpsize: no seg");
2981 	}
2982 
2983 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2984 		if (raddr >= seg->s_base + seg->s_size) {
2985 			seg = AS_SEGNEXT(as, seg);
2986 			if (seg == NULL || raddr != seg->s_base) {
2987 				panic("as_iset3_default_lpsize: as changed");
2988 			}
2989 		}
2990 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2991 			ssize = seg->s_base + seg->s_size - raddr;
2992 		} else {
2993 			ssize = rsize;
2994 		}
2995 
2996 		if (szc > seg->s_szc) {
2997 			error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2998 			/* Only retry on EINVAL segments that have no vnode. */
2999 			if (error == EINVAL) {
3000 				vnode_t *vp = NULL;
3001 				if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) &&
3002 				    (SEGOP_GETVP(seg, raddr, &vp) != 0 ||
3003 				    vp == NULL)) {
3004 					*retry = 1;
3005 				} else {
3006 					*retry = 0;
3007 				}
3008 			}
3009 			if (error) {
3010 				return (error);
3011 			}
3012 		}
3013 	}
3014 	return (0);
3015 }
3016 
3017 /*
3018  * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the
3019  * pagesize on each segment in its range, but if any fails with EINVAL,
3020  * then it reduces the pagesizes to the next size in the bitmap and
3021  * retries as_iset3_default_lpsize(). The reason why the code retries
3022  * smaller allowed sizes on EINVAL is because (a) the anon offset may not
3023  * match the bigger sizes, and (b) it's hard to get this offset (to begin
3024  * with) to pass to map_pgszcvec().
3025  */
3026 static int
3027 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc,
3028     uint_t szcvec)
3029 {
3030 	int error;
3031 	int retry;
3032 
3033 	ASSERT(AS_WRITE_HELD(as));
3034 
3035 	for (;;) {
3036 		error = as_iset3_default_lpsize(as, addr, size, szc, &retry);
3037 		if (error == EINVAL && retry) {
3038 			szcvec &= ~(1 << szc);
3039 			if (szcvec <= 1) {
3040 				return (EINVAL);
3041 			}
3042 			szc = highbit(szcvec) - 1;
3043 		} else {
3044 			return (error);
3045 		}
3046 	}
3047 }
3048 
3049 /*
3050  * as_iset1_default_lpsize() breaks its chunk into areas where existing
3051  * segments have a smaller szc than we want to set. For each such area,
3052  * it calls as_iset2_default_lpsize()
3053  */
3054 static int
3055 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3056     uint_t szcvec)
3057 {
3058 	struct seg *seg;
3059 	size_t ssize;
3060 	caddr_t setaddr = raddr;
3061 	size_t setsize = 0;
3062 	int set;
3063 	int error;
3064 
3065 	ASSERT(AS_WRITE_HELD(as));
3066 
3067 	seg = as_segat(as, raddr);
3068 	if (seg == NULL) {
3069 		panic("as_iset1_default_lpsize: no seg");
3070 	}
3071 	if (seg->s_szc < szc) {
3072 		set = 1;
3073 	} else {
3074 		set = 0;
3075 	}
3076 
3077 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3078 		if (raddr >= seg->s_base + seg->s_size) {
3079 			seg = AS_SEGNEXT(as, seg);
3080 			if (seg == NULL || raddr != seg->s_base) {
3081 				panic("as_iset1_default_lpsize: as changed");
3082 			}
3083 			if (seg->s_szc >= szc && set) {
3084 				ASSERT(setsize != 0);
3085 				error = as_iset2_default_lpsize(as,
3086 				    setaddr, setsize, szc, szcvec);
3087 				if (error) {
3088 					return (error);
3089 				}
3090 				set = 0;
3091 			} else if (seg->s_szc < szc && !set) {
3092 				setaddr = raddr;
3093 				setsize = 0;
3094 				set = 1;
3095 			}
3096 		}
3097 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3098 			ssize = seg->s_base + seg->s_size - raddr;
3099 		} else {
3100 			ssize = rsize;
3101 		}
3102 	}
3103 	error = 0;
3104 	if (set) {
3105 		ASSERT(setsize != 0);
3106 		error = as_iset2_default_lpsize(as, setaddr, setsize,
3107 		    szc, szcvec);
3108 	}
3109 	return (error);
3110 }
3111 
3112 /*
3113  * as_iset_default_lpsize() breaks its chunk according to the size code bitmap
3114  * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each
3115  * chunk to as_iset1_default_lpsize().
3116  */
3117 static int
3118 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags,
3119     int type)
3120 {
3121 	int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
3122 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr,
3123 	    flags, rtype, 1);
3124 	uint_t szc;
3125 	uint_t nszc;
3126 	int error;
3127 	caddr_t a;
3128 	caddr_t eaddr;
3129 	size_t segsize;
3130 	size_t pgsz;
3131 	uint_t save_szcvec;
3132 
3133 	ASSERT(AS_WRITE_HELD(as));
3134 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
3135 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
3136 
3137 	szcvec &= ~1;
3138 	if (szcvec <= 1) {	/* skip if base page size */
3139 		return (0);
3140 	}
3141 
3142 	/* Get the pagesize of the first larger page size. */
3143 	szc = lowbit(szcvec) - 1;
3144 	pgsz = page_get_pagesize(szc);
3145 	eaddr = addr + size;
3146 	addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3147 	eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3148 
3149 	save_szcvec = szcvec;
3150 	szcvec >>= (szc + 1);
3151 	nszc = szc;
3152 	while (szcvec) {
3153 		if ((szcvec & 0x1) == 0) {
3154 			nszc++;
3155 			szcvec >>= 1;
3156 			continue;
3157 		}
3158 		nszc++;
3159 		pgsz = page_get_pagesize(nszc);
3160 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3161 		if (a != addr) {
3162 			ASSERT(szc > 0);
3163 			ASSERT(a < eaddr);
3164 			segsize = a - addr;
3165 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3166 			    save_szcvec);
3167 			if (error) {
3168 				return (error);
3169 			}
3170 			addr = a;
3171 		}
3172 		szc = nszc;
3173 		szcvec >>= 1;
3174 	}
3175 
3176 	ASSERT(addr < eaddr);
3177 	szcvec = save_szcvec;
3178 	while (szcvec) {
3179 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3180 		ASSERT(a >= addr);
3181 		if (a != addr) {
3182 			ASSERT(szc > 0);
3183 			segsize = a - addr;
3184 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3185 			    save_szcvec);
3186 			if (error) {
3187 				return (error);
3188 			}
3189 			addr = a;
3190 		}
3191 		szcvec &= ~(1 << szc);
3192 		if (szcvec) {
3193 			szc = highbit(szcvec) - 1;
3194 			pgsz = page_get_pagesize(szc);
3195 		}
3196 	}
3197 	ASSERT(addr == eaddr);
3198 
3199 	return (0);
3200 }
3201 
3202 /*
3203  * Set the default large page size for the range. Called via memcntl with
3204  * page size set to 0. as_set_default_lpsize breaks the range down into
3205  * chunks with the same type/flags, ignores-non segvn segments, and passes
3206  * each chunk to as_iset_default_lpsize().
3207  */
3208 int
3209 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size)
3210 {
3211 	struct seg *seg;
3212 	caddr_t raddr;
3213 	size_t rsize;
3214 	size_t ssize;
3215 	int rtype, rflags;
3216 	int stype, sflags;
3217 	int error;
3218 	caddr_t	setaddr;
3219 	size_t setsize;
3220 	int segvn;
3221 
3222 	if (size == 0)
3223 		return (0);
3224 
3225 	AS_LOCK_ENTER(as, RW_WRITER);
3226 again:
3227 	error = 0;
3228 
3229 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3230 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
3231 	    (size_t)raddr;
3232 
3233 	if (raddr + rsize < raddr) {		/* check for wraparound */
3234 		AS_LOCK_EXIT(as);
3235 		return (ENOMEM);
3236 	}
3237 	as_clearwatchprot(as, raddr, rsize);
3238 	seg = as_segat(as, raddr);
3239 	if (seg == NULL) {
3240 		as_setwatch(as);
3241 		AS_LOCK_EXIT(as);
3242 		return (ENOMEM);
3243 	}
3244 	if (seg->s_ops == &segvn_ops) {
3245 		rtype = SEGOP_GETTYPE(seg, addr);
3246 		rflags = rtype & (MAP_TEXT | MAP_INITDATA);
3247 		rtype = rtype & (MAP_SHARED | MAP_PRIVATE);
3248 		segvn = 1;
3249 	} else {
3250 		segvn = 0;
3251 	}
3252 	setaddr = raddr;
3253 	setsize = 0;
3254 
3255 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3256 		if (raddr >= (seg->s_base + seg->s_size)) {
3257 			seg = AS_SEGNEXT(as, seg);
3258 			if (seg == NULL || raddr != seg->s_base) {
3259 				error = ENOMEM;
3260 				break;
3261 			}
3262 			if (seg->s_ops == &segvn_ops) {
3263 				stype = SEGOP_GETTYPE(seg, raddr);
3264 				sflags = stype & (MAP_TEXT | MAP_INITDATA);
3265 				stype &= (MAP_SHARED | MAP_PRIVATE);
3266 				if (segvn && (rflags != sflags ||
3267 				    rtype != stype)) {
3268 					/*
3269 					 * The next segment is also segvn but
3270 					 * has different flags and/or type.
3271 					 */
3272 					ASSERT(setsize != 0);
3273 					error = as_iset_default_lpsize(as,
3274 					    setaddr, setsize, rflags, rtype);
3275 					if (error) {
3276 						break;
3277 					}
3278 					rflags = sflags;
3279 					rtype = stype;
3280 					setaddr = raddr;
3281 					setsize = 0;
3282 				} else if (!segvn) {
3283 					rflags = sflags;
3284 					rtype = stype;
3285 					setaddr = raddr;
3286 					setsize = 0;
3287 					segvn = 1;
3288 				}
3289 			} else if (segvn) {
3290 				/* The next segment is not segvn. */
3291 				ASSERT(setsize != 0);
3292 				error = as_iset_default_lpsize(as,
3293 				    setaddr, setsize, rflags, rtype);
3294 				if (error) {
3295 					break;
3296 				}
3297 				segvn = 0;
3298 			}
3299 		}
3300 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3301 			ssize = seg->s_base + seg->s_size - raddr;
3302 		} else {
3303 			ssize = rsize;
3304 		}
3305 	}
3306 	if (error == 0 && segvn) {
3307 		/* The last chunk when rsize == 0. */
3308 		ASSERT(setsize != 0);
3309 		error = as_iset_default_lpsize(as, setaddr, setsize,
3310 		    rflags, rtype);
3311 	}
3312 
3313 	if (error == IE_RETRY) {
3314 		goto again;
3315 	} else if (error == IE_NOMEM) {
3316 		error = EAGAIN;
3317 	} else if (error == ENOTSUP) {
3318 		error = EINVAL;
3319 	} else if (error == EAGAIN) {
3320 		mutex_enter(&as->a_contents);
3321 		if (!AS_ISNOUNMAPWAIT(as)) {
3322 			if (AS_ISUNMAPWAIT(as) == 0) {
3323 				cv_broadcast(&as->a_cv);
3324 			}
3325 			AS_SETUNMAPWAIT(as);
3326 			AS_LOCK_EXIT(as);
3327 			while (AS_ISUNMAPWAIT(as)) {
3328 				cv_wait(&as->a_cv, &as->a_contents);
3329 			}
3330 			mutex_exit(&as->a_contents);
3331 			AS_LOCK_ENTER(as, RW_WRITER);
3332 		} else {
3333 			/*
3334 			 * We may have raced with
3335 			 * segvn_reclaim()/segspt_reclaim(). In this case
3336 			 * clean nounmapwait flag and retry since softlockcnt
3337 			 * in this segment may be already 0.  We don't drop as
3338 			 * writer lock so our number of retries without
3339 			 * sleeping should be very small. See segvn_reclaim()
3340 			 * for more comments.
3341 			 */
3342 			AS_CLRNOUNMAPWAIT(as);
3343 			mutex_exit(&as->a_contents);
3344 		}
3345 		goto again;
3346 	}
3347 
3348 	as_setwatch(as);
3349 	AS_LOCK_EXIT(as);
3350 	return (error);
3351 }
3352 
3353 /*
3354  * Setup all of the uninitialized watched pages that we can.
3355  */
3356 void
3357 as_setwatch(struct as *as)
3358 {
3359 	struct watched_page *pwp;
3360 	struct seg *seg;
3361 	caddr_t vaddr;
3362 	uint_t prot;
3363 	int  err, retrycnt;
3364 
3365 	if (avl_numnodes(&as->a_wpage) == 0)
3366 		return;
3367 
3368 	ASSERT(AS_WRITE_HELD(as));
3369 
3370 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3371 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3372 		retrycnt = 0;
3373 	retry:
3374 		vaddr = pwp->wp_vaddr;
3375 		if (pwp->wp_oprot != 0 ||	/* already set up */
3376 		    (seg = as_segat(as, vaddr)) == NULL ||
3377 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
3378 			continue;
3379 
3380 		pwp->wp_oprot = prot;
3381 		if (pwp->wp_read)
3382 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3383 		if (pwp->wp_write)
3384 			prot &= ~PROT_WRITE;
3385 		if (pwp->wp_exec)
3386 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3387 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
3388 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3389 			if (err == IE_RETRY) {
3390 				pwp->wp_oprot = 0;
3391 				ASSERT(retrycnt == 0);
3392 				retrycnt++;
3393 				goto retry;
3394 			}
3395 		}
3396 		pwp->wp_prot = prot;
3397 	}
3398 }
3399 
3400 /*
3401  * Clear all of the watched pages in the address space.
3402  */
3403 void
3404 as_clearwatch(struct as *as)
3405 {
3406 	struct watched_page *pwp;
3407 	struct seg *seg;
3408 	caddr_t vaddr;
3409 	uint_t prot;
3410 	int err, retrycnt;
3411 
3412 	if (avl_numnodes(&as->a_wpage) == 0)
3413 		return;
3414 
3415 	ASSERT(AS_WRITE_HELD(as));
3416 
3417 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3418 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3419 		retrycnt = 0;
3420 	retry:
3421 		vaddr = pwp->wp_vaddr;
3422 		if (pwp->wp_oprot == 0 ||	/* not set up */
3423 		    (seg = as_segat(as, vaddr)) == NULL)
3424 			continue;
3425 
3426 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
3427 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3428 			if (err == IE_RETRY) {
3429 				ASSERT(retrycnt == 0);
3430 				retrycnt++;
3431 				goto retry;
3432 			}
3433 		}
3434 		pwp->wp_oprot = 0;
3435 		pwp->wp_prot = 0;
3436 	}
3437 }
3438 
3439 /*
3440  * Force a new setup for all the watched pages in the range.
3441  */
3442 static void
3443 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
3444 {
3445 	struct watched_page *pwp;
3446 	struct watched_page tpw;
3447 	caddr_t eaddr = addr + size;
3448 	caddr_t vaddr;
3449 	struct seg *seg;
3450 	int err, retrycnt;
3451 	uint_t	wprot;
3452 	avl_index_t where;
3453 
3454 	if (avl_numnodes(&as->a_wpage) == 0)
3455 		return;
3456 
3457 	ASSERT(AS_WRITE_HELD(as));
3458 
3459 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3460 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3461 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3462 
3463 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3464 		retrycnt = 0;
3465 		vaddr = pwp->wp_vaddr;
3466 
3467 		wprot = prot;
3468 		if (pwp->wp_read)
3469 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3470 		if (pwp->wp_write)
3471 			wprot &= ~PROT_WRITE;
3472 		if (pwp->wp_exec)
3473 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3474 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
3475 		retry:
3476 			seg = as_segat(as, vaddr);
3477 			if (seg == NULL) {
3478 				panic("as_setwatchprot: no seg");
3479 				/*NOTREACHED*/
3480 			}
3481 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
3482 			if (err == IE_RETRY) {
3483 				ASSERT(retrycnt == 0);
3484 				retrycnt++;
3485 				goto retry;
3486 			}
3487 		}
3488 		pwp->wp_oprot = prot;
3489 		pwp->wp_prot = wprot;
3490 
3491 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3492 	}
3493 }
3494 
3495 /*
3496  * Clear all of the watched pages in the range.
3497  */
3498 static void
3499 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
3500 {
3501 	caddr_t eaddr = addr + size;
3502 	struct watched_page *pwp;
3503 	struct watched_page tpw;
3504 	uint_t prot;
3505 	struct seg *seg;
3506 	int err, retrycnt;
3507 	avl_index_t where;
3508 
3509 	if (avl_numnodes(&as->a_wpage) == 0)
3510 		return;
3511 
3512 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3513 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3514 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3515 
3516 	ASSERT(AS_WRITE_HELD(as));
3517 
3518 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3519 
3520 		if ((prot = pwp->wp_oprot) != 0) {
3521 			retrycnt = 0;
3522 
3523 			if (prot != pwp->wp_prot) {
3524 			retry:
3525 				seg = as_segat(as, pwp->wp_vaddr);
3526 				if (seg == NULL)
3527 					continue;
3528 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
3529 				    PAGESIZE, prot);
3530 				if (err == IE_RETRY) {
3531 					ASSERT(retrycnt == 0);
3532 					retrycnt++;
3533 					goto retry;
3534 
3535 				}
3536 			}
3537 			pwp->wp_oprot = 0;
3538 			pwp->wp_prot = 0;
3539 		}
3540 
3541 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3542 	}
3543 }
3544 
3545 void
3546 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
3547 {
3548 	struct proc *p;
3549 
3550 	mutex_enter(&pidlock);
3551 	for (p = practive; p; p = p->p_next) {
3552 		if (p->p_as == as) {
3553 			mutex_enter(&p->p_lock);
3554 			if (p->p_as == as)
3555 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
3556 			mutex_exit(&p->p_lock);
3557 		}
3558 	}
3559 	mutex_exit(&pidlock);
3560 }
3561 
3562 /*
3563  * return memory object ID
3564  */
3565 int
3566 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
3567 {
3568 	struct seg	*seg;
3569 	int		sts;
3570 
3571 	AS_LOCK_ENTER(as, RW_READER);
3572 	seg = as_segat(as, addr);
3573 	if (seg == NULL) {
3574 		AS_LOCK_EXIT(as);
3575 		return (EFAULT);
3576 	}
3577 	/*
3578 	 * catch old drivers which may not support getmemid
3579 	 */
3580 	if (seg->s_ops->getmemid == NULL) {
3581 		AS_LOCK_EXIT(as);
3582 		return (ENODEV);
3583 	}
3584 
3585 	sts = SEGOP_GETMEMID(seg, addr, memidp);
3586 
3587 	AS_LOCK_EXIT(as);
3588 	return (sts);
3589 }
3590