1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * VM - address spaces. 43 */ 44 45 #include <sys/types.h> 46 #include <sys/t_lock.h> 47 #include <sys/param.h> 48 #include <sys/errno.h> 49 #include <sys/systm.h> 50 #include <sys/mman.h> 51 #include <sys/sysmacros.h> 52 #include <sys/cpuvar.h> 53 #include <sys/sysinfo.h> 54 #include <sys/kmem.h> 55 #include <sys/vnode.h> 56 #include <sys/vmsystm.h> 57 #include <sys/cmn_err.h> 58 #include <sys/debug.h> 59 #include <sys/tnf_probe.h> 60 #include <sys/vtrace.h> 61 62 #include <vm/hat.h> 63 #include <vm/xhat.h> 64 #include <vm/as.h> 65 #include <vm/seg.h> 66 #include <vm/seg_vn.h> 67 #include <vm/seg_dev.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_map.h> 70 #include <vm/seg_spt.h> 71 #include <vm/page.h> 72 73 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 74 75 static struct kmem_cache *as_cache; 76 77 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 78 static void as_clearwatchprot(struct as *, caddr_t, size_t); 79 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 80 81 82 /* 83 * Verifying the segment lists is very time-consuming; it may not be 84 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 85 */ 86 #ifdef DEBUG 87 #define VERIFY_SEGLIST 88 int do_as_verify = 0; 89 #endif 90 91 /* 92 * Allocate a new callback data structure entry and fill in the events of 93 * interest, the address range of interest, and the callback argument. 94 * Link the entry on the as->a_callbacks list. A callback entry for the 95 * entire address space may be specified with vaddr = 0 and size = -1. 96 * 97 * CALLERS RESPONSIBILITY: If not calling from within the process context for 98 * the specified as, the caller must guarantee persistence of the specified as 99 * for the duration of this function (eg. pages being locked within the as 100 * will guarantee persistence). 101 */ 102 int 103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 104 caddr_t vaddr, size_t size, int sleepflag) 105 { 106 struct as_callback *current_head, *cb; 107 caddr_t saddr; 108 size_t rsize; 109 110 /* callback function and an event are mandatory */ 111 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 112 return (EINVAL); 113 114 /* Adding a callback after as_free has been called is not allowed */ 115 if (as == &kas) 116 return (ENOMEM); 117 118 /* 119 * vaddr = 0 and size = -1 is used to indicate that the callback range 120 * is the entire address space so no rounding is done in that case. 121 */ 122 if (size != -1) { 123 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 124 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 125 (size_t)saddr; 126 /* check for wraparound */ 127 if (saddr + rsize < saddr) 128 return (ENOMEM); 129 } else { 130 if (vaddr != 0) 131 return (EINVAL); 132 saddr = vaddr; 133 rsize = size; 134 } 135 136 /* Allocate and initialize a callback entry */ 137 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 138 if (cb == NULL) 139 return (EAGAIN); 140 141 cb->ascb_func = cb_func; 142 cb->ascb_arg = arg; 143 cb->ascb_events = events; 144 cb->ascb_saddr = saddr; 145 cb->ascb_len = rsize; 146 147 /* Add the entry to the list */ 148 mutex_enter(&as->a_contents); 149 current_head = as->a_callbacks; 150 as->a_callbacks = cb; 151 cb->ascb_next = current_head; 152 153 /* 154 * The call to this function may lose in a race with 155 * a pertinent event - eg. a thread does long term memory locking 156 * but before the callback is added another thread executes as_unmap. 157 * A broadcast here resolves that. 158 */ 159 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 160 AS_CLRUNMAPWAIT(as); 161 cv_broadcast(&as->a_cv); 162 } 163 164 mutex_exit(&as->a_contents); 165 return (0); 166 } 167 168 /* 169 * Search the callback list for an entry which pertains to arg. 170 * 171 * This is called from within the client upon completion of the callback. 172 * RETURN VALUES: 173 * AS_CALLBACK_DELETED (callback entry found and deleted) 174 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 175 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 176 * entry will be made in as_do_callbacks) 177 * 178 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 179 * set, it indicates that as_do_callbacks is processing this entry. The 180 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 181 * to unblock as_do_callbacks, in case it is blocked. 182 * 183 * CALLERS RESPONSIBILITY: If not calling from within the process context for 184 * the specified as, the caller must guarantee persistence of the specified as 185 * for the duration of this function (eg. pages being locked within the as 186 * will guarantee persistence). 187 */ 188 uint_t 189 as_delete_callback(struct as *as, void *arg) 190 { 191 struct as_callback **prevcb = &as->a_callbacks; 192 struct as_callback *cb; 193 uint_t rc = AS_CALLBACK_NOTFOUND; 194 195 mutex_enter(&as->a_contents); 196 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 197 if (cb->ascb_arg != arg) 198 continue; 199 200 /* 201 * If the events indicate AS_CALLBACK_CALLED, just clear 202 * AS_ALL_EVENT in the events field and wakeup the thread 203 * that may be waiting in as_do_callbacks. as_do_callbacks 204 * will take care of removing this entry from the list. In 205 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 206 * (AS_CALLBACK_CALLED not set), just remove it from the 207 * list, return the memory and return AS_CALLBACK_DELETED. 208 */ 209 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 210 /* leave AS_CALLBACK_CALLED */ 211 cb->ascb_events &= ~AS_ALL_EVENT; 212 rc = AS_CALLBACK_DELETE_DEFERRED; 213 cv_broadcast(&as->a_cv); 214 } else { 215 *prevcb = cb->ascb_next; 216 kmem_free(cb, sizeof (struct as_callback)); 217 rc = AS_CALLBACK_DELETED; 218 } 219 break; 220 } 221 mutex_exit(&as->a_contents); 222 return (rc); 223 } 224 225 /* 226 * Searches the as callback list for a matching entry. 227 * Returns a pointer to the first matching callback, or NULL if 228 * nothing is found. 229 * This function never sleeps so it is ok to call it with more 230 * locks held but the (required) a_contents mutex. 231 * 232 * See also comment on as_do_callbacks below. 233 */ 234 static struct as_callback * 235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 236 size_t event_len) 237 { 238 struct as_callback *cb; 239 240 ASSERT(MUTEX_HELD(&as->a_contents)); 241 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 242 /* 243 * If the callback has not already been called, then 244 * check if events or address range pertains. An event_len 245 * of zero means do an unconditional callback. 246 */ 247 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 248 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 249 (event_addr + event_len < cb->ascb_saddr) || 250 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 251 continue; 252 } 253 break; 254 } 255 return (cb); 256 } 257 258 /* 259 * Executes a given callback and removes it from the callback list for 260 * this address space. 261 * This function may sleep so the caller must drop all locks except 262 * a_contents before calling this func. 263 * 264 * See also comments on as_do_callbacks below. 265 */ 266 static void 267 as_execute_callback(struct as *as, struct as_callback *cb, 268 uint_t events) 269 { 270 struct as_callback **prevcb; 271 void *cb_arg; 272 273 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 274 cb->ascb_events |= AS_CALLBACK_CALLED; 275 mutex_exit(&as->a_contents); 276 (*cb->ascb_func)(as, cb->ascb_arg, events); 277 mutex_enter(&as->a_contents); 278 /* 279 * the callback function is required to delete the callback 280 * when the callback function determines it is OK for 281 * this thread to continue. as_delete_callback will clear 282 * the AS_ALL_EVENT in the events field when it is deleted. 283 * If the callback function called as_delete_callback, 284 * events will already be cleared and there will be no blocking. 285 */ 286 while ((cb->ascb_events & events) != 0) { 287 cv_wait(&as->a_cv, &as->a_contents); 288 } 289 /* 290 * This entry needs to be taken off the list. Normally, the 291 * callback func itself does that, but unfortunately the list 292 * may have changed while the callback was running because the 293 * a_contents mutex was dropped and someone else other than the 294 * callback func itself could have called as_delete_callback, 295 * so we have to search to find this entry again. The entry 296 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 297 */ 298 cb_arg = cb->ascb_arg; 299 prevcb = &as->a_callbacks; 300 for (cb = as->a_callbacks; cb != NULL; 301 prevcb = &cb->ascb_next, cb = *prevcb) { 302 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 303 (cb_arg != cb->ascb_arg)) { 304 continue; 305 } 306 *prevcb = cb->ascb_next; 307 kmem_free(cb, sizeof (struct as_callback)); 308 break; 309 } 310 } 311 312 /* 313 * Check the callback list for a matching event and intersection of 314 * address range. If there is a match invoke the callback. Skip an entry if: 315 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 316 * - not event of interest 317 * - not address range of interest 318 * 319 * An event_len of zero indicates a request for an unconditional callback 320 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 321 * a_contents lock must be dropped before a callback, so only one callback 322 * can be done before returning. Return -1 (true) if a callback was 323 * executed and removed from the list, else return 0 (false). 324 * 325 * The logically separate parts, i.e. finding a matching callback and 326 * executing a given callback have been separated into two functions 327 * so that they can be called with different sets of locks held beyond 328 * the always-required a_contents. as_find_callback does not sleep so 329 * it is ok to call it if more locks than a_contents (i.e. the a_lock 330 * rwlock) are held. as_execute_callback on the other hand may sleep 331 * so all locks beyond a_contents must be dropped by the caller if one 332 * does not want to end comatose. 333 */ 334 static int 335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 336 size_t event_len) 337 { 338 struct as_callback *cb; 339 340 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 341 as_execute_callback(as, cb, events); 342 return (-1); 343 } 344 return (0); 345 } 346 347 /* 348 * Search for the segment containing addr. If a segment containing addr 349 * exists, that segment is returned. If no such segment exists, and 350 * the list spans addresses greater than addr, then the first segment 351 * whose base is greater than addr is returned; otherwise, NULL is 352 * returned unless tail is true, in which case the last element of the 353 * list is returned. 354 * 355 * a_seglast is used to cache the last found segment for repeated 356 * searches to the same addr (which happens frequently). 357 */ 358 struct seg * 359 as_findseg(struct as *as, caddr_t addr, int tail) 360 { 361 struct seg *seg = as->a_seglast; 362 avl_index_t where; 363 364 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 365 366 if (seg != NULL && 367 seg->s_base <= addr && 368 addr < seg->s_base + seg->s_size) 369 return (seg); 370 371 seg = avl_find(&as->a_segtree, &addr, &where); 372 if (seg != NULL) 373 return (as->a_seglast = seg); 374 375 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 376 if (seg == NULL && tail) 377 seg = avl_last(&as->a_segtree); 378 return (as->a_seglast = seg); 379 } 380 381 #ifdef VERIFY_SEGLIST 382 /* 383 * verify that the linked list is coherent 384 */ 385 static void 386 as_verify(struct as *as) 387 { 388 struct seg *seg, *seglast, *p, *n; 389 uint_t nsegs = 0; 390 391 if (do_as_verify == 0) 392 return; 393 394 seglast = as->a_seglast; 395 396 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 397 ASSERT(seg->s_as == as); 398 p = AS_SEGPREV(as, seg); 399 n = AS_SEGNEXT(as, seg); 400 ASSERT(p == NULL || p->s_as == as); 401 ASSERT(p == NULL || p->s_base < seg->s_base); 402 ASSERT(n == NULL || n->s_base > seg->s_base); 403 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 404 if (seg == seglast) 405 seglast = NULL; 406 nsegs++; 407 } 408 ASSERT(seglast == NULL); 409 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 410 } 411 #endif /* VERIFY_SEGLIST */ 412 413 /* 414 * Add a new segment to the address space. The avl_find() 415 * may be expensive so we attempt to use last segment accessed 416 * in as_gap() as an insertion point. 417 */ 418 int 419 as_addseg(struct as *as, struct seg *newseg) 420 { 421 struct seg *seg; 422 caddr_t addr; 423 caddr_t eaddr; 424 avl_index_t where; 425 426 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 427 428 as->a_updatedir = 1; /* inform /proc */ 429 gethrestime(&as->a_updatetime); 430 431 if (as->a_lastgaphl != NULL) { 432 struct seg *hseg = NULL; 433 struct seg *lseg = NULL; 434 435 if (as->a_lastgaphl->s_base > newseg->s_base) { 436 hseg = as->a_lastgaphl; 437 lseg = AVL_PREV(&as->a_segtree, hseg); 438 } else { 439 lseg = as->a_lastgaphl; 440 hseg = AVL_NEXT(&as->a_segtree, lseg); 441 } 442 443 if (hseg && lseg && lseg->s_base < newseg->s_base && 444 hseg->s_base > newseg->s_base) { 445 avl_insert_here(&as->a_segtree, newseg, lseg, 446 AVL_AFTER); 447 as->a_lastgaphl = NULL; 448 as->a_seglast = newseg; 449 return (0); 450 } 451 as->a_lastgaphl = NULL; 452 } 453 454 addr = newseg->s_base; 455 eaddr = addr + newseg->s_size; 456 again: 457 458 seg = avl_find(&as->a_segtree, &addr, &where); 459 460 if (seg == NULL) 461 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 462 463 if (seg == NULL) 464 seg = avl_last(&as->a_segtree); 465 466 if (seg != NULL) { 467 caddr_t base = seg->s_base; 468 469 /* 470 * If top of seg is below the requested address, then 471 * the insertion point is at the end of the linked list, 472 * and seg points to the tail of the list. Otherwise, 473 * the insertion point is immediately before seg. 474 */ 475 if (base + seg->s_size > addr) { 476 if (addr >= base || eaddr > base) { 477 #ifdef __sparc 478 extern struct seg_ops segnf_ops; 479 480 /* 481 * no-fault segs must disappear if overlaid. 482 * XXX need new segment type so 483 * we don't have to check s_ops 484 */ 485 if (seg->s_ops == &segnf_ops) { 486 seg_unmap(seg); 487 goto again; 488 } 489 #endif 490 return (-1); /* overlapping segment */ 491 } 492 } 493 } 494 as->a_seglast = newseg; 495 avl_insert(&as->a_segtree, newseg, where); 496 497 #ifdef VERIFY_SEGLIST 498 as_verify(as); 499 #endif 500 return (0); 501 } 502 503 struct seg * 504 as_removeseg(struct as *as, struct seg *seg) 505 { 506 avl_tree_t *t; 507 508 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 509 510 as->a_updatedir = 1; /* inform /proc */ 511 gethrestime(&as->a_updatetime); 512 513 if (seg == NULL) 514 return (NULL); 515 516 t = &as->a_segtree; 517 if (as->a_seglast == seg) 518 as->a_seglast = NULL; 519 as->a_lastgaphl = NULL; 520 521 /* 522 * if this segment is at an address higher than 523 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 524 */ 525 if (as->a_lastgap && 526 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 527 as->a_lastgap = AVL_NEXT(t, seg); 528 529 /* 530 * remove the segment from the seg tree 531 */ 532 avl_remove(t, seg); 533 534 #ifdef VERIFY_SEGLIST 535 as_verify(as); 536 #endif 537 return (seg); 538 } 539 540 /* 541 * Find a segment containing addr. 542 */ 543 struct seg * 544 as_segat(struct as *as, caddr_t addr) 545 { 546 struct seg *seg = as->a_seglast; 547 548 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 549 550 if (seg != NULL && seg->s_base <= addr && 551 addr < seg->s_base + seg->s_size) 552 return (seg); 553 554 seg = avl_find(&as->a_segtree, &addr, NULL); 555 return (seg); 556 } 557 558 /* 559 * Serialize all searches for holes in an address space to 560 * prevent two or more threads from allocating the same virtual 561 * address range. The address space must not be "read/write" 562 * locked by the caller since we may block. 563 */ 564 void 565 as_rangelock(struct as *as) 566 { 567 mutex_enter(&as->a_contents); 568 while (AS_ISCLAIMGAP(as)) 569 cv_wait(&as->a_cv, &as->a_contents); 570 AS_SETCLAIMGAP(as); 571 mutex_exit(&as->a_contents); 572 } 573 574 /* 575 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 576 */ 577 void 578 as_rangeunlock(struct as *as) 579 { 580 mutex_enter(&as->a_contents); 581 AS_CLRCLAIMGAP(as); 582 cv_signal(&as->a_cv); 583 mutex_exit(&as->a_contents); 584 } 585 586 /* 587 * compar segments (or just an address) by segment address range 588 */ 589 static int 590 as_segcompar(const void *x, const void *y) 591 { 592 struct seg *a = (struct seg *)x; 593 struct seg *b = (struct seg *)y; 594 595 if (a->s_base < b->s_base) 596 return (-1); 597 if (a->s_base >= b->s_base + b->s_size) 598 return (1); 599 return (0); 600 } 601 602 603 void 604 as_avlinit(struct as *as) 605 { 606 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 607 offsetof(struct seg, s_tree)); 608 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 } 611 612 /*ARGSUSED*/ 613 static int 614 as_constructor(void *buf, void *cdrarg, int kmflags) 615 { 616 struct as *as = buf; 617 618 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 619 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 620 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 621 as_avlinit(as); 622 return (0); 623 } 624 625 /*ARGSUSED1*/ 626 static void 627 as_destructor(void *buf, void *cdrarg) 628 { 629 struct as *as = buf; 630 631 avl_destroy(&as->a_segtree); 632 mutex_destroy(&as->a_contents); 633 cv_destroy(&as->a_cv); 634 rw_destroy(&as->a_lock); 635 } 636 637 void 638 as_init(void) 639 { 640 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 641 as_constructor, as_destructor, NULL, NULL, NULL, 0); 642 } 643 644 /* 645 * Allocate and initialize an address space data structure. 646 * We call hat_alloc to allow any machine dependent 647 * information in the hat structure to be initialized. 648 */ 649 struct as * 650 as_alloc(void) 651 { 652 struct as *as; 653 654 as = kmem_cache_alloc(as_cache, KM_SLEEP); 655 656 as->a_flags = 0; 657 as->a_vbits = 0; 658 as->a_hrm = NULL; 659 as->a_seglast = NULL; 660 as->a_size = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 670 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 671 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 672 AS_LOCK_EXIT(as, &as->a_lock); 673 674 as->a_xhat = NULL; 675 676 return (as); 677 } 678 679 /* 680 * Free an address space data structure. 681 * Need to free the hat first and then 682 * all the segments on this as and finally 683 * the space for the as struct itself. 684 */ 685 void 686 as_free(struct as *as) 687 { 688 struct hat *hat = as->a_hat; 689 struct seg *seg, *next; 690 int called = 0; 691 692 top: 693 /* 694 * Invoke ALL callbacks. as_do_callbacks will do one callback 695 * per call, and not return (-1) until the callback has completed. 696 * When as_do_callbacks returns zero, all callbacks have completed. 697 */ 698 mutex_enter(&as->a_contents); 699 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)) 700 ; 701 702 /* This will prevent new XHATs from attaching to as */ 703 if (!called) 704 AS_SETBUSY(as); 705 mutex_exit(&as->a_contents); 706 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 707 708 if (!called) { 709 called = 1; 710 hat_free_start(hat); 711 if (as->a_xhat != NULL) 712 xhat_free_start_all(as); 713 } 714 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 715 int err; 716 717 next = AS_SEGNEXT(as, seg); 718 retry: 719 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 720 if (err == EAGAIN) { 721 mutex_enter(&as->a_contents); 722 if (as->a_callbacks) { 723 AS_LOCK_EXIT(as, &as->a_lock); 724 } else if (!AS_ISNOUNMAPWAIT(as)) { 725 /* 726 * Memory is currently locked. Wait for a 727 * cv_signal that it has been unlocked, then 728 * try the operation again. 729 */ 730 if (AS_ISUNMAPWAIT(as) == 0) 731 cv_broadcast(&as->a_cv); 732 AS_SETUNMAPWAIT(as); 733 AS_LOCK_EXIT(as, &as->a_lock); 734 while (AS_ISUNMAPWAIT(as)) 735 cv_wait(&as->a_cv, &as->a_contents); 736 } else { 737 /* 738 * We may have raced with 739 * segvn_reclaim()/segspt_reclaim(). In this 740 * case clean nounmapwait flag and retry since 741 * softlockcnt in this segment may be already 742 * 0. We don't drop as writer lock so our 743 * number of retries without sleeping should 744 * be very small. See segvn_reclaim() for 745 * more comments. 746 */ 747 AS_CLRNOUNMAPWAIT(as); 748 mutex_exit(&as->a_contents); 749 goto retry; 750 } 751 mutex_exit(&as->a_contents); 752 goto top; 753 } else { 754 /* 755 * We do not expect any other error return at this 756 * time. This is similar to an ASSERT in seg_unmap() 757 */ 758 ASSERT(err == 0); 759 } 760 } 761 hat_free_end(hat); 762 if (as->a_xhat != NULL) 763 xhat_free_end_all(as); 764 AS_LOCK_EXIT(as, &as->a_lock); 765 766 /* /proc stuff */ 767 ASSERT(avl_numnodes(&as->a_wpage) == 0); 768 if (as->a_objectdir) { 769 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 770 as->a_objectdir = NULL; 771 as->a_sizedir = 0; 772 } 773 774 /* 775 * Free the struct as back to kmem. Assert it has no segments. 776 */ 777 ASSERT(avl_numnodes(&as->a_segtree) == 0); 778 kmem_cache_free(as_cache, as); 779 } 780 781 int 782 as_dup(struct as *as, struct as **outas) 783 { 784 struct as *newas; 785 struct seg *seg, *newseg; 786 int error; 787 788 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 789 as_clearwatch(as); 790 newas = as_alloc(); 791 newas->a_userlimit = as->a_userlimit; 792 AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER); 793 794 /* This will prevent new XHATs from attaching */ 795 mutex_enter(&as->a_contents); 796 AS_SETBUSY(as); 797 mutex_exit(&as->a_contents); 798 mutex_enter(&newas->a_contents); 799 AS_SETBUSY(newas); 800 mutex_exit(&newas->a_contents); 801 802 (void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD); 803 804 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 805 806 if (seg->s_flags & S_PURGE) 807 continue; 808 809 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 810 if (newseg == NULL) { 811 AS_LOCK_EXIT(newas, &newas->a_lock); 812 as_setwatch(as); 813 mutex_enter(&as->a_contents); 814 AS_CLRBUSY(as); 815 mutex_exit(&as->a_contents); 816 AS_LOCK_EXIT(as, &as->a_lock); 817 as_free(newas); 818 return (-1); 819 } 820 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 821 /* 822 * We call seg_free() on the new seg 823 * because the segment is not set up 824 * completely; i.e. it has no ops. 825 */ 826 as_setwatch(as); 827 mutex_enter(&as->a_contents); 828 AS_CLRBUSY(as); 829 mutex_exit(&as->a_contents); 830 AS_LOCK_EXIT(as, &as->a_lock); 831 seg_free(newseg); 832 AS_LOCK_EXIT(newas, &newas->a_lock); 833 as_free(newas); 834 return (error); 835 } 836 newas->a_size += seg->s_size; 837 } 838 839 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 840 if (as->a_xhat != NULL) 841 error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL); 842 843 mutex_enter(&newas->a_contents); 844 AS_CLRBUSY(newas); 845 mutex_exit(&newas->a_contents); 846 AS_LOCK_EXIT(newas, &newas->a_lock); 847 848 as_setwatch(as); 849 mutex_enter(&as->a_contents); 850 AS_CLRBUSY(as); 851 mutex_exit(&as->a_contents); 852 AS_LOCK_EXIT(as, &as->a_lock); 853 if (error != 0) { 854 as_free(newas); 855 return (error); 856 } 857 *outas = newas; 858 return (0); 859 } 860 861 /* 862 * Handle a ``fault'' at addr for size bytes. 863 */ 864 faultcode_t 865 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 866 enum fault_type type, enum seg_rw rw) 867 { 868 struct seg *seg; 869 caddr_t raddr; /* rounded down addr */ 870 size_t rsize; /* rounded up size */ 871 size_t ssize; 872 faultcode_t res = 0; 873 caddr_t addrsav; 874 struct seg *segsav; 875 int as_lock_held; 876 klwp_t *lwp = ttolwp(curthread); 877 int is_xhat = 0; 878 int holding_wpage = 0; 879 extern struct seg_ops segdev_ops; 880 881 882 883 if (as->a_hat != hat) { 884 /* This must be an XHAT then */ 885 is_xhat = 1; 886 887 if ((type != F_INVAL) || (as == &kas)) 888 return (FC_NOSUPPORT); 889 } 890 891 retry: 892 if (!is_xhat) { 893 /* 894 * Indicate that the lwp is not to be stopped while waiting 895 * for a pagefault. This is to avoid deadlock while debugging 896 * a process via /proc over NFS (in particular). 897 */ 898 if (lwp != NULL) 899 lwp->lwp_nostop++; 900 901 /* 902 * same length must be used when we softlock and softunlock. 903 * We don't support softunlocking lengths less than 904 * the original length when there is largepage support. 905 * See seg_dev.c for more comments. 906 */ 907 switch (type) { 908 909 case F_SOFTLOCK: 910 CPU_STATS_ADD_K(vm, softlock, 1); 911 break; 912 913 case F_SOFTUNLOCK: 914 break; 915 916 case F_PROT: 917 CPU_STATS_ADD_K(vm, prot_fault, 1); 918 break; 919 920 case F_INVAL: 921 CPU_STATS_ENTER_K(); 922 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 923 if (as == &kas) 924 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 925 CPU_STATS_EXIT_K(); 926 break; 927 } 928 } 929 930 /* Kernel probe */ 931 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 932 tnf_opaque, address, addr, 933 tnf_fault_type, fault_type, type, 934 tnf_seg_access, access, rw); 935 936 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 937 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 938 (size_t)raddr; 939 940 /* 941 * XXX -- Don't grab the as lock for segkmap. We should grab it for 942 * correctness, but then we could be stuck holding this lock for 943 * a LONG time if the fault needs to be resolved on a slow 944 * filesystem, and then no-one will be able to exec new commands, 945 * as exec'ing requires the write lock on the as. 946 */ 947 if (as == &kas && segkmap && segkmap->s_base <= raddr && 948 raddr + size < segkmap->s_base + segkmap->s_size) { 949 /* 950 * if (as==&kas), this can't be XHAT: we've already returned 951 * FC_NOSUPPORT. 952 */ 953 seg = segkmap; 954 as_lock_held = 0; 955 } else { 956 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 957 if (is_xhat && avl_numnodes(&as->a_wpage) != 0) { 958 /* 959 * Grab and hold the writers' lock on the as 960 * if the fault is to a watched page. 961 * This will keep CPUs from "peeking" at the 962 * address range while we're temporarily boosting 963 * the permissions for the XHAT device to 964 * resolve the fault in the segment layer. 965 * 966 * We could check whether faulted address 967 * is within a watched page and only then grab 968 * the writer lock, but this is simpler. 969 */ 970 AS_LOCK_EXIT(as, &as->a_lock); 971 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 972 } 973 974 seg = as_segat(as, raddr); 975 if (seg == NULL) { 976 AS_LOCK_EXIT(as, &as->a_lock); 977 if ((lwp != NULL) && (!is_xhat)) 978 lwp->lwp_nostop--; 979 return (FC_NOMAP); 980 } 981 982 as_lock_held = 1; 983 } 984 985 addrsav = raddr; 986 segsav = seg; 987 988 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 989 if (raddr >= seg->s_base + seg->s_size) { 990 seg = AS_SEGNEXT(as, seg); 991 if (seg == NULL || raddr != seg->s_base) { 992 res = FC_NOMAP; 993 break; 994 } 995 } 996 if (raddr + rsize > seg->s_base + seg->s_size) 997 ssize = seg->s_base + seg->s_size - raddr; 998 else 999 ssize = rsize; 1000 1001 if (!is_xhat || (seg->s_ops != &segdev_ops)) { 1002 1003 if (is_xhat && avl_numnodes(&as->a_wpage) != 0 && 1004 pr_is_watchpage_as(raddr, rw, as)) { 1005 /* 1006 * Handle watch pages. If we're faulting on a 1007 * watched page from an X-hat, we have to 1008 * restore the original permissions while we 1009 * handle the fault. 1010 */ 1011 as_clearwatch(as); 1012 holding_wpage = 1; 1013 } 1014 1015 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 1016 1017 /* Restore watchpoints */ 1018 if (holding_wpage) { 1019 as_setwatch(as); 1020 holding_wpage = 0; 1021 } 1022 1023 if (res != 0) 1024 break; 1025 } else { 1026 /* XHAT does not support seg_dev */ 1027 res = FC_NOSUPPORT; 1028 break; 1029 } 1030 } 1031 1032 /* 1033 * If we were SOFTLOCKing and encountered a failure, 1034 * we must SOFTUNLOCK the range we already did. (Maybe we 1035 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 1036 * right here...) 1037 */ 1038 if (res != 0 && type == F_SOFTLOCK) { 1039 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 1040 if (addrsav >= seg->s_base + seg->s_size) 1041 seg = AS_SEGNEXT(as, seg); 1042 ASSERT(seg != NULL); 1043 /* 1044 * Now call the fault routine again to perform the 1045 * unlock using S_OTHER instead of the rw variable 1046 * since we never got a chance to touch the pages. 1047 */ 1048 if (raddr > seg->s_base + seg->s_size) 1049 ssize = seg->s_base + seg->s_size - addrsav; 1050 else 1051 ssize = raddr - addrsav; 1052 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 1053 F_SOFTUNLOCK, S_OTHER); 1054 } 1055 } 1056 if (as_lock_held) 1057 AS_LOCK_EXIT(as, &as->a_lock); 1058 if ((lwp != NULL) && (!is_xhat)) 1059 lwp->lwp_nostop--; 1060 1061 /* 1062 * If the lower levels returned EDEADLK for a fault, 1063 * It means that we should retry the fault. Let's wait 1064 * a bit also to let the deadlock causing condition clear. 1065 * This is part of a gross hack to work around a design flaw 1066 * in the ufs/sds logging code and should go away when the 1067 * logging code is re-designed to fix the problem. See bug 1068 * 4125102 for details of the problem. 1069 */ 1070 if (FC_ERRNO(res) == EDEADLK) { 1071 delay(deadlk_wait); 1072 res = 0; 1073 goto retry; 1074 } 1075 return (res); 1076 } 1077 1078 1079 1080 /* 1081 * Asynchronous ``fault'' at addr for size bytes. 1082 */ 1083 faultcode_t 1084 as_faulta(struct as *as, caddr_t addr, size_t size) 1085 { 1086 struct seg *seg; 1087 caddr_t raddr; /* rounded down addr */ 1088 size_t rsize; /* rounded up size */ 1089 faultcode_t res = 0; 1090 klwp_t *lwp = ttolwp(curthread); 1091 1092 retry: 1093 /* 1094 * Indicate that the lwp is not to be stopped while waiting 1095 * for a pagefault. This is to avoid deadlock while debugging 1096 * a process via /proc over NFS (in particular). 1097 */ 1098 if (lwp != NULL) 1099 lwp->lwp_nostop++; 1100 1101 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1102 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1103 (size_t)raddr; 1104 1105 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1106 seg = as_segat(as, raddr); 1107 if (seg == NULL) { 1108 AS_LOCK_EXIT(as, &as->a_lock); 1109 if (lwp != NULL) 1110 lwp->lwp_nostop--; 1111 return (FC_NOMAP); 1112 } 1113 1114 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1115 if (raddr >= seg->s_base + seg->s_size) { 1116 seg = AS_SEGNEXT(as, seg); 1117 if (seg == NULL || raddr != seg->s_base) { 1118 res = FC_NOMAP; 1119 break; 1120 } 1121 } 1122 res = SEGOP_FAULTA(seg, raddr); 1123 if (res != 0) 1124 break; 1125 } 1126 AS_LOCK_EXIT(as, &as->a_lock); 1127 if (lwp != NULL) 1128 lwp->lwp_nostop--; 1129 /* 1130 * If the lower levels returned EDEADLK for a fault, 1131 * It means that we should retry the fault. Let's wait 1132 * a bit also to let the deadlock causing condition clear. 1133 * This is part of a gross hack to work around a design flaw 1134 * in the ufs/sds logging code and should go away when the 1135 * logging code is re-designed to fix the problem. See bug 1136 * 4125102 for details of the problem. 1137 */ 1138 if (FC_ERRNO(res) == EDEADLK) { 1139 delay(deadlk_wait); 1140 res = 0; 1141 goto retry; 1142 } 1143 return (res); 1144 } 1145 1146 /* 1147 * Set the virtual mapping for the interval from [addr : addr + size) 1148 * in address space `as' to have the specified protection. 1149 * It is ok for the range to cross over several segments, 1150 * as long as they are contiguous. 1151 */ 1152 int 1153 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1154 { 1155 struct seg *seg; 1156 struct as_callback *cb; 1157 size_t ssize; 1158 caddr_t raddr; /* rounded down addr */ 1159 size_t rsize; /* rounded up size */ 1160 int error = 0, writer = 0; 1161 caddr_t saveraddr; 1162 size_t saversize; 1163 1164 setprot_top: 1165 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1166 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1167 (size_t)raddr; 1168 1169 if (raddr + rsize < raddr) /* check for wraparound */ 1170 return (ENOMEM); 1171 1172 saveraddr = raddr; 1173 saversize = rsize; 1174 1175 /* 1176 * Normally we only lock the as as a reader. But 1177 * if due to setprot the segment driver needs to split 1178 * a segment it will return IE_RETRY. Therefore we re-acquire 1179 * the as lock as a writer so the segment driver can change 1180 * the seg list. Also the segment driver will return IE_RETRY 1181 * after it has changed the segment list so we therefore keep 1182 * locking as a writer. Since these opeartions should be rare 1183 * want to only lock as a writer when necessary. 1184 */ 1185 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1186 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1187 } else { 1188 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1189 } 1190 1191 as_clearwatchprot(as, raddr, rsize); 1192 seg = as_segat(as, raddr); 1193 if (seg == NULL) { 1194 as_setwatch(as); 1195 AS_LOCK_EXIT(as, &as->a_lock); 1196 return (ENOMEM); 1197 } 1198 1199 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1200 if (raddr >= seg->s_base + seg->s_size) { 1201 seg = AS_SEGNEXT(as, seg); 1202 if (seg == NULL || raddr != seg->s_base) { 1203 error = ENOMEM; 1204 break; 1205 } 1206 } 1207 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1208 ssize = seg->s_base + seg->s_size - raddr; 1209 else 1210 ssize = rsize; 1211 retry: 1212 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1213 1214 if (error == IE_NOMEM) { 1215 error = EAGAIN; 1216 break; 1217 } 1218 1219 if (error == IE_RETRY) { 1220 AS_LOCK_EXIT(as, &as->a_lock); 1221 writer = 1; 1222 goto setprot_top; 1223 } 1224 1225 if (error == EAGAIN) { 1226 /* 1227 * Make sure we have a_lock as writer. 1228 */ 1229 if (writer == 0) { 1230 AS_LOCK_EXIT(as, &as->a_lock); 1231 writer = 1; 1232 goto setprot_top; 1233 } 1234 1235 /* 1236 * Memory is currently locked. It must be unlocked 1237 * before this operation can succeed through a retry. 1238 * The possible reasons for locked memory and 1239 * corresponding strategies for unlocking are: 1240 * (1) Normal I/O 1241 * wait for a signal that the I/O operation 1242 * has completed and the memory is unlocked. 1243 * (2) Asynchronous I/O 1244 * The aio subsystem does not unlock pages when 1245 * the I/O is completed. Those pages are unlocked 1246 * when the application calls aiowait/aioerror. 1247 * So, to prevent blocking forever, cv_broadcast() 1248 * is done to wake up aio_cleanup_thread. 1249 * Subsequently, segvn_reclaim will be called, and 1250 * that will do AS_CLRUNMAPWAIT() and wake us up. 1251 * (3) Long term page locking: 1252 * Drivers intending to have pages locked for a 1253 * period considerably longer than for normal I/O 1254 * (essentially forever) may have registered for a 1255 * callback so they may unlock these pages on 1256 * request. This is needed to allow this operation 1257 * to succeed. Each entry on the callback list is 1258 * examined. If the event or address range pertains 1259 * the callback is invoked (unless it already is in 1260 * progress). The a_contents lock must be dropped 1261 * before the callback, so only one callback can 1262 * be done at a time. Go to the top and do more 1263 * until zero is returned. If zero is returned, 1264 * either there were no callbacks for this event 1265 * or they were already in progress. 1266 */ 1267 mutex_enter(&as->a_contents); 1268 if (as->a_callbacks && 1269 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1270 seg->s_base, seg->s_size))) { 1271 AS_LOCK_EXIT(as, &as->a_lock); 1272 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1273 } else if (!AS_ISNOUNMAPWAIT(as)) { 1274 if (AS_ISUNMAPWAIT(as) == 0) 1275 cv_broadcast(&as->a_cv); 1276 AS_SETUNMAPWAIT(as); 1277 AS_LOCK_EXIT(as, &as->a_lock); 1278 while (AS_ISUNMAPWAIT(as)) 1279 cv_wait(&as->a_cv, &as->a_contents); 1280 } else { 1281 /* 1282 * We may have raced with 1283 * segvn_reclaim()/segspt_reclaim(). In this 1284 * case clean nounmapwait flag and retry since 1285 * softlockcnt in this segment may be already 1286 * 0. We don't drop as writer lock so our 1287 * number of retries without sleeping should 1288 * be very small. See segvn_reclaim() for 1289 * more comments. 1290 */ 1291 AS_CLRNOUNMAPWAIT(as); 1292 mutex_exit(&as->a_contents); 1293 goto retry; 1294 } 1295 mutex_exit(&as->a_contents); 1296 goto setprot_top; 1297 } else if (error != 0) 1298 break; 1299 } 1300 if (error != 0) { 1301 as_setwatch(as); 1302 } else { 1303 as_setwatchprot(as, saveraddr, saversize, prot); 1304 } 1305 AS_LOCK_EXIT(as, &as->a_lock); 1306 return (error); 1307 } 1308 1309 /* 1310 * Check to make sure that the interval [addr, addr + size) 1311 * in address space `as' has at least the specified protection. 1312 * It is ok for the range to cross over several segments, as long 1313 * as they are contiguous. 1314 */ 1315 int 1316 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1317 { 1318 struct seg *seg; 1319 size_t ssize; 1320 caddr_t raddr; /* rounded down addr */ 1321 size_t rsize; /* rounded up size */ 1322 int error = 0; 1323 1324 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1325 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1326 (size_t)raddr; 1327 1328 if (raddr + rsize < raddr) /* check for wraparound */ 1329 return (ENOMEM); 1330 1331 /* 1332 * This is ugly as sin... 1333 * Normally, we only acquire the address space readers lock. 1334 * However, if the address space has watchpoints present, 1335 * we must acquire the writer lock on the address space for 1336 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1337 */ 1338 if (avl_numnodes(&as->a_wpage) != 0) 1339 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1340 else 1341 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1342 as_clearwatchprot(as, raddr, rsize); 1343 seg = as_segat(as, raddr); 1344 if (seg == NULL) { 1345 as_setwatch(as); 1346 AS_LOCK_EXIT(as, &as->a_lock); 1347 return (ENOMEM); 1348 } 1349 1350 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1351 if (raddr >= seg->s_base + seg->s_size) { 1352 seg = AS_SEGNEXT(as, seg); 1353 if (seg == NULL || raddr != seg->s_base) { 1354 error = ENOMEM; 1355 break; 1356 } 1357 } 1358 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1359 ssize = seg->s_base + seg->s_size - raddr; 1360 else 1361 ssize = rsize; 1362 1363 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1364 if (error != 0) 1365 break; 1366 } 1367 as_setwatch(as); 1368 AS_LOCK_EXIT(as, &as->a_lock); 1369 return (error); 1370 } 1371 1372 int 1373 as_unmap(struct as *as, caddr_t addr, size_t size) 1374 { 1375 struct seg *seg, *seg_next; 1376 struct as_callback *cb; 1377 caddr_t raddr, eaddr; 1378 size_t ssize; 1379 int err; 1380 1381 top: 1382 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1383 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1384 (uintptr_t)PAGEMASK); 1385 1386 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1387 1388 as->a_updatedir = 1; /* inform /proc */ 1389 gethrestime(&as->a_updatetime); 1390 1391 /* 1392 * Use as_findseg to find the first segment in the range, then 1393 * step through the segments in order, following s_next. 1394 */ 1395 as_clearwatchprot(as, raddr, eaddr - raddr); 1396 1397 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1398 if (eaddr <= seg->s_base) 1399 break; /* eaddr was in a gap; all done */ 1400 1401 /* this is implied by the test above */ 1402 ASSERT(raddr < eaddr); 1403 1404 if (raddr < seg->s_base) 1405 raddr = seg->s_base; /* raddr was in a gap */ 1406 1407 if (eaddr > (seg->s_base + seg->s_size)) 1408 ssize = seg->s_base + seg->s_size - raddr; 1409 else 1410 ssize = eaddr - raddr; 1411 1412 /* 1413 * Save next segment pointer since seg can be 1414 * destroyed during the segment unmap operation. 1415 */ 1416 seg_next = AS_SEGNEXT(as, seg); 1417 1418 retry: 1419 err = SEGOP_UNMAP(seg, raddr, ssize); 1420 if (err == EAGAIN) { 1421 /* 1422 * Memory is currently locked. It must be unlocked 1423 * before this operation can succeed through a retry. 1424 * The possible reasons for locked memory and 1425 * corresponding strategies for unlocking are: 1426 * (1) Normal I/O 1427 * wait for a signal that the I/O operation 1428 * has completed and the memory is unlocked. 1429 * (2) Asynchronous I/O 1430 * The aio subsystem does not unlock pages when 1431 * the I/O is completed. Those pages are unlocked 1432 * when the application calls aiowait/aioerror. 1433 * So, to prevent blocking forever, cv_broadcast() 1434 * is done to wake up aio_cleanup_thread. 1435 * Subsequently, segvn_reclaim will be called, and 1436 * that will do AS_CLRUNMAPWAIT() and wake us up. 1437 * (3) Long term page locking: 1438 * Drivers intending to have pages locked for a 1439 * period considerably longer than for normal I/O 1440 * (essentially forever) may have registered for a 1441 * callback so they may unlock these pages on 1442 * request. This is needed to allow this operation 1443 * to succeed. Each entry on the callback list is 1444 * examined. If the event or address range pertains 1445 * the callback is invoked (unless it already is in 1446 * progress). The a_contents lock must be dropped 1447 * before the callback, so only one callback can 1448 * be done at a time. Go to the top and do more 1449 * until zero is returned. If zero is returned, 1450 * either there were no callbacks for this event 1451 * or they were already in progress. 1452 */ 1453 mutex_enter(&as->a_contents); 1454 if (as->a_callbacks && 1455 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1456 seg->s_base, seg->s_size))) { 1457 AS_LOCK_EXIT(as, &as->a_lock); 1458 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1459 } else if (!AS_ISNOUNMAPWAIT(as)) { 1460 if (AS_ISUNMAPWAIT(as) == 0) 1461 cv_broadcast(&as->a_cv); 1462 AS_SETUNMAPWAIT(as); 1463 AS_LOCK_EXIT(as, &as->a_lock); 1464 while (AS_ISUNMAPWAIT(as)) 1465 cv_wait(&as->a_cv, &as->a_contents); 1466 } else { 1467 /* 1468 * We may have raced with 1469 * segvn_reclaim()/segspt_reclaim(). In this 1470 * case clean nounmapwait flag and retry since 1471 * softlockcnt in this segment may be already 1472 * 0. We don't drop as writer lock so our 1473 * number of retries without sleeping should 1474 * be very small. See segvn_reclaim() for 1475 * more comments. 1476 */ 1477 AS_CLRNOUNMAPWAIT(as); 1478 mutex_exit(&as->a_contents); 1479 goto retry; 1480 } 1481 mutex_exit(&as->a_contents); 1482 goto top; 1483 } else if (err == IE_RETRY) { 1484 AS_LOCK_EXIT(as, &as->a_lock); 1485 goto top; 1486 } else if (err) { 1487 as_setwatch(as); 1488 AS_LOCK_EXIT(as, &as->a_lock); 1489 return (-1); 1490 } 1491 1492 as->a_size -= ssize; 1493 raddr += ssize; 1494 } 1495 AS_LOCK_EXIT(as, &as->a_lock); 1496 return (0); 1497 } 1498 1499 static int 1500 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec, 1501 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1502 { 1503 uint_t szc; 1504 uint_t nszc; 1505 int error; 1506 caddr_t a; 1507 caddr_t eaddr; 1508 size_t segsize; 1509 struct seg *seg; 1510 size_t pgsz; 1511 int do_off = (vn_a->vp != NULL || vn_a->amp != NULL); 1512 uint_t save_szcvec; 1513 1514 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1515 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1516 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1517 ASSERT(vn_a->vp == NULL || vn_a->amp == NULL); 1518 if (!do_off) { 1519 vn_a->offset = 0; 1520 } 1521 1522 if (szcvec <= 1) { 1523 seg = seg_alloc(as, addr, size); 1524 if (seg == NULL) { 1525 return (ENOMEM); 1526 } 1527 vn_a->szc = 0; 1528 error = (*crfp)(seg, vn_a); 1529 if (error != 0) { 1530 seg_free(seg); 1531 } else { 1532 as->a_size += size; 1533 } 1534 return (error); 1535 } 1536 1537 eaddr = addr + size; 1538 save_szcvec = szcvec; 1539 szcvec >>= 1; 1540 szc = 0; 1541 nszc = 0; 1542 while (szcvec) { 1543 if ((szcvec & 0x1) == 0) { 1544 nszc++; 1545 szcvec >>= 1; 1546 continue; 1547 } 1548 nszc++; 1549 pgsz = page_get_pagesize(nszc); 1550 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1551 if (a != addr) { 1552 ASSERT(a < eaddr); 1553 segsize = a - addr; 1554 seg = seg_alloc(as, addr, segsize); 1555 if (seg == NULL) { 1556 return (ENOMEM); 1557 } 1558 vn_a->szc = szc; 1559 error = (*crfp)(seg, vn_a); 1560 if (error != 0) { 1561 seg_free(seg); 1562 return (error); 1563 } 1564 as->a_size += segsize; 1565 *segcreated = 1; 1566 if (do_off) { 1567 vn_a->offset += segsize; 1568 } 1569 addr = a; 1570 } 1571 szc = nszc; 1572 szcvec >>= 1; 1573 } 1574 1575 ASSERT(addr < eaddr); 1576 szcvec = save_szcvec | 1; /* add 8K pages */ 1577 while (szcvec) { 1578 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1579 ASSERT(a >= addr); 1580 if (a != addr) { 1581 segsize = a - addr; 1582 seg = seg_alloc(as, addr, segsize); 1583 if (seg == NULL) { 1584 return (ENOMEM); 1585 } 1586 vn_a->szc = szc; 1587 error = (*crfp)(seg, vn_a); 1588 if (error != 0) { 1589 seg_free(seg); 1590 return (error); 1591 } 1592 as->a_size += segsize; 1593 *segcreated = 1; 1594 if (do_off) { 1595 vn_a->offset += segsize; 1596 } 1597 addr = a; 1598 } 1599 szcvec &= ~(1 << szc); 1600 if (szcvec) { 1601 szc = highbit(szcvec) - 1; 1602 pgsz = page_get_pagesize(szc); 1603 } 1604 } 1605 ASSERT(addr == eaddr); 1606 1607 return (0); 1608 } 1609 1610 static int 1611 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1612 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1613 { 1614 uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA); 1615 int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 1616 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1617 type, 0); 1618 int error; 1619 struct seg *seg; 1620 struct vattr va; 1621 u_offset_t eoff; 1622 size_t save_size = 0; 1623 extern size_t textrepl_size_thresh; 1624 1625 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1626 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1627 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1628 ASSERT(vn_a->vp != NULL); 1629 ASSERT(vn_a->amp == NULL); 1630 1631 again: 1632 if (szcvec <= 1) { 1633 seg = seg_alloc(as, addr, size); 1634 if (seg == NULL) { 1635 return (ENOMEM); 1636 } 1637 vn_a->szc = 0; 1638 error = (*crfp)(seg, vn_a); 1639 if (error != 0) { 1640 seg_free(seg); 1641 } else { 1642 as->a_size += size; 1643 } 1644 return (error); 1645 } 1646 1647 va.va_mask = AT_SIZE; 1648 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) { 1649 szcvec = 0; 1650 goto again; 1651 } 1652 eoff = vn_a->offset & PAGEMASK; 1653 if (eoff >= va.va_size) { 1654 szcvec = 0; 1655 goto again; 1656 } 1657 eoff += size; 1658 if (btopr(va.va_size) < btopr(eoff)) { 1659 save_size = size; 1660 size = va.va_size - (vn_a->offset & PAGEMASK); 1661 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1662 szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags, 1663 type, 0); 1664 if (szcvec <= 1) { 1665 size = save_size; 1666 goto again; 1667 } 1668 } 1669 1670 if (size > textrepl_size_thresh) { 1671 vn_a->flags |= _MAP_TEXTREPL; 1672 } 1673 error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a, 1674 segcreated); 1675 if (error != 0) { 1676 return (error); 1677 } 1678 if (save_size) { 1679 addr += size; 1680 size = save_size - size; 1681 szcvec = 0; 1682 goto again; 1683 } 1684 return (0); 1685 } 1686 1687 /* 1688 * as_map_ansegs: shared or private anonymous memory. Note that the flags 1689 * passed to map_pgszvec cannot be MAP_INITDATA, for anon. 1690 */ 1691 static int 1692 as_map_ansegs(struct as *as, caddr_t addr, size_t size, 1693 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1694 { 1695 uint_t szcvec; 1696 uchar_t type; 1697 1698 ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE); 1699 if (vn_a->type == MAP_SHARED) { 1700 type = MAPPGSZC_SHM; 1701 } else if (vn_a->type == MAP_PRIVATE) { 1702 if (vn_a->szc == AS_MAP_HEAP) { 1703 type = MAPPGSZC_HEAP; 1704 } else if (vn_a->szc == AS_MAP_STACK) { 1705 type = MAPPGSZC_STACK; 1706 } else { 1707 type = MAPPGSZC_PRIVM; 1708 } 1709 } 1710 szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ? 1711 (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE), 1712 (vn_a->flags & MAP_TEXT), type, 0); 1713 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1714 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1715 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1716 ASSERT(vn_a->vp == NULL); 1717 1718 return (as_map_segvn_segs(as, addr, size, szcvec, 1719 crfp, vn_a, segcreated)); 1720 } 1721 1722 int 1723 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp) 1724 { 1725 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1726 return (as_map_locked(as, addr, size, crfp, argsp)); 1727 } 1728 1729 int 1730 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(), 1731 void *argsp) 1732 { 1733 struct seg *seg = NULL; 1734 caddr_t raddr; /* rounded down addr */ 1735 size_t rsize; /* rounded up size */ 1736 int error; 1737 int unmap = 0; 1738 struct proc *p = curproc; 1739 struct segvn_crargs crargs; 1740 1741 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1742 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1743 (size_t)raddr; 1744 1745 /* 1746 * check for wrap around 1747 */ 1748 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1749 AS_LOCK_EXIT(as, &as->a_lock); 1750 return (ENOMEM); 1751 } 1752 1753 as->a_updatedir = 1; /* inform /proc */ 1754 gethrestime(&as->a_updatetime); 1755 1756 if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) { 1757 AS_LOCK_EXIT(as, &as->a_lock); 1758 1759 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 1760 RCA_UNSAFE_ALL); 1761 1762 return (ENOMEM); 1763 } 1764 1765 if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) { 1766 crargs = *(struct segvn_crargs *)argsp; 1767 error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap); 1768 if (error != 0) { 1769 AS_LOCK_EXIT(as, &as->a_lock); 1770 if (unmap) { 1771 (void) as_unmap(as, addr, size); 1772 } 1773 return (error); 1774 } 1775 } else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) { 1776 crargs = *(struct segvn_crargs *)argsp; 1777 error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap); 1778 if (error != 0) { 1779 AS_LOCK_EXIT(as, &as->a_lock); 1780 if (unmap) { 1781 (void) as_unmap(as, addr, size); 1782 } 1783 return (error); 1784 } 1785 } else { 1786 seg = seg_alloc(as, addr, size); 1787 if (seg == NULL) { 1788 AS_LOCK_EXIT(as, &as->a_lock); 1789 return (ENOMEM); 1790 } 1791 1792 error = (*crfp)(seg, argsp); 1793 if (error != 0) { 1794 seg_free(seg); 1795 AS_LOCK_EXIT(as, &as->a_lock); 1796 return (error); 1797 } 1798 /* 1799 * Add size now so as_unmap will work if as_ctl fails. 1800 */ 1801 as->a_size += rsize; 1802 } 1803 1804 as_setwatch(as); 1805 1806 /* 1807 * If the address space is locked, 1808 * establish memory locks for the new segment. 1809 */ 1810 mutex_enter(&as->a_contents); 1811 if (AS_ISPGLCK(as)) { 1812 mutex_exit(&as->a_contents); 1813 AS_LOCK_EXIT(as, &as->a_lock); 1814 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1815 if (error != 0) 1816 (void) as_unmap(as, addr, size); 1817 } else { 1818 mutex_exit(&as->a_contents); 1819 AS_LOCK_EXIT(as, &as->a_lock); 1820 } 1821 return (error); 1822 } 1823 1824 1825 /* 1826 * Delete all segments in the address space marked with S_PURGE. 1827 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1828 * These segments are deleted as a first step before calls to as_gap(), so 1829 * that they don't affect mmap() or shmat(). 1830 */ 1831 void 1832 as_purge(struct as *as) 1833 { 1834 struct seg *seg; 1835 struct seg *next_seg; 1836 1837 /* 1838 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1839 * no need to grab a_contents mutex for this check 1840 */ 1841 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1842 return; 1843 1844 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1845 next_seg = NULL; 1846 seg = AS_SEGFIRST(as); 1847 while (seg != NULL) { 1848 next_seg = AS_SEGNEXT(as, seg); 1849 if (seg->s_flags & S_PURGE) 1850 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1851 seg = next_seg; 1852 } 1853 AS_LOCK_EXIT(as, &as->a_lock); 1854 1855 mutex_enter(&as->a_contents); 1856 as->a_flags &= ~AS_NEEDSPURGE; 1857 mutex_exit(&as->a_contents); 1858 } 1859 1860 /* 1861 * Find a hole within [*basep, *basep + *lenp), which contains a mappable 1862 * range of addresses at least "minlen" long, where the base of the range is 1863 * at "off" phase from an "align" boundary and there is space for a 1864 * "redzone"-sized redzone on eithe rside of the range. Thus, 1865 * if align was 4M and off was 16k, the user wants a hole which will start 1866 * 16k into a 4M page. 1867 * 1868 * If flags specifies AH_HI, the hole will have the highest possible address 1869 * in the range. We use the as->a_lastgap field to figure out where to 1870 * start looking for a gap. 1871 * 1872 * Otherwise, the gap will have the lowest possible address. 1873 * 1874 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1875 * 1876 * If an adequate hole is found, *basep and *lenp are set to reflect the part of 1877 * the hole that is within range, and 0 is returned. On failure, -1 is returned. 1878 * 1879 * NOTE: This routine is not correct when base+len overflows caddr_t. 1880 */ 1881 int 1882 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, 1883 uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off) 1884 { 1885 caddr_t lobound = *basep; 1886 caddr_t hibound = lobound + *lenp; 1887 struct seg *lseg, *hseg; 1888 caddr_t lo, hi; 1889 int forward; 1890 caddr_t save_base; 1891 size_t save_len; 1892 1893 save_base = *basep; 1894 save_len = *lenp; 1895 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1896 if (AS_SEGFIRST(as) == NULL) { 1897 if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR, 1898 align, redzone, off)) { 1899 AS_LOCK_EXIT(as, &as->a_lock); 1900 return (0); 1901 } else { 1902 AS_LOCK_EXIT(as, &as->a_lock); 1903 *basep = save_base; 1904 *lenp = save_len; 1905 return (-1); 1906 } 1907 } 1908 1909 /* 1910 * Set up to iterate over all the inter-segment holes in the given 1911 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1912 * NULL for the highest-addressed hole. If moving backwards, we reset 1913 * sseg to denote the highest-addressed segment. 1914 */ 1915 forward = (flags & AH_DIR) == AH_LO; 1916 if (forward) { 1917 hseg = as_findseg(as, lobound, 1); 1918 lseg = AS_SEGPREV(as, hseg); 1919 } else { 1920 1921 /* 1922 * If allocating at least as much as the last allocation, 1923 * use a_lastgap's base as a better estimate of hibound. 1924 */ 1925 if (as->a_lastgap && 1926 minlen >= as->a_lastgap->s_size && 1927 hibound >= as->a_lastgap->s_base) 1928 hibound = as->a_lastgap->s_base; 1929 1930 hseg = as_findseg(as, hibound, 1); 1931 if (hseg->s_base + hseg->s_size < hibound) { 1932 lseg = hseg; 1933 hseg = NULL; 1934 } else { 1935 lseg = AS_SEGPREV(as, hseg); 1936 } 1937 } 1938 1939 for (;;) { 1940 /* 1941 * Set lo and hi to the hole's boundaries. (We should really 1942 * use MAXADDR in place of hibound in the expression below, 1943 * but can't express it easily; using hibound in its place is 1944 * harmless.) 1945 */ 1946 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1947 hi = (hseg == NULL) ? hibound : hseg->s_base; 1948 /* 1949 * If the iteration has moved past the interval from lobound 1950 * to hibound it's pointless to continue. 1951 */ 1952 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1953 break; 1954 else if (lo > hibound || hi < lobound) 1955 goto cont; 1956 /* 1957 * Candidate hole lies at least partially within the allowable 1958 * range. Restrict it to fall completely within that range, 1959 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1960 */ 1961 if (lo < lobound) 1962 lo = lobound; 1963 if (hi > hibound) 1964 hi = hibound; 1965 /* 1966 * Verify that the candidate hole is big enough and meets 1967 * hardware constraints. 1968 */ 1969 *basep = lo; 1970 *lenp = hi - lo; 1971 if (valid_va_range_aligned(basep, lenp, minlen, 1972 forward ? AH_LO : AH_HI, align, redzone, off) && 1973 ((flags & AH_CONTAIN) == 0 || 1974 (*basep <= addr && *basep + *lenp > addr))) { 1975 if (!forward) 1976 as->a_lastgap = hseg; 1977 if (hseg != NULL) 1978 as->a_lastgaphl = hseg; 1979 else 1980 as->a_lastgaphl = lseg; 1981 AS_LOCK_EXIT(as, &as->a_lock); 1982 return (0); 1983 } 1984 cont: 1985 /* 1986 * Move to the next hole. 1987 */ 1988 if (forward) { 1989 lseg = hseg; 1990 if (lseg == NULL) 1991 break; 1992 hseg = AS_SEGNEXT(as, hseg); 1993 } else { 1994 hseg = lseg; 1995 if (hseg == NULL) 1996 break; 1997 lseg = AS_SEGPREV(as, lseg); 1998 } 1999 } 2000 *basep = save_base; 2001 *lenp = save_len; 2002 AS_LOCK_EXIT(as, &as->a_lock); 2003 return (-1); 2004 } 2005 2006 /* 2007 * Find a hole of at least size minlen within [*basep, *basep + *lenp). 2008 * 2009 * If flags specifies AH_HI, the hole will have the highest possible address 2010 * in the range. We use the as->a_lastgap field to figure out where to 2011 * start looking for a gap. 2012 * 2013 * Otherwise, the gap will have the lowest possible address. 2014 * 2015 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 2016 * 2017 * If an adequate hole is found, base and len are set to reflect the part of 2018 * the hole that is within range, and 0 is returned, otherwise, 2019 * -1 is returned. 2020 * 2021 * NOTE: This routine is not correct when base+len overflows caddr_t. 2022 */ 2023 int 2024 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 2025 caddr_t addr) 2026 { 2027 2028 return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0)); 2029 } 2030 2031 /* 2032 * Return the next range within [base, base + len) that is backed 2033 * with "real memory". Skip holes and non-seg_vn segments. 2034 * We're lazy and only return one segment at a time. 2035 */ 2036 int 2037 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 2038 { 2039 extern struct seg_ops segspt_shmops; /* needs a header file */ 2040 struct seg *seg; 2041 caddr_t addr, eaddr; 2042 caddr_t segend; 2043 2044 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2045 2046 addr = *basep; 2047 eaddr = addr + *lenp; 2048 2049 seg = as_findseg(as, addr, 0); 2050 if (seg != NULL) 2051 addr = MAX(seg->s_base, addr); 2052 2053 for (;;) { 2054 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 2055 AS_LOCK_EXIT(as, &as->a_lock); 2056 return (EINVAL); 2057 } 2058 2059 if (seg->s_ops == &segvn_ops) { 2060 segend = seg->s_base + seg->s_size; 2061 break; 2062 } 2063 2064 /* 2065 * We do ISM by looking into the private data 2066 * to determine the real size of the segment. 2067 */ 2068 if (seg->s_ops == &segspt_shmops) { 2069 segend = seg->s_base + spt_realsize(seg); 2070 if (addr < segend) 2071 break; 2072 } 2073 2074 seg = AS_SEGNEXT(as, seg); 2075 2076 if (seg != NULL) 2077 addr = seg->s_base; 2078 } 2079 2080 *basep = addr; 2081 2082 if (segend > eaddr) 2083 *lenp = eaddr - addr; 2084 else 2085 *lenp = segend - addr; 2086 2087 AS_LOCK_EXIT(as, &as->a_lock); 2088 return (0); 2089 } 2090 2091 /* 2092 * Swap the pages associated with the address space as out to 2093 * secondary storage, returning the number of bytes actually 2094 * swapped. 2095 * 2096 * The value returned is intended to correlate well with the process's 2097 * memory requirements. Its usefulness for this purpose depends on 2098 * how well the segment-level routines do at returning accurate 2099 * information. 2100 */ 2101 size_t 2102 as_swapout(struct as *as) 2103 { 2104 struct seg *seg; 2105 size_t swpcnt = 0; 2106 2107 /* 2108 * Kernel-only processes have given up their address 2109 * spaces. Of course, we shouldn't be attempting to 2110 * swap out such processes in the first place... 2111 */ 2112 if (as == NULL) 2113 return (0); 2114 2115 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2116 2117 /* Prevent XHATs from attaching */ 2118 mutex_enter(&as->a_contents); 2119 AS_SETBUSY(as); 2120 mutex_exit(&as->a_contents); 2121 2122 2123 /* 2124 * Free all mapping resources associated with the address 2125 * space. The segment-level swapout routines capitalize 2126 * on this unmapping by scavanging pages that have become 2127 * unmapped here. 2128 */ 2129 hat_swapout(as->a_hat); 2130 if (as->a_xhat != NULL) 2131 xhat_swapout_all(as); 2132 2133 mutex_enter(&as->a_contents); 2134 AS_CLRBUSY(as); 2135 mutex_exit(&as->a_contents); 2136 2137 /* 2138 * Call the swapout routines of all segments in the address 2139 * space to do the actual work, accumulating the amount of 2140 * space reclaimed. 2141 */ 2142 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 2143 struct seg_ops *ov = seg->s_ops; 2144 2145 /* 2146 * We have to check to see if the seg has 2147 * an ops vector because the seg may have 2148 * been in the middle of being set up when 2149 * the process was picked for swapout. 2150 */ 2151 if ((ov != NULL) && (ov->swapout != NULL)) 2152 swpcnt += SEGOP_SWAPOUT(seg); 2153 } 2154 AS_LOCK_EXIT(as, &as->a_lock); 2155 return (swpcnt); 2156 } 2157 2158 /* 2159 * Determine whether data from the mappings in interval [addr, addr + size) 2160 * are in the primary memory (core) cache. 2161 */ 2162 int 2163 as_incore(struct as *as, caddr_t addr, 2164 size_t size, char *vec, size_t *sizep) 2165 { 2166 struct seg *seg; 2167 size_t ssize; 2168 caddr_t raddr; /* rounded down addr */ 2169 size_t rsize; /* rounded up size */ 2170 size_t isize; /* iteration size */ 2171 int error = 0; /* result, assume success */ 2172 2173 *sizep = 0; 2174 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2175 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 2176 (size_t)raddr; 2177 2178 if (raddr + rsize < raddr) /* check for wraparound */ 2179 return (ENOMEM); 2180 2181 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2182 seg = as_segat(as, raddr); 2183 if (seg == NULL) { 2184 AS_LOCK_EXIT(as, &as->a_lock); 2185 return (-1); 2186 } 2187 2188 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2189 if (raddr >= seg->s_base + seg->s_size) { 2190 seg = AS_SEGNEXT(as, seg); 2191 if (seg == NULL || raddr != seg->s_base) { 2192 error = -1; 2193 break; 2194 } 2195 } 2196 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2197 ssize = seg->s_base + seg->s_size - raddr; 2198 else 2199 ssize = rsize; 2200 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2201 if (isize != ssize) { 2202 error = -1; 2203 break; 2204 } 2205 vec += btopr(ssize); 2206 } 2207 AS_LOCK_EXIT(as, &as->a_lock); 2208 return (error); 2209 } 2210 2211 static void 2212 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2213 ulong_t *bitmap, size_t position, size_t npages) 2214 { 2215 caddr_t range_start; 2216 size_t pos1 = position; 2217 size_t pos2; 2218 size_t size; 2219 size_t end_pos = npages + position; 2220 2221 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2222 size = ptob((pos2 - pos1)); 2223 range_start = (caddr_t)((uintptr_t)addr + 2224 ptob(pos1 - position)); 2225 2226 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2227 (ulong_t *)NULL, (size_t)NULL); 2228 pos1 = pos2; 2229 } 2230 } 2231 2232 static void 2233 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2234 caddr_t raddr, size_t rsize) 2235 { 2236 struct seg *seg = as_segat(as, raddr); 2237 size_t ssize; 2238 2239 while (rsize != 0) { 2240 if (raddr >= seg->s_base + seg->s_size) 2241 seg = AS_SEGNEXT(as, seg); 2242 2243 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2244 ssize = seg->s_base + seg->s_size - raddr; 2245 else 2246 ssize = rsize; 2247 2248 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2249 2250 rsize -= ssize; 2251 raddr += ssize; 2252 } 2253 } 2254 2255 /* 2256 * Cache control operations over the interval [addr, addr + size) in 2257 * address space "as". 2258 */ 2259 /*ARGSUSED*/ 2260 int 2261 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2262 uintptr_t arg, ulong_t *lock_map, size_t pos) 2263 { 2264 struct seg *seg; /* working segment */ 2265 caddr_t raddr; /* rounded down addr */ 2266 caddr_t initraddr; /* saved initial rounded down addr */ 2267 size_t rsize; /* rounded up size */ 2268 size_t initrsize; /* saved initial rounded up size */ 2269 size_t ssize; /* size of seg */ 2270 int error = 0; /* result */ 2271 size_t mlock_size; /* size of bitmap */ 2272 ulong_t *mlock_map; /* pointer to bitmap used */ 2273 /* to represent the locked */ 2274 /* pages. */ 2275 retry: 2276 if (error == IE_RETRY) 2277 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2278 else 2279 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2280 2281 /* 2282 * If these are address space lock/unlock operations, loop over 2283 * all segments in the address space, as appropriate. 2284 */ 2285 if (func == MC_LOCKAS) { 2286 size_t npages, idx; 2287 size_t rlen = 0; /* rounded as length */ 2288 2289 idx = pos; 2290 2291 if (arg & MCL_FUTURE) { 2292 mutex_enter(&as->a_contents); 2293 AS_SETPGLCK(as); 2294 mutex_exit(&as->a_contents); 2295 } 2296 if ((arg & MCL_CURRENT) == 0) { 2297 AS_LOCK_EXIT(as, &as->a_lock); 2298 return (0); 2299 } 2300 2301 seg = AS_SEGFIRST(as); 2302 if (seg == NULL) { 2303 AS_LOCK_EXIT(as, &as->a_lock); 2304 return (0); 2305 } 2306 2307 do { 2308 raddr = (caddr_t)((uintptr_t)seg->s_base & 2309 (uintptr_t)PAGEMASK); 2310 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2311 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2312 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2313 2314 mlock_size = BT_BITOUL(btopr(rlen)); 2315 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2316 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2317 AS_LOCK_EXIT(as, &as->a_lock); 2318 return (EAGAIN); 2319 } 2320 2321 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2322 error = SEGOP_LOCKOP(seg, seg->s_base, 2323 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2324 if (error != 0) 2325 break; 2326 pos += seg_pages(seg); 2327 } 2328 2329 if (error) { 2330 for (seg = AS_SEGFIRST(as); seg != NULL; 2331 seg = AS_SEGNEXT(as, seg)) { 2332 2333 raddr = (caddr_t)((uintptr_t)seg->s_base & 2334 (uintptr_t)PAGEMASK); 2335 npages = seg_pages(seg); 2336 as_segunlock(seg, raddr, attr, mlock_map, 2337 idx, npages); 2338 idx += npages; 2339 } 2340 } 2341 2342 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2343 AS_LOCK_EXIT(as, &as->a_lock); 2344 goto lockerr; 2345 } else if (func == MC_UNLOCKAS) { 2346 mutex_enter(&as->a_contents); 2347 AS_CLRPGLCK(as); 2348 mutex_exit(&as->a_contents); 2349 2350 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2351 error = SEGOP_LOCKOP(seg, seg->s_base, 2352 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2353 if (error != 0) 2354 break; 2355 } 2356 2357 AS_LOCK_EXIT(as, &as->a_lock); 2358 goto lockerr; 2359 } 2360 2361 /* 2362 * Normalize addresses and sizes. 2363 */ 2364 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2365 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2366 (size_t)raddr; 2367 2368 if (raddr + rsize < raddr) { /* check for wraparound */ 2369 AS_LOCK_EXIT(as, &as->a_lock); 2370 return (ENOMEM); 2371 } 2372 2373 /* 2374 * Get initial segment. 2375 */ 2376 if ((seg = as_segat(as, raddr)) == NULL) { 2377 AS_LOCK_EXIT(as, &as->a_lock); 2378 return (ENOMEM); 2379 } 2380 2381 if (func == MC_LOCK) { 2382 mlock_size = BT_BITOUL(btopr(rsize)); 2383 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2384 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2385 AS_LOCK_EXIT(as, &as->a_lock); 2386 return (EAGAIN); 2387 } 2388 } 2389 2390 /* 2391 * Loop over all segments. If a hole in the address range is 2392 * discovered, then fail. For each segment, perform the appropriate 2393 * control operation. 2394 */ 2395 while (rsize != 0) { 2396 2397 /* 2398 * Make sure there's no hole, calculate the portion 2399 * of the next segment to be operated over. 2400 */ 2401 if (raddr >= seg->s_base + seg->s_size) { 2402 seg = AS_SEGNEXT(as, seg); 2403 if (seg == NULL || raddr != seg->s_base) { 2404 if (func == MC_LOCK) { 2405 as_unlockerr(as, attr, mlock_map, 2406 initraddr, initrsize - rsize); 2407 kmem_free(mlock_map, 2408 mlock_size * sizeof (ulong_t)); 2409 } 2410 AS_LOCK_EXIT(as, &as->a_lock); 2411 return (ENOMEM); 2412 } 2413 } 2414 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2415 ssize = seg->s_base + seg->s_size - raddr; 2416 else 2417 ssize = rsize; 2418 2419 /* 2420 * Dispatch on specific function. 2421 */ 2422 switch (func) { 2423 2424 /* 2425 * Synchronize cached data from mappings with backing 2426 * objects. 2427 */ 2428 case MC_SYNC: 2429 if (error = SEGOP_SYNC(seg, raddr, ssize, 2430 attr, (uint_t)arg)) { 2431 AS_LOCK_EXIT(as, &as->a_lock); 2432 return (error); 2433 } 2434 break; 2435 2436 /* 2437 * Lock pages in memory. 2438 */ 2439 case MC_LOCK: 2440 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2441 attr, func, mlock_map, pos)) { 2442 as_unlockerr(as, attr, mlock_map, initraddr, 2443 initrsize - rsize + ssize); 2444 kmem_free(mlock_map, mlock_size * 2445 sizeof (ulong_t)); 2446 AS_LOCK_EXIT(as, &as->a_lock); 2447 goto lockerr; 2448 } 2449 break; 2450 2451 /* 2452 * Unlock mapped pages. 2453 */ 2454 case MC_UNLOCK: 2455 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2456 (ulong_t *)NULL, (size_t)NULL); 2457 break; 2458 2459 /* 2460 * Store VM advise for mapped pages in segment layer. 2461 */ 2462 case MC_ADVISE: 2463 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2464 2465 /* 2466 * Check for regular errors and special retry error 2467 */ 2468 if (error) { 2469 if (error == IE_RETRY) { 2470 /* 2471 * Need to acquire writers lock, so 2472 * have to drop readers lock and start 2473 * all over again 2474 */ 2475 AS_LOCK_EXIT(as, &as->a_lock); 2476 goto retry; 2477 } else if (error == IE_REATTACH) { 2478 /* 2479 * Find segment for current address 2480 * because current segment just got 2481 * split or concatenated 2482 */ 2483 seg = as_segat(as, raddr); 2484 if (seg == NULL) { 2485 AS_LOCK_EXIT(as, &as->a_lock); 2486 return (ENOMEM); 2487 } 2488 } else { 2489 /* 2490 * Regular error 2491 */ 2492 AS_LOCK_EXIT(as, &as->a_lock); 2493 return (error); 2494 } 2495 } 2496 break; 2497 2498 /* 2499 * Can't happen. 2500 */ 2501 default: 2502 panic("as_ctl: bad operation %d", func); 2503 /*NOTREACHED*/ 2504 } 2505 2506 rsize -= ssize; 2507 raddr += ssize; 2508 } 2509 2510 if (func == MC_LOCK) 2511 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2512 AS_LOCK_EXIT(as, &as->a_lock); 2513 return (0); 2514 lockerr: 2515 2516 /* 2517 * If the lower levels returned EDEADLK for a segment lockop, 2518 * it means that we should retry the operation. Let's wait 2519 * a bit also to let the deadlock causing condition clear. 2520 * This is part of a gross hack to work around a design flaw 2521 * in the ufs/sds logging code and should go away when the 2522 * logging code is re-designed to fix the problem. See bug 2523 * 4125102 for details of the problem. 2524 */ 2525 if (error == EDEADLK) { 2526 delay(deadlk_wait); 2527 error = 0; 2528 goto retry; 2529 } 2530 return (error); 2531 } 2532 2533 /* 2534 * Special code for exec to move the stack segment from its interim 2535 * place in the old address to the right place in the new address space. 2536 */ 2537 /*ARGSUSED*/ 2538 int 2539 as_exec(struct as *oas, caddr_t ostka, size_t stksz, 2540 struct as *nas, caddr_t nstka, uint_t hatflag) 2541 { 2542 struct seg *stkseg; 2543 2544 AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER); 2545 stkseg = as_segat(oas, ostka); 2546 stkseg = as_removeseg(oas, stkseg); 2547 ASSERT(stkseg != NULL); 2548 ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz); 2549 stkseg->s_as = nas; 2550 stkseg->s_base = nstka; 2551 2552 /* 2553 * It's ok to lock the address space we are about to exec to. 2554 */ 2555 AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER); 2556 ASSERT(avl_numnodes(&nas->a_wpage) == 0); 2557 nas->a_size += stkseg->s_size; 2558 oas->a_size -= stkseg->s_size; 2559 (void) as_addseg(nas, stkseg); 2560 AS_LOCK_EXIT(nas, &nas->a_lock); 2561 AS_LOCK_EXIT(oas, &oas->a_lock); 2562 return (0); 2563 } 2564 2565 int 2566 fc_decode(faultcode_t fault_err) 2567 { 2568 int error = 0; 2569 2570 switch (FC_CODE(fault_err)) { 2571 case FC_OBJERR: 2572 error = FC_ERRNO(fault_err); 2573 break; 2574 case FC_PROT: 2575 error = EACCES; 2576 break; 2577 default: 2578 error = EFAULT; 2579 break; 2580 } 2581 return (error); 2582 } 2583 2584 /* 2585 * Pagelock pages from a range that spans more than 1 segment. Obtain shadow 2586 * lists from each segment and copy them to one contiguous shadow list (plist) 2587 * as expected by the caller. Save pointers to per segment shadow lists at 2588 * the tail of plist so that they can be used during as_pageunlock(). 2589 */ 2590 static int 2591 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp, 2592 caddr_t addr, size_t size, enum seg_rw rw) 2593 { 2594 caddr_t sv_addr = addr; 2595 size_t sv_size = size; 2596 struct seg *sv_seg = seg; 2597 ulong_t segcnt = 1; 2598 ulong_t cnt; 2599 size_t ssize; 2600 pgcnt_t npages = btop(size); 2601 page_t **plist; 2602 page_t **pl; 2603 int error; 2604 caddr_t eaddr; 2605 faultcode_t fault_err = 0; 2606 pgcnt_t pl_off; 2607 extern struct seg_ops segspt_shmops; 2608 2609 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 2610 ASSERT(seg != NULL); 2611 ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size); 2612 ASSERT(addr + size > seg->s_base + seg->s_size); 2613 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 2614 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 2615 2616 /* 2617 * Count the number of segments covered by the range we are about to 2618 * lock. The segment count is used to size the shadow list we return 2619 * back to the caller. 2620 */ 2621 for (; size != 0; size -= ssize, addr += ssize) { 2622 if (addr >= seg->s_base + seg->s_size) { 2623 2624 seg = AS_SEGNEXT(as, seg); 2625 if (seg == NULL || addr != seg->s_base) { 2626 AS_LOCK_EXIT(as, &as->a_lock); 2627 return (EFAULT); 2628 } 2629 /* 2630 * Do a quick check if subsequent segments 2631 * will most likely support pagelock. 2632 */ 2633 if (seg->s_ops == &segvn_ops) { 2634 vnode_t *vp; 2635 2636 if (SEGOP_GETVP(seg, addr, &vp) != 0 || 2637 vp != NULL) { 2638 AS_LOCK_EXIT(as, &as->a_lock); 2639 goto slow; 2640 } 2641 } else if (seg->s_ops != &segspt_shmops) { 2642 AS_LOCK_EXIT(as, &as->a_lock); 2643 goto slow; 2644 } 2645 segcnt++; 2646 } 2647 if (addr + size > seg->s_base + seg->s_size) { 2648 ssize = seg->s_base + seg->s_size - addr; 2649 } else { 2650 ssize = size; 2651 } 2652 } 2653 ASSERT(segcnt > 1); 2654 2655 plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP); 2656 2657 addr = sv_addr; 2658 size = sv_size; 2659 seg = sv_seg; 2660 2661 for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) { 2662 if (addr >= seg->s_base + seg->s_size) { 2663 seg = AS_SEGNEXT(as, seg); 2664 ASSERT(seg != NULL && addr == seg->s_base); 2665 cnt++; 2666 ASSERT(cnt < segcnt); 2667 } 2668 if (addr + size > seg->s_base + seg->s_size) { 2669 ssize = seg->s_base + seg->s_size - addr; 2670 } else { 2671 ssize = size; 2672 } 2673 pl = &plist[npages + cnt]; 2674 error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2675 L_PAGELOCK, rw); 2676 if (error) { 2677 break; 2678 } 2679 ASSERT(plist[npages + cnt] != NULL); 2680 ASSERT(pl_off + btop(ssize) <= npages); 2681 bcopy(plist[npages + cnt], &plist[pl_off], 2682 btop(ssize) * sizeof (page_t *)); 2683 pl_off += btop(ssize); 2684 } 2685 2686 if (size == 0) { 2687 AS_LOCK_EXIT(as, &as->a_lock); 2688 ASSERT(cnt == segcnt - 1); 2689 *ppp = plist; 2690 return (0); 2691 } 2692 2693 /* 2694 * one of pagelock calls failed. The error type is in error variable. 2695 * Unlock what we've locked so far and retry with F_SOFTLOCK if error 2696 * type is either EFAULT or ENOTSUP. Otherwise just return the error 2697 * back to the caller. 2698 */ 2699 2700 eaddr = addr; 2701 seg = sv_seg; 2702 2703 for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) { 2704 if (addr >= seg->s_base + seg->s_size) { 2705 seg = AS_SEGNEXT(as, seg); 2706 ASSERT(seg != NULL && addr == seg->s_base); 2707 cnt++; 2708 ASSERT(cnt < segcnt); 2709 } 2710 if (eaddr > seg->s_base + seg->s_size) { 2711 ssize = seg->s_base + seg->s_size - addr; 2712 } else { 2713 ssize = eaddr - addr; 2714 } 2715 pl = &plist[npages + cnt]; 2716 ASSERT(*pl != NULL); 2717 (void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2718 L_PAGEUNLOCK, rw); 2719 } 2720 2721 AS_LOCK_EXIT(as, &as->a_lock); 2722 2723 kmem_free(plist, (npages + segcnt) * sizeof (page_t *)); 2724 2725 if (error != ENOTSUP && error != EFAULT) { 2726 return (error); 2727 } 2728 2729 slow: 2730 /* 2731 * If we are here because pagelock failed due to the need to cow fault 2732 * in the pages we want to lock F_SOFTLOCK will do this job and in 2733 * next as_pagelock() call for this address range pagelock will 2734 * hopefully succeed. 2735 */ 2736 fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw); 2737 if (fault_err != 0) { 2738 return (fc_decode(fault_err)); 2739 } 2740 *ppp = NULL; 2741 2742 return (0); 2743 } 2744 2745 /* 2746 * lock pages in a given address space. Return shadow list. If 2747 * the list is NULL, the MMU mapping is also locked. 2748 */ 2749 int 2750 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2751 size_t size, enum seg_rw rw) 2752 { 2753 size_t rsize; 2754 caddr_t raddr; 2755 faultcode_t fault_err; 2756 struct seg *seg; 2757 int err; 2758 2759 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2760 "as_pagelock_start: addr %p size %ld", addr, size); 2761 2762 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2763 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2764 (size_t)raddr; 2765 2766 /* 2767 * if the request crosses two segments let 2768 * as_fault handle it. 2769 */ 2770 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2771 2772 seg = as_segat(as, raddr); 2773 if (seg == NULL) { 2774 AS_LOCK_EXIT(as, &as->a_lock); 2775 return (EFAULT); 2776 } 2777 ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size); 2778 if (raddr + rsize > seg->s_base + seg->s_size) { 2779 return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw)); 2780 } 2781 if (raddr + rsize <= raddr) { 2782 AS_LOCK_EXIT(as, &as->a_lock); 2783 return (EFAULT); 2784 } 2785 2786 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2787 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2788 2789 /* 2790 * try to lock pages and pass back shadow list 2791 */ 2792 err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2793 2794 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2795 2796 AS_LOCK_EXIT(as, &as->a_lock); 2797 2798 if (err == 0 || (err != ENOTSUP && err != EFAULT)) { 2799 return (err); 2800 } 2801 2802 /* 2803 * Use F_SOFTLOCK to lock the pages because pagelock failed either due 2804 * to no pagelock support for this segment or pages need to be cow 2805 * faulted in. If fault is needed F_SOFTLOCK will do this job for 2806 * this as_pagelock() call and in the next as_pagelock() call for the 2807 * same address range pagelock call will hopefull succeed. 2808 */ 2809 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2810 if (fault_err != 0) { 2811 return (fc_decode(fault_err)); 2812 } 2813 *ppp = NULL; 2814 2815 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2816 return (0); 2817 } 2818 2819 /* 2820 * unlock pages locked by as_pagelock_segs(). Retrieve per segment shadow 2821 * lists from the end of plist and call pageunlock interface for each segment. 2822 * Drop as lock and free plist. 2823 */ 2824 static void 2825 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size, 2826 struct page **plist, enum seg_rw rw) 2827 { 2828 ulong_t cnt; 2829 caddr_t eaddr = addr + size; 2830 pgcnt_t npages = btop(size); 2831 size_t ssize; 2832 page_t **pl; 2833 2834 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 2835 ASSERT(seg != NULL); 2836 ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size); 2837 ASSERT(addr + size > seg->s_base + seg->s_size); 2838 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 2839 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 2840 ASSERT(plist != NULL); 2841 2842 for (cnt = 0; addr < eaddr; addr += ssize) { 2843 if (addr >= seg->s_base + seg->s_size) { 2844 seg = AS_SEGNEXT(as, seg); 2845 ASSERT(seg != NULL && addr == seg->s_base); 2846 cnt++; 2847 } 2848 if (eaddr > seg->s_base + seg->s_size) { 2849 ssize = seg->s_base + seg->s_size - addr; 2850 } else { 2851 ssize = eaddr - addr; 2852 } 2853 pl = &plist[npages + cnt]; 2854 ASSERT(*pl != NULL); 2855 (void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl, 2856 L_PAGEUNLOCK, rw); 2857 } 2858 ASSERT(cnt > 0); 2859 AS_LOCK_EXIT(as, &as->a_lock); 2860 2861 cnt++; 2862 kmem_free(plist, (npages + cnt) * sizeof (page_t *)); 2863 } 2864 2865 /* 2866 * unlock pages in a given address range 2867 */ 2868 void 2869 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2870 enum seg_rw rw) 2871 { 2872 struct seg *seg; 2873 size_t rsize; 2874 caddr_t raddr; 2875 2876 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2877 "as_pageunlock_start: addr %p size %ld", addr, size); 2878 2879 /* 2880 * if the shadow list is NULL, as_pagelock was 2881 * falling back to as_fault 2882 */ 2883 if (pp == NULL) { 2884 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2885 return; 2886 } 2887 2888 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2889 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2890 (size_t)raddr; 2891 2892 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2893 seg = as_segat(as, raddr); 2894 ASSERT(seg != NULL); 2895 2896 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2897 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2898 2899 ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size); 2900 if (raddr + rsize <= seg->s_base + seg->s_size) { 2901 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2902 } else { 2903 as_pageunlock_segs(as, seg, raddr, rsize, pp, rw); 2904 return; 2905 } 2906 AS_LOCK_EXIT(as, &as->a_lock); 2907 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2908 } 2909 2910 int 2911 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2912 boolean_t wait) 2913 { 2914 struct seg *seg; 2915 size_t ssize; 2916 caddr_t raddr; /* rounded down addr */ 2917 size_t rsize; /* rounded up size */ 2918 int error = 0; 2919 size_t pgsz = page_get_pagesize(szc); 2920 2921 setpgsz_top: 2922 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2923 return (EINVAL); 2924 } 2925 2926 raddr = addr; 2927 rsize = size; 2928 2929 if (raddr + rsize < raddr) /* check for wraparound */ 2930 return (ENOMEM); 2931 2932 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2933 as_clearwatchprot(as, raddr, rsize); 2934 seg = as_segat(as, raddr); 2935 if (seg == NULL) { 2936 as_setwatch(as); 2937 AS_LOCK_EXIT(as, &as->a_lock); 2938 return (ENOMEM); 2939 } 2940 2941 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2942 if (raddr >= seg->s_base + seg->s_size) { 2943 seg = AS_SEGNEXT(as, seg); 2944 if (seg == NULL || raddr != seg->s_base) { 2945 error = ENOMEM; 2946 break; 2947 } 2948 } 2949 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2950 ssize = seg->s_base + seg->s_size - raddr; 2951 } else { 2952 ssize = rsize; 2953 } 2954 2955 retry: 2956 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2957 2958 if (error == IE_NOMEM) { 2959 error = EAGAIN; 2960 break; 2961 } 2962 2963 if (error == IE_RETRY) { 2964 AS_LOCK_EXIT(as, &as->a_lock); 2965 goto setpgsz_top; 2966 } 2967 2968 if (error == ENOTSUP) { 2969 error = EINVAL; 2970 break; 2971 } 2972 2973 if (wait && (error == EAGAIN)) { 2974 /* 2975 * Memory is currently locked. It must be unlocked 2976 * before this operation can succeed through a retry. 2977 * The possible reasons for locked memory and 2978 * corresponding strategies for unlocking are: 2979 * (1) Normal I/O 2980 * wait for a signal that the I/O operation 2981 * has completed and the memory is unlocked. 2982 * (2) Asynchronous I/O 2983 * The aio subsystem does not unlock pages when 2984 * the I/O is completed. Those pages are unlocked 2985 * when the application calls aiowait/aioerror. 2986 * So, to prevent blocking forever, cv_broadcast() 2987 * is done to wake up aio_cleanup_thread. 2988 * Subsequently, segvn_reclaim will be called, and 2989 * that will do AS_CLRUNMAPWAIT() and wake us up. 2990 * (3) Long term page locking: 2991 * This is not relevant for as_setpagesize() 2992 * because we cannot change the page size for 2993 * driver memory. The attempt to do so will 2994 * fail with a different error than EAGAIN so 2995 * there's no need to trigger as callbacks like 2996 * as_unmap, as_setprot or as_free would do. 2997 */ 2998 mutex_enter(&as->a_contents); 2999 if (!AS_ISNOUNMAPWAIT(as)) { 3000 if (AS_ISUNMAPWAIT(as) == 0) { 3001 cv_broadcast(&as->a_cv); 3002 } 3003 AS_SETUNMAPWAIT(as); 3004 AS_LOCK_EXIT(as, &as->a_lock); 3005 while (AS_ISUNMAPWAIT(as)) { 3006 cv_wait(&as->a_cv, &as->a_contents); 3007 } 3008 } else { 3009 /* 3010 * We may have raced with 3011 * segvn_reclaim()/segspt_reclaim(). In this 3012 * case clean nounmapwait flag and retry since 3013 * softlockcnt in this segment may be already 3014 * 0. We don't drop as writer lock so our 3015 * number of retries without sleeping should 3016 * be very small. See segvn_reclaim() for 3017 * more comments. 3018 */ 3019 AS_CLRNOUNMAPWAIT(as); 3020 mutex_exit(&as->a_contents); 3021 goto retry; 3022 } 3023 mutex_exit(&as->a_contents); 3024 goto setpgsz_top; 3025 } else if (error != 0) { 3026 break; 3027 } 3028 } 3029 as_setwatch(as); 3030 AS_LOCK_EXIT(as, &as->a_lock); 3031 return (error); 3032 } 3033 3034 /* 3035 * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments 3036 * in its chunk where s_szc is less than the szc we want to set. 3037 */ 3038 static int 3039 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 3040 int *retry) 3041 { 3042 struct seg *seg; 3043 size_t ssize; 3044 int error; 3045 3046 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3047 3048 seg = as_segat(as, raddr); 3049 if (seg == NULL) { 3050 panic("as_iset3_default_lpsize: no seg"); 3051 } 3052 3053 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 3054 if (raddr >= seg->s_base + seg->s_size) { 3055 seg = AS_SEGNEXT(as, seg); 3056 if (seg == NULL || raddr != seg->s_base) { 3057 panic("as_iset3_default_lpsize: as changed"); 3058 } 3059 } 3060 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3061 ssize = seg->s_base + seg->s_size - raddr; 3062 } else { 3063 ssize = rsize; 3064 } 3065 3066 if (szc > seg->s_szc) { 3067 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 3068 /* Only retry on EINVAL segments that have no vnode. */ 3069 if (error == EINVAL) { 3070 vnode_t *vp = NULL; 3071 if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) && 3072 (SEGOP_GETVP(seg, raddr, &vp) != 0 || 3073 vp == NULL)) { 3074 *retry = 1; 3075 } else { 3076 *retry = 0; 3077 } 3078 } 3079 if (error) { 3080 return (error); 3081 } 3082 } 3083 } 3084 return (0); 3085 } 3086 3087 /* 3088 * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the 3089 * pagesize on each segment in its range, but if any fails with EINVAL, 3090 * then it reduces the pagesizes to the next size in the bitmap and 3091 * retries as_iset3_default_lpsize(). The reason why the code retries 3092 * smaller allowed sizes on EINVAL is because (a) the anon offset may not 3093 * match the bigger sizes, and (b) it's hard to get this offset (to begin 3094 * with) to pass to map_pgszcvec(). 3095 */ 3096 static int 3097 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc, 3098 uint_t szcvec) 3099 { 3100 int error; 3101 int retry; 3102 3103 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3104 3105 for (;;) { 3106 error = as_iset3_default_lpsize(as, addr, size, szc, &retry); 3107 if (error == EINVAL && retry) { 3108 szcvec &= ~(1 << szc); 3109 if (szcvec <= 1) { 3110 return (EINVAL); 3111 } 3112 szc = highbit(szcvec) - 1; 3113 } else { 3114 return (error); 3115 } 3116 } 3117 } 3118 3119 /* 3120 * as_iset1_default_lpsize() breaks its chunk into areas where existing 3121 * segments have a smaller szc than we want to set. For each such area, 3122 * it calls as_iset2_default_lpsize() 3123 */ 3124 static int 3125 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc, 3126 uint_t szcvec) 3127 { 3128 struct seg *seg; 3129 size_t ssize; 3130 caddr_t setaddr = raddr; 3131 size_t setsize = 0; 3132 int set; 3133 int error; 3134 3135 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3136 3137 seg = as_segat(as, raddr); 3138 if (seg == NULL) { 3139 panic("as_iset1_default_lpsize: no seg"); 3140 } 3141 if (seg->s_szc < szc) { 3142 set = 1; 3143 } else { 3144 set = 0; 3145 } 3146 3147 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 3148 if (raddr >= seg->s_base + seg->s_size) { 3149 seg = AS_SEGNEXT(as, seg); 3150 if (seg == NULL || raddr != seg->s_base) { 3151 panic("as_iset1_default_lpsize: as changed"); 3152 } 3153 if (seg->s_szc >= szc && set) { 3154 ASSERT(setsize != 0); 3155 error = as_iset2_default_lpsize(as, 3156 setaddr, setsize, szc, szcvec); 3157 if (error) { 3158 return (error); 3159 } 3160 set = 0; 3161 } else if (seg->s_szc < szc && !set) { 3162 setaddr = raddr; 3163 setsize = 0; 3164 set = 1; 3165 } 3166 } 3167 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3168 ssize = seg->s_base + seg->s_size - raddr; 3169 } else { 3170 ssize = rsize; 3171 } 3172 } 3173 error = 0; 3174 if (set) { 3175 ASSERT(setsize != 0); 3176 error = as_iset2_default_lpsize(as, setaddr, setsize, 3177 szc, szcvec); 3178 } 3179 return (error); 3180 } 3181 3182 /* 3183 * as_iset_default_lpsize() breaks its chunk according to the size code bitmap 3184 * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each 3185 * chunk to as_iset1_default_lpsize(). 3186 */ 3187 static int 3188 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags, 3189 int type) 3190 { 3191 int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM; 3192 uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, 3193 flags, rtype, 1); 3194 uint_t szc; 3195 uint_t nszc; 3196 int error; 3197 caddr_t a; 3198 caddr_t eaddr; 3199 size_t segsize; 3200 size_t pgsz; 3201 uint_t save_szcvec; 3202 3203 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3204 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 3205 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 3206 3207 szcvec &= ~1; 3208 if (szcvec <= 1) { /* skip if base page size */ 3209 return (0); 3210 } 3211 3212 /* Get the pagesize of the first larger page size. */ 3213 szc = lowbit(szcvec) - 1; 3214 pgsz = page_get_pagesize(szc); 3215 eaddr = addr + size; 3216 addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 3217 eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 3218 3219 save_szcvec = szcvec; 3220 szcvec >>= (szc + 1); 3221 nszc = szc; 3222 while (szcvec) { 3223 if ((szcvec & 0x1) == 0) { 3224 nszc++; 3225 szcvec >>= 1; 3226 continue; 3227 } 3228 nszc++; 3229 pgsz = page_get_pagesize(nszc); 3230 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 3231 if (a != addr) { 3232 ASSERT(szc > 0); 3233 ASSERT(a < eaddr); 3234 segsize = a - addr; 3235 error = as_iset1_default_lpsize(as, addr, segsize, szc, 3236 save_szcvec); 3237 if (error) { 3238 return (error); 3239 } 3240 addr = a; 3241 } 3242 szc = nszc; 3243 szcvec >>= 1; 3244 } 3245 3246 ASSERT(addr < eaddr); 3247 szcvec = save_szcvec; 3248 while (szcvec) { 3249 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 3250 ASSERT(a >= addr); 3251 if (a != addr) { 3252 ASSERT(szc > 0); 3253 segsize = a - addr; 3254 error = as_iset1_default_lpsize(as, addr, segsize, szc, 3255 save_szcvec); 3256 if (error) { 3257 return (error); 3258 } 3259 addr = a; 3260 } 3261 szcvec &= ~(1 << szc); 3262 if (szcvec) { 3263 szc = highbit(szcvec) - 1; 3264 pgsz = page_get_pagesize(szc); 3265 } 3266 } 3267 ASSERT(addr == eaddr); 3268 3269 return (0); 3270 } 3271 3272 /* 3273 * Set the default large page size for the range. Called via memcntl with 3274 * page size set to 0. as_set_default_lpsize breaks the range down into 3275 * chunks with the same type/flags, ignores-non segvn segments, and passes 3276 * each chunk to as_iset_default_lpsize(). 3277 */ 3278 int 3279 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size) 3280 { 3281 struct seg *seg; 3282 caddr_t raddr; 3283 size_t rsize; 3284 size_t ssize; 3285 int rtype, rflags; 3286 int stype, sflags; 3287 int error; 3288 caddr_t setaddr; 3289 size_t setsize; 3290 int segvn; 3291 3292 if (size == 0) 3293 return (0); 3294 3295 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3296 again: 3297 error = 0; 3298 3299 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3300 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 3301 (size_t)raddr; 3302 3303 if (raddr + rsize < raddr) { /* check for wraparound */ 3304 AS_LOCK_EXIT(as, &as->a_lock); 3305 return (ENOMEM); 3306 } 3307 as_clearwatchprot(as, raddr, rsize); 3308 seg = as_segat(as, raddr); 3309 if (seg == NULL) { 3310 as_setwatch(as); 3311 AS_LOCK_EXIT(as, &as->a_lock); 3312 return (ENOMEM); 3313 } 3314 if (seg->s_ops == &segvn_ops) { 3315 rtype = SEGOP_GETTYPE(seg, addr); 3316 rflags = rtype & (MAP_TEXT | MAP_INITDATA); 3317 rtype = rtype & (MAP_SHARED | MAP_PRIVATE); 3318 segvn = 1; 3319 } else { 3320 segvn = 0; 3321 } 3322 setaddr = raddr; 3323 setsize = 0; 3324 3325 for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) { 3326 if (raddr >= (seg->s_base + seg->s_size)) { 3327 seg = AS_SEGNEXT(as, seg); 3328 if (seg == NULL || raddr != seg->s_base) { 3329 error = ENOMEM; 3330 break; 3331 } 3332 if (seg->s_ops == &segvn_ops) { 3333 stype = SEGOP_GETTYPE(seg, raddr); 3334 sflags = stype & (MAP_TEXT | MAP_INITDATA); 3335 stype &= (MAP_SHARED | MAP_PRIVATE); 3336 if (segvn && (rflags != sflags || 3337 rtype != stype)) { 3338 /* 3339 * The next segment is also segvn but 3340 * has different flags and/or type. 3341 */ 3342 ASSERT(setsize != 0); 3343 error = as_iset_default_lpsize(as, 3344 setaddr, setsize, rflags, rtype); 3345 if (error) { 3346 break; 3347 } 3348 rflags = sflags; 3349 rtype = stype; 3350 setaddr = raddr; 3351 setsize = 0; 3352 } else if (!segvn) { 3353 rflags = sflags; 3354 rtype = stype; 3355 setaddr = raddr; 3356 setsize = 0; 3357 segvn = 1; 3358 } 3359 } else if (segvn) { 3360 /* The next segment is not segvn. */ 3361 ASSERT(setsize != 0); 3362 error = as_iset_default_lpsize(as, 3363 setaddr, setsize, rflags, rtype); 3364 if (error) { 3365 break; 3366 } 3367 segvn = 0; 3368 } 3369 } 3370 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 3371 ssize = seg->s_base + seg->s_size - raddr; 3372 } else { 3373 ssize = rsize; 3374 } 3375 } 3376 if (error == 0 && segvn) { 3377 /* The last chunk when rsize == 0. */ 3378 ASSERT(setsize != 0); 3379 error = as_iset_default_lpsize(as, setaddr, setsize, 3380 rflags, rtype); 3381 } 3382 3383 if (error == IE_RETRY) { 3384 goto again; 3385 } else if (error == IE_NOMEM) { 3386 error = EAGAIN; 3387 } else if (error == ENOTSUP) { 3388 error = EINVAL; 3389 } else if (error == EAGAIN) { 3390 mutex_enter(&as->a_contents); 3391 if (!AS_ISNOUNMAPWAIT(as)) { 3392 if (AS_ISUNMAPWAIT(as) == 0) { 3393 cv_broadcast(&as->a_cv); 3394 } 3395 AS_SETUNMAPWAIT(as); 3396 AS_LOCK_EXIT(as, &as->a_lock); 3397 while (AS_ISUNMAPWAIT(as)) { 3398 cv_wait(&as->a_cv, &as->a_contents); 3399 } 3400 mutex_exit(&as->a_contents); 3401 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 3402 } else { 3403 /* 3404 * We may have raced with 3405 * segvn_reclaim()/segspt_reclaim(). In this case 3406 * clean nounmapwait flag and retry since softlockcnt 3407 * in this segment may be already 0. We don't drop as 3408 * writer lock so our number of retries without 3409 * sleeping should be very small. See segvn_reclaim() 3410 * for more comments. 3411 */ 3412 AS_CLRNOUNMAPWAIT(as); 3413 mutex_exit(&as->a_contents); 3414 } 3415 goto again; 3416 } 3417 3418 as_setwatch(as); 3419 AS_LOCK_EXIT(as, &as->a_lock); 3420 return (error); 3421 } 3422 3423 /* 3424 * Setup all of the uninitialized watched pages that we can. 3425 */ 3426 void 3427 as_setwatch(struct as *as) 3428 { 3429 struct watched_page *pwp; 3430 struct seg *seg; 3431 caddr_t vaddr; 3432 uint_t prot; 3433 int err, retrycnt; 3434 3435 if (avl_numnodes(&as->a_wpage) == 0) 3436 return; 3437 3438 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3439 3440 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3441 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3442 retrycnt = 0; 3443 retry: 3444 vaddr = pwp->wp_vaddr; 3445 if (pwp->wp_oprot != 0 || /* already set up */ 3446 (seg = as_segat(as, vaddr)) == NULL || 3447 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 3448 continue; 3449 3450 pwp->wp_oprot = prot; 3451 if (pwp->wp_read) 3452 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3453 if (pwp->wp_write) 3454 prot &= ~PROT_WRITE; 3455 if (pwp->wp_exec) 3456 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3457 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 3458 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3459 if (err == IE_RETRY) { 3460 pwp->wp_oprot = 0; 3461 ASSERT(retrycnt == 0); 3462 retrycnt++; 3463 goto retry; 3464 } 3465 } 3466 pwp->wp_prot = prot; 3467 } 3468 } 3469 3470 /* 3471 * Clear all of the watched pages in the address space. 3472 */ 3473 void 3474 as_clearwatch(struct as *as) 3475 { 3476 struct watched_page *pwp; 3477 struct seg *seg; 3478 caddr_t vaddr; 3479 uint_t prot; 3480 int err, retrycnt; 3481 3482 if (avl_numnodes(&as->a_wpage) == 0) 3483 return; 3484 3485 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3486 3487 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 3488 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 3489 retrycnt = 0; 3490 retry: 3491 vaddr = pwp->wp_vaddr; 3492 if (pwp->wp_oprot == 0 || /* not set up */ 3493 (seg = as_segat(as, vaddr)) == NULL) 3494 continue; 3495 3496 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 3497 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 3498 if (err == IE_RETRY) { 3499 ASSERT(retrycnt == 0); 3500 retrycnt++; 3501 goto retry; 3502 } 3503 } 3504 pwp->wp_oprot = 0; 3505 pwp->wp_prot = 0; 3506 } 3507 } 3508 3509 /* 3510 * Force a new setup for all the watched pages in the range. 3511 */ 3512 static void 3513 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 3514 { 3515 struct watched_page *pwp; 3516 struct watched_page tpw; 3517 caddr_t eaddr = addr + size; 3518 caddr_t vaddr; 3519 struct seg *seg; 3520 int err, retrycnt; 3521 uint_t wprot; 3522 avl_index_t where; 3523 3524 if (avl_numnodes(&as->a_wpage) == 0) 3525 return; 3526 3527 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3528 3529 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3530 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3531 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3532 3533 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3534 retrycnt = 0; 3535 vaddr = pwp->wp_vaddr; 3536 3537 wprot = prot; 3538 if (pwp->wp_read) 3539 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3540 if (pwp->wp_write) 3541 wprot &= ~PROT_WRITE; 3542 if (pwp->wp_exec) 3543 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 3544 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 3545 retry: 3546 seg = as_segat(as, vaddr); 3547 if (seg == NULL) { 3548 panic("as_setwatchprot: no seg"); 3549 /*NOTREACHED*/ 3550 } 3551 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 3552 if (err == IE_RETRY) { 3553 ASSERT(retrycnt == 0); 3554 retrycnt++; 3555 goto retry; 3556 } 3557 } 3558 pwp->wp_oprot = prot; 3559 pwp->wp_prot = wprot; 3560 3561 pwp = AVL_NEXT(&as->a_wpage, pwp); 3562 } 3563 } 3564 3565 /* 3566 * Clear all of the watched pages in the range. 3567 */ 3568 static void 3569 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 3570 { 3571 caddr_t eaddr = addr + size; 3572 struct watched_page *pwp; 3573 struct watched_page tpw; 3574 uint_t prot; 3575 struct seg *seg; 3576 int err, retrycnt; 3577 avl_index_t where; 3578 3579 if (avl_numnodes(&as->a_wpage) == 0) 3580 return; 3581 3582 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 3583 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 3584 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 3585 3586 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 3587 3588 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 3589 3590 if ((prot = pwp->wp_oprot) != 0) { 3591 retrycnt = 0; 3592 3593 if (prot != pwp->wp_prot) { 3594 retry: 3595 seg = as_segat(as, pwp->wp_vaddr); 3596 if (seg == NULL) 3597 continue; 3598 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 3599 PAGESIZE, prot); 3600 if (err == IE_RETRY) { 3601 ASSERT(retrycnt == 0); 3602 retrycnt++; 3603 goto retry; 3604 3605 } 3606 } 3607 pwp->wp_oprot = 0; 3608 pwp->wp_prot = 0; 3609 } 3610 3611 pwp = AVL_NEXT(&as->a_wpage, pwp); 3612 } 3613 } 3614 3615 void 3616 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 3617 { 3618 struct proc *p; 3619 3620 mutex_enter(&pidlock); 3621 for (p = practive; p; p = p->p_next) { 3622 if (p->p_as == as) { 3623 mutex_enter(&p->p_lock); 3624 if (p->p_as == as) 3625 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 3626 mutex_exit(&p->p_lock); 3627 } 3628 } 3629 mutex_exit(&pidlock); 3630 } 3631 3632 /* 3633 * return memory object ID 3634 */ 3635 int 3636 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 3637 { 3638 struct seg *seg; 3639 int sts; 3640 3641 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 3642 seg = as_segat(as, addr); 3643 if (seg == NULL) { 3644 AS_LOCK_EXIT(as, &as->a_lock); 3645 return (EFAULT); 3646 } 3647 /* 3648 * catch old drivers which may not support getmemid 3649 */ 3650 if (seg->s_ops->getmemid == NULL) { 3651 AS_LOCK_EXIT(as, &as->a_lock); 3652 return (ENODEV); 3653 } 3654 3655 sts = SEGOP_GETMEMID(seg, addr, memidp); 3656 3657 AS_LOCK_EXIT(as, &as->a_lock); 3658 return (sts); 3659 } 3660