1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 /* 43 * VM - address spaces. 44 */ 45 46 #include <sys/types.h> 47 #include <sys/t_lock.h> 48 #include <sys/param.h> 49 #include <sys/errno.h> 50 #include <sys/systm.h> 51 #include <sys/mman.h> 52 #include <sys/sysmacros.h> 53 #include <sys/cpuvar.h> 54 #include <sys/sysinfo.h> 55 #include <sys/kmem.h> 56 #include <sys/vnode.h> 57 #include <sys/vmsystm.h> 58 #include <sys/cmn_err.h> 59 #include <sys/debug.h> 60 #include <sys/tnf_probe.h> 61 #include <sys/vtrace.h> 62 63 #include <vm/hat.h> 64 #include <vm/xhat.h> 65 #include <vm/as.h> 66 #include <vm/seg.h> 67 #include <vm/seg_vn.h> 68 #include <vm/seg_dev.h> 69 #include <vm/seg_kmem.h> 70 #include <vm/seg_map.h> 71 #include <vm/seg_spt.h> 72 #include <vm/page.h> 73 74 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */ 75 76 static struct kmem_cache *as_cache; 77 78 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t); 79 static void as_clearwatchprot(struct as *, caddr_t, size_t); 80 81 82 /* 83 * Verifying the segment lists is very time-consuming; it may not be 84 * desirable always to define VERIFY_SEGLIST when DEBUG is set. 85 */ 86 #ifdef DEBUG 87 #define VERIFY_SEGLIST 88 int do_as_verify = 0; 89 #endif 90 91 /* 92 * Allocate a new callback data structure entry and fill in the events of 93 * interest, the address range of interest, and the callback argument. 94 * Link the entry on the as->a_callbacks list. A callback entry for the 95 * entire address space may be specified with vaddr = 0 and size = -1. 96 * 97 * CALLERS RESPONSIBILITY: If not calling from within the process context for 98 * the specified as, the caller must guarantee persistence of the specified as 99 * for the duration of this function (eg. pages being locked within the as 100 * will guarantee persistence). 101 */ 102 int 103 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events, 104 caddr_t vaddr, size_t size, int sleepflag) 105 { 106 struct as_callback *current_head, *cb; 107 caddr_t saddr; 108 size_t rsize; 109 110 /* callback function and an event are mandatory */ 111 if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0)) 112 return (EINVAL); 113 114 /* Adding a callback after as_free has been called is not allowed */ 115 if (as == &kas) 116 return (ENOMEM); 117 118 /* 119 * vaddr = 0 and size = -1 is used to indicate that the callback range 120 * is the entire address space so no rounding is done in that case. 121 */ 122 if (size != -1) { 123 saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 124 rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) - 125 (size_t)saddr; 126 /* check for wraparound */ 127 if (saddr + rsize < saddr) 128 return (ENOMEM); 129 } else { 130 if (vaddr != 0) 131 return (EINVAL); 132 saddr = vaddr; 133 rsize = size; 134 } 135 136 /* Allocate and initialize a callback entry */ 137 cb = kmem_zalloc(sizeof (struct as_callback), sleepflag); 138 if (cb == NULL) 139 return (EAGAIN); 140 141 cb->ascb_func = cb_func; 142 cb->ascb_arg = arg; 143 cb->ascb_events = events; 144 cb->ascb_saddr = saddr; 145 cb->ascb_len = rsize; 146 147 /* Add the entry to the list */ 148 mutex_enter(&as->a_contents); 149 current_head = as->a_callbacks; 150 as->a_callbacks = cb; 151 cb->ascb_next = current_head; 152 153 /* 154 * The call to this function may lose in a race with 155 * a pertinent event - eg. a thread does long term memory locking 156 * but before the callback is added another thread executes as_unmap. 157 * A broadcast here resolves that. 158 */ 159 if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) { 160 AS_CLRUNMAPWAIT(as); 161 cv_broadcast(&as->a_cv); 162 } 163 164 mutex_exit(&as->a_contents); 165 return (0); 166 } 167 168 /* 169 * Search the callback list for an entry which pertains to arg. 170 * 171 * This is called from within the client upon completion of the callback. 172 * RETURN VALUES: 173 * AS_CALLBACK_DELETED (callback entry found and deleted) 174 * AS_CALLBACK_NOTFOUND (no callback entry found - this is ok) 175 * AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this 176 * entry will be made in as_do_callbacks) 177 * 178 * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED 179 * set, it indicates that as_do_callbacks is processing this entry. The 180 * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made 181 * to unblock as_do_callbacks, in case it is blocked. 182 * 183 * CALLERS RESPONSIBILITY: If not calling from within the process context for 184 * the specified as, the caller must guarantee persistence of the specified as 185 * for the duration of this function (eg. pages being locked within the as 186 * will guarantee persistence). 187 */ 188 uint_t 189 as_delete_callback(struct as *as, void *arg) 190 { 191 struct as_callback **prevcb = &as->a_callbacks; 192 struct as_callback *cb; 193 uint_t rc = AS_CALLBACK_NOTFOUND; 194 195 mutex_enter(&as->a_contents); 196 for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) { 197 if (cb->ascb_arg != arg) 198 continue; 199 200 /* 201 * If the events indicate AS_CALLBACK_CALLED, just clear 202 * AS_ALL_EVENT in the events field and wakeup the thread 203 * that may be waiting in as_do_callbacks. as_do_callbacks 204 * will take care of removing this entry from the list. In 205 * that case, return AS_CALLBACK_DELETE_DEFERRED. Otherwise 206 * (AS_CALLBACK_CALLED not set), just remove it from the 207 * list, return the memory and return AS_CALLBACK_DELETED. 208 */ 209 if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) { 210 /* leave AS_CALLBACK_CALLED */ 211 cb->ascb_events &= ~AS_ALL_EVENT; 212 rc = AS_CALLBACK_DELETE_DEFERRED; 213 cv_broadcast(&as->a_cv); 214 } else { 215 *prevcb = cb->ascb_next; 216 kmem_free(cb, sizeof (struct as_callback)); 217 rc = AS_CALLBACK_DELETED; 218 } 219 break; 220 } 221 mutex_exit(&as->a_contents); 222 return (rc); 223 } 224 225 /* 226 * Searches the as callback list for a matching entry. 227 * Returns a pointer to the first matching callback, or NULL if 228 * nothing is found. 229 * This function never sleeps so it is ok to call it with more 230 * locks held but the (required) a_contents mutex. 231 * 232 * See also comment on as_do_callbacks below. 233 */ 234 static struct as_callback * 235 as_find_callback(struct as *as, uint_t events, caddr_t event_addr, 236 size_t event_len) 237 { 238 struct as_callback *cb; 239 240 ASSERT(MUTEX_HELD(&as->a_contents)); 241 for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) { 242 /* 243 * If the callback has not already been called, then 244 * check if events or address range pertains. An event_len 245 * of zero means do an unconditional callback. 246 */ 247 if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) || 248 ((event_len != 0) && (((cb->ascb_events & events) == 0) || 249 (event_addr + event_len < cb->ascb_saddr) || 250 (event_addr > (cb->ascb_saddr + cb->ascb_len))))) { 251 continue; 252 } 253 break; 254 } 255 return (cb); 256 } 257 258 /* 259 * Executes a given callback and removes it from the callback list for 260 * this address space. 261 * This function may sleep so the caller must drop all locks except 262 * a_contents before calling this func. 263 * 264 * See also comments on as_do_callbacks below. 265 */ 266 static void 267 as_execute_callback(struct as *as, struct as_callback *cb, 268 uint_t events) 269 { 270 struct as_callback **prevcb; 271 void *cb_arg; 272 273 ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events)); 274 cb->ascb_events |= AS_CALLBACK_CALLED; 275 mutex_exit(&as->a_contents); 276 (*cb->ascb_func)(as, cb->ascb_arg, events); 277 mutex_enter(&as->a_contents); 278 /* 279 * the callback function is required to delete the callback 280 * when the callback function determines it is OK for 281 * this thread to continue. as_delete_callback will clear 282 * the AS_ALL_EVENT in the events field when it is deleted. 283 * If the callback function called as_delete_callback, 284 * events will already be cleared and there will be no blocking. 285 */ 286 while ((cb->ascb_events & events) != 0) { 287 cv_wait(&as->a_cv, &as->a_contents); 288 } 289 /* 290 * This entry needs to be taken off the list. Normally, the 291 * callback func itself does that, but unfortunately the list 292 * may have changed while the callback was running because the 293 * a_contents mutex was dropped and someone else other than the 294 * callback func itself could have called as_delete_callback, 295 * so we have to search to find this entry again. The entry 296 * must have AS_CALLBACK_CALLED, and have the same 'arg'. 297 */ 298 cb_arg = cb->ascb_arg; 299 prevcb = &as->a_callbacks; 300 for (cb = as->a_callbacks; cb != NULL; 301 prevcb = &cb->ascb_next, cb = *prevcb) { 302 if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) || 303 (cb_arg != cb->ascb_arg)) { 304 continue; 305 } 306 *prevcb = cb->ascb_next; 307 kmem_free(cb, sizeof (struct as_callback)); 308 break; 309 } 310 } 311 312 /* 313 * Check the callback list for a matching event and intersection of 314 * address range. If there is a match invoke the callback. Skip an entry if: 315 * - a callback is already in progress for this entry (AS_CALLBACK_CALLED) 316 * - not event of interest 317 * - not address range of interest 318 * 319 * An event_len of zero indicates a request for an unconditional callback 320 * (regardless of event), only the AS_CALLBACK_CALLED is checked. The 321 * a_contents lock must be dropped before a callback, so only one callback 322 * can be done before returning. Return -1 (true) if a callback was 323 * executed and removed from the list, else return 0 (false). 324 * 325 * The logically separate parts, i.e. finding a matching callback and 326 * executing a given callback have been separated into two functions 327 * so that they can be called with different sets of locks held beyond 328 * the always-required a_contents. as_find_callback does not sleep so 329 * it is ok to call it if more locks than a_contents (i.e. the a_lock 330 * rwlock) are held. as_execute_callback on the other hand may sleep 331 * so all locks beyond a_contents must be dropped by the caller if one 332 * does not want to end comatose. 333 */ 334 static int 335 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr, 336 size_t event_len) 337 { 338 struct as_callback *cb; 339 340 if ((cb = as_find_callback(as, events, event_addr, event_len))) { 341 as_execute_callback(as, cb, events); 342 return (-1); 343 } 344 return (0); 345 } 346 347 /* 348 * Search for the segment containing addr. If a segment containing addr 349 * exists, that segment is returned. If no such segment exists, and 350 * the list spans addresses greater than addr, then the first segment 351 * whose base is greater than addr is returned; otherwise, NULL is 352 * returned unless tail is true, in which case the last element of the 353 * list is returned. 354 * 355 * a_seglast is used to cache the last found segment for repeated 356 * searches to the same addr (which happens frequently). 357 */ 358 struct seg * 359 as_findseg(struct as *as, caddr_t addr, int tail) 360 { 361 struct seg *seg = as->a_seglast; 362 avl_index_t where; 363 364 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 365 366 if (seg != NULL && 367 seg->s_base <= addr && 368 addr < seg->s_base + seg->s_size) 369 return (seg); 370 371 seg = avl_find(&as->a_segtree, &addr, &where); 372 if (seg != NULL) 373 return (as->a_seglast = seg); 374 375 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 376 if (seg == NULL && tail) 377 seg = avl_last(&as->a_segtree); 378 return (as->a_seglast = seg); 379 } 380 381 #ifdef VERIFY_SEGLIST 382 /* 383 * verify that the linked list is coherent 384 */ 385 static void 386 as_verify(struct as *as) 387 { 388 struct seg *seg, *seglast, *p, *n; 389 uint_t nsegs = 0; 390 391 if (do_as_verify == 0) 392 return; 393 394 seglast = as->a_seglast; 395 396 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 397 ASSERT(seg->s_as == as); 398 p = AS_SEGPREV(as, seg); 399 n = AS_SEGNEXT(as, seg); 400 ASSERT(p == NULL || p->s_as == as); 401 ASSERT(p == NULL || p->s_base < seg->s_base); 402 ASSERT(n == NULL || n->s_base > seg->s_base); 403 ASSERT(n != NULL || seg == avl_last(&as->a_segtree)); 404 if (seg == seglast) 405 seglast = NULL; 406 nsegs++; 407 } 408 ASSERT(seglast == NULL); 409 ASSERT(avl_numnodes(&as->a_segtree) == nsegs); 410 } 411 #endif /* VERIFY_SEGLIST */ 412 413 /* 414 * Add a new segment to the address space. The avl_find() 415 * may be expensive so we attempt to use last segment accessed 416 * in as_gap() as an insertion point. 417 */ 418 int 419 as_addseg(struct as *as, struct seg *newseg) 420 { 421 struct seg *seg; 422 caddr_t addr; 423 caddr_t eaddr; 424 avl_index_t where; 425 426 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 427 428 as->a_updatedir = 1; /* inform /proc */ 429 gethrestime(&as->a_updatetime); 430 431 if (as->a_lastgaphl != NULL) { 432 struct seg *hseg = NULL; 433 struct seg *lseg = NULL; 434 435 if (as->a_lastgaphl->s_base > newseg->s_base) { 436 hseg = as->a_lastgaphl; 437 lseg = AVL_PREV(&as->a_segtree, hseg); 438 } else { 439 lseg = as->a_lastgaphl; 440 hseg = AVL_NEXT(&as->a_segtree, lseg); 441 } 442 443 if (hseg && lseg && lseg->s_base < newseg->s_base && 444 hseg->s_base > newseg->s_base) { 445 avl_insert_here(&as->a_segtree, newseg, lseg, 446 AVL_AFTER); 447 as->a_lastgaphl = NULL; 448 as->a_seglast = newseg; 449 return (0); 450 } 451 as->a_lastgaphl = NULL; 452 } 453 454 addr = newseg->s_base; 455 eaddr = addr + newseg->s_size; 456 again: 457 458 seg = avl_find(&as->a_segtree, &addr, &where); 459 460 if (seg == NULL) 461 seg = avl_nearest(&as->a_segtree, where, AVL_AFTER); 462 463 if (seg == NULL) 464 seg = avl_last(&as->a_segtree); 465 466 if (seg != NULL) { 467 caddr_t base = seg->s_base; 468 469 /* 470 * If top of seg is below the requested address, then 471 * the insertion point is at the end of the linked list, 472 * and seg points to the tail of the list. Otherwise, 473 * the insertion point is immediately before seg. 474 */ 475 if (base + seg->s_size > addr) { 476 if (addr >= base || eaddr > base) { 477 #ifdef __sparc 478 extern struct seg_ops segnf_ops; 479 480 /* 481 * no-fault segs must disappear if overlaid. 482 * XXX need new segment type so 483 * we don't have to check s_ops 484 */ 485 if (seg->s_ops == &segnf_ops) { 486 seg_unmap(seg); 487 goto again; 488 } 489 #endif 490 return (-1); /* overlapping segment */ 491 } 492 } 493 } 494 as->a_seglast = newseg; 495 avl_insert(&as->a_segtree, newseg, where); 496 497 #ifdef VERIFY_SEGLIST 498 as_verify(as); 499 #endif 500 return (0); 501 } 502 503 struct seg * 504 as_removeseg(struct as *as, struct seg *seg) 505 { 506 avl_tree_t *t; 507 508 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 509 510 as->a_updatedir = 1; /* inform /proc */ 511 gethrestime(&as->a_updatetime); 512 513 if (seg == NULL) 514 return (NULL); 515 516 t = &as->a_segtree; 517 if (as->a_seglast == seg) 518 as->a_seglast = NULL; 519 as->a_lastgaphl = NULL; 520 521 /* 522 * if this segment is at an address higher than 523 * a_lastgap, set a_lastgap to the next segment (NULL if last segment) 524 */ 525 if (as->a_lastgap && 526 (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base)) 527 as->a_lastgap = AVL_NEXT(t, seg); 528 529 /* 530 * remove the segment from the seg tree 531 */ 532 avl_remove(t, seg); 533 534 #ifdef VERIFY_SEGLIST 535 as_verify(as); 536 #endif 537 return (seg); 538 } 539 540 /* 541 * Find a segment containing addr. 542 */ 543 struct seg * 544 as_segat(struct as *as, caddr_t addr) 545 { 546 struct seg *seg = as->a_seglast; 547 548 ASSERT(AS_LOCK_HELD(as, &as->a_lock)); 549 550 if (seg != NULL && seg->s_base <= addr && 551 addr < seg->s_base + seg->s_size) 552 return (seg); 553 554 seg = avl_find(&as->a_segtree, &addr, NULL); 555 return (seg); 556 } 557 558 /* 559 * Serialize all searches for holes in an address space to 560 * prevent two or more threads from allocating the same virtual 561 * address range. The address space must not be "read/write" 562 * locked by the caller since we may block. 563 */ 564 void 565 as_rangelock(struct as *as) 566 { 567 mutex_enter(&as->a_contents); 568 while (AS_ISCLAIMGAP(as)) 569 cv_wait(&as->a_cv, &as->a_contents); 570 AS_SETCLAIMGAP(as); 571 mutex_exit(&as->a_contents); 572 } 573 574 /* 575 * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads. 576 */ 577 void 578 as_rangeunlock(struct as *as) 579 { 580 mutex_enter(&as->a_contents); 581 AS_CLRCLAIMGAP(as); 582 cv_signal(&as->a_cv); 583 mutex_exit(&as->a_contents); 584 } 585 586 /* 587 * compar segments (or just an address) by segment address range 588 */ 589 static int 590 as_segcompar(const void *x, const void *y) 591 { 592 struct seg *a = (struct seg *)x; 593 struct seg *b = (struct seg *)y; 594 595 if (a->s_base < b->s_base) 596 return (-1); 597 if (a->s_base >= b->s_base + b->s_size) 598 return (1); 599 return (0); 600 } 601 602 603 void 604 as_avlinit(struct as *as) 605 { 606 avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg), 607 offsetof(struct seg, s_tree)); 608 avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page), 609 offsetof(struct watched_page, wp_link)); 610 } 611 612 /*ARGSUSED*/ 613 static int 614 as_constructor(void *buf, void *cdrarg, int kmflags) 615 { 616 struct as *as = buf; 617 618 mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL); 619 cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL); 620 rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL); 621 as_avlinit(as); 622 return (0); 623 } 624 625 /*ARGSUSED1*/ 626 static void 627 as_destructor(void *buf, void *cdrarg) 628 { 629 struct as *as = buf; 630 631 avl_destroy(&as->a_segtree); 632 mutex_destroy(&as->a_contents); 633 cv_destroy(&as->a_cv); 634 rw_destroy(&as->a_lock); 635 } 636 637 void 638 as_init(void) 639 { 640 as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0, 641 as_constructor, as_destructor, NULL, NULL, NULL, 0); 642 } 643 644 /* 645 * Allocate and initialize an address space data structure. 646 * We call hat_alloc to allow any machine dependent 647 * information in the hat structure to be initialized. 648 */ 649 struct as * 650 as_alloc(void) 651 { 652 struct as *as; 653 654 as = kmem_cache_alloc(as_cache, KM_SLEEP); 655 656 as->a_flags = 0; 657 as->a_vbits = 0; 658 as->a_hrm = NULL; 659 as->a_seglast = NULL; 660 as->a_size = 0; 661 as->a_updatedir = 0; 662 gethrestime(&as->a_updatetime); 663 as->a_objectdir = NULL; 664 as->a_sizedir = 0; 665 as->a_userlimit = (caddr_t)USERLIMIT; 666 as->a_lastgap = NULL; 667 as->a_lastgaphl = NULL; 668 as->a_callbacks = NULL; 669 670 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 671 as->a_hat = hat_alloc(as); /* create hat for default system mmu */ 672 AS_LOCK_EXIT(as, &as->a_lock); 673 674 as->a_xhat = NULL; 675 676 return (as); 677 } 678 679 /* 680 * Free an address space data structure. 681 * Need to free the hat first and then 682 * all the segments on this as and finally 683 * the space for the as struct itself. 684 */ 685 void 686 as_free(struct as *as) 687 { 688 struct hat *hat = as->a_hat; 689 struct seg *seg, *next; 690 int called = 0; 691 692 top: 693 /* 694 * Invoke ALL callbacks. as_do_callbacks will do one callback 695 * per call, and not return (-1) until the callback has completed. 696 * When as_do_callbacks returns zero, all callbacks have completed. 697 */ 698 mutex_enter(&as->a_contents); 699 while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0)); 700 701 /* This will prevent new XHATs from attaching to as */ 702 if (!called) 703 AS_SETBUSY(as); 704 mutex_exit(&as->a_contents); 705 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 706 707 if (!called) { 708 called = 1; 709 hat_free_start(hat); 710 if (as->a_xhat != NULL) 711 xhat_free_start_all(as); 712 } 713 for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) { 714 int err; 715 716 next = AS_SEGNEXT(as, seg); 717 err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 718 if (err == EAGAIN) { 719 mutex_enter(&as->a_contents); 720 if (as->a_callbacks) { 721 AS_LOCK_EXIT(as, &as->a_lock); 722 } else { 723 /* 724 * Memory is currently locked. Wait for a 725 * cv_signal that it has been unlocked, then 726 * try the operation again. 727 */ 728 if (AS_ISUNMAPWAIT(as) == 0) 729 cv_broadcast(&as->a_cv); 730 AS_SETUNMAPWAIT(as); 731 AS_LOCK_EXIT(as, &as->a_lock); 732 while (AS_ISUNMAPWAIT(as)) 733 cv_wait(&as->a_cv, &as->a_contents); 734 } 735 mutex_exit(&as->a_contents); 736 goto top; 737 } else { 738 /* 739 * We do not expect any other error return at this 740 * time. This is similar to an ASSERT in seg_unmap() 741 */ 742 ASSERT(err == 0); 743 } 744 } 745 hat_free_end(hat); 746 if (as->a_xhat != NULL) 747 xhat_free_end_all(as); 748 AS_LOCK_EXIT(as, &as->a_lock); 749 750 /* /proc stuff */ 751 ASSERT(avl_numnodes(&as->a_wpage) == 0); 752 if (as->a_objectdir) { 753 kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *)); 754 as->a_objectdir = NULL; 755 as->a_sizedir = 0; 756 } 757 758 /* 759 * Free the struct as back to kmem. Assert it has no segments. 760 */ 761 ASSERT(avl_numnodes(&as->a_segtree) == 0); 762 kmem_cache_free(as_cache, as); 763 } 764 765 int 766 as_dup(struct as *as, struct as **outas) 767 { 768 struct as *newas; 769 struct seg *seg, *newseg; 770 int error; 771 772 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 773 as_clearwatch(as); 774 newas = as_alloc(); 775 newas->a_userlimit = as->a_userlimit; 776 AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER); 777 778 /* This will prevent new XHATs from attaching */ 779 mutex_enter(&as->a_contents); 780 AS_SETBUSY(as); 781 mutex_exit(&as->a_contents); 782 mutex_enter(&newas->a_contents); 783 AS_SETBUSY(newas); 784 mutex_exit(&newas->a_contents); 785 786 787 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 788 789 if (seg->s_flags & S_PURGE) 790 continue; 791 792 newseg = seg_alloc(newas, seg->s_base, seg->s_size); 793 if (newseg == NULL) { 794 AS_LOCK_EXIT(newas, &newas->a_lock); 795 as_setwatch(as); 796 mutex_enter(&as->a_contents); 797 AS_CLRBUSY(as); 798 mutex_exit(&as->a_contents); 799 AS_LOCK_EXIT(as, &as->a_lock); 800 as_free(newas); 801 return (-1); 802 } 803 if ((error = SEGOP_DUP(seg, newseg)) != 0) { 804 /* 805 * We call seg_free() on the new seg 806 * because the segment is not set up 807 * completely; i.e. it has no ops. 808 */ 809 as_setwatch(as); 810 mutex_enter(&as->a_contents); 811 AS_CLRBUSY(as); 812 mutex_exit(&as->a_contents); 813 AS_LOCK_EXIT(as, &as->a_lock); 814 seg_free(newseg); 815 AS_LOCK_EXIT(newas, &newas->a_lock); 816 as_free(newas); 817 return (error); 818 } 819 newas->a_size += seg->s_size; 820 } 821 822 error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL); 823 if (as->a_xhat != NULL) 824 error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL); 825 826 mutex_enter(&newas->a_contents); 827 AS_CLRBUSY(newas); 828 mutex_exit(&newas->a_contents); 829 AS_LOCK_EXIT(newas, &newas->a_lock); 830 831 as_setwatch(as); 832 mutex_enter(&as->a_contents); 833 AS_CLRBUSY(as); 834 mutex_exit(&as->a_contents); 835 AS_LOCK_EXIT(as, &as->a_lock); 836 if (error != 0) { 837 as_free(newas); 838 return (error); 839 } 840 *outas = newas; 841 return (0); 842 } 843 844 /* 845 * Handle a ``fault'' at addr for size bytes. 846 */ 847 faultcode_t 848 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size, 849 enum fault_type type, enum seg_rw rw) 850 { 851 struct seg *seg; 852 caddr_t raddr; /* rounded down addr */ 853 size_t rsize; /* rounded up size */ 854 size_t ssize; 855 faultcode_t res = 0; 856 caddr_t addrsav; 857 struct seg *segsav; 858 int as_lock_held; 859 klwp_t *lwp = ttolwp(curthread); 860 int is_xhat = 0; 861 int holding_wpage = 0; 862 extern struct seg_ops segdev_ops; 863 864 865 866 if (as->a_hat != hat) { 867 /* This must be an XHAT then */ 868 is_xhat = 1; 869 870 if ((type != F_INVAL) || (as == &kas)) 871 return (FC_NOSUPPORT); 872 } 873 874 retry: 875 if (!is_xhat) { 876 /* 877 * Indicate that the lwp is not to be stopped while waiting 878 * for a pagefault. This is to avoid deadlock while debugging 879 * a process via /proc over NFS (in particular). 880 */ 881 if (lwp != NULL) 882 lwp->lwp_nostop++; 883 884 /* 885 * same length must be used when we softlock and softunlock. 886 * We don't support softunlocking lengths less than 887 * the original length when there is largepage support. 888 * See seg_dev.c for more comments. 889 */ 890 switch (type) { 891 892 case F_SOFTLOCK: 893 CPU_STATS_ADD_K(vm, softlock, 1); 894 break; 895 896 case F_SOFTUNLOCK: 897 break; 898 899 case F_PROT: 900 CPU_STATS_ADD_K(vm, prot_fault, 1); 901 break; 902 903 case F_INVAL: 904 CPU_STATS_ENTER_K(); 905 CPU_STATS_ADDQ(CPU, vm, as_fault, 1); 906 if (as == &kas) 907 CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1); 908 CPU_STATS_EXIT_K(); 909 break; 910 } 911 } 912 913 /* Kernel probe */ 914 TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */, 915 tnf_opaque, address, addr, 916 tnf_fault_type, fault_type, type, 917 tnf_seg_access, access, rw); 918 919 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 920 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 921 (size_t)raddr; 922 923 /* 924 * XXX -- Don't grab the as lock for segkmap. We should grab it for 925 * correctness, but then we could be stuck holding this lock for 926 * a LONG time if the fault needs to be resolved on a slow 927 * filesystem, and then no-one will be able to exec new commands, 928 * as exec'ing requires the write lock on the as. 929 */ 930 if (as == &kas && segkmap && segkmap->s_base <= raddr && 931 raddr + size < segkmap->s_base + segkmap->s_size) { 932 /* 933 * if (as==&kas), this can't be XHAT: we've already returned 934 * FC_NOSUPPORT. 935 */ 936 seg = segkmap; 937 as_lock_held = 0; 938 } else { 939 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 940 if (is_xhat && avl_numnodes(&as->a_wpage) != 0) { 941 /* 942 * Grab and hold the writers' lock on the as 943 * if the fault is to a watched page. 944 * This will keep CPUs from "peeking" at the 945 * address range while we're temporarily boosting 946 * the permissions for the XHAT device to 947 * resolve the fault in the segment layer. 948 * 949 * We could check whether faulted address 950 * is within a watched page and only then grab 951 * the writer lock, but this is simpler. 952 */ 953 AS_LOCK_EXIT(as, &as->a_lock); 954 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 955 } 956 957 seg = as_segat(as, raddr); 958 if (seg == NULL) { 959 AS_LOCK_EXIT(as, &as->a_lock); 960 if ((lwp != NULL) && (!is_xhat)) 961 lwp->lwp_nostop--; 962 return (FC_NOMAP); 963 } 964 965 as_lock_held = 1; 966 } 967 968 addrsav = raddr; 969 segsav = seg; 970 971 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 972 if (raddr >= seg->s_base + seg->s_size) { 973 seg = AS_SEGNEXT(as, seg); 974 if (seg == NULL || raddr != seg->s_base) { 975 res = FC_NOMAP; 976 break; 977 } 978 } 979 if (raddr + rsize > seg->s_base + seg->s_size) 980 ssize = seg->s_base + seg->s_size - raddr; 981 else 982 ssize = rsize; 983 984 if (!is_xhat || (seg->s_ops != &segdev_ops)) { 985 986 if (is_xhat && avl_numnodes(&as->a_wpage) != 0 && 987 pr_is_watchpage_as(raddr, rw, as)) { 988 /* 989 * Handle watch pages. If we're faulting on a 990 * watched page from an X-hat, we have to 991 * restore the original permissions while we 992 * handle the fault. 993 */ 994 as_clearwatch(as); 995 holding_wpage = 1; 996 } 997 998 res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw); 999 1000 /* Restore watchpoints */ 1001 if (holding_wpage) { 1002 as_setwatch(as); 1003 holding_wpage = 0; 1004 } 1005 1006 if (res != 0) 1007 break; 1008 } else { 1009 /* XHAT does not support seg_dev */ 1010 res = FC_NOSUPPORT; 1011 break; 1012 } 1013 } 1014 1015 /* 1016 * If we were SOFTLOCKing and encountered a failure, 1017 * we must SOFTUNLOCK the range we already did. (Maybe we 1018 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing 1019 * right here...) 1020 */ 1021 if (res != 0 && type == F_SOFTLOCK) { 1022 for (seg = segsav; addrsav < raddr; addrsav += ssize) { 1023 if (addrsav >= seg->s_base + seg->s_size) 1024 seg = AS_SEGNEXT(as, seg); 1025 ASSERT(seg != NULL); 1026 /* 1027 * Now call the fault routine again to perform the 1028 * unlock using S_OTHER instead of the rw variable 1029 * since we never got a chance to touch the pages. 1030 */ 1031 if (raddr > seg->s_base + seg->s_size) 1032 ssize = seg->s_base + seg->s_size - addrsav; 1033 else 1034 ssize = raddr - addrsav; 1035 (void) SEGOP_FAULT(hat, seg, addrsav, ssize, 1036 F_SOFTUNLOCK, S_OTHER); 1037 } 1038 } 1039 if (as_lock_held) 1040 AS_LOCK_EXIT(as, &as->a_lock); 1041 if ((lwp != NULL) && (!is_xhat)) 1042 lwp->lwp_nostop--; 1043 /* 1044 * If the lower levels returned EDEADLK for a fault, 1045 * It means that we should retry the fault. Let's wait 1046 * a bit also to let the deadlock causing condition clear. 1047 * This is part of a gross hack to work around a design flaw 1048 * in the ufs/sds logging code and should go away when the 1049 * logging code is re-designed to fix the problem. See bug 1050 * 4125102 for details of the problem. 1051 */ 1052 if (FC_ERRNO(res) == EDEADLK) { 1053 delay(deadlk_wait); 1054 res = 0; 1055 goto retry; 1056 } 1057 return (res); 1058 } 1059 1060 1061 1062 /* 1063 * Asynchronous ``fault'' at addr for size bytes. 1064 */ 1065 faultcode_t 1066 as_faulta(struct as *as, caddr_t addr, size_t size) 1067 { 1068 struct seg *seg; 1069 caddr_t raddr; /* rounded down addr */ 1070 size_t rsize; /* rounded up size */ 1071 faultcode_t res = 0; 1072 klwp_t *lwp = ttolwp(curthread); 1073 1074 retry: 1075 /* 1076 * Indicate that the lwp is not to be stopped while waiting 1077 * for a pagefault. This is to avoid deadlock while debugging 1078 * a process via /proc over NFS (in particular). 1079 */ 1080 if (lwp != NULL) 1081 lwp->lwp_nostop++; 1082 1083 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1084 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1085 (size_t)raddr; 1086 1087 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1088 seg = as_segat(as, raddr); 1089 if (seg == NULL) { 1090 AS_LOCK_EXIT(as, &as->a_lock); 1091 if (lwp != NULL) 1092 lwp->lwp_nostop--; 1093 return (FC_NOMAP); 1094 } 1095 1096 for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) { 1097 if (raddr >= seg->s_base + seg->s_size) { 1098 seg = AS_SEGNEXT(as, seg); 1099 if (seg == NULL || raddr != seg->s_base) { 1100 res = FC_NOMAP; 1101 break; 1102 } 1103 } 1104 res = SEGOP_FAULTA(seg, raddr); 1105 if (res != 0) 1106 break; 1107 } 1108 AS_LOCK_EXIT(as, &as->a_lock); 1109 if (lwp != NULL) 1110 lwp->lwp_nostop--; 1111 /* 1112 * If the lower levels returned EDEADLK for a fault, 1113 * It means that we should retry the fault. Let's wait 1114 * a bit also to let the deadlock causing condition clear. 1115 * This is part of a gross hack to work around a design flaw 1116 * in the ufs/sds logging code and should go away when the 1117 * logging code is re-designed to fix the problem. See bug 1118 * 4125102 for details of the problem. 1119 */ 1120 if (FC_ERRNO(res) == EDEADLK) { 1121 delay(deadlk_wait); 1122 res = 0; 1123 goto retry; 1124 } 1125 return (res); 1126 } 1127 1128 /* 1129 * Set the virtual mapping for the interval from [addr : addr + size) 1130 * in address space `as' to have the specified protection. 1131 * It is ok for the range to cross over several segments, 1132 * as long as they are contiguous. 1133 */ 1134 int 1135 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1136 { 1137 struct seg *seg; 1138 struct as_callback *cb; 1139 size_t ssize; 1140 caddr_t raddr; /* rounded down addr */ 1141 size_t rsize; /* rounded up size */ 1142 int error = 0, writer = 0; 1143 caddr_t saveraddr; 1144 size_t saversize; 1145 1146 setprot_top: 1147 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1148 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1149 (size_t)raddr; 1150 1151 if (raddr + rsize < raddr) /* check for wraparound */ 1152 return (ENOMEM); 1153 1154 saveraddr = raddr; 1155 saversize = rsize; 1156 1157 /* 1158 * Normally we only lock the as as a reader. But 1159 * if due to setprot the segment driver needs to split 1160 * a segment it will return IE_RETRY. Therefore we re-aquire 1161 * the as lock as a writer so the segment driver can change 1162 * the seg list. Also the segment driver will return IE_RETRY 1163 * after it has changed the segment list so we therefore keep 1164 * locking as a writer. Since these opeartions should be rare 1165 * want to only lock as a writer when necessary. 1166 */ 1167 if (writer || avl_numnodes(&as->a_wpage) != 0) { 1168 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1169 } else { 1170 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1171 } 1172 1173 as_clearwatchprot(as, raddr, rsize); 1174 seg = as_segat(as, raddr); 1175 if (seg == NULL) { 1176 as_setwatch(as); 1177 AS_LOCK_EXIT(as, &as->a_lock); 1178 return (ENOMEM); 1179 } 1180 1181 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1182 if (raddr >= seg->s_base + seg->s_size) { 1183 seg = AS_SEGNEXT(as, seg); 1184 if (seg == NULL || raddr != seg->s_base) { 1185 error = ENOMEM; 1186 break; 1187 } 1188 } 1189 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1190 ssize = seg->s_base + seg->s_size - raddr; 1191 else 1192 ssize = rsize; 1193 error = SEGOP_SETPROT(seg, raddr, ssize, prot); 1194 1195 if (error == IE_NOMEM) { 1196 error = EAGAIN; 1197 break; 1198 } 1199 1200 if (error == IE_RETRY) { 1201 AS_LOCK_EXIT(as, &as->a_lock); 1202 writer = 1; 1203 goto setprot_top; 1204 } 1205 1206 if (error == EAGAIN) { 1207 /* 1208 * Make sure we have a_lock as writer. 1209 */ 1210 if (writer == 0) { 1211 AS_LOCK_EXIT(as, &as->a_lock); 1212 writer = 1; 1213 goto setprot_top; 1214 } 1215 1216 /* 1217 * Memory is currently locked. It must be unlocked 1218 * before this operation can succeed through a retry. 1219 * The possible reasons for locked memory and 1220 * corresponding strategies for unlocking are: 1221 * (1) Normal I/O 1222 * wait for a signal that the I/O operation 1223 * has completed and the memory is unlocked. 1224 * (2) Asynchronous I/O 1225 * The aio subsystem does not unlock pages when 1226 * the I/O is completed. Those pages are unlocked 1227 * when the application calls aiowait/aioerror. 1228 * So, to prevent blocking forever, cv_broadcast() 1229 * is done to wake up aio_cleanup_thread. 1230 * Subsequently, segvn_reclaim will be called, and 1231 * that will do AS_CLRUNMAPWAIT() and wake us up. 1232 * (3) Long term page locking: 1233 * Drivers intending to have pages locked for a 1234 * period considerably longer than for normal I/O 1235 * (essentially forever) may have registered for a 1236 * callback so they may unlock these pages on 1237 * request. This is needed to allow this operation 1238 * to succeed. Each entry on the callback list is 1239 * examined. If the event or address range pertains 1240 * the callback is invoked (unless it already is in 1241 * progress). The a_contents lock must be dropped 1242 * before the callback, so only one callback can 1243 * be done at a time. Go to the top and do more 1244 * until zero is returned. If zero is returned, 1245 * either there were no callbacks for this event 1246 * or they were already in progress. 1247 */ 1248 mutex_enter(&as->a_contents); 1249 if (as->a_callbacks && 1250 (cb = as_find_callback(as, AS_SETPROT_EVENT, 1251 seg->s_base, seg->s_size))) { 1252 AS_LOCK_EXIT(as, &as->a_lock); 1253 as_execute_callback(as, cb, AS_SETPROT_EVENT); 1254 } else { 1255 if (AS_ISUNMAPWAIT(as) == 0) 1256 cv_broadcast(&as->a_cv); 1257 AS_SETUNMAPWAIT(as); 1258 AS_LOCK_EXIT(as, &as->a_lock); 1259 while (AS_ISUNMAPWAIT(as)) 1260 cv_wait(&as->a_cv, &as->a_contents); 1261 } 1262 mutex_exit(&as->a_contents); 1263 goto setprot_top; 1264 } else if (error != 0) 1265 break; 1266 } 1267 if (error != 0) { 1268 as_setwatch(as); 1269 } else { 1270 as_setwatchprot(as, saveraddr, saversize, prot); 1271 } 1272 AS_LOCK_EXIT(as, &as->a_lock); 1273 return (error); 1274 } 1275 1276 /* 1277 * Check to make sure that the interval [addr, addr + size) 1278 * in address space `as' has at least the specified protection. 1279 * It is ok for the range to cross over several segments, as long 1280 * as they are contiguous. 1281 */ 1282 int 1283 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 1284 { 1285 struct seg *seg; 1286 size_t ssize; 1287 caddr_t raddr; /* rounded down addr */ 1288 size_t rsize; /* rounded up size */ 1289 int error = 0; 1290 1291 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1292 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1293 (size_t)raddr; 1294 1295 if (raddr + rsize < raddr) /* check for wraparound */ 1296 return (ENOMEM); 1297 1298 /* 1299 * This is ugly as sin... 1300 * Normally, we only acquire the address space readers lock. 1301 * However, if the address space has watchpoints present, 1302 * we must acquire the writer lock on the address space for 1303 * the benefit of as_clearwatchprot() and as_setwatchprot(). 1304 */ 1305 if (avl_numnodes(&as->a_wpage) != 0) 1306 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1307 else 1308 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1309 as_clearwatchprot(as, raddr, rsize); 1310 seg = as_segat(as, raddr); 1311 if (seg == NULL) { 1312 as_setwatch(as); 1313 AS_LOCK_EXIT(as, &as->a_lock); 1314 return (ENOMEM); 1315 } 1316 1317 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 1318 if (raddr >= seg->s_base + seg->s_size) { 1319 seg = AS_SEGNEXT(as, seg); 1320 if (seg == NULL || raddr != seg->s_base) { 1321 error = ENOMEM; 1322 break; 1323 } 1324 } 1325 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 1326 ssize = seg->s_base + seg->s_size - raddr; 1327 else 1328 ssize = rsize; 1329 1330 error = SEGOP_CHECKPROT(seg, raddr, ssize, prot); 1331 if (error != 0) 1332 break; 1333 } 1334 as_setwatch(as); 1335 AS_LOCK_EXIT(as, &as->a_lock); 1336 return (error); 1337 } 1338 1339 int 1340 as_unmap(struct as *as, caddr_t addr, size_t size) 1341 { 1342 struct seg *seg, *seg_next; 1343 struct as_callback *cb; 1344 caddr_t raddr, eaddr; 1345 size_t ssize; 1346 int err; 1347 1348 top: 1349 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1350 eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) & 1351 (uintptr_t)PAGEMASK); 1352 1353 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1354 1355 as->a_updatedir = 1; /* inform /proc */ 1356 gethrestime(&as->a_updatetime); 1357 1358 /* 1359 * Use as_findseg to find the first segment in the range, then 1360 * step through the segments in order, following s_next. 1361 */ 1362 as_clearwatchprot(as, raddr, eaddr - raddr); 1363 1364 for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) { 1365 if (eaddr <= seg->s_base) 1366 break; /* eaddr was in a gap; all done */ 1367 1368 /* this is implied by the test above */ 1369 ASSERT(raddr < eaddr); 1370 1371 if (raddr < seg->s_base) 1372 raddr = seg->s_base; /* raddr was in a gap */ 1373 1374 if (eaddr > (seg->s_base + seg->s_size)) 1375 ssize = seg->s_base + seg->s_size - raddr; 1376 else 1377 ssize = eaddr - raddr; 1378 1379 /* 1380 * Save next segment pointer since seg can be 1381 * destroyed during the segment unmap operation. 1382 */ 1383 seg_next = AS_SEGNEXT(as, seg); 1384 1385 err = SEGOP_UNMAP(seg, raddr, ssize); 1386 if (err == EAGAIN) { 1387 /* 1388 * Memory is currently locked. It must be unlocked 1389 * before this operation can succeed through a retry. 1390 * The possible reasons for locked memory and 1391 * corresponding strategies for unlocking are: 1392 * (1) Normal I/O 1393 * wait for a signal that the I/O operation 1394 * has completed and the memory is unlocked. 1395 * (2) Asynchronous I/O 1396 * The aio subsystem does not unlock pages when 1397 * the I/O is completed. Those pages are unlocked 1398 * when the application calls aiowait/aioerror. 1399 * So, to prevent blocking forever, cv_broadcast() 1400 * is done to wake up aio_cleanup_thread. 1401 * Subsequently, segvn_reclaim will be called, and 1402 * that will do AS_CLRUNMAPWAIT() and wake us up. 1403 * (3) Long term page locking: 1404 * Drivers intending to have pages locked for a 1405 * period considerably longer than for normal I/O 1406 * (essentially forever) may have registered for a 1407 * callback so they may unlock these pages on 1408 * request. This is needed to allow this operation 1409 * to succeed. Each entry on the callback list is 1410 * examined. If the event or address range pertains 1411 * the callback is invoked (unless it already is in 1412 * progress). The a_contents lock must be dropped 1413 * before the callback, so only one callback can 1414 * be done at a time. Go to the top and do more 1415 * until zero is returned. If zero is returned, 1416 * either there were no callbacks for this event 1417 * or they were already in progress. 1418 */ 1419 as_setwatch(as); 1420 mutex_enter(&as->a_contents); 1421 if (as->a_callbacks && 1422 (cb = as_find_callback(as, AS_UNMAP_EVENT, 1423 seg->s_base, seg->s_size))) { 1424 AS_LOCK_EXIT(as, &as->a_lock); 1425 as_execute_callback(as, cb, AS_UNMAP_EVENT); 1426 } else { 1427 if (AS_ISUNMAPWAIT(as) == 0) 1428 cv_broadcast(&as->a_cv); 1429 AS_SETUNMAPWAIT(as); 1430 AS_LOCK_EXIT(as, &as->a_lock); 1431 while (AS_ISUNMAPWAIT(as)) 1432 cv_wait(&as->a_cv, &as->a_contents); 1433 } 1434 mutex_exit(&as->a_contents); 1435 goto top; 1436 } else if (err == IE_RETRY) { 1437 as_setwatch(as); 1438 AS_LOCK_EXIT(as, &as->a_lock); 1439 goto top; 1440 } else if (err) { 1441 as_setwatch(as); 1442 AS_LOCK_EXIT(as, &as->a_lock); 1443 return (-1); 1444 } 1445 1446 as->a_size -= ssize; 1447 raddr += ssize; 1448 } 1449 AS_LOCK_EXIT(as, &as->a_lock); 1450 return (0); 1451 } 1452 1453 static int 1454 as_map_vnsegs(struct as *as, caddr_t addr, size_t size, 1455 int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated) 1456 { 1457 int text = vn_a->flags & MAP_TEXT; 1458 uint_t szcvec = map_execseg_pgszcvec(text, addr, size); 1459 uint_t szc; 1460 uint_t nszc; 1461 int error; 1462 caddr_t a; 1463 caddr_t eaddr; 1464 size_t segsize; 1465 struct seg *seg; 1466 uint_t save_szcvec; 1467 size_t pgsz; 1468 struct vattr va; 1469 u_offset_t eoff; 1470 size_t save_size = 0; 1471 1472 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 1473 ASSERT(IS_P2ALIGNED(addr, PAGESIZE)); 1474 ASSERT(IS_P2ALIGNED(size, PAGESIZE)); 1475 ASSERT(vn_a->vp != NULL); 1476 ASSERT(vn_a->amp == NULL); 1477 1478 again: 1479 if (szcvec <= 1) { 1480 seg = seg_alloc(as, addr, size); 1481 if (seg == NULL) { 1482 return (ENOMEM); 1483 } 1484 vn_a->szc = 0; 1485 error = (*crfp)(seg, vn_a); 1486 if (error != 0) { 1487 seg_free(seg); 1488 } 1489 return (error); 1490 } 1491 1492 va.va_mask = AT_SIZE; 1493 if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred) != 0) { 1494 szcvec = 0; 1495 goto again; 1496 } 1497 eoff = vn_a->offset & PAGEMASK; 1498 if (eoff >= va.va_size) { 1499 szcvec = 0; 1500 goto again; 1501 } 1502 eoff += size; 1503 if (btopr(va.va_size) < btopr(eoff)) { 1504 save_size = size; 1505 size = va.va_size - (vn_a->offset & PAGEMASK); 1506 size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t); 1507 szcvec = map_execseg_pgszcvec(text, addr, size); 1508 if (szcvec <= 1) { 1509 size = save_size; 1510 goto again; 1511 } 1512 } 1513 1514 eaddr = addr + size; 1515 save_szcvec = szcvec; 1516 szcvec >>= 1; 1517 szc = 0; 1518 nszc = 0; 1519 while (szcvec) { 1520 if ((szcvec & 0x1) == 0) { 1521 nszc++; 1522 szcvec >>= 1; 1523 continue; 1524 } 1525 nszc++; 1526 pgsz = page_get_pagesize(nszc); 1527 a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 1528 if (a != addr) { 1529 ASSERT(a < eaddr); 1530 segsize = a - addr; 1531 seg = seg_alloc(as, addr, segsize); 1532 if (seg == NULL) { 1533 return (ENOMEM); 1534 } 1535 vn_a->szc = szc; 1536 error = (*crfp)(seg, vn_a); 1537 if (error != 0) { 1538 seg_free(seg); 1539 return (error); 1540 } 1541 *segcreated = 1; 1542 vn_a->offset += segsize; 1543 addr = a; 1544 } 1545 szc = nszc; 1546 szcvec >>= 1; 1547 } 1548 1549 ASSERT(addr < eaddr); 1550 szcvec = save_szcvec | 1; /* add 8K pages */ 1551 while (szcvec) { 1552 a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 1553 ASSERT(a >= addr); 1554 if (a != addr) { 1555 segsize = a - addr; 1556 seg = seg_alloc(as, addr, segsize); 1557 if (seg == NULL) { 1558 return (ENOMEM); 1559 } 1560 vn_a->szc = szc; 1561 error = (*crfp)(seg, vn_a); 1562 if (error != 0) { 1563 seg_free(seg); 1564 return (error); 1565 } 1566 *segcreated = 1; 1567 vn_a->offset += segsize; 1568 addr = a; 1569 } 1570 szcvec &= ~(1 << szc); 1571 if (szcvec) { 1572 szc = highbit(szcvec) - 1; 1573 pgsz = page_get_pagesize(szc); 1574 } 1575 } 1576 ASSERT(addr == eaddr); 1577 1578 if (save_size) { 1579 size = save_size - size; 1580 goto again; 1581 } 1582 1583 return (0); 1584 } 1585 1586 int 1587 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp) 1588 { 1589 struct seg *seg = NULL; 1590 caddr_t raddr; /* rounded down addr */ 1591 size_t rsize; /* rounded up size */ 1592 int error; 1593 struct proc *p = curproc; 1594 1595 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1596 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 1597 (size_t)raddr; 1598 1599 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1600 1601 /* 1602 * check for wrap around 1603 */ 1604 if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) { 1605 AS_LOCK_EXIT(as, &as->a_lock); 1606 return (ENOMEM); 1607 } 1608 1609 as->a_updatedir = 1; /* inform /proc */ 1610 gethrestime(&as->a_updatetime); 1611 1612 if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) { 1613 AS_LOCK_EXIT(as, &as->a_lock); 1614 1615 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 1616 RCA_UNSAFE_ALL); 1617 1618 return (ENOMEM); 1619 } 1620 1621 if (AS_MAP_VNSEGS_USELPGS(crfp, argsp)) { 1622 int unmap = 0; 1623 error = as_map_vnsegs(as, raddr, rsize, crfp, 1624 (struct segvn_crargs *)argsp, &unmap); 1625 if (error != 0) { 1626 AS_LOCK_EXIT(as, &as->a_lock); 1627 if (unmap) { 1628 (void) as_unmap(as, addr, size); 1629 } 1630 return (error); 1631 } 1632 } else { 1633 seg = seg_alloc(as, addr, size); 1634 if (seg == NULL) { 1635 AS_LOCK_EXIT(as, &as->a_lock); 1636 return (ENOMEM); 1637 } 1638 1639 error = (*crfp)(seg, argsp); 1640 if (error != 0) { 1641 seg_free(seg); 1642 AS_LOCK_EXIT(as, &as->a_lock); 1643 return (error); 1644 } 1645 } 1646 1647 /* 1648 * Add size now so as_unmap will work if as_ctl fails. 1649 */ 1650 as->a_size += rsize; 1651 1652 as_setwatch(as); 1653 1654 /* 1655 * If the address space is locked, 1656 * establish memory locks for the new segment. 1657 */ 1658 mutex_enter(&as->a_contents); 1659 if (AS_ISPGLCK(as)) { 1660 mutex_exit(&as->a_contents); 1661 AS_LOCK_EXIT(as, &as->a_lock); 1662 error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0); 1663 if (error != 0) 1664 (void) as_unmap(as, addr, size); 1665 } else { 1666 mutex_exit(&as->a_contents); 1667 AS_LOCK_EXIT(as, &as->a_lock); 1668 } 1669 return (error); 1670 } 1671 1672 1673 /* 1674 * Delete all segments in the address space marked with S_PURGE. 1675 * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c). 1676 * These segments are deleted as a first step before calls to as_gap(), so 1677 * that they don't affect mmap() or shmat(). 1678 */ 1679 void 1680 as_purge(struct as *as) 1681 { 1682 struct seg *seg; 1683 struct seg *next_seg; 1684 1685 /* 1686 * the setting of NEEDSPURGE is protect by as_rangelock(), so 1687 * no need to grab a_contents mutex for this check 1688 */ 1689 if ((as->a_flags & AS_NEEDSPURGE) == 0) 1690 return; 1691 1692 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1693 next_seg = NULL; 1694 seg = AS_SEGFIRST(as); 1695 while (seg != NULL) { 1696 next_seg = AS_SEGNEXT(as, seg); 1697 if (seg->s_flags & S_PURGE) 1698 SEGOP_UNMAP(seg, seg->s_base, seg->s_size); 1699 seg = next_seg; 1700 } 1701 AS_LOCK_EXIT(as, &as->a_lock); 1702 1703 mutex_enter(&as->a_contents); 1704 as->a_flags &= ~AS_NEEDSPURGE; 1705 mutex_exit(&as->a_contents); 1706 } 1707 1708 /* 1709 * Find a hole of at least size minlen within [base, base + len). 1710 * 1711 * If flags specifies AH_HI, the hole will have the highest possible address 1712 * in the range. We use the as->a_lastgap field to figure out where to 1713 * start looking for a gap. 1714 * 1715 * Otherwise, the gap will have the lowest possible address. 1716 * 1717 * If flags specifies AH_CONTAIN, the hole will contain the address addr. 1718 * 1719 * If an adequate hole is found, base and len are set to reflect the part of 1720 * the hole that is within range, and 0 is returned, otherwise, 1721 * -1 is returned. 1722 * 1723 * NOTE: This routine is not correct when base+len overflows caddr_t. 1724 */ 1725 int 1726 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags, 1727 caddr_t addr) 1728 { 1729 caddr_t lobound = *basep; 1730 caddr_t hibound = lobound + *lenp; 1731 struct seg *lseg, *hseg; 1732 caddr_t lo, hi; 1733 int forward; 1734 caddr_t save_base; 1735 size_t save_len; 1736 1737 save_base = *basep; 1738 save_len = *lenp; 1739 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1740 if (AS_SEGFIRST(as) == NULL) { 1741 if (valid_va_range(basep, lenp, minlen, flags & AH_DIR)) { 1742 AS_LOCK_EXIT(as, &as->a_lock); 1743 return (0); 1744 } else { 1745 AS_LOCK_EXIT(as, &as->a_lock); 1746 *basep = save_base; 1747 *lenp = save_len; 1748 return (-1); 1749 } 1750 } 1751 1752 /* 1753 * Set up to iterate over all the inter-segment holes in the given 1754 * direction. lseg is NULL for the lowest-addressed hole and hseg is 1755 * NULL for the highest-addressed hole. If moving backwards, we reset 1756 * sseg to denote the highest-addressed segment. 1757 */ 1758 forward = (flags & AH_DIR) == AH_LO; 1759 if (forward) { 1760 hseg = as_findseg(as, lobound, 1); 1761 lseg = AS_SEGPREV(as, hseg); 1762 } else { 1763 1764 /* 1765 * If allocating at least as much as the last allocation, 1766 * use a_lastgap's base as a better estimate of hibound. 1767 */ 1768 if (as->a_lastgap && 1769 minlen >= as->a_lastgap->s_size && 1770 hibound >= as->a_lastgap->s_base) 1771 hibound = as->a_lastgap->s_base; 1772 1773 hseg = as_findseg(as, hibound, 1); 1774 if (hseg->s_base + hseg->s_size < hibound) { 1775 lseg = hseg; 1776 hseg = NULL; 1777 } else { 1778 lseg = AS_SEGPREV(as, hseg); 1779 } 1780 } 1781 1782 for (;;) { 1783 /* 1784 * Set lo and hi to the hole's boundaries. (We should really 1785 * use MAXADDR in place of hibound in the expression below, 1786 * but can't express it easily; using hibound in its place is 1787 * harmless.) 1788 */ 1789 lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size; 1790 hi = (hseg == NULL) ? hibound : hseg->s_base; 1791 /* 1792 * If the iteration has moved past the interval from lobound 1793 * to hibound it's pointless to continue. 1794 */ 1795 if ((forward && lo > hibound) || (!forward && hi < lobound)) 1796 break; 1797 else if (lo > hibound || hi < lobound) 1798 goto cont; 1799 /* 1800 * Candidate hole lies at least partially within the allowable 1801 * range. Restrict it to fall completely within that range, 1802 * i.e., to [max(lo, lobound), min(hi, hibound)]. 1803 */ 1804 if (lo < lobound) 1805 lo = lobound; 1806 if (hi > hibound) 1807 hi = hibound; 1808 /* 1809 * Verify that the candidate hole is big enough and meets 1810 * hardware constraints. 1811 */ 1812 *basep = lo; 1813 *lenp = hi - lo; 1814 if (valid_va_range(basep, lenp, minlen, 1815 forward ? AH_LO : AH_HI) && 1816 ((flags & AH_CONTAIN) == 0 || 1817 (*basep <= addr && *basep + *lenp > addr))) { 1818 if (!forward) 1819 as->a_lastgap = hseg; 1820 if (hseg != NULL) 1821 as->a_lastgaphl = hseg; 1822 else 1823 as->a_lastgaphl = lseg; 1824 AS_LOCK_EXIT(as, &as->a_lock); 1825 return (0); 1826 } 1827 cont: 1828 /* 1829 * Move to the next hole. 1830 */ 1831 if (forward) { 1832 lseg = hseg; 1833 if (lseg == NULL) 1834 break; 1835 hseg = AS_SEGNEXT(as, hseg); 1836 } else { 1837 hseg = lseg; 1838 if (hseg == NULL) 1839 break; 1840 lseg = AS_SEGPREV(as, lseg); 1841 } 1842 } 1843 *basep = save_base; 1844 *lenp = save_len; 1845 AS_LOCK_EXIT(as, &as->a_lock); 1846 return (-1); 1847 } 1848 1849 /* 1850 * Return the next range within [base, base + len) that is backed 1851 * with "real memory". Skip holes and non-seg_vn segments. 1852 * We're lazy and only return one segment at a time. 1853 */ 1854 int 1855 as_memory(struct as *as, caddr_t *basep, size_t *lenp) 1856 { 1857 extern struct seg_ops segspt_shmops; /* needs a header file */ 1858 struct seg *seg; 1859 caddr_t addr, eaddr; 1860 caddr_t segend; 1861 1862 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1863 1864 addr = *basep; 1865 eaddr = addr + *lenp; 1866 1867 seg = as_findseg(as, addr, 0); 1868 if (seg != NULL) 1869 addr = MAX(seg->s_base, addr); 1870 1871 for (;;) { 1872 if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) { 1873 AS_LOCK_EXIT(as, &as->a_lock); 1874 return (EINVAL); 1875 } 1876 1877 if (seg->s_ops == &segvn_ops) { 1878 segend = seg->s_base + seg->s_size; 1879 break; 1880 } 1881 1882 /* 1883 * We do ISM by looking into the private data 1884 * to determine the real size of the segment. 1885 */ 1886 if (seg->s_ops == &segspt_shmops) { 1887 segend = seg->s_base + spt_realsize(seg); 1888 if (addr < segend) 1889 break; 1890 } 1891 1892 seg = AS_SEGNEXT(as, seg); 1893 1894 if (seg != NULL) 1895 addr = seg->s_base; 1896 } 1897 1898 *basep = addr; 1899 1900 if (segend > eaddr) 1901 *lenp = eaddr - addr; 1902 else 1903 *lenp = segend - addr; 1904 1905 AS_LOCK_EXIT(as, &as->a_lock); 1906 return (0); 1907 } 1908 1909 /* 1910 * Swap the pages associated with the address space as out to 1911 * secondary storage, returning the number of bytes actually 1912 * swapped. 1913 * 1914 * The value returned is intended to correlate well with the process's 1915 * memory requirements. Its usefulness for this purpose depends on 1916 * how well the segment-level routines do at returning accurate 1917 * information. 1918 */ 1919 size_t 1920 as_swapout(struct as *as) 1921 { 1922 struct seg *seg; 1923 size_t swpcnt = 0; 1924 1925 /* 1926 * Kernel-only processes have given up their address 1927 * spaces. Of course, we shouldn't be attempting to 1928 * swap out such processes in the first place... 1929 */ 1930 if (as == NULL) 1931 return (0); 1932 1933 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1934 1935 /* Prevent XHATs from attaching */ 1936 mutex_enter(&as->a_contents); 1937 AS_SETBUSY(as); 1938 mutex_exit(&as->a_contents); 1939 1940 1941 /* 1942 * Free all mapping resources associated with the address 1943 * space. The segment-level swapout routines capitalize 1944 * on this unmapping by scavanging pages that have become 1945 * unmapped here. 1946 */ 1947 hat_swapout(as->a_hat); 1948 if (as->a_xhat != NULL) 1949 xhat_swapout_all(as); 1950 1951 mutex_enter(&as->a_contents); 1952 AS_CLRBUSY(as); 1953 mutex_exit(&as->a_contents); 1954 1955 /* 1956 * Call the swapout routines of all segments in the address 1957 * space to do the actual work, accumulating the amount of 1958 * space reclaimed. 1959 */ 1960 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1961 struct seg_ops *ov = seg->s_ops; 1962 1963 /* 1964 * We have to check to see if the seg has 1965 * an ops vector because the seg may have 1966 * been in the middle of being set up when 1967 * the process was picked for swapout. 1968 */ 1969 if ((ov != NULL) && (ov->swapout != NULL)) 1970 swpcnt += SEGOP_SWAPOUT(seg); 1971 } 1972 AS_LOCK_EXIT(as, &as->a_lock); 1973 return (swpcnt); 1974 } 1975 1976 /* 1977 * Determine whether data from the mappings in interval [addr, addr + size) 1978 * are in the primary memory (core) cache. 1979 */ 1980 int 1981 as_incore(struct as *as, caddr_t addr, 1982 size_t size, char *vec, size_t *sizep) 1983 { 1984 struct seg *seg; 1985 size_t ssize; 1986 caddr_t raddr; /* rounded down addr */ 1987 size_t rsize; /* rounded up size */ 1988 size_t isize; /* iteration size */ 1989 int error = 0; /* result, assume success */ 1990 1991 *sizep = 0; 1992 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1993 rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) - 1994 (size_t)raddr; 1995 1996 if (raddr + rsize < raddr) /* check for wraparound */ 1997 return (ENOMEM); 1998 1999 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2000 seg = as_segat(as, raddr); 2001 if (seg == NULL) { 2002 AS_LOCK_EXIT(as, &as->a_lock); 2003 return (-1); 2004 } 2005 2006 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2007 if (raddr >= seg->s_base + seg->s_size) { 2008 seg = AS_SEGNEXT(as, seg); 2009 if (seg == NULL || raddr != seg->s_base) { 2010 error = -1; 2011 break; 2012 } 2013 } 2014 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2015 ssize = seg->s_base + seg->s_size - raddr; 2016 else 2017 ssize = rsize; 2018 *sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec); 2019 if (isize != ssize) { 2020 error = -1; 2021 break; 2022 } 2023 vec += btopr(ssize); 2024 } 2025 AS_LOCK_EXIT(as, &as->a_lock); 2026 return (error); 2027 } 2028 2029 static void 2030 as_segunlock(struct seg *seg, caddr_t addr, int attr, 2031 ulong_t *bitmap, size_t position, size_t npages) 2032 { 2033 caddr_t range_start; 2034 size_t pos1 = position; 2035 size_t pos2; 2036 size_t size; 2037 size_t end_pos = npages + position; 2038 2039 while (bt_range(bitmap, &pos1, &pos2, end_pos)) { 2040 size = ptob((pos2 - pos1)); 2041 range_start = (caddr_t)((uintptr_t)addr + 2042 ptob(pos1 - position)); 2043 2044 (void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK, 2045 (ulong_t *)NULL, (size_t)NULL); 2046 pos1 = pos2; 2047 } 2048 } 2049 2050 static void 2051 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map, 2052 caddr_t raddr, size_t rsize) 2053 { 2054 struct seg *seg = as_segat(as, raddr); 2055 size_t ssize; 2056 2057 while (rsize != 0) { 2058 if (raddr >= seg->s_base + seg->s_size) 2059 seg = AS_SEGNEXT(as, seg); 2060 2061 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2062 ssize = seg->s_base + seg->s_size - raddr; 2063 else 2064 ssize = rsize; 2065 2066 as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize)); 2067 2068 rsize -= ssize; 2069 raddr += ssize; 2070 } 2071 } 2072 2073 /* 2074 * Cache control operations over the interval [addr, addr + size) in 2075 * address space "as". 2076 */ 2077 /*ARGSUSED*/ 2078 int 2079 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr, 2080 uintptr_t arg, ulong_t *lock_map, size_t pos) 2081 { 2082 struct seg *seg; /* working segment */ 2083 caddr_t raddr; /* rounded down addr */ 2084 caddr_t initraddr; /* saved initial rounded down addr */ 2085 size_t rsize; /* rounded up size */ 2086 size_t initrsize; /* saved initial rounded up size */ 2087 size_t ssize; /* size of seg */ 2088 int error = 0; /* result */ 2089 size_t mlock_size; /* size of bitmap */ 2090 ulong_t *mlock_map; /* pointer to bitmap used */ 2091 /* to represent the locked */ 2092 /* pages. */ 2093 retry: 2094 if (error == IE_RETRY) 2095 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2096 else 2097 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2098 2099 /* 2100 * If these are address space lock/unlock operations, loop over 2101 * all segments in the address space, as appropriate. 2102 */ 2103 if (func == MC_LOCKAS) { 2104 size_t npages, idx; 2105 size_t rlen = 0; /* rounded as length */ 2106 2107 idx = pos; 2108 2109 if (arg & MCL_FUTURE) { 2110 mutex_enter(&as->a_contents); 2111 AS_SETPGLCK(as); 2112 mutex_exit(&as->a_contents); 2113 } 2114 if ((arg & MCL_CURRENT) == 0) { 2115 AS_LOCK_EXIT(as, &as->a_lock); 2116 return (0); 2117 } 2118 2119 seg = AS_SEGFIRST(as); 2120 if (seg == NULL) { 2121 AS_LOCK_EXIT(as, &as->a_lock); 2122 return (0); 2123 } 2124 2125 do { 2126 raddr = (caddr_t)((uintptr_t)seg->s_base & 2127 (uintptr_t)PAGEMASK); 2128 rlen += (((uintptr_t)(seg->s_base + seg->s_size) + 2129 PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr; 2130 } while ((seg = AS_SEGNEXT(as, seg)) != NULL); 2131 2132 mlock_size = BT_BITOUL(btopr(rlen)); 2133 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2134 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2135 AS_LOCK_EXIT(as, &as->a_lock); 2136 return (EAGAIN); 2137 } 2138 2139 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2140 error = SEGOP_LOCKOP(seg, seg->s_base, 2141 seg->s_size, attr, MC_LOCK, mlock_map, pos); 2142 if (error != 0) 2143 break; 2144 pos += seg_pages(seg); 2145 } 2146 2147 if (error) { 2148 for (seg = AS_SEGFIRST(as); seg != NULL; 2149 seg = AS_SEGNEXT(as, seg)) { 2150 2151 raddr = (caddr_t)((uintptr_t)seg->s_base & 2152 (uintptr_t)PAGEMASK); 2153 npages = seg_pages(seg); 2154 as_segunlock(seg, raddr, attr, mlock_map, 2155 idx, npages); 2156 idx += npages; 2157 } 2158 } 2159 2160 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2161 AS_LOCK_EXIT(as, &as->a_lock); 2162 goto lockerr; 2163 } else if (func == MC_UNLOCKAS) { 2164 mutex_enter(&as->a_contents); 2165 AS_CLRPGLCK(as); 2166 mutex_exit(&as->a_contents); 2167 2168 for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) { 2169 error = SEGOP_LOCKOP(seg, seg->s_base, 2170 seg->s_size, attr, MC_UNLOCK, NULL, 0); 2171 if (error != 0) 2172 break; 2173 } 2174 2175 AS_LOCK_EXIT(as, &as->a_lock); 2176 goto lockerr; 2177 } 2178 2179 /* 2180 * Normalize addresses and sizes. 2181 */ 2182 initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2183 initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2184 (size_t)raddr; 2185 2186 if (raddr + rsize < raddr) { /* check for wraparound */ 2187 AS_LOCK_EXIT(as, &as->a_lock); 2188 return (ENOMEM); 2189 } 2190 2191 /* 2192 * Get initial segment. 2193 */ 2194 if ((seg = as_segat(as, raddr)) == NULL) { 2195 AS_LOCK_EXIT(as, &as->a_lock); 2196 return (ENOMEM); 2197 } 2198 2199 if (func == MC_LOCK) { 2200 mlock_size = BT_BITOUL(btopr(rsize)); 2201 if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size * 2202 sizeof (ulong_t), KM_NOSLEEP)) == NULL) { 2203 AS_LOCK_EXIT(as, &as->a_lock); 2204 return (EAGAIN); 2205 } 2206 } 2207 2208 /* 2209 * Loop over all segments. If a hole in the address range is 2210 * discovered, then fail. For each segment, perform the appropriate 2211 * control operation. 2212 */ 2213 while (rsize != 0) { 2214 2215 /* 2216 * Make sure there's no hole, calculate the portion 2217 * of the next segment to be operated over. 2218 */ 2219 if (raddr >= seg->s_base + seg->s_size) { 2220 seg = AS_SEGNEXT(as, seg); 2221 if (seg == NULL || raddr != seg->s_base) { 2222 if (func == MC_LOCK) { 2223 as_unlockerr(as, attr, mlock_map, 2224 initraddr, initrsize - rsize); 2225 kmem_free(mlock_map, 2226 mlock_size * sizeof (ulong_t)); 2227 } 2228 AS_LOCK_EXIT(as, &as->a_lock); 2229 return (ENOMEM); 2230 } 2231 } 2232 if ((raddr + rsize) > (seg->s_base + seg->s_size)) 2233 ssize = seg->s_base + seg->s_size - raddr; 2234 else 2235 ssize = rsize; 2236 2237 /* 2238 * Dispatch on specific function. 2239 */ 2240 switch (func) { 2241 2242 /* 2243 * Synchronize cached data from mappings with backing 2244 * objects. 2245 */ 2246 case MC_SYNC: 2247 if (error = SEGOP_SYNC(seg, raddr, ssize, 2248 attr, (uint_t)arg)) { 2249 AS_LOCK_EXIT(as, &as->a_lock); 2250 return (error); 2251 } 2252 break; 2253 2254 /* 2255 * Lock pages in memory. 2256 */ 2257 case MC_LOCK: 2258 if (error = SEGOP_LOCKOP(seg, raddr, ssize, 2259 attr, func, mlock_map, pos)) { 2260 as_unlockerr(as, attr, mlock_map, initraddr, 2261 initrsize - rsize + ssize); 2262 kmem_free(mlock_map, mlock_size * 2263 sizeof (ulong_t)); 2264 AS_LOCK_EXIT(as, &as->a_lock); 2265 goto lockerr; 2266 } 2267 break; 2268 2269 /* 2270 * Unlock mapped pages. 2271 */ 2272 case MC_UNLOCK: 2273 (void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func, 2274 (ulong_t *)NULL, (size_t)NULL); 2275 break; 2276 2277 /* 2278 * Store VM advise for mapped pages in segment layer. 2279 */ 2280 case MC_ADVISE: 2281 error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg); 2282 2283 /* 2284 * Check for regular errors and special retry error 2285 */ 2286 if (error) { 2287 if (error == IE_RETRY) { 2288 /* 2289 * Need to acquire writers lock, so 2290 * have to drop readers lock and start 2291 * all over again 2292 */ 2293 AS_LOCK_EXIT(as, &as->a_lock); 2294 goto retry; 2295 } else if (error == IE_REATTACH) { 2296 /* 2297 * Find segment for current address 2298 * because current segment just got 2299 * split or concatenated 2300 */ 2301 seg = as_segat(as, raddr); 2302 if (seg == NULL) { 2303 AS_LOCK_EXIT(as, &as->a_lock); 2304 return (ENOMEM); 2305 } 2306 } else { 2307 /* 2308 * Regular error 2309 */ 2310 AS_LOCK_EXIT(as, &as->a_lock); 2311 return (error); 2312 } 2313 } 2314 break; 2315 2316 /* 2317 * Can't happen. 2318 */ 2319 default: 2320 panic("as_ctl: bad operation %d", func); 2321 /*NOTREACHED*/ 2322 } 2323 2324 rsize -= ssize; 2325 raddr += ssize; 2326 } 2327 2328 if (func == MC_LOCK) 2329 kmem_free(mlock_map, mlock_size * sizeof (ulong_t)); 2330 AS_LOCK_EXIT(as, &as->a_lock); 2331 return (0); 2332 lockerr: 2333 2334 /* 2335 * If the lower levels returned EDEADLK for a segment lockop, 2336 * it means that we should retry the operation. Let's wait 2337 * a bit also to let the deadlock causing condition clear. 2338 * This is part of a gross hack to work around a design flaw 2339 * in the ufs/sds logging code and should go away when the 2340 * logging code is re-designed to fix the problem. See bug 2341 * 4125102 for details of the problem. 2342 */ 2343 if (error == EDEADLK) { 2344 delay(deadlk_wait); 2345 error = 0; 2346 goto retry; 2347 } 2348 return (error); 2349 } 2350 2351 /* 2352 * Special code for exec to move the stack segment from its interim 2353 * place in the old address to the right place in the new address space. 2354 */ 2355 /*ARGSUSED*/ 2356 int 2357 as_exec(struct as *oas, caddr_t ostka, size_t stksz, 2358 struct as *nas, caddr_t nstka, uint_t hatflag) 2359 { 2360 struct seg *stkseg; 2361 2362 AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER); 2363 stkseg = as_segat(oas, ostka); 2364 stkseg = as_removeseg(oas, stkseg); 2365 ASSERT(stkseg != NULL); 2366 ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz); 2367 stkseg->s_as = nas; 2368 stkseg->s_base = nstka; 2369 2370 /* 2371 * It's ok to lock the address space we are about to exec to. 2372 */ 2373 AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER); 2374 ASSERT(avl_numnodes(&nas->a_wpage) == 0); 2375 nas->a_size += stkseg->s_size; 2376 oas->a_size -= stkseg->s_size; 2377 (void) as_addseg(nas, stkseg); 2378 AS_LOCK_EXIT(nas, &nas->a_lock); 2379 AS_LOCK_EXIT(oas, &oas->a_lock); 2380 return (0); 2381 } 2382 2383 static int 2384 f_decode(faultcode_t fault_err) 2385 { 2386 int error = 0; 2387 2388 switch (FC_CODE(fault_err)) { 2389 case FC_OBJERR: 2390 error = FC_ERRNO(fault_err); 2391 break; 2392 case FC_PROT: 2393 error = EACCES; 2394 break; 2395 default: 2396 error = EFAULT; 2397 break; 2398 } 2399 return (error); 2400 } 2401 2402 /* 2403 * lock pages in a given address space. Return shadow list. If 2404 * the list is NULL, the MMU mapping is also locked. 2405 */ 2406 int 2407 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr, 2408 size_t size, enum seg_rw rw) 2409 { 2410 size_t rsize; 2411 caddr_t base; 2412 caddr_t raddr; 2413 faultcode_t fault_err; 2414 struct seg *seg; 2415 int res; 2416 int prefaulted = 0; 2417 2418 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START, 2419 "as_pagelock_start: addr %p size %ld", addr, size); 2420 2421 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2422 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2423 (size_t)raddr; 2424 top: 2425 /* 2426 * if the request crosses two segments let 2427 * as_fault handle it. 2428 */ 2429 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2430 seg = as_findseg(as, addr, 0); 2431 if ((seg == NULL) || ((base = seg->s_base) > addr) || 2432 (addr + size) > base + seg->s_size) { 2433 AS_LOCK_EXIT(as, &as->a_lock); 2434 goto slow; 2435 } 2436 2437 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START, 2438 "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize); 2439 2440 /* 2441 * try to lock pages and pass back shadow list 2442 */ 2443 res = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw); 2444 2445 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end"); 2446 AS_LOCK_EXIT(as, &as->a_lock); 2447 if (res == 0) { 2448 return (0); 2449 } else if (res == ENOTSUP || prefaulted) { 2450 /* 2451 * (1) segment driver doesn't support PAGELOCK fastpath, or 2452 * (2) we've already tried fast path unsuccessfully after 2453 * faulting in the addr range below; system might be 2454 * thrashing or there may not be enough availrmem. 2455 */ 2456 goto slow; 2457 } 2458 2459 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_FAULT_START, 2460 "as_fault_start: addr %p size %ld", addr, size); 2461 2462 /* 2463 * we might get here because of some COW fault or non 2464 * existing page. Let as_fault deal with it. Just load 2465 * the page, don't lock the MMU mapping. 2466 */ 2467 fault_err = as_fault(as->a_hat, as, addr, size, F_INVAL, rw); 2468 if (fault_err != 0) { 2469 return (f_decode(fault_err)); 2470 } 2471 2472 prefaulted = 1; 2473 2474 /* 2475 * try fast path again; since we've dropped a_lock, 2476 * we need to try the dance from the start to see if 2477 * the addr range is still valid. 2478 */ 2479 goto top; 2480 slow: 2481 /* 2482 * load the page and lock the MMU mapping. 2483 */ 2484 fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw); 2485 if (fault_err != 0) { 2486 return (f_decode(fault_err)); 2487 } 2488 *ppp = NULL; 2489 2490 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end"); 2491 return (0); 2492 } 2493 2494 /* 2495 * unlock pages in a given address range 2496 */ 2497 void 2498 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size, 2499 enum seg_rw rw) 2500 { 2501 struct seg *seg; 2502 size_t rsize; 2503 caddr_t raddr; 2504 2505 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START, 2506 "as_pageunlock_start: addr %p size %ld", addr, size); 2507 2508 /* 2509 * if the shadow list is NULL, as_pagelock was 2510 * falling back to as_fault 2511 */ 2512 if (pp == NULL) { 2513 (void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw); 2514 return; 2515 } 2516 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2517 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2518 (size_t)raddr; 2519 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2520 seg = as_findseg(as, addr, 0); 2521 ASSERT(seg); 2522 TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START, 2523 "seg_unlock_start: raddr %p rsize %ld", raddr, rsize); 2524 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw); 2525 AS_LOCK_EXIT(as, &as->a_lock); 2526 TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end"); 2527 } 2528 2529 /* 2530 * reclaim cached pages in a given address range 2531 */ 2532 void 2533 as_pagereclaim(struct as *as, struct page **pp, caddr_t addr, 2534 size_t size, enum seg_rw rw) 2535 { 2536 struct seg *seg; 2537 size_t rsize; 2538 caddr_t raddr; 2539 2540 ASSERT(AS_READ_HELD(as, &as->a_lock)); 2541 ASSERT(pp != NULL); 2542 2543 raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2544 rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) - 2545 (size_t)raddr; 2546 seg = as_findseg(as, addr, 0); 2547 ASSERT(seg); 2548 SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGERECLAIM, rw); 2549 } 2550 2551 #define MAXPAGEFLIP 4 2552 #define MAXPAGEFLIPSIZ MAXPAGEFLIP*PAGESIZE 2553 2554 int 2555 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc, 2556 boolean_t wait) 2557 { 2558 struct seg *seg; 2559 size_t ssize; 2560 caddr_t raddr; /* rounded down addr */ 2561 size_t rsize; /* rounded up size */ 2562 int error = 0; 2563 size_t pgsz = page_get_pagesize(szc); 2564 2565 setpgsz_top: 2566 if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) { 2567 return (EINVAL); 2568 } 2569 2570 raddr = addr; 2571 rsize = size; 2572 2573 if (raddr + rsize < raddr) /* check for wraparound */ 2574 return (ENOMEM); 2575 2576 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2577 as_clearwatchprot(as, raddr, rsize); 2578 seg = as_segat(as, raddr); 2579 if (seg == NULL) { 2580 as_setwatch(as); 2581 AS_LOCK_EXIT(as, &as->a_lock); 2582 return (ENOMEM); 2583 } 2584 2585 for (; rsize != 0; rsize -= ssize, raddr += ssize) { 2586 if (raddr >= seg->s_base + seg->s_size) { 2587 seg = AS_SEGNEXT(as, seg); 2588 if (seg == NULL || raddr != seg->s_base) { 2589 error = ENOMEM; 2590 break; 2591 } 2592 } 2593 if ((raddr + rsize) > (seg->s_base + seg->s_size)) { 2594 ssize = seg->s_base + seg->s_size - raddr; 2595 } else { 2596 ssize = rsize; 2597 } 2598 2599 error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc); 2600 2601 if (error == IE_NOMEM) { 2602 error = EAGAIN; 2603 break; 2604 } 2605 2606 if (error == IE_RETRY) { 2607 AS_LOCK_EXIT(as, &as->a_lock); 2608 goto setpgsz_top; 2609 } 2610 2611 if (error == ENOTSUP) { 2612 error = EINVAL; 2613 break; 2614 } 2615 2616 if (wait && (error == EAGAIN)) { 2617 /* 2618 * Memory is currently locked. It must be unlocked 2619 * before this operation can succeed through a retry. 2620 * The possible reasons for locked memory and 2621 * corresponding strategies for unlocking are: 2622 * (1) Normal I/O 2623 * wait for a signal that the I/O operation 2624 * has completed and the memory is unlocked. 2625 * (2) Asynchronous I/O 2626 * The aio subsystem does not unlock pages when 2627 * the I/O is completed. Those pages are unlocked 2628 * when the application calls aiowait/aioerror. 2629 * So, to prevent blocking forever, cv_broadcast() 2630 * is done to wake up aio_cleanup_thread. 2631 * Subsequently, segvn_reclaim will be called, and 2632 * that will do AS_CLRUNMAPWAIT() and wake us up. 2633 * (3) Long term page locking: 2634 * This is not relevant for as_setpagesize() 2635 * because we cannot change the page size for 2636 * driver memory. The attempt to do so will 2637 * fail with a different error than EAGAIN so 2638 * there's no need to trigger as callbacks like 2639 * as_unmap, as_setprot or as_free would do. 2640 */ 2641 mutex_enter(&as->a_contents); 2642 if (AS_ISUNMAPWAIT(as) == 0) { 2643 cv_broadcast(&as->a_cv); 2644 } 2645 AS_SETUNMAPWAIT(as); 2646 AS_LOCK_EXIT(as, &as->a_lock); 2647 while (AS_ISUNMAPWAIT(as)) { 2648 cv_wait(&as->a_cv, &as->a_contents); 2649 } 2650 mutex_exit(&as->a_contents); 2651 goto setpgsz_top; 2652 } else if (error != 0) { 2653 break; 2654 } 2655 } 2656 as_setwatch(as); 2657 AS_LOCK_EXIT(as, &as->a_lock); 2658 return (error); 2659 } 2660 2661 /* 2662 * Setup all of the uninitialized watched pages that we can. 2663 */ 2664 void 2665 as_setwatch(struct as *as) 2666 { 2667 struct watched_page *pwp; 2668 struct seg *seg; 2669 caddr_t vaddr; 2670 uint_t prot; 2671 int err, retrycnt; 2672 2673 if (avl_numnodes(&as->a_wpage) == 0) 2674 return; 2675 2676 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2677 2678 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2679 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2680 retrycnt = 0; 2681 retry: 2682 vaddr = pwp->wp_vaddr; 2683 if (pwp->wp_oprot != 0 || /* already set up */ 2684 (seg = as_segat(as, vaddr)) == NULL || 2685 SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0) 2686 continue; 2687 2688 pwp->wp_oprot = prot; 2689 if (pwp->wp_read) 2690 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2691 if (pwp->wp_write) 2692 prot &= ~PROT_WRITE; 2693 if (pwp->wp_exec) 2694 prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2695 if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) { 2696 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2697 if (err == IE_RETRY) { 2698 pwp->wp_oprot = 0; 2699 ASSERT(retrycnt == 0); 2700 retrycnt++; 2701 goto retry; 2702 } 2703 } 2704 pwp->wp_prot = prot; 2705 } 2706 } 2707 2708 /* 2709 * Clear all of the watched pages in the address space. 2710 */ 2711 void 2712 as_clearwatch(struct as *as) 2713 { 2714 struct watched_page *pwp; 2715 struct seg *seg; 2716 caddr_t vaddr; 2717 uint_t prot; 2718 int err, retrycnt; 2719 2720 if (avl_numnodes(&as->a_wpage) == 0) 2721 return; 2722 2723 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2724 2725 for (pwp = avl_first(&as->a_wpage); pwp != NULL; 2726 pwp = AVL_NEXT(&as->a_wpage, pwp)) { 2727 retrycnt = 0; 2728 retry: 2729 vaddr = pwp->wp_vaddr; 2730 if (pwp->wp_oprot == 0 || /* not set up */ 2731 (seg = as_segat(as, vaddr)) == NULL) 2732 continue; 2733 2734 if ((prot = pwp->wp_oprot) != pwp->wp_prot) { 2735 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot); 2736 if (err == IE_RETRY) { 2737 ASSERT(retrycnt == 0); 2738 retrycnt++; 2739 goto retry; 2740 } 2741 } 2742 pwp->wp_oprot = 0; 2743 pwp->wp_prot = 0; 2744 } 2745 } 2746 2747 /* 2748 * Force a new setup for all the watched pages in the range. 2749 */ 2750 static void 2751 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot) 2752 { 2753 struct watched_page *pwp; 2754 struct watched_page tpw; 2755 caddr_t eaddr = addr + size; 2756 caddr_t vaddr; 2757 struct seg *seg; 2758 int err, retrycnt; 2759 uint_t wprot; 2760 avl_index_t where; 2761 2762 if (avl_numnodes(&as->a_wpage) == 0) 2763 return; 2764 2765 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2766 2767 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2768 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2769 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2770 2771 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2772 retrycnt = 0; 2773 vaddr = pwp->wp_vaddr; 2774 2775 wprot = prot; 2776 if (pwp->wp_read) 2777 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2778 if (pwp->wp_write) 2779 wprot &= ~PROT_WRITE; 2780 if (pwp->wp_exec) 2781 wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC); 2782 if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) { 2783 retry: 2784 seg = as_segat(as, vaddr); 2785 if (seg == NULL) { 2786 panic("as_setwatchprot: no seg"); 2787 /*NOTREACHED*/ 2788 } 2789 err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot); 2790 if (err == IE_RETRY) { 2791 ASSERT(retrycnt == 0); 2792 retrycnt++; 2793 goto retry; 2794 } 2795 } 2796 pwp->wp_oprot = prot; 2797 pwp->wp_prot = wprot; 2798 2799 pwp = AVL_NEXT(&as->a_wpage, pwp); 2800 } 2801 } 2802 2803 /* 2804 * Clear all of the watched pages in the range. 2805 */ 2806 static void 2807 as_clearwatchprot(struct as *as, caddr_t addr, size_t size) 2808 { 2809 caddr_t eaddr = addr + size; 2810 struct watched_page *pwp; 2811 struct watched_page tpw; 2812 uint_t prot; 2813 struct seg *seg; 2814 int err, retrycnt; 2815 avl_index_t where; 2816 2817 if (avl_numnodes(&as->a_wpage) == 0) 2818 return; 2819 2820 tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 2821 if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL) 2822 pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER); 2823 2824 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 2825 2826 while (pwp != NULL && pwp->wp_vaddr < eaddr) { 2827 ASSERT(addr >= pwp->wp_vaddr); 2828 2829 if ((prot = pwp->wp_oprot) != 0) { 2830 retrycnt = 0; 2831 2832 if (prot != pwp->wp_prot) { 2833 retry: 2834 seg = as_segat(as, pwp->wp_vaddr); 2835 if (seg == NULL) 2836 continue; 2837 err = SEGOP_SETPROT(seg, pwp->wp_vaddr, 2838 PAGESIZE, prot); 2839 if (err == IE_RETRY) { 2840 ASSERT(retrycnt == 0); 2841 retrycnt++; 2842 goto retry; 2843 2844 } 2845 } 2846 pwp->wp_oprot = 0; 2847 pwp->wp_prot = 0; 2848 } 2849 2850 pwp = AVL_NEXT(&as->a_wpage, pwp); 2851 } 2852 } 2853 2854 void 2855 as_signal_proc(struct as *as, k_siginfo_t *siginfo) 2856 { 2857 struct proc *p; 2858 2859 mutex_enter(&pidlock); 2860 for (p = practive; p; p = p->p_next) { 2861 if (p->p_as == as) { 2862 mutex_enter(&p->p_lock); 2863 if (p->p_as == as) 2864 sigaddq(p, NULL, siginfo, KM_NOSLEEP); 2865 mutex_exit(&p->p_lock); 2866 } 2867 } 2868 mutex_exit(&pidlock); 2869 } 2870 2871 /* 2872 * return memory object ID 2873 */ 2874 int 2875 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp) 2876 { 2877 struct seg *seg; 2878 int sts; 2879 2880 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 2881 seg = as_segat(as, addr); 2882 if (seg == NULL) { 2883 AS_LOCK_EXIT(as, &as->a_lock); 2884 return (EFAULT); 2885 } 2886 /* 2887 * catch old drivers which may not support getmemid 2888 */ 2889 if (seg->s_ops->getmemid == NULL) { 2890 AS_LOCK_EXIT(as, &as->a_lock); 2891 return (ENODEV); 2892 } 2893 2894 sts = SEGOP_GETMEMID(seg, addr, memidp); 2895 2896 AS_LOCK_EXIT(as, &as->a_lock); 2897 return (sts); 2898 } 2899