xref: /titanic_52/usr/src/uts/common/vm/vm_as.c (revision 3ed4a803a4d4b35e2773c194c9a6f4977687b542)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 /*
40  * VM - address spaces.
41  */
42 
43 #include <sys/types.h>
44 #include <sys/t_lock.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/systm.h>
48 #include <sys/mman.h>
49 #include <sys/sysmacros.h>
50 #include <sys/cpuvar.h>
51 #include <sys/sysinfo.h>
52 #include <sys/kmem.h>
53 #include <sys/vnode.h>
54 #include <sys/vmsystm.h>
55 #include <sys/cmn_err.h>
56 #include <sys/debug.h>
57 #include <sys/tnf_probe.h>
58 #include <sys/vtrace.h>
59 
60 #include <vm/hat.h>
61 #include <vm/xhat.h>
62 #include <vm/as.h>
63 #include <vm/seg.h>
64 #include <vm/seg_vn.h>
65 #include <vm/seg_dev.h>
66 #include <vm/seg_kmem.h>
67 #include <vm/seg_map.h>
68 #include <vm/seg_spt.h>
69 #include <vm/page.h>
70 
71 clock_t deadlk_wait = 1; /* number of ticks to wait before retrying */
72 
73 static struct kmem_cache *as_cache;
74 
75 static void as_setwatchprot(struct as *, caddr_t, size_t, uint_t);
76 static void as_clearwatchprot(struct as *, caddr_t, size_t);
77 int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
78 
79 
80 /*
81  * Verifying the segment lists is very time-consuming; it may not be
82  * desirable always to define VERIFY_SEGLIST when DEBUG is set.
83  */
84 #ifdef DEBUG
85 #define	VERIFY_SEGLIST
86 int do_as_verify = 0;
87 #endif
88 
89 /*
90  * Allocate a new callback data structure entry and fill in the events of
91  * interest, the address range of interest, and the callback argument.
92  * Link the entry on the as->a_callbacks list. A callback entry for the
93  * entire address space may be specified with vaddr = 0 and size = -1.
94  *
95  * CALLERS RESPONSIBILITY: If not calling from within the process context for
96  * the specified as, the caller must guarantee persistence of the specified as
97  * for the duration of this function (eg. pages being locked within the as
98  * will guarantee persistence).
99  */
100 int
101 as_add_callback(struct as *as, void (*cb_func)(), void *arg, uint_t events,
102 		caddr_t vaddr, size_t size, int sleepflag)
103 {
104 	struct as_callback 	*current_head, *cb;
105 	caddr_t 		saddr;
106 	size_t 			rsize;
107 
108 	/* callback function and an event are mandatory */
109 	if ((cb_func == NULL) || ((events & AS_ALL_EVENT) == 0))
110 		return (EINVAL);
111 
112 	/* Adding a callback after as_free has been called is not allowed */
113 	if (as == &kas)
114 		return (ENOMEM);
115 
116 	/*
117 	 * vaddr = 0 and size = -1 is used to indicate that the callback range
118 	 * is the entire address space so no rounding is done in that case.
119 	 */
120 	if (size != -1) {
121 		saddr = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
122 		rsize = (((size_t)(vaddr + size) + PAGEOFFSET) & PAGEMASK) -
123 		    (size_t)saddr;
124 		/* check for wraparound */
125 		if (saddr + rsize < saddr)
126 			return (ENOMEM);
127 	} else {
128 		if (vaddr != 0)
129 			return (EINVAL);
130 		saddr = vaddr;
131 		rsize = size;
132 	}
133 
134 	/* Allocate and initialize a callback entry */
135 	cb = kmem_zalloc(sizeof (struct as_callback), sleepflag);
136 	if (cb == NULL)
137 		return (EAGAIN);
138 
139 	cb->ascb_func = cb_func;
140 	cb->ascb_arg = arg;
141 	cb->ascb_events = events;
142 	cb->ascb_saddr = saddr;
143 	cb->ascb_len = rsize;
144 
145 	/* Add the entry to the list */
146 	mutex_enter(&as->a_contents);
147 	current_head = as->a_callbacks;
148 	as->a_callbacks = cb;
149 	cb->ascb_next = current_head;
150 
151 	/*
152 	 * The call to this function may lose in a race with
153 	 * a pertinent event - eg. a thread does long term memory locking
154 	 * but before the callback is added another thread executes as_unmap.
155 	 * A broadcast here resolves that.
156 	 */
157 	if ((cb->ascb_events & AS_UNMAPWAIT_EVENT) && AS_ISUNMAPWAIT(as)) {
158 		AS_CLRUNMAPWAIT(as);
159 		cv_broadcast(&as->a_cv);
160 	}
161 
162 	mutex_exit(&as->a_contents);
163 	return (0);
164 }
165 
166 /*
167  * Search the callback list for an entry which pertains to arg.
168  *
169  * This is called from within the client upon completion of the callback.
170  * RETURN VALUES:
171  *	AS_CALLBACK_DELETED  (callback entry found and deleted)
172  *	AS_CALLBACK_NOTFOUND (no callback entry found - this is ok)
173  *	AS_CALLBACK_DELETE_DEFERRED (callback is in process, delete of this
174  *			entry will be made in as_do_callbacks)
175  *
176  * If as_delete_callback encounters a matching entry with AS_CALLBACK_CALLED
177  * set, it indicates that as_do_callbacks is processing this entry.  The
178  * AS_ALL_EVENT events are cleared in the entry, and a broadcast is made
179  * to unblock as_do_callbacks, in case it is blocked.
180  *
181  * CALLERS RESPONSIBILITY: If not calling from within the process context for
182  * the specified as, the caller must guarantee persistence of the specified as
183  * for the duration of this function (eg. pages being locked within the as
184  * will guarantee persistence).
185  */
186 uint_t
187 as_delete_callback(struct as *as, void *arg)
188 {
189 	struct as_callback **prevcb = &as->a_callbacks;
190 	struct as_callback *cb;
191 	uint_t rc = AS_CALLBACK_NOTFOUND;
192 
193 	mutex_enter(&as->a_contents);
194 	for (cb = as->a_callbacks; cb; prevcb = &cb->ascb_next, cb = *prevcb) {
195 		if (cb->ascb_arg != arg)
196 			continue;
197 
198 		/*
199 		 * If the events indicate AS_CALLBACK_CALLED, just clear
200 		 * AS_ALL_EVENT in the events field and wakeup the thread
201 		 * that may be waiting in as_do_callbacks.  as_do_callbacks
202 		 * will take care of removing this entry from the list.  In
203 		 * that case, return AS_CALLBACK_DELETE_DEFERRED.  Otherwise
204 		 * (AS_CALLBACK_CALLED not set), just remove it from the
205 		 * list, return the memory and return AS_CALLBACK_DELETED.
206 		 */
207 		if ((cb->ascb_events & AS_CALLBACK_CALLED) != 0) {
208 			/* leave AS_CALLBACK_CALLED */
209 			cb->ascb_events &= ~AS_ALL_EVENT;
210 			rc = AS_CALLBACK_DELETE_DEFERRED;
211 			cv_broadcast(&as->a_cv);
212 		} else {
213 			*prevcb = cb->ascb_next;
214 			kmem_free(cb, sizeof (struct as_callback));
215 			rc = AS_CALLBACK_DELETED;
216 		}
217 		break;
218 	}
219 	mutex_exit(&as->a_contents);
220 	return (rc);
221 }
222 
223 /*
224  * Searches the as callback list for a matching entry.
225  * Returns a pointer to the first matching callback, or NULL if
226  * nothing is found.
227  * This function never sleeps so it is ok to call it with more
228  * locks held but the (required) a_contents mutex.
229  *
230  * See also comment on as_do_callbacks below.
231  */
232 static struct as_callback *
233 as_find_callback(struct as *as, uint_t events, caddr_t event_addr,
234 			size_t event_len)
235 {
236 	struct as_callback	*cb;
237 
238 	ASSERT(MUTEX_HELD(&as->a_contents));
239 	for (cb = as->a_callbacks; cb != NULL; cb = cb->ascb_next) {
240 		/*
241 		 * If the callback has not already been called, then
242 		 * check if events or address range pertains.  An event_len
243 		 * of zero means do an unconditional callback.
244 		 */
245 		if (((cb->ascb_events & AS_CALLBACK_CALLED) != 0) ||
246 		    ((event_len != 0) && (((cb->ascb_events & events) == 0) ||
247 		    (event_addr + event_len < cb->ascb_saddr) ||
248 		    (event_addr > (cb->ascb_saddr + cb->ascb_len))))) {
249 			continue;
250 		}
251 		break;
252 	}
253 	return (cb);
254 }
255 
256 /*
257  * Executes a given callback and removes it from the callback list for
258  * this address space.
259  * This function may sleep so the caller must drop all locks except
260  * a_contents before calling this func.
261  *
262  * See also comments on as_do_callbacks below.
263  */
264 static void
265 as_execute_callback(struct as *as, struct as_callback *cb,
266 				uint_t events)
267 {
268 	struct as_callback **prevcb;
269 	void	*cb_arg;
270 
271 	ASSERT(MUTEX_HELD(&as->a_contents) && (cb->ascb_events & events));
272 	cb->ascb_events |= AS_CALLBACK_CALLED;
273 	mutex_exit(&as->a_contents);
274 	(*cb->ascb_func)(as, cb->ascb_arg, events);
275 	mutex_enter(&as->a_contents);
276 	/*
277 	 * the callback function is required to delete the callback
278 	 * when the callback function determines it is OK for
279 	 * this thread to continue. as_delete_callback will clear
280 	 * the AS_ALL_EVENT in the events field when it is deleted.
281 	 * If the callback function called as_delete_callback,
282 	 * events will already be cleared and there will be no blocking.
283 	 */
284 	while ((cb->ascb_events & events) != 0) {
285 		cv_wait(&as->a_cv, &as->a_contents);
286 	}
287 	/*
288 	 * This entry needs to be taken off the list. Normally, the
289 	 * callback func itself does that, but unfortunately the list
290 	 * may have changed while the callback was running because the
291 	 * a_contents mutex was dropped and someone else other than the
292 	 * callback func itself could have called as_delete_callback,
293 	 * so we have to search to find this entry again.  The entry
294 	 * must have AS_CALLBACK_CALLED, and have the same 'arg'.
295 	 */
296 	cb_arg = cb->ascb_arg;
297 	prevcb = &as->a_callbacks;
298 	for (cb = as->a_callbacks; cb != NULL;
299 	    prevcb = &cb->ascb_next, cb = *prevcb) {
300 		if (((cb->ascb_events & AS_CALLBACK_CALLED) == 0) ||
301 		    (cb_arg != cb->ascb_arg)) {
302 			continue;
303 		}
304 		*prevcb = cb->ascb_next;
305 		kmem_free(cb, sizeof (struct as_callback));
306 		break;
307 	}
308 }
309 
310 /*
311  * Check the callback list for a matching event and intersection of
312  * address range. If there is a match invoke the callback.  Skip an entry if:
313  *    - a callback is already in progress for this entry (AS_CALLBACK_CALLED)
314  *    - not event of interest
315  *    - not address range of interest
316  *
317  * An event_len of zero indicates a request for an unconditional callback
318  * (regardless of event), only the AS_CALLBACK_CALLED is checked.  The
319  * a_contents lock must be dropped before a callback, so only one callback
320  * can be done before returning. Return -1 (true) if a callback was
321  * executed and removed from the list, else return 0 (false).
322  *
323  * The logically separate parts, i.e. finding a matching callback and
324  * executing a given callback have been separated into two functions
325  * so that they can be called with different sets of locks held beyond
326  * the always-required a_contents. as_find_callback does not sleep so
327  * it is ok to call it if more locks than a_contents (i.e. the a_lock
328  * rwlock) are held. as_execute_callback on the other hand may sleep
329  * so all locks beyond a_contents must be dropped by the caller if one
330  * does not want to end comatose.
331  */
332 static int
333 as_do_callbacks(struct as *as, uint_t events, caddr_t event_addr,
334 			size_t event_len)
335 {
336 	struct as_callback *cb;
337 
338 	if ((cb = as_find_callback(as, events, event_addr, event_len))) {
339 		as_execute_callback(as, cb, events);
340 		return (-1);
341 	}
342 	return (0);
343 }
344 
345 /*
346  * Search for the segment containing addr. If a segment containing addr
347  * exists, that segment is returned.  If no such segment exists, and
348  * the list spans addresses greater than addr, then the first segment
349  * whose base is greater than addr is returned; otherwise, NULL is
350  * returned unless tail is true, in which case the last element of the
351  * list is returned.
352  *
353  * a_seglast is used to cache the last found segment for repeated
354  * searches to the same addr (which happens frequently).
355  */
356 struct seg *
357 as_findseg(struct as *as, caddr_t addr, int tail)
358 {
359 	struct seg *seg = as->a_seglast;
360 	avl_index_t where;
361 
362 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
363 
364 	if (seg != NULL &&
365 	    seg->s_base <= addr &&
366 	    addr < seg->s_base + seg->s_size)
367 		return (seg);
368 
369 	seg = avl_find(&as->a_segtree, &addr, &where);
370 	if (seg != NULL)
371 		return (as->a_seglast = seg);
372 
373 	seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
374 	if (seg == NULL && tail)
375 		seg = avl_last(&as->a_segtree);
376 	return (as->a_seglast = seg);
377 }
378 
379 #ifdef VERIFY_SEGLIST
380 /*
381  * verify that the linked list is coherent
382  */
383 static void
384 as_verify(struct as *as)
385 {
386 	struct seg *seg, *seglast, *p, *n;
387 	uint_t nsegs = 0;
388 
389 	if (do_as_verify == 0)
390 		return;
391 
392 	seglast = as->a_seglast;
393 
394 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
395 		ASSERT(seg->s_as == as);
396 		p = AS_SEGPREV(as, seg);
397 		n = AS_SEGNEXT(as, seg);
398 		ASSERT(p == NULL || p->s_as == as);
399 		ASSERT(p == NULL || p->s_base < seg->s_base);
400 		ASSERT(n == NULL || n->s_base > seg->s_base);
401 		ASSERT(n != NULL || seg == avl_last(&as->a_segtree));
402 		if (seg == seglast)
403 			seglast = NULL;
404 		nsegs++;
405 	}
406 	ASSERT(seglast == NULL);
407 	ASSERT(avl_numnodes(&as->a_segtree) == nsegs);
408 }
409 #endif /* VERIFY_SEGLIST */
410 
411 /*
412  * Add a new segment to the address space. The avl_find()
413  * may be expensive so we attempt to use last segment accessed
414  * in as_gap() as an insertion point.
415  */
416 int
417 as_addseg(struct as  *as, struct seg *newseg)
418 {
419 	struct seg *seg;
420 	caddr_t addr;
421 	caddr_t eaddr;
422 	avl_index_t where;
423 
424 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
425 
426 	as->a_updatedir = 1;	/* inform /proc */
427 	gethrestime(&as->a_updatetime);
428 
429 	if (as->a_lastgaphl != NULL) {
430 		struct seg *hseg = NULL;
431 		struct seg *lseg = NULL;
432 
433 		if (as->a_lastgaphl->s_base > newseg->s_base) {
434 			hseg = as->a_lastgaphl;
435 			lseg = AVL_PREV(&as->a_segtree, hseg);
436 		} else {
437 			lseg = as->a_lastgaphl;
438 			hseg = AVL_NEXT(&as->a_segtree, lseg);
439 		}
440 
441 		if (hseg && lseg && lseg->s_base < newseg->s_base &&
442 		    hseg->s_base > newseg->s_base) {
443 			avl_insert_here(&as->a_segtree, newseg, lseg,
444 			    AVL_AFTER);
445 			as->a_lastgaphl = NULL;
446 			as->a_seglast = newseg;
447 			return (0);
448 		}
449 		as->a_lastgaphl = NULL;
450 	}
451 
452 	addr = newseg->s_base;
453 	eaddr = addr + newseg->s_size;
454 again:
455 
456 	seg = avl_find(&as->a_segtree, &addr, &where);
457 
458 	if (seg == NULL)
459 		seg = avl_nearest(&as->a_segtree, where, AVL_AFTER);
460 
461 	if (seg == NULL)
462 		seg = avl_last(&as->a_segtree);
463 
464 	if (seg != NULL) {
465 		caddr_t base = seg->s_base;
466 
467 		/*
468 		 * If top of seg is below the requested address, then
469 		 * the insertion point is at the end of the linked list,
470 		 * and seg points to the tail of the list.  Otherwise,
471 		 * the insertion point is immediately before seg.
472 		 */
473 		if (base + seg->s_size > addr) {
474 			if (addr >= base || eaddr > base) {
475 #ifdef __sparc
476 				extern struct seg_ops segnf_ops;
477 
478 				/*
479 				 * no-fault segs must disappear if overlaid.
480 				 * XXX need new segment type so
481 				 * we don't have to check s_ops
482 				 */
483 				if (seg->s_ops == &segnf_ops) {
484 					seg_unmap(seg);
485 					goto again;
486 				}
487 #endif
488 				return (-1);	/* overlapping segment */
489 			}
490 		}
491 	}
492 	as->a_seglast = newseg;
493 	avl_insert(&as->a_segtree, newseg, where);
494 
495 #ifdef VERIFY_SEGLIST
496 	as_verify(as);
497 #endif
498 	return (0);
499 }
500 
501 struct seg *
502 as_removeseg(struct as *as, struct seg *seg)
503 {
504 	avl_tree_t *t;
505 
506 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
507 
508 	as->a_updatedir = 1;	/* inform /proc */
509 	gethrestime(&as->a_updatetime);
510 
511 	if (seg == NULL)
512 		return (NULL);
513 
514 	t = &as->a_segtree;
515 	if (as->a_seglast == seg)
516 		as->a_seglast = NULL;
517 	as->a_lastgaphl = NULL;
518 
519 	/*
520 	 * if this segment is at an address higher than
521 	 * a_lastgap, set a_lastgap to the next segment (NULL if last segment)
522 	 */
523 	if (as->a_lastgap &&
524 	    (seg == as->a_lastgap || seg->s_base > as->a_lastgap->s_base))
525 		as->a_lastgap = AVL_NEXT(t, seg);
526 
527 	/*
528 	 * remove the segment from the seg tree
529 	 */
530 	avl_remove(t, seg);
531 
532 #ifdef VERIFY_SEGLIST
533 	as_verify(as);
534 #endif
535 	return (seg);
536 }
537 
538 /*
539  * Find a segment containing addr.
540  */
541 struct seg *
542 as_segat(struct as *as, caddr_t addr)
543 {
544 	struct seg *seg = as->a_seglast;
545 
546 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
547 
548 	if (seg != NULL && seg->s_base <= addr &&
549 	    addr < seg->s_base + seg->s_size)
550 		return (seg);
551 
552 	seg = avl_find(&as->a_segtree, &addr, NULL);
553 	return (seg);
554 }
555 
556 /*
557  * Serialize all searches for holes in an address space to
558  * prevent two or more threads from allocating the same virtual
559  * address range.  The address space must not be "read/write"
560  * locked by the caller since we may block.
561  */
562 void
563 as_rangelock(struct as *as)
564 {
565 	mutex_enter(&as->a_contents);
566 	while (AS_ISCLAIMGAP(as))
567 		cv_wait(&as->a_cv, &as->a_contents);
568 	AS_SETCLAIMGAP(as);
569 	mutex_exit(&as->a_contents);
570 }
571 
572 /*
573  * Release hold on a_state & AS_CLAIMGAP and signal any other blocked threads.
574  */
575 void
576 as_rangeunlock(struct as *as)
577 {
578 	mutex_enter(&as->a_contents);
579 	AS_CLRCLAIMGAP(as);
580 	cv_signal(&as->a_cv);
581 	mutex_exit(&as->a_contents);
582 }
583 
584 /*
585  * compar segments (or just an address) by segment address range
586  */
587 static int
588 as_segcompar(const void *x, const void *y)
589 {
590 	struct seg *a = (struct seg *)x;
591 	struct seg *b = (struct seg *)y;
592 
593 	if (a->s_base < b->s_base)
594 		return (-1);
595 	if (a->s_base >= b->s_base + b->s_size)
596 		return (1);
597 	return (0);
598 }
599 
600 
601 void
602 as_avlinit(struct as *as)
603 {
604 	avl_create(&as->a_segtree, as_segcompar, sizeof (struct seg),
605 	    offsetof(struct seg, s_tree));
606 	avl_create(&as->a_wpage, wp_compare, sizeof (struct watched_page),
607 	    offsetof(struct watched_page, wp_link));
608 }
609 
610 /*ARGSUSED*/
611 static int
612 as_constructor(void *buf, void *cdrarg, int kmflags)
613 {
614 	struct as *as = buf;
615 
616 	mutex_init(&as->a_contents, NULL, MUTEX_DEFAULT, NULL);
617 	cv_init(&as->a_cv, NULL, CV_DEFAULT, NULL);
618 	rw_init(&as->a_lock, NULL, RW_DEFAULT, NULL);
619 	as_avlinit(as);
620 	return (0);
621 }
622 
623 /*ARGSUSED1*/
624 static void
625 as_destructor(void *buf, void *cdrarg)
626 {
627 	struct as *as = buf;
628 
629 	avl_destroy(&as->a_segtree);
630 	mutex_destroy(&as->a_contents);
631 	cv_destroy(&as->a_cv);
632 	rw_destroy(&as->a_lock);
633 }
634 
635 void
636 as_init(void)
637 {
638 	as_cache = kmem_cache_create("as_cache", sizeof (struct as), 0,
639 	    as_constructor, as_destructor, NULL, NULL, NULL, 0);
640 }
641 
642 /*
643  * Allocate and initialize an address space data structure.
644  * We call hat_alloc to allow any machine dependent
645  * information in the hat structure to be initialized.
646  */
647 struct as *
648 as_alloc(void)
649 {
650 	struct as *as;
651 
652 	as = kmem_cache_alloc(as_cache, KM_SLEEP);
653 
654 	as->a_flags		= 0;
655 	as->a_vbits		= 0;
656 	as->a_hrm		= NULL;
657 	as->a_seglast		= NULL;
658 	as->a_size		= 0;
659 	as->a_updatedir		= 0;
660 	gethrestime(&as->a_updatetime);
661 	as->a_objectdir		= NULL;
662 	as->a_sizedir		= 0;
663 	as->a_userlimit		= (caddr_t)USERLIMIT;
664 	as->a_lastgap		= NULL;
665 	as->a_lastgaphl		= NULL;
666 	as->a_callbacks		= NULL;
667 
668 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
669 	as->a_hat = hat_alloc(as);	/* create hat for default system mmu */
670 	AS_LOCK_EXIT(as, &as->a_lock);
671 
672 	as->a_xhat = NULL;
673 
674 	return (as);
675 }
676 
677 /*
678  * Free an address space data structure.
679  * Need to free the hat first and then
680  * all the segments on this as and finally
681  * the space for the as struct itself.
682  */
683 void
684 as_free(struct as *as)
685 {
686 	struct hat *hat = as->a_hat;
687 	struct seg *seg, *next;
688 	int called = 0;
689 
690 top:
691 	/*
692 	 * Invoke ALL callbacks. as_do_callbacks will do one callback
693 	 * per call, and not return (-1) until the callback has completed.
694 	 * When as_do_callbacks returns zero, all callbacks have completed.
695 	 */
696 	mutex_enter(&as->a_contents);
697 	while (as->a_callbacks && as_do_callbacks(as, AS_ALL_EVENT, 0, 0))
698 		;
699 
700 	/* This will prevent new XHATs from attaching to as */
701 	if (!called)
702 		AS_SETBUSY(as);
703 	mutex_exit(&as->a_contents);
704 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
705 
706 	if (!called) {
707 		called = 1;
708 		hat_free_start(hat);
709 		if (as->a_xhat != NULL)
710 			xhat_free_start_all(as);
711 	}
712 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = next) {
713 		int err;
714 
715 		next = AS_SEGNEXT(as, seg);
716 retry:
717 		err = SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
718 		if (err == EAGAIN) {
719 			mutex_enter(&as->a_contents);
720 			if (as->a_callbacks) {
721 				AS_LOCK_EXIT(as, &as->a_lock);
722 			} else if (!AS_ISNOUNMAPWAIT(as)) {
723 				/*
724 				 * Memory is currently locked. Wait for a
725 				 * cv_signal that it has been unlocked, then
726 				 * try the operation again.
727 				 */
728 				if (AS_ISUNMAPWAIT(as) == 0)
729 					cv_broadcast(&as->a_cv);
730 				AS_SETUNMAPWAIT(as);
731 				AS_LOCK_EXIT(as, &as->a_lock);
732 				while (AS_ISUNMAPWAIT(as))
733 					cv_wait(&as->a_cv, &as->a_contents);
734 			} else {
735 				/*
736 				 * We may have raced with
737 				 * segvn_reclaim()/segspt_reclaim(). In this
738 				 * case clean nounmapwait flag and retry since
739 				 * softlockcnt in this segment may be already
740 				 * 0.  We don't drop as writer lock so our
741 				 * number of retries without sleeping should
742 				 * be very small. See segvn_reclaim() for
743 				 * more comments.
744 				 */
745 				AS_CLRNOUNMAPWAIT(as);
746 				mutex_exit(&as->a_contents);
747 				goto retry;
748 			}
749 			mutex_exit(&as->a_contents);
750 			goto top;
751 		} else {
752 			/*
753 			 * We do not expect any other error return at this
754 			 * time. This is similar to an ASSERT in seg_unmap()
755 			 */
756 			ASSERT(err == 0);
757 		}
758 	}
759 	hat_free_end(hat);
760 	if (as->a_xhat != NULL)
761 		xhat_free_end_all(as);
762 	AS_LOCK_EXIT(as, &as->a_lock);
763 
764 	/* /proc stuff */
765 	ASSERT(avl_numnodes(&as->a_wpage) == 0);
766 	if (as->a_objectdir) {
767 		kmem_free(as->a_objectdir, as->a_sizedir * sizeof (vnode_t *));
768 		as->a_objectdir = NULL;
769 		as->a_sizedir = 0;
770 	}
771 
772 	/*
773 	 * Free the struct as back to kmem.  Assert it has no segments.
774 	 */
775 	ASSERT(avl_numnodes(&as->a_segtree) == 0);
776 	kmem_cache_free(as_cache, as);
777 }
778 
779 int
780 as_dup(struct as *as, struct proc *forkedproc)
781 {
782 	struct as *newas;
783 	struct seg *seg, *newseg;
784 	int error;
785 
786 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
787 	as_clearwatch(as);
788 	newas = as_alloc();
789 	newas->a_userlimit = as->a_userlimit;
790 	newas->a_proc = forkedproc;
791 
792 	AS_LOCK_ENTER(newas, &newas->a_lock, RW_WRITER);
793 
794 	/* This will prevent new XHATs from attaching */
795 	mutex_enter(&as->a_contents);
796 	AS_SETBUSY(as);
797 	mutex_exit(&as->a_contents);
798 	mutex_enter(&newas->a_contents);
799 	AS_SETBUSY(newas);
800 	mutex_exit(&newas->a_contents);
801 
802 	(void) hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_SRD);
803 
804 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
805 
806 		if (seg->s_flags & S_PURGE)
807 			continue;
808 
809 		newseg = seg_alloc(newas, seg->s_base, seg->s_size);
810 		if (newseg == NULL) {
811 			AS_LOCK_EXIT(newas, &newas->a_lock);
812 			as_setwatch(as);
813 			mutex_enter(&as->a_contents);
814 			AS_CLRBUSY(as);
815 			mutex_exit(&as->a_contents);
816 			AS_LOCK_EXIT(as, &as->a_lock);
817 			as_free(newas);
818 			return (-1);
819 		}
820 		if ((error = SEGOP_DUP(seg, newseg)) != 0) {
821 			/*
822 			 * We call seg_free() on the new seg
823 			 * because the segment is not set up
824 			 * completely; i.e. it has no ops.
825 			 */
826 			as_setwatch(as);
827 			mutex_enter(&as->a_contents);
828 			AS_CLRBUSY(as);
829 			mutex_exit(&as->a_contents);
830 			AS_LOCK_EXIT(as, &as->a_lock);
831 			seg_free(newseg);
832 			AS_LOCK_EXIT(newas, &newas->a_lock);
833 			as_free(newas);
834 			return (error);
835 		}
836 		newas->a_size += seg->s_size;
837 	}
838 
839 	error = hat_dup(as->a_hat, newas->a_hat, NULL, 0, HAT_DUP_ALL);
840 	if (as->a_xhat != NULL)
841 		error |= xhat_dup_all(as, newas, NULL, 0, HAT_DUP_ALL);
842 
843 	mutex_enter(&newas->a_contents);
844 	AS_CLRBUSY(newas);
845 	mutex_exit(&newas->a_contents);
846 	AS_LOCK_EXIT(newas, &newas->a_lock);
847 
848 	as_setwatch(as);
849 	mutex_enter(&as->a_contents);
850 	AS_CLRBUSY(as);
851 	mutex_exit(&as->a_contents);
852 	AS_LOCK_EXIT(as, &as->a_lock);
853 	if (error != 0) {
854 		as_free(newas);
855 		return (error);
856 	}
857 	forkedproc->p_as = newas;
858 	return (0);
859 }
860 
861 /*
862  * Handle a ``fault'' at addr for size bytes.
863  */
864 faultcode_t
865 as_fault(struct hat *hat, struct as *as, caddr_t addr, size_t size,
866 	enum fault_type type, enum seg_rw rw)
867 {
868 	struct seg *seg;
869 	caddr_t raddr;			/* rounded down addr */
870 	size_t rsize;			/* rounded up size */
871 	size_t ssize;
872 	faultcode_t res = 0;
873 	caddr_t addrsav;
874 	struct seg *segsav;
875 	int as_lock_held;
876 	klwp_t *lwp = ttolwp(curthread);
877 	int is_xhat = 0;
878 	int holding_wpage = 0;
879 	extern struct seg_ops   segdev_ops;
880 
881 
882 
883 	if (as->a_hat != hat) {
884 		/* This must be an XHAT then */
885 		is_xhat = 1;
886 
887 		if ((type != F_INVAL) || (as == &kas))
888 			return (FC_NOSUPPORT);
889 	}
890 
891 retry:
892 	if (!is_xhat) {
893 		/*
894 		 * Indicate that the lwp is not to be stopped while waiting
895 		 * for a pagefault.  This is to avoid deadlock while debugging
896 		 * a process via /proc over NFS (in particular).
897 		 */
898 		if (lwp != NULL)
899 			lwp->lwp_nostop++;
900 
901 		/*
902 		 * same length must be used when we softlock and softunlock.
903 		 * We don't support softunlocking lengths less than
904 		 * the original length when there is largepage support.
905 		 * See seg_dev.c for more comments.
906 		 */
907 		switch (type) {
908 
909 		case F_SOFTLOCK:
910 			CPU_STATS_ADD_K(vm, softlock, 1);
911 			break;
912 
913 		case F_SOFTUNLOCK:
914 			break;
915 
916 		case F_PROT:
917 			CPU_STATS_ADD_K(vm, prot_fault, 1);
918 			break;
919 
920 		case F_INVAL:
921 			CPU_STATS_ENTER_K();
922 			CPU_STATS_ADDQ(CPU, vm, as_fault, 1);
923 			if (as == &kas)
924 				CPU_STATS_ADDQ(CPU, vm, kernel_asflt, 1);
925 			CPU_STATS_EXIT_K();
926 			break;
927 		}
928 	}
929 
930 	/* Kernel probe */
931 	TNF_PROBE_3(address_fault, "vm pagefault", /* CSTYLED */,
932 	    tnf_opaque,	address,	addr,
933 	    tnf_fault_type,	fault_type,	type,
934 	    tnf_seg_access,	access,		rw);
935 
936 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
937 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
938 	    (size_t)raddr;
939 
940 	/*
941 	 * XXX -- Don't grab the as lock for segkmap. We should grab it for
942 	 * correctness, but then we could be stuck holding this lock for
943 	 * a LONG time if the fault needs to be resolved on a slow
944 	 * filesystem, and then no-one will be able to exec new commands,
945 	 * as exec'ing requires the write lock on the as.
946 	 */
947 	if (as == &kas && segkmap && segkmap->s_base <= raddr &&
948 	    raddr + size < segkmap->s_base + segkmap->s_size) {
949 		/*
950 		 * if (as==&kas), this can't be XHAT: we've already returned
951 		 * FC_NOSUPPORT.
952 		 */
953 		seg = segkmap;
954 		as_lock_held = 0;
955 	} else {
956 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
957 		if (is_xhat && avl_numnodes(&as->a_wpage) != 0) {
958 			/*
959 			 * Grab and hold the writers' lock on the as
960 			 * if the fault is to a watched page.
961 			 * This will keep CPUs from "peeking" at the
962 			 * address range while we're temporarily boosting
963 			 * the permissions for the XHAT device to
964 			 * resolve the fault in the segment layer.
965 			 *
966 			 * We could check whether faulted address
967 			 * is within a watched page and only then grab
968 			 * the writer lock, but this is simpler.
969 			 */
970 			AS_LOCK_EXIT(as, &as->a_lock);
971 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
972 		}
973 
974 		seg = as_segat(as, raddr);
975 		if (seg == NULL) {
976 			AS_LOCK_EXIT(as, &as->a_lock);
977 			if ((lwp != NULL) && (!is_xhat))
978 				lwp->lwp_nostop--;
979 			return (FC_NOMAP);
980 		}
981 
982 		as_lock_held = 1;
983 	}
984 
985 	addrsav = raddr;
986 	segsav = seg;
987 
988 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
989 		if (raddr >= seg->s_base + seg->s_size) {
990 			seg = AS_SEGNEXT(as, seg);
991 			if (seg == NULL || raddr != seg->s_base) {
992 				res = FC_NOMAP;
993 				break;
994 			}
995 		}
996 		if (raddr + rsize > seg->s_base + seg->s_size)
997 			ssize = seg->s_base + seg->s_size - raddr;
998 		else
999 			ssize = rsize;
1000 
1001 		if (!is_xhat || (seg->s_ops != &segdev_ops)) {
1002 
1003 			if (is_xhat && avl_numnodes(&as->a_wpage) != 0 &&
1004 			    pr_is_watchpage_as(raddr, rw, as)) {
1005 				/*
1006 				 * Handle watch pages.  If we're faulting on a
1007 				 * watched page from an X-hat, we have to
1008 				 * restore the original permissions while we
1009 				 * handle the fault.
1010 				 */
1011 				as_clearwatch(as);
1012 				holding_wpage = 1;
1013 			}
1014 
1015 			res = SEGOP_FAULT(hat, seg, raddr, ssize, type, rw);
1016 
1017 			/* Restore watchpoints */
1018 			if (holding_wpage) {
1019 				as_setwatch(as);
1020 				holding_wpage = 0;
1021 			}
1022 
1023 			if (res != 0)
1024 				break;
1025 		} else {
1026 			/* XHAT does not support seg_dev */
1027 			res = FC_NOSUPPORT;
1028 			break;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * If we were SOFTLOCKing and encountered a failure,
1034 	 * we must SOFTUNLOCK the range we already did. (Maybe we
1035 	 * should just panic if we are SOFTLOCKing or even SOFTUNLOCKing
1036 	 * right here...)
1037 	 */
1038 	if (res != 0 && type == F_SOFTLOCK) {
1039 		for (seg = segsav; addrsav < raddr; addrsav += ssize) {
1040 			if (addrsav >= seg->s_base + seg->s_size)
1041 				seg = AS_SEGNEXT(as, seg);
1042 			ASSERT(seg != NULL);
1043 			/*
1044 			 * Now call the fault routine again to perform the
1045 			 * unlock using S_OTHER instead of the rw variable
1046 			 * since we never got a chance to touch the pages.
1047 			 */
1048 			if (raddr > seg->s_base + seg->s_size)
1049 				ssize = seg->s_base + seg->s_size - addrsav;
1050 			else
1051 				ssize = raddr - addrsav;
1052 			(void) SEGOP_FAULT(hat, seg, addrsav, ssize,
1053 			    F_SOFTUNLOCK, S_OTHER);
1054 		}
1055 	}
1056 	if (as_lock_held)
1057 		AS_LOCK_EXIT(as, &as->a_lock);
1058 	if ((lwp != NULL) && (!is_xhat))
1059 		lwp->lwp_nostop--;
1060 
1061 	/*
1062 	 * If the lower levels returned EDEADLK for a fault,
1063 	 * It means that we should retry the fault.  Let's wait
1064 	 * a bit also to let the deadlock causing condition clear.
1065 	 * This is part of a gross hack to work around a design flaw
1066 	 * in the ufs/sds logging code and should go away when the
1067 	 * logging code is re-designed to fix the problem. See bug
1068 	 * 4125102 for details of the problem.
1069 	 */
1070 	if (FC_ERRNO(res) == EDEADLK) {
1071 		delay(deadlk_wait);
1072 		res = 0;
1073 		goto retry;
1074 	}
1075 	return (res);
1076 }
1077 
1078 
1079 
1080 /*
1081  * Asynchronous ``fault'' at addr for size bytes.
1082  */
1083 faultcode_t
1084 as_faulta(struct as *as, caddr_t addr, size_t size)
1085 {
1086 	struct seg *seg;
1087 	caddr_t raddr;			/* rounded down addr */
1088 	size_t rsize;			/* rounded up size */
1089 	faultcode_t res = 0;
1090 	klwp_t *lwp = ttolwp(curthread);
1091 
1092 retry:
1093 	/*
1094 	 * Indicate that the lwp is not to be stopped while waiting
1095 	 * for a pagefault.  This is to avoid deadlock while debugging
1096 	 * a process via /proc over NFS (in particular).
1097 	 */
1098 	if (lwp != NULL)
1099 		lwp->lwp_nostop++;
1100 
1101 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1102 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1103 	    (size_t)raddr;
1104 
1105 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1106 	seg = as_segat(as, raddr);
1107 	if (seg == NULL) {
1108 		AS_LOCK_EXIT(as, &as->a_lock);
1109 		if (lwp != NULL)
1110 			lwp->lwp_nostop--;
1111 		return (FC_NOMAP);
1112 	}
1113 
1114 	for (; rsize != 0; rsize -= PAGESIZE, raddr += PAGESIZE) {
1115 		if (raddr >= seg->s_base + seg->s_size) {
1116 			seg = AS_SEGNEXT(as, seg);
1117 			if (seg == NULL || raddr != seg->s_base) {
1118 				res = FC_NOMAP;
1119 				break;
1120 			}
1121 		}
1122 		res = SEGOP_FAULTA(seg, raddr);
1123 		if (res != 0)
1124 			break;
1125 	}
1126 	AS_LOCK_EXIT(as, &as->a_lock);
1127 	if (lwp != NULL)
1128 		lwp->lwp_nostop--;
1129 	/*
1130 	 * If the lower levels returned EDEADLK for a fault,
1131 	 * It means that we should retry the fault.  Let's wait
1132 	 * a bit also to let the deadlock causing condition clear.
1133 	 * This is part of a gross hack to work around a design flaw
1134 	 * in the ufs/sds logging code and should go away when the
1135 	 * logging code is re-designed to fix the problem. See bug
1136 	 * 4125102 for details of the problem.
1137 	 */
1138 	if (FC_ERRNO(res) == EDEADLK) {
1139 		delay(deadlk_wait);
1140 		res = 0;
1141 		goto retry;
1142 	}
1143 	return (res);
1144 }
1145 
1146 /*
1147  * Set the virtual mapping for the interval from [addr : addr + size)
1148  * in address space `as' to have the specified protection.
1149  * It is ok for the range to cross over several segments,
1150  * as long as they are contiguous.
1151  */
1152 int
1153 as_setprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1154 {
1155 	struct seg *seg;
1156 	struct as_callback *cb;
1157 	size_t ssize;
1158 	caddr_t raddr;			/* rounded down addr */
1159 	size_t rsize;			/* rounded up size */
1160 	int error = 0, writer = 0;
1161 	caddr_t saveraddr;
1162 	size_t saversize;
1163 
1164 setprot_top:
1165 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1166 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1167 	    (size_t)raddr;
1168 
1169 	if (raddr + rsize < raddr)		/* check for wraparound */
1170 		return (ENOMEM);
1171 
1172 	saveraddr = raddr;
1173 	saversize = rsize;
1174 
1175 	/*
1176 	 * Normally we only lock the as as a reader. But
1177 	 * if due to setprot the segment driver needs to split
1178 	 * a segment it will return IE_RETRY. Therefore we re-acquire
1179 	 * the as lock as a writer so the segment driver can change
1180 	 * the seg list. Also the segment driver will return IE_RETRY
1181 	 * after it has changed the segment list so we therefore keep
1182 	 * locking as a writer. Since these opeartions should be rare
1183 	 * want to only lock as a writer when necessary.
1184 	 */
1185 	if (writer || avl_numnodes(&as->a_wpage) != 0) {
1186 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1187 	} else {
1188 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1189 	}
1190 
1191 	as_clearwatchprot(as, raddr, rsize);
1192 	seg = as_segat(as, raddr);
1193 	if (seg == NULL) {
1194 		as_setwatch(as);
1195 		AS_LOCK_EXIT(as, &as->a_lock);
1196 		return (ENOMEM);
1197 	}
1198 
1199 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1200 		if (raddr >= seg->s_base + seg->s_size) {
1201 			seg = AS_SEGNEXT(as, seg);
1202 			if (seg == NULL || raddr != seg->s_base) {
1203 				error = ENOMEM;
1204 				break;
1205 			}
1206 		}
1207 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1208 			ssize = seg->s_base + seg->s_size - raddr;
1209 		else
1210 			ssize = rsize;
1211 retry:
1212 		error = SEGOP_SETPROT(seg, raddr, ssize, prot);
1213 
1214 		if (error == IE_NOMEM) {
1215 			error = EAGAIN;
1216 			break;
1217 		}
1218 
1219 		if (error == IE_RETRY) {
1220 			AS_LOCK_EXIT(as, &as->a_lock);
1221 			writer = 1;
1222 			goto setprot_top;
1223 		}
1224 
1225 		if (error == EAGAIN) {
1226 			/*
1227 			 * Make sure we have a_lock as writer.
1228 			 */
1229 			if (writer == 0) {
1230 				AS_LOCK_EXIT(as, &as->a_lock);
1231 				writer = 1;
1232 				goto setprot_top;
1233 			}
1234 
1235 			/*
1236 			 * Memory is currently locked.  It must be unlocked
1237 			 * before this operation can succeed through a retry.
1238 			 * The possible reasons for locked memory and
1239 			 * corresponding strategies for unlocking are:
1240 			 * (1) Normal I/O
1241 			 *	wait for a signal that the I/O operation
1242 			 *	has completed and the memory is unlocked.
1243 			 * (2) Asynchronous I/O
1244 			 *	The aio subsystem does not unlock pages when
1245 			 *	the I/O is completed. Those pages are unlocked
1246 			 *	when the application calls aiowait/aioerror.
1247 			 *	So, to prevent blocking forever, cv_broadcast()
1248 			 *	is done to wake up aio_cleanup_thread.
1249 			 *	Subsequently, segvn_reclaim will be called, and
1250 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1251 			 * (3) Long term page locking:
1252 			 *	Drivers intending to have pages locked for a
1253 			 *	period considerably longer than for normal I/O
1254 			 *	(essentially forever) may have registered for a
1255 			 *	callback so they may unlock these pages on
1256 			 *	request. This is needed to allow this operation
1257 			 *	to succeed. Each entry on the callback list is
1258 			 *	examined. If the event or address range pertains
1259 			 *	the callback is invoked (unless it already is in
1260 			 *	progress). The a_contents lock must be dropped
1261 			 *	before the callback, so only one callback can
1262 			 *	be done at a time. Go to the top and do more
1263 			 *	until zero is returned. If zero is returned,
1264 			 *	either there were no callbacks for this event
1265 			 *	or they were already in progress.
1266 			 */
1267 			mutex_enter(&as->a_contents);
1268 			if (as->a_callbacks &&
1269 			    (cb = as_find_callback(as, AS_SETPROT_EVENT,
1270 			    seg->s_base, seg->s_size))) {
1271 				AS_LOCK_EXIT(as, &as->a_lock);
1272 				as_execute_callback(as, cb, AS_SETPROT_EVENT);
1273 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1274 				if (AS_ISUNMAPWAIT(as) == 0)
1275 					cv_broadcast(&as->a_cv);
1276 				AS_SETUNMAPWAIT(as);
1277 				AS_LOCK_EXIT(as, &as->a_lock);
1278 				while (AS_ISUNMAPWAIT(as))
1279 					cv_wait(&as->a_cv, &as->a_contents);
1280 			} else {
1281 				/*
1282 				 * We may have raced with
1283 				 * segvn_reclaim()/segspt_reclaim(). In this
1284 				 * case clean nounmapwait flag and retry since
1285 				 * softlockcnt in this segment may be already
1286 				 * 0.  We don't drop as writer lock so our
1287 				 * number of retries without sleeping should
1288 				 * be very small. See segvn_reclaim() for
1289 				 * more comments.
1290 				 */
1291 				AS_CLRNOUNMAPWAIT(as);
1292 				mutex_exit(&as->a_contents);
1293 				goto retry;
1294 			}
1295 			mutex_exit(&as->a_contents);
1296 			goto setprot_top;
1297 		} else if (error != 0)
1298 			break;
1299 	}
1300 	if (error != 0) {
1301 		as_setwatch(as);
1302 	} else {
1303 		as_setwatchprot(as, saveraddr, saversize, prot);
1304 	}
1305 	AS_LOCK_EXIT(as, &as->a_lock);
1306 	return (error);
1307 }
1308 
1309 /*
1310  * Check to make sure that the interval [addr, addr + size)
1311  * in address space `as' has at least the specified protection.
1312  * It is ok for the range to cross over several segments, as long
1313  * as they are contiguous.
1314  */
1315 int
1316 as_checkprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
1317 {
1318 	struct seg *seg;
1319 	size_t ssize;
1320 	caddr_t raddr;			/* rounded down addr */
1321 	size_t rsize;			/* rounded up size */
1322 	int error = 0;
1323 
1324 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1325 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1326 	    (size_t)raddr;
1327 
1328 	if (raddr + rsize < raddr)		/* check for wraparound */
1329 		return (ENOMEM);
1330 
1331 	/*
1332 	 * This is ugly as sin...
1333 	 * Normally, we only acquire the address space readers lock.
1334 	 * However, if the address space has watchpoints present,
1335 	 * we must acquire the writer lock on the address space for
1336 	 * the benefit of as_clearwatchprot() and as_setwatchprot().
1337 	 */
1338 	if (avl_numnodes(&as->a_wpage) != 0)
1339 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1340 	else
1341 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1342 	as_clearwatchprot(as, raddr, rsize);
1343 	seg = as_segat(as, raddr);
1344 	if (seg == NULL) {
1345 		as_setwatch(as);
1346 		AS_LOCK_EXIT(as, &as->a_lock);
1347 		return (ENOMEM);
1348 	}
1349 
1350 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
1351 		if (raddr >= seg->s_base + seg->s_size) {
1352 			seg = AS_SEGNEXT(as, seg);
1353 			if (seg == NULL || raddr != seg->s_base) {
1354 				error = ENOMEM;
1355 				break;
1356 			}
1357 		}
1358 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
1359 			ssize = seg->s_base + seg->s_size - raddr;
1360 		else
1361 			ssize = rsize;
1362 
1363 		error = SEGOP_CHECKPROT(seg, raddr, ssize, prot);
1364 		if (error != 0)
1365 			break;
1366 	}
1367 	as_setwatch(as);
1368 	AS_LOCK_EXIT(as, &as->a_lock);
1369 	return (error);
1370 }
1371 
1372 int
1373 as_unmap(struct as *as, caddr_t addr, size_t size)
1374 {
1375 	struct seg *seg, *seg_next;
1376 	struct as_callback *cb;
1377 	caddr_t raddr, eaddr;
1378 	size_t ssize;
1379 	int err;
1380 
1381 top:
1382 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1383 	eaddr = (caddr_t)(((uintptr_t)(addr + size) + PAGEOFFSET) &
1384 	    (uintptr_t)PAGEMASK);
1385 
1386 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1387 
1388 	as->a_updatedir = 1;	/* inform /proc */
1389 	gethrestime(&as->a_updatetime);
1390 
1391 	/*
1392 	 * Use as_findseg to find the first segment in the range, then
1393 	 * step through the segments in order, following s_next.
1394 	 */
1395 	as_clearwatchprot(as, raddr, eaddr - raddr);
1396 
1397 	for (seg = as_findseg(as, raddr, 0); seg != NULL; seg = seg_next) {
1398 		if (eaddr <= seg->s_base)
1399 			break;		/* eaddr was in a gap; all done */
1400 
1401 		/* this is implied by the test above */
1402 		ASSERT(raddr < eaddr);
1403 
1404 		if (raddr < seg->s_base)
1405 			raddr = seg->s_base; 	/* raddr was in a gap */
1406 
1407 		if (eaddr > (seg->s_base + seg->s_size))
1408 			ssize = seg->s_base + seg->s_size - raddr;
1409 		else
1410 			ssize = eaddr - raddr;
1411 
1412 		/*
1413 		 * Save next segment pointer since seg can be
1414 		 * destroyed during the segment unmap operation.
1415 		 */
1416 		seg_next = AS_SEGNEXT(as, seg);
1417 
1418 retry:
1419 		err = SEGOP_UNMAP(seg, raddr, ssize);
1420 		if (err == EAGAIN) {
1421 			/*
1422 			 * Memory is currently locked.  It must be unlocked
1423 			 * before this operation can succeed through a retry.
1424 			 * The possible reasons for locked memory and
1425 			 * corresponding strategies for unlocking are:
1426 			 * (1) Normal I/O
1427 			 *	wait for a signal that the I/O operation
1428 			 *	has completed and the memory is unlocked.
1429 			 * (2) Asynchronous I/O
1430 			 *	The aio subsystem does not unlock pages when
1431 			 *	the I/O is completed. Those pages are unlocked
1432 			 *	when the application calls aiowait/aioerror.
1433 			 *	So, to prevent blocking forever, cv_broadcast()
1434 			 *	is done to wake up aio_cleanup_thread.
1435 			 *	Subsequently, segvn_reclaim will be called, and
1436 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
1437 			 * (3) Long term page locking:
1438 			 *	Drivers intending to have pages locked for a
1439 			 *	period considerably longer than for normal I/O
1440 			 *	(essentially forever) may have registered for a
1441 			 *	callback so they may unlock these pages on
1442 			 *	request. This is needed to allow this operation
1443 			 *	to succeed. Each entry on the callback list is
1444 			 *	examined. If the event or address range pertains
1445 			 *	the callback is invoked (unless it already is in
1446 			 *	progress). The a_contents lock must be dropped
1447 			 *	before the callback, so only one callback can
1448 			 *	be done at a time. Go to the top and do more
1449 			 *	until zero is returned. If zero is returned,
1450 			 *	either there were no callbacks for this event
1451 			 *	or they were already in progress.
1452 			 */
1453 			mutex_enter(&as->a_contents);
1454 			if (as->a_callbacks &&
1455 			    (cb = as_find_callback(as, AS_UNMAP_EVENT,
1456 			    seg->s_base, seg->s_size))) {
1457 				AS_LOCK_EXIT(as, &as->a_lock);
1458 				as_execute_callback(as, cb, AS_UNMAP_EVENT);
1459 			} else if (!AS_ISNOUNMAPWAIT(as)) {
1460 				if (AS_ISUNMAPWAIT(as) == 0)
1461 					cv_broadcast(&as->a_cv);
1462 				AS_SETUNMAPWAIT(as);
1463 				AS_LOCK_EXIT(as, &as->a_lock);
1464 				while (AS_ISUNMAPWAIT(as))
1465 					cv_wait(&as->a_cv, &as->a_contents);
1466 			} else {
1467 				/*
1468 				 * We may have raced with
1469 				 * segvn_reclaim()/segspt_reclaim(). In this
1470 				 * case clean nounmapwait flag and retry since
1471 				 * softlockcnt in this segment may be already
1472 				 * 0.  We don't drop as writer lock so our
1473 				 * number of retries without sleeping should
1474 				 * be very small. See segvn_reclaim() for
1475 				 * more comments.
1476 				 */
1477 				AS_CLRNOUNMAPWAIT(as);
1478 				mutex_exit(&as->a_contents);
1479 				goto retry;
1480 			}
1481 			mutex_exit(&as->a_contents);
1482 			goto top;
1483 		} else if (err == IE_RETRY) {
1484 			AS_LOCK_EXIT(as, &as->a_lock);
1485 			goto top;
1486 		} else if (err) {
1487 			as_setwatch(as);
1488 			AS_LOCK_EXIT(as, &as->a_lock);
1489 			return (-1);
1490 		}
1491 
1492 		as->a_size -= ssize;
1493 		raddr += ssize;
1494 	}
1495 	AS_LOCK_EXIT(as, &as->a_lock);
1496 	return (0);
1497 }
1498 
1499 static int
1500 as_map_segvn_segs(struct as *as, caddr_t addr, size_t size, uint_t szcvec,
1501     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1502 {
1503 	uint_t szc;
1504 	uint_t nszc;
1505 	int error;
1506 	caddr_t a;
1507 	caddr_t eaddr;
1508 	size_t segsize;
1509 	struct seg *seg;
1510 	size_t pgsz;
1511 	int do_off = (vn_a->vp != NULL || vn_a->amp != NULL);
1512 	uint_t save_szcvec;
1513 
1514 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1515 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1516 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1517 	ASSERT(vn_a->vp == NULL || vn_a->amp == NULL);
1518 	if (!do_off) {
1519 		vn_a->offset = 0;
1520 	}
1521 
1522 	if (szcvec <= 1) {
1523 		seg = seg_alloc(as, addr, size);
1524 		if (seg == NULL) {
1525 			return (ENOMEM);
1526 		}
1527 		vn_a->szc = 0;
1528 		error = (*crfp)(seg, vn_a);
1529 		if (error != 0) {
1530 			seg_free(seg);
1531 		} else {
1532 			as->a_size += size;
1533 		}
1534 		return (error);
1535 	}
1536 
1537 	eaddr = addr + size;
1538 	save_szcvec = szcvec;
1539 	szcvec >>= 1;
1540 	szc = 0;
1541 	nszc = 0;
1542 	while (szcvec) {
1543 		if ((szcvec & 0x1) == 0) {
1544 			nszc++;
1545 			szcvec >>= 1;
1546 			continue;
1547 		}
1548 		nszc++;
1549 		pgsz = page_get_pagesize(nszc);
1550 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
1551 		if (a != addr) {
1552 			ASSERT(a < eaddr);
1553 			segsize = a - addr;
1554 			seg = seg_alloc(as, addr, segsize);
1555 			if (seg == NULL) {
1556 				return (ENOMEM);
1557 			}
1558 			vn_a->szc = szc;
1559 			error = (*crfp)(seg, vn_a);
1560 			if (error != 0) {
1561 				seg_free(seg);
1562 				return (error);
1563 			}
1564 			as->a_size += segsize;
1565 			*segcreated = 1;
1566 			if (do_off) {
1567 				vn_a->offset += segsize;
1568 			}
1569 			addr = a;
1570 		}
1571 		szc = nszc;
1572 		szcvec >>= 1;
1573 	}
1574 
1575 	ASSERT(addr < eaddr);
1576 	szcvec = save_szcvec | 1; /* add 8K pages */
1577 	while (szcvec) {
1578 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
1579 		ASSERT(a >= addr);
1580 		if (a != addr) {
1581 			segsize = a - addr;
1582 			seg = seg_alloc(as, addr, segsize);
1583 			if (seg == NULL) {
1584 				return (ENOMEM);
1585 			}
1586 			vn_a->szc = szc;
1587 			error = (*crfp)(seg, vn_a);
1588 			if (error != 0) {
1589 				seg_free(seg);
1590 				return (error);
1591 			}
1592 			as->a_size += segsize;
1593 			*segcreated = 1;
1594 			if (do_off) {
1595 				vn_a->offset += segsize;
1596 			}
1597 			addr = a;
1598 		}
1599 		szcvec &= ~(1 << szc);
1600 		if (szcvec) {
1601 			szc = highbit(szcvec) - 1;
1602 			pgsz = page_get_pagesize(szc);
1603 		}
1604 	}
1605 	ASSERT(addr == eaddr);
1606 
1607 	return (0);
1608 }
1609 
1610 static int
1611 as_map_vnsegs(struct as *as, caddr_t addr, size_t size,
1612     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1613 {
1614 	uint_t mapflags = vn_a->flags & (MAP_TEXT | MAP_INITDATA);
1615 	int type = (vn_a->type == MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
1616 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1617 	    type, 0);
1618 	int error;
1619 	struct seg *seg;
1620 	struct vattr va;
1621 	u_offset_t eoff;
1622 	size_t save_size = 0;
1623 	extern size_t textrepl_size_thresh;
1624 
1625 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1626 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1627 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1628 	ASSERT(vn_a->vp != NULL);
1629 	ASSERT(vn_a->amp == NULL);
1630 
1631 again:
1632 	if (szcvec <= 1) {
1633 		seg = seg_alloc(as, addr, size);
1634 		if (seg == NULL) {
1635 			return (ENOMEM);
1636 		}
1637 		vn_a->szc = 0;
1638 		error = (*crfp)(seg, vn_a);
1639 		if (error != 0) {
1640 			seg_free(seg);
1641 		} else {
1642 			as->a_size += size;
1643 		}
1644 		return (error);
1645 	}
1646 
1647 	va.va_mask = AT_SIZE;
1648 	if (VOP_GETATTR(vn_a->vp, &va, ATTR_HINT, vn_a->cred, NULL) != 0) {
1649 		szcvec = 0;
1650 		goto again;
1651 	}
1652 	eoff = vn_a->offset & PAGEMASK;
1653 	if (eoff >= va.va_size) {
1654 		szcvec = 0;
1655 		goto again;
1656 	}
1657 	eoff += size;
1658 	if (btopr(va.va_size) < btopr(eoff)) {
1659 		save_size = size;
1660 		size = va.va_size - (vn_a->offset & PAGEMASK);
1661 		size = P2ROUNDUP_TYPED(size, PAGESIZE, size_t);
1662 		szcvec = map_pgszcvec(addr, size, (uintptr_t)addr, mapflags,
1663 		    type, 0);
1664 		if (szcvec <= 1) {
1665 			size = save_size;
1666 			goto again;
1667 		}
1668 	}
1669 
1670 	if (size > textrepl_size_thresh) {
1671 		vn_a->flags |= _MAP_TEXTREPL;
1672 	}
1673 	error = as_map_segvn_segs(as, addr, size, szcvec, crfp, vn_a,
1674 	    segcreated);
1675 	if (error != 0) {
1676 		return (error);
1677 	}
1678 	if (save_size) {
1679 		addr += size;
1680 		size = save_size - size;
1681 		szcvec = 0;
1682 		goto again;
1683 	}
1684 	return (0);
1685 }
1686 
1687 /*
1688  * as_map_ansegs: shared or private anonymous memory.  Note that the flags
1689  * passed to map_pgszvec cannot be MAP_INITDATA, for anon.
1690  */
1691 static int
1692 as_map_ansegs(struct as *as, caddr_t addr, size_t size,
1693     int (*crfp)(), struct segvn_crargs *vn_a, int *segcreated)
1694 {
1695 	uint_t szcvec;
1696 	uchar_t type;
1697 
1698 	ASSERT(vn_a->type == MAP_SHARED || vn_a->type == MAP_PRIVATE);
1699 	if (vn_a->type == MAP_SHARED) {
1700 		type = MAPPGSZC_SHM;
1701 	} else if (vn_a->type == MAP_PRIVATE) {
1702 		if (vn_a->szc == AS_MAP_HEAP) {
1703 			type = MAPPGSZC_HEAP;
1704 		} else if (vn_a->szc == AS_MAP_STACK) {
1705 			type = MAPPGSZC_STACK;
1706 		} else {
1707 			type = MAPPGSZC_PRIVM;
1708 		}
1709 	}
1710 	szcvec = map_pgszcvec(addr, size, vn_a->amp == NULL ?
1711 	    (uintptr_t)addr : (uintptr_t)P2ROUNDUP(vn_a->offset, PAGESIZE),
1712 	    (vn_a->flags & MAP_TEXT), type, 0);
1713 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
1714 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
1715 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
1716 	ASSERT(vn_a->vp == NULL);
1717 
1718 	return (as_map_segvn_segs(as, addr, size, szcvec,
1719 	    crfp, vn_a, segcreated));
1720 }
1721 
1722 int
1723 as_map(struct as *as, caddr_t addr, size_t size, int (*crfp)(), void *argsp)
1724 {
1725 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1726 	return (as_map_locked(as, addr, size, crfp, argsp));
1727 }
1728 
1729 int
1730 as_map_locked(struct as *as, caddr_t addr, size_t size, int (*crfp)(),
1731 		void *argsp)
1732 {
1733 	struct seg *seg = NULL;
1734 	caddr_t raddr;			/* rounded down addr */
1735 	size_t rsize;			/* rounded up size */
1736 	int error;
1737 	int unmap = 0;
1738 	struct proc *p = curproc;
1739 	struct segvn_crargs crargs;
1740 
1741 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
1742 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
1743 	    (size_t)raddr;
1744 
1745 	/*
1746 	 * check for wrap around
1747 	 */
1748 	if ((raddr + rsize < raddr) || (as->a_size > (ULONG_MAX - size))) {
1749 		AS_LOCK_EXIT(as, &as->a_lock);
1750 		return (ENOMEM);
1751 	}
1752 
1753 	as->a_updatedir = 1;	/* inform /proc */
1754 	gethrestime(&as->a_updatetime);
1755 
1756 	if (as != &kas && as->a_size + rsize > (size_t)p->p_vmem_ctl) {
1757 		AS_LOCK_EXIT(as, &as->a_lock);
1758 
1759 		(void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p,
1760 		    RCA_UNSAFE_ALL);
1761 
1762 		return (ENOMEM);
1763 	}
1764 
1765 	if (AS_MAP_CHECK_VNODE_LPOOB(crfp, argsp)) {
1766 		crargs = *(struct segvn_crargs *)argsp;
1767 		error = as_map_vnsegs(as, raddr, rsize, crfp, &crargs, &unmap);
1768 		if (error != 0) {
1769 			AS_LOCK_EXIT(as, &as->a_lock);
1770 			if (unmap) {
1771 				(void) as_unmap(as, addr, size);
1772 			}
1773 			return (error);
1774 		}
1775 	} else if (AS_MAP_CHECK_ANON_LPOOB(crfp, argsp)) {
1776 		crargs = *(struct segvn_crargs *)argsp;
1777 		error = as_map_ansegs(as, raddr, rsize, crfp, &crargs, &unmap);
1778 		if (error != 0) {
1779 			AS_LOCK_EXIT(as, &as->a_lock);
1780 			if (unmap) {
1781 				(void) as_unmap(as, addr, size);
1782 			}
1783 			return (error);
1784 		}
1785 	} else {
1786 		seg = seg_alloc(as, addr, size);
1787 		if (seg == NULL) {
1788 			AS_LOCK_EXIT(as, &as->a_lock);
1789 			return (ENOMEM);
1790 		}
1791 
1792 		error = (*crfp)(seg, argsp);
1793 		if (error != 0) {
1794 			seg_free(seg);
1795 			AS_LOCK_EXIT(as, &as->a_lock);
1796 			return (error);
1797 		}
1798 		/*
1799 		 * Add size now so as_unmap will work if as_ctl fails.
1800 		 */
1801 		as->a_size += rsize;
1802 	}
1803 
1804 	as_setwatch(as);
1805 
1806 	/*
1807 	 * If the address space is locked,
1808 	 * establish memory locks for the new segment.
1809 	 */
1810 	mutex_enter(&as->a_contents);
1811 	if (AS_ISPGLCK(as)) {
1812 		mutex_exit(&as->a_contents);
1813 		AS_LOCK_EXIT(as, &as->a_lock);
1814 		error = as_ctl(as, addr, size, MC_LOCK, 0, 0, NULL, 0);
1815 		if (error != 0)
1816 			(void) as_unmap(as, addr, size);
1817 	} else {
1818 		mutex_exit(&as->a_contents);
1819 		AS_LOCK_EXIT(as, &as->a_lock);
1820 	}
1821 	return (error);
1822 }
1823 
1824 
1825 /*
1826  * Delete all segments in the address space marked with S_PURGE.
1827  * This is currently used for Sparc V9 nofault ASI segments (seg_nf.c).
1828  * These segments are deleted as a first step before calls to as_gap(), so
1829  * that they don't affect mmap() or shmat().
1830  */
1831 void
1832 as_purge(struct as *as)
1833 {
1834 	struct seg *seg;
1835 	struct seg *next_seg;
1836 
1837 	/*
1838 	 * the setting of NEEDSPURGE is protect by as_rangelock(), so
1839 	 * no need to grab a_contents mutex for this check
1840 	 */
1841 	if ((as->a_flags & AS_NEEDSPURGE) == 0)
1842 		return;
1843 
1844 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1845 	next_seg = NULL;
1846 	seg = AS_SEGFIRST(as);
1847 	while (seg != NULL) {
1848 		next_seg = AS_SEGNEXT(as, seg);
1849 		if (seg->s_flags & S_PURGE)
1850 			SEGOP_UNMAP(seg, seg->s_base, seg->s_size);
1851 		seg = next_seg;
1852 	}
1853 	AS_LOCK_EXIT(as, &as->a_lock);
1854 
1855 	mutex_enter(&as->a_contents);
1856 	as->a_flags &= ~AS_NEEDSPURGE;
1857 	mutex_exit(&as->a_contents);
1858 }
1859 
1860 /*
1861  * Find a hole within [*basep, *basep + *lenp), which contains a mappable
1862  * range of addresses at least "minlen" long, where the base of the range is
1863  * at "off" phase from an "align" boundary and there is space for a
1864  * "redzone"-sized redzone on eithe rside of the range.  Thus,
1865  * if align was 4M and off was 16k, the user wants a hole which will start
1866  * 16k into a 4M page.
1867  *
1868  * If flags specifies AH_HI, the hole will have the highest possible address
1869  * in the range.  We use the as->a_lastgap field to figure out where to
1870  * start looking for a gap.
1871  *
1872  * Otherwise, the gap will have the lowest possible address.
1873  *
1874  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
1875  *
1876  * If an adequate hole is found, *basep and *lenp are set to reflect the part of
1877  * the hole that is within range, and 0 is returned. On failure, -1 is returned.
1878  *
1879  * NOTE: This routine is not correct when base+len overflows caddr_t.
1880  */
1881 int
1882 as_gap_aligned(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp,
1883     uint_t flags, caddr_t addr, size_t align, size_t redzone, size_t off)
1884 {
1885 	caddr_t lobound = *basep;
1886 	caddr_t hibound = lobound + *lenp;
1887 	struct seg *lseg, *hseg;
1888 	caddr_t lo, hi;
1889 	int forward;
1890 	caddr_t save_base;
1891 	size_t save_len;
1892 	size_t save_minlen;
1893 	size_t save_redzone;
1894 	int fast_path = 1;
1895 
1896 	save_base = *basep;
1897 	save_len = *lenp;
1898 	save_minlen = minlen;
1899 	save_redzone = redzone;
1900 
1901 	/*
1902 	 * For the first pass/fast_path, just add align and redzone into
1903 	 * minlen since if we get an allocation, we can guarantee that it
1904 	 * will fit the alignment and redzone requested.
1905 	 * This increases the chance that hibound will be adjusted to
1906 	 * a_lastgap->s_base which will likely allow us to find an
1907 	 * acceptable hole in the address space quicker.
1908 	 * If we can't find a hole with this fast_path, then we look for
1909 	 * smaller holes in which the alignment and offset may allow
1910 	 * the allocation to fit.
1911 	 */
1912 	minlen += align;
1913 	minlen += 2 * redzone;
1914 	redzone = 0;
1915 
1916 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1917 	if (AS_SEGFIRST(as) == NULL) {
1918 		if (valid_va_range_aligned(basep, lenp, minlen, flags & AH_DIR,
1919 		    align, redzone, off)) {
1920 			AS_LOCK_EXIT(as, &as->a_lock);
1921 			return (0);
1922 		} else {
1923 			AS_LOCK_EXIT(as, &as->a_lock);
1924 			*basep = save_base;
1925 			*lenp = save_len;
1926 			return (-1);
1927 		}
1928 	}
1929 
1930 retry:
1931 	/*
1932 	 * Set up to iterate over all the inter-segment holes in the given
1933 	 * direction.  lseg is NULL for the lowest-addressed hole and hseg is
1934 	 * NULL for the highest-addressed hole.  If moving backwards, we reset
1935 	 * sseg to denote the highest-addressed segment.
1936 	 */
1937 	forward = (flags & AH_DIR) == AH_LO;
1938 	if (forward) {
1939 		hseg = as_findseg(as, lobound, 1);
1940 		lseg = AS_SEGPREV(as, hseg);
1941 	} else {
1942 
1943 		/*
1944 		 * If allocating at least as much as the last allocation,
1945 		 * use a_lastgap's base as a better estimate of hibound.
1946 		 */
1947 		if (as->a_lastgap &&
1948 		    minlen >= as->a_lastgap->s_size &&
1949 		    hibound >= as->a_lastgap->s_base)
1950 			hibound = as->a_lastgap->s_base;
1951 
1952 		hseg = as_findseg(as, hibound, 1);
1953 		if (hseg->s_base + hseg->s_size < hibound) {
1954 			lseg = hseg;
1955 			hseg = NULL;
1956 		} else {
1957 			lseg = AS_SEGPREV(as, hseg);
1958 		}
1959 	}
1960 
1961 	for (;;) {
1962 		/*
1963 		 * Set lo and hi to the hole's boundaries.  (We should really
1964 		 * use MAXADDR in place of hibound in the expression below,
1965 		 * but can't express it easily; using hibound in its place is
1966 		 * harmless.)
1967 		 */
1968 		lo = (lseg == NULL) ? 0 : lseg->s_base + lseg->s_size;
1969 		hi = (hseg == NULL) ? hibound : hseg->s_base;
1970 		/*
1971 		 * If the iteration has moved past the interval from lobound
1972 		 * to hibound it's pointless to continue.
1973 		 */
1974 		if ((forward && lo > hibound) || (!forward && hi < lobound))
1975 			break;
1976 		else if (lo > hibound || hi < lobound)
1977 			goto cont;
1978 		/*
1979 		 * Candidate hole lies at least partially within the allowable
1980 		 * range.  Restrict it to fall completely within that range,
1981 		 * i.e., to [max(lo, lobound), min(hi, hibound)].
1982 		 */
1983 		if (lo < lobound)
1984 			lo = lobound;
1985 		if (hi > hibound)
1986 			hi = hibound;
1987 		/*
1988 		 * Verify that the candidate hole is big enough and meets
1989 		 * hardware constraints.  If the hole is too small, no need
1990 		 * to do the further checks since they will fail.
1991 		 */
1992 		*basep = lo;
1993 		*lenp = hi - lo;
1994 		if (*lenp >= minlen && valid_va_range_aligned(basep, lenp,
1995 		    minlen, forward ? AH_LO : AH_HI, align, redzone, off) &&
1996 		    ((flags & AH_CONTAIN) == 0 ||
1997 		    (*basep <= addr && *basep + *lenp > addr))) {
1998 			if (!forward)
1999 				as->a_lastgap = hseg;
2000 			if (hseg != NULL)
2001 				as->a_lastgaphl = hseg;
2002 			else
2003 				as->a_lastgaphl = lseg;
2004 			AS_LOCK_EXIT(as, &as->a_lock);
2005 			return (0);
2006 		}
2007 	cont:
2008 		/*
2009 		 * Move to the next hole.
2010 		 */
2011 		if (forward) {
2012 			lseg = hseg;
2013 			if (lseg == NULL)
2014 				break;
2015 			hseg = AS_SEGNEXT(as, hseg);
2016 		} else {
2017 			hseg = lseg;
2018 			if (hseg == NULL)
2019 				break;
2020 			lseg = AS_SEGPREV(as, lseg);
2021 		}
2022 	}
2023 	if (fast_path && (align != 0 || save_redzone != 0)) {
2024 		fast_path = 0;
2025 		minlen = save_minlen;
2026 		redzone = save_redzone;
2027 		goto retry;
2028 	}
2029 	*basep = save_base;
2030 	*lenp = save_len;
2031 	AS_LOCK_EXIT(as, &as->a_lock);
2032 	return (-1);
2033 }
2034 
2035 /*
2036  * Find a hole of at least size minlen within [*basep, *basep + *lenp).
2037  *
2038  * If flags specifies AH_HI, the hole will have the highest possible address
2039  * in the range.  We use the as->a_lastgap field to figure out where to
2040  * start looking for a gap.
2041  *
2042  * Otherwise, the gap will have the lowest possible address.
2043  *
2044  * If flags specifies AH_CONTAIN, the hole will contain the address addr.
2045  *
2046  * If an adequate hole is found, base and len are set to reflect the part of
2047  * the hole that is within range, and 0 is returned, otherwise,
2048  * -1 is returned.
2049  *
2050  * NOTE: This routine is not correct when base+len overflows caddr_t.
2051  */
2052 int
2053 as_gap(struct as *as, size_t minlen, caddr_t *basep, size_t *lenp, uint_t flags,
2054     caddr_t addr)
2055 {
2056 
2057 	return (as_gap_aligned(as, minlen, basep, lenp, flags, addr, 0, 0, 0));
2058 }
2059 
2060 /*
2061  * Return the next range within [base, base + len) that is backed
2062  * with "real memory".  Skip holes and non-seg_vn segments.
2063  * We're lazy and only return one segment at a time.
2064  */
2065 int
2066 as_memory(struct as *as, caddr_t *basep, size_t *lenp)
2067 {
2068 	extern struct seg_ops segspt_shmops;	/* needs a header file */
2069 	struct seg *seg;
2070 	caddr_t addr, eaddr;
2071 	caddr_t segend;
2072 
2073 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2074 
2075 	addr = *basep;
2076 	eaddr = addr + *lenp;
2077 
2078 	seg = as_findseg(as, addr, 0);
2079 	if (seg != NULL)
2080 		addr = MAX(seg->s_base, addr);
2081 
2082 	for (;;) {
2083 		if (seg == NULL || addr >= eaddr || eaddr <= seg->s_base) {
2084 			AS_LOCK_EXIT(as, &as->a_lock);
2085 			return (EINVAL);
2086 		}
2087 
2088 		if (seg->s_ops == &segvn_ops) {
2089 			segend = seg->s_base + seg->s_size;
2090 			break;
2091 		}
2092 
2093 		/*
2094 		 * We do ISM by looking into the private data
2095 		 * to determine the real size of the segment.
2096 		 */
2097 		if (seg->s_ops == &segspt_shmops) {
2098 			segend = seg->s_base + spt_realsize(seg);
2099 			if (addr < segend)
2100 				break;
2101 		}
2102 
2103 		seg = AS_SEGNEXT(as, seg);
2104 
2105 		if (seg != NULL)
2106 			addr = seg->s_base;
2107 	}
2108 
2109 	*basep = addr;
2110 
2111 	if (segend > eaddr)
2112 		*lenp = eaddr - addr;
2113 	else
2114 		*lenp = segend - addr;
2115 
2116 	AS_LOCK_EXIT(as, &as->a_lock);
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Swap the pages associated with the address space as out to
2122  * secondary storage, returning the number of bytes actually
2123  * swapped.
2124  *
2125  * The value returned is intended to correlate well with the process's
2126  * memory requirements.  Its usefulness for this purpose depends on
2127  * how well the segment-level routines do at returning accurate
2128  * information.
2129  */
2130 size_t
2131 as_swapout(struct as *as)
2132 {
2133 	struct seg *seg;
2134 	size_t swpcnt = 0;
2135 
2136 	/*
2137 	 * Kernel-only processes have given up their address
2138 	 * spaces.  Of course, we shouldn't be attempting to
2139 	 * swap out such processes in the first place...
2140 	 */
2141 	if (as == NULL)
2142 		return (0);
2143 
2144 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2145 
2146 	/* Prevent XHATs from attaching */
2147 	mutex_enter(&as->a_contents);
2148 	AS_SETBUSY(as);
2149 	mutex_exit(&as->a_contents);
2150 
2151 
2152 	/*
2153 	 * Free all mapping resources associated with the address
2154 	 * space.  The segment-level swapout routines capitalize
2155 	 * on this unmapping by scavanging pages that have become
2156 	 * unmapped here.
2157 	 */
2158 	hat_swapout(as->a_hat);
2159 	if (as->a_xhat != NULL)
2160 		xhat_swapout_all(as);
2161 
2162 	mutex_enter(&as->a_contents);
2163 	AS_CLRBUSY(as);
2164 	mutex_exit(&as->a_contents);
2165 
2166 	/*
2167 	 * Call the swapout routines of all segments in the address
2168 	 * space to do the actual work, accumulating the amount of
2169 	 * space reclaimed.
2170 	 */
2171 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
2172 		struct seg_ops *ov = seg->s_ops;
2173 
2174 		/*
2175 		 * We have to check to see if the seg has
2176 		 * an ops vector because the seg may have
2177 		 * been in the middle of being set up when
2178 		 * the process was picked for swapout.
2179 		 */
2180 		if ((ov != NULL) && (ov->swapout != NULL))
2181 			swpcnt += SEGOP_SWAPOUT(seg);
2182 	}
2183 	AS_LOCK_EXIT(as, &as->a_lock);
2184 	return (swpcnt);
2185 }
2186 
2187 /*
2188  * Determine whether data from the mappings in interval [addr, addr + size)
2189  * are in the primary memory (core) cache.
2190  */
2191 int
2192 as_incore(struct as *as, caddr_t addr,
2193     size_t size, char *vec, size_t *sizep)
2194 {
2195 	struct seg *seg;
2196 	size_t ssize;
2197 	caddr_t raddr;		/* rounded down addr */
2198 	size_t rsize;		/* rounded up size */
2199 	size_t isize;			/* iteration size */
2200 	int error = 0;		/* result, assume success */
2201 
2202 	*sizep = 0;
2203 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2204 	rsize = ((((size_t)addr + size) + PAGEOFFSET) & PAGEMASK) -
2205 	    (size_t)raddr;
2206 
2207 	if (raddr + rsize < raddr)		/* check for wraparound */
2208 		return (ENOMEM);
2209 
2210 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2211 	seg = as_segat(as, raddr);
2212 	if (seg == NULL) {
2213 		AS_LOCK_EXIT(as, &as->a_lock);
2214 		return (-1);
2215 	}
2216 
2217 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2218 		if (raddr >= seg->s_base + seg->s_size) {
2219 			seg = AS_SEGNEXT(as, seg);
2220 			if (seg == NULL || raddr != seg->s_base) {
2221 				error = -1;
2222 				break;
2223 			}
2224 		}
2225 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2226 			ssize = seg->s_base + seg->s_size - raddr;
2227 		else
2228 			ssize = rsize;
2229 		*sizep += isize = SEGOP_INCORE(seg, raddr, ssize, vec);
2230 		if (isize != ssize) {
2231 			error = -1;
2232 			break;
2233 		}
2234 		vec += btopr(ssize);
2235 	}
2236 	AS_LOCK_EXIT(as, &as->a_lock);
2237 	return (error);
2238 }
2239 
2240 static void
2241 as_segunlock(struct seg *seg, caddr_t addr, int attr,
2242 	ulong_t *bitmap, size_t position, size_t npages)
2243 {
2244 	caddr_t	range_start;
2245 	size_t	pos1 = position;
2246 	size_t	pos2;
2247 	size_t	size;
2248 	size_t  end_pos = npages + position;
2249 
2250 	while (bt_range(bitmap, &pos1, &pos2, end_pos)) {
2251 		size = ptob((pos2 - pos1));
2252 		range_start = (caddr_t)((uintptr_t)addr +
2253 		    ptob(pos1 - position));
2254 
2255 		(void) SEGOP_LOCKOP(seg, range_start, size, attr, MC_UNLOCK,
2256 		    (ulong_t *)NULL, (size_t)NULL);
2257 		pos1 = pos2;
2258 	}
2259 }
2260 
2261 static void
2262 as_unlockerr(struct as *as, int attr, ulong_t *mlock_map,
2263 	caddr_t raddr, size_t rsize)
2264 {
2265 	struct seg *seg = as_segat(as, raddr);
2266 	size_t ssize;
2267 
2268 	while (rsize != 0) {
2269 		if (raddr >= seg->s_base + seg->s_size)
2270 			seg = AS_SEGNEXT(as, seg);
2271 
2272 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2273 			ssize = seg->s_base + seg->s_size - raddr;
2274 		else
2275 			ssize = rsize;
2276 
2277 		as_segunlock(seg, raddr, attr, mlock_map, 0, btopr(ssize));
2278 
2279 		rsize -= ssize;
2280 		raddr += ssize;
2281 	}
2282 }
2283 
2284 /*
2285  * Cache control operations over the interval [addr, addr + size) in
2286  * address space "as".
2287  */
2288 /*ARGSUSED*/
2289 int
2290 as_ctl(struct as *as, caddr_t addr, size_t size, int func, int attr,
2291     uintptr_t arg, ulong_t *lock_map, size_t pos)
2292 {
2293 	struct seg *seg;	/* working segment */
2294 	caddr_t raddr;		/* rounded down addr */
2295 	caddr_t initraddr;	/* saved initial rounded down addr */
2296 	size_t rsize;		/* rounded up size */
2297 	size_t initrsize;	/* saved initial rounded up size */
2298 	size_t ssize;		/* size of seg */
2299 	int error = 0;			/* result */
2300 	size_t mlock_size;	/* size of bitmap */
2301 	ulong_t *mlock_map;	/* pointer to bitmap used */
2302 				/* to represent the locked */
2303 				/* pages. */
2304 retry:
2305 	if (error == IE_RETRY)
2306 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2307 	else
2308 		AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2309 
2310 	/*
2311 	 * If these are address space lock/unlock operations, loop over
2312 	 * all segments in the address space, as appropriate.
2313 	 */
2314 	if (func == MC_LOCKAS) {
2315 		size_t npages, idx;
2316 		size_t rlen = 0;	/* rounded as length */
2317 
2318 		idx = pos;
2319 
2320 		if (arg & MCL_FUTURE) {
2321 			mutex_enter(&as->a_contents);
2322 			AS_SETPGLCK(as);
2323 			mutex_exit(&as->a_contents);
2324 		}
2325 		if ((arg & MCL_CURRENT) == 0) {
2326 			AS_LOCK_EXIT(as, &as->a_lock);
2327 			return (0);
2328 		}
2329 
2330 		seg = AS_SEGFIRST(as);
2331 		if (seg == NULL) {
2332 			AS_LOCK_EXIT(as, &as->a_lock);
2333 			return (0);
2334 		}
2335 
2336 		do {
2337 			raddr = (caddr_t)((uintptr_t)seg->s_base &
2338 			    (uintptr_t)PAGEMASK);
2339 			rlen += (((uintptr_t)(seg->s_base + seg->s_size) +
2340 			    PAGEOFFSET) & PAGEMASK) - (uintptr_t)raddr;
2341 		} while ((seg = AS_SEGNEXT(as, seg)) != NULL);
2342 
2343 		mlock_size = BT_BITOUL(btopr(rlen));
2344 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2345 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2346 				AS_LOCK_EXIT(as, &as->a_lock);
2347 				return (EAGAIN);
2348 		}
2349 
2350 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2351 			error = SEGOP_LOCKOP(seg, seg->s_base,
2352 			    seg->s_size, attr, MC_LOCK, mlock_map, pos);
2353 			if (error != 0)
2354 				break;
2355 			pos += seg_pages(seg);
2356 		}
2357 
2358 		if (error) {
2359 			for (seg = AS_SEGFIRST(as); seg != NULL;
2360 			    seg = AS_SEGNEXT(as, seg)) {
2361 
2362 				raddr = (caddr_t)((uintptr_t)seg->s_base &
2363 				    (uintptr_t)PAGEMASK);
2364 				npages = seg_pages(seg);
2365 				as_segunlock(seg, raddr, attr, mlock_map,
2366 				    idx, npages);
2367 				idx += npages;
2368 			}
2369 		}
2370 
2371 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2372 		AS_LOCK_EXIT(as, &as->a_lock);
2373 		goto lockerr;
2374 	} else if (func == MC_UNLOCKAS) {
2375 		mutex_enter(&as->a_contents);
2376 		AS_CLRPGLCK(as);
2377 		mutex_exit(&as->a_contents);
2378 
2379 		for (seg = AS_SEGFIRST(as); seg; seg = AS_SEGNEXT(as, seg)) {
2380 			error = SEGOP_LOCKOP(seg, seg->s_base,
2381 			    seg->s_size, attr, MC_UNLOCK, NULL, 0);
2382 			if (error != 0)
2383 				break;
2384 		}
2385 
2386 		AS_LOCK_EXIT(as, &as->a_lock);
2387 		goto lockerr;
2388 	}
2389 
2390 	/*
2391 	 * Normalize addresses and sizes.
2392 	 */
2393 	initraddr = raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2394 	initrsize = rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2395 	    (size_t)raddr;
2396 
2397 	if (raddr + rsize < raddr) {		/* check for wraparound */
2398 		AS_LOCK_EXIT(as, &as->a_lock);
2399 		return (ENOMEM);
2400 	}
2401 
2402 	/*
2403 	 * Get initial segment.
2404 	 */
2405 	if ((seg = as_segat(as, raddr)) == NULL) {
2406 		AS_LOCK_EXIT(as, &as->a_lock);
2407 		return (ENOMEM);
2408 	}
2409 
2410 	if (func == MC_LOCK) {
2411 		mlock_size = BT_BITOUL(btopr(rsize));
2412 		if ((mlock_map = (ulong_t *)kmem_zalloc(mlock_size *
2413 		    sizeof (ulong_t), KM_NOSLEEP)) == NULL) {
2414 				AS_LOCK_EXIT(as, &as->a_lock);
2415 				return (EAGAIN);
2416 		}
2417 	}
2418 
2419 	/*
2420 	 * Loop over all segments.  If a hole in the address range is
2421 	 * discovered, then fail.  For each segment, perform the appropriate
2422 	 * control operation.
2423 	 */
2424 	while (rsize != 0) {
2425 
2426 		/*
2427 		 * Make sure there's no hole, calculate the portion
2428 		 * of the next segment to be operated over.
2429 		 */
2430 		if (raddr >= seg->s_base + seg->s_size) {
2431 			seg = AS_SEGNEXT(as, seg);
2432 			if (seg == NULL || raddr != seg->s_base) {
2433 				if (func == MC_LOCK) {
2434 					as_unlockerr(as, attr, mlock_map,
2435 					    initraddr, initrsize - rsize);
2436 					kmem_free(mlock_map,
2437 					    mlock_size * sizeof (ulong_t));
2438 				}
2439 				AS_LOCK_EXIT(as, &as->a_lock);
2440 				return (ENOMEM);
2441 			}
2442 		}
2443 		if ((raddr + rsize) > (seg->s_base + seg->s_size))
2444 			ssize = seg->s_base + seg->s_size - raddr;
2445 		else
2446 			ssize = rsize;
2447 
2448 		/*
2449 		 * Dispatch on specific function.
2450 		 */
2451 		switch (func) {
2452 
2453 		/*
2454 		 * Synchronize cached data from mappings with backing
2455 		 * objects.
2456 		 */
2457 		case MC_SYNC:
2458 			if (error = SEGOP_SYNC(seg, raddr, ssize,
2459 			    attr, (uint_t)arg)) {
2460 				AS_LOCK_EXIT(as, &as->a_lock);
2461 				return (error);
2462 			}
2463 			break;
2464 
2465 		/*
2466 		 * Lock pages in memory.
2467 		 */
2468 		case MC_LOCK:
2469 			if (error = SEGOP_LOCKOP(seg, raddr, ssize,
2470 			    attr, func, mlock_map, pos)) {
2471 				as_unlockerr(as, attr, mlock_map, initraddr,
2472 				    initrsize - rsize + ssize);
2473 				kmem_free(mlock_map, mlock_size *
2474 				    sizeof (ulong_t));
2475 				AS_LOCK_EXIT(as, &as->a_lock);
2476 				goto lockerr;
2477 			}
2478 			break;
2479 
2480 		/*
2481 		 * Unlock mapped pages.
2482 		 */
2483 		case MC_UNLOCK:
2484 			(void) SEGOP_LOCKOP(seg, raddr, ssize, attr, func,
2485 			    (ulong_t *)NULL, (size_t)NULL);
2486 			break;
2487 
2488 		/*
2489 		 * Store VM advise for mapped pages in segment layer.
2490 		 */
2491 		case MC_ADVISE:
2492 			error = SEGOP_ADVISE(seg, raddr, ssize, (uint_t)arg);
2493 
2494 			/*
2495 			 * Check for regular errors and special retry error
2496 			 */
2497 			if (error) {
2498 				if (error == IE_RETRY) {
2499 					/*
2500 					 * Need to acquire writers lock, so
2501 					 * have to drop readers lock and start
2502 					 * all over again
2503 					 */
2504 					AS_LOCK_EXIT(as, &as->a_lock);
2505 					goto retry;
2506 				} else if (error == IE_REATTACH) {
2507 					/*
2508 					 * Find segment for current address
2509 					 * because current segment just got
2510 					 * split or concatenated
2511 					 */
2512 					seg = as_segat(as, raddr);
2513 					if (seg == NULL) {
2514 						AS_LOCK_EXIT(as, &as->a_lock);
2515 						return (ENOMEM);
2516 					}
2517 				} else {
2518 					/*
2519 					 * Regular error
2520 					 */
2521 					AS_LOCK_EXIT(as, &as->a_lock);
2522 					return (error);
2523 				}
2524 			}
2525 			break;
2526 
2527 		/*
2528 		 * Can't happen.
2529 		 */
2530 		default:
2531 			panic("as_ctl: bad operation %d", func);
2532 			/*NOTREACHED*/
2533 		}
2534 
2535 		rsize -= ssize;
2536 		raddr += ssize;
2537 	}
2538 
2539 	if (func == MC_LOCK)
2540 		kmem_free(mlock_map, mlock_size * sizeof (ulong_t));
2541 	AS_LOCK_EXIT(as, &as->a_lock);
2542 	return (0);
2543 lockerr:
2544 
2545 	/*
2546 	 * If the lower levels returned EDEADLK for a segment lockop,
2547 	 * it means that we should retry the operation.  Let's wait
2548 	 * a bit also to let the deadlock causing condition clear.
2549 	 * This is part of a gross hack to work around a design flaw
2550 	 * in the ufs/sds logging code and should go away when the
2551 	 * logging code is re-designed to fix the problem. See bug
2552 	 * 4125102 for details of the problem.
2553 	 */
2554 	if (error == EDEADLK) {
2555 		delay(deadlk_wait);
2556 		error = 0;
2557 		goto retry;
2558 	}
2559 	return (error);
2560 }
2561 
2562 /*
2563  * Special code for exec to move the stack segment from its interim
2564  * place in the old address to the right place in the new address space.
2565  */
2566 /*ARGSUSED*/
2567 int
2568 as_exec(struct as *oas, caddr_t ostka, size_t stksz,
2569     struct as *nas, caddr_t nstka, uint_t hatflag)
2570 {
2571 	struct seg *stkseg;
2572 
2573 	AS_LOCK_ENTER(oas, &oas->a_lock, RW_WRITER);
2574 	stkseg = as_segat(oas, ostka);
2575 	stkseg = as_removeseg(oas, stkseg);
2576 	ASSERT(stkseg != NULL);
2577 	ASSERT(stkseg->s_base == ostka && stkseg->s_size == stksz);
2578 	stkseg->s_as = nas;
2579 	stkseg->s_base = nstka;
2580 
2581 	/*
2582 	 * It's ok to lock the address space we are about to exec to.
2583 	 */
2584 	AS_LOCK_ENTER(nas, &nas->a_lock, RW_WRITER);
2585 	ASSERT(avl_numnodes(&nas->a_wpage) == 0);
2586 	nas->a_size += stkseg->s_size;
2587 	oas->a_size -= stkseg->s_size;
2588 	(void) as_addseg(nas, stkseg);
2589 	AS_LOCK_EXIT(nas, &nas->a_lock);
2590 	AS_LOCK_EXIT(oas, &oas->a_lock);
2591 	return (0);
2592 }
2593 
2594 int
2595 fc_decode(faultcode_t fault_err)
2596 {
2597 	int error = 0;
2598 
2599 	switch (FC_CODE(fault_err)) {
2600 	case FC_OBJERR:
2601 		error = FC_ERRNO(fault_err);
2602 		break;
2603 	case FC_PROT:
2604 		error = EACCES;
2605 		break;
2606 	default:
2607 		error = EFAULT;
2608 		break;
2609 	}
2610 	return (error);
2611 }
2612 
2613 /*
2614  * Pagelock pages from a range that spans more than 1 segment.  Obtain shadow
2615  * lists from each segment and copy them to one contiguous shadow list (plist)
2616  * as expected by the caller.  Save pointers to per segment shadow lists at
2617  * the tail of plist so that they can be used during as_pageunlock().
2618  */
2619 static int
2620 as_pagelock_segs(struct as *as, struct seg *seg, struct page ***ppp,
2621     caddr_t addr, size_t size, enum seg_rw rw)
2622 {
2623 	caddr_t sv_addr = addr;
2624 	size_t sv_size = size;
2625 	struct seg *sv_seg = seg;
2626 	ulong_t segcnt = 1;
2627 	ulong_t cnt;
2628 	size_t ssize;
2629 	pgcnt_t npages = btop(size);
2630 	page_t **plist;
2631 	page_t **pl;
2632 	int error;
2633 	caddr_t eaddr;
2634 	faultcode_t fault_err = 0;
2635 	pgcnt_t pl_off;
2636 	extern struct seg_ops segspt_shmops;
2637 
2638 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2639 	ASSERT(seg != NULL);
2640 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2641 	ASSERT(addr + size > seg->s_base + seg->s_size);
2642 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2643 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2644 
2645 	/*
2646 	 * Count the number of segments covered by the range we are about to
2647 	 * lock. The segment count is used to size the shadow list we return
2648 	 * back to the caller.
2649 	 */
2650 	for (; size != 0; size -= ssize, addr += ssize) {
2651 		if (addr >= seg->s_base + seg->s_size) {
2652 
2653 			seg = AS_SEGNEXT(as, seg);
2654 			if (seg == NULL || addr != seg->s_base) {
2655 				AS_LOCK_EXIT(as, &as->a_lock);
2656 				return (EFAULT);
2657 			}
2658 			/*
2659 			 * Do a quick check if subsequent segments
2660 			 * will most likely support pagelock.
2661 			 */
2662 			if (seg->s_ops == &segvn_ops) {
2663 				vnode_t *vp;
2664 
2665 				if (SEGOP_GETVP(seg, addr, &vp) != 0 ||
2666 				    vp != NULL) {
2667 					AS_LOCK_EXIT(as, &as->a_lock);
2668 					goto slow;
2669 				}
2670 			} else if (seg->s_ops != &segspt_shmops) {
2671 				AS_LOCK_EXIT(as, &as->a_lock);
2672 				goto slow;
2673 			}
2674 			segcnt++;
2675 		}
2676 		if (addr + size > seg->s_base + seg->s_size) {
2677 			ssize = seg->s_base + seg->s_size - addr;
2678 		} else {
2679 			ssize = size;
2680 		}
2681 	}
2682 	ASSERT(segcnt > 1);
2683 
2684 	plist = kmem_zalloc((npages + segcnt) * sizeof (page_t *), KM_SLEEP);
2685 
2686 	addr = sv_addr;
2687 	size = sv_size;
2688 	seg = sv_seg;
2689 
2690 	for (cnt = 0, pl_off = 0; size != 0; size -= ssize, addr += ssize) {
2691 		if (addr >= seg->s_base + seg->s_size) {
2692 			seg = AS_SEGNEXT(as, seg);
2693 			ASSERT(seg != NULL && addr == seg->s_base);
2694 			cnt++;
2695 			ASSERT(cnt < segcnt);
2696 		}
2697 		if (addr + size > seg->s_base + seg->s_size) {
2698 			ssize = seg->s_base + seg->s_size - addr;
2699 		} else {
2700 			ssize = size;
2701 		}
2702 		pl = &plist[npages + cnt];
2703 		error = SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2704 		    L_PAGELOCK, rw);
2705 		if (error) {
2706 			break;
2707 		}
2708 		ASSERT(plist[npages + cnt] != NULL);
2709 		ASSERT(pl_off + btop(ssize) <= npages);
2710 		bcopy(plist[npages + cnt], &plist[pl_off],
2711 		    btop(ssize) * sizeof (page_t *));
2712 		pl_off += btop(ssize);
2713 	}
2714 
2715 	if (size == 0) {
2716 		AS_LOCK_EXIT(as, &as->a_lock);
2717 		ASSERT(cnt == segcnt - 1);
2718 		*ppp = plist;
2719 		return (0);
2720 	}
2721 
2722 	/*
2723 	 * one of pagelock calls failed. The error type is in error variable.
2724 	 * Unlock what we've locked so far and retry with F_SOFTLOCK if error
2725 	 * type is either EFAULT or ENOTSUP. Otherwise just return the error
2726 	 * back to the caller.
2727 	 */
2728 
2729 	eaddr = addr;
2730 	seg = sv_seg;
2731 
2732 	for (cnt = 0, addr = sv_addr; addr < eaddr; addr += ssize) {
2733 		if (addr >= seg->s_base + seg->s_size) {
2734 			seg = AS_SEGNEXT(as, seg);
2735 			ASSERT(seg != NULL && addr == seg->s_base);
2736 			cnt++;
2737 			ASSERT(cnt < segcnt);
2738 		}
2739 		if (eaddr > seg->s_base + seg->s_size) {
2740 			ssize = seg->s_base + seg->s_size - addr;
2741 		} else {
2742 			ssize = eaddr - addr;
2743 		}
2744 		pl = &plist[npages + cnt];
2745 		ASSERT(*pl != NULL);
2746 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2747 		    L_PAGEUNLOCK, rw);
2748 	}
2749 
2750 	AS_LOCK_EXIT(as, &as->a_lock);
2751 
2752 	kmem_free(plist, (npages + segcnt) * sizeof (page_t *));
2753 
2754 	if (error != ENOTSUP && error != EFAULT) {
2755 		return (error);
2756 	}
2757 
2758 slow:
2759 	/*
2760 	 * If we are here because pagelock failed due to the need to cow fault
2761 	 * in the pages we want to lock F_SOFTLOCK will do this job and in
2762 	 * next as_pagelock() call for this address range pagelock will
2763 	 * hopefully succeed.
2764 	 */
2765 	fault_err = as_fault(as->a_hat, as, sv_addr, sv_size, F_SOFTLOCK, rw);
2766 	if (fault_err != 0) {
2767 		return (fc_decode(fault_err));
2768 	}
2769 	*ppp = NULL;
2770 
2771 	return (0);
2772 }
2773 
2774 /*
2775  * lock pages in a given address space. Return shadow list. If
2776  * the list is NULL, the MMU mapping is also locked.
2777  */
2778 int
2779 as_pagelock(struct as *as, struct page ***ppp, caddr_t addr,
2780     size_t size, enum seg_rw rw)
2781 {
2782 	size_t rsize;
2783 	caddr_t raddr;
2784 	faultcode_t fault_err;
2785 	struct seg *seg;
2786 	int err;
2787 
2788 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_START,
2789 	    "as_pagelock_start: addr %p size %ld", addr, size);
2790 
2791 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2792 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2793 	    (size_t)raddr;
2794 
2795 	/*
2796 	 * if the request crosses two segments let
2797 	 * as_fault handle it.
2798 	 */
2799 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2800 
2801 	seg = as_segat(as, raddr);
2802 	if (seg == NULL) {
2803 		AS_LOCK_EXIT(as, &as->a_lock);
2804 		return (EFAULT);
2805 	}
2806 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2807 	if (raddr + rsize > seg->s_base + seg->s_size) {
2808 		return (as_pagelock_segs(as, seg, ppp, raddr, rsize, rw));
2809 	}
2810 	if (raddr + rsize <= raddr) {
2811 		AS_LOCK_EXIT(as, &as->a_lock);
2812 		return (EFAULT);
2813 	}
2814 
2815 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_START,
2816 	    "seg_lock_1_start: raddr %p rsize %ld", raddr, rsize);
2817 
2818 	/*
2819 	 * try to lock pages and pass back shadow list
2820 	 */
2821 	err = SEGOP_PAGELOCK(seg, raddr, rsize, ppp, L_PAGELOCK, rw);
2822 
2823 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_SEG_LOCK_END, "seg_lock_1_end");
2824 
2825 	AS_LOCK_EXIT(as, &as->a_lock);
2826 
2827 	if (err == 0 || (err != ENOTSUP && err != EFAULT)) {
2828 		return (err);
2829 	}
2830 
2831 	/*
2832 	 * Use F_SOFTLOCK to lock the pages because pagelock failed either due
2833 	 * to no pagelock support for this segment or pages need to be cow
2834 	 * faulted in. If fault is needed F_SOFTLOCK will do this job for
2835 	 * this as_pagelock() call and in the next as_pagelock() call for the
2836 	 * same address range pagelock call will hopefull succeed.
2837 	 */
2838 	fault_err = as_fault(as->a_hat, as, addr, size, F_SOFTLOCK, rw);
2839 	if (fault_err != 0) {
2840 		return (fc_decode(fault_err));
2841 	}
2842 	*ppp = NULL;
2843 
2844 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_LOCK_END, "as_pagelock_end");
2845 	return (0);
2846 }
2847 
2848 /*
2849  * unlock pages locked by as_pagelock_segs().  Retrieve per segment shadow
2850  * lists from the end of plist and call pageunlock interface for each segment.
2851  * Drop as lock and free plist.
2852  */
2853 static void
2854 as_pageunlock_segs(struct as *as, struct seg *seg, caddr_t addr, size_t size,
2855     struct page **plist, enum seg_rw rw)
2856 {
2857 	ulong_t cnt;
2858 	caddr_t eaddr = addr + size;
2859 	pgcnt_t npages = btop(size);
2860 	size_t ssize;
2861 	page_t **pl;
2862 
2863 	ASSERT(AS_LOCK_HELD(as, &as->a_lock));
2864 	ASSERT(seg != NULL);
2865 	ASSERT(addr >= seg->s_base && addr < seg->s_base + seg->s_size);
2866 	ASSERT(addr + size > seg->s_base + seg->s_size);
2867 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
2868 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
2869 	ASSERT(plist != NULL);
2870 
2871 	for (cnt = 0; addr < eaddr; addr += ssize) {
2872 		if (addr >= seg->s_base + seg->s_size) {
2873 			seg = AS_SEGNEXT(as, seg);
2874 			ASSERT(seg != NULL && addr == seg->s_base);
2875 			cnt++;
2876 		}
2877 		if (eaddr > seg->s_base + seg->s_size) {
2878 			ssize = seg->s_base + seg->s_size - addr;
2879 		} else {
2880 			ssize = eaddr - addr;
2881 		}
2882 		pl = &plist[npages + cnt];
2883 		ASSERT(*pl != NULL);
2884 		(void) SEGOP_PAGELOCK(seg, addr, ssize, (page_t ***)pl,
2885 		    L_PAGEUNLOCK, rw);
2886 	}
2887 	ASSERT(cnt > 0);
2888 	AS_LOCK_EXIT(as, &as->a_lock);
2889 
2890 	cnt++;
2891 	kmem_free(plist, (npages + cnt) * sizeof (page_t *));
2892 }
2893 
2894 /*
2895  * unlock pages in a given address range
2896  */
2897 void
2898 as_pageunlock(struct as *as, struct page **pp, caddr_t addr, size_t size,
2899     enum seg_rw rw)
2900 {
2901 	struct seg *seg;
2902 	size_t rsize;
2903 	caddr_t raddr;
2904 
2905 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_START,
2906 	    "as_pageunlock_start: addr %p size %ld", addr, size);
2907 
2908 	/*
2909 	 * if the shadow list is NULL, as_pagelock was
2910 	 * falling back to as_fault
2911 	 */
2912 	if (pp == NULL) {
2913 		(void) as_fault(as->a_hat, as, addr, size, F_SOFTUNLOCK, rw);
2914 		return;
2915 	}
2916 
2917 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
2918 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
2919 	    (size_t)raddr;
2920 
2921 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
2922 	seg = as_segat(as, raddr);
2923 	ASSERT(seg != NULL);
2924 
2925 	TRACE_2(TR_FAC_PHYSIO, TR_PHYSIO_SEG_UNLOCK_START,
2926 	    "seg_unlock_start: raddr %p rsize %ld", raddr, rsize);
2927 
2928 	ASSERT(raddr >= seg->s_base && raddr < seg->s_base + seg->s_size);
2929 	if (raddr + rsize <= seg->s_base + seg->s_size) {
2930 		SEGOP_PAGELOCK(seg, raddr, rsize, &pp, L_PAGEUNLOCK, rw);
2931 	} else {
2932 		as_pageunlock_segs(as, seg, raddr, rsize, pp, rw);
2933 		return;
2934 	}
2935 	AS_LOCK_EXIT(as, &as->a_lock);
2936 	TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_AS_UNLOCK_END, "as_pageunlock_end");
2937 }
2938 
2939 int
2940 as_setpagesize(struct as *as, caddr_t addr, size_t size, uint_t szc,
2941     boolean_t wait)
2942 {
2943 	struct seg *seg;
2944 	size_t ssize;
2945 	caddr_t raddr;			/* rounded down addr */
2946 	size_t rsize;			/* rounded up size */
2947 	int error = 0;
2948 	size_t pgsz = page_get_pagesize(szc);
2949 
2950 setpgsz_top:
2951 	if (!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(size, pgsz)) {
2952 		return (EINVAL);
2953 	}
2954 
2955 	raddr = addr;
2956 	rsize = size;
2957 
2958 	if (raddr + rsize < raddr)		/* check for wraparound */
2959 		return (ENOMEM);
2960 
2961 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
2962 	as_clearwatchprot(as, raddr, rsize);
2963 	seg = as_segat(as, raddr);
2964 	if (seg == NULL) {
2965 		as_setwatch(as);
2966 		AS_LOCK_EXIT(as, &as->a_lock);
2967 		return (ENOMEM);
2968 	}
2969 
2970 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
2971 		if (raddr >= seg->s_base + seg->s_size) {
2972 			seg = AS_SEGNEXT(as, seg);
2973 			if (seg == NULL || raddr != seg->s_base) {
2974 				error = ENOMEM;
2975 				break;
2976 			}
2977 		}
2978 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
2979 			ssize = seg->s_base + seg->s_size - raddr;
2980 		} else {
2981 			ssize = rsize;
2982 		}
2983 
2984 retry:
2985 		error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
2986 
2987 		if (error == IE_NOMEM) {
2988 			error = EAGAIN;
2989 			break;
2990 		}
2991 
2992 		if (error == IE_RETRY) {
2993 			AS_LOCK_EXIT(as, &as->a_lock);
2994 			goto setpgsz_top;
2995 		}
2996 
2997 		if (error == ENOTSUP) {
2998 			error = EINVAL;
2999 			break;
3000 		}
3001 
3002 		if (wait && (error == EAGAIN)) {
3003 			/*
3004 			 * Memory is currently locked.  It must be unlocked
3005 			 * before this operation can succeed through a retry.
3006 			 * The possible reasons for locked memory and
3007 			 * corresponding strategies for unlocking are:
3008 			 * (1) Normal I/O
3009 			 *	wait for a signal that the I/O operation
3010 			 *	has completed and the memory is unlocked.
3011 			 * (2) Asynchronous I/O
3012 			 *	The aio subsystem does not unlock pages when
3013 			 *	the I/O is completed. Those pages are unlocked
3014 			 *	when the application calls aiowait/aioerror.
3015 			 *	So, to prevent blocking forever, cv_broadcast()
3016 			 *	is done to wake up aio_cleanup_thread.
3017 			 *	Subsequently, segvn_reclaim will be called, and
3018 			 *	that will do AS_CLRUNMAPWAIT() and wake us up.
3019 			 * (3) Long term page locking:
3020 			 *	This is not relevant for as_setpagesize()
3021 			 *	because we cannot change the page size for
3022 			 *	driver memory. The attempt to do so will
3023 			 *	fail with a different error than EAGAIN so
3024 			 *	there's no need to trigger as callbacks like
3025 			 *	as_unmap, as_setprot or as_free would do.
3026 			 */
3027 			mutex_enter(&as->a_contents);
3028 			if (!AS_ISNOUNMAPWAIT(as)) {
3029 				if (AS_ISUNMAPWAIT(as) == 0) {
3030 					cv_broadcast(&as->a_cv);
3031 				}
3032 				AS_SETUNMAPWAIT(as);
3033 				AS_LOCK_EXIT(as, &as->a_lock);
3034 				while (AS_ISUNMAPWAIT(as)) {
3035 					cv_wait(&as->a_cv, &as->a_contents);
3036 				}
3037 			} else {
3038 				/*
3039 				 * We may have raced with
3040 				 * segvn_reclaim()/segspt_reclaim(). In this
3041 				 * case clean nounmapwait flag and retry since
3042 				 * softlockcnt in this segment may be already
3043 				 * 0.  We don't drop as writer lock so our
3044 				 * number of retries without sleeping should
3045 				 * be very small. See segvn_reclaim() for
3046 				 * more comments.
3047 				 */
3048 				AS_CLRNOUNMAPWAIT(as);
3049 				mutex_exit(&as->a_contents);
3050 				goto retry;
3051 			}
3052 			mutex_exit(&as->a_contents);
3053 			goto setpgsz_top;
3054 		} else if (error != 0) {
3055 			break;
3056 		}
3057 	}
3058 	as_setwatch(as);
3059 	AS_LOCK_EXIT(as, &as->a_lock);
3060 	return (error);
3061 }
3062 
3063 /*
3064  * as_iset3_default_lpsize() just calls SEGOP_SETPAGESIZE() on all segments
3065  * in its chunk where s_szc is less than the szc we want to set.
3066  */
3067 static int
3068 as_iset3_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3069     int *retry)
3070 {
3071 	struct seg *seg;
3072 	size_t ssize;
3073 	int error;
3074 
3075 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3076 
3077 	seg = as_segat(as, raddr);
3078 	if (seg == NULL) {
3079 		panic("as_iset3_default_lpsize: no seg");
3080 	}
3081 
3082 	for (; rsize != 0; rsize -= ssize, raddr += ssize) {
3083 		if (raddr >= seg->s_base + seg->s_size) {
3084 			seg = AS_SEGNEXT(as, seg);
3085 			if (seg == NULL || raddr != seg->s_base) {
3086 				panic("as_iset3_default_lpsize: as changed");
3087 			}
3088 		}
3089 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3090 			ssize = seg->s_base + seg->s_size - raddr;
3091 		} else {
3092 			ssize = rsize;
3093 		}
3094 
3095 		if (szc > seg->s_szc) {
3096 			error = SEGOP_SETPAGESIZE(seg, raddr, ssize, szc);
3097 			/* Only retry on EINVAL segments that have no vnode. */
3098 			if (error == EINVAL) {
3099 				vnode_t *vp = NULL;
3100 				if ((SEGOP_GETTYPE(seg, raddr) & MAP_SHARED) &&
3101 				    (SEGOP_GETVP(seg, raddr, &vp) != 0 ||
3102 				    vp == NULL)) {
3103 					*retry = 1;
3104 				} else {
3105 					*retry = 0;
3106 				}
3107 			}
3108 			if (error) {
3109 				return (error);
3110 			}
3111 		}
3112 	}
3113 	return (0);
3114 }
3115 
3116 /*
3117  * as_iset2_default_lpsize() calls as_iset3_default_lpsize() to set the
3118  * pagesize on each segment in its range, but if any fails with EINVAL,
3119  * then it reduces the pagesizes to the next size in the bitmap and
3120  * retries as_iset3_default_lpsize(). The reason why the code retries
3121  * smaller allowed sizes on EINVAL is because (a) the anon offset may not
3122  * match the bigger sizes, and (b) it's hard to get this offset (to begin
3123  * with) to pass to map_pgszcvec().
3124  */
3125 static int
3126 as_iset2_default_lpsize(struct as *as, caddr_t addr, size_t size, uint_t szc,
3127     uint_t szcvec)
3128 {
3129 	int error;
3130 	int retry;
3131 
3132 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3133 
3134 	for (;;) {
3135 		error = as_iset3_default_lpsize(as, addr, size, szc, &retry);
3136 		if (error == EINVAL && retry) {
3137 			szcvec &= ~(1 << szc);
3138 			if (szcvec <= 1) {
3139 				return (EINVAL);
3140 			}
3141 			szc = highbit(szcvec) - 1;
3142 		} else {
3143 			return (error);
3144 		}
3145 	}
3146 }
3147 
3148 /*
3149  * as_iset1_default_lpsize() breaks its chunk into areas where existing
3150  * segments have a smaller szc than we want to set. For each such area,
3151  * it calls as_iset2_default_lpsize()
3152  */
3153 static int
3154 as_iset1_default_lpsize(struct as *as, caddr_t raddr, size_t rsize, uint_t szc,
3155     uint_t szcvec)
3156 {
3157 	struct seg *seg;
3158 	size_t ssize;
3159 	caddr_t setaddr = raddr;
3160 	size_t setsize = 0;
3161 	int set;
3162 	int error;
3163 
3164 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3165 
3166 	seg = as_segat(as, raddr);
3167 	if (seg == NULL) {
3168 		panic("as_iset1_default_lpsize: no seg");
3169 	}
3170 	if (seg->s_szc < szc) {
3171 		set = 1;
3172 	} else {
3173 		set = 0;
3174 	}
3175 
3176 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3177 		if (raddr >= seg->s_base + seg->s_size) {
3178 			seg = AS_SEGNEXT(as, seg);
3179 			if (seg == NULL || raddr != seg->s_base) {
3180 				panic("as_iset1_default_lpsize: as changed");
3181 			}
3182 			if (seg->s_szc >= szc && set) {
3183 				ASSERT(setsize != 0);
3184 				error = as_iset2_default_lpsize(as,
3185 				    setaddr, setsize, szc, szcvec);
3186 				if (error) {
3187 					return (error);
3188 				}
3189 				set = 0;
3190 			} else if (seg->s_szc < szc && !set) {
3191 				setaddr = raddr;
3192 				setsize = 0;
3193 				set = 1;
3194 			}
3195 		}
3196 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3197 			ssize = seg->s_base + seg->s_size - raddr;
3198 		} else {
3199 			ssize = rsize;
3200 		}
3201 	}
3202 	error = 0;
3203 	if (set) {
3204 		ASSERT(setsize != 0);
3205 		error = as_iset2_default_lpsize(as, setaddr, setsize,
3206 		    szc, szcvec);
3207 	}
3208 	return (error);
3209 }
3210 
3211 /*
3212  * as_iset_default_lpsize() breaks its chunk according to the size code bitmap
3213  * returned by map_pgszcvec() (similar to as_map_segvn_segs()), and passes each
3214  * chunk to as_iset1_default_lpsize().
3215  */
3216 static int
3217 as_iset_default_lpsize(struct as *as, caddr_t addr, size_t size, int flags,
3218     int type)
3219 {
3220 	int rtype = (type & MAP_SHARED) ? MAPPGSZC_SHM : MAPPGSZC_PRIVM;
3221 	uint_t szcvec = map_pgszcvec(addr, size, (uintptr_t)addr,
3222 	    flags, rtype, 1);
3223 	uint_t szc;
3224 	uint_t nszc;
3225 	int error;
3226 	caddr_t a;
3227 	caddr_t eaddr;
3228 	size_t segsize;
3229 	size_t pgsz;
3230 	uint_t save_szcvec;
3231 
3232 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3233 	ASSERT(IS_P2ALIGNED(addr, PAGESIZE));
3234 	ASSERT(IS_P2ALIGNED(size, PAGESIZE));
3235 
3236 	szcvec &= ~1;
3237 	if (szcvec <= 1) {	/* skip if base page size */
3238 		return (0);
3239 	}
3240 
3241 	/* Get the pagesize of the first larger page size. */
3242 	szc = lowbit(szcvec) - 1;
3243 	pgsz = page_get_pagesize(szc);
3244 	eaddr = addr + size;
3245 	addr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3246 	eaddr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3247 
3248 	save_szcvec = szcvec;
3249 	szcvec >>= (szc + 1);
3250 	nszc = szc;
3251 	while (szcvec) {
3252 		if ((szcvec & 0x1) == 0) {
3253 			nszc++;
3254 			szcvec >>= 1;
3255 			continue;
3256 		}
3257 		nszc++;
3258 		pgsz = page_get_pagesize(nszc);
3259 		a = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
3260 		if (a != addr) {
3261 			ASSERT(szc > 0);
3262 			ASSERT(a < eaddr);
3263 			segsize = a - addr;
3264 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3265 			    save_szcvec);
3266 			if (error) {
3267 				return (error);
3268 			}
3269 			addr = a;
3270 		}
3271 		szc = nszc;
3272 		szcvec >>= 1;
3273 	}
3274 
3275 	ASSERT(addr < eaddr);
3276 	szcvec = save_szcvec;
3277 	while (szcvec) {
3278 		a = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
3279 		ASSERT(a >= addr);
3280 		if (a != addr) {
3281 			ASSERT(szc > 0);
3282 			segsize = a - addr;
3283 			error = as_iset1_default_lpsize(as, addr, segsize, szc,
3284 			    save_szcvec);
3285 			if (error) {
3286 				return (error);
3287 			}
3288 			addr = a;
3289 		}
3290 		szcvec &= ~(1 << szc);
3291 		if (szcvec) {
3292 			szc = highbit(szcvec) - 1;
3293 			pgsz = page_get_pagesize(szc);
3294 		}
3295 	}
3296 	ASSERT(addr == eaddr);
3297 
3298 	return (0);
3299 }
3300 
3301 /*
3302  * Set the default large page size for the range. Called via memcntl with
3303  * page size set to 0. as_set_default_lpsize breaks the range down into
3304  * chunks with the same type/flags, ignores-non segvn segments, and passes
3305  * each chunk to as_iset_default_lpsize().
3306  */
3307 int
3308 as_set_default_lpsize(struct as *as, caddr_t addr, size_t size)
3309 {
3310 	struct seg *seg;
3311 	caddr_t raddr;
3312 	size_t rsize;
3313 	size_t ssize;
3314 	int rtype, rflags;
3315 	int stype, sflags;
3316 	int error;
3317 	caddr_t	setaddr;
3318 	size_t setsize;
3319 	int segvn;
3320 
3321 	if (size == 0)
3322 		return (0);
3323 
3324 	AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3325 again:
3326 	error = 0;
3327 
3328 	raddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3329 	rsize = (((size_t)(addr + size) + PAGEOFFSET) & PAGEMASK) -
3330 	    (size_t)raddr;
3331 
3332 	if (raddr + rsize < raddr) {		/* check for wraparound */
3333 		AS_LOCK_EXIT(as, &as->a_lock);
3334 		return (ENOMEM);
3335 	}
3336 	as_clearwatchprot(as, raddr, rsize);
3337 	seg = as_segat(as, raddr);
3338 	if (seg == NULL) {
3339 		as_setwatch(as);
3340 		AS_LOCK_EXIT(as, &as->a_lock);
3341 		return (ENOMEM);
3342 	}
3343 	if (seg->s_ops == &segvn_ops) {
3344 		rtype = SEGOP_GETTYPE(seg, addr);
3345 		rflags = rtype & (MAP_TEXT | MAP_INITDATA);
3346 		rtype = rtype & (MAP_SHARED | MAP_PRIVATE);
3347 		segvn = 1;
3348 	} else {
3349 		segvn = 0;
3350 	}
3351 	setaddr = raddr;
3352 	setsize = 0;
3353 
3354 	for (; rsize != 0; rsize -= ssize, raddr += ssize, setsize += ssize) {
3355 		if (raddr >= (seg->s_base + seg->s_size)) {
3356 			seg = AS_SEGNEXT(as, seg);
3357 			if (seg == NULL || raddr != seg->s_base) {
3358 				error = ENOMEM;
3359 				break;
3360 			}
3361 			if (seg->s_ops == &segvn_ops) {
3362 				stype = SEGOP_GETTYPE(seg, raddr);
3363 				sflags = stype & (MAP_TEXT | MAP_INITDATA);
3364 				stype &= (MAP_SHARED | MAP_PRIVATE);
3365 				if (segvn && (rflags != sflags ||
3366 				    rtype != stype)) {
3367 					/*
3368 					 * The next segment is also segvn but
3369 					 * has different flags and/or type.
3370 					 */
3371 					ASSERT(setsize != 0);
3372 					error = as_iset_default_lpsize(as,
3373 					    setaddr, setsize, rflags, rtype);
3374 					if (error) {
3375 						break;
3376 					}
3377 					rflags = sflags;
3378 					rtype = stype;
3379 					setaddr = raddr;
3380 					setsize = 0;
3381 				} else if (!segvn) {
3382 					rflags = sflags;
3383 					rtype = stype;
3384 					setaddr = raddr;
3385 					setsize = 0;
3386 					segvn = 1;
3387 				}
3388 			} else if (segvn) {
3389 				/* The next segment is not segvn. */
3390 				ASSERT(setsize != 0);
3391 				error = as_iset_default_lpsize(as,
3392 				    setaddr, setsize, rflags, rtype);
3393 				if (error) {
3394 					break;
3395 				}
3396 				segvn = 0;
3397 			}
3398 		}
3399 		if ((raddr + rsize) > (seg->s_base + seg->s_size)) {
3400 			ssize = seg->s_base + seg->s_size - raddr;
3401 		} else {
3402 			ssize = rsize;
3403 		}
3404 	}
3405 	if (error == 0 && segvn) {
3406 		/* The last chunk when rsize == 0. */
3407 		ASSERT(setsize != 0);
3408 		error = as_iset_default_lpsize(as, setaddr, setsize,
3409 		    rflags, rtype);
3410 	}
3411 
3412 	if (error == IE_RETRY) {
3413 		goto again;
3414 	} else if (error == IE_NOMEM) {
3415 		error = EAGAIN;
3416 	} else if (error == ENOTSUP) {
3417 		error = EINVAL;
3418 	} else if (error == EAGAIN) {
3419 		mutex_enter(&as->a_contents);
3420 		if (!AS_ISNOUNMAPWAIT(as)) {
3421 			if (AS_ISUNMAPWAIT(as) == 0) {
3422 				cv_broadcast(&as->a_cv);
3423 			}
3424 			AS_SETUNMAPWAIT(as);
3425 			AS_LOCK_EXIT(as, &as->a_lock);
3426 			while (AS_ISUNMAPWAIT(as)) {
3427 				cv_wait(&as->a_cv, &as->a_contents);
3428 			}
3429 			mutex_exit(&as->a_contents);
3430 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
3431 		} else {
3432 			/*
3433 			 * We may have raced with
3434 			 * segvn_reclaim()/segspt_reclaim(). In this case
3435 			 * clean nounmapwait flag and retry since softlockcnt
3436 			 * in this segment may be already 0.  We don't drop as
3437 			 * writer lock so our number of retries without
3438 			 * sleeping should be very small. See segvn_reclaim()
3439 			 * for more comments.
3440 			 */
3441 			AS_CLRNOUNMAPWAIT(as);
3442 			mutex_exit(&as->a_contents);
3443 		}
3444 		goto again;
3445 	}
3446 
3447 	as_setwatch(as);
3448 	AS_LOCK_EXIT(as, &as->a_lock);
3449 	return (error);
3450 }
3451 
3452 /*
3453  * Setup all of the uninitialized watched pages that we can.
3454  */
3455 void
3456 as_setwatch(struct as *as)
3457 {
3458 	struct watched_page *pwp;
3459 	struct seg *seg;
3460 	caddr_t vaddr;
3461 	uint_t prot;
3462 	int  err, retrycnt;
3463 
3464 	if (avl_numnodes(&as->a_wpage) == 0)
3465 		return;
3466 
3467 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3468 
3469 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3470 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3471 		retrycnt = 0;
3472 	retry:
3473 		vaddr = pwp->wp_vaddr;
3474 		if (pwp->wp_oprot != 0 ||	/* already set up */
3475 		    (seg = as_segat(as, vaddr)) == NULL ||
3476 		    SEGOP_GETPROT(seg, vaddr, 0, &prot) != 0)
3477 			continue;
3478 
3479 		pwp->wp_oprot = prot;
3480 		if (pwp->wp_read)
3481 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3482 		if (pwp->wp_write)
3483 			prot &= ~PROT_WRITE;
3484 		if (pwp->wp_exec)
3485 			prot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3486 		if (!(pwp->wp_flags & WP_NOWATCH) && prot != pwp->wp_oprot) {
3487 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3488 			if (err == IE_RETRY) {
3489 				pwp->wp_oprot = 0;
3490 				ASSERT(retrycnt == 0);
3491 				retrycnt++;
3492 				goto retry;
3493 			}
3494 		}
3495 		pwp->wp_prot = prot;
3496 	}
3497 }
3498 
3499 /*
3500  * Clear all of the watched pages in the address space.
3501  */
3502 void
3503 as_clearwatch(struct as *as)
3504 {
3505 	struct watched_page *pwp;
3506 	struct seg *seg;
3507 	caddr_t vaddr;
3508 	uint_t prot;
3509 	int err, retrycnt;
3510 
3511 	if (avl_numnodes(&as->a_wpage) == 0)
3512 		return;
3513 
3514 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3515 
3516 	for (pwp = avl_first(&as->a_wpage); pwp != NULL;
3517 	    pwp = AVL_NEXT(&as->a_wpage, pwp)) {
3518 		retrycnt = 0;
3519 	retry:
3520 		vaddr = pwp->wp_vaddr;
3521 		if (pwp->wp_oprot == 0 ||	/* not set up */
3522 		    (seg = as_segat(as, vaddr)) == NULL)
3523 			continue;
3524 
3525 		if ((prot = pwp->wp_oprot) != pwp->wp_prot) {
3526 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, prot);
3527 			if (err == IE_RETRY) {
3528 				ASSERT(retrycnt == 0);
3529 				retrycnt++;
3530 				goto retry;
3531 			}
3532 		}
3533 		pwp->wp_oprot = 0;
3534 		pwp->wp_prot = 0;
3535 	}
3536 }
3537 
3538 /*
3539  * Force a new setup for all the watched pages in the range.
3540  */
3541 static void
3542 as_setwatchprot(struct as *as, caddr_t addr, size_t size, uint_t prot)
3543 {
3544 	struct watched_page *pwp;
3545 	struct watched_page tpw;
3546 	caddr_t eaddr = addr + size;
3547 	caddr_t vaddr;
3548 	struct seg *seg;
3549 	int err, retrycnt;
3550 	uint_t	wprot;
3551 	avl_index_t where;
3552 
3553 	if (avl_numnodes(&as->a_wpage) == 0)
3554 		return;
3555 
3556 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3557 
3558 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3559 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3560 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3561 
3562 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3563 		retrycnt = 0;
3564 		vaddr = pwp->wp_vaddr;
3565 
3566 		wprot = prot;
3567 		if (pwp->wp_read)
3568 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3569 		if (pwp->wp_write)
3570 			wprot &= ~PROT_WRITE;
3571 		if (pwp->wp_exec)
3572 			wprot &= ~(PROT_READ|PROT_WRITE|PROT_EXEC);
3573 		if (!(pwp->wp_flags & WP_NOWATCH) && wprot != pwp->wp_oprot) {
3574 		retry:
3575 			seg = as_segat(as, vaddr);
3576 			if (seg == NULL) {
3577 				panic("as_setwatchprot: no seg");
3578 				/*NOTREACHED*/
3579 			}
3580 			err = SEGOP_SETPROT(seg, vaddr, PAGESIZE, wprot);
3581 			if (err == IE_RETRY) {
3582 				ASSERT(retrycnt == 0);
3583 				retrycnt++;
3584 				goto retry;
3585 			}
3586 		}
3587 		pwp->wp_oprot = prot;
3588 		pwp->wp_prot = wprot;
3589 
3590 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3591 	}
3592 }
3593 
3594 /*
3595  * Clear all of the watched pages in the range.
3596  */
3597 static void
3598 as_clearwatchprot(struct as *as, caddr_t addr, size_t size)
3599 {
3600 	caddr_t eaddr = addr + size;
3601 	struct watched_page *pwp;
3602 	struct watched_page tpw;
3603 	uint_t prot;
3604 	struct seg *seg;
3605 	int err, retrycnt;
3606 	avl_index_t where;
3607 
3608 	if (avl_numnodes(&as->a_wpage) == 0)
3609 		return;
3610 
3611 	tpw.wp_vaddr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK);
3612 	if ((pwp = avl_find(&as->a_wpage, &tpw, &where)) == NULL)
3613 		pwp = avl_nearest(&as->a_wpage, where, AVL_AFTER);
3614 
3615 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
3616 
3617 	while (pwp != NULL && pwp->wp_vaddr < eaddr) {
3618 
3619 		if ((prot = pwp->wp_oprot) != 0) {
3620 			retrycnt = 0;
3621 
3622 			if (prot != pwp->wp_prot) {
3623 			retry:
3624 				seg = as_segat(as, pwp->wp_vaddr);
3625 				if (seg == NULL)
3626 					continue;
3627 				err = SEGOP_SETPROT(seg, pwp->wp_vaddr,
3628 				    PAGESIZE, prot);
3629 				if (err == IE_RETRY) {
3630 					ASSERT(retrycnt == 0);
3631 					retrycnt++;
3632 					goto retry;
3633 
3634 				}
3635 			}
3636 			pwp->wp_oprot = 0;
3637 			pwp->wp_prot = 0;
3638 		}
3639 
3640 		pwp = AVL_NEXT(&as->a_wpage, pwp);
3641 	}
3642 }
3643 
3644 void
3645 as_signal_proc(struct as *as, k_siginfo_t *siginfo)
3646 {
3647 	struct proc *p;
3648 
3649 	mutex_enter(&pidlock);
3650 	for (p = practive; p; p = p->p_next) {
3651 		if (p->p_as == as) {
3652 			mutex_enter(&p->p_lock);
3653 			if (p->p_as == as)
3654 				sigaddq(p, NULL, siginfo, KM_NOSLEEP);
3655 			mutex_exit(&p->p_lock);
3656 		}
3657 	}
3658 	mutex_exit(&pidlock);
3659 }
3660 
3661 /*
3662  * return memory object ID
3663  */
3664 int
3665 as_getmemid(struct as *as, caddr_t addr, memid_t *memidp)
3666 {
3667 	struct seg	*seg;
3668 	int		sts;
3669 
3670 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
3671 	seg = as_segat(as, addr);
3672 	if (seg == NULL) {
3673 		AS_LOCK_EXIT(as, &as->a_lock);
3674 		return (EFAULT);
3675 	}
3676 	/*
3677 	 * catch old drivers which may not support getmemid
3678 	 */
3679 	if (seg->s_ops->getmemid == NULL) {
3680 		AS_LOCK_EXIT(as, &as->a_lock);
3681 		return (ENODEV);
3682 	}
3683 
3684 	sts = SEGOP_GETMEMID(seg, addr, memidp);
3685 
3686 	AS_LOCK_EXIT(as, &as->a_lock);
3687 	return (sts);
3688 }
3689