xref: /titanic_52/usr/src/uts/common/vm/vm_anon.c (revision a69cdccdf9a647a09c204a49f998caff672138e5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * VM - anonymous pages.
40  *
41  * This layer sits immediately above the vm_swap layer.  It manages
42  * physical pages that have no permanent identity in the file system
43  * name space, using the services of the vm_swap layer to allocate
44  * backing storage for these pages.  Since these pages have no external
45  * identity, they are discarded when the last reference is removed.
46  *
47  * An important function of this layer is to manage low-level sharing
48  * of pages that are logically distinct but that happen to be
49  * physically identical (e.g., the corresponding pages of the processes
50  * resulting from a fork before one process or the other changes their
51  * contents).  This pseudo-sharing is present only as an optimization
52  * and is not to be confused with true sharing in which multiple
53  * address spaces deliberately contain references to the same object;
54  * such sharing is managed at a higher level.
55  *
56  * The key data structure here is the anon struct, which contains a
57  * reference count for its associated physical page and a hint about
58  * the identity of that page.  Anon structs typically live in arrays,
59  * with an instance's position in its array determining where the
60  * corresponding backing storage is allocated; however, the swap_xlate()
61  * routine abstracts away this representation information so that the
62  * rest of the anon layer need not know it.  (See the swap layer for
63  * more details on anon struct layout.)
64  *
65  * In the future versions of the system, the association between an
66  * anon struct and its position on backing store will change so that
67  * we don't require backing store all anonymous pages in the system.
68  * This is important for consideration for large memory systems.
69  * We can also use this technique to delay binding physical locations
70  * to anonymous pages until pageout/swapout time where we can make
71  * smarter allocation decisions to improve anonymous klustering.
72  *
73  * Many of the routines defined here take a (struct anon **) argument,
74  * which allows the code at this level to manage anon pages directly,
75  * so that callers can regard anon structs as opaque objects and not be
76  * concerned with assigning or inspecting their contents.
77  *
78  * Clients of this layer refer to anon pages indirectly.  That is, they
79  * maintain arrays of pointers to anon structs rather than maintaining
80  * anon structs themselves.  The (struct anon **) arguments mentioned
81  * above are pointers to entries in these arrays.  It is these arrays
82  * that capture the mapping between offsets within a given segment and
83  * the corresponding anonymous backing storage address.
84  */
85 
86 #ifdef DEBUG
87 #define	ANON_DEBUG
88 #endif
89 
90 #include <sys/types.h>
91 #include <sys/t_lock.h>
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/mman.h>
95 #include <sys/cred.h>
96 #include <sys/thread.h>
97 #include <sys/vnode.h>
98 #include <sys/cpuvar.h>
99 #include <sys/swap.h>
100 #include <sys/cmn_err.h>
101 #include <sys/vtrace.h>
102 #include <sys/kmem.h>
103 #include <sys/sysmacros.h>
104 #include <sys/bitmap.h>
105 #include <sys/vmsystm.h>
106 #include <sys/tuneable.h>
107 #include <sys/debug.h>
108 #include <sys/fs/swapnode.h>
109 #include <sys/tnf_probe.h>
110 #include <sys/lgrp.h>
111 #include <sys/policy.h>
112 #include <sys/condvar_impl.h>
113 #include <sys/mutex_impl.h>
114 #include <sys/rctl.h>
115 
116 #include <vm/as.h>
117 #include <vm/hat.h>
118 #include <vm/anon.h>
119 #include <vm/page.h>
120 #include <vm/vpage.h>
121 #include <vm/seg.h>
122 #include <vm/rm.h>
123 
124 #include <fs/fs_subr.h>
125 
126 struct vnode *anon_vp;
127 
128 int anon_debug;
129 
130 kmutex_t	anoninfo_lock;
131 struct		k_anoninfo k_anoninfo;
132 ani_free_t	ani_free_pool[ANI_MAX_POOL];
133 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
134 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
135 
136 /*
137  * Global hash table for (vp, off) -> anon slot
138  */
139 extern	int swap_maxcontig;
140 size_t	anon_hash_size;
141 unsigned int anon_hash_shift;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 pad_mutex_t	*anonhash_lock;
148 
149 /*
150  * Used to make the increment of all refcnts of all anon slots of a large
151  * page appear to be atomic.  The lock is grabbed for the first anon slot of
152  * a large page.
153  */
154 pad_mutex_t	*anonpages_hash_lock;
155 
156 #define	APH_MUTEX(vp, off)				\
157 	(&anonpages_hash_lock[(ANON_HASH((vp), (off)) &	\
158 	    (AH_LOCK_SIZE - 1))].pad_mutex)
159 
160 #ifdef VM_STATS
161 static struct anonvmstats_str {
162 	ulong_t getpages[30];
163 	ulong_t privatepages[10];
164 	ulong_t demotepages[9];
165 	ulong_t decrefpages[9];
166 	ulong_t	dupfillholes[4];
167 	ulong_t freepages[1];
168 } anonvmstats;
169 #endif /* VM_STATS */
170 
171 /*ARGSUSED*/
172 static int
173 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
174 {
175 	struct anon_map *amp = buf;
176 
177 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
178 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
179 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
180 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
181 	return (0);
182 }
183 
184 /*ARGSUSED1*/
185 static void
186 anonmap_cache_destructor(void *buf, void *cdrarg)
187 {
188 	struct anon_map *amp = buf;
189 
190 	rw_destroy(&amp->a_rwlock);
191 	cv_destroy(&amp->a_purgecv);
192 	mutex_destroy(&amp->a_pmtx);
193 	mutex_destroy(&amp->a_purgemtx);
194 }
195 
196 void
197 anon_init(void)
198 {
199 	int i;
200 	pad_mutex_t *tmp;
201 
202 	/* These both need to be powers of 2 so round up to the next power */
203 	anon_hash_shift = highbit((physmem / ANON_HASHAVELEN) - 1);
204 	anon_hash_size = 1L << anon_hash_shift;
205 
206 	/*
207 	 * We need to align the anonhash_lock and anonpages_hash_lock arrays
208 	 * to a 64B boundary to avoid false sharing.  We add 63B to our
209 	 * allocation so that we can get a 64B aligned address to use.
210 	 * We allocate both of these together to avoid wasting an additional
211 	 * 63B.
212 	 */
213 	tmp = kmem_zalloc((2 * AH_LOCK_SIZE * sizeof (pad_mutex_t)) + 63,
214 	    KM_SLEEP);
215 	anonhash_lock = (pad_mutex_t *)P2ROUNDUP((uintptr_t)tmp, 64);
216 	anonpages_hash_lock = anonhash_lock + AH_LOCK_SIZE;
217 
218 	for (i = 0; i < AH_LOCK_SIZE; i++) {
219 		mutex_init(&anonhash_lock[i].pad_mutex, NULL, MUTEX_DEFAULT,
220 		    NULL);
221 		mutex_init(&anonpages_hash_lock[i].pad_mutex, NULL,
222 		    MUTEX_DEFAULT, NULL);
223 	}
224 
225 	for (i = 0; i < ANON_LOCKSIZE; i++) {
226 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
227 		    MUTEX_DEFAULT, NULL);
228 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
229 	}
230 
231 	anon_hash = (struct anon **)
232 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
233 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
234 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, KMC_PREFILL);
235 	anonmap_cache = kmem_cache_create("anonmap_cache",
236 	    sizeof (struct anon_map), 0,
237 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
238 	    NULL, NULL, 0);
239 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
240 
241 	anon_vp = vn_alloc(KM_SLEEP);
242 	vn_setops(anon_vp, swap_vnodeops);
243 	anon_vp->v_type = VREG;
244 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
245 }
246 
247 /*
248  * Global anon slot hash table manipulation.
249  */
250 
251 static void
252 anon_addhash(struct anon *ap)
253 {
254 	int index;
255 
256 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
257 	index = ANON_HASH(ap->an_vp, ap->an_off);
258 	ap->an_hash = anon_hash[index];
259 	anon_hash[index] = ap;
260 }
261 
262 static void
263 anon_rmhash(struct anon *ap)
264 {
265 	struct anon **app;
266 
267 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
268 
269 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
270 	    *app; app = &((*app)->an_hash)) {
271 		if (*app == ap) {
272 			*app = ap->an_hash;
273 			break;
274 		}
275 	}
276 }
277 
278 /*
279  * The anon array interfaces. Functions allocating,
280  * freeing array of pointers, and returning/setting
281  * entries in the array of pointers for a given offset.
282  *
283  * Create the list of pointers
284  */
285 struct anon_hdr *
286 anon_create(pgcnt_t npages, int flags)
287 {
288 	struct anon_hdr *ahp;
289 	ulong_t nchunks;
290 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
291 
292 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
293 		return (NULL);
294 	}
295 
296 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
297 	/*
298 	 * Single level case.
299 	 */
300 	ahp->size = npages;
301 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
302 
303 		if (flags & ANON_ALLOC_FORCE)
304 			ahp->flags |= ANON_ALLOC_FORCE;
305 
306 		ahp->array_chunk = kmem_zalloc(
307 		    ahp->size * sizeof (struct anon *), kmemflags);
308 
309 		if (ahp->array_chunk == NULL) {
310 			kmem_free(ahp, sizeof (struct anon_hdr));
311 			return (NULL);
312 		}
313 	} else {
314 		/*
315 		 * 2 Level case.
316 		 * anon hdr size needs to be rounded off  to be a multiple
317 		 * of ANON_CHUNK_SIZE. This is important as various anon
318 		 * related functions depend on this.
319 		 * NOTE -
320 		 * anon_grow()  makes anon hdr size a multiple of
321 		 * ANON_CHUNK_SIZE.
322 		 * amp size is <= anon hdr size.
323 		 * anon_index + seg_pgs <= anon hdr size.
324 		 */
325 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
326 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
327 
328 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
329 		    kmemflags);
330 
331 		if (ahp->array_chunk == NULL) {
332 			kmem_free(ahp, sizeof (struct anon_hdr));
333 			return (NULL);
334 		}
335 	}
336 	return (ahp);
337 }
338 
339 /*
340  * Free the array of pointers
341  */
342 void
343 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
344 {
345 	ulong_t i;
346 	void **ppp;
347 	ulong_t nchunks;
348 
349 	ASSERT(npages <= ahp->size);
350 
351 	/*
352 	 * Single level case.
353 	 */
354 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
355 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
356 	} else {
357 		/*
358 		 * 2 level case.
359 		 */
360 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
361 		for (i = 0; i < nchunks; i++) {
362 			ppp = &ahp->array_chunk[i];
363 			if (*ppp != NULL)
364 				kmem_free(*ppp, PAGESIZE);
365 		}
366 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
367 	}
368 	mutex_destroy(&ahp->serial_lock);
369 	kmem_free(ahp, sizeof (struct anon_hdr));
370 }
371 
372 /*
373  * Return the pointer from the list for a
374  * specified anon index.
375  */
376 struct anon *
377 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
378 {
379 	struct anon **app;
380 
381 	ASSERT(an_idx < ahp->size);
382 
383 	/*
384 	 * Single level case.
385 	 */
386 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
387 		return ((struct anon *)
388 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
389 	} else {
390 
391 		/*
392 		 * 2 level case.
393 		 */
394 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
395 		if (app) {
396 			return ((struct anon *)
397 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
398 			    ANON_PTRMASK));
399 		} else {
400 			return (NULL);
401 		}
402 	}
403 }
404 
405 /*
406  * Return the anon pointer for the first valid entry in the anon list,
407  * starting from the given index.
408  */
409 struct anon *
410 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
411 {
412 	struct anon *ap;
413 	struct anon **app;
414 	ulong_t chunkoff;
415 	ulong_t i;
416 	ulong_t j;
417 	pgcnt_t size;
418 
419 	i = *index;
420 	size = ahp->size;
421 
422 	ASSERT(i < size);
423 
424 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
425 		/*
426 		 * 1 level case
427 		 */
428 		while (i < size) {
429 			ap = (struct anon *)
430 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
431 			if (ap) {
432 				*index = i;
433 				return (ap);
434 			}
435 			i++;
436 		}
437 	} else {
438 		/*
439 		 * 2 level case
440 		 */
441 		chunkoff = i & ANON_CHUNK_OFF;
442 		while (i < size) {
443 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
444 			if (app)
445 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
446 					ap = (struct anon *)
447 					    ((uintptr_t)app[j] & ANON_PTRMASK);
448 					if (ap) {
449 						*index = i + (j - chunkoff);
450 						return (ap);
451 					}
452 				}
453 			chunkoff = 0;
454 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
455 		}
456 	}
457 	*index = size;
458 	return (NULL);
459 }
460 
461 /*
462  * Set list entry with a given pointer for a specified offset
463  */
464 int
465 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
466 {
467 	void		**ppp;
468 	struct anon	**app;
469 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
470 	uintptr_t	*ap_addr;
471 
472 	ASSERT(an_idx < ahp->size);
473 
474 	/*
475 	 * Single level case.
476 	 */
477 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
478 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
479 	} else {
480 
481 		/*
482 		 * 2 level case.
483 		 */
484 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
485 
486 		ASSERT(ppp != NULL);
487 		if (*ppp == NULL) {
488 			mutex_enter(&ahp->serial_lock);
489 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
490 			if (*ppp == NULL) {
491 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
492 				if (*ppp == NULL) {
493 					mutex_exit(&ahp->serial_lock);
494 					return (ENOMEM);
495 				}
496 			}
497 			mutex_exit(&ahp->serial_lock);
498 		}
499 		app = *ppp;
500 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
501 	}
502 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
503 	return (0);
504 }
505 
506 /*
507  * Copy anon array into a given new anon array
508  */
509 int
510 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
511 	struct anon_hdr *dahp, ulong_t d_idx,
512 	pgcnt_t npages, int flags)
513 {
514 	void **sapp, **dapp;
515 	void *ap;
516 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
517 
518 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
519 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
520 
521 	/*
522 	 * Both arrays are 1 level.
523 	 */
524 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
525 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
526 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
527 	    (dahp->flags & ANON_ALLOC_FORCE))) {
528 
529 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
530 		    npages * sizeof (struct anon *));
531 		return (0);
532 	}
533 
534 	/*
535 	 * Both arrays are 2 levels.
536 	 */
537 	if (sahp->size > ANON_CHUNK_SIZE &&
538 	    dahp->size > ANON_CHUNK_SIZE &&
539 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
540 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
541 
542 		ulong_t sapidx, dapidx;
543 		ulong_t *sap, *dap;
544 		ulong_t chknp;
545 
546 		while (npages != 0) {
547 
548 			sapidx = s_idx & ANON_CHUNK_OFF;
549 			dapidx = d_idx & ANON_CHUNK_OFF;
550 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
551 			if (chknp > npages)
552 				chknp = npages;
553 
554 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
555 			if ((sap = *sapp) != NULL) {
556 				dapp = &dahp->array_chunk[d_idx
557 				    >> ANON_CHUNK_SHIFT];
558 				if ((dap = *dapp) == NULL) {
559 					*dapp = kmem_zalloc(PAGESIZE,
560 					    kmemflags);
561 					if ((dap = *dapp) == NULL)
562 						return (ENOMEM);
563 				}
564 				bcopy((sap + sapidx), (dap + dapidx),
565 				    chknp << ANON_PTRSHIFT);
566 			}
567 			s_idx += chknp;
568 			d_idx += chknp;
569 			npages -= chknp;
570 		}
571 		return (0);
572 	}
573 
574 	/*
575 	 * At least one of the arrays is 2 level.
576 	 */
577 	while (npages--) {
578 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
579 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
580 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
581 					return (ENOMEM);
582 		}
583 		s_idx++;
584 		d_idx++;
585 	}
586 	return (0);
587 }
588 
589 
590 /*
591  * ANON_INITBUF is a convenience macro for anon_grow() below. It
592  * takes a buffer dst, which is at least as large as buffer src. It
593  * does a bcopy from src into dst, and then bzeros the extra bytes
594  * of dst. If tail is set, the data in src is tail aligned within
595  * dst instead of head aligned.
596  */
597 
598 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
599 	if (tail) {							      \
600 		bzero((dst), (dstsize) - (srclen));			      \
601 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
602 	} else {							      \
603 		bcopy((src), (dst), (srclen));				      \
604 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
605 	}
606 
607 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
608 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
609 
610 /*
611  * anon_grow() is used to efficiently extend an existing anon array.
612  * startidx_p points to the index into the anon array of the first page
613  * that is in use. oldseg_pgs is the number of pages in use, starting at
614  * *startidx_p. newpages is the number of additional pages desired.
615  *
616  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
617  *
618  * The growth is done by creating a new top level of the anon array,
619  * and (if the array is 2-level) reusing the existing second level arrays.
620  *
621  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
622  *
623  * Returns the new number of pages in the anon array.
624  */
625 pgcnt_t
626 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
627     pgcnt_t newseg_pgs, int flags)
628 {
629 	ulong_t startidx = startidx_p ? *startidx_p : 0;
630 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
631 	pgcnt_t oelems, nelems, totpages;
632 	void **level1;
633 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
634 	int growdown = (flags & ANON_GROWDOWN);
635 	size_t newarrsz, oldarrsz;
636 	void *level2;
637 
638 	ASSERT(!(startidx_p == NULL && growdown));
639 	ASSERT(startidx + oldseg_pgs <= ahp->size);
640 
641 	/*
642 	 * Determine the total number of pages needed in the new
643 	 * anon array. If growing down, totpages is all pages from
644 	 * startidx through the end of the array, plus <newseg_pgs>
645 	 * pages. If growing up, keep all pages from page 0 through
646 	 * the last page currently in use, plus <newseg_pgs> pages.
647 	 */
648 	if (growdown)
649 		totpages = oldamp_pgs - startidx + newseg_pgs;
650 	else
651 		totpages = startidx + oldseg_pgs + newseg_pgs;
652 
653 	/* If the array is already large enough, just return. */
654 
655 	if (oldamp_pgs >= totpages) {
656 		if (growdown)
657 			*startidx_p = oldamp_pgs - totpages;
658 		return (oldamp_pgs);
659 	}
660 
661 	/*
662 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
663 	 * by the corresponding arrays.
664 	 * oelems/nelems are the number of pointers in the top level arrays
665 	 * which may be either level 1 or level 2.
666 	 * Will the new anon array be one level or two levels?
667 	 */
668 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
669 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
670 		oelems = oldamp_pgs;
671 		nelems = newamp_pgs;
672 	} else {
673 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
674 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
675 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
676 	}
677 
678 	newarrsz = nelems * sizeof (void *);
679 	level1 = kmem_alloc(newarrsz, kmemflags);
680 	if (level1 == NULL)
681 		return (0);
682 
683 	/* Are we converting from a one level to a two level anon array? */
684 
685 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
686 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
687 
688 		/*
689 		 * Yes, we're converting to a two level. Reuse old level 1
690 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
691 		 * alloc a new level 2 and copy the old level 1 data into it.
692 		 */
693 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
694 			level2 = (void *)ahp->array_chunk;
695 		} else {
696 			level2 = kmem_alloc(PAGESIZE, kmemflags);
697 			if (level2 == NULL) {
698 				kmem_free(level1, newarrsz);
699 				return (0);
700 			}
701 			oldarrsz = oldamp_pgs * sizeof (void *);
702 
703 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
704 			    level2, PAGESIZE, growdown);
705 			kmem_free(ahp->array_chunk, oldarrsz);
706 		}
707 		bzero(level1, newarrsz);
708 		if (growdown)
709 			level1[nelems - 1] = level2;
710 		else
711 			level1[0] = level2;
712 	} else {
713 		oldarrsz = oelems * sizeof (void *);
714 
715 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
716 		    level1, newarrsz, growdown);
717 		kmem_free(ahp->array_chunk, oldarrsz);
718 	}
719 
720 	ahp->array_chunk = level1;
721 	ahp->size = newamp_pgs;
722 	if (growdown)
723 		*startidx_p = newamp_pgs - totpages;
724 
725 	return (newamp_pgs);
726 }
727 
728 
729 /*
730  * Called from clock handler to sync ani_free value.
731  */
732 
733 void
734 set_anoninfo(void)
735 {
736 	int	ix;
737 	pgcnt_t	total = 0;
738 
739 	for (ix = 0; ix < ANI_MAX_POOL; ix++) {
740 		total += ani_free_pool[ix].ani_count;
741 	}
742 	k_anoninfo.ani_free = total;
743 }
744 
745 /*
746  * Reserve anon space.
747  *
748  * It's no longer simply a matter of incrementing ani_resv to
749  * reserve swap space, we need to check memory-based as well
750  * as disk-backed (physical) swap.  The following algorithm
751  * is used:
752  * 	Check the space on physical swap
753  * 		i.e. amount needed < ani_max - ani_phys_resv
754  * 	If we are swapping on swapfs check
755  *		amount needed < (availrmem - swapfs_minfree)
756  * Since the algorithm to check for the quantity of swap space is
757  * almost the same as that for reserving it, we'll just use anon_resvmem
758  * with a flag to decrement availrmem.
759  *
760  * Return non-zero on success.
761  */
762 int
763 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
764 {
765 	pgcnt_t npages = btopr(size);
766 	pgcnt_t mswap_pages = 0;
767 	pgcnt_t pswap_pages = 0;
768 	proc_t *p = curproc;
769 
770 	if (zone != NULL && takemem) {
771 		/* test zone.max-swap resource control */
772 		mutex_enter(&p->p_lock);
773 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
774 			mutex_exit(&p->p_lock);
775 			return (0);
776 		}
777 		mutex_exit(&p->p_lock);
778 	}
779 	mutex_enter(&anoninfo_lock);
780 
781 	/*
782 	 * pswap_pages is the number of pages we can take from
783 	 * physical (i.e. disk-backed) swap.
784 	 */
785 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
786 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
787 
788 	ANON_PRINT(A_RESV,
789 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
790 	    npages, takemem, pswap_pages, (void *)caller()));
791 
792 	if (npages <= pswap_pages) {
793 		/*
794 		 * we have enough space on a physical swap
795 		 */
796 		if (takemem)
797 			k_anoninfo.ani_phys_resv += npages;
798 		mutex_exit(&anoninfo_lock);
799 		return (1);
800 	} else if (pswap_pages != 0) {
801 		/*
802 		 * we have some space on a physical swap
803 		 */
804 		if (takemem) {
805 			/*
806 			 * use up remainder of phys swap
807 			 */
808 			k_anoninfo.ani_phys_resv += pswap_pages;
809 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
810 		}
811 	}
812 	/*
813 	 * since (npages > pswap_pages) we need mem swap
814 	 * mswap_pages is the number of pages needed from availrmem
815 	 */
816 	ASSERT(npages > pswap_pages);
817 	mswap_pages = npages - pswap_pages;
818 
819 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
820 	    mswap_pages));
821 
822 	/*
823 	 * priv processes can reserve memory as swap as long as availrmem
824 	 * remains greater than swapfs_minfree; in the case of non-priv
825 	 * processes, memory can be reserved as swap only if availrmem
826 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
827 	 * swapfs_reserve amount of memswap is not available to non-priv
828 	 * processes. This protects daemons such as automounter dying
829 	 * as a result of application processes eating away almost entire
830 	 * membased swap. This safeguard becomes useless if apps are run
831 	 * with root access.
832 	 *
833 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
834 	 *
835 	 */
836 	if (tryhard) {
837 		pgcnt_t floor_pages;
838 
839 		if (secpolicy_resource_anon_mem(CRED())) {
840 			floor_pages = swapfs_minfree;
841 		} else {
842 			floor_pages = swapfs_minfree + swapfs_reserve;
843 		}
844 
845 		mutex_exit(&anoninfo_lock);
846 		(void) page_reclaim_mem(mswap_pages, floor_pages, 0);
847 		mutex_enter(&anoninfo_lock);
848 	}
849 
850 	mutex_enter(&freemem_lock);
851 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
852 	    (availrmem > (swapfs_minfree + mswap_pages) &&
853 	    secpolicy_resource(CRED()) == 0)) {
854 
855 		if (takemem) {
856 			/*
857 			 * Take the memory from the rest of the system.
858 			 */
859 			availrmem -= mswap_pages;
860 			mutex_exit(&freemem_lock);
861 			k_anoninfo.ani_mem_resv += mswap_pages;
862 			ANI_ADD(mswap_pages);
863 			ANON_PRINT((A_RESV | A_MRESV),
864 			    ("anon_resvmem: took %ld pages of availrmem\n",
865 			    mswap_pages));
866 		} else {
867 			mutex_exit(&freemem_lock);
868 		}
869 
870 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
871 		mutex_exit(&anoninfo_lock);
872 		return (1);
873 	} else {
874 		/*
875 		 * Fail if not enough memory
876 		 */
877 		if (takemem) {
878 			k_anoninfo.ani_phys_resv -= pswap_pages;
879 		}
880 
881 		mutex_exit(&freemem_lock);
882 		mutex_exit(&anoninfo_lock);
883 		ANON_PRINT(A_RESV,
884 		    ("anon_resvmem: not enough space from swapfs\n"));
885 		if (zone != NULL && takemem)
886 			rctl_decr_swap(zone, ptob(npages));
887 		return (0);
888 	}
889 }
890 
891 /*
892  * Give back an anon reservation.
893  */
894 void
895 anon_unresvmem(size_t size, zone_t *zone)
896 {
897 	pgcnt_t npages = btopr(size);
898 	spgcnt_t mem_free_pages = 0;
899 	pgcnt_t phys_free_slots;
900 #ifdef	ANON_DEBUG
901 	pgcnt_t mem_resv;
902 #endif
903 	if (zone != NULL)
904 		rctl_decr_swap(zone, ptob(npages));
905 
906 	mutex_enter(&anoninfo_lock);
907 
908 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
909 
910 	/*
911 	 * If some of this reservation belonged to swapfs
912 	 * give it back to availrmem.
913 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
914 	 * but some of that memory could be locked by segspt so we can only
915 	 * return non locked ani_mem_resv back to availrmem
916 	 */
917 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
918 		ANON_PRINT((A_RESV | A_MRESV),
919 		    ("anon_unresv: growing availrmem by %ld pages\n",
920 		    MIN(k_anoninfo.ani_mem_resv, npages)));
921 
922 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
923 		    k_anoninfo.ani_locked_swap), npages);
924 		mutex_enter(&freemem_lock);
925 		availrmem += mem_free_pages;
926 		mutex_exit(&freemem_lock);
927 		k_anoninfo.ani_mem_resv -= mem_free_pages;
928 
929 		ANI_ADD(-mem_free_pages);
930 	}
931 	/*
932 	 * The remainder of the pages is returned to phys swap
933 	 */
934 	ASSERT(npages >= mem_free_pages);
935 	phys_free_slots = npages - mem_free_pages;
936 
937 	if (phys_free_slots) {
938 		k_anoninfo.ani_phys_resv -= phys_free_slots;
939 	}
940 
941 #ifdef	ANON_DEBUG
942 	mem_resv = k_anoninfo.ani_mem_resv;
943 #endif
944 
945 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
946 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
947 
948 	mutex_exit(&anoninfo_lock);
949 
950 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
951 	    npages, mem_resv, (void *)caller()));
952 }
953 
954 /*
955  * Allocate an anon slot and return it with the lock held.
956  */
957 struct anon *
958 anon_alloc(struct vnode *vp, anoff_t off)
959 {
960 	struct anon	*ap;
961 	kmutex_t	*ahm;
962 
963 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
964 	if (vp == NULL) {
965 		swap_alloc(ap);
966 	} else {
967 		ap->an_vp = vp;
968 		ap->an_off = off;
969 	}
970 	ap->an_refcnt = 1;
971 	ap->an_pvp = NULL;
972 	ap->an_poff = 0;
973 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
974 	mutex_enter(ahm);
975 	anon_addhash(ap);
976 	mutex_exit(ahm);
977 	ANI_ADD(-1);
978 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
979 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
980 	return (ap);
981 }
982 
983 /*
984  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
985  * such pages don't consume any physical swap resources needed for swapping
986  * unlocked pages.
987  */
988 void
989 anon_swap_free(struct anon *ap, page_t *pp)
990 {
991 	kmutex_t *ahm;
992 
993 	ASSERT(ap != NULL);
994 	ASSERT(pp != NULL);
995 	ASSERT(PAGE_LOCKED(pp));
996 	ASSERT(pp->p_vnode != NULL);
997 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
998 	ASSERT(ap->an_refcnt != 0);
999 	ASSERT(pp->p_vnode == ap->an_vp);
1000 	ASSERT(pp->p_offset == ap->an_off);
1001 
1002 	if (ap->an_pvp == NULL)
1003 		return;
1004 
1005 	page_io_lock(pp);
1006 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1007 	mutex_enter(ahm);
1008 
1009 	ASSERT(ap->an_refcnt != 0);
1010 	ASSERT(pp->p_vnode == ap->an_vp);
1011 	ASSERT(pp->p_offset == ap->an_off);
1012 
1013 	if (ap->an_pvp != NULL) {
1014 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1015 		ap->an_pvp = NULL;
1016 		ap->an_poff = 0;
1017 		mutex_exit(ahm);
1018 		hat_setmod(pp);
1019 	} else {
1020 		mutex_exit(ahm);
1021 	}
1022 	page_io_unlock(pp);
1023 }
1024 
1025 /*
1026  * Decrement the reference count of an anon page.
1027  * If reference count goes to zero, free it and
1028  * its associated page (if any).
1029  */
1030 void
1031 anon_decref(struct anon *ap)
1032 {
1033 	page_t *pp;
1034 	struct vnode *vp;
1035 	anoff_t off;
1036 	kmutex_t *ahm;
1037 
1038 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1039 	mutex_enter(ahm);
1040 	ASSERT(ap->an_refcnt != 0);
1041 	if (ap->an_refcnt == 0)
1042 		panic("anon_decref: slot count 0");
1043 	if (--ap->an_refcnt == 0) {
1044 		swap_xlate(ap, &vp, &off);
1045 		anon_rmhash(ap);
1046 		if (ap->an_pvp != NULL)
1047 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1048 		mutex_exit(ahm);
1049 
1050 		/*
1051 		 * If there is a page for this anon slot we will need to
1052 		 * call VN_DISPOSE to get rid of the vp association and
1053 		 * put the page back on the free list as really free.
1054 		 * Acquire the "exclusive" lock to ensure that any
1055 		 * pending i/o always completes before the swap slot
1056 		 * is freed.
1057 		 */
1058 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1059 		if (pp != NULL) {
1060 			/*LINTED: constant in conditional context */
1061 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1062 		}
1063 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1064 		    (void *)ap, (void *)ap->an_vp));
1065 
1066 		kmem_cache_free(anon_cache, ap);
1067 
1068 		ANI_ADD(1);
1069 	} else {
1070 		mutex_exit(ahm);
1071 	}
1072 }
1073 
1074 
1075 /*
1076  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1077  * seg->s_szc level) to determine whether COW processing is required.
1078  * anonpages_hash_lock[] held on the root ap ensures that if root's
1079  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1080  * later since this process can't fork while its AS lock is held).
1081  *
1082  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1083  */
1084 int
1085 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1086 {
1087 	struct anon	*ap;
1088 	kmutex_t	*ahmpages = NULL;
1089 
1090 	ap = anon_get_ptr(ahp, anon_index);
1091 	if (ap == NULL)
1092 		return (0);
1093 
1094 	ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1095 	mutex_enter(ahmpages);
1096 	ASSERT(ap->an_refcnt >= 1);
1097 	if (ap->an_refcnt == 1) {
1098 		mutex_exit(ahmpages);
1099 		return (0);
1100 	}
1101 	mutex_exit(ahmpages);
1102 	return (1);
1103 }
1104 /*
1105  * Check 'nslots' anon slots for refcnt > 1.
1106  *
1107  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1108  * returns 0.
1109  */
1110 static int
1111 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1112 {
1113 	struct anon *ap;
1114 
1115 	while (nslots-- > 0) {
1116 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1117 		    ap->an_refcnt > 1)
1118 			return (1);
1119 		anon_index++;
1120 	}
1121 
1122 	return (0);
1123 }
1124 
1125 static void
1126 anon_decref_pages(
1127 	struct anon_hdr *ahp,
1128 	ulong_t an_idx,
1129 	uint_t szc)
1130 {
1131 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1132 	kmutex_t *ahmpages = NULL;
1133 	page_t *pp;
1134 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1135 	pgcnt_t i;
1136 	struct vnode *vp;
1137 	anoff_t   off;
1138 	kmutex_t *ahm;
1139 #ifdef DEBUG
1140 	int refcnt = 1;
1141 #endif
1142 
1143 	ASSERT(szc != 0);
1144 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1145 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1146 	ASSERT(an_idx < ahp->size);
1147 
1148 	if (ahp->size - an_idx < pgcnt) {
1149 		/*
1150 		 * In case of shared mappings total anon map size may not be
1151 		 * the largest page size aligned.
1152 		 */
1153 		pgcnt = ahp->size - an_idx;
1154 	}
1155 
1156 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1157 
1158 	if (ap != NULL) {
1159 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1160 		mutex_enter(ahmpages);
1161 		ASSERT((refcnt = ap->an_refcnt) != 0);
1162 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1163 		if (ap->an_refcnt == 1) {
1164 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1165 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1166 			mutex_exit(ahmpages);
1167 			ahmpages = NULL;
1168 		}
1169 	}
1170 
1171 	i = 0;
1172 	while (i < pgcnt) {
1173 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1174 			ASSERT(refcnt == 1 && ahmpages == NULL);
1175 			i++;
1176 			continue;
1177 		}
1178 		ASSERT(ap->an_refcnt == refcnt);
1179 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1180 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1181 
1182 		if (ahmpages == NULL) {
1183 			swap_xlate(ap, &vp, &off);
1184 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1185 			if (pp == NULL || pp->p_szc == 0) {
1186 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1187 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1188 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1189 				    ANON_SLEEP);
1190 				mutex_enter(ahm);
1191 				ap->an_refcnt--;
1192 				ASSERT(ap->an_refcnt == 0);
1193 				anon_rmhash(ap);
1194 				if (ap->an_pvp)
1195 					swap_phys_free(ap->an_pvp, ap->an_poff,
1196 					    PAGESIZE);
1197 				mutex_exit(ahm);
1198 				if (pp == NULL) {
1199 					pp = page_lookup(vp, (u_offset_t)off,
1200 					    SE_EXCL);
1201 					ASSERT(pp == NULL || pp->p_szc == 0);
1202 				}
1203 				if (pp != NULL) {
1204 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1205 					/*LINTED*/
1206 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1207 				}
1208 				kmem_cache_free(anon_cache, ap);
1209 				ANI_ADD(1);
1210 				i++;
1211 			} else {
1212 				pgcnt_t j;
1213 				pgcnt_t curpgcnt =
1214 				    page_get_pagecnt(pp->p_szc);
1215 				size_t ppasize = curpgcnt * sizeof (page_t *);
1216 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1217 				int dispose = 0;
1218 
1219 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1220 
1221 				ASSERT(pp->p_szc <= szc);
1222 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1223 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1224 				ASSERT(i + curpgcnt <= pgcnt);
1225 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1226 				ppa[0] = pp;
1227 				for (j = i + 1; j < i + curpgcnt; j++) {
1228 					ap = anon_get_ptr(ahp, an_idx + j);
1229 					ASSERT(ap != NULL &&
1230 					    ap->an_refcnt == 1);
1231 					swap_xlate(ap, &vp, &off);
1232 					pp = page_lookup(vp, (u_offset_t)off,
1233 					    SE_EXCL);
1234 					if (pp == NULL)
1235 						panic("anon_decref_pages: "
1236 						    "no page");
1237 
1238 					(void) hat_pageunload(pp,
1239 					    HAT_FORCE_PGUNLOAD);
1240 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1241 					ASSERT(page_pptonum(pp) - 1 ==
1242 					    page_pptonum(ppa[j - i - 1]));
1243 					ppa[j - i] = pp;
1244 					if (ap->an_pvp != NULL &&
1245 					    !vn_matchopval(ap->an_pvp,
1246 					    VOPNAME_DISPOSE,
1247 					    (fs_generic_func_p)fs_dispose))
1248 						dispose = 1;
1249 				}
1250 				for (j = i; j < i + curpgcnt; j++) {
1251 					ap = anon_get_ptr(ahp, an_idx + j);
1252 					ASSERT(ap != NULL &&
1253 					    ap->an_refcnt == 1);
1254 					ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1255 					(void) anon_set_ptr(ahp, an_idx + j,
1256 					    NULL, ANON_SLEEP);
1257 					mutex_enter(ahm);
1258 					ap->an_refcnt--;
1259 					ASSERT(ap->an_refcnt == 0);
1260 					anon_rmhash(ap);
1261 					if (ap->an_pvp)
1262 						swap_phys_free(ap->an_pvp,
1263 						    ap->an_poff, PAGESIZE);
1264 					mutex_exit(ahm);
1265 					kmem_cache_free(anon_cache, ap);
1266 					ANI_ADD(1);
1267 				}
1268 				if (!dispose) {
1269 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1270 					page_destroy_pages(ppa[0]);
1271 				} else {
1272 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1273 					for (j = 0; j < curpgcnt; j++) {
1274 						ASSERT(PAGE_EXCL(ppa[j]));
1275 						ppa[j]->p_szc = 0;
1276 					}
1277 					for (j = 0; j < curpgcnt; j++) {
1278 						ASSERT(!hat_page_is_mapped(
1279 						    ppa[j]));
1280 						/*LINTED*/
1281 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1282 						    kcred);
1283 					}
1284 				}
1285 				kmem_free(ppa, ppasize);
1286 				i += curpgcnt;
1287 			}
1288 		} else {
1289 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1290 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1291 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1292 			mutex_enter(ahm);
1293 			ap->an_refcnt--;
1294 			mutex_exit(ahm);
1295 			i++;
1296 		}
1297 	}
1298 
1299 	if (ahmpages != NULL) {
1300 		mutex_exit(ahmpages);
1301 	}
1302 }
1303 
1304 /*
1305  * Duplicate references to size bytes worth of anon pages.
1306  * Used when duplicating a segment that contains private anon pages.
1307  * This code assumes that procedure calling this one has already used
1308  * hat_chgprot() to disable write access to the range of addresses that
1309  * that *old actually refers to.
1310  */
1311 void
1312 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1313 			ulong_t new_idx, size_t size)
1314 {
1315 	spgcnt_t npages;
1316 	kmutex_t *ahm;
1317 	struct anon *ap;
1318 	ulong_t off;
1319 	ulong_t index;
1320 
1321 	npages = btopr(size);
1322 	while (npages > 0) {
1323 		index = old_idx;
1324 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1325 			break;
1326 
1327 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1328 		off = index - old_idx;
1329 		npages -= off;
1330 		if (npages <= 0)
1331 			break;
1332 
1333 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1334 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1335 
1336 		mutex_enter(ahm);
1337 		ap->an_refcnt++;
1338 		mutex_exit(ahm);
1339 
1340 		off++;
1341 		new_idx += off;
1342 		old_idx += off;
1343 		npages--;
1344 	}
1345 }
1346 
1347 /*
1348  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1349  * slots) within any large page region. That means if a large page region is
1350  * empty in the old array it will skip it. If there are 1 or more valid slots
1351  * in the large page region of the old array it will make sure to fill in any
1352  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1353  * page region should either have no valid anon slots or all slots should be
1354  * valid.
1355  */
1356 void
1357 anon_dup_fill_holes(
1358 	struct anon_hdr *old,
1359 	ulong_t old_idx,
1360 	struct anon_hdr *new,
1361 	ulong_t new_idx,
1362 	size_t size,
1363 	uint_t szc,
1364 	int noalloc)
1365 {
1366 	struct anon	*ap;
1367 	spgcnt_t	npages;
1368 	kmutex_t	*ahm, *ahmpages = NULL;
1369 	pgcnt_t		pgcnt, i;
1370 	ulong_t		index, off;
1371 #ifdef DEBUG
1372 	int		refcnt;
1373 #endif
1374 
1375 	ASSERT(szc != 0);
1376 	pgcnt = page_get_pagecnt(szc);
1377 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1378 	npages = btopr(size);
1379 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1380 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1381 
1382 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1383 
1384 	while (npages > 0) {
1385 		index = old_idx;
1386 
1387 		/*
1388 		 * Find the next valid slot.
1389 		 */
1390 		if (anon_get_next_ptr(old, &index) == NULL)
1391 			break;
1392 
1393 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1394 		/*
1395 		 * Now backup index to the beginning of the
1396 		 * current large page region of the old array.
1397 		 */
1398 		index = P2ALIGN(index, pgcnt);
1399 		off = index - old_idx;
1400 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1401 		npages -= off;
1402 		if (npages <= 0)
1403 			break;
1404 
1405 		/*
1406 		 * Fill and copy a large page regions worth
1407 		 * of anon slots.
1408 		 */
1409 		for (i = 0; i < pgcnt; i++) {
1410 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1411 				if (noalloc) {
1412 					panic("anon_dup_fill_holes: "
1413 					    "empty anon slot\n");
1414 				}
1415 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1416 				ap = anon_alloc(NULL, 0);
1417 				(void) anon_set_ptr(old, index + i, ap,
1418 				    ANON_SLEEP);
1419 			} else if (i == 0) {
1420 				/*
1421 				 * make the increment of all refcnts of all
1422 				 * anon slots of a large page appear atomic by
1423 				 * getting an anonpages_hash_lock for the
1424 				 * first anon slot of a large page.
1425 				 */
1426 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1427 
1428 				ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1429 				mutex_enter(ahmpages);
1430 				/*LINTED*/
1431 				ASSERT(refcnt = ap->an_refcnt);
1432 
1433 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1434 				    anonvmstats.dupfillholes[3]);
1435 			}
1436 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1437 			    ANON_SLEEP);
1438 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1439 			mutex_enter(ahm);
1440 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1441 			ASSERT(i == 0 || ahmpages == NULL ||
1442 			    refcnt == ap->an_refcnt);
1443 			ap->an_refcnt++;
1444 			mutex_exit(ahm);
1445 		}
1446 		if (ahmpages != NULL) {
1447 			mutex_exit(ahmpages);
1448 			ahmpages = NULL;
1449 		}
1450 		off += pgcnt;
1451 		new_idx += off;
1452 		old_idx += off;
1453 		npages -= pgcnt;
1454 	}
1455 }
1456 
1457 /*
1458  * Used when a segment with a vnode changes szc. similarly to
1459  * anon_dup_fill_holes() makes sure each large page region either has no anon
1460  * slots or all of them. but new slots are created by COWing the file
1461  * pages. on entrance no anon slots should be shared.
1462  */
1463 int
1464 anon_fill_cow_holes(
1465 	struct seg *seg,
1466 	caddr_t addr,
1467 	struct anon_hdr *ahp,
1468 	ulong_t an_idx,
1469 	struct vnode *vp,
1470 	u_offset_t vp_off,
1471 	size_t size,
1472 	uint_t szc,
1473 	uint_t prot,
1474 	struct vpage vpage[],
1475 	struct cred *cred)
1476 {
1477 	struct anon	*ap;
1478 	spgcnt_t	npages;
1479 	pgcnt_t		pgcnt, i;
1480 	ulong_t		index, off;
1481 	int		err = 0;
1482 	int		pageflags = 0;
1483 
1484 	ASSERT(szc != 0);
1485 	pgcnt = page_get_pagecnt(szc);
1486 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1487 	npages = btopr(size);
1488 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1489 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1490 
1491 	while (npages > 0) {
1492 		index = an_idx;
1493 
1494 		/*
1495 		 * Find the next valid slot.
1496 		 */
1497 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1498 			break;
1499 		}
1500 
1501 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1502 		/*
1503 		 * Now backup index to the beginning of the
1504 		 * current large page region of the anon array.
1505 		 */
1506 		index = P2ALIGN(index, pgcnt);
1507 		off = index - an_idx;
1508 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1509 		npages -= off;
1510 		if (npages <= 0)
1511 			break;
1512 		an_idx += off;
1513 		vp_off += ptob(off);
1514 		addr += ptob(off);
1515 		if (vpage != NULL) {
1516 			vpage += off;
1517 		}
1518 
1519 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1520 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1521 				page_t *pl[1 + 1];
1522 				page_t *pp;
1523 
1524 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1525 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1526 				    NULL);
1527 				if (err) {
1528 					break;
1529 				}
1530 				if (vpage != NULL) {
1531 					prot = VPP_PROT(vpage);
1532 					pageflags = VPP_ISPPLOCK(vpage) ?
1533 					    LOCK_PAGE : 0;
1534 				}
1535 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1536 				    pageflags, cred);
1537 				if (pp == NULL) {
1538 					err = ENOMEM;
1539 					break;
1540 				}
1541 				(void) anon_set_ptr(ahp, an_idx, ap,
1542 				    ANON_SLEEP);
1543 				page_unlock(pp);
1544 			}
1545 			ASSERT(ap->an_refcnt == 1);
1546 			addr += PAGESIZE;
1547 			if (vpage != NULL) {
1548 				vpage++;
1549 			}
1550 		}
1551 		npages -= pgcnt;
1552 	}
1553 
1554 	return (err);
1555 }
1556 
1557 /*
1558  * Free a group of "size" anon pages, size in bytes,
1559  * and clear out the pointers to the anon entries.
1560  */
1561 void
1562 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1563 {
1564 	spgcnt_t npages;
1565 	struct anon *ap;
1566 	ulong_t old;
1567 
1568 	npages = btopr(size);
1569 
1570 	while (npages > 0) {
1571 		old = index;
1572 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1573 			break;
1574 
1575 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1576 		npages -= index - old;
1577 		if (npages <= 0)
1578 			break;
1579 
1580 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1581 		anon_decref(ap);
1582 		/*
1583 		 * Bump index and decrement page count
1584 		 */
1585 		index++;
1586 		npages--;
1587 	}
1588 }
1589 
1590 void
1591 anon_free_pages(
1592 	struct anon_hdr *ahp,
1593 	ulong_t an_idx,
1594 	size_t size,
1595 	uint_t szc)
1596 {
1597 	spgcnt_t	npages;
1598 	pgcnt_t		pgcnt;
1599 	ulong_t		index, off;
1600 
1601 	ASSERT(szc != 0);
1602 	pgcnt = page_get_pagecnt(szc);
1603 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1604 	npages = btopr(size);
1605 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1606 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1607 	ASSERT(an_idx < ahp->size);
1608 
1609 	VM_STAT_ADD(anonvmstats.freepages[0]);
1610 
1611 	while (npages > 0) {
1612 		index = an_idx;
1613 
1614 		/*
1615 		 * Find the next valid slot.
1616 		 */
1617 		if (anon_get_next_ptr(ahp, &index) == NULL)
1618 			break;
1619 
1620 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1621 		/*
1622 		 * Now backup index to the beginning of the
1623 		 * current large page region of the old array.
1624 		 */
1625 		index = P2ALIGN(index, pgcnt);
1626 		off = index - an_idx;
1627 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1628 		npages -= off;
1629 		if (npages <= 0)
1630 			break;
1631 
1632 		anon_decref_pages(ahp, index, szc);
1633 
1634 		off += pgcnt;
1635 		an_idx += off;
1636 		npages -= pgcnt;
1637 	}
1638 }
1639 
1640 /*
1641  * Make anonymous pages discardable
1642  */
1643 void
1644 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1645 {
1646 	spgcnt_t npages = btopr(size);
1647 	struct anon *ap;
1648 	struct vnode *vp;
1649 	anoff_t off;
1650 	page_t *pp, *root_pp;
1651 	kmutex_t *ahm;
1652 	pgcnt_t pgcnt;
1653 	ulong_t old_idx, idx, i;
1654 	struct anon_hdr *ahp = amp->ahp;
1655 	anon_sync_obj_t cookie;
1656 
1657 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1658 	pgcnt = 1;
1659 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1660 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1661 
1662 		/*
1663 		 * get anon pointer and index for the first valid entry
1664 		 * in the anon list, starting from "index"
1665 		 */
1666 		old_idx = index;
1667 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1668 			break;
1669 
1670 		/*
1671 		 * decrement npages by number of NULL anon slots we skipped
1672 		 */
1673 		npages -= index - old_idx;
1674 		if (npages <= 0)
1675 			break;
1676 
1677 		anon_array_enter(amp, index, &cookie);
1678 		ap = anon_get_ptr(ahp, index);
1679 		ASSERT(ap != NULL);
1680 
1681 		/*
1682 		 * Get anonymous page and try to lock it SE_EXCL;
1683 		 * if we couldn't grab the lock we skip to next page.
1684 		 */
1685 		swap_xlate(ap, &vp, &off);
1686 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1687 		if (pp == NULL) {
1688 			segadvstat.MADV_FREE_miss.value.ul++;
1689 			pgcnt = 1;
1690 			anon_array_exit(&cookie);
1691 			continue;
1692 		}
1693 		pgcnt = page_get_pagecnt(pp->p_szc);
1694 
1695 		/*
1696 		 * we cannot free a page which is permanently locked.
1697 		 * The page_struct_lock need not be acquired to examine
1698 		 * these fields since the page has an "exclusive" lock.
1699 		 */
1700 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1701 			page_unlock(pp);
1702 			segadvstat.MADV_FREE_miss.value.ul++;
1703 			anon_array_exit(&cookie);
1704 			continue;
1705 		}
1706 
1707 		ahm = AH_MUTEX(vp, off);
1708 		mutex_enter(ahm);
1709 		ASSERT(ap->an_refcnt != 0);
1710 		/*
1711 		 * skip this one if copy-on-write is not yet broken.
1712 		 */
1713 		if (ap->an_refcnt > 1) {
1714 			mutex_exit(ahm);
1715 			page_unlock(pp);
1716 			segadvstat.MADV_FREE_miss.value.ul++;
1717 			anon_array_exit(&cookie);
1718 			continue;
1719 		}
1720 
1721 		if (pp->p_szc == 0) {
1722 			pgcnt = 1;
1723 
1724 			/*
1725 			 * free swap slot;
1726 			 */
1727 			if (ap->an_pvp) {
1728 				swap_phys_free(ap->an_pvp, ap->an_poff,
1729 				    PAGESIZE);
1730 				ap->an_pvp = NULL;
1731 				ap->an_poff = 0;
1732 			}
1733 			mutex_exit(ahm);
1734 			segadvstat.MADV_FREE_hit.value.ul++;
1735 
1736 			/*
1737 			 * while we are at it, unload all the translations
1738 			 * and attempt to free the page.
1739 			 */
1740 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1741 			/*LINTED: constant in conditional context */
1742 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1743 			anon_array_exit(&cookie);
1744 			continue;
1745 		}
1746 
1747 		pgcnt = page_get_pagecnt(pp->p_szc);
1748 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1749 			if (!page_try_demote_pages(pp)) {
1750 				mutex_exit(ahm);
1751 				page_unlock(pp);
1752 				segadvstat.MADV_FREE_miss.value.ul++;
1753 				anon_array_exit(&cookie);
1754 				continue;
1755 			} else {
1756 				pgcnt = 1;
1757 				if (ap->an_pvp) {
1758 					swap_phys_free(ap->an_pvp,
1759 					    ap->an_poff, PAGESIZE);
1760 					ap->an_pvp = NULL;
1761 					ap->an_poff = 0;
1762 				}
1763 				mutex_exit(ahm);
1764 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1765 				/*LINTED*/
1766 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1767 				segadvstat.MADV_FREE_hit.value.ul++;
1768 				anon_array_exit(&cookie);
1769 				continue;
1770 			}
1771 		}
1772 		mutex_exit(ahm);
1773 		root_pp = pp;
1774 
1775 		/*
1776 		 * try to lock remaining pages
1777 		 */
1778 		for (idx = 1; idx < pgcnt; idx++) {
1779 			pp++;
1780 			if (!page_trylock(pp, SE_EXCL))
1781 				break;
1782 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1783 				page_unlock(pp);
1784 				break;
1785 			}
1786 		}
1787 
1788 		if (idx == pgcnt) {
1789 			for (i = 0; i < pgcnt; i++) {
1790 				ap = anon_get_ptr(ahp, index + i);
1791 				if (ap == NULL)
1792 					break;
1793 				swap_xlate(ap, &vp, &off);
1794 				ahm = AH_MUTEX(vp, off);
1795 				mutex_enter(ahm);
1796 				ASSERT(ap->an_refcnt != 0);
1797 
1798 				/*
1799 				 * skip this one if copy-on-write
1800 				 * is not yet broken.
1801 				 */
1802 				if (ap->an_refcnt > 1) {
1803 					mutex_exit(ahm);
1804 					goto skiplp;
1805 				}
1806 				if (ap->an_pvp) {
1807 					swap_phys_free(ap->an_pvp,
1808 					    ap->an_poff, PAGESIZE);
1809 					ap->an_pvp = NULL;
1810 					ap->an_poff = 0;
1811 				}
1812 				mutex_exit(ahm);
1813 			}
1814 			page_destroy_pages(root_pp);
1815 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1816 			anon_array_exit(&cookie);
1817 			continue;
1818 		}
1819 skiplp:
1820 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1821 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1822 			page_unlock(pp);
1823 		anon_array_exit(&cookie);
1824 	}
1825 }
1826 
1827 /*
1828  * Return the kept page(s) and protections back to the segment driver.
1829  */
1830 int
1831 anon_getpage(
1832 	struct anon **app,
1833 	uint_t *protp,
1834 	page_t *pl[],
1835 	size_t plsz,
1836 	struct seg *seg,
1837 	caddr_t addr,
1838 	enum seg_rw rw,
1839 	struct cred *cred)
1840 {
1841 	page_t *pp;
1842 	struct anon *ap = *app;
1843 	struct vnode *vp;
1844 	anoff_t off;
1845 	int err;
1846 	kmutex_t *ahm;
1847 
1848 	swap_xlate(ap, &vp, &off);
1849 
1850 	/*
1851 	 * Lookup the page. If page is being paged in,
1852 	 * wait for it to finish as we must return a list of
1853 	 * pages since this routine acts like the VOP_GETPAGE
1854 	 * routine does.
1855 	 */
1856 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1857 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1858 		mutex_enter(ahm);
1859 		if (ap->an_refcnt == 1)
1860 			*protp = PROT_ALL;
1861 		else
1862 			*protp = PROT_ALL & ~PROT_WRITE;
1863 		mutex_exit(ahm);
1864 		pl[0] = pp;
1865 		pl[1] = NULL;
1866 		return (0);
1867 	}
1868 
1869 	/*
1870 	 * Simply treat it as a vnode fault on the anon vp.
1871 	 */
1872 
1873 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1874 	    "anon_getpage:seg %x addr %x vp %x",
1875 	    seg, addr, vp);
1876 
1877 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1878 	    seg, addr, rw, cred, NULL);
1879 
1880 	if (err == 0 && pl != NULL) {
1881 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1882 		mutex_enter(ahm);
1883 		if (ap->an_refcnt != 1)
1884 			*protp &= ~PROT_WRITE;	/* make read-only */
1885 		mutex_exit(ahm);
1886 	}
1887 	return (err);
1888 }
1889 
1890 /*
1891  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1892  * page cannot be allocated. returns -2 if some other process has allocated a
1893  * larger page.
1894  *
1895  * For cowfault it will allocate any size pages to fill the requested area to
1896  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1897  * slots within a large page with other processes). This policy greatly
1898  * simplifies large page freeing (which is only freed when all anon slot
1899  * refcnts are 0).
1900  */
1901 int
1902 anon_map_getpages(
1903 	struct anon_map *amp,
1904 	ulong_t	start_idx,
1905 	uint_t	szc,
1906 	struct seg *seg,
1907 	caddr_t	addr,
1908 	uint_t prot,
1909 	uint_t *protp,
1910 	page_t	*ppa[],
1911 	uint_t	*ppa_szc,
1912 	struct vpage vpage[],
1913 	enum seg_rw rw,
1914 	int brkcow,
1915 	int anypgsz,
1916 	int pgflags,
1917 	struct cred *cred)
1918 {
1919 	pgcnt_t		pgcnt;
1920 	struct anon	*ap;
1921 	struct vnode	*vp;
1922 	anoff_t		off;
1923 	page_t		*pp, *pl[2], *conpp = NULL;
1924 	caddr_t		vaddr;
1925 	ulong_t		pg_idx, an_idx, i;
1926 	spgcnt_t	nreloc = 0;
1927 	int		prealloc = 1;
1928 	int		err, slotcreate;
1929 	uint_t		vpprot;
1930 	int		upsize = (szc < seg->s_szc);
1931 
1932 #if !defined(__i386) && !defined(__amd64)
1933 	ASSERT(seg->s_szc != 0);
1934 #endif
1935 	ASSERT(szc <= seg->s_szc);
1936 	ASSERT(ppa_szc != NULL);
1937 	ASSERT(rw != S_CREATE);
1938 
1939 	*protp = PROT_ALL;
1940 
1941 	VM_STAT_ADD(anonvmstats.getpages[0]);
1942 
1943 	if (szc == 0) {
1944 		VM_STAT_ADD(anonvmstats.getpages[1]);
1945 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1946 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1947 			    addr, rw, cred);
1948 			if (err)
1949 				return (err);
1950 			ppa[0] = pl[0];
1951 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1952 				VM_STAT_ADD(anonvmstats.getpages[2]);
1953 				if (ppa[0]->p_szc != 0 && upsize) {
1954 					VM_STAT_ADD(anonvmstats.getpages[3]);
1955 					*ppa_szc = MIN(ppa[0]->p_szc,
1956 					    seg->s_szc);
1957 					page_unlock(ppa[0]);
1958 					return (-2);
1959 				}
1960 				return (0);
1961 			}
1962 			panic("anon_map_getpages: cowfault for szc 0");
1963 		} else {
1964 			VM_STAT_ADD(anonvmstats.getpages[4]);
1965 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1966 			if (ppa[0] == NULL)
1967 				return (ENOMEM);
1968 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1969 			    ANON_SLEEP);
1970 			return (0);
1971 		}
1972 	}
1973 
1974 	pgcnt = page_get_pagecnt(szc);
1975 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1976 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1977 
1978 	/*
1979 	 * First we check for the case that the requtested large
1980 	 * page or larger page already exists in the system.
1981 	 * Actually we only check if the first constituent page
1982 	 * exists and only preallocate if it's not found.
1983 	 */
1984 	ap = anon_get_ptr(amp->ahp, start_idx);
1985 	if (ap) {
1986 		uint_t pszc;
1987 		swap_xlate(ap, &vp, &off);
1988 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
1989 			if (pszc > szc && upsize) {
1990 				*ppa_szc = MIN(pszc, seg->s_szc);
1991 				return (-2);
1992 			}
1993 			if (pszc >= szc) {
1994 				prealloc = 0;
1995 			}
1996 		}
1997 	}
1998 
1999 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
2000 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
2001 
2002 top:
2003 	/*
2004 	 * If a smaller page or no page at all was found,
2005 	 * grab a large page off the freelist.
2006 	 */
2007 	if (prealloc) {
2008 		ASSERT(conpp == NULL);
2009 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
2010 		    szc, 0, pgflags) != 0) {
2011 			VM_STAT_ADD(anonvmstats.getpages[7]);
2012 			if (brkcow == 0 || szc < seg->s_szc ||
2013 			    !anon_szcshare(amp->ahp, start_idx)) {
2014 				/*
2015 				 * If the refcnt's of all anon slots are <= 1
2016 				 * they can't increase since we are holding
2017 				 * the address space's lock. So segvn can
2018 				 * safely decrease szc without risking to
2019 				 * generate a cow fault for the region smaller
2020 				 * than the segment's largest page size.
2021 				 */
2022 				VM_STAT_ADD(anonvmstats.getpages[8]);
2023 				return (-1);
2024 			}
2025 		docow:
2026 			/*
2027 			 * This is a cow fault. Copy away the entire 1 large
2028 			 * page region of this segment.
2029 			 */
2030 			if (szc != seg->s_szc)
2031 				panic("anon_map_getpages: cowfault for szc %d",
2032 				    szc);
2033 			vaddr = addr;
2034 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2035 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2036 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2037 				    NULL) {
2038 					err = anon_getpage(&ap, &vpprot, pl,
2039 					    PAGESIZE, seg, vaddr, rw, cred);
2040 					if (err) {
2041 						for (i = 0; i < pg_idx; i++) {
2042 							if ((pp = ppa[i]) !=
2043 							    NULL)
2044 								page_unlock(pp);
2045 						}
2046 						return (err);
2047 					}
2048 					ppa[pg_idx] = pl[0];
2049 				} else {
2050 					/*
2051 					 * Since this is a cowfault we know
2052 					 * that this address space has a
2053 					 * parent or children which means
2054 					 * anon_dup_fill_holes() has initialized
2055 					 * all anon slots within a large page
2056 					 * region that had at least one anon
2057 					 * slot at the time of fork().
2058 					 */
2059 					panic("anon_map_getpages: "
2060 					    "cowfault but anon slot is empty");
2061 				}
2062 			}
2063 			VM_STAT_ADD(anonvmstats.getpages[9]);
2064 			*protp = PROT_ALL;
2065 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2066 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2067 		}
2068 	}
2069 
2070 	VM_STAT_ADD(anonvmstats.getpages[10]);
2071 
2072 	an_idx = start_idx;
2073 	pg_idx = 0;
2074 	vaddr = addr;
2075 	while (pg_idx < pgcnt) {
2076 		slotcreate = 0;
2077 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2078 			VM_STAT_ADD(anonvmstats.getpages[11]);
2079 			/*
2080 			 * For us to have decided not to preallocate
2081 			 * would have meant that a large page
2082 			 * was found. Which also means that all of the
2083 			 * anon slots for that page would have been
2084 			 * already created for us.
2085 			 */
2086 			if (prealloc == 0)
2087 				panic("anon_map_getpages: prealloc = 0");
2088 
2089 			slotcreate = 1;
2090 			ap = anon_alloc(NULL, 0);
2091 		}
2092 		swap_xlate(ap, &vp, &off);
2093 
2094 		/*
2095 		 * Now setup our preallocated page to pass down
2096 		 * to swap_getpage().
2097 		 */
2098 		if (prealloc) {
2099 			ASSERT(ppa[pg_idx]->p_szc == szc);
2100 			conpp = ppa[pg_idx];
2101 		}
2102 		ASSERT(prealloc || conpp == NULL);
2103 
2104 		/*
2105 		 * If we just created this anon slot then call
2106 		 * with S_CREATE to prevent doing IO on the page.
2107 		 * Similar to the anon_zero case.
2108 		 */
2109 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2110 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2111 		    slotcreate == 1 ? S_CREATE : rw, cred);
2112 
2113 		if (err) {
2114 			ASSERT(err != -2 || upsize);
2115 			VM_STAT_ADD(anonvmstats.getpages[12]);
2116 			ASSERT(slotcreate == 0);
2117 			goto io_err;
2118 		}
2119 
2120 		pp = pl[0];
2121 
2122 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2123 			VM_STAT_ADD(anonvmstats.getpages[13]);
2124 			ASSERT(slotcreate == 0);
2125 			ASSERT(prealloc == 0);
2126 			ASSERT(pg_idx == 0);
2127 			if (pp->p_szc > szc) {
2128 				ASSERT(upsize);
2129 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2130 				page_unlock(pp);
2131 				VM_STAT_ADD(anonvmstats.getpages[14]);
2132 				return (-2);
2133 			}
2134 			page_unlock(pp);
2135 			prealloc = 1;
2136 			goto top;
2137 		}
2138 
2139 		/*
2140 		 * If we decided to preallocate but VOP_GETPAGE
2141 		 * found a page in the system that satisfies our
2142 		 * request then free up our preallocated large page
2143 		 * and continue looping accross the existing large
2144 		 * page via VOP_GETPAGE.
2145 		 */
2146 		if (prealloc && pp != ppa[pg_idx]) {
2147 			VM_STAT_ADD(anonvmstats.getpages[15]);
2148 			ASSERT(slotcreate == 0);
2149 			ASSERT(pg_idx == 0);
2150 			conpp = NULL;
2151 			prealloc = 0;
2152 			page_free_pages(ppa[0]);
2153 		}
2154 
2155 		if (prealloc && nreloc > 1) {
2156 			/*
2157 			 * we have relocated out of a smaller large page.
2158 			 * skip npgs - 1 iterations and continue which will
2159 			 * increment by one the loop indices.
2160 			 */
2161 			spgcnt_t npgs = nreloc;
2162 
2163 			VM_STAT_ADD(anonvmstats.getpages[16]);
2164 
2165 			ASSERT(pp == ppa[pg_idx]);
2166 			ASSERT(slotcreate == 0);
2167 			ASSERT(pg_idx + npgs <= pgcnt);
2168 			if ((*protp & PROT_WRITE) &&
2169 			    anon_share(amp->ahp, an_idx, npgs)) {
2170 				*protp &= ~PROT_WRITE;
2171 			}
2172 			pg_idx += npgs;
2173 			an_idx += npgs;
2174 			vaddr += PAGESIZE * npgs;
2175 			continue;
2176 		}
2177 
2178 		VM_STAT_ADD(anonvmstats.getpages[17]);
2179 
2180 		/*
2181 		 * Anon_zero case.
2182 		 */
2183 		if (slotcreate) {
2184 			ASSERT(prealloc);
2185 			pagezero(pp, 0, PAGESIZE);
2186 			CPU_STATS_ADD_K(vm, zfod, 1);
2187 			hat_setrefmod(pp);
2188 		}
2189 
2190 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2191 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2192 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2193 
2194 		if (pg_idx > 0 &&
2195 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2196 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2197 			panic("anon_map_getpages: unexpected page");
2198 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2199 			panic("anon_map_getpages: unaligned page");
2200 		}
2201 
2202 		if (prealloc == 0) {
2203 			ppa[pg_idx] = pp;
2204 		}
2205 
2206 		if (ap->an_refcnt > 1) {
2207 			VM_STAT_ADD(anonvmstats.getpages[18]);
2208 			*protp &= ~PROT_WRITE;
2209 		}
2210 
2211 		/*
2212 		 * If this is a new anon slot then initialize
2213 		 * the anon array entry.
2214 		 */
2215 		if (slotcreate) {
2216 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2217 		}
2218 		pg_idx++;
2219 		an_idx++;
2220 		vaddr += PAGESIZE;
2221 	}
2222 
2223 	/*
2224 	 * Since preallocated pages come off the freelist
2225 	 * they are locked SE_EXCL. Simply downgrade and return.
2226 	 */
2227 	if (prealloc) {
2228 		VM_STAT_ADD(anonvmstats.getpages[19]);
2229 		conpp = NULL;
2230 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2231 			page_downgrade(ppa[pg_idx]);
2232 		}
2233 	}
2234 	ASSERT(conpp == NULL);
2235 
2236 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2237 		VM_STAT_ADD(anonvmstats.getpages[20]);
2238 		return (0);
2239 	}
2240 
2241 	if (szc < seg->s_szc)
2242 		panic("anon_map_getpages: cowfault for szc %d", szc);
2243 
2244 	VM_STAT_ADD(anonvmstats.getpages[21]);
2245 
2246 	*protp = PROT_ALL;
2247 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2248 	    ppa, vpage, anypgsz, pgflags, cred));
2249 io_err:
2250 	/*
2251 	 * We got an IO error somewhere in our large page.
2252 	 * If we were using a preallocated page then just demote
2253 	 * all the constituent pages that we've succeeded with sofar
2254 	 * to PAGESIZE pages and leave them in the system
2255 	 * unlocked.
2256 	 */
2257 
2258 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2259 
2260 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2261 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2262 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2263 
2264 	if (prealloc) {
2265 		conpp = NULL;
2266 		if (pg_idx > 0) {
2267 			VM_STAT_ADD(anonvmstats.getpages[25]);
2268 			for (i = 0; i < pgcnt; i++) {
2269 				pp = ppa[i];
2270 				ASSERT(PAGE_EXCL(pp));
2271 				ASSERT(pp->p_szc == szc);
2272 				pp->p_szc = 0;
2273 			}
2274 			for (i = 0; i < pg_idx; i++) {
2275 				ASSERT(!hat_page_is_mapped(ppa[i]));
2276 				page_unlock(ppa[i]);
2277 			}
2278 			/*
2279 			 * Now free up the remaining unused constituent
2280 			 * pages.
2281 			 */
2282 			while (pg_idx < pgcnt) {
2283 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2284 				page_free(ppa[pg_idx], 0);
2285 				pg_idx++;
2286 			}
2287 		} else {
2288 			VM_STAT_ADD(anonvmstats.getpages[26]);
2289 			page_free_pages(ppa[0]);
2290 		}
2291 	} else {
2292 		VM_STAT_ADD(anonvmstats.getpages[27]);
2293 		ASSERT(err > 0);
2294 		for (i = 0; i < pg_idx; i++)
2295 			page_unlock(ppa[i]);
2296 	}
2297 	ASSERT(conpp == NULL);
2298 	if (err != -1)
2299 		return (err);
2300 	/*
2301 	 * we are here because we failed to relocate.
2302 	 */
2303 	ASSERT(prealloc);
2304 	if (brkcow == 0 || szc < seg->s_szc ||
2305 	    !anon_szcshare(amp->ahp, start_idx)) {
2306 		VM_STAT_ADD(anonvmstats.getpages[28]);
2307 		return (-1);
2308 	}
2309 	VM_STAT_ADD(anonvmstats.getpages[29]);
2310 	goto docow;
2311 }
2312 
2313 
2314 /*
2315  * Turn a reference to an object or shared anon page
2316  * into a private page with a copy of the data from the
2317  * original page which is always locked by the caller.
2318  * This routine unloads the translation and unlocks the
2319  * original page, if it isn't being stolen, before returning
2320  * to the caller.
2321  *
2322  * NOTE:  The original anon slot is not freed by this routine
2323  *	  It must be freed by the caller while holding the
2324  *	  "anon_map" lock to prevent races which can occur if
2325  *	  a process has multiple lwps in its address space.
2326  */
2327 page_t *
2328 anon_private(
2329 	struct anon **app,
2330 	struct seg *seg,
2331 	caddr_t addr,
2332 	uint_t	prot,
2333 	page_t *opp,
2334 	int oppflags,
2335 	struct cred *cred)
2336 {
2337 	struct anon *old = *app;
2338 	struct anon *new;
2339 	page_t *pp = NULL;
2340 	struct vnode *vp;
2341 	anoff_t off;
2342 	page_t *anon_pl[1 + 1];
2343 	int err;
2344 
2345 	if (oppflags & STEAL_PAGE)
2346 		ASSERT(PAGE_EXCL(opp));
2347 	else
2348 		ASSERT(PAGE_LOCKED(opp));
2349 
2350 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2351 
2352 	/* Kernel probe */
2353 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2354 		tnf_opaque,	address,	addr);
2355 
2356 	*app = new = anon_alloc(NULL, 0);
2357 	swap_xlate(new, &vp, &off);
2358 
2359 	if (oppflags & STEAL_PAGE) {
2360 		page_rename(opp, vp, (u_offset_t)off);
2361 		pp = opp;
2362 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2363 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2364 		    seg, addr, pp, vp, off);
2365 		hat_setmod(pp);
2366 
2367 		/* bug 4026339 */
2368 		page_downgrade(pp);
2369 		return (pp);
2370 	}
2371 
2372 	/*
2373 	 * Call the VOP_GETPAGE routine to create the page, thereby
2374 	 * enabling the vnode driver to allocate any filesystem
2375 	 * space (e.g., disk block allocation for UFS).  This also
2376 	 * prevents more than one page from being added to the
2377 	 * vnode at the same time.
2378 	 */
2379 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2380 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2381 	if (err)
2382 		goto out;
2383 
2384 	pp = anon_pl[0];
2385 
2386 	/*
2387 	 * If the original page was locked, we need to move the lock
2388 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2389 	 * page to 'cowcnt/lckcnt' of the new page.
2390 	 *
2391 	 * See Statement at the beginning of segvn_lockop() and
2392 	 * comments in page_pp_useclaim() regarding the way
2393 	 * cowcnts/lckcnts are handled.
2394 	 *
2395 	 * Also availrmem must be decremented up front for read only mapping
2396 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2397 	 * if availrmem did not need to be decremented after all.
2398 	 */
2399 	if (oppflags & LOCK_PAGE) {
2400 		if ((prot & PROT_WRITE) == 0) {
2401 			mutex_enter(&freemem_lock);
2402 			if (availrmem > pages_pp_maximum) {
2403 				availrmem--;
2404 				pages_useclaim++;
2405 			} else {
2406 				mutex_exit(&freemem_lock);
2407 				goto out;
2408 			}
2409 			mutex_exit(&freemem_lock);
2410 		}
2411 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2412 	}
2413 
2414 	/*
2415 	 * Now copy the contents from the original page,
2416 	 * which is locked and loaded in the MMU by
2417 	 * the caller to prevent yet another page fault.
2418 	 */
2419 	/* XXX - should set mod bit in here */
2420 	if (ppcopy(opp, pp) == 0) {
2421 		/*
2422 		 * Before ppcopy could hanlde UE or other faults, we
2423 		 * would have panicked here, and still have no option
2424 		 * but to do so now.
2425 		 */
2426 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2427 		    (void *)opp, (void *)pp);
2428 	}
2429 
2430 	hat_setrefmod(pp);		/* mark as modified */
2431 
2432 	/*
2433 	 * Unload the old translation.
2434 	 */
2435 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2436 
2437 	/*
2438 	 * Free unmapped, unmodified original page.
2439 	 * or release the lock on the original page,
2440 	 * otherwise the process will sleep forever in
2441 	 * anon_decref() waiting for the "exclusive" lock
2442 	 * on the page.
2443 	 */
2444 	(void) page_release(opp, 1);
2445 
2446 	/*
2447 	 * we are done with page creation so downgrade the new
2448 	 * page's selock to shared, this helps when multiple
2449 	 * as_fault(...SOFTLOCK...) are done to the same
2450 	 * page(aio)
2451 	 */
2452 	page_downgrade(pp);
2453 
2454 	/*
2455 	 * NOTE:  The original anon slot must be freed by the
2456 	 * caller while holding the "anon_map" lock, if we
2457 	 * copied away from an anonymous page.
2458 	 */
2459 	return (pp);
2460 
2461 out:
2462 	*app = old;
2463 	if (pp)
2464 		page_unlock(pp);
2465 	anon_decref(new);
2466 	page_unlock(opp);
2467 	return ((page_t *)NULL);
2468 }
2469 
2470 int
2471 anon_map_privatepages(
2472 	struct anon_map *amp,
2473 	ulong_t	start_idx,
2474 	uint_t	szc,
2475 	struct seg *seg,
2476 	caddr_t addr,
2477 	uint_t	prot,
2478 	page_t	*ppa[],
2479 	struct vpage vpage[],
2480 	int anypgsz,
2481 	int pgflags,
2482 	struct cred *cred)
2483 {
2484 	pgcnt_t		pgcnt;
2485 	struct vnode	*vp;
2486 	anoff_t		off;
2487 	page_t		*pl[2], *conpp = NULL;
2488 	int		err;
2489 	int		prealloc = 1;
2490 	struct anon	*ap, *oldap;
2491 	caddr_t		vaddr;
2492 	page_t		*pplist, *pp;
2493 	ulong_t		pg_idx, an_idx;
2494 	spgcnt_t	nreloc = 0;
2495 	int		pagelock = 0;
2496 	kmutex_t	*ahmpages = NULL;
2497 #ifdef DEBUG
2498 	int		refcnt;
2499 #endif
2500 
2501 	ASSERT(szc != 0);
2502 	ASSERT(szc == seg->s_szc);
2503 
2504 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2505 
2506 	pgcnt = page_get_pagecnt(szc);
2507 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2508 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2509 
2510 	ASSERT(amp != NULL);
2511 	ap = anon_get_ptr(amp->ahp, start_idx);
2512 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2513 
2514 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2515 
2516 	/*
2517 	 * Now try and allocate the large page. If we fail then just
2518 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2519 	 * the caller make this decision but to avoid added complexity
2520 	 * it's simplier to handle that case here.
2521 	 */
2522 	if (anypgsz == -1) {
2523 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2524 		prealloc = 0;
2525 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2526 	    anypgsz, pgflags) != 0) {
2527 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2528 		prealloc = 0;
2529 	}
2530 
2531 	/*
2532 	 * make the decrement of all refcnts of all
2533 	 * anon slots of a large page appear atomic by
2534 	 * getting an anonpages_hash_lock for the
2535 	 * first anon slot of a large page.
2536 	 */
2537 	if (ap != NULL) {
2538 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
2539 		mutex_enter(ahmpages);
2540 		if (ap->an_refcnt == 1) {
2541 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2542 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2543 			mutex_exit(ahmpages);
2544 
2545 			if (prealloc) {
2546 				page_free_replacement_page(pplist);
2547 				page_create_putback(pgcnt);
2548 			}
2549 			ASSERT(ppa[0]->p_szc <= szc);
2550 			if (ppa[0]->p_szc == szc) {
2551 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2552 				return (0);
2553 			}
2554 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2555 				ASSERT(ppa[pg_idx] != NULL);
2556 				page_unlock(ppa[pg_idx]);
2557 			}
2558 			return (-1);
2559 		}
2560 	}
2561 
2562 	/*
2563 	 * If we are passed in the vpage array and this is
2564 	 * not PROT_WRITE then we need to decrement availrmem
2565 	 * up front before we try anything. If we need to and
2566 	 * can't decrement availrmem then its better to fail now
2567 	 * than in the middle of processing the new large page.
2568 	 * page_pp_usclaim() on behalf of each constituent page
2569 	 * below will adjust availrmem back for the cases not needed.
2570 	 */
2571 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2572 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2573 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2574 				pagelock = 1;
2575 				break;
2576 			}
2577 		}
2578 		if (pagelock) {
2579 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2580 			mutex_enter(&freemem_lock);
2581 			if (availrmem >= pages_pp_maximum + pgcnt) {
2582 				availrmem -= pgcnt;
2583 				pages_useclaim += pgcnt;
2584 			} else {
2585 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2586 				mutex_exit(&freemem_lock);
2587 				if (ahmpages != NULL) {
2588 					mutex_exit(ahmpages);
2589 				}
2590 				if (prealloc) {
2591 					page_free_replacement_page(pplist);
2592 					page_create_putback(pgcnt);
2593 				}
2594 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2595 					if (ppa[pg_idx] != NULL)
2596 						page_unlock(ppa[pg_idx]);
2597 				return (ENOMEM);
2598 			}
2599 			mutex_exit(&freemem_lock);
2600 		}
2601 	}
2602 
2603 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2604 
2605 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2606 
2607 	an_idx = start_idx;
2608 	pg_idx = 0;
2609 	vaddr = addr;
2610 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2611 		ASSERT(ppa[pg_idx] != NULL);
2612 		oldap = anon_get_ptr(amp->ahp, an_idx);
2613 		ASSERT(ahmpages != NULL || oldap == NULL);
2614 		ASSERT(ahmpages == NULL || oldap != NULL);
2615 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2616 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2617 		    (refcnt = oldap->an_refcnt));
2618 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2619 		    refcnt == oldap->an_refcnt);
2620 
2621 		ap = anon_alloc(NULL, 0);
2622 
2623 		swap_xlate(ap, &vp, &off);
2624 
2625 		/*
2626 		 * Now setup our preallocated page to pass down to
2627 		 * swap_getpage().
2628 		 */
2629 		if (prealloc) {
2630 			pp = pplist;
2631 			page_sub(&pplist, pp);
2632 			conpp = pp;
2633 		}
2634 
2635 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2636 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2637 		    S_CREATE, cred);
2638 
2639 		/*
2640 		 * Impossible to fail this is S_CREATE.
2641 		 */
2642 		if (err)
2643 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2644 
2645 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2646 		ASSERT(prealloc == 0 || nreloc == 1);
2647 
2648 		pp = pl[0];
2649 
2650 		/*
2651 		 * If the original page was locked, we need to move
2652 		 * the lock to the new page by transfering
2653 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2654 		 * of the new page. pg_idx can be used to index
2655 		 * into the vpage array since the caller will guarentee
2656 		 * that vpage struct passed in corresponds to addr
2657 		 * and forward.
2658 		 */
2659 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2660 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2661 		} else if (pagelock) {
2662 			mutex_enter(&freemem_lock);
2663 			availrmem++;
2664 			pages_useclaim--;
2665 			mutex_exit(&freemem_lock);
2666 		}
2667 
2668 		/*
2669 		 * Now copy the contents from the original page.
2670 		 */
2671 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2672 			/*
2673 			 * Before ppcopy could hanlde UE or other faults, we
2674 			 * would have panicked here, and still have no option
2675 			 * but to do so now.
2676 			 */
2677 			panic("anon_map_privatepages, ppcopy failed");
2678 		}
2679 
2680 		hat_setrefmod(pp);		/* mark as modified */
2681 
2682 		/*
2683 		 * Release the lock on the original page,
2684 		 * derement the old slot, and down grade the lock
2685 		 * on the new copy.
2686 		 */
2687 		page_unlock(ppa[pg_idx]);
2688 
2689 		if (!prealloc)
2690 			page_downgrade(pp);
2691 
2692 		ppa[pg_idx] = pp;
2693 
2694 		/*
2695 		 * Now reflect the copy in the new anon array.
2696 		 */
2697 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2698 		if (oldap != NULL)
2699 			anon_decref(oldap);
2700 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2701 	}
2702 
2703 	/*
2704 	 * Unload the old large page translation.
2705 	 */
2706 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2707 
2708 	if (ahmpages != NULL) {
2709 		mutex_exit(ahmpages);
2710 	}
2711 	ASSERT(prealloc == 0 || pplist == NULL);
2712 	if (prealloc) {
2713 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2714 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2715 			page_downgrade(ppa[pg_idx]);
2716 		}
2717 	}
2718 
2719 	return (0);
2720 }
2721 
2722 /*
2723  * Allocate a private zero-filled anon page.
2724  */
2725 page_t *
2726 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2727 {
2728 	struct anon *ap;
2729 	page_t *pp;
2730 	struct vnode *vp;
2731 	anoff_t off;
2732 	page_t *anon_pl[1 + 1];
2733 	int err;
2734 
2735 	/* Kernel probe */
2736 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2737 		tnf_opaque,	address,	addr);
2738 
2739 	*app = ap = anon_alloc(NULL, 0);
2740 	swap_xlate(ap, &vp, &off);
2741 
2742 	/*
2743 	 * Call the VOP_GETPAGE routine to create the page, thereby
2744 	 * enabling the vnode driver to allocate any filesystem
2745 	 * dependent structures (e.g., disk block allocation for UFS).
2746 	 * This also prevents more than on page from being added to
2747 	 * the vnode at the same time since it is locked.
2748 	 */
2749 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2750 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2751 	if (err) {
2752 		*app = NULL;
2753 		anon_decref(ap);
2754 		return (NULL);
2755 	}
2756 	pp = anon_pl[0];
2757 
2758 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2759 	page_downgrade(pp);
2760 	CPU_STATS_ADD_K(vm, zfod, 1);
2761 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2762 	return (pp);
2763 }
2764 
2765 
2766 /*
2767  * Allocate array of private zero-filled anon pages for empty slots
2768  * and kept pages for non empty slots within given range.
2769  *
2770  * NOTE: This rontine will try and use large pages
2771  *	if available and supported by underlying platform.
2772  */
2773 int
2774 anon_map_createpages(
2775 	struct anon_map *amp,
2776 	ulong_t start_index,
2777 	size_t len,
2778 	page_t *ppa[],
2779 	struct seg *seg,
2780 	caddr_t addr,
2781 	enum seg_rw rw,
2782 	struct cred *cred)
2783 {
2784 
2785 	struct anon	*ap;
2786 	struct vnode	*ap_vp;
2787 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2788 	int		err = 0;
2789 	ulong_t		p_index, index;
2790 	pgcnt_t		npgs, pg_cnt;
2791 	spgcnt_t	nreloc = 0;
2792 	uint_t		l_szc, szc, prot;
2793 	anoff_t		ap_off;
2794 	size_t		pgsz;
2795 	lgrp_t		*lgrp;
2796 	kmutex_t	*ahm;
2797 
2798 	/*
2799 	 * XXX For now only handle S_CREATE.
2800 	 */
2801 	ASSERT(rw == S_CREATE);
2802 
2803 	index	= start_index;
2804 	p_index	= 0;
2805 	npgs = btopr(len);
2806 
2807 	/*
2808 	 * If this platform supports multiple page sizes
2809 	 * then try and allocate directly from the free
2810 	 * list for pages larger than PAGESIZE.
2811 	 *
2812 	 * NOTE:When we have page_create_ru we can stop
2813 	 *	directly allocating from the freelist.
2814 	 */
2815 	l_szc  = seg->s_szc;
2816 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2817 	while (npgs) {
2818 
2819 		/*
2820 		 * if anon slot already exists
2821 		 *   (means page has been created)
2822 		 * so 1) look up the page
2823 		 *    2) if the page is still in memory, get it.
2824 		 *    3) if not, create a page and
2825 		 *	  page in from physical swap device.
2826 		 * These are done in anon_getpage().
2827 		 */
2828 		ap = anon_get_ptr(amp->ahp, index);
2829 		if (ap) {
2830 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2831 			    seg, addr, S_READ, cred);
2832 			if (err) {
2833 				ANON_LOCK_EXIT(&amp->a_rwlock);
2834 				panic("anon_map_createpages: anon_getpage");
2835 			}
2836 			pp = anon_pl[0];
2837 			ppa[p_index++] = pp;
2838 
2839 			/*
2840 			 * an_pvp can become non-NULL after SysV's page was
2841 			 * paged out before ISM was attached to this SysV
2842 			 * shared memory segment. So free swap slot if needed.
2843 			 */
2844 			if (ap->an_pvp != NULL) {
2845 				page_io_lock(pp);
2846 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
2847 				mutex_enter(ahm);
2848 				if (ap->an_pvp != NULL) {
2849 					swap_phys_free(ap->an_pvp,
2850 					    ap->an_poff, PAGESIZE);
2851 					ap->an_pvp = NULL;
2852 					ap->an_poff = 0;
2853 					mutex_exit(ahm);
2854 					hat_setmod(pp);
2855 				} else {
2856 					mutex_exit(ahm);
2857 				}
2858 				page_io_unlock(pp);
2859 			}
2860 
2861 			addr += PAGESIZE;
2862 			index++;
2863 			npgs--;
2864 			continue;
2865 		}
2866 		/*
2867 		 * Now try and allocate the largest page possible
2868 		 * for the current address and range.
2869 		 * Keep dropping down in page size until:
2870 		 *
2871 		 *	1) Properly aligned
2872 		 *	2) Does not overlap existing anon pages
2873 		 *	3) Fits in remaining range.
2874 		 *	4) able to allocate one.
2875 		 *
2876 		 * NOTE: XXX When page_create_ru is completed this code
2877 		 *	 will change.
2878 		 */
2879 		szc    = l_szc;
2880 		pplist = NULL;
2881 		pg_cnt = 0;
2882 		while (szc) {
2883 			pgsz	= page_get_pagesize(szc);
2884 			pg_cnt	= pgsz >> PAGESHIFT;
2885 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2886 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2887 				/*
2888 				 * XXX
2889 				 * Since we are faking page_create()
2890 				 * we also need to do the freemem and
2891 				 * pcf accounting.
2892 				 */
2893 				(void) page_create_wait(pg_cnt, PG_WAIT);
2894 
2895 				/*
2896 				 * Get lgroup to allocate next page of shared
2897 				 * memory from and use it to specify where to
2898 				 * allocate the physical memory
2899 				 */
2900 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2901 
2902 				pplist = page_get_freelist(
2903 				    anon_vp, (u_offset_t)0, seg,
2904 				    addr, pgsz, 0, lgrp);
2905 
2906 				if (pplist == NULL) {
2907 					page_create_putback(pg_cnt);
2908 				}
2909 
2910 				/*
2911 				 * If a request for a page of size
2912 				 * larger than PAGESIZE failed
2913 				 * then don't try that size anymore.
2914 				 */
2915 				if (pplist == NULL) {
2916 					l_szc = szc - 1;
2917 				} else {
2918 					break;
2919 				}
2920 			}
2921 			szc--;
2922 		}
2923 
2924 		/*
2925 		 * If just using PAGESIZE pages then don't
2926 		 * directly allocate from the free list.
2927 		 */
2928 		if (pplist == NULL) {
2929 			ASSERT(szc == 0);
2930 			pp = anon_zero(seg, addr, &ap, cred);
2931 			if (pp == NULL) {
2932 				ANON_LOCK_EXIT(&amp->a_rwlock);
2933 				panic("anon_map_createpages: anon_zero");
2934 			}
2935 			ppa[p_index++] = pp;
2936 
2937 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2938 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2939 
2940 			addr += PAGESIZE;
2941 			index++;
2942 			npgs--;
2943 			continue;
2944 		}
2945 
2946 		/*
2947 		 * pplist is a list of pg_cnt PAGESIZE pages.
2948 		 * These pages are locked SE_EXCL since they
2949 		 * came directly off the free list.
2950 		 */
2951 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2952 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2953 		ASSERT(conpp == NULL);
2954 		while (pg_cnt--) {
2955 
2956 			ap = anon_alloc(NULL, 0);
2957 			swap_xlate(ap, &ap_vp, &ap_off);
2958 
2959 			ASSERT(pplist != NULL);
2960 			pp = pplist;
2961 			page_sub(&pplist, pp);
2962 			PP_CLRFREE(pp);
2963 			PP_CLRAGED(pp);
2964 			conpp = pp;
2965 
2966 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2967 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2968 			    &nreloc, seg, addr, S_CREATE, cred);
2969 
2970 			if (err) {
2971 				ANON_LOCK_EXIT(&amp->a_rwlock);
2972 				panic("anon_map_createpages: S_CREATE");
2973 			}
2974 
2975 			ASSERT(anon_pl[0] == pp);
2976 			ASSERT(nreloc == 1);
2977 			pagezero(pp, 0, PAGESIZE);
2978 			CPU_STATS_ADD_K(vm, zfod, 1);
2979 			hat_setrefmod(pp);
2980 
2981 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2982 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2983 
2984 			ppa[p_index++] = pp;
2985 
2986 			addr += PAGESIZE;
2987 			index++;
2988 			npgs--;
2989 		}
2990 		conpp = NULL;
2991 		pg_cnt	= pgsz >> PAGESHIFT;
2992 		p_index = p_index - pg_cnt;
2993 		while (pg_cnt--) {
2994 			page_downgrade(ppa[p_index++]);
2995 		}
2996 	}
2997 	ANON_LOCK_EXIT(&amp->a_rwlock);
2998 	return (0);
2999 }
3000 
3001 static int
3002 anon_try_demote_pages(
3003 	struct anon_hdr *ahp,
3004 	ulong_t sidx,
3005 	uint_t szc,
3006 	page_t **ppa,
3007 	int private)
3008 {
3009 	struct anon	*ap;
3010 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3011 	page_t		*pp;
3012 	pgcnt_t		i;
3013 	kmutex_t	*ahmpages = NULL;
3014 	int		root = 0;
3015 	pgcnt_t		npgs;
3016 	pgcnt_t		curnpgs = 0;
3017 	size_t		ppasize = 0;
3018 
3019 	ASSERT(szc != 0);
3020 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3021 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
3022 	ASSERT(sidx < ahp->size);
3023 
3024 	if (ppa == NULL) {
3025 		ppasize = pgcnt * sizeof (page_t *);
3026 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3027 	}
3028 
3029 	ap = anon_get_ptr(ahp, sidx);
3030 	if (ap != NULL && private) {
3031 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3032 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
3033 		mutex_enter(ahmpages);
3034 	}
3035 
3036 	if (ap != NULL && ap->an_refcnt > 1) {
3037 		if (ahmpages != NULL) {
3038 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3039 			mutex_exit(ahmpages);
3040 		}
3041 		if (ppasize != 0) {
3042 			kmem_free(ppa, ppasize);
3043 		}
3044 		return (0);
3045 	}
3046 	if (ahmpages != NULL) {
3047 		mutex_exit(ahmpages);
3048 	}
3049 	if (ahp->size - sidx < pgcnt) {
3050 		ASSERT(private == 0);
3051 		pgcnt = ahp->size - sidx;
3052 	}
3053 	for (i = 0; i < pgcnt; i++, sidx++) {
3054 		ap = anon_get_ptr(ahp, sidx);
3055 		if (ap != NULL) {
3056 			if (ap->an_refcnt != 1) {
3057 				panic("anon_try_demote_pages: an_refcnt != 1");
3058 			}
3059 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3060 			    SE_EXCL);
3061 			if (pp != NULL) {
3062 				(void) hat_pageunload(pp,
3063 				    HAT_FORCE_PGUNLOAD);
3064 			}
3065 		} else {
3066 			ppa[i] = NULL;
3067 		}
3068 	}
3069 	for (i = 0; i < pgcnt; i++) {
3070 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3071 			ASSERT(pp->p_szc <= szc);
3072 			if (!root) {
3073 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3074 				if (curnpgs != 0)
3075 					panic("anon_try_demote_pages: "
3076 					    "bad large page");
3077 
3078 				root = 1;
3079 				curnpgs = npgs =
3080 				    page_get_pagecnt(pp->p_szc);
3081 
3082 				ASSERT(npgs <= pgcnt);
3083 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3084 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3085 			} else {
3086 				ASSERT(i > 0);
3087 				ASSERT(page_pptonum(pp) - 1 ==
3088 				    page_pptonum(ppa[i - 1]));
3089 				if ((page_pptonum(pp) & (npgs - 1)) ==
3090 				    npgs - 1)
3091 					root = 0;
3092 			}
3093 			ASSERT(PAGE_EXCL(pp));
3094 			pp->p_szc = 0;
3095 			ASSERT(curnpgs > 0);
3096 			curnpgs--;
3097 		}
3098 	}
3099 	if (root != 0 || curnpgs != 0)
3100 		panic("anon_try_demote_pages: bad large page");
3101 
3102 	for (i = 0; i < pgcnt; i++) {
3103 		if ((pp = ppa[i]) != NULL) {
3104 			ASSERT(!hat_page_is_mapped(pp));
3105 			ASSERT(pp->p_szc == 0);
3106 			page_unlock(pp);
3107 		}
3108 	}
3109 	if (ppasize != 0) {
3110 		kmem_free(ppa, ppasize);
3111 	}
3112 	return (1);
3113 }
3114 
3115 /*
3116  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3117  */
3118 int
3119 anon_map_demotepages(
3120 	struct anon_map *amp,
3121 	ulong_t	start_idx,
3122 	struct seg *seg,
3123 	caddr_t addr,
3124 	uint_t prot,
3125 	struct vpage vpage[],
3126 	struct cred *cred)
3127 {
3128 	struct anon	*ap;
3129 	uint_t		szc = seg->s_szc;
3130 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3131 	size_t		ppasize = pgcnt * sizeof (page_t *);
3132 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3133 	page_t		*pp;
3134 	page_t		*pl[2];
3135 	pgcnt_t		i, pg_idx;
3136 	ulong_t		an_idx;
3137 	caddr_t		vaddr;
3138 	int 		err;
3139 	int		retry = 0;
3140 	uint_t		vpprot;
3141 
3142 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3143 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3144 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3145 	ASSERT(ppa != NULL);
3146 	ASSERT(szc != 0);
3147 	ASSERT(szc == amp->a_szc);
3148 
3149 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3150 
3151 top:
3152 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3153 		kmem_free(ppa, ppasize);
3154 		return (0);
3155 	}
3156 
3157 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3158 
3159 	ASSERT(retry == 0); /* we can be here only once */
3160 
3161 	vaddr = addr;
3162 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3163 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3164 		ap = anon_get_ptr(amp->ahp, an_idx);
3165 		if (ap == NULL)
3166 			panic("anon_map_demotepages: no anon slot");
3167 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3168 		    S_READ, cred);
3169 		if (err) {
3170 			for (i = 0; i < pg_idx; i++) {
3171 				if ((pp = ppa[i]) != NULL)
3172 					page_unlock(pp);
3173 			}
3174 			kmem_free(ppa, ppasize);
3175 			return (err);
3176 		}
3177 		ppa[pg_idx] = pl[0];
3178 	}
3179 
3180 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3181 	    vpage, -1, 0, cred);
3182 	if (err > 0) {
3183 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3184 		kmem_free(ppa, ppasize);
3185 		return (err);
3186 	}
3187 	ASSERT(err == 0 || err == -1);
3188 	if (err == -1) {
3189 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3190 		retry = 1;
3191 		goto top;
3192 	}
3193 	for (i = 0; i < pgcnt; i++) {
3194 		ASSERT(ppa[i] != NULL);
3195 		if (ppa[i]->p_szc != 0)
3196 			retry = 1;
3197 		page_unlock(ppa[i]);
3198 	}
3199 	if (retry) {
3200 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3201 		goto top;
3202 	}
3203 
3204 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3205 
3206 	kmem_free(ppa, ppasize);
3207 
3208 	return (0);
3209 }
3210 
3211 /*
3212  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3213  * structures with private anon maps. Therefore all anon structures should
3214  * have at most one reference at this point. This means underlying pages can
3215  * be exclusively locked and demoted or freed.  If not freeing the entire
3216  * large pages demote the ends of the region we free to be able to free
3217  * subpages. Page roots correspond to aligned index positions in anon map.
3218  */
3219 void
3220 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3221 {
3222 	ulong_t eidx = sidx + btopr(len);
3223 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3224 	struct anon_hdr *ahp = amp->ahp;
3225 	ulong_t tidx;
3226 	size_t size;
3227 	ulong_t sidx_aligned;
3228 	ulong_t eidx_aligned;
3229 
3230 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3231 	ASSERT(amp->refcnt <= 1);
3232 	ASSERT(amp->a_szc > 0);
3233 	ASSERT(eidx <= ahp->size);
3234 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3235 
3236 	if (len == 0) {	/* XXX */
3237 		return;
3238 	}
3239 
3240 	sidx_aligned = P2ALIGN(sidx, pages);
3241 	if (sidx_aligned != sidx ||
3242 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3243 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3244 		    amp->a_szc, NULL, 0)) {
3245 			panic("anon_shmap_free_pages: demote failed");
3246 		}
3247 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3248 		    P2NPHASE(sidx, pages);
3249 		size <<= PAGESHIFT;
3250 		anon_free(ahp, sidx, size);
3251 		sidx = sidx_aligned + pages;
3252 		if (eidx <= sidx) {
3253 			return;
3254 		}
3255 	}
3256 	eidx_aligned = P2ALIGN(eidx, pages);
3257 	if (sidx < eidx_aligned) {
3258 		anon_free_pages(ahp, sidx,
3259 		    (eidx_aligned - sidx) << PAGESHIFT,
3260 		    amp->a_szc);
3261 		sidx = eidx_aligned;
3262 	}
3263 	ASSERT(sidx == eidx_aligned);
3264 	if (eidx == eidx_aligned) {
3265 		return;
3266 	}
3267 	tidx = eidx;
3268 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3269 	    tidx - sidx < pages) {
3270 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3271 			panic("anon_shmap_free_pages: demote failed");
3272 		}
3273 		size = (eidx - sidx) << PAGESHIFT;
3274 		anon_free(ahp, sidx, size);
3275 	} else {
3276 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3277 	}
3278 }
3279 
3280 /*
3281  * This routine should be called with amp's writer lock when there're no other
3282  * users of amp.  All pcache entries of this amp must have been already
3283  * inactivated. We must not drop a_rwlock here to prevent new users from
3284  * attaching to this amp.
3285  */
3286 void
3287 anonmap_purge(struct anon_map *amp)
3288 {
3289 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3290 	ASSERT(amp->refcnt <= 1);
3291 
3292 	if (amp->a_softlockcnt != 0) {
3293 		seg_ppurge(NULL, amp, 0);
3294 	}
3295 
3296 	/*
3297 	 * Since all pcache entries were already inactive before this routine
3298 	 * was called seg_ppurge() couldn't return while there're still
3299 	 * entries that can be found via the list anchored at a_phead. So we
3300 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3301 	 * if asynchronous thread that manages pcache already removed pcache
3302 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3303 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3304 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3305 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3306 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3307 	 * barrier that prevents anonmap_purge() to complete while
3308 	 * shamp_reclaim() may still be referencing this amp.
3309 	 */
3310 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3311 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3312 
3313 	mutex_enter(&amp->a_purgemtx);
3314 	while (amp->a_softlockcnt != 0) {
3315 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3316 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3317 		amp->a_purgewait = 1;
3318 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3319 	}
3320 	mutex_exit(&amp->a_purgemtx);
3321 
3322 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3323 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3324 	ASSERT(amp->a_softlockcnt == 0);
3325 }
3326 
3327 /*
3328  * Allocate and initialize an anon_map structure for seg
3329  * associating the given swap reservation with the new anon_map.
3330  */
3331 struct anon_map *
3332 anonmap_alloc(size_t size, size_t swresv, int flags)
3333 {
3334 	struct anon_map *amp;
3335 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3336 
3337 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3338 	if (amp == NULL) {
3339 		ASSERT(kmflags == KM_NOSLEEP);
3340 		return (NULL);
3341 	}
3342 
3343 	amp->ahp = anon_create(btopr(size), flags);
3344 	if (amp->ahp == NULL) {
3345 		ASSERT(flags == ANON_NOSLEEP);
3346 		kmem_cache_free(anonmap_cache, amp);
3347 		return (NULL);
3348 	}
3349 	amp->refcnt = 1;
3350 	amp->size = size;
3351 	amp->swresv = swresv;
3352 	amp->locality = 0;
3353 	amp->a_szc = 0;
3354 	amp->a_sp = NULL;
3355 	amp->a_softlockcnt = 0;
3356 	amp->a_purgewait = 0;
3357 	amp->a_phead.p_lnext = &amp->a_phead;
3358 	amp->a_phead.p_lprev = &amp->a_phead;
3359 
3360 	return (amp);
3361 }
3362 
3363 void
3364 anonmap_free(struct anon_map *amp)
3365 {
3366 	ASSERT(amp->ahp != NULL);
3367 	ASSERT(amp->refcnt == 0);
3368 	ASSERT(amp->a_softlockcnt == 0);
3369 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3370 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3371 
3372 	lgrp_shm_policy_fini(amp, NULL);
3373 	anon_release(amp->ahp, btopr(amp->size));
3374 	kmem_cache_free(anonmap_cache, amp);
3375 }
3376 
3377 /*
3378  * Returns true if the app array has some empty slots.
3379  * The offp and lenp parameters are in/out parameters.  On entry
3380  * these values represent the starting offset and length of the
3381  * mapping.  When true is returned, these values may be modified
3382  * to be the largest range which includes empty slots.
3383  */
3384 int
3385 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3386 				size_t *lenp)
3387 {
3388 	ulong_t i, el;
3389 	ssize_t low, high;
3390 	struct anon *ap;
3391 
3392 	low = -1;
3393 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3394 		ap = anon_get_ptr(ahp, anon_idx);
3395 		if (ap == NULL) {
3396 			if (low == -1)
3397 				low = i;
3398 			high = i;
3399 		}
3400 	}
3401 	if (low != -1) {
3402 		/*
3403 		 * Found at least one non-anon page.
3404 		 * Set up the off and len return values.
3405 		 */
3406 		if (low != 0)
3407 			*offp += low;
3408 		*lenp = high - low + PAGESIZE;
3409 		return (1);
3410 	}
3411 	return (0);
3412 }
3413 
3414 /*
3415  * Return a count of the number of existing anon pages in the anon array
3416  * app in the range (off, off+len). The array and slots must be guaranteed
3417  * stable by the caller.
3418  */
3419 pgcnt_t
3420 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3421 {
3422 	pgcnt_t cnt = 0;
3423 
3424 	while (nslots-- > 0) {
3425 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3426 			cnt++;
3427 		anon_index++;
3428 	}
3429 	return (cnt);
3430 }
3431 
3432 /*
3433  * Move reserved phys swap into memory swap (unreserve phys swap
3434  * and reserve mem swap by the same amount).
3435  * Used by segspt when it needs to lock reserved swap npages in memory
3436  */
3437 int
3438 anon_swap_adjust(pgcnt_t npages)
3439 {
3440 	pgcnt_t unlocked_mem_swap;
3441 
3442 	mutex_enter(&anoninfo_lock);
3443 
3444 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3445 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3446 
3447 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3448 	    - k_anoninfo.ani_locked_swap;
3449 	if (npages > unlocked_mem_swap) {
3450 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3451 
3452 		/*
3453 		 * if there is not enough unlocked mem swap we take missing
3454 		 * amount from phys swap and give it to mem swap
3455 		 */
3456 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3457 			mutex_exit(&anoninfo_lock);
3458 			return (ENOMEM);
3459 		}
3460 
3461 		k_anoninfo.ani_mem_resv += adjusted_swap;
3462 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3463 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3464 
3465 		ANI_ADD(adjusted_swap);
3466 	}
3467 	k_anoninfo.ani_locked_swap += npages;
3468 
3469 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3470 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3471 
3472 	mutex_exit(&anoninfo_lock);
3473 
3474 	return (0);
3475 }
3476 
3477 /*
3478  * 'unlocked' reserved mem swap so when it is unreserved it
3479  * can be moved back phys (disk) swap
3480  */
3481 void
3482 anon_swap_restore(pgcnt_t npages)
3483 {
3484 	mutex_enter(&anoninfo_lock);
3485 
3486 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3487 
3488 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3489 	k_anoninfo.ani_locked_swap -= npages;
3490 
3491 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3492 
3493 	mutex_exit(&anoninfo_lock);
3494 }
3495 
3496 /*
3497  * Return the pointer from the list for a
3498  * specified anon index.
3499  */
3500 ulong_t *
3501 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3502 {
3503 	struct anon	**app;
3504 	void 		**ppp;
3505 
3506 	ASSERT(an_idx < ahp->size);
3507 
3508 	/*
3509 	 * Single level case.
3510 	 */
3511 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3512 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3513 	} else {
3514 
3515 		/*
3516 		 * 2 level case.
3517 		 */
3518 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3519 		if (*ppp == NULL) {
3520 			mutex_enter(&ahp->serial_lock);
3521 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3522 			if (*ppp == NULL)
3523 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3524 			mutex_exit(&ahp->serial_lock);
3525 		}
3526 		app = *ppp;
3527 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3528 	}
3529 }
3530 
3531 void
3532 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3533 {
3534 	ulong_t		*ap_slot;
3535 	kmutex_t	*mtx;
3536 	kcondvar_t	*cv;
3537 	int		hash;
3538 
3539 	/*
3540 	 * Use szc to determine anon slot(s) to appear atomic.
3541 	 * If szc = 0, then lock the anon slot and mark it busy.
3542 	 * If szc > 0, then lock the range of slots by getting the
3543 	 * anon_array_lock for the first anon slot, and mark only the
3544 	 * first anon slot busy to represent whole range being busy.
3545 	 */
3546 
3547 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3548 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3549 	hash = ANON_ARRAY_HASH(amp, an_idx);
3550 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3551 	sobj->sync_cv = cv = &anon_array_cv[hash];
3552 	mutex_enter(mtx);
3553 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3554 	while (ANON_ISBUSY(ap_slot))
3555 		cv_wait(cv, mtx);
3556 	ANON_SETBUSY(ap_slot);
3557 	sobj->sync_data = ap_slot;
3558 	mutex_exit(mtx);
3559 }
3560 
3561 int
3562 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3563 			anon_sync_obj_t *sobj)
3564 {
3565 	ulong_t		*ap_slot;
3566 	kmutex_t	*mtx;
3567 	int		hash;
3568 
3569 	/*
3570 	 * Try to lock a range of anon slots.
3571 	 * Use szc to determine anon slot(s) to appear atomic.
3572 	 * If szc = 0, then lock the anon slot and mark it busy.
3573 	 * If szc > 0, then lock the range of slots by getting the
3574 	 * anon_array_lock for the first anon slot, and mark only the
3575 	 * first anon slot busy to represent whole range being busy.
3576 	 * Fail if the mutex or the anon_array are busy.
3577 	 */
3578 
3579 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3580 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3581 	hash = ANON_ARRAY_HASH(amp, an_idx);
3582 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3583 	sobj->sync_cv = &anon_array_cv[hash];
3584 	if (!mutex_tryenter(mtx)) {
3585 		return (EWOULDBLOCK);
3586 	}
3587 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3588 	if (ANON_ISBUSY(ap_slot)) {
3589 		mutex_exit(mtx);
3590 		return (EWOULDBLOCK);
3591 	}
3592 	ANON_SETBUSY(ap_slot);
3593 	sobj->sync_data = ap_slot;
3594 	mutex_exit(mtx);
3595 	return (0);
3596 }
3597 
3598 void
3599 anon_array_exit(anon_sync_obj_t *sobj)
3600 {
3601 	mutex_enter(sobj->sync_mutex);
3602 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3603 	ANON_CLRBUSY(sobj->sync_data);
3604 	if (CV_HAS_WAITERS(sobj->sync_cv))
3605 		cv_broadcast(sobj->sync_cv);
3606 	mutex_exit(sobj->sync_mutex);
3607 }
3608